blob: e0e40950e908feb28b1e4e509cc7e045ccd472a6 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "bootstrapper.h"
#include "code-stubs.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "ic-inl.h"
#include "parser.h"
#include "regexp-macro-assembler.h"
#include "register-allocator-inl.h"
#include "scopes.h"
#include "virtual-frame-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
// -------------------------------------------------------------------------
// Platform-specific FrameRegisterState functions.
void FrameRegisterState::Save(MacroAssembler* masm) const {
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
int action = registers_[i];
if (action == kPush) {
__ push(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore && (action & kSyncedFlag) == 0) {
__ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i));
}
}
}
void FrameRegisterState::Restore(MacroAssembler* masm) const {
// Restore registers in reverse order due to the stack.
for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
int action = registers_[i];
if (action == kPush) {
__ pop(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore) {
action &= ~kSyncedFlag;
__ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action));
}
}
}
#undef __
#define __ ACCESS_MASM(masm_)
// -------------------------------------------------------------------------
// Platform-specific DeferredCode functions.
void DeferredCode::SaveRegisters() {
frame_state_.Save(masm_);
}
void DeferredCode::RestoreRegisters() {
frame_state_.Restore(masm_);
}
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
frame_state_->Save(masm);
}
void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
frame_state_->Restore(masm);
}
void ICRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterInternalFrame();
}
void ICRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
masm->LeaveInternalFrame();
}
// -------------------------------------------------------------------------
// CodeGenState implementation.
CodeGenState::CodeGenState(CodeGenerator* owner)
: owner_(owner),
destination_(NULL),
previous_(NULL) {
owner_->set_state(this);
}
CodeGenState::CodeGenState(CodeGenerator* owner,
ControlDestination* destination)
: owner_(owner),
destination_(destination),
previous_(owner->state()) {
owner_->set_state(this);
}
CodeGenState::~CodeGenState() {
ASSERT(owner_->state() == this);
owner_->set_state(previous_);
}
// -------------------------------------------------------------------------
// CodeGenerator implementation.
CodeGenerator::CodeGenerator(MacroAssembler* masm)
: deferred_(8),
masm_(masm),
info_(NULL),
frame_(NULL),
allocator_(NULL),
state_(NULL),
loop_nesting_(0),
function_return_is_shadowed_(false),
in_spilled_code_(false) {
}
// Calling conventions:
// rbp: caller's frame pointer
// rsp: stack pointer
// rdi: called JS function
// rsi: callee's context
void CodeGenerator::Generate(CompilationInfo* info) {
// Record the position for debugging purposes.
CodeForFunctionPosition(info->function());
Comment cmnt(masm_, "[ function compiled by virtual frame code generator");
// Initialize state.
info_ = info;
ASSERT(allocator_ == NULL);
RegisterAllocator register_allocator(this);
allocator_ = &register_allocator;
ASSERT(frame_ == NULL);
frame_ = new VirtualFrame();
set_in_spilled_code(false);
// Adjust for function-level loop nesting.
ASSERT_EQ(0, loop_nesting_);
loop_nesting_ = info->is_in_loop() ? 1 : 0;
JumpTarget::set_compiling_deferred_code(false);
{
CodeGenState state(this);
// Entry:
// Stack: receiver, arguments, return address.
// rbp: caller's frame pointer
// rsp: stack pointer
// rdi: called JS function
// rsi: callee's context
allocator_->Initialize();
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
frame_->SpillAll();
__ int3();
}
#endif
frame_->Enter();
// Allocate space for locals and initialize them.
frame_->AllocateStackSlots();
// Allocate the local context if needed.
int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment cmnt(masm_, "[ allocate local context");
// Allocate local context.
// Get outer context and create a new context based on it.
frame_->PushFunction();
Result context;
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
context = frame_->CallStub(&stub, 1);
} else {
context = frame_->CallRuntime(Runtime::kNewContext, 1);
}
// Update context local.
frame_->SaveContextRegister();
// Verify that the runtime call result and rsi agree.
if (FLAG_debug_code) {
__ cmpq(context.reg(), rsi);
__ Assert(equal, "Runtime::NewContext should end up in rsi");
}
}
// TODO(1241774): Improve this code:
// 1) only needed if we have a context
// 2) no need to recompute context ptr every single time
// 3) don't copy parameter operand code from SlotOperand!
{
Comment cmnt2(masm_, "[ copy context parameters into .context");
// Note that iteration order is relevant here! If we have the same
// parameter twice (e.g., function (x, y, x)), and that parameter
// needs to be copied into the context, it must be the last argument
// passed to the parameter that needs to be copied. This is a rare
// case so we don't check for it, instead we rely on the copying
// order: such a parameter is copied repeatedly into the same
// context location and thus the last value is what is seen inside
// the function.
for (int i = 0; i < scope()->num_parameters(); i++) {
Variable* par = scope()->parameter(i);
Slot* slot = par->AsSlot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
// The use of SlotOperand below is safe in unspilled code
// because the slot is guaranteed to be a context slot.
//
// There are no parameters in the global scope.
ASSERT(!scope()->is_global_scope());
frame_->PushParameterAt(i);
Result value = frame_->Pop();
value.ToRegister();
// SlotOperand loads context.reg() with the context object
// stored to, used below in RecordWrite.
Result context = allocator_->Allocate();
ASSERT(context.is_valid());
__ movq(SlotOperand(slot, context.reg()), value.reg());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
frame_->Spill(context.reg());
frame_->Spill(value.reg());
__ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
}
}
}
// Store the arguments object. This must happen after context
// initialization because the arguments object may be stored in
// the context.
if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
StoreArgumentsObject(true);
}
// Initialize ThisFunction reference if present.
if (scope()->is_function_scope() && scope()->function() != NULL) {
frame_->Push(Factory::the_hole_value());
StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT);
}
// Initialize the function return target after the locals are set
// up, because it needs the expected frame height from the frame.
function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
function_return_is_shadowed_ = false;
// Generate code to 'execute' declarations and initialize functions
// (source elements). In case of an illegal redeclaration we need to
// handle that instead of processing the declarations.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ illegal redeclarations");
scope()->VisitIllegalRedeclaration(this);
} else {
Comment cmnt(masm_, "[ declarations");
ProcessDeclarations(scope()->declarations());
// Bail out if a stack-overflow exception occurred when processing
// declarations.
if (HasStackOverflow()) return;
}
if (FLAG_trace) {
frame_->CallRuntime(Runtime::kTraceEnter, 0);
// Ignore the return value.
}
CheckStack();
// Compile the body of the function in a vanilla state. Don't
// bother compiling all the code if the scope has an illegal
// redeclaration.
if (!scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ function body");
#ifdef DEBUG
bool is_builtin = Bootstrapper::IsActive();
bool should_trace =
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
if (should_trace) {
frame_->CallRuntime(Runtime::kDebugTrace, 0);
// Ignore the return value.
}
#endif
VisitStatements(info->function()->body());
// Handle the return from the function.
if (has_valid_frame()) {
// If there is a valid frame, control flow can fall off the end of
// the body. In that case there is an implicit return statement.
ASSERT(!function_return_is_shadowed_);
CodeForReturnPosition(info->function());
frame_->PrepareForReturn();
Result undefined(Factory::undefined_value());
if (function_return_.is_bound()) {
function_return_.Jump(&undefined);
} else {
function_return_.Bind(&undefined);
GenerateReturnSequence(&undefined);
}
} else if (function_return_.is_linked()) {
// If the return target has dangling jumps to it, then we have not
// yet generated the return sequence. This can happen when (a)
// control does not flow off the end of the body so we did not
// compile an artificial return statement just above, and (b) there
// are return statements in the body but (c) they are all shadowed.
Result return_value;
function_return_.Bind(&return_value);
GenerateReturnSequence(&return_value);
}
}
}
// Adjust for function-level loop nesting.
ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0);
loop_nesting_ = 0;
// Code generation state must be reset.
ASSERT(state_ == NULL);
ASSERT(!function_return_is_shadowed_);
function_return_.Unuse();
DeleteFrame();
// Process any deferred code using the register allocator.
if (!HasStackOverflow()) {
JumpTarget::set_compiling_deferred_code(true);
ProcessDeferred();
JumpTarget::set_compiling_deferred_code(false);
}
// There is no need to delete the register allocator, it is a
// stack-allocated local.
allocator_ = NULL;
}
Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
// Currently, this assertion will fail if we try to assign to
// a constant variable that is constant because it is read-only
// (such as the variable referring to a named function expression).
// We need to implement assignments to read-only variables.
// Ideally, we should do this during AST generation (by converting
// such assignments into expression statements); however, in general
// we may not be able to make the decision until past AST generation,
// that is when the entire program is known.
ASSERT(slot != NULL);
int index = slot->index();
switch (slot->type()) {
case Slot::PARAMETER:
return frame_->ParameterAt(index);
case Slot::LOCAL:
return frame_->LocalAt(index);
case Slot::CONTEXT: {
// Follow the context chain if necessary.
ASSERT(!tmp.is(rsi)); // do not overwrite context register
Register context = rsi;
int chain_length = scope()->ContextChainLength(slot->var()->scope());
for (int i = 0; i < chain_length; i++) {
// Load the closure.
// (All contexts, even 'with' contexts, have a closure,
// and it is the same for all contexts inside a function.
// There is no need to go to the function context first.)
__ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
// Load the function context (which is the incoming, outer context).
__ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// We may have a 'with' context now. Get the function context.
// (In fact this mov may never be the needed, since the scope analysis
// may not permit a direct context access in this case and thus we are
// always at a function context. However it is safe to dereference be-
// cause the function context of a function context is itself. Before
// deleting this mov we should try to create a counter-example first,
// though...)
__ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, index);
}
default:
UNREACHABLE();
return Operand(rsp, 0);
}
}
Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
Result tmp,
JumpTarget* slow) {
ASSERT(slot->type() == Slot::CONTEXT);
ASSERT(tmp.is_register());
Register context = rsi;
for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
Immediate(0));
slow->Branch(not_equal, not_taken);
}
__ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
context = tmp.reg();
}
}
// Check that last extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
slow->Branch(not_equal, not_taken);
__ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp.reg(), slot->index());
}
// Emit code to load the value of an expression to the top of the
// frame. If the expression is boolean-valued it may be compiled (or
// partially compiled) into control flow to the control destination.
// If force_control is true, control flow is forced.
void CodeGenerator::LoadCondition(Expression* expr,
ControlDestination* dest,
bool force_control) {
ASSERT(!in_spilled_code());
int original_height = frame_->height();
{ CodeGenState new_state(this, dest);
Visit(expr);
// If we hit a stack overflow, we may not have actually visited
// the expression. In that case, we ensure that we have a
// valid-looking frame state because we will continue to generate
// code as we unwind the C++ stack.
//
// It's possible to have both a stack overflow and a valid frame
// state (eg, a subexpression overflowed, visiting it returned
// with a dummied frame state, and visiting this expression
// returned with a normal-looking state).
if (HasStackOverflow() &&
!dest->is_used() &&
frame_->height() == original_height) {
dest->Goto(true);
}
}
if (force_control && !dest->is_used()) {
// Convert the TOS value into flow to the control destination.
ToBoolean(dest);
}
ASSERT(!(force_control && !dest->is_used()));
ASSERT(dest->is_used() || frame_->height() == original_height + 1);
}
void CodeGenerator::LoadAndSpill(Expression* expression) {
ASSERT(in_spilled_code());
set_in_spilled_code(false);
Load(expression);
frame_->SpillAll();
set_in_spilled_code(true);
}
void CodeGenerator::Load(Expression* expr) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
ASSERT(!in_spilled_code());
JumpTarget true_target;
JumpTarget false_target;
ControlDestination dest(&true_target, &false_target, true);
LoadCondition(expr, &dest, false);
if (dest.false_was_fall_through()) {
// The false target was just bound.
JumpTarget loaded;
frame_->Push(Factory::false_value());
// There may be dangling jumps to the true target.
if (true_target.is_linked()) {
loaded.Jump();
true_target.Bind();
frame_->Push(Factory::true_value());
loaded.Bind();
}
} else if (dest.is_used()) {
// There is true, and possibly false, control flow (with true as
// the fall through).
JumpTarget loaded;
frame_->Push(Factory::true_value());
if (false_target.is_linked()) {
loaded.Jump();
false_target.Bind();
frame_->Push(Factory::false_value());
loaded.Bind();
}
} else {
// We have a valid value on top of the frame, but we still may
// have dangling jumps to the true and false targets from nested
// subexpressions (eg, the left subexpressions of the
// short-circuited boolean operators).
ASSERT(has_valid_frame());
if (true_target.is_linked() || false_target.is_linked()) {
JumpTarget loaded;
loaded.Jump(); // Don't lose the current TOS.
if (true_target.is_linked()) {
true_target.Bind();
frame_->Push(Factory::true_value());
if (false_target.is_linked()) {
loaded.Jump();
}
}
if (false_target.is_linked()) {
false_target.Bind();
frame_->Push(Factory::false_value());
}
loaded.Bind();
}
}
ASSERT(has_valid_frame());
ASSERT(frame_->height() == original_height + 1);
}
void CodeGenerator::LoadGlobal() {
if (in_spilled_code()) {
frame_->EmitPush(GlobalObject());
} else {
Result temp = allocator_->Allocate();
__ movq(temp.reg(), GlobalObject());
frame_->Push(&temp);
}
}
void CodeGenerator::LoadGlobalReceiver() {
Result temp = allocator_->Allocate();
Register reg = temp.reg();
__ movq(reg, GlobalObject());
__ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
frame_->Push(&temp);
}
void CodeGenerator::LoadTypeofExpression(Expression* expr) {
// Special handling of identifiers as subexpressions of typeof.
Variable* variable = expr->AsVariableProxy()->AsVariable();
if (variable != NULL && !variable->is_this() && variable->is_global()) {
// For a global variable we build the property reference
// <global>.<variable> and perform a (regular non-contextual) property
// load to make sure we do not get reference errors.
Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
Literal key(variable->name());
Property property(&global, &key, RelocInfo::kNoPosition);
Reference ref(this, &property);
ref.GetValue();
} else if (variable != NULL && variable->AsSlot() != NULL) {
// For a variable that rewrites to a slot, we signal it is the immediate
// subexpression of a typeof.
LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF);
} else {
// Anything else can be handled normally.
Load(expr);
}
}
ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
ASSERT(scope()->arguments_shadow() != NULL);
// We don't want to do lazy arguments allocation for functions that
// have heap-allocated contexts, because it interfers with the
// uninitialized const tracking in the context objects.
return (scope()->num_heap_slots() > 0)
? EAGER_ARGUMENTS_ALLOCATION
: LAZY_ARGUMENTS_ALLOCATION;
}
Result CodeGenerator::StoreArgumentsObject(bool initial) {
ArgumentsAllocationMode mode = ArgumentsMode();
ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
Comment cmnt(masm_, "[ store arguments object");
if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
// When using lazy arguments allocation, we store the hole value
// as a sentinel indicating that the arguments object hasn't been
// allocated yet.
frame_->Push(Factory::the_hole_value());
} else {
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
frame_->PushFunction();
frame_->PushReceiverSlotAddress();
frame_->Push(Smi::FromInt(scope()->num_parameters()));
Result result = frame_->CallStub(&stub, 3);
frame_->Push(&result);
}
Variable* arguments = scope()->arguments();
Variable* shadow = scope()->arguments_shadow();
ASSERT(arguments != NULL && arguments->AsSlot() != NULL);
ASSERT(shadow != NULL && shadow->AsSlot() != NULL);
JumpTarget done;
bool skip_arguments = false;
if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
// We have to skip storing into the arguments slot if it has
// already been written to. This can happen if the a function
// has a local variable named 'arguments'.
LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF);
Result probe = frame_->Pop();
if (probe.is_constant()) {
// We have to skip updating the arguments object if it has
// been assigned a proper value.
skip_arguments = !probe.handle()->IsTheHole();
} else {
__ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex);
probe.Unuse();
done.Branch(not_equal);
}
}
if (!skip_arguments) {
StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT);
if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
}
StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT);
return frame_->Pop();
}
//------------------------------------------------------------------------------
// CodeGenerator implementation of variables, lookups, and stores.
Reference::Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get)
: cgen_(cgen),
expression_(expression),
type_(ILLEGAL),
persist_after_get_(persist_after_get) {
cgen->LoadReference(this);
}
Reference::~Reference() {
ASSERT(is_unloaded() || is_illegal());
}
void CodeGenerator::LoadReference(Reference* ref) {
// References are loaded from both spilled and unspilled code. Set the
// state to unspilled to allow that (and explicitly spill after
// construction at the construction sites).
bool was_in_spilled_code = in_spilled_code_;
in_spilled_code_ = false;
Comment cmnt(masm_, "[ LoadReference");
Expression* e = ref->expression();
Property* property = e->AsProperty();
Variable* var = e->AsVariableProxy()->AsVariable();
if (property != NULL) {
// The expression is either a property or a variable proxy that rewrites
// to a property.
Load(property->obj());
if (property->key()->IsPropertyName()) {
ref->set_type(Reference::NAMED);
} else {
Load(property->key());
ref->set_type(Reference::KEYED);
}
} else if (var != NULL) {
// The expression is a variable proxy that does not rewrite to a
// property. Global variables are treated as named property references.
if (var->is_global()) {
// If rax is free, the register allocator prefers it. Thus the code
// generator will load the global object into rax, which is where
// LoadIC wants it. Most uses of Reference call LoadIC directly
// after the reference is created.
frame_->Spill(rax);
LoadGlobal();
ref->set_type(Reference::NAMED);
} else {
ASSERT(var->AsSlot() != NULL);
ref->set_type(Reference::SLOT);
}
} else {
// Anything else is a runtime error.
Load(e);
frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
}
in_spilled_code_ = was_in_spilled_code;
}
void CodeGenerator::UnloadReference(Reference* ref) {
// Pop a reference from the stack while preserving TOS.
Comment cmnt(masm_, "[ UnloadReference");
frame_->Nip(ref->size());
ref->set_unloaded();
}
// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
// convert it to a boolean in the condition code register or jump to
// 'false_target'/'true_target' as appropriate.
void CodeGenerator::ToBoolean(ControlDestination* dest) {
Comment cmnt(masm_, "[ ToBoolean");
// The value to convert should be popped from the frame.
Result value = frame_->Pop();
value.ToRegister();
if (value.is_number()) {
// Fast case if TypeInfo indicates only numbers.
if (FLAG_debug_code) {
__ AbortIfNotNumber(value.reg());
}
// Smi => false iff zero.
__ SmiCompare(value.reg(), Smi::FromInt(0));
if (value.is_smi()) {
value.Unuse();
dest->Split(not_zero);
} else {
dest->false_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(value.reg());
dest->true_target()->Branch(is_smi);
__ xorpd(xmm0, xmm0);
__ ucomisd(xmm0, FieldOperand(value.reg(), HeapNumber::kValueOffset));
value.Unuse();
dest->Split(not_zero);
}
} else {
// Fast case checks.
// 'false' => false.
__ CompareRoot(value.reg(), Heap::kFalseValueRootIndex);
dest->false_target()->Branch(equal);
// 'true' => true.
__ CompareRoot(value.reg(), Heap::kTrueValueRootIndex);
dest->true_target()->Branch(equal);
// 'undefined' => false.
__ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex);
dest->false_target()->Branch(equal);
// Smi => false iff zero.
__ SmiCompare(value.reg(), Smi::FromInt(0));
dest->false_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(value.reg());
dest->true_target()->Branch(is_smi);
// Call the stub for all other cases.
frame_->Push(&value); // Undo the Pop() from above.
ToBooleanStub stub;
Result temp = frame_->CallStub(&stub, 1);
// Convert the result to a condition code.
__ testq(temp.reg(), temp.reg());
temp.Unuse();
dest->Split(not_equal);
}
}
// Call the specialized stub for a binary operation.
class DeferredInlineBinaryOperation: public DeferredCode {
public:
DeferredInlineBinaryOperation(Token::Value op,
Register dst,
Register left,
Register right,
OverwriteMode mode)
: op_(op), dst_(dst), left_(left), right_(right), mode_(mode) {
set_comment("[ DeferredInlineBinaryOperation");
}
virtual void Generate();
private:
Token::Value op_;
Register dst_;
Register left_;
Register right_;
OverwriteMode mode_;
};
void DeferredInlineBinaryOperation::Generate() {
Label done;
if ((op_ == Token::ADD)
|| (op_ == Token::SUB)
|| (op_ == Token::MUL)
|| (op_ == Token::DIV)) {
Label call_runtime;
Label left_smi, right_smi, load_right, do_op;
__ JumpIfSmi(left_, &left_smi);
__ CompareRoot(FieldOperand(left_, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ movsd(xmm0, FieldOperand(left_, HeapNumber::kValueOffset));
if (mode_ == OVERWRITE_LEFT) {
__ movq(dst_, left_);
}
__ jmp(&load_right);
__ bind(&left_smi);
__ SmiToInteger32(left_, left_);
__ cvtlsi2sd(xmm0, left_);
__ Integer32ToSmi(left_, left_);
if (mode_ == OVERWRITE_LEFT) {
Label alloc_failure;
__ AllocateHeapNumber(dst_, no_reg, &call_runtime);
}
__ bind(&load_right);
__ JumpIfSmi(right_, &right_smi);
__ CompareRoot(FieldOperand(right_, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ movsd(xmm1, FieldOperand(right_, HeapNumber::kValueOffset));
if (mode_ == OVERWRITE_RIGHT) {
__ movq(dst_, right_);
} else if (mode_ == NO_OVERWRITE) {
Label alloc_failure;
__ AllocateHeapNumber(dst_, no_reg, &call_runtime);
}
__ jmp(&do_op);
__ bind(&right_smi);
__ SmiToInteger32(right_, right_);
__ cvtlsi2sd(xmm1, right_);
__ Integer32ToSmi(right_, right_);
if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
Label alloc_failure;
__ AllocateHeapNumber(dst_, no_reg, &call_runtime);
}
__ bind(&do_op);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
__ jmp(&done);
__ bind(&call_runtime);
}
GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB);
stub.GenerateCall(masm_, left_, right_);
if (!dst_.is(rax)) __ movq(dst_, rax);
__ bind(&done);
}
static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
Token::Value op,
const Result& right,
const Result& left) {
// Set TypeInfo of result according to the operation performed.
// We rely on the fact that smis have a 32 bit payload on x64.
STATIC_ASSERT(kSmiValueSize == 32);
switch (op) {
case Token::COMMA:
return right.type_info();
case Token::OR:
case Token::AND:
// Result type can be either of the two input types.
return operands_type;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
// Result is always a smi.
return TypeInfo::Smi();
case Token::SAR:
case Token::SHL:
// Result is always a smi.
return TypeInfo::Smi();
case Token::SHR:
// Result of x >>> y is always a smi if masked y >= 1, otherwise a number.
return (right.is_constant() && right.handle()->IsSmi()
&& (Smi::cast(*right.handle())->value() & 0x1F) >= 1)
? TypeInfo::Smi()
: TypeInfo::Number();
case Token::ADD:
if (operands_type.IsNumber()) {
return TypeInfo::Number();
} else if (left.type_info().IsString() || right.type_info().IsString()) {
return TypeInfo::String();
} else {
return TypeInfo::Unknown();
}
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
// Result is always a number.
return TypeInfo::Number();
default:
UNREACHABLE();
}
UNREACHABLE();
return TypeInfo::Unknown();
}
void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr,
OverwriteMode overwrite_mode) {
Comment cmnt(masm_, "[ BinaryOperation");
Token::Value op = expr->op();
Comment cmnt_token(masm_, Token::String(op));
if (op == Token::COMMA) {
// Simply discard left value.
frame_->Nip(1);
return;
}
Result right = frame_->Pop();
Result left = frame_->Pop();
if (op == Token::ADD) {
const bool left_is_string = left.type_info().IsString();
const bool right_is_string = right.type_info().IsString();
// Make sure constant strings have string type info.
ASSERT(!(left.is_constant() && left.handle()->IsString()) ||
left_is_string);
ASSERT(!(right.is_constant() && right.handle()->IsString()) ||
right_is_string);
if (left_is_string || right_is_string) {
frame_->Push(&left);
frame_->Push(&right);
Result answer;
if (left_is_string) {
if (right_is_string) {
StringAddStub stub(NO_STRING_CHECK_IN_STUB);
answer = frame_->CallStub(&stub, 2);
} else {
answer =
frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
}
} else if (right_is_string) {
answer =
frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
}
answer.set_type_info(TypeInfo::String());
frame_->Push(&answer);
return;
}
// Neither operand is known to be a string.
}
bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
bool right_is_non_smi_constant =
right.is_constant() && !right.handle()->IsSmi();
if (left_is_smi_constant && right_is_smi_constant) {
// Compute the constant result at compile time, and leave it on the frame.
int left_int = Smi::cast(*left.handle())->value();
int right_int = Smi::cast(*right.handle())->value();
if (FoldConstantSmis(op, left_int, right_int)) return;
}
// Get number type of left and right sub-expressions.
TypeInfo operands_type =
TypeInfo::Combine(left.type_info(), right.type_info());
TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left);
Result answer;
if (left_is_non_smi_constant || right_is_non_smi_constant) {
// Go straight to the slow case, with no smi code.
GenericBinaryOpStub stub(op,
overwrite_mode,
NO_SMI_CODE_IN_STUB,
operands_type);
answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
} else if (right_is_smi_constant) {
answer = ConstantSmiBinaryOperation(expr, &left, right.handle(),
false, overwrite_mode);
} else if (left_is_smi_constant) {
answer = ConstantSmiBinaryOperation(expr, &right, left.handle(),
true, overwrite_mode);
} else {
// Set the flags based on the operation, type and loop nesting level.
// Bit operations always assume they likely operate on Smis. Still only
// generate the inline Smi check code if this operation is part of a loop.
// For all other operations only inline the Smi check code for likely smis
// if the operation is part of a loop.
if (loop_nesting() > 0 &&
(Token::IsBitOp(op) ||
operands_type.IsInteger32() ||
expr->type()->IsLikelySmi())) {
answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode);
} else {
GenericBinaryOpStub stub(op,
overwrite_mode,
NO_GENERIC_BINARY_FLAGS,
operands_type);
answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
}
}
answer.set_type_info(result_type);
frame_->Push(&answer);
}
bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
Object* answer_object = Heap::undefined_value();
switch (op) {
case Token::ADD:
// Use intptr_t to detect overflow of 32-bit int.
if (Smi::IsValid(static_cast<intptr_t>(left) + right)) {
answer_object = Smi::FromInt(left + right);
}
break;
case Token::SUB:
// Use intptr_t to detect overflow of 32-bit int.
if (Smi::IsValid(static_cast<intptr_t>(left) - right)) {
answer_object = Smi::FromInt(left - right);
}
break;
case Token::MUL: {
double answer = static_cast<double>(left) * right;
if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
// If the product is zero and the non-zero factor is negative,
// the spec requires us to return floating point negative zero.
if (answer != 0 || (left >= 0 && right >= 0)) {
answer_object = Smi::FromInt(static_cast<int>(answer));
}
}
}
break;
case Token::DIV:
case Token::MOD:
break;
case Token::BIT_OR:
answer_object = Smi::FromInt(left | right);
break;
case Token::BIT_AND:
answer_object = Smi::FromInt(left & right);
break;
case Token::BIT_XOR:
answer_object = Smi::FromInt(left ^ right);
break;
case Token::SHL: {
int shift_amount = right & 0x1F;
if (Smi::IsValid(left << shift_amount)) {
answer_object = Smi::FromInt(left << shift_amount);
}
break;
}
case Token::SHR: {
int shift_amount = right & 0x1F;
unsigned int unsigned_left = left;
unsigned_left >>= shift_amount;
if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
answer_object = Smi::FromInt(unsigned_left);
}
break;
}
case Token::SAR: {
int shift_amount = right & 0x1F;
unsigned int unsigned_left = left;
if (left < 0) {
// Perform arithmetic shift of a negative number by
// complementing number, logical shifting, complementing again.
unsigned_left = ~unsigned_left;
unsigned_left >>= shift_amount;
unsigned_left = ~unsigned_left;
} else {
unsigned_left >>= shift_amount;
}
ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
break;
}
default:
UNREACHABLE();
break;
}
if (answer_object == Heap::undefined_value()) {
return false;
}
frame_->Push(Handle<Object>(answer_object));
return true;
}
void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left,
Result* right,
JumpTarget* both_smi) {
TypeInfo left_info = left->type_info();
TypeInfo right_info = right->type_info();
if (left_info.IsDouble() || left_info.IsString() ||
right_info.IsDouble() || right_info.IsString()) {
// We know that left and right are not both smi. Don't do any tests.
return;
}
if (left->reg().is(right->reg())) {
if (!left_info.IsSmi()) {
Condition is_smi = masm()->CheckSmi(left->reg());
both_smi->Branch(is_smi);
} else {
if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
left->Unuse();
right->Unuse();
both_smi->Jump();
}
} else if (!left_info.IsSmi()) {
if (!right_info.IsSmi()) {
Condition is_smi = masm()->CheckBothSmi(left->reg(), right->reg());
both_smi->Branch(is_smi);
} else {
Condition is_smi = masm()->CheckSmi(left->reg());
both_smi->Branch(is_smi);
}
} else {
if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
if (!right_info.IsSmi()) {
Condition is_smi = masm()->CheckSmi(right->reg());
both_smi->Branch(is_smi);
} else {
if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
left->Unuse();
right->Unuse();
both_smi->Jump();
}
}
}
void CodeGenerator::JumpIfNotSmiUsingTypeInfo(Register reg,
TypeInfo type,
DeferredCode* deferred) {
if (!type.IsSmi()) {
__ JumpIfNotSmi(reg, deferred->entry_label());
}
if (FLAG_debug_code) {
__ AbortIfNotSmi(reg);
}
}
void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
Register right,
TypeInfo left_info,
TypeInfo right_info,
DeferredCode* deferred) {
if (!left_info.IsSmi() && !right_info.IsSmi()) {
__ JumpIfNotBothSmi(left, right, deferred->entry_label());
} else if (!left_info.IsSmi()) {
__ JumpIfNotSmi(left, deferred->entry_label());
} else if (!right_info.IsSmi()) {
__ JumpIfNotSmi(right, deferred->entry_label());
}
if (FLAG_debug_code) {
__ AbortIfNotSmi(left);
__ AbortIfNotSmi(right);
}
}
// Implements a binary operation using a deferred code object and some
// inline code to operate on smis quickly.
Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
Result* left,
Result* right,
OverwriteMode overwrite_mode) {
// Copy the type info because left and right may be overwritten.
TypeInfo left_type_info = left->type_info();
TypeInfo right_type_info = right->type_info();
Token::Value op = expr->op();
Result answer;
// Special handling of div and mod because they use fixed registers.
if (op == Token::DIV || op == Token::MOD) {
// We need rax as the quotient register, rdx as the remainder
// register, neither left nor right in rax or rdx, and left copied
// to rax.
Result quotient;
Result remainder;
bool left_is_in_rax = false;
// Step 1: get rax for quotient.
if ((left->is_register() && left->reg().is(rax)) ||
(right->is_register() && right->reg().is(rax))) {
// One or both is in rax. Use a fresh non-rdx register for
// them.
Result fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
if (fresh.reg().is(rdx)) {
remainder = fresh;
fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
}
if (left->is_register() && left->reg().is(rax)) {
quotient = *left;
*left = fresh;
left_is_in_rax = true;
}
if (right->is_register() && right->reg().is(rax)) {
quotient = *right;
*right = fresh;
}
__ movq(fresh.reg(), rax);
} else {
// Neither left nor right is in rax.
quotient = allocator_->Allocate(rax);
}
ASSERT(quotient.is_register() && quotient.reg().is(rax));
ASSERT(!(left->is_register() && left->reg().is(rax)));
ASSERT(!(right->is_register() && right->reg().is(rax)));
// Step 2: get rdx for remainder if necessary.
if (!remainder.is_valid()) {
if ((left->is_register() && left->reg().is(rdx)) ||
(right->is_register() && right->reg().is(rdx))) {
Result fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
if (left->is_register() && left->reg().is(rdx)) {
remainder = *left;
*left = fresh;
}
if (right->is_register() && right->reg().is(rdx)) {
remainder = *right;
*right = fresh;
}
__ movq(fresh.reg(), rdx);
} else {
// Neither left nor right is in rdx.
remainder = allocator_->Allocate(rdx);
}
}
ASSERT(remainder.is_register() && remainder.reg().is(rdx));
ASSERT(!(left->is_register() && left->reg().is(rdx)));
ASSERT(!(right->is_register() && right->reg().is(rdx)));
left->ToRegister();
right->ToRegister();
frame_->Spill(rax);
frame_->Spill(rdx);
// Check that left and right are smi tagged.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
(op == Token::DIV) ? rax : rdx,
left->reg(),
right->reg(),
overwrite_mode);
JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
left_type_info, right_type_info, deferred);
if (op == Token::DIV) {
__ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label());
deferred->BindExit();
left->Unuse();
right->Unuse();
answer = quotient;
} else {
ASSERT(op == Token::MOD);
__ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label());
deferred->BindExit();
left->Unuse();
right->Unuse();
answer = remainder;
}
ASSERT(answer.is_valid());
return answer;
}
// Special handling of shift operations because they use fixed
// registers.
if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
// Move left out of rcx if necessary.
if (left->is_register() && left->reg().is(rcx)) {
*left = allocator_->Allocate();
ASSERT(left->is_valid());
__ movq(left->reg(), rcx);
}
right->ToRegister(rcx);
left->ToRegister();
ASSERT(left->is_register() && !left->reg().is(rcx));
ASSERT(right->is_register() && right->reg().is(rcx));
// We will modify right, it must be spilled.
frame_->Spill(rcx);
// Use a fresh answer register to avoid spilling the left operand.
answer = allocator_->Allocate();
ASSERT(answer.is_valid());
// Check that both operands are smis using the answer register as a
// temporary.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
answer.reg(),
left->reg(),
rcx,
overwrite_mode);
Label do_op;
// Left operand must be unchanged in left->reg() for deferred code.
// Left operand is in answer.reg(), possibly converted to int32, for
// inline code.
__ movq(answer.reg(), left->reg());
if (right_type_info.IsSmi()) {
if (FLAG_debug_code) {
__ AbortIfNotSmi(right->reg());
}
// If left is not known to be a smi, check if it is.
// If left is not known to be a number, and it isn't a smi, check if
// it is a HeapNumber.
if (!left_type_info.IsSmi()) {
__ JumpIfSmi(answer.reg(), &do_op);
if (!left_type_info.IsNumber()) {
// Branch if not a heapnumber.
__ Cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
deferred->Branch(not_equal);
}
// Load integer value into answer register using truncation.
__ cvttsd2si(answer.reg(),
FieldOperand(answer.reg(), HeapNumber::kValueOffset));
// Branch if we might have overflowed.
// (False negative for Smi::kMinValue)
__ cmpl(answer.reg(), Immediate(0x80000000));
deferred->Branch(equal);
// TODO(lrn): Inline shifts on int32 here instead of first smi-tagging.
__ Integer32ToSmi(answer.reg(), answer.reg());
} else {
// Fast case - both are actually smis.
if (FLAG_debug_code) {
__ AbortIfNotSmi(left->reg());
}
}
} else {
JumpIfNotBothSmiUsingTypeInfo(left->reg(), rcx,
left_type_info, right_type_info, deferred);
}
__ bind(&do_op);
// Perform the operation.
switch (op) {
case Token::SAR:
__ SmiShiftArithmeticRight(answer.reg(), answer.reg(), rcx);
break;
case Token::SHR: {
__ SmiShiftLogicalRight(answer.reg(),
answer.reg(),
rcx,
deferred->entry_label());
break;
}
case Token::SHL: {
__ SmiShiftLeft(answer.reg(),
answer.reg(),
rcx);
break;
}
default:
UNREACHABLE();
}
deferred->BindExit();
left->Unuse();
right->Unuse();
ASSERT(answer.is_valid());
return answer;
}
// Handle the other binary operations.
left->ToRegister();
right->ToRegister();
// A newly allocated register answer is used to hold the answer. The
// registers containing left and right are not modified so they don't
// need to be spilled in the fast case.
answer = allocator_->Allocate();
ASSERT(answer.is_valid());
// Perform the smi tag check.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
answer.reg(),
left->reg(),
right->reg(),
overwrite_mode);
JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
left_type_info, right_type_info, deferred);
switch (op) {
case Token::ADD:
__ SmiAdd(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
case Token::SUB:
__ SmiSub(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
case Token::MUL: {
__ SmiMul(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
}
case Token::BIT_OR:
__ SmiOr(answer.reg(), left->reg(), right->reg());
break;
case Token::BIT_AND:
__ SmiAnd(answer.reg(), left->reg(), right->reg());
break;
case Token::BIT_XOR:
__ SmiXor(answer.reg(), left->reg(), right->reg());
break;
default:
UNREACHABLE();
break;
}
deferred->BindExit();
left->Unuse();
right->Unuse();
ASSERT(answer.is_valid());
return answer;
}
// Call the appropriate binary operation stub to compute src op value
// and leave the result in dst.
class DeferredInlineSmiOperation: public DeferredCode {
public:
DeferredInlineSmiOperation(Token::Value op,
Register dst,
Register src,
Smi* value,
OverwriteMode overwrite_mode)
: op_(op),
dst_(dst),
src_(src),
value_(value),
overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiOperation");
}
virtual void Generate();
private:
Token::Value op_;
Register dst_;
Register src_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
void DeferredInlineSmiOperation::Generate() {
// For mod we don't generate all the Smi code inline.
GenericBinaryOpStub stub(
op_,
overwrite_mode_,
(op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB);
stub.GenerateCall(masm_, src_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
// Call the appropriate binary operation stub to compute value op src
// and leave the result in dst.
class DeferredInlineSmiOperationReversed: public DeferredCode {
public:
DeferredInlineSmiOperationReversed(Token::Value op,
Register dst,
Smi* value,
Register src,
OverwriteMode overwrite_mode)
: op_(op),
dst_(dst),
value_(value),
src_(src),
overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiOperationReversed");
}
virtual void Generate();
private:
Token::Value op_;
Register dst_;
Smi* value_;
Register src_;
OverwriteMode overwrite_mode_;
};
void DeferredInlineSmiOperationReversed::Generate() {
GenericBinaryOpStub stub(
op_,
overwrite_mode_,
NO_SMI_CODE_IN_STUB);
stub.GenerateCall(masm_, value_, src_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
class DeferredInlineSmiAdd: public DeferredCode {
public:
DeferredInlineSmiAdd(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiAdd");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
void DeferredInlineSmiAdd::Generate() {
GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, dst_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
// The result of value + src is in dst. It either overflowed or was not
// smi tagged. Undo the speculative addition and call the appropriate
// specialized stub for add. The result is left in dst.
class DeferredInlineSmiAddReversed: public DeferredCode {
public:
DeferredInlineSmiAddReversed(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiAddReversed");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
void DeferredInlineSmiAddReversed::Generate() {
GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, value_, dst_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
class DeferredInlineSmiSub: public DeferredCode {
public:
DeferredInlineSmiSub(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiSub");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
void DeferredInlineSmiSub::Generate() {
GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, dst_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
Result* operand,
Handle<Object> value,
bool reversed,
OverwriteMode overwrite_mode) {
// Generate inline code for a binary operation when one of the
// operands is a constant smi. Consumes the argument "operand".
if (IsUnsafeSmi(value)) {
Result unsafe_operand(value);
if (reversed) {
return LikelySmiBinaryOperation(expr, &unsafe_operand, operand,
overwrite_mode);
} else {
return LikelySmiBinaryOperation(expr, operand, &unsafe_operand,
overwrite_mode);
}
}
// Get the literal value.
Smi* smi_value = Smi::cast(*value);
int int_value = smi_value->value();
Token::Value op = expr->op();
Result answer;
switch (op) {
case Token::ADD: {
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredCode* deferred = NULL;
if (reversed) {
deferred = new DeferredInlineSmiAddReversed(operand->reg(),
smi_value,
overwrite_mode);
} else {
deferred = new DeferredInlineSmiAdd(operand->reg(),
smi_value,
overwrite_mode);
}
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ SmiAddConstant(operand->reg(),
operand->reg(),
smi_value,
deferred->entry_label());
deferred->BindExit();
answer = *operand;
break;
}
case Token::SUB: {
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
overwrite_mode);
} else {
operand->ToRegister();
frame_->Spill(operand->reg());
answer = *operand;
DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
// A smi currently fits in a 32-bit Immediate.
__ SmiSubConstant(operand->reg(),
operand->reg(),
smi_value,
deferred->entry_label());
deferred->BindExit();
operand->Unuse();
}
break;
}
case Token::SAR:
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
overwrite_mode);
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ SmiShiftArithmeticRightConstant(operand->reg(),
operand->reg(),
shift_value);
deferred->BindExit();
answer = *operand;
}
break;
case Token::SHR:
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
overwrite_mode);
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
answer = allocator()->Allocate();
ASSERT(answer.is_valid());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
answer.reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ SmiShiftLogicalRightConstant(answer.reg(),
operand->reg(),
shift_value,
deferred->entry_label());
deferred->BindExit();
operand->Unuse();
}
break;
case Token::SHL:
if (reversed) {
operand->ToRegister();
// We need rcx to be available to hold operand, and to be spilled.
// SmiShiftLeft implicitly modifies rcx.
if (operand->reg().is(rcx)) {
frame_->Spill(operand->reg());
answer = allocator()->Allocate();
} else {
Result rcx_reg = allocator()->Allocate(rcx);
// answer must not be rcx.
answer = allocator()->Allocate();
// rcx_reg goes out of scope.
}
DeferredInlineSmiOperationReversed* deferred =
new DeferredInlineSmiOperationReversed(op,
answer.reg(),
smi_value,
operand->reg(),
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ Move(answer.reg(), smi_value);
__ SmiShiftLeft(answer.reg(), answer.reg(), operand->reg());
operand->Unuse();
deferred->BindExit();
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
if (shift_value == 0) {
// Spill operand so it can be overwritten in the slow case.
frame_->Spill(operand->reg());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
deferred->BindExit();
answer = *operand;
} else {
// Use a fresh temporary for nonzero shift values.
answer = allocator()->Allocate();
ASSERT(answer.is_valid());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
answer.reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
__ SmiShiftLeftConstant(answer.reg(),
operand->reg(),
shift_value);
deferred->BindExit();
operand->Unuse();
}
}
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
operand->ToRegister();
frame_->Spill(operand->reg());
if (reversed) {
// Bit operations with a constant smi are commutative.
// We can swap left and right operands with no problem.
// Swap left and right overwrite modes. 0->0, 1->2, 2->1.
overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3);
}
DeferredCode* deferred = new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
deferred);
if (op == Token::BIT_AND) {
__ SmiAndConstant(operand->reg(), operand->reg(), smi_value);
} else if (op == Token::BIT_XOR) {
if (int_value != 0) {
__ SmiXorConstant(operand->reg(), operand->reg(), smi_value);
}
} else {
ASSERT(op == Token::BIT_OR);
if (int_value != 0) {
__ SmiOrConstant(operand->reg(), operand->reg(), smi_value);
}
}
deferred->BindExit();
answer = *operand;
break;
}
// Generate inline code for mod of powers of 2 and negative powers of 2.
case Token::MOD:
if (!reversed &&
int_value != 0 &&
(IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredCode* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
__ JumpUnlessNonNegativeSmi(operand->reg(), deferred->entry_label());
if (int_value < 0) int_value = -int_value;
if (int_value == 1) {
__ Move(operand->reg(), Smi::FromInt(0));
} else {
__ SmiAndConstant(operand->reg(),
operand->reg(),
Smi::FromInt(int_value - 1));
}
deferred->BindExit();
answer = *operand;
break; // This break only applies if we generated code for MOD.
}
// Fall through if we did not find a power of 2 on the right hand side!
// The next case must be the default.
default: {
Result constant_operand(value);
if (reversed) {
answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
overwrite_mode);
} else {
answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
overwrite_mode);
}
break;
}
}
ASSERT(answer.is_valid());
return answer;
}
static bool CouldBeNaN(const Result& result) {
if (result.type_info().IsSmi()) return false;
if (result.type_info().IsInteger32()) return false;
if (!result.is_constant()) return true;
if (!result.handle()->IsHeapNumber()) return false;
return isnan(HeapNumber::cast(*result.handle())->value());
}
// Convert from signed to unsigned comparison to match the way EFLAGS are set
// by FPU and XMM compare instructions.
static Condition DoubleCondition(Condition cc) {
switch (cc) {
case less: return below;
case equal: return equal;
case less_equal: return below_equal;
case greater: return above;
case greater_equal: return above_equal;
default: UNREACHABLE();
}
UNREACHABLE();
return equal;
}
static CompareFlags ComputeCompareFlags(NaNInformation nan_info,
bool inline_number_compare) {
CompareFlags flags = NO_SMI_COMPARE_IN_STUB;
if (nan_info == kCantBothBeNaN) {
flags = static_cast<CompareFlags>(flags | CANT_BOTH_BE_NAN);
}
if (inline_number_compare) {
flags = static_cast<CompareFlags>(flags | NO_NUMBER_COMPARE_IN_STUB);
}
return flags;
}
void CodeGenerator::Comparison(AstNode* node,
Condition cc,
bool strict,
ControlDestination* dest) {
// Strict only makes sense for equality comparisons.
ASSERT(!strict || cc == equal);
Result left_side;
Result right_side;
// Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
if (cc == greater || cc == less_equal) {
cc = ReverseCondition(cc);
left_side = frame_->Pop();
right_side = frame_->Pop();
} else {
right_side = frame_->Pop();
left_side = frame_->Pop();
}
ASSERT(cc == less || cc == equal || cc == greater_equal);
// If either side is a constant smi, optimize the comparison.
bool left_side_constant_smi = false;
bool left_side_constant_null = false;
bool left_side_constant_1_char_string = false;
if (left_side.is_constant()) {
left_side_constant_smi = left_side.handle()->IsSmi();
left_side_constant_null = left_side.handle()->IsNull();
left_side_constant_1_char_string =
(left_side.handle()->IsString() &&
String::cast(*left_side.handle())->length() == 1 &&
String::cast(*left_side.handle())->IsAsciiRepresentation());
}
bool right_side_constant_smi = false;
bool right_side_constant_null = false;
bool right_side_constant_1_char_string = false;
if (right_side.is_constant()) {
right_side_constant_smi = right_side.handle()->IsSmi();
right_side_constant_null = right_side.handle()->IsNull();
right_side_constant_1_char_string =
(right_side.handle()->IsString() &&
String::cast(*right_side.handle())->length() == 1 &&
String::cast(*right_side.handle())->IsAsciiRepresentation());
}
if (left_side_constant_smi || right_side_constant_smi) {
bool is_loop_condition = (node->AsExpression() != NULL) &&
node->AsExpression()->is_loop_condition();
ConstantSmiComparison(cc, strict, dest, &left_side, &right_side,
left_side_constant_smi, right_side_constant_smi,
is_loop_condition);
} else if (left_side_constant_1_char_string ||
right_side_constant_1_char_string) {
if (left_side_constant_1_char_string && right_side_constant_1_char_string) {
// Trivial case, comparing two constants.
int left_value = String::cast(*left_side.handle())->Get(0);
int right_value = String::cast(*right_side.handle())->Get(0);
switch (cc) {
case less:
dest->Goto(left_value < right_value);
break;
case equal:
dest->Goto(left_value == right_value);
break;
case greater_equal:
dest->Goto(left_value >= right_value);
break;
default:
UNREACHABLE();
}
} else {
// Only one side is a constant 1 character string.
// If left side is a constant 1-character string, reverse the operands.
// Since one side is a constant string, conversion order does not matter.
if (left_side_constant_1_char_string) {
Result temp = left_side;
left_side = right_side;
right_side = temp;
cc = ReverseCondition(cc);
// This may reintroduce greater or less_equal as the value of cc.
// CompareStub and the inline code both support all values of cc.
}
// Implement comparison against a constant string, inlining the case
// where both sides are strings.
left_side.ToRegister();
// Here we split control flow to the stub call and inlined cases
// before finally splitting it to the control destination. We use
// a jump target and branching to duplicate the virtual frame at
// the first split. We manually handle the off-frame references
// by reconstituting them on the non-fall-through path.
JumpTarget is_not_string, is_string;
Register left_reg = left_side.reg();
Handle<Object> right_val = right_side.handle();
ASSERT(StringShape(String::cast(*right_val)).IsSymbol());
Condition is_smi = masm()->CheckSmi(left_reg);
is_not_string.Branch(is_smi, &left_side);
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(),
FieldOperand(left_reg, HeapObject::kMapOffset));
__ movzxbl(temp.reg(),
FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
// If we are testing for equality then make use of the symbol shortcut.
// Check if the left hand side has the same type as the right hand
// side (which is always a symbol).
if (cc == equal) {
Label not_a_symbol;
STATIC_ASSERT(kSymbolTag != 0);
// Ensure that no non-strings have the symbol bit set.
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
__ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
__ j(zero, &not_a_symbol);
// They are symbols, so do identity compare.
__ Cmp(left_reg, right_side.handle());
dest->true_target()->Branch(equal);
dest->false_target()->Branch(not_equal);
__ bind(&not_a_symbol);
}
// Call the compare stub if the left side is not a flat ascii string.
__ andb(temp.reg(),
Immediate(kIsNotStringMask |
kStringRepresentationMask |
kStringEncodingMask));
__ cmpb(temp.reg(),
Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
temp.Unuse();
is_string.Branch(equal, &left_side);
// Setup and call the compare stub.
is_not_string.Bind(&left_side);
CompareFlags flags =
static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB);
CompareStub stub(cc, strict, flags);
Result result = frame_->CallStub(&stub, &left_side, &right_side);
result.ToRegister();
__ testq(result.reg(), result.reg());
result.Unuse();
dest->true_target()->Branch(cc);
dest->false_target()->Jump();
is_string.Bind(&left_side);
// left_side is a sequential ASCII string.
ASSERT(left_side.reg().is(left_reg));
right_side = Result(right_val);
Result temp2 = allocator_->Allocate();
ASSERT(temp2.is_valid());
// Test string equality and comparison.
if (cc == equal) {
Label comparison_done;
__ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
Smi::FromInt(1));
__ j(not_equal, &comparison_done);
uint8_t char_value =
static_cast<uint8_t>(String::cast(*right_val)->Get(0));
__ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
Immediate(char_value));
__ bind(&comparison_done);
} else {
__ movq(temp2.reg(),
FieldOperand(left_side.reg(), String::kLengthOffset));
__ SmiSubConstant(temp2.reg(), temp2.reg(), Smi::FromInt(1));
Label comparison;
// If the length is 0 then the subtraction gave -1 which compares less
// than any character.
__ j(negative, &comparison);
// Otherwise load the first character.
__ movzxbl(temp2.reg(),
FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize));
__ bind(&comparison);
// Compare the first character of the string with the
// constant 1-character string.
uint8_t char_value =
static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0));
__ cmpb(temp2.reg(), Immediate(char_value));
Label characters_were_different;
__ j(not_equal, &characters_were_different);
// If the first character is the same then the long string sorts after
// the short one.
__ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
Smi::FromInt(1));
__ bind(&characters_were_different);
}
temp2.Unuse();
left_side.Unuse();
right_side.Unuse();
dest->Split(cc);
}
} else {
// Neither side is a constant Smi, constant 1-char string, or constant null.
// If either side is a non-smi constant, or known to be a heap number,
// skip the smi check.
bool known_non_smi =
(left_side.is_constant() && !left_side.handle()->IsSmi()) ||
(right_side.is_constant() && !right_side.handle()->IsSmi()) ||
left_side.type_info().IsDouble() ||
right_side.type_info().IsDouble();
NaNInformation nan_info =
(CouldBeNaN(left_side) && CouldBeNaN(right_side)) ?
kBothCouldBeNaN :
kCantBothBeNaN;
// Inline number comparison handling any combination of smi's and heap
// numbers if:
// code is in a loop
// the compare operation is different from equal
// compare is not a for-loop comparison
// The reason for excluding equal is that it will most likely be done
// with smi's (not heap numbers) and the code to comparing smi's is inlined
// separately. The same reason applies for for-loop comparison which will
// also most likely be smi comparisons.
bool is_loop_condition = (node->AsExpression() != NULL)
&& node->AsExpression()->is_loop_condition();
bool inline_number_compare =
loop_nesting() > 0 && cc != equal && !is_loop_condition;
// Left and right needed in registers for the following code.
left_side.ToRegister();
right_side.ToRegister();
if (known_non_smi) {
// Inlined equality check:
// If at least one of the objects is not NaN, then if the objects
// are identical, they are equal.
if (nan_info == kCantBothBeNaN && cc == equal) {
__ cmpq(left_side.reg(), right_side.reg());
dest->true_target()->Branch(equal);
}
// Inlined number comparison:
if (inline_number_compare) {
GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
}
// End of in-line compare, call out to the compare stub. Don't include
// number comparison in the stub if it was inlined.
CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare);
CompareStub stub(cc, strict, flags);
Result answer = frame_->CallStub(&stub, &left_side, &right_side);
__ testq(answer.reg(), answer.reg()); // Sets both zero and sign flag.
answer.Unuse();
dest->Split(cc);
} else {
// Here we split control flow to the stub call and inlined cases
// before finally splitting it to the control destination. We use
// a jump target and branching to duplicate the virtual frame at
// the first split. We manually handle the off-frame references
// by reconstituting them on the non-fall-through path.
JumpTarget is_smi;
Register left_reg = left_side.reg();
Register right_reg = right_side.reg();
// In-line check for comparing two smis.
JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi);
if (has_valid_frame()) {
// Inline the equality check if both operands can't be a NaN. If both
// objects are the same they are equal.
if (nan_info == kCantBothBeNaN && cc == equal) {
__ cmpq(left_side.reg(), right_side.reg());
dest->true_target()->Branch(equal);
}
// Inlined number comparison:
if (inline_number_compare) {
GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
}
// End of in-line compare, call out to the compare stub. Don't include
// number comparison in the stub if it was inlined.
CompareFlags flags =
ComputeCompareFlags(nan_info, inline_number_compare);
CompareStub stub(cc, strict, flags);
Result answer = frame_->CallStub(&stub, &left_side, &right_side);
__ testq(answer.reg(), answer.reg()); // Sets both zero and sign flags.
answer.Unuse();
if (is_smi.is_linked()) {
dest->true_target()->Branch(cc);
dest->false_target()->Jump();
} else {
dest->Split(cc);
}
}
if (is_smi.is_linked()) {
is_smi.Bind();
left_side = Result(left_reg);
right_side = Result(right_reg);
__ SmiCompare(left_side.reg(), right_side.reg());
right_side.Unuse();
left_side.Unuse();
dest->Split(cc);
}
}
}
}
void CodeGenerator::ConstantSmiComparison(Condition cc,
bool strict,
ControlDestination* dest,
Result* left_side,
Result* right_side,
bool left_side_constant_smi,
bool right_side_constant_smi,
bool is_loop_condition) {
if (left_side_constant_smi && right_side_constant_smi) {
// Trivial case, comparing two constants.
int left_value = Smi::cast(*left_side->handle())->value();
int right_value = Smi::cast(*right_side->handle())->value();
switch (cc) {
case less:
dest->Goto(left_value < right_value);
break;
case equal:
dest->Goto(left_value == right_value);
break;
case greater_equal:
dest->Goto(left_value >= right_value);
break;
default:
UNREACHABLE();
}
} else {
// Only one side is a constant Smi.
// If left side is a constant Smi, reverse the operands.
// Since one side is a constant Smi, conversion order does not matter.
if (left_side_constant_smi) {
Result* temp = left_side;
left_side = right_side;
right_side = temp;
cc = ReverseCondition(cc);
// This may re-introduce greater or less_equal as the value of cc.
// CompareStub and the inline code both support all values of cc.
}
// Implement comparison against a constant Smi, inlining the case
// where both sides are Smis.
left_side->ToRegister();
Register left_reg = left_side->reg();
Smi* constant_smi = Smi::cast(*right_side->handle());
if (left_side->is_smi()) {
if (FLAG_debug_code) {
__ AbortIfNotSmi(left_reg);
}
// Test smi equality and comparison by signed int comparison.
// Both sides are smis, so we can use an Immediate.
__ SmiCompare(left_reg, constant_smi);
left_side->Unuse();
right_side->Unuse();
dest->Split(cc);
} else {
// Only the case where the left side could possibly be a non-smi is left.
JumpTarget is_smi;
if (cc == equal) {
// We can do the equality comparison before the smi check.
__ SmiCompare(left_reg, constant_smi);
dest->true_target()->Branch(equal);
Condition left_is_smi = masm_->CheckSmi(left_reg);
dest->false_target()->Branch(left_is_smi);
} else {
// Do the smi check, then the comparison.
Condition left_is_smi = masm_->CheckSmi(left_reg);
is_smi.Branch(left_is_smi, left_side, right_side);
}
// Jump or fall through to here if we are comparing a non-smi to a
// constant smi. If the non-smi is a heap number and this is not
// a loop condition, inline the floating point code.
if (!is_loop_condition) {
// Right side is a constant smi and left side has been checked
// not to be a smi.
JumpTarget not_number;
__ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
Factory::heap_number_map());
not_number.Branch(not_equal, left_side);
__ movsd(xmm1,
FieldOperand(left_reg, HeapNumber::kValueOffset));
int value = constant_smi->value();
if (value == 0) {
__ xorpd(xmm0, xmm0);
} else {
Result temp = allocator()->Allocate();
__ movl(temp.reg(), Immediate(value));
__ cvtlsi2sd(xmm0, temp.reg());
temp.Unuse();
}
__ ucomisd(xmm1, xmm0);
// Jump to builtin for NaN.
not_number.Branch(parity_even, left_side);
left_side->Unuse();
dest->true_target()->Branch(DoubleCondition(cc));
dest->false_target()->Jump();
not_number.Bind(left_side);
}
// Setup and call the compare stub.
CompareFlags flags =
static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB);
CompareStub stub(cc, strict, flags);
Result result = frame_->CallStub(&stub, left_side, right_side);
result.ToRegister();
__ testq(result.reg(), result.reg());
result.Unuse();
if (cc == equal) {
dest->Split(cc);
} else {
dest->true_target()->Branch(cc);
dest->false_target()->Jump();
// It is important for performance for this case to be at the end.
is_smi.Bind(left_side, right_side);
__ SmiCompare(left_reg, constant_smi);
left_side->Unuse();
right_side->Unuse();
dest->Split(cc);
}
}
}
}
// Load a comparison operand into into a XMM register. Jump to not_numbers jump
// target passing the left and right result if the operand is not a number.
static void LoadComparisonOperand(MacroAssembler* masm_,
Result* operand,
XMMRegister xmm_reg,
Result* left_side,
Result* right_side,
JumpTarget* not_numbers) {
Label done;
if (operand->type_info().IsDouble()) {
// Operand is known to be a heap number, just load it.
__ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
} else if (operand->type_info().IsSmi()) {
// Operand is known to be a smi. Convert it to double and keep the original
// smi.
__ SmiToInteger32(kScratchRegister, operand->reg());
__ cvtlsi2sd(xmm_reg, kScratchRegister);
} else {
// Operand type not known, check for smi or heap number.
Label smi;
__ JumpIfSmi(operand->reg(), &smi);
if (!operand->type_info().IsNumber()) {
__ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
__ cmpq(FieldOperand(operand->reg(), HeapObject::kMapOffset),
kScratchRegister);
not_numbers->Branch(not_equal, left_side, right_side, taken);
}
__ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&smi);
// Comvert smi to float and keep the original smi.
__ SmiToInteger32(kScratchRegister, operand->reg());
__ cvtlsi2sd(xmm_reg, kScratchRegister);
__ jmp(&done);
}
__ bind(&done);
}
void CodeGenerator::GenerateInlineNumberComparison(Result* left_side,
Result* right_side,
Condition cc,
ControlDestination* dest) {
ASSERT(left_side->is_register());
ASSERT(right_side->is_register());
JumpTarget not_numbers;
// Load left and right operand into registers xmm0 and xmm1 and compare.
LoadComparisonOperand(masm_, left_side, xmm0, left_side, right_side,
&not_numbers);
LoadComparisonOperand(masm_, right_side, xmm1, left_side, right_side,
&not_numbers);
__ ucomisd(xmm0, xmm1);
// Bail out if a NaN is involved.
not_numbers.Branch(parity_even, left_side, right_side);
// Split to destination targets based on comparison.
left_side->Unuse();
right_side->Unuse();
dest->true_target()->Branch(DoubleCondition(cc));
dest->false_target()->Jump();
not_numbers.Bind(left_side, right_side);
}
// Call the function just below TOS on the stack with the given
// arguments. The receiver is the TOS.
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
CallFunctionFlags flags,
int position) {
// Push the arguments ("left-to-right") on the stack.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Record the position for debugging purposes.
CodeForSourcePosition(position);
// Use the shared code stub to call the function.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop, flags);
Result answer = frame_->CallStub(&call_function, arg_count + 1);
// Restore context and replace function on the stack with the
// result of the stub invocation.
frame_->RestoreContextRegister();
frame_->SetElementAt(0, &answer);
}
void CodeGenerator::CallApplyLazy(Expression* applicand,
Expression* receiver,
VariableProxy* arguments,
int position) {
// An optimized implementation of expressions of the form
// x.apply(y, arguments).
// If the arguments object of the scope has not been allocated,
// and x.apply is Function.prototype.apply, this optimization
// just copies y and the arguments of the current function on the
// stack, as receiver and arguments, and calls x.
// In the implementation comments, we call x the applicand
// and y the receiver.
ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
ASSERT(arguments->IsArguments());
// Load applicand.apply onto the stack. This will usually
// give us a megamorphic load site. Not super, but it works.
Load(applicand);
frame()->Dup();
Handle<String> name = Factory::LookupAsciiSymbol("apply");
frame()->Push(name);
Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET);
__ nop();
frame()->Push(&answer);
// Load the receiver and the existing arguments object onto the
// expression stack. Avoid allocating the arguments object here.
Load(receiver);
LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF);
// Emit the source position information after having loaded the
// receiver and the arguments.
CodeForSourcePosition(position);
// Contents of frame at this point:
// Frame[0]: arguments object of the current function or the hole.
// Frame[1]: receiver
// Frame[2]: applicand.apply
// Frame[3]: applicand.
// Check if the arguments object has been lazily allocated
// already. If so, just use that instead of copying the arguments
// from the stack. This also deals with cases where a local variable
// named 'arguments' has been introduced.
frame_->Dup();
Result probe = frame_->Pop();
{ VirtualFrame::SpilledScope spilled_scope;
Label slow, done;
bool try_lazy = true;
if (probe.is_constant()) {
try_lazy = probe.handle()->IsTheHole();
} else {
__ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex);
probe.Unuse();
__ j(not_equal, &slow);
}
if (try_lazy) {
Label build_args;
// Get rid of the arguments object probe.
frame_->Drop(); // Can be called on a spilled frame.
// Stack now has 3 elements on it.
// Contents of stack at this point:
// rsp[0]: receiver
// rsp[1]: applicand.apply
// rsp[2]: applicand.
// Check that the receiver really is a JavaScript object.
__ movq(rax, Operand(rsp, 0));
Condition is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &build_args);
// We allow all JSObjects including JSFunctions. As long as
// JS_FUNCTION_TYPE is the last instance type and it is right
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper
// bound.
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &build_args);
// Check that applicand.apply is Function.prototype.apply.
__ movq(rax, Operand(rsp, kPointerSize));
is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &build_args);
__ CmpObjectType(rax, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &build_args);
__ movq(rcx, FieldOperand(rax, JSFunction::kCodeEntryOffset));
__ subq(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag));
Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
__ Cmp(rcx, apply_code);
__ j(not_equal, &build_args);
// Check that applicand is a function.
__ movq(rdi, Operand(rsp, 2 * kPointerSize));
is_smi = masm_->CheckSmi(rdi);
__ j(is_smi, &build_args);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &build_args);
// Copy the arguments to this function possibly from the
// adaptor frame below it.
Label invoke, adapted;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adapted);
// No arguments adaptor frame. Copy fixed number of arguments.
__ Set(rax, scope()->num_parameters());
for (int i = 0; i < scope()->num_parameters(); i++) {
__ push(frame_->ParameterAt(i));
}
__ jmp(&invoke);
// Arguments adaptor frame present. Copy arguments from there, but
// avoid copying too many arguments to avoid stack overflows.
__ bind(&adapted);
static const uint32_t kArgumentsLimit = 1 * KB;
__ SmiToInteger32(rax,
Operand(rdx,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ movl(rcx, rax);
__ cmpl(rax, Immediate(kArgumentsLimit));
__ j(above, &build_args);
// Loop through the arguments pushing them onto the execution
// stack. We don't inform the virtual frame of the push, so we don't
// have to worry about getting rid of the elements from the virtual
// frame.
Label loop;
// rcx is a small non-negative integer, due to the test above.
__ testl(rcx, rcx);
__ j(zero, &invoke);
__ bind(&loop);
__ push(Operand(rdx, rcx, times_pointer_size, 1 * kPointerSize));
__ decl(rcx);
__ j(not_zero, &loop);
// Invoke the function.
__ bind(&invoke);
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
// Drop applicand.apply and applicand from the stack, and push
// the result of the function call, but leave the spilled frame
// unchanged, with 3 elements, so it is correct when we compile the
// slow-case code.
__ addq(rsp, Immediate(2 * kPointerSize));
__ push(rax);
// Stack now has 1 element:
// rsp[0]: result
__ jmp(&done);
// Slow-case: Allocate the arguments object since we know it isn't
// there, and fall-through to the slow-case where we call
// applicand.apply.
__ bind(&build_args);
// Stack now has 3 elements, because we have jumped from where:
// rsp[0]: receiver
// rsp[1]: applicand.apply
// rsp[2]: applicand.
// StoreArgumentsObject requires a correct frame, and may modify it.
Result arguments_object = StoreArgumentsObject(false);
frame_->SpillAll();
arguments_object.ToRegister();
frame_->EmitPush(arguments_object.reg());
arguments_object.Unuse();
// Stack and frame now have 4 elements.
__ bind(&slow);
}
// Generic computation of x.apply(y, args) with no special optimization.
// Flip applicand.apply and applicand on the stack, so
// applicand looks like the receiver of the applicand.apply call.
// Then process it as a normal function call.
__ movq(rax, Operand(rsp, 3 * kPointerSize));
__ movq(rbx, Operand(rsp, 2 * kPointerSize));
__ movq(Operand(rsp, 2 * kPointerSize), rax);
__ movq(Operand(rsp, 3 * kPointerSize), rbx);
CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
Result res = frame_->CallStub(&call_function, 3);
// The function and its two arguments have been dropped.
frame_->Drop(1); // Drop the receiver as well.
res.ToRegister();
frame_->EmitPush(res.reg());
// Stack now has 1 element:
// rsp[0]: result
if (try_lazy) __ bind(&done);
} // End of spilled scope.
// Restore the context register after a call.
frame_->RestoreContextRegister();
}
class DeferredStackCheck: public DeferredCode {
public:
DeferredStackCheck() {
set_comment("[ DeferredStackCheck");
}
virtual void Generate();
};
void DeferredStackCheck::Generate() {
StackCheckStub stub;
__ CallStub(&stub);
}
void CodeGenerator::CheckStack() {
DeferredStackCheck* deferred = new DeferredStackCheck;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
deferred->Branch(below);
deferred->BindExit();
}
void CodeGenerator::VisitAndSpill(Statement* statement) {
ASSERT(in_spilled_code());
set_in_spilled_code(false);
Visit(statement);
if (frame_ != NULL) {
frame_->SpillAll();
}
set_in_spilled_code(true);
}
void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
ASSERT(in_spilled_code());
set_in_spilled_code(false);
VisitStatements(statements);
if (frame_ != NULL) {
frame_->SpillAll();
}
set_in_spilled_code(true);
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
ASSERT(!in_spilled_code());
for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
Visit(statements->at(i));
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitBlock(Block* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ Block");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
VisitStatements(node->statements());
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
}
void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals. The inevitable call
// will sync frame elements to memory anyway, so we do it eagerly to
// allow us to push the arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
__ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(rsi); // The context is the first argument.
frame_->EmitPush(kScratchRegister);
frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0));
Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void CodeGenerator::VisitDeclaration(Declaration* node) {
Comment cmnt(masm_, "[ Declaration");
Variable* var = node->proxy()->var();
ASSERT(var != NULL); // must have been resolved
Slot* slot = var->AsSlot();
// If it was not possible to allocate the variable at compile time,
// we need to "declare" it at runtime to make sure it actually
// exists in the local context.
if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Variables with a "LOOKUP" slot were introduced as non-locals
// during variable resolution and must have mode DYNAMIC.
ASSERT(var->is_dynamic());
// For now, just do a runtime call. Sync the virtual frame eagerly
// so we can simply push the arguments into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
__ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
// Declaration nodes are always introduced in one of two modes.
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
frame_->EmitPush(Smi::FromInt(attr));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (node->mode() == Variable::CONST) {
frame_->EmitPush(Heap::kTheHoleValueRootIndex);
} else if (node->fun() != NULL) {
Load(node->fun());
} else {
frame_->EmitPush(Smi::FromInt(0)); // no initial value!
}
Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
// Ignore the return value (declarations are statements).
return;
}
ASSERT(!var->is_global());
// If we have a function or a constant, we need to initialize the variable.
Expression* val = NULL;
if (node->mode() == Variable::CONST) {
val = new Literal(Factory::the_hole_value());
} else {
val = node->fun(); // NULL if we don't have a function
}
if (val != NULL) {
{
// Set the initial value.
Reference target(this, node->proxy());
Load(val);
target.SetValue(NOT_CONST_INIT);
// The reference is removed from the stack (preserving TOS) when
// it goes out of scope.
}
// Get rid of the assigned value (declarations are statements).
frame_->Drop();
}
}
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ExpressionStatement");
CodeForStatementPosition(node);
Expression* expression = node->expression();
expression->MarkAsStatement();
Load(expression);
// Remove the lingering expression result from the top of stack.
frame_->Drop();
}
void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "// EmptyStatement");
CodeForStatementPosition(node);
// nothing to do
}
void CodeGenerator::VisitIfStatement(IfStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ IfStatement");
// Generate different code depending on which parts of the if statement
// are present or not.
bool has_then_stm = node->HasThenStatement();
bool has_else_stm = node->HasElseStatement();
CodeForStatementPosition(node);
JumpTarget exit;
if (has_then_stm && has_else_stm) {
JumpTarget then;
JumpTarget else_;
ControlDestination dest(&then, &else_, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The else target was bound, so we compile the else part first.
Visit(node->else_statement());
// We may have dangling jumps to the then part.
if (then.is_linked()) {
if (has_valid_frame()) exit.Jump();
then.Bind();
Visit(node->then_statement());
}
} else {
// The then target was bound, so we compile the then part first.
Visit(node->then_statement());
if (else_.is_linked()) {
if (has_valid_frame()) exit.Jump();
else_.Bind();
Visit(node->else_statement());
}
}
} else if (has_then_stm) {
ASSERT(!has_else_stm);
JumpTarget then;
ControlDestination dest(&then, &exit, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The exit label was bound. We may have dangling jumps to the
// then part.
if (then.is_linked()) {
exit.Unuse();
exit.Jump();
then.Bind();
Visit(node->then_statement());
}
} else {
// The then label was bound.
Visit(node->then_statement());
}
} else if (has_else_stm) {
ASSERT(!has_then_stm);
JumpTarget else_;
ControlDestination dest(&exit, &else_, false);
LoadCondition(node->condition(), &dest, true);
if (dest.true_was_fall_through()) {
// The exit label was bound. We may have dangling jumps to the
// else part.
if (else_.is_linked()) {
exit.Unuse();
exit.Jump();
else_.Bind();
Visit(node->else_statement());
}
} else {
// The else label was bound.
Visit(node->else_statement());
}
} else {
ASSERT(!has_then_stm && !has_else_stm);
// We only care about the condition's side effects (not its value
// or control flow effect). LoadCondition is called without
// forcing control flow.
ControlDestination dest(&exit, &exit, true);
LoadCondition(node->condition(), &dest, false);
if (!dest.is_used()) {
// We got a value on the frame rather than (or in addition to)
// control flow.
frame_->Drop();
}
}
if (exit.is_linked()) {
exit.Bind();
}
}
void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ContinueStatement");
CodeForStatementPosition(node);
node->target()->continue_target()->Jump();
}
void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ BreakStatement");
CodeForStatementPosition(node);
node->target()->break_target()->Jump();
}
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ReturnStatement");
CodeForStatementPosition(node);
Load(node->expression());
Result return_value = frame_->Pop();
masm()->positions_recorder()->WriteRecordedPositions();
if (function_return_is_shadowed_) {
function_return_.Jump(&return_value);
} else {
frame_->PrepareForReturn();
if (function_return_.is_bound()) {
// If the function return label is already bound we reuse the
// code by jumping to the return site.
function_return_.Jump(&return_value);
} else {
function_return_.Bind(&return_value);
GenerateReturnSequence(&return_value);
}
}
}
void CodeGenerator::GenerateReturnSequence(Result* return_value) {
// The return value is a live (but not currently reference counted)
// reference to rax. This is safe because the current frame does not
// contain a reference to rax (it is prepared for the return by spilling
// all registers).
if (FLAG_trace) {
frame_->Push(return_value);
*return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
}
return_value->ToRegister(rax);
// Add a label for checking the size of the code used for returning.
#ifdef DEBUG
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
#endif
// Leave the frame and return popping the arguments and the
// receiver.
frame_->Exit();
masm_->ret((scope()->num_parameters() + 1) * kPointerSize);
DeleteFrame();
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint.
// frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k"
// with length 7 (3 + 1 + 3).
const int kPadding = Assembler::kJSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
// Check that the size of the code used for returning matches what is
// expected by the debugger.
ASSERT_EQ(Assembler::kJSReturnSequenceLength,
masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
#endif
}
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WithEnterStatement");
CodeForStatementPosition(node);
Load(node->expression());
Result context;
if (node->is_catch_block()) {
context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
} else {
context = frame_->CallRuntime(Runtime::kPushContext, 1);
}
// Update context local.
frame_->SaveContextRegister();
// Verify that the runtime call result and rsi agree.
if (FLAG_debug_code) {
__ cmpq(context.reg(), rsi);
__ Assert(equal, "Runtime::NewContext should end up in rsi");
}
}
void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WithExitStatement");
CodeForStatementPosition(node);
// Pop context.
__ movq(rsi, ContextOperand(rsi, Context::PREVIOUS_INDEX));
// Update context local.
frame_->SaveContextRegister();
}
void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ SwitchStatement");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
// Compile the switch value.
Load(node->tag());
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
CaseClause* default_clause = NULL;
JumpTarget next_test;
// Compile the case label expressions and comparisons. Exit early
// if a comparison is unconditionally true. The target next_test is
// bound before the loop in order to indicate control flow to the
// first comparison.
next_test.Bind();
for (int i = 0; i < length && !next_test.is_unused(); i++) {
CaseClause* clause = cases->at(i);
// The default is not a test, but remember it for later.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
// We recycle the same target next_test for each test. Bind it if
// the previous test has not done so and then unuse it for the
// loop.
if (next_test.is_linked()) {
next_test.Bind();
}
next_test.Unuse();
// Duplicate the switch value.
frame_->Dup();
// Compile the label expression.
Load(clause->label());
// Compare and branch to the body if true or the next test if
// false. Prefer the next test as a fall through.
ControlDestination dest(clause->body_target(), &next_test, false);
Comparison(node, equal, true, &dest);
// If the comparison fell through to the true target, jump to the
// actual body.
if (dest.true_was_fall_through()) {
clause->body_target()->Unuse();
clause->body_target()->Jump();
}
}
// If there was control flow to a next test from the last one
// compiled, compile a jump to the default or break target.
if (!next_test.is_unused()) {
if (next_test.is_linked()) {
next_test.Bind();
}
// Drop the switch value.
frame_->Drop();
if (default_clause != NULL) {
default_clause->body_target()->Jump();
} else {
node->break_target()->Jump();
}
}
// The last instruction emitted was a jump, either to the default
// clause or the break target, or else to a case body from the loop
// that compiles the tests.
ASSERT(!has_valid_frame());
// Compile case bodies as needed.
for (int i = 0; i < length; i++) {
CaseClause* clause = cases->at(i);
// There are two ways to reach the body: from the corresponding
// test or as the fall through of the previous body.
if (clause->body_target()->is_linked() || has_valid_frame()) {
if (clause->body_target()->is_linked()) {
if (has_valid_frame()) {
// If we have both a jump to the test and a fall through, put
// a jump on the fall through path to avoid the dropping of
// the switch value on the test path. The exception is the
// default which has already had the switch value dropped.
if (clause->is_default()) {
clause->body_target()->Bind();
} else {
JumpTarget body;
body.Jump();
clause->body_target()->Bind();
frame_->Drop();
body.Bind();
}
} else {
// No fall through to worry about.
clause->body_target()->Bind();
if (!clause->is_default()) {
frame_->Drop();
}
}
} else {
// Otherwise, we have only fall through.
ASSERT(has_valid_frame());
}
// We are now prepared to compile the body.
Comment cmnt(masm_, "[ Case body");
VisitStatements(clause->statements());
}
clause->body_target()->Unuse();
}
// We may not have a valid frame here so bind the break target only
// if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
}
void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ DoWhileStatement");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
JumpTarget body(JumpTarget::BIDIRECTIONAL);
IncrementLoopNesting();
ConditionAnalysis info = AnalyzeCondition(node->cond());
// Label the top of the loop for the backward jump if necessary.
switch (info) {
case ALWAYS_TRUE:
// Use the continue target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
break;
case ALWAYS_FALSE:
// No need to label it.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
break;
case DONT_KNOW:
// Continue is the test, so use the backward body target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
body.Bind();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// Compile the test.
switch (info) {
case ALWAYS_TRUE:
// If control flow can fall off the end of the body, jump back
// to the top and bind the break target at the exit.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
case ALWAYS_FALSE:
// We may have had continues or breaks in the body.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
case DONT_KNOW:
// We have to compile the test expression if it can be reached by
// control flow falling out of the body or via continue.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
Comment cmnt(masm_, "[ DoWhileCondition");
CodeForDoWhileConditionPosition(node);
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
}
DecrementLoopNesting();
node->continue_target()->Unuse();
node->break_target()->Unuse();
}
void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WhileStatement");
CodeForStatementPosition(node);
// If the condition is always false and has no side effects, we do not
// need to compile anything.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
// Do not duplicate conditions that may have function literal
// subexpressions. This can cause us to compile the function literal
// twice.
bool test_at_bottom = !node->may_have_function_literal();
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
IncrementLoopNesting();
JumpTarget body;
if (test_at_bottom) {
body.set_direction(JumpTarget::BIDIRECTIONAL);
}
// Based on the condition analysis, compile the test as necessary.
switch (info) {
case ALWAYS_TRUE:
// We will not compile the test expression. Label the top of the
// loop with the continue target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
break;
case DONT_KNOW: {
if (test_at_bottom) {
// Continue is the test at the bottom, no need to label the test
// at the top. The body is a backward target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
} else {
// Label the test at the top as the continue target. The body
// is a forward-only target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
}
// Compile the test with the body as the true target and preferred
// fall-through and with the break target as the false target.
ControlDestination dest(&body, node->break_target(), true);
LoadCondition(node->cond(), &dest, true);
if (dest.false_was_fall_through()) {
// If we got the break target as fall-through, the test may have
// been unconditionally false (if there are no jumps to the
// body).
if (!body.is_linked()) {
DecrementLoopNesting();
return;
}
// Otherwise, jump around the body on the fall through and then
// bind the body target.
node->break_target()->Unuse();
node->break_target()->Jump();
body.Bind();
}
break;
}
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// Based on the condition analysis, compile the backward jump as
// necessary.
switch (info) {
case ALWAYS_TRUE:
// The loop body has been labeled with the continue target.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
break;
case DONT_KNOW:
if (test_at_bottom) {
// If we have chosen to recompile the test at the bottom,
// then it is the continue target.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
// The break target is the fall-through (body is a backward
// jump from here and thus an invalid fall-through).
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
} else {
// If we have chosen not to recompile the test at the bottom,
// jump back to the one at the top.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
}
break;
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
// The break target may be already bound (by the condition), or there
// may not be a valid frame. Bind it only if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
}
void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) {
ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER);
if (slot->type() == Slot::LOCAL) {
frame_->SetTypeForLocalAt(slot->index(), info);
} else {
frame_->SetTypeForParamAt(slot->index(), info);
}
if (FLAG_debug_code && info.IsSmi()) {
if (slot->type() == Slot::LOCAL) {
frame_->PushLocalAt(slot->index());
} else {
frame_->PushParameterAt(slot->index());
}
Result var = frame_->Pop();
var.ToRegister();
__ AbortIfNotSmi(var.reg());
}
}
void CodeGenerator::GenerateFastSmiLoop(ForStatement* node) {
// A fast smi loop is a for loop with an initializer
// that is a simple assignment of a smi to a stack variable,
// a test that is a simple test of that variable against a smi constant,
// and a step that is a increment/decrement of the variable, and
// where the variable isn't modified in the loop body.
// This guarantees that the variable is always a smi.
Variable* loop_var = node->loop_variable();
Smi* initial_value = *Handle<Smi>::cast(node->init()
->StatementAsSimpleAssignment()->value()->AsLiteral()->handle());
Smi* limit_value = *Handle<Smi>::cast(
node->cond()->AsCompareOperation()->right()->AsLiteral()->handle());
Token::Value compare_op =
node->cond()->AsCompareOperation()->op();
bool increments =
node->next()->StatementAsCountOperation()->op() == Token::INC;
// Check that the condition isn't initially false.
bool initially_false = false;
int initial_int_value = initial_value->value();
int limit_int_value = limit_value->value();
switch (compare_op) {
case Token::LT:
initially_false = initial_int_value >= limit_int_value;
break;
case Token::LTE:
initially_false = initial_int_value > limit_int_value;
break;
case Token::GT:
initially_false = initial_int_value <= limit_int_value;
break;
case Token::GTE:
initially_false = initial_int_value < limit_int_value;
break;
default:
UNREACHABLE();
}
if (initially_false) return;
// Only check loop condition at the end.
Visit(node->init());
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
// Set type and stack height of BreakTargets.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
IncrementLoopNesting();
loop.Bind();
// Set number type of the loop variable to smi.
CheckStack(); // TODO(1222600): ignore if body contains calls.
SetTypeForStackSlot(loop_var->AsSlot(), TypeInfo::Smi());
Visit(node->body());
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
CodeForStatementPosition(node);
Slot* loop_var_slot = loop_var->AsSlot();
if (loop_var_slot->type() == Slot::LOCAL) {
frame_->TakeLocalAt(loop_var_slot->index());
} else {
ASSERT(loop_var_slot->type() == Slot::PARAMETER);
frame_->TakeParameterAt(loop_var_slot->index());
}
Result loop_var_result = frame_->Pop();
if (!loop_var_result.is_register()) {
loop_var_result.ToRegister();
}
Register loop_var_reg = loop_var_result.reg();
frame_->Spill(loop_var_reg);
if (increments) {
__ SmiAddConstant(loop_var_reg,
loop_var_reg,
Smi::FromInt(1));
} else {
__ SmiSubConstant(loop_var_reg,
loop_var_reg,
Smi::FromInt(1));
}
frame_->Push(&loop_var_result);
if (loop_var_slot->type() == Slot::LOCAL) {
frame_->StoreToLocalAt(loop_var_slot->index());
} else {
ASSERT(loop_var_slot->type() == Slot::PARAMETER);
frame_->StoreToParameterAt(loop_var_slot->index());
}
frame_->Drop();
__ SmiCompare(loop_var_reg, limit_value);
Condition condition;
switch (compare_op) {
case Token::LT:
condition = less;
break;
case Token::LTE:
condition = less_equal;
break;
case Token::GT:
condition = greater;
break;
case Token::GTE:
condition = greater_equal;
break;
default:
condition = never;
UNREACHABLE();
}
loop.Branch(condition);
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
}
void CodeGenerator::VisitForStatement(ForStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ForStatement");
CodeForStatementPosition(node);
if (node->is_fast_smi_loop()) {
GenerateFastSmiLoop(node);
return;
}
// Compile the init expression if present.
if (node->init() != NULL) {
Visit(node->init());
}
// If the condition is always false and has no side effects, we do not
// need to compile anything else.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
// Do not duplicate conditions that may have function literal
// subexpressions. This can cause us to compile the function literal
// twice.
bool test_at_bottom = !node->may_have_function_literal();
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
IncrementLoopNesting();
// Target for backward edge if no test at the bottom, otherwise
// unused.
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
// Target for backward edge if there is a test at the bottom,
// otherwise used as target for test at the top.
JumpTarget body;
if (test_at_bottom) {
body.set_direction(JumpTarget::BIDIRECTIONAL);
}
// Based on the condition analysis, compile the test as necessary.
switch (info) {
case ALWAYS_TRUE:
// We will not compile the test expression. Label the top of the
// loop.
if (node->next() == NULL) {
// Use the continue target if there is no update expression.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
} else {
// Otherwise use the backward loop target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
loop.Bind();
}
break;
case DONT_KNOW: {
if (test_at_bottom) {
// Continue is either the update expression or the test at the
// bottom, no need to label the test at the top.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
} else if (node->next() == NULL) {
// We are not recompiling the test at the bottom and there is no
// update expression.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
} else {
// We are not recompiling the test at the bottom and there is an
// update expression.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
loop.Bind();
}
// Compile the test with the body as the true target and preferred
// fall-through and with the break target as the false target.
ControlDestination dest(&body, node->break_target(), true);
LoadCondition(node->cond(), &dest, true);
if (dest.false_was_fall_through()) {
// If we got the break target as fall-through, the test may have
// been unconditionally false (if there are no jumps to the
// body).
if (!body.is_linked()) {
DecrementLoopNesting();
return;
}
// Otherwise, jump around the body on the fall through and then
// bind the body target.
node->break_target()->Unuse();
node->break_target()->Jump();
body.Bind();
}
break;
}
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// If there is an update expression, compile it if necessary.
if (node->next() != NULL) {
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
// Control can reach the update by falling out of the body or by a
// continue.
if (has_valid_frame()) {
// Record the source position of the statement as this code which
// is after the code for the body actually belongs to the loop
// statement and not the body.
CodeForStatementPosition(node);
Visit(node->next());
}
}
// Based on the condition analysis, compile the backward jump as
// necessary.
switch (info) {
case ALWAYS_TRUE:
if (has_valid_frame()) {
if (node->next() == NULL) {
node->continue_target()->Jump();
} else {
loop.Jump();
}
}
break;
case DONT_KNOW:
if (test_at_bottom) {
if (node->continue_target()->is_linked()) {
// We can have dangling jumps to the continue target if there
// was no update expression.
node->continue_target()->Bind();
}
// Control can reach the test at the bottom by falling out of
// the body, by a continue in the body, or from the update
// expression.
if (has_valid_frame()) {
// The break target is the fall-through (body is a backward
// jump from here).
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
} else {
// Otherwise, jump back to the test at the top.
if (has_valid_frame()) {
if (node->next() == NULL) {
node->continue_target()->Jump();
} else {
loop.Jump();
}
}
}
break;
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
// The break target may be already bound (by the condition), or there
// may not be a valid frame. Bind it only if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
}
void CodeGenerator::VisitForInStatement(ForInStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ForInStatement");
CodeForStatementPosition(node);
JumpTarget primitive;
JumpTarget jsobject;
JumpTarget fixed_array;
JumpTarget entry(JumpTarget::BIDIRECTIONAL);
JumpTarget end_del_check;
JumpTarget exit;
// Get the object to enumerate over (converted to JSObject).
LoadAndSpill(node->enumerable());
// Both SpiderMonkey and kjs ignore null and undefined in contrast
// to the specification. 12.6.4 mandates a call to ToObject.
frame_->EmitPop(rax);
// rax: value to be iterated over
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
exit.Branch(equal);
__ CompareRoot(rax, Heap::kNullValueRootIndex);
exit.Branch(equal);
// Stack layout in body:
// [iteration counter (smi)] <- slot 0
// [length of array] <- slot 1
// [FixedArray] <- slot 2
// [Map or 0] <- slot 3
// [Object] <- slot 4
// Check if enumerable is already a JSObject
// rax: value to be iterated over
Condition is_smi = masm_->CheckSmi(rax);
primitive.Branch(is_smi);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
jsobject.Branch(above_equal);
primitive.Bind();
frame_->EmitPush(rax);
frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
// function call returns the value in rax, which is where we want it below
jsobject.Bind();
// Get the set of properties (as a FixedArray or Map).
// rax: value to be iterated over
frame_->EmitPush(rax); // Push the object being iterated over.
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
JumpTarget call_runtime;
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
JumpTarget check_prototype;
JumpTarget use_cache;
__ movq(rcx, rax);
loop.Bind();
// Check that there are no elements.
__ movq(rdx, FieldOperand(rcx, JSObject::kElementsOffset));
__ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex);
call_runtime.Branch(not_equal);
// Check that instance descriptors are not empty so that we can
// check for an enum cache. Leave the map in ebx for the subsequent
// prototype load.
__ movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
__ movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOffset));
__ CompareRoot(rdx, Heap::kEmptyDescriptorArrayRootIndex);
call_runtime.Branch(equal);
// Check that there in an enum cache in the non-empty instance
// descriptors. This is the case if the next enumeration index
// field does not contain a smi.
__ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset));
is_smi = masm_->CheckSmi(rdx);
call_runtime.Branch(is_smi);
// For all objects but the receiver, check that the cache is empty.
__ cmpq(rcx, rax);
check_prototype.Branch(equal);
__ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset));
__ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex);
call_runtime.Branch(not_equal);
check_prototype.Bind();
// Load the prototype from the map and loop if non-null.
__ movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
__ CompareRoot(rcx, Heap::kNullValueRootIndex);
loop.Branch(not_equal);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
__ movq(rax, FieldOperand(rax, HeapObject::kMapOffset));
use_cache.Jump();
call_runtime.Bind();
// Call the runtime to get the property names for the object.
frame_->EmitPush(rax); // push the Object (slot 4) for the runtime call
frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a Map, we can do a fast modification check.
// Otherwise, we got a FixedArray, and we have to do a slow check.
// rax: map or fixed array (result from call to
// Runtime::kGetPropertyNamesFast)
__ movq(rdx, rax);
__ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
__ CompareRoot(rcx, Heap::kMetaMapRootIndex);
fixed_array.Branch(not_equal);
use_cache.Bind();
// Get enum cache
// rax: map (either the result from a call to
// Runtime::kGetPropertyNamesFast or has been fetched directly from
// the object)
__ movq(rcx, rax);
__ movq(rcx, FieldOperand(rcx, Map::kInstanceDescriptorsOffset));
// Get the bridge array held in the enumeration index field.
__ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset));
// Get the cache from the bridge array.
__ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
frame_->EmitPush(rax); // <- slot 3
frame_->EmitPush(rdx); // <- slot 2
__ movq(rax, FieldOperand(rdx, FixedArray::kLengthOffset));
frame_->EmitPush(rax); // <- slot 1
frame_->EmitPush(Smi::FromInt(0)); // <- slot 0
entry.Jump();
fixed_array.Bind();
// rax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
frame_->EmitPush(Smi::FromInt(0)); // <- slot 3
frame_->EmitPush(rax); // <- slot 2
// Push the length of the array and the initial index onto the stack.
__ movq(rax, FieldOperand(rax, FixedArray::kLengthOffset));
frame_->EmitPush(rax); // <- slot 1
frame_->EmitPush(Smi::FromInt(0)); // <- slot 0
// Condition.
entry.Bind();
// Grab the current frame's height for the break and continue
// targets only after all the state is pushed on the frame.
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
__ movq(rax, frame_->ElementAt(0)); // load the current count
__ SmiCompare(frame_->ElementAt(1), rax); // compare to the array length
node->break_target()->Branch(below_equal);
// Get the i'th entry of the array.
__ movq(rdx, frame_->ElementAt(2));
SmiIndex index = masm_->SmiToIndex(rbx, rax, kPointerSizeLog2);
__ movq(rbx,
FieldOperand(rdx, index.reg, index.scale, FixedArray::kHeaderSize));
// Get the expected map from the stack or a zero map in the
// permanent slow case rax: current iteration count rbx: i'th entry
// of the enum cache
__ movq(rdx, frame_->ElementAt(3));
// Check if the expected map still matches that of the enumerable.
// If not, we have to filter the key.
// rax: current iteration count
// rbx: i'th entry of the enum cache
// rdx: expected map value
__ movq(rcx, frame_->ElementAt(4));
__ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
__ cmpq(rcx, rdx);
end_del_check.Branch(equal);
// Convert the entry to a string (or null if it isn't a property anymore).
frame_->EmitPush(frame_->ElementAt(4)); // push enumerable
frame_->EmitPush(rbx); // push entry
frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
__ movq(rbx, rax);
// If the property has been removed while iterating, we just skip it.
__ SmiCompare(rbx, Smi::FromInt(0));
node->continue_target()->Branch(equal);
end_del_check.Bind();
// Store the entry in the 'each' expression and take another spin in the
// loop. rdx: i'th entry of the enum cache (or string there of)
frame_->EmitPush(rbx);
{ Reference each(this, node->each());
// Loading a reference may leave the frame in an unspilled state.
frame_->SpillAll();
if (!each.is_illegal()) {
if (each.size() > 0) {
frame_->EmitPush(frame_->ElementAt(each.size()));
each.SetValue(NOT_CONST_INIT);
frame_->Drop(2); // Drop the original and the copy of the element.
} else {
// If the reference has size zero then we can use the value below
// the reference as if it were above the reference, instead of pushing
// a new copy of it above the reference.
each.SetValue(NOT_CONST_INIT);
frame_->Drop(); // Drop the original of the element.
}
}
}
// Unloading a reference may leave the frame in an unspilled state.
frame_->SpillAll();
// Body.
CheckStack(); // TODO(1222600): ignore if body contains calls.
VisitAndSpill(node->body());
// Next. Reestablish a spilled frame in case we are coming here via
// a continue in the body.
node->continue_target()->Bind();
frame_->SpillAll();
frame_->EmitPop(rax);
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
frame_->EmitPush(rax);
entry.Jump();
// Cleanup. No need to spill because VirtualFrame::Drop is safe for
// any frame.
node->break_target()->Bind();
frame_->Drop(5);
// Exit.
exit.Bind();
node->continue_target()->Unuse();
node->break_target()->Unuse();
}
void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ TryCatchStatement");
CodeForStatementPosition(node);
JumpTarget try_block;
JumpTarget exit;
try_block.Call();
// --- Catch block ---
frame_->EmitPush(rax);
// Store the caught exception in the catch variable.
Variable* catch_var = node->catch_var()->var();
ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL);
StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT);
// Remove the exception from the stack.
frame_->Drop();
VisitStatementsAndSpill(node->catch_block()->statements());
if (has_valid_frame()) {
exit.Jump();
}
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_CATCH_HANDLER);
int handler_height = frame_->height();
// Shadow the jump targets for all escapes from the try block, including
// returns. During shadowing, the original target is hidden as the
// ShadowTarget and operations on the original actually affect the
// shadowing target.
//
// We should probably try to unify the escaping targets and the return
// target.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatementsAndSpill(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original targets are unshadowed and the
// ShadowTargets represent the formerly shadowing targets.
bool has_unlinks = false;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
has_unlinks = has_unlinks || shadows[i]->is_linked();
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// Make sure that there's nothing left on the stack above the
// handler structure.
if (FLAG_debug_code) {
__ movq(kScratchRegister, handler_address);
__ cmpq(rsp, Operand(kScratchRegister, 0));
__ Assert(equal, "stack pointer should point to top handler");
}
// If we can fall off the end of the try block, unlink from try chain.
if (has_valid_frame()) {
// The next handler address is on top of the frame. Unlink from
// the handler list and drop the rest of this handler from the
// frame.
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (has_unlinks) {
exit.Jump();
}
}
// Generate unlink code for the (formerly) shadowing targets that
// have been jumped to. Deallocate each shadow target.
Result return_value;
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// Unlink from try chain; be careful not to destroy the TOS if
// there is one.
if (i == kReturnShadowIndex) {
shadows[i]->Bind(&return_value);
return_value.ToRegister(rax);
} else {
shadows[i]->Bind();
}
// Because we can be jumping here (to spilled code) from
// unspilled code, we need to reestablish a spilled frame at
// this block.
frame_->SpillAll();
// Reload sp from the top handler, because some statements that we
// break from (eg, for...in) may have left stuff on the stack.
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
frame_->Forget(frame_->height() - handler_height);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (i == kReturnShadowIndex) {
if (!function_return_is_shadowed_) frame_->PrepareForReturn();
shadows[i]->other_target()->Jump(&return_value);
} else {
shadows[i]->other_target()->Jump();
}
}
}
exit.Bind();
}
void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ TryFinallyStatement");
CodeForStatementPosition(node);
// State: Used to keep track of reason for entering the finally
// block. Should probably be extended to hold information for
// break/continue from within the try block.
enum { FALLING, THROWING, JUMPING };
JumpTarget try_block;
JumpTarget finally_block;
try_block.Call();
frame_->EmitPush(rax);
// In case of thrown exceptions, this is where we continue.
__ Move(rcx, Smi::FromInt(THROWING));
finally_block.Jump();
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_FINALLY_HANDLER);
int handler_height = frame_->height();
// Shadow the jump targets for all escapes from the try block, including
// returns. During shadowing, the original target is hidden as the
// ShadowTarget and operations on the original actually affect the
// shadowing target.
//
// We should probably try to unify the escaping targets and the return
// target.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatementsAndSpill(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original targets are unshadowed and the
// ShadowTargets represent the formerly shadowing targets.
int nof_unlinks = 0;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
if (shadows[i]->is_linked()) nof_unlinks++;
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// If we can fall off the end of the try block, unlink from the try
// chain and set the state on the frame to FALLING.
if (has_valid_frame()) {
// The next handler address is on top of the frame.
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
// Fake a top of stack value (unneeded when FALLING) and set the
// state in ecx, then jump around the unlink blocks if any.
frame_->EmitPush(Heap::kUndefinedValueRootIndex);
__ Move(rcx, Smi::FromInt(FALLING));
if (nof_unlinks > 0) {
finally_block.Jump();
}
}
// Generate code to unlink and set the state for the (formerly)
// shadowing targets that have been jumped to.
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// If we have come from the shadowed return, the return value is
// on the virtual frame. We must preserve it until it is
// pushed.
if (i == kReturnShadowIndex) {
Result return_value;
shadows[i]->Bind(&return_value);
return_value.ToRegister(rax);
} else {
shadows[i]->Bind();
}
// Because we can be jumping here (to spilled code) from
// unspilled code, we need to reestablish a spilled frame at
// this block.
frame_->SpillAll();
// Reload sp from the top handler, because some statements that
// we break from (eg, for...in) may have left stuff on the
// stack.
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
frame_->Forget(frame_->height() - handler_height);
// Unlink this handler and drop it from the frame.
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (i == kReturnShadowIndex) {
// If this target shadowed the function return, materialize
// the return value on the stack.
frame_->EmitPush(rax);
} else {
// Fake TOS for targets that shadowed breaks and continues.
frame_->EmitPush(Heap::kUndefinedValueRootIndex);
}
__ Move(rcx, Smi::FromInt(JUMPING + i));
if (--nof_unlinks > 0) {
// If this is not the last unlink block, jump around the next.
finally_block.Jump();
}
}
}
// --- Finally block ---
finally_block.Bind();
// Push the state on the stack.
frame_->EmitPush(rcx);
// We keep two elements on the stack - the (possibly faked) result
// and the state - while evaluating the finally block.
//
// Generate code for the statements in the finally block.
VisitStatementsAndSpill(node->finally_block()->statements());
if (has_valid_frame()) {
// Restore state and return value or faked TOS.
frame_->EmitPop(rcx);
frame_->EmitPop(rax);
}
// Generate code to jump to the right destination for all used
// formerly shadowing targets. Deallocate each shadow target.
for (int i = 0; i < shadows.length(); i++) {
if (has_valid_frame() && shadows[i]->is_bound()) {
BreakTarget* original = shadows[i]->other_target();
__ SmiCompare(rcx, Smi::FromInt(JUMPING + i));
if (i == kReturnShadowIndex) {
// The return value is (already) in rax.
Result return_value = allocator_->Allocate(rax);
ASSERT(return_value.is_valid());
if (function_return_is_shadowed_) {
original->Branch(equal, &return_value);
} else {
// Branch around the preparation for return which may emit
// code.
JumpTarget skip;
skip.Branch(not_equal);
frame_->PrepareForReturn();
original->Jump(&return_value);
skip.Bind();
}
} else {
original->Branch(equal);
}
}
}
if (has_valid_frame()) {
// Check if we need to rethrow the exception.
JumpTarget exit;
__ SmiCompare(rcx, Smi::FromInt(THROWING));
exit.Branch(not_equal);
// Rethrow exception.
frame_->EmitPush(rax); // undo pop from above
frame_->CallRuntime(Runtime::kReThrow, 1);
// Done.
exit.Bind();
}
}
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ DebuggerStatement");
CodeForStatementPosition(node);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Spill everything, even constants, to the frame.
frame_->SpillAll();
frame_->DebugBreak();
// Ignore the return value.
#endif
}
void CodeGenerator::InstantiateFunction(
Handle<SharedFunctionInfo> function_info) {
// The inevitable call will sync frame elements to memory anyway, so
// we do it eagerly to allow us to push the arguments directly into
// place.
frame_->SyncRange(0, frame_->element_count() - 1);
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
if (scope()->is_function_scope() && function_info->num_literals() == 0) {
FastNewClosureStub stub;
frame_->Push(function_info);
Result answer = frame_->CallStub(&stub, 1);
frame_->Push(&answer);
} else {
// Call the runtime to instantiate the function based on the
// shared function info.
frame_->EmitPush(rsi);
frame_->EmitPush(function_info);
Result result = frame_->CallRuntime(Runtime::kNewClosure, 2);
frame_->Push(&result);
}
}
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function info and instantiate it.
Handle<SharedFunctionInfo> function_info =
Compiler::BuildFunctionInfo(node, script());
// Check for stack-overflow exception.
if (function_info.is_null()) {
SetStackOverflow();
return;
}
InstantiateFunction(function_info);
}
void CodeGenerator::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* node) {
Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
InstantiateFunction(node->shared_function_info());
}
void CodeGenerator::VisitConditional(Conditional* node) {
Comment cmnt(masm_, "[ Conditional");
JumpTarget then;
JumpTarget else_;
JumpTarget exit;
ControlDestination dest(&then, &else_, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The else target was bound, so we compile the else part first.
Load(node->else_expression());
if (then.is_linked()) {
exit.Jump();
then.Bind();
Load(node->then_expression());
}
} else {
// The then target was bound, so we compile the then part first.
Load(node->then_expression());
if (else_.is_linked()) {
exit.Jump();
else_.Bind();
Load(node->else_expression());
}
}
exit.Bind();
}
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
JumpTarget slow;
JumpTarget done;
Result value;
// Generate fast case for loading from slots that correspond to
// local/global variables or arguments unless they are shadowed by
// eval-introduced bindings.
EmitDynamicLoadFromSlotFastCase(slot,
typeof_state,
&value,
&slow,
&done);
slow.Bind();
// A runtime call is inevitable. We eagerly sync frame elements
// to memory so that we can push the arguments directly into place
// on top of the frame.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
__ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
if (typeof_state == INSIDE_TYPEOF) {
value =
frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
} else {
value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
}
done.Bind(&value);
frame_->Push(&value);
} else if (slot->var()->mode() == Variable::CONST) {
// Const slots may contain 'the hole' value (the constant hasn't been
// initialized yet) which needs to be converted into the 'undefined'
// value.
//
// We currently spill the virtual frame because constants use the
// potentially unsafe direct-frame access of SlotOperand.
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Load const");
JumpTarget exit;
__ movq(rcx, SlotOperand(slot, rcx));
__ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
exit.Branch(not_equal);
__ LoadRoot(rcx, Heap::kUndefinedValueRootIndex);
exit.Bind();
frame_->EmitPush(rcx);
} else if (slot->type() == Slot::PARAMETER) {
frame_->PushParameterAt(slot->index());
} else if (slot->type() == Slot::LOCAL) {
frame_->PushLocalAt(slot->index());
} else {
// The other remaining slot types (LOOKUP and GLOBAL) cannot reach
// here.
//
// The use of SlotOperand below is safe for an unspilled frame
// because it will always be a context slot.
ASSERT(slot->type() == Slot::CONTEXT);
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(), SlotOperand(slot, temp.reg()));
frame_->Push(&temp);
}
}
void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
TypeofState state) {
LoadFromSlot(slot, state);
// Bail out quickly if we're not using lazy arguments allocation.
if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
// ... or if the slot isn't a non-parameter arguments slot.
if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
// Pop the loaded value from the stack.
Result value = frame_->Pop();
// If the loaded value is a constant, we know if the arguments
// object has been lazily loaded yet.
if (value.is_constant()) {
if (value.handle()->IsTheHole()) {
Result arguments = StoreArgumentsObject(false);
frame_->Push(&arguments);
} else {
frame_->Push(&value);
}
return;
}
// The loaded value is in a register. If it is the sentinel that
// indicates that we haven't loaded the arguments object yet, we
// need to do it now.
JumpTarget exit;
__ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
frame_->Push(&value);
exit.Branch(not_equal);
Result arguments = StoreArgumentsObject(false);
frame_->SetElementAt(0, &arguments);
exit.Bind();
}
Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
Slot* slot,
TypeofState typeof_state,
JumpTarget* slow) {
// Check that no extension objects have been created by calls to
// eval from the current scope to the global scope.
Register context = rsi;
Result tmp = allocator_->Allocate();
ASSERT(tmp.is_valid()); // All non-reserved registers were available.
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
Immediate(0));
slow->Branch(not_equal, not_taken);
}
// Load next context in chain.
__ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
context = tmp.reg();
}
// If no outer scope calls eval, we do not need to check more
// context extensions. If we have reached an eval scope, we check
// all extensions from this point.
if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
// Loop up the context chain. There is no frame effect so it is
// safe to use raw labels here.
Label next, fast;
if (!context.is(tmp.reg())) {
__ movq(tmp.reg(), context);
}
// Load map for comparison into register, outside loop.
__ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex);
__ bind(&next);
// Terminate at global context.
__ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset));
__ j(equal, &fast);
// Check that extension is NULL.
__ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
slow->Branch(not_equal);
// Load next context in chain.
__ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
__ jmp(&next);
__ bind(&fast);
}
tmp.Unuse();
// All extension objects were empty and it is safe to use a global
// load IC call.
LoadGlobal();
frame_->Push(slot->var()->name());
RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT;
Result answer = frame_->CallLoadIC(mode);
// A test rax instruction following the call signals that the inobject
// property case was inlined. Ensure that there is not a test rax
// instruction here.
masm_->nop();
return answer;
}
void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
TypeofState typeof_state,
Result* result,
JumpTarget* slow,
JumpTarget* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
*result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
done->Jump(result);
} else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot();
Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
if (potential_slot != NULL) {
// Generate fast case for locals that rewrite to slots.
// Allocate a fresh register to use as a temp in
// ContextSlotOperandCheckExtensions and to hold the result
// value.
*result = allocator_->Allocate();
ASSERT(result->is_valid());
__ movq(result->reg(),
ContextSlotOperandCheckExtensions(potential_slot,
*result,
slow));
if (potential_slot->var()->mode() == Variable::CONST) {
__ CompareRoot(result->reg(), Heap::kTheHoleValueRootIndex);
done->Branch(not_equal, result);
__ LoadRoot(result->reg(), Heap::kUndefinedValueRootIndex);
}
done->Jump(result);
} else if (rewrite != NULL) {
// Generate fast case for argument loads.
Property* property = rewrite->AsProperty();
if (property != NULL) {
VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
Literal* key_literal = property->key()->AsLiteral();
if (obj_proxy != NULL &&
key_literal != NULL &&
obj_proxy->IsArguments() &&
key_literal->handle()->IsSmi()) {
// Load arguments object if there are no eval-introduced
// variables. Then load the argument from the arguments
// object using keyed load.
Result arguments = allocator()->Allocate();
ASSERT(arguments.is_valid());
__ movq(arguments.reg(),
ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(),
arguments,
slow));
frame_->Push(&arguments);
frame_->Push(key_literal->handle());
*result = EmitKeyedLoad();
done->Jump(result);
}
}
}
}
}
void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
// For now, just do a runtime call. Since the call is inevitable,
// we eagerly sync the virtual frame so we can directly push the
// arguments into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(slot->var()->name());
Result value;
if (init_state == CONST_INIT) {
// Same as the case for a normal store, but ignores attribute
// (e.g. READ_ONLY) of context slot so that we can initialize const
// properties (introduced via eval("const foo = (some expr);")). Also,
// uses the current function context instead of the top context.
//
// Note that we must declare the foo upon entry of eval(), via a
// context slot declaration, but we cannot initialize it at the same
// time, because the const declaration may be at the end of the eval
// code (sigh...) and the const variable may have been used before
// (where its value is 'undefined'). Thus, we can only do the
// initialization when we actually encounter the expression and when
// the expression operands are defined and valid, and thus we need the
// split into 2 operations: declaration of the context slot followed
// by initialization.
value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
}
// Storing a variable must keep the (new) value on the expression
// stack. This is necessary for compiling chained assignment
// expressions.
frame_->Push(&value);
} else {
ASSERT(!slot->var()->is_dynamic());
JumpTarget exit;
if (init_state == CONST_INIT) {
ASSERT(slot->var()->mode() == Variable::CONST);
// Only the first const initialization must be executed (the slot
// still contains 'the hole' value). When the assignment is executed,
// the code is identical to a normal store (see below).
//
// We spill the frame in the code below because the direct-frame
// access of SlotOperand is potentially unsafe with an unspilled
// frame.
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Init const");
__ movq(rcx, SlotOperand(slot, rcx));
__ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
exit.Branch(not_equal);
}
// We must execute the store. Storing a variable must keep the (new)
// value on the stack. This is necessary for compiling assignment
// expressions.
//
// Note: We will reach here even with slot->var()->mode() ==
// Variable::CONST because of const declarations which will initialize
// consts to 'the hole' value and by doing so, end up calling this code.
if (slot->type() == Slot::PARAMETER) {
frame_->StoreToParameterAt(slot->index());
} else if (slot->type() == Slot::LOCAL) {
frame_->StoreToLocalAt(slot->index());
} else {
// The other slot types (LOOKUP and GLOBAL) cannot reach here.
//
// The use of SlotOperand below is safe for an unspilled frame
// because the slot is a context slot.
ASSERT(slot->type() == Slot::CONTEXT);
frame_->Dup();
Result value = frame_->Pop();
value.ToRegister();
Result start = allocator_->Allocate();
ASSERT(start.is_valid());
__ movq(SlotOperand(slot, start.reg()), value.reg());
// RecordWrite may destroy the value registers.
//
// TODO(204): Avoid actually spilling when the value is not
// needed (probably the common case).
frame_->Spill(value.reg());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
// The results start, value, and temp are unused by going out of
// scope.
}
exit.Bind();
}
}
void CodeGenerator::VisitSlot(Slot* node) {
Comment cmnt(masm_, "[ Slot");
LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF);
}
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
Comment cmnt(masm_, "[ VariableProxy");
Variable* var = node->var();
Expression* expr = var->rewrite();
if (expr != NULL) {
Visit(expr);
} else {
ASSERT(var->is_global());
Reference ref(this, node);
ref.GetValue();
}
}
void CodeGenerator::VisitLiteral(Literal* node) {
Comment cmnt(masm_, "[ Literal");
frame_->Push(node->handle());
}
void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
UNIMPLEMENTED();
// TODO(X64): Implement security policy for loads of smis.
}
bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
return false;
}
// Materialize the regexp literal 'node' in the literals array
// 'literals' of the function. Leave the regexp boilerplate in
// 'boilerplate'.
class DeferredRegExpLiteral: public DeferredCode {
public:
DeferredRegExpLiteral(Register boilerplate,
Register literals,
RegExpLiteral* node)
: boilerplate_(boilerplate), literals_(literals), node_(node) {
set_comment("[ DeferredRegExpLiteral");
}
void Generate();
private:
Register boilerplate_;
Register literals_;
RegExpLiteral* node_;
};
void DeferredRegExpLiteral::Generate() {
// Since the entry is undefined we call the runtime system to
// compute the literal.
// Literal array (0).
__ push(literals_);
// Literal index (1).
__ Push(Smi::FromInt(node_->literal_index()));
// RegExp pattern (2).
__ Push(node_->pattern());
// RegExp flags (3).
__ Push(node_->flags());
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
}
class DeferredAllocateInNewSpace: public DeferredCode {
public:
DeferredAllocateInNewSpace(int size,
Register target,
int registers_to_save = 0)
: size_(size), target_(target), registers_to_save_(registers_to_save) {
ASSERT(size >= kPointerSize && size <= Heap::MaxObjectSizeInNewSpace());
set_comment("[ DeferredAllocateInNewSpace");
}
void Generate();
private:
int size_;
Register target_;
int registers_to_save_;
};
void DeferredAllocateInNewSpace::Generate() {
for (int i = 0; i < kNumRegs; i++) {
if (registers_to_save_ & (1 << i)) {
Register save_register = { i };
__ push(save_register);
}
}
__ Push(Smi::FromInt(size_));
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
if (!target_.is(rax)) {
__ movq(target_, rax);
}
for (int i = kNumRegs - 1; i >= 0; i--) {
if (registers_to_save_ & (1 << i)) {
Register save_register = { i };
__ pop(save_register);
}
}
}
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
Comment cmnt(masm_, "[ RegExp Literal");
// Retrieve the literals array and check the allocated entry. Begin
// with a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
Result boilerplate = allocator_->Allocate();
ASSERT(boilerplate.is_valid());
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
// Check whether we need to materialize the RegExp object. If so,
// jump to the deferred code passing the literals array.
DeferredRegExpLiteral* deferred =
new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
__ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
deferred->Branch(equal);
deferred->BindExit();
// Register of boilerplate contains RegExp object.
Result tmp = allocator()->Allocate();
ASSERT(tmp.is_valid());
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
DeferredAllocateInNewSpace* allocate_fallback =
new DeferredAllocateInNewSpace(size, literals.reg());
frame_->Push(&boilerplate);
frame_->SpillTop();
__ AllocateInNewSpace(size,
literals.reg(),
tmp.reg(),
no_reg,
allocate_fallback->entry_label(),
TAG_OBJECT);
allocate_fallback->BindExit();
boilerplate = frame_->Pop();
// Copy from boilerplate to clone and return clone.
for (int i = 0; i < size; i += kPointerSize) {
__ movq(tmp.reg(), FieldOperand(boilerplate.reg(), i));
__ movq(FieldOperand(literals.reg(), i), tmp.reg());
}
frame_->Push(&literals);
}
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
Comment cmnt(masm_, "[ ObjectLiteral");
// Load a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
// Literal array.
frame_->Push(&literals);
// Literal index.
frame_->Push(Smi::FromInt(node->literal_index()));
// Constant properties.
frame_->Push(node->constant_properties());
// Should the object literal have fast elements?
frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0));
Result clone;
if (node->depth() > 1) {
clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4);
} else {
clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
}
frame_->Push(&clone);
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
node->CalculateEmitStore();
for (int i = 0; i < node->properties()->length(); i++) {
ObjectLiteral::Property* property = node->properties()->at(i);
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
break;
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
// else fall through.
case ObjectLiteral::Property::COMPUTED: {
Handle<Object> key(property->key()->handle());
if (key->IsSymbol()) {
// Duplicate the object as the IC receiver.
frame_->Dup();
Load(property->value());
if (property->emit_store()) {
Result ignored =
frame_->CallStoreIC(Handle<String>::cast(key), false);
// A test rax instruction following the store IC call would
// indicate the presence of an inlined version of the
// store. Add a nop to indicate that there is no such
// inlined version.
__ nop();
} else {
frame_->Drop(2);
}
break;
}
// Fall through
}
case ObjectLiteral::Property::PROTOTYPE: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
Load(property->value());
if (property->emit_store()) {
// Ignore the result.
Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3);
} else {
frame_->Drop(3);
}
break;
}
case ObjectLiteral::Property::SETTER: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
frame_->Push(Smi::FromInt(1));
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
// Ignore the result.
break;
}
case ObjectLiteral::Property::GETTER: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
frame_->Push(Smi::FromInt(0));
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
// Ignore the result.
break;
}
default: UNREACHABLE();
}
}
}
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
Comment cmnt(masm_, "[ ArrayLiteral");
// Load a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
frame_->Push(&literals);
frame_->Push(Smi::FromInt(node->literal_index()));
frame_->Push(node->constant_elements());
int length = node->values()->length();
Result clone;
if (node->constant_elements()->map() == Heap::fixed_cow_array_map()) {
FastCloneShallowArrayStub stub(
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
clone = frame_->CallStub(&stub, 3);
__ IncrementCounter(&Counters::cow_arrays_created_stub, 1);
} else if (node->depth() > 1) {
clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
} else {
FastCloneShallowArrayStub stub(
FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
clone = frame_->CallStub(&stub, 3);
}
frame_->Push(&clone);
// Generate code to set the elements in the array that are not
// literals.
for (int i = 0; i < length; i++) {
Expression* value = node->values()->at(i);
if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) {
continue;
}
// The property must be set by generated code.
Load(value);
// Get the property value off the stack.
Result prop_value = frame_->Pop();
prop_value.ToRegister();
// Fetch the array literal while leaving a copy on the stack and
// use it to get the elements array.
frame_->Dup();
Result elements = frame_->Pop();
elements.ToRegister();
frame_->Spill(elements.reg());
// Get the elements FixedArray.
__ movq(elements.reg(),
FieldOperand(elements.reg(), JSObject::kElementsOffset));
// Write to the indexed properties array.
int offset = i * kPointerSize + FixedArray::kHeaderSize;
__ movq(FieldOperand(elements.reg(), offset), prop_value.reg());
// Update the write barrier for the array address.
frame_->Spill(prop_value.reg()); // Overwritten by the write barrier.
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
__ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
}
}
void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
ASSERT(!in_spilled_code());
// Call runtime routine to allocate the catch extension object and
// assign the exception value to the catch variable.
Comment cmnt(masm_, "[ CatchExtensionObject");
Load(node->key());
Load(node->value());
Result result =
frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
frame_->Push(&result);
}
void CodeGenerator::EmitSlotAssignment(Assignment* node) {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Comment cmnt(masm(), "[ Variable Assignment");
Variable* var = node->target()->AsVariableProxy()->AsVariable();
ASSERT(var != NULL);
Slot* slot = var->AsSlot();
ASSERT(slot != NULL);
// Evaluate the right-hand side.
if (node->is_compound()) {
// For a compound assignment the right-hand side is a binary operation
// between the current property value and the actual right-hand side.
LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
Load(node->value());
// Perform the binary operation.
bool overwrite_value = node->value()->ResultOverwriteAllowed();
// Construct the implicit binary operation.
BinaryOperation expr(node);
GenericBinaryOperation(&expr,
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
} else {
// For non-compound assignment just load the right-hand side.
Load(node->value());
}
// Perform the assignment.
if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) {
CodeForSourcePosition(node->position());
StoreToSlot(slot,
node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT);
}
ASSERT(frame()->height() == original_height + 1);
}
void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Comment cmnt(masm(), "[ Named Property Assignment");
Variable* var = node->target()->AsVariableProxy()->AsVariable();
Property* prop = node->target()->AsProperty();
ASSERT(var == NULL || (prop == NULL && var->is_global()));
// Initialize name and evaluate the receiver sub-expression if necessary. If
// the receiver is trivial it is not placed on the stack at this point, but
// loaded whenever actually needed.
Handle<String> name;
bool is_trivial_receiver = false;
if (var != NULL) {
name = var->name();
} else {
Literal* lit = prop->key()->AsLiteral();
ASSERT_NOT_NULL(lit);
name = Handle<String>::cast(lit->handle());
// Do not materialize the receiver on the frame if it is trivial.
is_trivial_receiver = prop->obj()->IsTrivial();
if (!is_trivial_receiver) Load(prop->obj());
}
// Change to slow case in the beginning of an initialization block to
// avoid the quadratic behavior of repeatedly adding fast properties.
if (node->starts_initialization_block()) {
// Initialization block consists of assignments of the form expr.x = ..., so
// this will never be an assignment to a variable, so there must be a
// receiver object.
ASSERT_EQ(NULL, var);
if (is_trivial_receiver) {
frame()->Push(prop->obj());
} else {
frame()->Dup();
}
Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1);
}
// Change to fast case at the end of an initialization block. To prepare for
// that add an extra copy of the receiver to the frame, so that it can be
// converted back to fast case after the assignment.
if (node->ends_initialization_block() && !is_trivial_receiver) {
frame()->Dup();
}
// Stack layout:
// [tos] : receiver (only materialized if non-trivial)
// [tos+1] : receiver if at the end of an initialization block
// Evaluate the right-hand side.
if (node->is_compound()) {
// For a compound assignment the right-hand side is a binary operation
// between the current property value and the actual right-hand side.
if (is_trivial_receiver) {
frame()->Push(prop->obj());
} else if (var != NULL) {
// The LoadIC stub expects the object in rax.
// Freeing rax causes the code generator to load the global into it.
frame_->Spill(rax);
LoadGlobal();
} else {
frame()->Dup();
}
Result value = EmitNamedLoad(name, var != NULL);
frame()->Push(&value);
Load(node->value());
bool overwrite_value = node->value()->ResultOverwriteAllowed();
// Construct the implicit binary operation.
BinaryOperation expr(node);
GenericBinaryOperation(&expr,
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
} else {
// For non-compound assignment just load the right-hand side.
Load(node->value());
}
// Stack layout:
// [tos] : value
// [tos+1] : receiver (only materialized if non-trivial)
// [tos+2] : receiver if at the end of an initialization block
// Perform the assignment. It is safe to ignore constants here.
ASSERT(var == NULL || var->mode() != Variable::CONST);
ASSERT_NE(Token::INIT_CONST, node->op());
if (is_trivial_receiver) {
Result value = frame()->Pop();
frame()->Push(prop->obj());
frame()->Push(&value);
}
CodeForSourcePosition(node->position());
bool is_contextual = (var != NULL);
Result answer = EmitNamedStore(name, is_contextual);
frame()->Push(&answer);
// Stack layout:
// [tos] : result
// [tos+1] : receiver if at the end of an initialization block
if (node->ends_initialization_block()) {
ASSERT_EQ(NULL, var);
// The argument to the runtime call is the receiver.
if (is_trivial_receiver) {
frame()->Push(prop->obj());
} else {
// A copy of the receiver is below the value of the assignment. Swap
// the receiver and the value of the assignment expression.
Result result = frame()->Pop();
Result receiver = frame()->Pop();
frame()->Push(&result);
frame()->Push(&receiver);
}
Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
}
// Stack layout:
// [tos] : result
ASSERT_EQ(frame()->height(), original_height + 1);
}
void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Comment cmnt(masm_, "[ Keyed Property Assignment");
Property* prop = node->target()->AsProperty();
ASSERT_NOT_NULL(prop);
// Evaluate the receiver subexpression.
Load(prop->obj());
// Change to slow case in the beginning of an initialization block to
// avoid the quadratic behavior of repeatedly adding fast properties.
if (node->starts_initialization_block()) {
frame_->Dup();
Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
}
// Change to fast case at the end of an initialization block. To prepare for
// that add an extra copy of the receiver to the frame, so that it can be
// converted back to fast case after the assignment.
if (node->ends_initialization_block()) {
frame_->Dup();
}
// Evaluate the key subexpression.
Load(prop->key());
// Stack layout:
// [tos] : key
// [tos+1] : receiver
// [tos+2] : receiver if at the end of an initialization block
// Evaluate the right-hand side.
if (node->is_compound()) {
// For a compound assignment the right-hand side is a binary operation
// between the current property value and the actual right-hand side.
// Duplicate receiver and key for loading the current property value.
frame()->PushElementAt(1);
frame()->PushElementAt(1);
Result value = EmitKeyedLoad();
frame()->Push(&value);
Load(node->value());
// Perform the binary operation.
bool overwrite_value = node->value()->ResultOverwriteAllowed();
BinaryOperation expr(node);
GenericBinaryOperation(&expr,
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
} else {
// For non-compound assignment just load the right-hand side.
Load(node->value());
}
// Stack layout:
// [tos] : value
// [tos+1] : key
// [tos+2] : receiver
// [tos+3] : receiver if at the end of an initialization block
// Perform the assignment. It is safe to ignore constants here.
ASSERT(node->op() != Token::INIT_CONST);
CodeForSourcePosition(node->position());
Result answer = EmitKeyedStore(prop->key()->type());
frame()->Push(&answer);
// Stack layout:
// [tos] : result
// [tos+1] : receiver if at the end of an initialization block
// Change to fast case at the end of an initialization block.
if (node->ends_initialization_block()) {
// The argument to the runtime call is the extra copy of the receiver,
// which is below the value of the assignment. Swap the receiver and
// the value of the assignment expression.
Result result = frame()->Pop();
Result receiver = frame()->Pop();
frame()->Push(&result);
frame()->Push(&receiver);
Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
}
// Stack layout:
// [tos] : result
ASSERT(frame()->height() == original_height + 1);
}
void CodeGenerator::VisitAssignment(Assignment* node) {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Variable* var = node->target()->AsVariableProxy()->AsVariable();
Property* prop = node->target()->AsProperty();
if (var != NULL && !var->is_global()) {
EmitSlotAssignment(node);
} else if ((prop != NULL && prop->key()->IsPropertyName()) ||
(var != NULL && var->is_global())) {
// Properties whose keys are property names and global variables are
// treated as named property references. We do not need to consider
// global 'this' because it is not a valid left-hand side.
EmitNamedPropertyAssignment(node);
} else if (prop != NULL) {
// Other properties (including rewritten parameters for a function that
// uses arguments) are keyed property assignments.
EmitKeyedPropertyAssignment(node);
} else {
// Invalid left-hand side.
Load(node->target());
Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1);
// The runtime call doesn't actually return but the code generator will
// still generate code and expects a certain frame height.
frame()->Push(&result);
}
ASSERT(frame()->height() == original_height + 1);
}
void CodeGenerator::VisitThrow(Throw* node) {
Comment cmnt(masm_, "[ Throw");
Load(node->exception());
Result result = frame_->CallRuntime(Runtime::kThrow, 1);
frame_->Push(&result);
}
void CodeGenerator::VisitProperty(Property* node) {
Comment cmnt(masm_, "[ Property");
Reference property(this, node);
property.GetValue();
}
void CodeGenerator::VisitCall(Call* node) {
Comment cmnt(masm_, "[ Call");
ZoneList<Expression*>* args = node->arguments();
// Check if the function is a variable or a property.
Expression* function = node->expression();
Variable* var = function->AsVariableProxy()->AsVariable();
Property* property = function->AsProperty();
// ------------------------------------------------------------------------
// Fast-case: Use inline caching.
// ---
// According to ECMA-262, section 11.2.3, page 44, the function to call
// must be resolved after the arguments have been evaluated. The IC code
// automatically handles this by loading the arguments before the function
// is resolved in cache misses (this also holds for megamorphic calls).
// ------------------------------------------------------------------------
if (var != NULL && var->is_possibly_eval()) {
// ----------------------------------
// JavaScript example: 'eval(arg)' // eval is not known to be shadowed
// ----------------------------------
// In a call to eval, we first call %ResolvePossiblyDirectEval to
// resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
// Prepare the stack for the call to the resolved function.
Load(function);
// Allocate a frame slot for the receiver.
frame_->Push(Factory::undefined_value());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Result to hold the result of the function resolution and the
// final result of the eval call.
Result result;
// If we know that eval can only be shadowed by eval-introduced
// variables we attempt to load the global eval function directly
// in generated code. If we succeed, there is no need to perform a
// context lookup in the runtime system.
JumpTarget done;
if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
ASSERT(var->AsSlot()->type() == Slot::LOOKUP);
JumpTarget slow;
// Prepare the stack for the call to
// ResolvePossiblyDirectEvalNoLookup by pushing the loaded
// function, the first argument to the eval call and the
// receiver.
Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(),
NOT_INSIDE_TYPEOF,
&slow);
frame_->Push(&fun);
if (arg_count > 0) {
frame_->PushElementAt(arg_count);
} else {
frame_->Push(Factory::undefined_value());
}
frame_->PushParameterAt(-1);
// Resolve the call.
result =
frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 3);
done.Jump(&result);
slow.Bind();
}
// Prepare the stack for the call to ResolvePossiblyDirectEval by
// pushing the loaded function, the first argument to the eval
// call and the receiver.
frame_->PushElementAt(arg_count + 1);
if (arg_count > 0) {
frame_->PushElementAt(arg_count);
} else {
frame_->Push(Factory::undefined_value());
}
frame_->PushParameterAt(-1);
// Resolve the call.
result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3);
// If we generated fast-case code bind the jump-target where fast
// and slow case merge.
if (done.is_linked()) done.Bind(&result);
// The runtime call returns a pair of values in rax (function) and
// rdx (receiver). Touch up the stack with the right values.
Result receiver = allocator_->Allocate(rdx);
frame_->SetElementAt(arg_count + 1, &result);
frame_->SetElementAt(arg_count, &receiver);
receiver.Unuse();
// Call the function.
CodeForSourcePosition(node->position());
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
result = frame_->CallStub(&call_function, arg_count + 1);
// Restore the context and overwrite the function on the stack with
// the result.
frame_->RestoreContextRegister();
frame_->SetElementAt(0, &result);
} else if (var != NULL && !var->is_this() && var->is_global()) {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is global
// ----------------------------------
// Pass the global object as the receiver and let the IC stub
// patch the stack to use the global proxy as 'this' in the
// invoked function.
LoadGlobal();
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Push the name of the function on the frame.
frame_->Push(var->name());
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
// Replace the function on the stack with the result.
frame_->Push(&result);
} else if (var != NULL && var->AsSlot() != NULL &&
var->AsSlot()->type() == Slot::LOOKUP) {
// ----------------------------------
// JavaScript examples:
//
// with (obj) foo(1, 2, 3) // foo may be in obj.
//
// function f() {};
// function g() {
// eval(...);
// f(); // f could be in extension object.
// }
// ----------------------------------
JumpTarget slow, done;
Result function;
// Generate fast case for loading functions from slots that
// correspond to local/global variables or arguments unless they
// are shadowed by eval-introduced bindings.
EmitDynamicLoadFromSlotFastCase(var->AsSlot(),
NOT_INSIDE_TYPEOF,
&function,
&slow,
&done);
slow.Bind();
// Load the function from the context. Sync the frame so we can
// push the arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(var->name());
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
// The runtime call returns a pair of values in rax and rdx. The
// looked-up function is in rax and the receiver is in rdx. These
// register references are not ref counted here. We spill them
// eagerly since they are arguments to an inevitable call (and are
// not sharable by the arguments).
ASSERT(!allocator()->is_used(rax));
frame_->EmitPush(rax);
// Load the receiver.
ASSERT(!allocator()->is_used(rdx));
frame_->EmitPush(rdx);
// If fast case code has been generated, emit code to push the
// function and receiver and have the slow path jump around this
// code.
if (done.is_linked()) {
JumpTarget call;
call.Jump();
done.Bind(&function);
frame_->Push(&function);
LoadGlobalReceiver();
call.Bind();
}
// Call the function.
CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
} else if (property != NULL) {
// Check if the key is a literal string.
Literal* literal = property->key()->AsLiteral();
if (literal != NULL && literal->handle()->IsSymbol()) {
// ------------------------------------------------------------------
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
// ------------------------------------------------------------------
Handle<String> name = Handle<String>::cast(literal->handle());
if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
name->IsEqualTo(CStrVector("apply")) &&
args->length() == 2 &&
args->at(1)->AsVariableProxy() != NULL &&
args->at(1)->AsVariableProxy()->IsArguments()) {
// Use the optimized Function.prototype.apply that avoids
// allocating lazily allocated arguments objects.
CallApplyLazy(property->obj(),
args->at(0),
args->at(1)->AsVariableProxy(),
node->position());
} else {
// Push the receiver onto the frame.
Load(property->obj());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Push the name of the function onto the frame.
frame_->Push(name);
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
frame_->Push(&result);
}
} else {
// -------------------------------------------
// JavaScript example: 'array[index](1, 2, 3)'
// -------------------------------------------
// Load the function to call from the property through a reference.
if (property->is_synthetic()) {
Reference ref(this, property, false);
ref.GetValue();
// Use global object as receiver.
LoadGlobalReceiver();
// Call the function.
CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position());
} else {
// Push the receiver onto the frame.
Load(property->obj());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
frame_->SpillTop();
}
// Load the name of the function.
Load(property->key());
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
frame_->Push(&result);
}
}
} else {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
// ----------------------------------
// Load the function.
Load(function);
// Pass the global proxy as the receiver.
LoadGlobalReceiver();
// Call the function.
CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
}
}
void CodeGenerator::VisitCallNew(CallNew* node) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments. This is different from ordinary calls, where the
// actual function to call is resolved after the arguments have been
// evaluated.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
Load(node->expression());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = node->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
CodeForSourcePosition(node->position());
Result result = frame_->CallConstructor(arg_count);
frame_->Push(&result);
}
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
value.Unuse();
destination()->Split(is_smi);
}
void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
// Conditionally generate a log call.
// Args:
// 0 (literal string): The type of logging (corresponds to the flags).
// This is used to determine whether or not to generate the log call.
// 1 (string): Format string. Access the string at argument index 2
// with '%2s' (see Logger::LogRuntime for all the formats).
// 2 (array): Arguments to the format string.
ASSERT_EQ(args->length(), 3);
#ifdef ENABLE_LOGGING_AND_PROFILING
if (ShouldGenerateLog(args->at(0))) {
Load(args->at(1));
Load(args->at(2));
frame_->CallRuntime(Runtime::kLog, 2);
}
#endif
// Finally, we're expected to leave a value on the top of the stack.
frame_->Push(Factory::undefined_value());
}
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition non_negative_smi = masm_->CheckNonNegativeSmi(value.reg());
value.Unuse();
destination()->Split(non_negative_smi);
}
class DeferredStringCharCodeAt : public DeferredCode {
public:
DeferredStringCharCodeAt(Register object,
Register index,
Register scratch,
Register result)
: result_(result),
char_code_at_generator_(object,
index,
scratch,
result,
&need_conversion_,
&need_conversion_,
&index_out_of_range_,
STRING_INDEX_IS_NUMBER) {}
StringCharCodeAtGenerator* fast_case_generator() {
return &char_code_at_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_code_at_generator_.GenerateSlow(masm(), call_helper);
__ bind(&need_conversion_);
// Move the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result_, Heap::kUndefinedValueRootIndex);
__ jmp(exit_label());
__ bind(&index_out_of_range_);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result_, Heap::kNanValueRootIndex);
__ jmp(exit_label());
}
private:
Register result_;
Label need_conversion_;
Label index_out_of_range_;
StringCharCodeAtGenerator char_code_at_generator_;
};
// This generates code that performs a String.prototype.charCodeAt() call
// or returns a smi in order to trigger conversion.
void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) {
Comment(masm_, "[ GenerateStringCharCodeAt");
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Result index = frame_->Pop();
Result object = frame_->Pop();
object.ToRegister();
index.ToRegister();
// We might mutate the object register.
frame_->Spill(object.reg());
// We need two extra registers.
Result result = allocator()->Allocate();
ASSERT(result.is_valid());
Result scratch = allocator()->Allocate();
ASSERT(scratch.is_valid());
DeferredStringCharCodeAt* deferred =
new DeferredStringCharCodeAt(object.reg(),
index.reg(),
scratch.reg(),
result.reg());
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->Push(&result);
}
class DeferredStringCharFromCode : public DeferredCode {
public:
DeferredStringCharFromCode(Register code,
Register result)
: char_from_code_generator_(code, result) {}
StringCharFromCodeGenerator* fast_case_generator() {
return &char_from_code_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_from_code_generator_.GenerateSlow(masm(), call_helper);
}
private:
StringCharFromCodeGenerator char_from_code_generator_;
};
// Generates code for creating a one-char string from a char code.
void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) {
Comment(masm_, "[ GenerateStringCharFromCode");
ASSERT(args->length() == 1);
Load(args->at(0));
Result code = frame_->Pop();
code.ToRegister();
ASSERT(code.is_valid());
Result result = allocator()->Allocate();
ASSERT(result.is_valid());
DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(
code.reg(), result.reg());
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->Push(&result);
}
class DeferredStringCharAt : public DeferredCode {
public:
DeferredStringCharAt(Register object,
Register index,
Register scratch1,
Register scratch2,
Register result)
: result_(result),
char_at_generator_(object,
index,
scratch1,
scratch2,
result,
&need_conversion_,
&need_conversion_,
&index_out_of_range_,
STRING_INDEX_IS_NUMBER) {}
StringCharAtGenerator* fast_case_generator() {
return &char_at_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_at_generator_.GenerateSlow(masm(), call_helper);
__ bind(&need_conversion_);
// Move smi zero into the result register, which will trigger
// conversion.
__ Move(result_, Smi::FromInt(0));
__ jmp(exit_label());
__ bind(&index_out_of_range_);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result_, Heap::kEmptyStringRootIndex);
__ jmp(exit_label());
}
private:
Register result_;
Label need_conversion_;
Label index_out_of_range_;
StringCharAtGenerator char_at_generator_;
};
// This generates code that performs a String.prototype.charAt() call
// or returns a smi in order to trigger conversion.
void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) {
Comment(masm_, "[ GenerateStringCharAt");
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Result index = frame_->Pop();
Result object = frame_->Pop();
object.ToRegister();
index.ToRegister();
// We might mutate the object register.
frame_->Spill(object.reg());
// We need three extra registers.
Result result = allocator()->Allocate();
ASSERT(result.is_valid());
Result scratch1 = allocator()->Allocate();
ASSERT(scratch1.is_valid());
Result scratch2 = allocator()->Allocate();
ASSERT(scratch2.is_valid());
DeferredStringCharAt* deferred =
new DeferredStringCharAt(object.reg(),
index.reg(),
scratch1.reg(),
scratch2.reg(),
result.reg());
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->Push(&result);
}
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
destination()->false_target()->Branch(is_smi);
// It is a heap object - get map.
// Check if the object is a JS array or not.
__ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister);
value.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
destination()->false_target()->Branch(is_smi);
// It is a heap object - get map.
// Check if the object is a regexp.
__ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister);
value.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ Move(kScratchRegister, Factory::null_value());
__ cmpq(obj.reg(), kScratchRegister);
destination()->true_target()->Branch(equal);
__ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ movzxbq(kScratchRegister,
FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
__ cmpq(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE));
destination()->false_target()->Branch(below);
__ cmpq(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE));
obj.Unuse();
destination()->Split(below_equal);
}
void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' ||
// typeof(arg) == function).
// It includes undetectable objects (as opposed to IsObject).
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
destination()->false_target()->Branch(is_smi);
// Check that this is an object.
__ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, kScratchRegister);
value.Unuse();
destination()->Split(above_equal);
}
// Deferred code to check whether the String JavaScript object is safe for using
// default value of. This code is called after the bit caching this information
// in the map has been checked with the map for the object in the map_result_
// register. On return the register map_result_ contains 1 for true and 0 for
// false.
class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode {
public:
DeferredIsStringWrapperSafeForDefaultValueOf(Register object,
Register map_result,
Register scratch1,
Register scratch2)
: object_(object),
map_result_(map_result),
scratch1_(scratch1),
scratch2_(scratch2) { }
virtual void Generate() {
Label false_result;
// Check that map is loaded as expected.
if (FLAG_debug_code) {
__ cmpq(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
__ Assert(equal, "Map not in expected register");
}
// Check for fast case object. Generate false result for slow case object.
__ movq(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset));
__ movq(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
__ CompareRoot(scratch1_, Heap::kHashTableMapRootIndex);
__ j(equal, &false_result);
// Look for valueOf symbol in the descriptor array, and indicate false if
// found. The type is not checked, so if it is a transition it is a false
// negative.
__ movq(map_result_,
FieldOperand(map_result_, Map::kInstanceDescriptorsOffset));
__ movq(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset));
// map_result_: descriptor array
// scratch1_: length of descriptor array
// Calculate the end of the descriptor array.
SmiIndex index = masm_->SmiToIndex(scratch2_, scratch1_, kPointerSizeLog2);
__ lea(scratch1_,
Operand(
map_result_, index.reg, index.scale, FixedArray::kHeaderSize));
// Calculate location of the first key name.
__ addq(map_result_,
Immediate(FixedArray::kHeaderSize +
DescriptorArray::kFirstIndex * kPointerSize));
// Loop through all the keys in the descriptor array. If one of these is the
// symbol valueOf the result is false.
Label entry, loop;
__ jmp(&entry);
__ bind(&loop);
__ movq(scratch2_, FieldOperand(map_result_, 0));
__ Cmp(scratch2_, Factory::value_of_symbol());
__ j(equal, &false_result);
__ addq(map_result_, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(map_result_, scratch1_);
__ j(not_equal, &loop);
// Reload map as register map_result_ was used as temporary above.
__ movq(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
// If a valueOf property is not found on the object check that it's
// prototype is the un-modified String prototype. If not result is false.
__ movq(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset));
__ testq(scratch1_, Immediate(kSmiTagMask));
__ j(zero, &false_result);
__ movq(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
__ movq(scratch2_,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(scratch2_,
FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset));
__ cmpq(scratch1_,
CodeGenerator::ContextOperand(
scratch2_, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
__ j(not_equal, &false_result);
// Set the bit in the map to indicate that it has been checked safe for
// default valueOf and set true result.
__ or_(FieldOperand(map_result_, Map::kBitField2Offset),
Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
__ Set(map_result_, 1);
__ jmp(exit_label());
__ bind(&false_result);
// Set false result.
__ Set(map_result_, 0);
}
private:
Register object_;
Register map_result_;
Register scratch1_;
Register scratch2_;
};
void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf(
ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop(); // Pop the string wrapper.
obj.ToRegister();
ASSERT(obj.is_valid());
if (FLAG_debug_code) {
__ AbortIfSmi(obj.reg());
}
// Check whether this map has already been checked to be safe for default
// valueOf.
Result map_result = allocator()->Allocate();
ASSERT(map_result.is_valid());
__ movq(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(map_result.reg(), Map::kBitField2Offset),
Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
destination()->true_target()->Branch(not_zero);
// We need an additional two scratch registers for the deferred code.
Result temp1 = allocator()->Allocate();
ASSERT(temp1.is_valid());
Result temp2 = allocator()->Allocate();
ASSERT(temp2.is_valid());
DeferredIsStringWrapperSafeForDefaultValueOf* deferred =
new DeferredIsStringWrapperSafeForDefaultValueOf(
obj.reg(), map_result.reg(), temp1.reg(), temp2.reg());
deferred->Branch(zero);
deferred->BindExit();
__ testq(map_result.reg(), map_result.reg());
obj.Unuse();
map_result.Unuse();
temp1.Unuse();
temp2.Unuse();
destination()->Split(not_equal);
}
void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (%_ClassOf(arg) === 'Function')
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
obj.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
__ movzxbl(kScratchRegister,
FieldOperand(kScratchRegister, Map::kBitFieldOffset));
__ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable));
obj.Unuse();
destination()->Split(not_zero);
}
void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
// Get the frame pointer for the calling frame.
Result fp = allocator()->Allocate();
__ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &check_frame_marker);
__ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
Smi::FromInt(StackFrame::CONSTRUCT));
fp.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Result fp = allocator_->Allocate();
Result result = allocator_->Allocate();
ASSERT(fp.is_valid() && result.is_valid());
Label exit;
// Get the number of formal parameters.
__ Move(result.reg(), Smi::FromInt(scope()->num_parameters()));
// Check if the calling frame is an arguments adaptor frame.
__ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &exit);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ movq(result.reg(),
Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset));
__ bind(&exit);
result.set_type_info(TypeInfo::Smi());
if (FLAG_debug_code) {
__ AbortIfNotSmi(result.reg());
}
frame_->Push(&result);
}
void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
JumpTarget leave, null, function, non_function_constructor;
Load(args->at(0)); // Load the object.
Result obj = frame_->Pop();
obj.ToRegister();
frame_->Spill(obj.reg());
// If the object is a smi, we return null.
Condition is_smi = masm_->CheckSmi(obj.reg());
null.Branch(is_smi);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
__ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
null.Branch(below);
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
function.Branch(equal);
// Check if the constructor in the map is a function.
__ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
__ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
non_function_constructor.Branch(not_equal);
// The obj register now contains the constructor function. Grab the
// instance class name from there.
__ movq(obj.reg(),
FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
__ movq(obj.reg(),
FieldOperand(obj.reg(),
SharedFunctionInfo::kInstanceClassNameOffset));
frame_->Push(&obj);
leave.Jump();
// Functions have class 'Function'.
function.Bind();
frame_->Push(Factory::function_class_symbol());
leave.Jump();
// Objects with a non-function constructor have class 'Object'.
non_function_constructor.Bind();
frame_->Push(Factory::Object_symbol());
leave.Jump();
// Non-JS objects have class null.
null.Bind();
frame_->Push(Factory::null_value());
// All done.
leave.Bind();
}
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
JumpTarget leave;
Load(args->at(0)); // Load the object.
frame_->Dup();
Result object = frame_->Pop();
object.ToRegister();
ASSERT(object.is_valid());
// if (object->IsSmi()) return object.
Condition is_smi = masm_->CheckSmi(object.reg());
leave.Branch(is_smi);
// It is a heap object - get map.
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
// if (!object->IsJSValue()) return object.
__ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
leave.Branch(not_equal);
__ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
object.Unuse();
frame_->SetElementAt(0, &temp);
leave.Bind();
}
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
JumpTarget leave;
Load(args->at(0)); // Load the object.
Load(args->at(1)); // Load the value.
Result value = frame_->Pop();
Result object = frame_->Pop();
value.ToRegister();
object.ToRegister();
// if (object->IsSmi()) return value.
Condition is_smi = masm_->CheckSmi(object.reg());
leave.Branch(is_smi, &value);
// It is a heap object - get its map.
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
// if (!object->IsJSValue()) return value.
__ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
leave.Branch(not_equal, &value);
// Store the value.
__ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
Result duplicate_value = allocator_->Allocate();
ASSERT(duplicate_value.is_valid());
__ movq(duplicate_value.reg(), value.reg());
// The object register is also overwritten by the write barrier and
// possibly aliased in the frame.
frame_->Spill(object.reg());
__ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
scratch.reg());
object.Unuse();
scratch.Unuse();
duplicate_value.Unuse();
// Leave.
leave.Bind(&value);
frame_->Push(&value);
}
void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
// ArgumentsAccessStub expects the key in rdx and the formal
// parameter count in rax.
Load(args->at(0));
Result key = frame_->Pop();
// Explicitly create a constant result.
Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
// Call the shared stub to get to arguments[key].
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
Result result = frame_->CallStub(&stub, &key, &count);
frame_->Push(&result);
}
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
Load(args->at(0));
Load(args->at(1));
Result right = frame_->Pop();
Result left = frame_->Pop();
right.ToRegister();
left.ToRegister();
__ cmpq(right.reg(), left.reg());
right.Unuse();
left.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
// RBP value is aligned, so it should be tagged as a smi (without necesarily
// being padded as a smi, so it should not be treated as a smi.).
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
Result rbp_as_smi = allocator_->Allocate();
ASSERT(rbp_as_smi.is_valid());
__ movq(rbp_as_smi.reg(), rbp);
frame_->Push(&rbp_as_smi);
}
void CodeGenerator::GenerateRandomHeapNumber(
ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
frame_->SpillAll();
Label slow_allocate_heapnumber;
Label heapnumber_allocated;
__ AllocateHeapNumber(rbx, rcx, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
// Allocate a heap number.
__ CallRuntime(Runtime::kNumberAlloc, 0);
__ movq(rbx, rax);
__ bind(&heapnumber_allocated);
// Return a random uint32 number in rax.
// The fresh HeapNumber is in rbx, which is callee-save on both x64 ABIs.
__ PrepareCallCFunction(0);
__ CallCFunction(ExternalReference::random_uint32_function(), 0);
// Convert 32 random bits in rax to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
__ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single.
__ movd(xmm1, rcx);
__ movd(xmm0, rax);
__ cvtss2sd(xmm1, xmm1);
__ xorpd(xmm0, xmm1);
__ subsd(xmm0, xmm1);
__ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rbx);
Result result = allocator_->Allocate(rax);
frame_->Push(&result);
}
void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
StringAddStub stub(NO_STRING_ADD_FLAGS);
Result answer = frame_->CallStub(&stub, 2);
frame_->Push(&answer);
}
void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
ASSERT_EQ(3, args->length());
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
SubStringStub stub;
Result answer = frame_->CallStub(&stub, 3);
frame_->Push(&answer);
}
void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
StringCompareStub stub;
Result answer = frame_->CallStub(&stub, 2);
frame_->Push(&answer);
}
void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 4);
// Load the arguments on the stack and call the runtime system.
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
Load(args->at(3));
RegExpExecStub stub;
Result result = frame_->CallStub(&stub, 4);
frame_->Push(&result);
}
void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) {
// No stub. This code only occurs a few times in regexp.js.
const int kMaxInlineLength = 100;
ASSERT_EQ(3, args->length());
Load(args->at(0)); // Size of array, smi.
Load(args->at(1)); // "index" property value.
Load(args->at(2)); // "input" property value.
{
VirtualFrame::SpilledScope spilled_scope;
Label slowcase;
Label done;
__ movq(r8, Operand(rsp, kPointerSize * 2));
__ JumpIfNotSmi(r8, &slowcase);
__ SmiToInteger32(rbx, r8);
__ cmpl(rbx, Immediate(kMaxInlineLength));
__ j(above, &slowcase);
// Smi-tagging is equivalent to multiplying by 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
// Allocate RegExpResult followed by FixedArray with size in ebx.
// JSArray: [Map][empty properties][Elements][Length-smi][index][input]
// Elements: [Map][Length][..elements..]
__ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
times_pointer_size,
rbx, // In: Number of elements.
rax, // Out: Start of allocation (tagged).
rcx, // Out: End of allocation.
rdx, // Scratch register
&slowcase,
TAG_OBJECT);
// rax: Start of allocated area, object-tagged.
// rbx: Number of array elements as int32.
// r8: Number of array elements as smi.
// Set JSArray map to global.regexp_result_map().
__ movq(rdx, ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset));
__ movq(rdx, ContextOperand(rdx, Context::REGEXP_RESULT_MAP_INDEX));
__ movq(FieldOperand(rax, HeapObject::kMapOffset), rdx);
// Set empty properties FixedArray.
__ Move(FieldOperand(rax, JSObject::kPropertiesOffset),
Factory::empty_fixed_array());
// Set elements to point to FixedArray allocated right after the JSArray.
__ lea(rcx, Operand(rax, JSRegExpResult::kSize));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx);
// Set input, index and length fields from arguments.
__ pop(FieldOperand(rax, JSRegExpResult::kInputOffset));
__ pop(FieldOperand(rax, JSRegExpResult::kIndexOffset));
__ lea(rsp, Operand(rsp, kPointerSize));
__ movq(FieldOperand(rax, JSArray::kLengthOffset), r8);
// Fill out the elements FixedArray.
// rax: JSArray.
// rcx: FixedArray.
// rbx: Number of elements in array as int32.
// Set map.
__ Move(FieldOperand(rcx, HeapObject::kMapOffset),
Factory::fixed_array_map());
// Set length.
__ Integer32ToSmi(rdx, rbx);
__ movq(FieldOperand(rcx, FixedArray::kLengthOffset), rdx);
// Fill contents of fixed-array with the-hole.
__ Move(rdx, Factory::the_hole_value());
__ lea(rcx, FieldOperand(rcx, FixedArray::kHeaderSize));
// Fill fixed array elements with hole.
// rax: JSArray.
// rbx: Number of elements in array that remains to be filled, as int32.
// rcx: Start of elements in FixedArray.
// rdx: the hole.
Label loop;
__ testl(rbx, rbx);
__ bind(&loop);
__ j(less_equal, &done); // Jump if ecx is negative or zero.
__ subl(rbx, Immediate(1));
__ movq(Operand(rcx, rbx, times_pointer_size, 0), rdx);
__ jmp(&loop);
__ bind(&slowcase);
__ CallRuntime(Runtime::kRegExpConstructResult, 3);
__ bind(&done);
}
frame_->Forget(3);
frame_->Push(rax);
}
class DeferredSearchCache: public DeferredCode {
public:
DeferredSearchCache(Register dst,
Register cache,
Register key,
Register scratch)
: dst_(dst), cache_(cache), key_(key), scratch_(scratch) {
set_comment("[ DeferredSearchCache");
}
virtual void Generate();
private:
Register dst_; // on invocation index of finger (as int32), on exit
// holds value being looked up.
Register cache_; // instance of JSFunctionResultCache.
Register key_; // key being looked up.
Register scratch_;
};
// Return a position of the element at |index| + |additional_offset|
// in FixedArray pointer to which is held in |array|. |index| is int32.
static Operand ArrayElement(Register array,
Register index,
int additional_offset = 0) {
int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
return FieldOperand(array, index, times_pointer_size, offset);
}
void DeferredSearchCache::Generate() {
Label first_loop, search_further, second_loop, cache_miss;
Immediate kEntriesIndexImm = Immediate(JSFunctionResultCache::kEntriesIndex);
Immediate kEntrySizeImm = Immediate(JSFunctionResultCache::kEntrySize);
// Check the cache from finger to start of the cache.
__ bind(&first_loop);
__ subl(dst_, kEntrySizeImm);
__ cmpl(dst_, kEntriesIndexImm);
__ j(less, &search_further);
__ cmpq(ArrayElement(cache_, dst_), key_);
__ j(not_equal, &first_loop);
__ Integer32ToSmiField(
FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
__ movq(dst_, ArrayElement(cache_, dst_, 1));
__ jmp(exit_label());
__ bind(&search_further);
// Check the cache from end of cache up to finger.
__ SmiToInteger32(dst_,
FieldOperand(cache_,
JSFunctionResultCache::kCacheSizeOffset));
__ SmiToInteger32(scratch_,
FieldOperand(cache_, JSFunctionResultCache::kFingerOffset));
__ bind(&second_loop);
__ subl(dst_, kEntrySizeImm);
__ cmpl(dst_, scratch_);
__ j(less_equal, &cache_miss);
__ cmpq(ArrayElement(cache_, dst_), key_);
__ j(not_equal, &second_loop);
__ Integer32ToSmiField(
FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
__ movq(dst_, ArrayElement(cache_, dst_, 1));
__ jmp(exit_label());
__ bind(&cache_miss);
__ push(cache_); // store a reference to cache
__ push(key_); // store a key
__ push(Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ push(key_);
// On x64 function must be in rdi.
__ movq(rdi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset));
ParameterCount expected(1);
__ InvokeFunction(rdi, expected, CALL_FUNCTION);
// Find a place to put new cached value into.
Label add_new_entry, update_cache;
__ movq(rcx, Operand(rsp, kPointerSize)); // restore the cache
// Possible optimization: cache size is constant for the given cache
// so technically we could use a constant here. However, if we have
// cache miss this optimization would hardly matter much.
// Check if we could add new entry to cache.
__ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
__ SmiToInteger32(r9,
FieldOperand(rcx, JSFunctionResultCache::kCacheSizeOffset));
__ cmpl(rbx, r9);
__ j(greater, &add_new_entry);
// Check if we could evict entry after finger.
__ SmiToInteger32(rdx,
FieldOperand(rcx, JSFunctionResultCache::kFingerOffset));
__ addl(rdx, kEntrySizeImm);
Label forward;
__ cmpl(rbx, rdx);
__ j(greater, &forward);
// Need to wrap over the cache.
__ movl(rdx, kEntriesIndexImm);
__ bind(&forward);
__ movl(r9, rdx);
__ jmp(&update_cache);
__ bind(&add_new_entry);
// r9 holds cache size as int32.
__ leal(rbx, Operand(r9, JSFunctionResultCache::kEntrySize));
__ Integer32ToSmiField(
FieldOperand(rcx, JSFunctionResultCache::kCacheSizeOffset), rbx);
// Update the cache itself.
// r9 holds the index as int32.
__ bind(&update_cache);
__ pop(rbx); // restore the key
__ Integer32ToSmiField(
FieldOperand(rcx, JSFunctionResultCache::kFingerOffset), r9);
// Store key.
__ movq(ArrayElement(rcx, r9), rbx);
__ RecordWrite(rcx, 0, rbx, r9);
// Store value.
__ pop(rcx); // restore the cache.
__ SmiToInteger32(rdx,
FieldOperand(rcx, JSFunctionResultCache::kFingerOffset));
__ incl(rdx);
// Backup rax, because the RecordWrite macro clobbers its arguments.
__ movq(rbx, rax);
__ movq(ArrayElement(rcx, rdx), rax);
__ RecordWrite(rcx, 0, rbx, rdx);
if (!dst_.is(rax)) {
__ movq(dst_, rax);
}
}
void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
ASSERT_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
Handle<FixedArray> jsfunction_result_caches(
Top::global_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort("Attempt to use undefined cache.");
frame_->Push(Factory::undefined_value());
return;
}
Load(args->at(1));
Result key = frame_->Pop();
key.ToRegister();
Result cache = allocator()->Allocate();
ASSERT(cache.is_valid());
__ movq(cache.reg(), ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(cache.reg(),
FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset));
__ movq(cache.reg(),
ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ movq(cache.reg(),
FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id)));
Result tmp = allocator()->Allocate();
ASSERT(tmp.is_valid());
Result scratch = allocator()->Allocate();
ASSERT(scratch.is_valid());
DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(),
cache.reg(),
key.reg(),
scratch.reg());
const int kFingerOffset =
FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex);
// tmp.reg() now holds finger offset as a smi.
__ SmiToInteger32(tmp.reg(), FieldOperand(cache.reg(), kFingerOffset));
__ cmpq(key.reg(), FieldOperand(cache.reg(),
tmp.reg(), times_pointer_size,
FixedArray::kHeaderSize));
deferred->Branch(not_equal);
__ movq(tmp.reg(), FieldOperand(cache.reg(),
tmp.reg(), times_pointer_size,
FixedArray::kHeaderSize + kPointerSize));
deferred->BindExit();
frame_->Push(&tmp);
}
void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and jump to the runtime.
Load(args->at(0));
NumberToStringStub stub;
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
class DeferredSwapElements: public DeferredCode {
public:
DeferredSwapElements(Register object, Register index1, Register index2)
: object_(object), index1_(index1), index2_(index2) {
set_comment("[ DeferredSwapElements");
}
virtual void Generate();
private:
Register object_, index1_, index2_;
};
void DeferredSwapElements::Generate() {
__ push(object_);
__ push(index1_);
__ push(index2_);
__ CallRuntime(Runtime::kSwapElements, 3);
}
void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) {
Comment cmnt(masm_, "[ GenerateSwapElements");
ASSERT_EQ(3, args->length());
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
Result index2 = frame_->Pop();
index2.ToRegister();
Result index1 = frame_->Pop();
index1.ToRegister();
Result object = frame_->Pop();
object.ToRegister();
Result tmp1 = allocator()->Allocate();
tmp1.ToRegister();
Result tmp2 = allocator()->Allocate();
tmp2.ToRegister();
frame_->Spill(object.reg());
frame_->Spill(index1.reg());
frame_->Spill(index2.reg());
DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(),
index1.reg(),
index2.reg());
// Fetch the map and check if array is in fast case.
// Check that object doesn't require security checks and
// has no indexed interceptor.
__ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg());
deferred->Branch(below);
__ testb(FieldOperand(tmp1.reg(), Map::kBitFieldOffset),
Immediate(KeyedLoadIC::kSlowCaseBitFieldMask));
deferred->Branch(not_zero);
// Check the object's elements are in fast case and writable.
__ movq(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(tmp1.reg(), HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
deferred->Branch(not_equal);
// Check that both indices are smis.
Condition both_smi = masm()->CheckBothSmi(index1.reg(), index2.reg());
deferred->Branch(NegateCondition(both_smi));
// Bring addresses into index1 and index2.
__ SmiToInteger32(index1.reg(), index1.reg());
__ lea(index1.reg(), FieldOperand(tmp1.reg(),
index1.reg(),
times_pointer_size,
FixedArray::kHeaderSize));
__ SmiToInteger32(index2.reg(), index2.reg());
__ lea(index2.reg(), FieldOperand(tmp1.reg(),
index2.reg(),
times_pointer_size,
FixedArray::kHeaderSize));
// Swap elements.
__ movq(object.reg(), Operand(index1.reg(), 0));
__ movq(tmp2.reg(), Operand(index2.reg(), 0));
__ movq(Operand(index2.reg(), 0), object.reg());
__ movq(Operand(index1.reg(), 0), tmp2.reg());
Label done;
__ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done);
// Possible optimization: do a check that both values are Smis
// (or them and test against Smi mask.)
__ movq(tmp2.reg(), tmp1.reg());
RecordWriteStub recordWrite1(tmp2.reg(), index1.reg(), object.reg());
__ CallStub(&recordWrite1);
RecordWriteStub recordWrite2(tmp1.reg(), index2.reg(), object.reg());
__ CallStub(&recordWrite2);
__ bind(&done);
deferred->BindExit();
frame_->Push(Factory::undefined_value());
}
void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) {
Comment cmnt(masm_, "[ GenerateCallFunction");
ASSERT(args->length() >= 2);
int n_args = args->length() - 2; // for receiver and function.
Load(args->at(0)); // receiver
for (int i = 0; i < n_args; i++) {
Load(args->at(i + 1));
}
Load(args->at(n_args + 1)); // function
Result result = frame_->CallJSFunction(n_args);
frame_->Push(&result);
}
// Generates the Math.pow method. Only handles special cases and
// branches to the runtime system for everything else. Please note
// that this function assumes that the callsite has executed ToNumber
// on both arguments.
void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Label allocate_return;
// Load the two operands while leaving the values on the frame.
frame()->Dup();
Result exponent = frame()->Pop();
exponent.ToRegister();
frame()->Spill(exponent.reg());
frame()->PushElementAt(1);
Result base = frame()->Pop();
base.ToRegister();
frame()->Spill(base.reg());
Result answer = allocator()->Allocate();
ASSERT(answer.is_valid());
ASSERT(!exponent.reg().is(base.reg()));
JumpTarget call_runtime;
// Save 1 in xmm3 - we need this several times later on.
__ movl(answer.reg(), Immediate(1));
__ cvtlsi2sd(xmm3, answer.reg());
Label exponent_nonsmi;
Label base_nonsmi;
// If the exponent is a heap number go to that specific case.
__ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi);
__ JumpIfNotSmi(base.reg(), &base_nonsmi);
// Optimized version when y is an integer.
Label powi;
__ SmiToInteger32(base.reg(), base.reg());
__ cvtlsi2sd(xmm0, base.reg());
__ jmp(&powi);
// exponent is smi and base is a heapnumber.
__ bind(&base_nonsmi);
__ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
// Optimized version of pow if y is an integer.
__ bind(&powi);
__ SmiToInteger32(exponent.reg(), exponent.reg());
// Save exponent in base as we need to check if exponent is negative later.
// We know that base and exponent are in different registers.
__ movl(base.reg(), exponent.reg());
// Get absolute value of exponent.
Label no_neg;
__ cmpl(exponent.reg(), Immediate(0));
__ j(greater_equal, &no_neg);
__ negl(exponent.reg());
__ bind(&no_neg);
// Load xmm1 with 1.
__ movsd(xmm1, xmm3);
Label while_true;
Label no_multiply;
__ bind(&while_true);
__ shrl(exponent.reg(), Immediate(1));
__ j(not_carry, &no_multiply);
__ mulsd(xmm1, xmm0);
__ bind(&no_multiply);
__ testl(exponent.reg(), exponent.reg());
__ mulsd(xmm0, xmm0);
__ j(not_zero, &while_true);
// x has the original value of y - if y is negative return 1/result.
__ testl(base.reg(), base.reg());
__ j(positive, &allocate_return);
// Special case if xmm1 has reached infinity.
__ movl(answer.reg(), Immediate(0x7FB00000));
__ movd(xmm0, answer.reg());
__ cvtss2sd(xmm0, xmm0);
__ ucomisd(xmm0, xmm1);
call_runtime.Branch(equal);
__ divsd(xmm3, xmm1);
__ movsd(xmm1, xmm3);
__ jmp(&allocate_return);
// exponent (or both) is a heapnumber - no matter what we should now work
// on doubles.
__ bind(&exponent_nonsmi);
__ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
// Test if exponent is nan.
__ ucomisd(xmm1, xmm1);
call_runtime.Branch(parity_even);
Label base_not_smi;
Label handle_special_cases;
__ JumpIfNotSmi(base.reg(), &base_not_smi);
__ SmiToInteger32(base.reg(), base.reg());
__ cvtlsi2sd(xmm0, base.reg());
__ jmp(&handle_special_cases);
__ bind(&base_not_smi);
__ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
call_runtime.Branch(not_equal);
__ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
__ andl(answer.reg(), Immediate(HeapNumber::kExponentMask));
__ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask));
// base is NaN or +/-Infinity
call_runtime.Branch(greater_equal);
__ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
// base is in xmm0 and exponent is in xmm1.
__ bind(&handle_special_cases);
Label not_minus_half;
// Test for -0.5.
// Load xmm2 with -0.5.
__ movl(answer.reg(), Immediate(0xBF000000));
__ movd(xmm2, answer.reg());
__ cvtss2sd(xmm2, xmm2);
// xmm2 now has -0.5.
__ ucomisd(xmm2, xmm1);
__ j(not_equal, &not_minus_half);
// Calculates reciprocal of square root.
// Note that 1/sqrt(x) = sqrt(1/x))
__ divsd(xmm3, xmm0);
__ movsd(xmm1, xmm3);
__ sqrtsd(xmm1, xmm1);
__ jmp(&allocate_return);
// Test for 0.5.
__ bind(&not_minus_half);
// Load xmm2 with 0.5.
// Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
__ addsd(xmm2, xmm3);
// xmm2 now has 0.5.
__ ucomisd(xmm2, xmm1);
call_runtime.Branch(not_equal);
// Calculates square root.
__ movsd(xmm1, xmm0);
__ sqrtsd(xmm1, xmm1);
JumpTarget done;
Label failure, success;
__ bind(&allocate_return);
// Make a copy of the frame to enable us to handle allocation
// failure after the JumpTarget jump.
VirtualFrame* clone = new VirtualFrame(frame());
__ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure);
__ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
// Remove the two original values from the frame - we only need those
// in the case where we branch to runtime.
frame()->Drop(2);
exponent.Unuse();
base.Unuse();
done.Jump(&answer);
// Use the copy of the original frame as our current frame.
RegisterFile empty_regs;
SetFrame(clone, &empty_regs);
// If we experience an allocation failure we branch to runtime.
__ bind(&failure);
call_runtime.Bind();
answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
done.Bind(&answer);
frame()->Push(&answer);
}
void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
TranscendentalCacheStub stub(TranscendentalCache::SIN);
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
TranscendentalCacheStub stub(TranscendentalCache::COS);
Result result = frame_->CallStub(&stub, 1);
frame_->Push(&result);
}
// Generates the Math.sqrt method. Please note - this function assumes that
// the callsite has executed ToNumber on the argument.
void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
// Leave original value on the frame if we need to call runtime.
frame()->Dup();
Result result = frame()->Pop();
result.ToRegister();
frame()->Spill(result.reg());
Label runtime;
Label non_smi;
Label load_done;
JumpTarget end;
__ JumpIfNotSmi(result.reg(), &non_smi);
__ SmiToInteger32(result.reg(), result.reg());
__ cvtlsi2sd(xmm0, result.reg());
__ jmp(&load_done);
__ bind(&non_smi);
__ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &runtime);
__ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
__ bind(&load_done);
__ sqrtsd(xmm0, xmm0);
// A copy of the virtual frame to allow us to go to runtime after the
// JumpTarget jump.
Result scratch = allocator()->Allocate();
VirtualFrame* clone = new VirtualFrame(frame());
__ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime);
__ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
frame()->Drop(1);
scratch.Unuse();
end.Jump(&result);
// We only branch to runtime if we have an allocation error.
// Use the copy of the original frame as our current frame.
RegisterFile empty_regs;
SetFrame(clone, &empty_regs);
__ bind(&runtime);
result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
end.Bind(&result);
frame()->Push(&result);
}
void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
Result right_res = frame_->Pop();
Result left_res = frame_->Pop();
right_res.ToRegister();
left_res.ToRegister();
Result tmp_res = allocator()->Allocate();
ASSERT(tmp_res.is_valid());
Register right = right_res.reg();
Register left = left_res.reg();
Register tmp = tmp_res.reg();
right_res.Unuse();
left_res.Unuse();
tmp_res.Unuse();
__ cmpq(left, right);
destination()->true_target()->Branch(equal);
// Fail if either is a non-HeapObject.
Condition either_smi =
masm()->CheckEitherSmi(left, right, tmp);
destination()->false_target()->Branch(either_smi);
__ movq(tmp, FieldOperand(left, HeapObject::kMapOffset));
__ cmpb(FieldOperand(tmp, Map::kInstanceTypeOffset),
Immediate(JS_REGEXP_TYPE));
destination()->false_target()->Branch(not_equal);
__ cmpq(tmp, FieldOperand(right, HeapObject::kMapOffset));
destination()->false_target()->Branch(not_equal);
__ movq(tmp, FieldOperand(left, JSRegExp::kDataOffset));
__ cmpq(tmp, FieldOperand(right, JSRegExp::kDataOffset));
destination()->Split(equal);
}
void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
__ testl(FieldOperand(value.reg(), String::kHashFieldOffset),
Immediate(String::kContainsCachedArrayIndexMask));
value.Unuse();
destination()->Split(zero);
}
void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result string = frame_->Pop();
string.ToRegister();
Result number = allocator()->Allocate();
ASSERT(number.is_valid());
__ movl(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset));
__ IndexFromHash(number.reg(), number.reg());
string.Unuse();
frame_->Push(&number);
}
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
if (CheckForInlineRuntimeCall(node)) {
return;
}
ZoneList<Expression*>* args = node->arguments();
Comment cmnt(masm_, "[ CallRuntime");
Runtime::Function* function = node->function();
if (function == NULL) {
// Push the builtins object found in the current global object.
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(), GlobalObject());
__ movq(temp.reg(),
FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
frame_->Push(&temp);
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
if (function == NULL) {
// Call the JS runtime function.
frame_->Push(node->name());
Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
arg_count,
loop_nesting_);
frame_->RestoreContextRegister();
frame_->Push(&answer);
} else {
// Call the C runtime function.
Result answer = frame_->CallRuntime(function, arg_count);
frame_->Push(&answer);
}
}
void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
Comment cmnt(masm_, "[ UnaryOperation");
Token::Value op = node->op();
if (op == Token::NOT) {
// Swap the true and false targets but keep the same actual label
// as the fall through.
destination()->Invert();
LoadCondition(node->expression(), destination(), true);
// Swap the labels back.
destination()->Invert();
} else if (op == Token::DELETE) {
Property* property = node->expression()->AsProperty();
if (property != NULL) {
Load(property->obj());
Load(property->key());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
}
Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
if (variable != NULL) {
Slot* slot = variable->AsSlot();
if (variable->is_global()) {
LoadGlobal();
frame_->Push(variable->name());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Call the runtime to look up the context holding the named
// variable. Sync the virtual frame eagerly so we can push the
// arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(variable->name());
Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
ASSERT(context.is_register());
frame_->EmitPush(context.reg());
context.Unuse();
frame_->EmitPush(variable->name());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
}
// Default: Result of deleting non-global, not dynamically
// introduced variables is false.
frame_->Push(Factory::false_value());
} else {
// Default: Result of deleting expressions is true.
Load(node->expression()); // may have side-effects
frame_->SetElementAt(0, Factory::true_value());
}
} else if (op == Token::TYPEOF) {
// Special case for loading the typeof expression; see comment on
// LoadTypeofExpression().
LoadTypeofExpression(node->expression());
Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
frame_->Push(&answer);
} else if (op == Token::VOID) {
Expression* expression = node->expression();
if (expression && expression->AsLiteral() && (
expression->AsLiteral()->IsTrue() ||
expression->AsLiteral()->IsFalse() ||
expression->AsLiteral()->handle()->IsNumber() ||
expression->AsLiteral()->handle()->IsString() ||
expression->AsLiteral()->handle()->IsJSRegExp() ||
expression->AsLiteral()->IsNull())) {
// Omit evaluating the value of the primitive literal.
// It will be discarded anyway, and can have no side effect.
frame_->Push(Factory::undefined_value());
} else {
Load(node->expression());
frame_->SetElementAt(0, Factory::undefined_value());
}
} else {
bool can_overwrite = node->expression()->ResultOverwriteAllowed();
UnaryOverwriteMode overwrite =
can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
bool no_negative_zero = node->expression()->no_negative_zero();
Load(node->expression());
switch (op) {
case Token::NOT:
case Token::DELETE:
case Token::TYPEOF:
UNREACHABLE(); // handled above
break;
case Token::SUB: {
GenericUnaryOpStub stub(
Token::SUB,
overwrite,
NO_UNARY_FLAGS,
no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero);
Result operand = frame_->Pop();
Result answer = frame_->CallStub(&stub, &operand);
answer.set_type_info(TypeInfo::Number());
frame_->Push(&answer);
break;
}
case Token::BIT_NOT: {
// Smi check.
JumpTarget smi_label;
JumpTarget continue_label;
Result operand = frame_->Pop();
operand.ToRegister();
Condition is_smi = masm_->CheckSmi(operand.reg());
smi_label.Branch(is_smi, &operand);
GenericUnaryOpStub stub(Token::BIT_NOT,
overwrite,
NO_UNARY_SMI_CODE_IN_STUB);
Result answer = frame_->CallStub(&stub, &operand);
continue_label.Jump(&answer);
smi_label.Bind(&answer);
answer.ToRegister();
frame_->Spill(answer.reg());
__ SmiNot(answer.reg(), answer.reg());
continue_label.Bind(&answer);
answer.set_type_info(TypeInfo::Smi());
frame_->Push(&answer);
break;
}
case Token::ADD: {
// Smi check.
JumpTarget continue_label;
Result operand = frame_->Pop();
TypeInfo operand_info = operand.type_info();
operand.ToRegister();
Condition is_smi = masm_->CheckSmi(operand.reg());
continue_label.Branch(is_smi, &operand);
frame_->Push(&operand);
Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
CALL_FUNCTION, 1);
continue_label.Bind(&answer);
if (operand_info.IsSmi()) {
answer.set_type_info(TypeInfo::Smi());
} else if (operand_info.IsInteger32()) {
answer.set_type_info(TypeInfo::Integer32());
} else {
answer.set_type_info(TypeInfo::Number());
}
frame_->Push(&answer);
break;
}
default:
UNREACHABLE();
}
}
}
// The value in dst was optimistically incremented or decremented.
// The result overflowed or was not smi tagged. Call into the runtime
// to convert the argument to a number, and call the specialized add
// or subtract stub. The result is left in dst.
class DeferredPrefixCountOperation: public DeferredCode {
public:
DeferredPrefixCountOperation(Register dst,
bool is_increment,
TypeInfo input_type)
: dst_(dst), is_increment_(is_increment), input_type_(input_type) {
set_comment("[ DeferredCountOperation");
}
virtual void Generate();
private:
Register dst_;
bool is_increment_;
TypeInfo input_type_;
};
void DeferredPrefixCountOperation::Generate() {
Register left;
if (input_type_.IsNumber()) {
left = dst_;
} else {
__ push(dst_);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
left = rax;
}
GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS,
TypeInfo::Number());
stub.GenerateCall(masm_, left, Smi::FromInt(1));
if (!dst_.is(rax)) __ movq(dst_, rax);
}
// The value in dst was optimistically incremented or decremented.
// The result overflowed or was not smi tagged. Call into the runtime
// to convert the argument to a number. Update the original value in
// old. Call the specialized add or subtract stub. The result is
// left in dst.
class DeferredPostfixCountOperation: public DeferredCode {
public:
DeferredPostfixCountOperation(Register dst,
Register old,
bool is_increment,
TypeInfo input_type)
: dst_(dst),
old_(old),
is_increment_(is_increment),
input_type_(input_type) {
set_comment("[ DeferredCountOperation");
}
virtual void Generate();
private:
Register dst_;
Register old_;
bool is_increment_;
TypeInfo input_type_;
};
void DeferredPostfixCountOperation::Generate() {
Register left;
if (input_type_.IsNumber()) {
__ push(dst_); // Save the input to use as the old value.
left = dst_;
} else {
__ push(dst_);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
__ push(rax); // Save the result of ToNumber to use as the old value.
left = rax;
}
GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
NO_OVERWRITE,
NO_GENERIC_BINARY_FLAGS,
TypeInfo::Number());
stub.GenerateCall(masm_, left, Smi::FromInt(1));
if (!dst_.is(rax)) __ movq(dst_, rax);
__ pop(old_);
}
void CodeGenerator::VisitCountOperation(CountOperation* node) {
Comment cmnt(masm_, "[ CountOperation");
bool is_postfix = node->is_postfix();
bool is_increment = node->op() == Token::INC;
Variable* var = node->expression()->AsVariableProxy()->AsVariable();
bool is_const = (var != NULL && var->mode() == Variable::CONST);
// Postfix operations need a stack slot under the reference to hold
// the old value while the new value is being stored. This is so that
// in the case that storing the new value requires a call, the old
// value will be in the frame to be spilled.
if (is_postfix) frame_->Push(Smi::FromInt(0));
// A constant reference is not saved to, so the reference is not a
// compound assignment reference.
{ Reference target(this, node->expression(), !is_const);
if (target.is_illegal()) {
// Spoof the virtual frame to have the expected height (one higher
// than on entry).
if (!is_postfix) frame_->Push(Smi::FromInt(0));
return;
}
target.TakeValue();
Result new_value = frame_->Pop();
new_value.ToRegister();
Result old_value; // Only allocated in the postfix case.
if (is_postfix) {
// Allocate a temporary to preserve the old value.
old_value = allocator_->Allocate();
ASSERT(old_value.is_valid());
__ movq(old_value.reg(), new_value.reg());
// The return value for postfix operations is ToNumber(input).
// Keep more precise type info if the input is some kind of
// number already. If the input is not a number we have to wait
// for the deferred code to convert it.
if (new_value.type_info().IsNumber()) {
old_value.set_type_info(new_value.type_info());
}
}
// Ensure the new value is writable.
frame_->Spill(new_value.reg());
DeferredCode* deferred = NULL;
if (is_postfix) {
deferred = new DeferredPostfixCountOperation(new_value.reg(),
old_value.reg(),
is_increment,
new_value.type_info());
} else {
deferred = new DeferredPrefixCountOperation(new_value.reg(),
is_increment,
new_value.type_info());
}
if (new_value.is_smi()) {
if (FLAG_debug_code) { __ AbortIfNotSmi(new_value.reg()); }
} else {
__ JumpIfNotSmi(new_value.reg(), deferred->entry_label());
}
if (is_increment) {
__ SmiAddConstant(new_value.reg(),
new_value.reg(),
Smi::FromInt(1),
deferred->entry_label());
} else {
__ SmiSubConstant(new_value.reg(),
new_value.reg(),
Smi::FromInt(1),
deferred->entry_label());
}
deferred->BindExit();
// Postfix count operations return their input converted to
// number. The case when the input is already a number is covered
// above in the allocation code for old_value.
if (is_postfix && !new_value.type_info().IsNumber()) {
old_value.set_type_info(TypeInfo::Number());
}
new_value.set_type_info(TypeInfo::Number());
// Postfix: store the old value in the allocated slot under the
// reference.
if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
frame_->Push(&new_value);
// Non-constant: update the reference.
if (!is_const) target.SetValue(NOT_CONST_INIT);
}
// Postfix: drop the new value and use the old.
if (is_postfix) frame_->Drop();
}
void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
// According to ECMA-262 section 11.11, page 58, the binary logical
// operators must yield the result of one of the two expressions
// before any ToBoolean() conversions. This means that the value
// produced by a && or || operator is not necessarily a boolean.
// NOTE: If the left hand side produces a materialized value (not
// control flow), we force the right hand side to do the same. This
// is necessary because we assume that if we get control flow on the
// last path out of an expression we got it on all paths.
if (node->op() == Token::AND) {
JumpTarget is_true;
ControlDestination dest(&is_true, destination()->false_target(), true);
LoadCondition(node->left(), &dest, false);
if (dest.false_was_fall_through()) {
// The current false target was used as the fall-through. If
// there are no dangling jumps to is_true then the left
// subexpression was unconditionally false. Otherwise we have
// paths where we do have to evaluate the right subexpression.
if (is_true.is_linked()) {
// We need to compile the right subexpression. If the jump to
// the current false target was a forward jump then we have a
// valid frame, we have just bound the false target, and we
// have to jump around the code for the right subexpression.
if (has_valid_frame()) {
destination()->false_target()->Unuse();
destination()->false_target()->Jump();
}
is_true.Bind();
// The left subexpression compiled to control flow, so the
// right one is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have actually just jumped to or bound the current false
// target but the current control destination is not marked as
// used.
destination()->Use(false);
}
} else if (dest.is_used()) {
// The left subexpression compiled to control flow (and is_true
// was just bound), so the right is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have a materialized value on the frame, so we exit with
// one on all paths. There are possibly also jumps to is_true
// from nested subexpressions.
JumpTarget pop_and_continue;
JumpTarget exit;
// Avoid popping the result if it converts to 'false' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
//
// Duplicate the TOS value. The duplicate will be popped by
// ToBoolean.
frame_->Dup();
ControlDestination dest(&pop_and_continue, &exit, true);
ToBoolean(&dest);
// Pop the result of evaluating the first part.
frame_->Drop();
// Compile right side expression.
is_true.Bind();
Load(node->right());
// Exit (always with a materialized value).
exit.Bind();
}
} else {
ASSERT(node->op() == Token::OR);
JumpTarget is_false;
ControlDestination dest(destination()->true_target(), &is_false, false);
LoadCondition(node->left(), &dest, false);
if (dest.true_was_fall_through()) {
// The current true target was used as the fall-through. If
// there are no dangling jumps to is_false then the left
// subexpression was unconditionally true. Otherwise we have
// paths where we do have to evaluate the right subexpression.
if (is_false.is_linked()) {
// We need to compile the right subexpression. If the jump to
// the current true target was a forward jump then we have a
// valid frame, we have just bound the true target, and we
// have to jump around the code for the right subexpression.
if (has_valid_frame()) {
destination()->true_target()->Unuse();
destination()->true_target()->Jump();
}
is_false.Bind();
// The left subexpression compiled to control flow, so the
// right one is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have just jumped to or bound the current true target but
// the current control destination is not marked as used.
destination()->Use(true);
}
} else if (dest.is_used()) {
// The left subexpression compiled to control flow (and is_false
// was just bound), so the right is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have a materialized value on the frame, so we exit with
// one on all paths. There are possibly also jumps to is_false
// from nested subexpressions.
JumpTarget pop_and_continue;
JumpTarget exit;
// Avoid popping the result if it converts to 'true' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
//
// Duplicate the TOS value. The duplicate will be popped by
// ToBoolean.
frame_->Dup();
ControlDestination dest(&exit, &pop_and_continue, false);
ToBoolean(&dest);
// Pop the result of evaluating the first part.
frame_->Drop();
// Compile right side expression.
is_false.Bind();
Load(node->right());
// Exit (always with a materialized value).
exit.Bind();
}
}
}
void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
Comment cmnt(masm_, "[ BinaryOperation");
if (node->op() == Token::AND || node->op() == Token::OR) {
GenerateLogicalBooleanOperation(node);
} else {
// NOTE: The code below assumes that the slow cases (calls to runtime)
// never return a constant/immutable object.
OverwriteMode overwrite_mode = NO_OVERWRITE;
if (node->left()->ResultOverwriteAllowed()) {
overwrite_mode = OVERWRITE_LEFT;
} else if (node->right()->ResultOverwriteAllowed()) {
overwrite_mode = OVERWRITE_RIGHT;
}
if (node->left()->IsTrivial()) {
Load(node->right());
Result right = frame_->Pop();
frame_->Push(node->left());
frame_->Push(&right);
} else {
Load(node->left());
Load(node->right());
}
GenericBinaryOperation(node, overwrite_mode);
}
}
void CodeGenerator::VisitThisFunction(ThisFunction* node) {
frame_->PushFunction();
}
void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
Comment cmnt(masm_, "[ CompareOperation");
// Get the expressions from the node.
Expression* left = node->left();
Expression* right = node->right();
Token::Value op = node->op();
// To make typeof testing for natives implemented in JavaScript really
// efficient, we generate special code for expressions of the form:
// 'typeof <expression> == <string>'.
UnaryOperation* operation = left->AsUnaryOperation();
if ((op == Token::EQ || op == Token::EQ_STRICT) &&
(operation != NULL && operation->op() == Token::TYPEOF) &&
(right->AsLiteral() != NULL &&
right->AsLiteral()->handle()->IsString())) {
Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle()));
// Load the operand and move it to a register.
LoadTypeofExpression(operation->expression());
Result answer = frame_->Pop();
answer.ToRegister();
if (check->Equals(Heap::number_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->true_target()->Branch(is_smi);
frame_->Spill(answer.reg());
__ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::string_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
// It can be an undetectable string object.
__ movq(kScratchRegister,
FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE);
answer.Unuse();
destination()->Split(below); // Unsigned byte comparison needed.
} else if (check->Equals(Heap::boolean_symbol())) {
__ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex);
destination()->true_target()->Branch(equal);
__ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::undefined_symbol())) {
__ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex);
destination()->true_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
// It can be an undetectable object.
__ movq(kScratchRegister,
FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
answer.Unuse();
destination()->Split(not_zero);
} else if (check->Equals(Heap::function_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
frame_->Spill(answer.reg());
__ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
destination()->true_target()->Branch(equal);
// Regular expressions are callable so typeof == 'function'.
__ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::object_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
__ CompareRoot(answer.reg(), Heap::kNullValueRootIndex);
destination()->true_target()->Branch(equal);
// Regular expressions are typeof == 'function', not 'object'.
__ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister);
destination()->false_target()->Branch(equal);
// It can be an undetectable object.
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
destination()->false_target()->Branch(below);
__ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
answer.Unuse();
destination()->Split(below_equal);
} else {
// Uncommon case: typeof testing against a string literal that is
// never returned from the typeof operator.
answer.Unuse();
destination()->Goto(false);
}
return;
}
Condition cc = no_condition;
bool strict = false;
switch (op) {
case Token::EQ_STRICT:
strict = true;
// Fall through
case Token::EQ:
cc = equal;
break;
case Token::LT:
cc = less;
break;
case Token::GT:
cc = greater;
break;
case Token::LTE:
cc = less_equal;
break;
case Token::GTE:
cc = greater_equal;
break;
case Token::IN: {
Load(left);
Load(right);
Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
frame_->Push(&answer); // push the result
return;
}
case Token::INSTANCEOF: {
Load(left);
Load(right);
InstanceofStub stub;
Result answer = frame_->CallStub(&stub, 2);
answer.ToRegister();
__ testq(answer.reg(), answer.reg());
answer.Unuse();
destination()->Split(zero);
return;
}
default:
UNREACHABLE();
}
if (left->IsTrivial()) {
Load(right);
Result right_result = frame_->Pop();
frame_->Push(left);
frame_->Push(&right_result);
} else {
Load(left);
Load(right);
}
Comparison(node, cc, strict, destination());
}
void CodeGenerator::VisitCompareToNull(CompareToNull* node) {
Comment cmnt(masm_, "[ CompareToNull");
Load(node->expression());
Result operand = frame_->Pop();
operand.ToRegister();
__ CompareRoot(operand.reg(), Heap::kNullValueRootIndex);
if (node->is_strict()) {
operand.Unuse();
destination()->Split(equal);
} else {
// The 'null' value is only equal to 'undefined' if using non-strict
// comparisons.
destination()->true_target()->Branch(equal);
__ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex);
destination()->true_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(operand.reg());
destination()->false_target()->Branch(is_smi);
// It can be an undetectable object.
// Use a scratch register in preference to spilling operand.reg().
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(),
FieldOperand(operand.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
temp.Unuse();
operand.Unuse();
destination()->Split(not_zero);
}
}
#ifdef DEBUG
bool CodeGenerator::HasValidEntryRegisters() {
return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
&& (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
&& (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
&& (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
&& (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
&& (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
&& (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
&& (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
&& (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
&& (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
}
#endif
// Emit a LoadIC call to get the value from receiver and leave it in
// dst. The receiver register is restored after the call.
class DeferredReferenceGetNamedValue: public DeferredCode {
public:
DeferredReferenceGetNamedValue(Register dst,
Register receiver,
Handle<String> name)
: dst_(dst), receiver_(receiver), name_(name) {
set_comment("[ DeferredReferenceGetNamedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Label patch_site_;
Register dst_;
Register receiver_;
Handle<String> name_;
};
void DeferredReferenceGetNamedValue::Generate() {
if (!receiver_.is(rax)) {
__ movq(rax, receiver_);
}
__ Move(rcx, name_);
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The call must be followed by a test rax instruction to indicate
// that the inobject property case was inlined.
//
// Store the delta to the map check instruction here in the test
// instruction. Use masm_-> instead of the __ macro since the
// latter can't return a value.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
masm_->testl(rax, Immediate(-delta_to_patch_site));
__ IncrementCounter(&Counters::named_load_inline_miss, 1);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
class DeferredReferenceGetKeyedValue: public DeferredCode {
public:
explicit DeferredReferenceGetKeyedValue(Register dst,
Register receiver,
Register key)
: dst_(dst), receiver_(receiver), key_(key) {
set_comment("[ DeferredReferenceGetKeyedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Label patch_site_;
Register dst_;
Register receiver_;
Register key_;
};
void DeferredReferenceGetKeyedValue::Generate() {
if (receiver_.is(rdx)) {
if (!key_.is(rax)) {
__ movq(rax, key_);
} // else do nothing.
} else if (receiver_.is(rax)) {
if (key_.is(rdx)) {
__ xchg(rax, rdx);
} else if (key_.is(rax)) {
__ movq(rdx, receiver_);
} else {
__ movq(rdx, receiver_);
__ movq(rax, key_);
}
} else if (key_.is(rax)) {
__ movq(rdx, receiver_);
} else {
__ movq(rax, key_);
__ movq(rdx, receiver_);
}
// Calculate the delta from the IC call instruction to the map check
// movq instruction in the inlined version. This delta is stored in
// a test(rax, delta) instruction after the call so that we can find
// it in the IC initialization code and patch the movq instruction.
// This means that we cannot allow test instructions after calls to
// KeyedLoadIC stubs in other places.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The delta from the start of the map-compare instruction to the
// test instruction. We use masm_-> directly here instead of the __
// macro because the macro sometimes uses macro expansion to turn
// into something that can't return a value. This is encountered
// when doing generated code coverage tests.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
// TODO(X64): Consider whether it's worth switching the test to a
// 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't
// be generated normally.
masm_->testl(rax, Immediate(-delta_to_patch_site));
__ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
class DeferredReferenceSetKeyedValue: public DeferredCode {
public:
DeferredReferenceSetKeyedValue(Register value,
Register key,
Register receiver)
: value_(value), key_(key), receiver_(receiver) {
set_comment("[ DeferredReferenceSetKeyedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Register value_;
Register key_;
Register receiver_;
Label patch_site_;
};
void DeferredReferenceSetKeyedValue::Generate() {
__ IncrementCounter(&Counters::keyed_store_inline_miss, 1);
// Move value, receiver, and key to registers rax, rdx, and rcx, as
// the IC stub expects.
// Move value to rax, using xchg if the receiver or key is in rax.
if (!value_.is(rax)) {
if (!receiver_.is(rax) && !key_.is(rax)) {
__ movq(rax, value_);
} else {
__ xchg(rax, value_);
// Update receiver_ and key_ if they are affected by the swap.
if (receiver_.is(rax)) {
receiver_ = value_;
} else if (receiver_.is(value_)) {
receiver_ = rax;
}
if (key_.is(rax)) {
key_ = value_;
} else if (key_.is(value_)) {
key_ = rax;
}
}
}
// Value is now in rax. Its original location is remembered in value_,
// and the value is restored to value_ before returning.
// The variables receiver_ and key_ are not preserved.
// Move receiver and key to rdx and rcx, swapping if necessary.
if (receiver_.is(rdx)) {
if (!key_.is(rcx)) {
__ movq(rcx, key_);
} // Else everything is already in the right place.
} else if (receiver_.is(rcx)) {
if (key_.is(rdx)) {
__ xchg(rcx, rdx);
} else if (key_.is(rcx)) {
__ movq(rdx, receiver_);
} else {
__ movq(rdx, receiver_);
__ movq(rcx, key_);
}
} else if (key_.is(rcx)) {
__ movq(rdx, receiver_);
} else {
__ movq(rcx, key_);
__ movq(rdx, receiver_);
}
// Call the IC stub.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The delta from the start of the map-compare instructions (initial movq)
// to the test instruction. We use masm_-> directly here instead of the
// __ macro because the macro sometimes uses macro expansion to turn
// into something that can't return a value. This is encountered
// when doing generated code coverage tests.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
masm_->testl(rax, Immediate(-delta_to_patch_site));
// Restore value (returned from store IC).
if (!value_.is(rax)) __ movq(value_, rax);
}
Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Result result;
// Do not inline the inobject property case for loads from the global
// object. Also do not inline for unoptimized code. This saves time
// in the code generator. Unoptimized code is toplevel code or code
// that is not in a loop.
if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
Comment cmnt(masm(), "[ Load from named Property");
frame()->Push(name);
RelocInfo::Mode mode = is_contextual
? RelocInfo::CODE_TARGET_CONTEXT
: RelocInfo::CODE_TARGET;
result = frame()->CallLoadIC(mode);
// A test rax instruction following the call signals that the
// inobject property case was inlined. Ensure that there is not
// a test rax instruction here.
__ nop();
} else {
// Inline the inobject property case.
Comment cmnt(masm(), "[ Inlined named property load");
Result receiver = frame()->Pop();
receiver.ToRegister();
result = allocator()->Allocate();
ASSERT(result.is_valid());
// Cannot use r12 for receiver, because that changes
// the distance between a call and a fixup location,
// due to a special encoding of r12 as r/m in a ModR/M byte.
if (receiver.reg().is(r12)) {
frame()->Spill(receiver.reg()); // It will be overwritten with result.
// Swap receiver and value.
__ movq(result.reg(), receiver.reg());
Result temp = receiver;
receiver = result;
result = temp;
}
DeferredReferenceGetNamedValue* deferred =
new DeferredReferenceGetNamedValue(result.reg(), receiver.reg(), name);
// Check that the receiver is a heap object.
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
__ bind(deferred->patch_site());
// This is the map check instruction that will be patched (so we can't
// use the double underscore macro that may insert instructions).
// Initially use an invalid map to force a failure.
masm()->Move(kScratchRegister, Factory::null_value());
masm()->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
kScratchRegister);
// This branch is always a forwards branch so it's always a fixed
// size which allows the assert below to succeed and patching to work.
// Don't use deferred->Branch(...), since that might add coverage code.
masm()->j(not_equal, deferred->entry_label());
// The delta from the patch label to the load offset must be
// statically known.
ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
LoadIC::kOffsetToLoadInstruction);
// The initial (invalid) offset has to be large enough to force
// a 32-bit instruction encoding to allow patching with an
// arbitrary offset. Use kMaxInt (minus kHeapObjectTag).
int offset = kMaxInt;
masm()->movq(result.reg(), FieldOperand(receiver.reg(), offset));
__ IncrementCounter(&Counters::named_load_inline, 1);
deferred->BindExit();
}
ASSERT(frame()->height() == original_height - 1);
return result;
}
Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) {
#ifdef DEBUG
int expected_height = frame()->height() - (is_contextual ? 1 : 2);
#endif
Result result;
if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
result = frame()->CallStoreIC(name, is_contextual);
// A test rax instruction following the call signals that the inobject
// property case was inlined. Ensure that there is not a test rax
// instruction here.
__ nop();
} else {
// Inline the in-object property case.
JumpTarget slow, done;
Label patch_site;
// Get the value and receiver from the stack.
Result value = frame()->Pop();
value.ToRegister();
Result receiver = frame()->Pop();
receiver.ToRegister();
// Allocate result register.
result = allocator()->Allocate();
ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid());
// Cannot use r12 for receiver, because that changes
// the distance between a call and a fixup location,
// due to a special encoding of r12 as r/m in a ModR/M byte.
if (receiver.reg().is(r12)) {
frame()->Spill(receiver.reg()); // It will be overwritten with result.
// Swap receiver and value.
__ movq(result.reg(), receiver.reg());
Result temp = receiver;
receiver = result;
result = temp;
}
// Check that the receiver is a heap object.
Condition is_smi = masm()->CheckSmi(receiver.reg());
slow.Branch(is_smi, &value, &receiver);
// This is the map check instruction that will be patched.
// Initially use an invalid map to force a failure. The exact
// instruction sequence is important because we use the
// kOffsetToStoreInstruction constant for patching. We avoid using
// the __ macro for the following two instructions because it
// might introduce extra instructions.
__ bind(&patch_site);
masm()->Move(kScratchRegister, Factory::null_value());
masm()->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
kScratchRegister);
// This branch is always a forwards branch so it's always a fixed size
// which allows the assert below to succeed and patching to work.
slow.Branch(not_equal, &value, &receiver);
// The delta from the patch label to the store offset must be
// statically known.
ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) ==
StoreIC::kOffsetToStoreInstruction);
// The initial (invalid) offset has to be large enough to force a 32-bit
// instruction encoding to allow patching with an arbitrary offset. Use
// kMaxInt (minus kHeapObjectTag).
int offset = kMaxInt;
__ movq(FieldOperand(receiver.reg(), offset), value.reg());
__ movq(result.reg(), value.reg());
// Allocate scratch register for write barrier.
Result scratch = allocator()->Allocate();
ASSERT(scratch.is_valid());
// The write barrier clobbers all input registers, so spill the
// receiver and the value.
frame_->Spill(receiver.reg());
frame_->Spill(value.reg());
// If the receiver and the value share a register allocate a new
// register for the receiver.
if (receiver.reg().is(value.reg())) {
receiver = allocator()->Allocate();
ASSERT(receiver.is_valid());
__ movq(receiver.reg(), value.reg());
}
// Update the write barrier. To save instructions in the inlined
// version we do not filter smis.
Label skip_write_barrier;
__ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier);
int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site);
__ lea(scratch.reg(), Operand(receiver.reg(), offset));
__ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg());
if (FLAG_debug_code) {
__ movq(receiver.reg(), BitCast<int64_t>(kZapValue), RelocInfo::NONE);
__ movq(value.reg(), BitCast<int64_t>(kZapValue), RelocInfo::NONE);
__ movq(scratch.reg(), BitCast<int64_t>(kZapValue), RelocInfo::NONE);
}
__ bind(&skip_write_barrier);
value.Unuse();
scratch.Unuse();
receiver.Unuse();
done.Jump(&result);
slow.Bind(&value, &receiver);
frame()->Push(&receiver);
frame()->Push(&value);
result = frame()->CallStoreIC(name, is_contextual);
// Encode the offset to the map check instruction and the offset
// to the write barrier store address computation in a test rax
// instruction.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site);
__ testl(rax,
Immediate((delta_to_record_write << 16) | delta_to_patch_site));
done.Bind(&result);
}
ASSERT_EQ(expected_height, frame()->height());
return result;
}
Result CodeGenerator::EmitKeyedLoad() {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Result result;
// Inline array load code if inside of a loop. We do not know
// the receiver map yet, so we initially generate the code with
// a check against an invalid map. In the inline cache code, we
// patch the map check if appropriate.
if (loop_nesting() > 0) {
Comment cmnt(masm_, "[ Inlined load from keyed Property");
// Use a fresh temporary to load the elements without destroying
// the receiver which is needed for the deferred slow case.
// Allocate the temporary early so that we use rax if it is free.
Result elements = allocator()->Allocate();
ASSERT(elements.is_valid());
Result key = frame_->Pop();
Result receiver = frame_->Pop();
key.ToRegister();
receiver.ToRegister();
// If key and receiver are shared registers on the frame, their values will
// be automatically saved and restored when going to deferred code.
// The result is returned in elements, which is not shared.
DeferredReferenceGetKeyedValue* deferred =
new DeferredReferenceGetKeyedValue(elements.reg(),
receiver.reg(),
key.reg());
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
// Check that the receiver has the expected map.
// Initially, use an invalid map. The map is patched in the IC
// initialization code.
__ bind(deferred->patch_site());
// Use masm-> here instead of the double underscore macro since extra
// coverage code can interfere with the patching. Do not use a load
// from the root array to load null_value, since the load must be patched
// with the expected receiver map, which is not in the root array.
masm_->movq(kScratchRegister, Factory::null_value(),
RelocInfo::EMBEDDED_OBJECT);
masm_->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
kScratchRegister);
deferred->Branch(not_equal);
__ JumpUnlessNonNegativeSmi(key.reg(), deferred->entry_label());
// Get the elements array from the receiver.
__ movq(elements.reg(),
FieldOperand(receiver.reg(), JSObject::kElementsOffset));
__ AssertFastElements(elements.reg());
// Check that key is within bounds.
__ SmiCompare(key.reg(),
FieldOperand(elements.reg(), FixedArray::kLengthOffset));
deferred->Branch(above_equal);
// Load and check that the result is not the hole. We could
// reuse the index or elements register for the value.
//
// TODO(206): Consider whether it makes sense to try some
// heuristic about which register to reuse. For example, if
// one is rax, the we can reuse that one because the value
// coming from the deferred code will be in rax.
SmiIndex index =
masm_->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
__ movq(elements.reg(),
FieldOperand(elements.reg(),
index.reg,
index.scale,
FixedArray::kHeaderSize));
result = elements;
__ CompareRoot(result.reg(), Heap::kTheHoleValueRootIndex);
deferred->Branch(equal);
__ IncrementCounter(&Counters::keyed_load_inline, 1);
deferred->BindExit();
} else {
Comment cmnt(masm_, "[ Load from keyed Property");
result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET);
// Make sure that we do not have a test instruction after the
// call. A test instruction after the call is used to
// indicate that we have generated an inline version of the
// keyed load. The explicit nop instruction is here because
// the push that follows might be peep-hole optimized away.
__ nop();
}
ASSERT(frame()->height() == original_height - 2);
return result;
}
Result CodeGenerator::EmitKeyedStore(StaticType* key_type) {
#ifdef DEBUG
int original_height = frame()->height();
#endif
Result result;
// Generate inlined version of the keyed store if the code is in a loop
// and the key is likely to be a smi.
if (loop_nesting() > 0 && key_type->IsLikelySmi()) {
Comment cmnt(masm(), "[ Inlined store to keyed Property");
// Get the receiver, key and value into registers.
result = frame()->Pop();
Result key = frame()->Pop();
Result receiver = frame()->Pop();
Result tmp = allocator_->Allocate();
ASSERT(tmp.is_valid());
Result tmp2 = allocator_->Allocate();
ASSERT(tmp2.is_valid());
// Determine whether the value is a constant before putting it in a
// register.
bool value_is_constant = result.is_constant();
// Make sure that value, key and receiver are in registers.
result.ToRegister();
key.ToRegister();
receiver.ToRegister();
DeferredReferenceSetKeyedValue* deferred =
new DeferredReferenceSetKeyedValue(result.reg(),
key.reg(),
receiver.reg());
// Check that the receiver is not a smi.
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
// Check that the key is a smi.
if (!key.is_smi()) {
__ JumpIfNotSmi(key.reg(), deferred->entry_label());
} else if (FLAG_debug_code) {
__ AbortIfNotSmi(key.reg());
}
// Check that the receiver is a JSArray.
__ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, kScratchRegister);
deferred->Branch(not_equal);
// Check that the key is within bounds. Both the key and the length of
// the JSArray are smis. Use unsigned comparison to handle negative keys.
__ SmiCompare(FieldOperand(receiver.reg(), JSArray::kLengthOffset),
key.reg());
deferred->Branch(below_equal);
// Get the elements array from the receiver and check that it is not a
// dictionary.
__ movq(tmp.reg(),
FieldOperand(receiver.reg(), JSArray::kElementsOffset));
// Check whether it is possible to omit the write barrier. If the elements
// array is in new space or the value written is a smi we can safely update
// the elements array without write barrier.
Label in_new_space;
__ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space);
if (!value_is_constant) {
__ JumpIfNotSmi(result.reg(), deferred->entry_label());
}
__ bind(&in_new_space);
// Bind the deferred code patch site to be able to locate the fixed
// array map comparison. When debugging, we patch this comparison to
// always fail so that we will hit the IC call in the deferred code
// which will allow the debugger to break for fast case stores.
__ bind(deferred->patch_site());
// Avoid using __ to ensure the distance from patch_site
// to the map address is always the same.
masm()->movq(kScratchRegister, Factory::fixed_array_map(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
kScratchRegister);
deferred->Branch(not_equal);
// Store the value.
SmiIndex index =
masm()->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
__ movq(FieldOperand(tmp.reg(),
index.reg,
index.scale,
FixedArray::kHeaderSize),
result.reg());
__ IncrementCounter(&Counters::keyed_store_inline, 1);
deferred->BindExit();
} else {
result = frame()->CallKeyedStoreIC();
// Make sure that we do not have a test instruction after the
// call. A test instruction after the call is used to
// indicate that we have generated an inline version of the
// keyed store.
__ nop();
}
ASSERT(frame()->height() == original_height - 3);
return result;
}
#undef __
#define __ ACCESS_MASM(masm)
Handle<String> Reference::GetName() {
ASSERT(type_ == NAMED);
Property* property = expression_->AsProperty();
if (property == NULL) {
// Global variable reference treated as a named property reference.
VariableProxy* proxy = expression_->AsVariableProxy();
ASSERT(proxy->AsVariable() != NULL);
ASSERT(proxy->AsVariable()->is_global());
return proxy->name();
} else {
Literal* raw_name = property->key()->AsLiteral();
ASSERT(raw_name != NULL);
return Handle<String>(String::cast(*raw_name->handle()));
}
}
void Reference::GetValue() {
ASSERT(!cgen_->in_spilled_code());
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
MacroAssembler* masm = cgen_->masm();
// Record the source position for the property load.
Property* property = expression_->AsProperty();
if (property != NULL) {
cgen_->CodeForSourcePosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Load from Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
ASSERT(slot != NULL);
cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
break;
}
case NAMED: {
Variable* var = expression_->AsVariableProxy()->AsVariable();
bool is_global = var != NULL;
ASSERT(!is_global || var->is_global());
if (persist_after_get_) {
cgen_->frame()->Dup();
}
Result result = cgen_->EmitNamedLoad(GetName(), is_global);
cgen_->frame()->Push(&result);
break;
}
case KEYED: {
// A load of a bare identifier (load from global) cannot be keyed.
ASSERT(expression_->AsVariableProxy()->AsVariable() == NULL);
if (persist_after_get_) {
cgen_->frame()->PushElementAt(1);
cgen_->frame()->PushElementAt(1);
}
Result value = cgen_->EmitKeyedLoad();
cgen_->frame()->Push(&value);
break;
}
default:
UNREACHABLE();
}
if (!persist_after_get_) {
set_unloaded();
}
}
void Reference::TakeValue() {
// TODO(X64): This function is completely architecture independent. Move
// it somewhere shared.
// For non-constant frame-allocated slots, we invalidate the value in the
// slot. For all others, we fall back on GetValue.
ASSERT(!cgen_->in_spilled_code());
ASSERT(!is_illegal());
if (type_ != SLOT) {
GetValue();
return;
}
Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
ASSERT(slot != NULL);
if (slot->type() == Slot::LOOKUP ||
slot->type() == Slot::CONTEXT ||
slot->var()->mode() == Variable::CONST ||
slot->is_arguments()) {
GetValue();
return;
}
// Only non-constant, frame-allocated parameters and locals can reach
// here. Be careful not to use the optimizations for arguments
// object access since it may not have been initialized yet.
ASSERT(!slot->is_arguments());
if (slot->type() == Slot::PARAMETER) {
cgen_->frame()->TakeParameterAt(slot->index());
} else {
ASSERT(slot->type() == Slot::LOCAL);
cgen_->frame()->TakeLocalAt(slot->index());
}
ASSERT(persist_after_get_);
// Do not unload the reference, because it is used in SetValue.
}
void Reference::SetValue(InitState init_state) {
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
MacroAssembler* masm = cgen_->masm();
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Store to Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
ASSERT(slot != NULL);
cgen_->StoreToSlot(slot, init_state);
set_unloaded();
break;
}
case NAMED: {
Comment cmnt(masm, "[ Store to named Property");
Result answer = cgen_->EmitNamedStore(GetName(), false);
cgen_->frame()->Push(&answer);
set_unloaded();
break;
}
case KEYED: {
Comment cmnt(masm, "[ Store to keyed Property");
Property* property = expression()->AsProperty();
ASSERT(property != NULL);
Result answer = cgen_->EmitKeyedStore(property->key()->type());
cgen_->frame()->Push(&answer);
set_unloaded();
break;
}
case UNLOADED:
case ILLEGAL:
UNREACHABLE();
}
}
Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub,
Result* left,
Result* right) {
if (stub->ArgsInRegistersSupported()) {
stub->SetArgsInRegisters();
return frame_->CallStub(stub, left, right);
} else {
frame_->Push(left);
frame_->Push(right);
return frame_->CallStub(stub, 2);
}
}
#undef __
#define __ masm.
#ifdef _WIN64
typedef double (*ModuloFunction)(double, double);
// Define custom fmod implementation.
ModuloFunction CreateModuloFunction() {
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Assembler masm(buffer, static_cast<int>(actual_size));
// Generated code is put into a fixed, unmovable, buffer, and not into
// the V8 heap. We can't, and don't, refer to any relocatable addresses
// (e.g. the JavaScript nan-object).
// Windows 64 ABI passes double arguments in xmm0, xmm1 and
// returns result in xmm0.
// Argument backing space is allocated on the stack above
// the return address.
// Compute x mod y.
// Load y and x (use argument backing store as temporary storage).
__ movsd(Operand(rsp, kPointerSize * 2), xmm1);
__ movsd(Operand(rsp, kPointerSize), xmm0);
__ fld_d(Operand(rsp, kPointerSize * 2));
__ fld_d(Operand(rsp, kPointerSize));
// Clear exception flags before operation.
{
Label no_exceptions;
__ fwait();
__ fnstsw_ax();
// Clear if Illegal Operand or Zero Division exceptions are set.
__ testb(rax, Immediate(5));
__ j(zero, &no_exceptions);
__ fnclex();
__ bind(&no_exceptions);
}
// Compute st(0) % st(1)
{
Label partial_remainder_loop;
__ bind(&partial_remainder_loop);
__ fprem();
__ fwait();
__ fnstsw_ax();
__ testl(rax, Immediate(0x400 /* C2 */));
// If C2 is set, computation only has partial result. Loop to
// continue computation.
__ j(not_zero, &partial_remainder_loop);
}
Label valid_result;
Label return_result;
// If Invalid Operand or Zero Division exceptions are set,
// return NaN.
__ testb(rax, Immediate(5));
__ j(zero, &valid_result);
__ fstp(0); // Drop result in st(0).
int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000);
__ movq(rcx, kNaNValue, RelocInfo::NONE);
__ movq(Operand(rsp, kPointerSize), rcx);
__ movsd(xmm0, Operand(rsp, kPointerSize));
__ jmp(&return_result);
// If result is valid, return that.
__ bind(&valid_result);
__ fstp_d(Operand(rsp, kPointerSize));
__ movsd(xmm0, Operand(rsp, kPointerSize));
// Clean up FPU stack and exceptions and return xmm0
__ bind(&return_result);
__ fstp(0); // Unload y.
Label clear_exceptions;
__ testb(rax, Immediate(0x3f /* Any Exception*/));
__ j(not_zero, &clear_exceptions);
__ ret(0);
__ bind(&clear_exceptions);
__ fnclex();
__ ret(0);
CodeDesc desc;
masm.GetCode(&desc);
// Call the function from C++.
return FUNCTION_CAST<ModuloFunction>(buffer);
}
#endif
#undef __
void RecordWriteStub::Generate(MacroAssembler* masm) {
masm->RecordWriteHelper(object_, addr_, scratch_);
masm->ret(0);
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64