| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| #include <math.h> |
| #include <limits.h> |
| #include <cstdarg> |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| #include "disasm.h" |
| #include "assembler.h" |
| #include "globals.h" // Need the BitCast |
| #include "mips/constants-mips.h" |
| #include "mips/simulator-mips.h" |
| |
| |
| // Only build the simulator if not compiling for real MIPS hardware. |
| #if defined(USE_SIMULATOR) |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Utils functions |
| bool HaveSameSign(int32_t a, int32_t b) { |
| return ((a ^ b) >= 0); |
| } |
| |
| |
| uint32_t get_fcsr_condition_bit(uint32_t cc) { |
| if (cc == 0) { |
| return 23; |
| } else { |
| return 24 + cc; |
| } |
| } |
| |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent was through |
| // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time |
| // Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // The MipsDebugger class is used by the simulator while debugging simulated |
| // code. |
| class MipsDebugger { |
| public: |
| explicit MipsDebugger(Simulator* sim); |
| ~MipsDebugger(); |
| |
| void Stop(Instruction* instr); |
| void Debug(); |
| // Print all registers with a nice formatting. |
| void PrintAllRegs(); |
| void PrintAllRegsIncludingFPU(); |
| |
| private: |
| // We set the breakpoint code to 0xfffff to easily recognize it. |
| static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; |
| static const Instr kNopInstr = 0x0; |
| |
| Simulator* sim_; |
| |
| int32_t GetRegisterValue(int regnum); |
| int32_t GetFPURegisterValueInt(int regnum); |
| int64_t GetFPURegisterValueLong(int regnum); |
| float GetFPURegisterValueFloat(int regnum); |
| double GetFPURegisterValueDouble(int regnum); |
| bool GetValue(const char* desc, int32_t* value); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instruction* breakpc); |
| bool DeleteBreakpoint(Instruction* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| MipsDebugger::MipsDebugger(Simulator* sim) { |
| sim_ = sim; |
| } |
| |
| |
| MipsDebugger::~MipsDebugger() { |
| } |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| static FILE* coverage_log = NULL; |
| |
| |
| static void InitializeCoverage() { |
| char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
| if (file_name != NULL) { |
| coverage_log = fopen(file_name, "aw+"); |
| } |
| } |
| |
| |
| void MipsDebugger::Stop(Instruction* instr) { |
| UNIMPLEMENTED_MIPS(); |
| char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
| if (strlen(str) > 0) { |
| if (coverage_log != NULL) { |
| fprintf(coverage_log, "%s\n", str); |
| fflush(coverage_log); |
| } |
| instr->SetInstructionBits(0x0); // Overwrite with nop. |
| } |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
| } |
| |
| |
| #else // ndef GENERATED_CODE_COVERAGE |
| |
| #define UNSUPPORTED() printf("Unsupported instruction.\n"); |
| |
| static void InitializeCoverage() {} |
| |
| |
| void MipsDebugger::Stop(Instruction* instr) { |
| const char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
| PrintF("Simulator hit %s\n", str); |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
| Debug(); |
| } |
| #endif // GENERATED_CODE_COVERAGE |
| |
| |
| int32_t MipsDebugger::GetRegisterValue(int regnum) { |
| if (regnum == kNumSimuRegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_register(regnum); |
| } |
| } |
| |
| |
| int32_t MipsDebugger::GetFPURegisterValueInt(int regnum) { |
| if (regnum == kNumFPURegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_fpu_register(regnum); |
| } |
| } |
| |
| |
| int64_t MipsDebugger::GetFPURegisterValueLong(int regnum) { |
| if (regnum == kNumFPURegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_fpu_register_long(regnum); |
| } |
| } |
| |
| |
| float MipsDebugger::GetFPURegisterValueFloat(int regnum) { |
| if (regnum == kNumFPURegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_fpu_register_float(regnum); |
| } |
| } |
| |
| |
| double MipsDebugger::GetFPURegisterValueDouble(int regnum) { |
| if (regnum == kNumFPURegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_fpu_register_double(regnum); |
| } |
| } |
| |
| |
| bool MipsDebugger::GetValue(const char* desc, int32_t* value) { |
| int regnum = Registers::Number(desc); |
| int fpuregnum = FPURegisters::Number(desc); |
| |
| if (regnum != kInvalidRegister) { |
| *value = GetRegisterValue(regnum); |
| return true; |
| } else if (fpuregnum != kInvalidFPURegister) { |
| *value = GetFPURegisterValueInt(fpuregnum); |
| return true; |
| } else if (strncmp(desc, "0x", 2) == 0) { |
| return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1; |
| } else { |
| return SScanF(desc, "%i", value) == 1; |
| } |
| return false; |
| } |
| |
| |
| bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != NULL) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| |
| bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = NULL; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| |
| void MipsDebugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| |
| void MipsDebugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
| } |
| } |
| |
| |
| void MipsDebugger::PrintAllRegs() { |
| #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) |
| |
| PrintF("\n"); |
| // at, v0, a0 |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(1), REG_INFO(2), REG_INFO(4)); |
| // v1, a1 |
| PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| "", REG_INFO(3), REG_INFO(5)); |
| // a2 |
| PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6)); |
| // a3 |
| PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7)); |
| PrintF("\n"); |
| // t0-t7, s0-s7 |
| for (int i = 0; i < 8; i++) { |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(8+i), REG_INFO(16+i)); |
| } |
| PrintF("\n"); |
| // t8, k0, LO |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(24), REG_INFO(26), REG_INFO(32)); |
| // t9, k1, HI |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(25), REG_INFO(27), REG_INFO(33)); |
| // sp, fp, gp |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(29), REG_INFO(30), REG_INFO(28)); |
| // pc |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(31), REG_INFO(34)); |
| |
| #undef REG_INFO |
| #undef FPU_REG_INFO |
| } |
| |
| |
| void MipsDebugger::PrintAllRegsIncludingFPU() { |
| #define FPU_REG_INFO(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \ |
| GetFPURegisterValueInt(n+1), \ |
| GetFPURegisterValueInt(n), \ |
| GetFPURegisterValueDouble(n) |
| |
| PrintAllRegs(); |
| |
| PrintF("\n\n"); |
| // f0, f1, f2, ... f31 |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) ); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) ); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) ); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(6) ); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(8) ); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(10)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(12)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(14)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(16)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(18)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(20)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(22)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(24)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(26)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(28)); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(30)); |
| |
| #undef REG_INFO |
| #undef FPU_REG_INFO |
| } |
| |
| |
| void MipsDebugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| char* argv[3] = { cmd, arg1, arg2 }; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { |
| if (last_pc != sim_->get_pc()) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, |
| reinterpret_cast<byte_*>(sim_->get_pc())); |
| PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); |
| last_pc = sim_->get_pc(); |
| } |
| char* line = ReadLine("sim> "); |
| if (line == NULL) { |
| break; |
| } else { |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int argc = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc()); |
| if (!(instr->IsTrap()) || |
| instr->InstructionBits() == rtCallRedirInstr) { |
| sim_->InstructionDecode( |
| reinterpret_cast<Instruction*>(sim_->get_pc())); |
| } else { |
| // Allow si to jump over generated breakpoints. |
| PrintF("/!\\ Jumping over generated breakpoint.\n"); |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
| } |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (argc == 2) { |
| int32_t value; |
| float fvalue; |
| if (strcmp(arg1, "all") == 0) { |
| PrintAllRegs(); |
| } else if (strcmp(arg1, "allf") == 0) { |
| PrintAllRegsIncludingFPU(); |
| } else { |
| int regnum = Registers::Number(arg1); |
| int fpuregnum = FPURegisters::Number(arg1); |
| |
| if (regnum != kInvalidRegister) { |
| value = GetRegisterValue(regnum); |
| PrintF("%s: 0x%08x %d \n", arg1, value, value); |
| } else if (fpuregnum != kInvalidFPURegister) { |
| if (fpuregnum % 2 == 1) { |
| value = GetFPURegisterValueInt(fpuregnum); |
| fvalue = GetFPURegisterValueFloat(fpuregnum); |
| PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); |
| } else { |
| double dfvalue; |
| int32_t lvalue1 = GetFPURegisterValueInt(fpuregnum); |
| int32_t lvalue2 = GetFPURegisterValueInt(fpuregnum + 1); |
| dfvalue = GetFPURegisterValueDouble(fpuregnum); |
| PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", |
| FPURegisters::Name(fpuregnum+1), |
| FPURegisters::Name(fpuregnum), |
| lvalue1, |
| lvalue2, |
| dfvalue); |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } |
| } else { |
| if (argc == 3) { |
| if (strcmp(arg2, "single") == 0) { |
| int32_t value; |
| float fvalue; |
| int fpuregnum = FPURegisters::Number(arg1); |
| |
| if (fpuregnum != kInvalidFPURegister) { |
| value = GetFPURegisterValueInt(fpuregnum); |
| fvalue = GetFPURegisterValueFloat(fpuregnum); |
| PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("print <fpu register> single\n"); |
| } |
| } else { |
| PrintF("print <register> or print <fpu register> single\n"); |
| } |
| } |
| } else if ((strcmp(cmd, "po") == 0) |
| || (strcmp(cmd, "printobject") == 0)) { |
| if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| Object* obj = reinterpret_cast<Object*>(value); |
| PrintF("%s: \n", arg1); |
| #ifdef DEBUG |
| obj->PrintLn(); |
| #else |
| obj->ShortPrint(); |
| PrintF("\n"); |
| #endif |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("printobject <value>\n"); |
| } |
| } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
| int32_t* cur = NULL; |
| int32_t* end = NULL; |
| int next_arg = 1; |
| |
| if (strcmp(cmd, "stack") == 0) { |
| cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); |
| } else { // "mem" |
| int32_t value; |
| if (!GetValue(arg1, &value)) { |
| PrintF("%s unrecognized\n", arg1); |
| continue; |
| } |
| cur = reinterpret_cast<int32_t*>(value); |
| next_arg++; |
| } |
| |
| int32_t words; |
| if (argc == next_arg) { |
| words = 10; |
| } else if (argc == next_arg + 1) { |
| if (!GetValue(argv[next_arg], &words)) { |
| words = 10; |
| } |
| } |
| end = cur + words; |
| |
| while (cur < end) { |
| PrintF(" 0x%08x: 0x%08x %10d\n", |
| reinterpret_cast<intptr_t>(cur), *cur, *cur); |
| cur++; |
| } |
| |
| } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte_* cur = NULL; |
| byte_* end = NULL; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
| end = cur + (10 * Instruction::kInstrSize); |
| } else if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte_*>(value); |
| // no length parameter passed, assume 10 instructions |
| end = cur + (10 * Instruction::kInstrSize); |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte_*>(value1); |
| end = cur + (value2 * Instruction::kInstrSize); |
| } |
| } |
| |
| while (cur < end) { |
| dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08x %s\n", |
| reinterpret_cast<intptr_t>(cur), buffer.start()); |
| cur += Instruction::kInstrSize; |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| PrintF("relinquishing control to gdb\n"); |
| v8::internal::OS::DebugBreak(); |
| PrintF("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
| PrintF("setting breakpoint failed\n"); |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("break <address>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(NULL)) { |
| PrintF("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| PrintF("No flags on MIPS !\n"); |
| } else if (strcmp(cmd, "unstop") == 0) { |
| PrintF("Unstop command not implemented on MIPS."); |
| } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { |
| // Print registers and disassemble |
| PrintAllRegs(); |
| PrintF("\n"); |
| |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte_* cur = NULL; |
| byte_* end = NULL; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
| end = cur + (10 * Instruction::kInstrSize); |
| } else if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte_*>(value); |
| // no length parameter passed, assume 10 instructions |
| end = cur + (10 * Instruction::kInstrSize); |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte_*>(value1); |
| end = cur + (value2 * Instruction::kInstrSize); |
| } |
| } |
| |
| while (cur < end) { |
| dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08x %s\n", |
| reinterpret_cast<intptr_t>(cur), buffer.start()); |
| cur += Instruction::kInstrSize; |
| } |
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| PrintF("cont\n"); |
| PrintF(" continue execution (alias 'c')\n"); |
| PrintF("stepi\n"); |
| PrintF(" step one instruction (alias 'si')\n"); |
| PrintF("print <register>\n"); |
| PrintF(" print register content (alias 'p')\n"); |
| PrintF(" use register name 'all' to print all registers\n"); |
| PrintF("printobject <register>\n"); |
| PrintF(" print an object from a register (alias 'po')\n"); |
| PrintF("stack [<words>]\n"); |
| PrintF(" dump stack content, default dump 10 words)\n"); |
| PrintF("mem <address> [<words>]\n"); |
| PrintF(" dump memory content, default dump 10 words)\n"); |
| PrintF("flags\n"); |
| PrintF(" print flags\n"); |
| PrintF("disasm [<instructions>]\n"); |
| PrintF("disasm [[<address>] <instructions>]\n"); |
| PrintF(" disassemble code, default is 10 instructions from pc\n"); |
| PrintF("gdb\n"); |
| PrintF(" enter gdb\n"); |
| PrintF("break <address>\n"); |
| PrintF(" set a break point on the address\n"); |
| PrintF("del\n"); |
| PrintF(" delete the breakpoint\n"); |
| PrintF("unstop\n"); |
| PrintF(" ignore the stop instruction at the current location"); |
| PrintF(" from now on\n"); |
| } else { |
| PrintF("Unknown command: %s\n", cmd); |
| } |
| } |
| DeleteArray(line); |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| |
| static bool ICacheMatch(void* one, void* two) { |
| ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); |
| ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); |
| return one == two; |
| } |
| |
| |
| static uint32_t ICacheHash(void* key) { |
| return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
| } |
| |
| |
| static bool AllOnOnePage(uintptr_t start, int size) { |
| intptr_t start_page = (start & ~CachePage::kPageMask); |
| intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
| return start_page == end_page; |
| } |
| |
| |
| void Simulator::FlushICache(v8::internal::HashMap* i_cache, |
| void* start_addr, |
| size_t size) { |
| intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
| int intra_line = (start & CachePage::kLineMask); |
| start -= intra_line; |
| size += intra_line; |
| size = ((size - 1) | CachePage::kLineMask) + 1; |
| int offset = (start & CachePage::kPageMask); |
| while (!AllOnOnePage(start, size - 1)) { |
| int bytes_to_flush = CachePage::kPageSize - offset; |
| FlushOnePage(i_cache, start, bytes_to_flush); |
| start += bytes_to_flush; |
| size -= bytes_to_flush; |
| ASSERT_EQ(0, start & CachePage::kPageMask); |
| offset = 0; |
| } |
| if (size != 0) { |
| FlushOnePage(i_cache, start, size); |
| } |
| } |
| |
| |
| CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { |
| v8::internal::HashMap::Entry* entry = i_cache->Lookup(page, |
| ICacheHash(page), |
| true); |
| if (entry->value == NULL) { |
| CachePage* new_page = new CachePage(); |
| entry->value = new_page; |
| } |
| return reinterpret_cast<CachePage*>(entry->value); |
| } |
| |
| |
| // Flush from start up to and not including start + size. |
| void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, |
| intptr_t start, |
| int size) { |
| ASSERT(size <= CachePage::kPageSize); |
| ASSERT(AllOnOnePage(start, size - 1)); |
| ASSERT((start & CachePage::kLineMask) == 0); |
| ASSERT((size & CachePage::kLineMask) == 0); |
| void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
| int offset = (start & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* valid_bytemap = cache_page->ValidityByte(offset); |
| memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
| } |
| |
| |
| void Simulator::CheckICache(v8::internal::HashMap* i_cache, |
| Instruction* instr) { |
| intptr_t address = reinterpret_cast<intptr_t>(instr); |
| void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
| void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
| int offset = (address & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* cache_valid_byte = cache_page->ValidityByte(offset); |
| bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
| char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
| if (cache_hit) { |
| // Check that the data in memory matches the contents of the I-cache. |
| CHECK(memcmp(reinterpret_cast<void*>(instr), |
| cache_page->CachedData(offset), |
| Instruction::kInstrSize) == 0); |
| } else { |
| // Cache miss. Load memory into the cache. |
| memcpy(cached_line, line, CachePage::kLineLength); |
| *cache_valid_byte = CachePage::LINE_VALID; |
| } |
| } |
| |
| |
| void Simulator::Initialize() { |
| if (Isolate::Current()->simulator_initialized()) return; |
| Isolate::Current()->set_simulator_initialized(true); |
| ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference); |
| } |
| |
| |
| Simulator::Simulator() : isolate_(Isolate::Current()) { |
| i_cache_ = isolate_->simulator_i_cache(); |
| if (i_cache_ == NULL) { |
| i_cache_ = new v8::internal::HashMap(&ICacheMatch); |
| isolate_->set_simulator_i_cache(i_cache_); |
| } |
| Initialize(); |
| // Setup simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| stack_size_ = 1 * 1024*1024; // allocate 1MB for stack |
| stack_ = reinterpret_cast<char*>(malloc(stack_size_)); |
| pc_modified_ = false; |
| icount_ = 0; |
| break_count_ = 0; |
| break_pc_ = NULL; |
| break_instr_ = 0; |
| |
| // Setup architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < kNumSimuRegisters; i++) { |
| registers_[i] = 0; |
| } |
| for (int i = 0; i < kNumFPURegisters; i++) { |
| FPUregisters_[i] = 0; |
| } |
| FCSR_ = 0; |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. To be safe in potential stack underflows we leave |
| // some buffer below. |
| registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64; |
| // The ra and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[pc] = bad_ra; |
| registers_[ra] = bad_ra; |
| InitializeCoverage(); |
| for (int i = 0; i < kNumExceptions; i++) { |
| exceptions[i] = 0; |
| } |
| } |
| |
| |
| // When the generated code calls an external reference we need to catch that in |
| // the simulator. The external reference will be a function compiled for the |
| // host architecture. We need to call that function instead of trying to |
| // execute it with the simulator. We do that by redirecting the external |
| // reference to a swi (software-interrupt) instruction that is handled by |
| // the simulator. We write the original destination of the jump just at a known |
| // offset from the swi instruction so the simulator knows what to call. |
| class Redirection { |
| public: |
| Redirection(void* external_function, ExternalReference::Type type) |
| : external_function_(external_function), |
| swi_instruction_(rtCallRedirInstr), |
| type_(type), |
| next_(NULL) { |
| Isolate* isolate = Isolate::Current(); |
| next_ = isolate->simulator_redirection(); |
| Simulator::current(isolate)-> |
| FlushICache(isolate->simulator_i_cache(), |
| reinterpret_cast<void*>(&swi_instruction_), |
| Instruction::kInstrSize); |
| isolate->set_simulator_redirection(this); |
| } |
| |
| void* address_of_swi_instruction() { |
| return reinterpret_cast<void*>(&swi_instruction_); |
| } |
| |
| void* external_function() { return external_function_; } |
| ExternalReference::Type type() { return type_; } |
| |
| static Redirection* Get(void* external_function, |
| ExternalReference::Type type) { |
| Isolate* isolate = Isolate::Current(); |
| Redirection* current = isolate->simulator_redirection(); |
| for (; current != NULL; current = current->next_) { |
| if (current->external_function_ == external_function) return current; |
| } |
| return new Redirection(external_function, type); |
| } |
| |
| static Redirection* FromSwiInstruction(Instruction* swi_instruction) { |
| char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); |
| char* addr_of_redirection = |
| addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); |
| return reinterpret_cast<Redirection*>(addr_of_redirection); |
| } |
| |
| private: |
| void* external_function_; |
| uint32_t swi_instruction_; |
| ExternalReference::Type type_; |
| Redirection* next_; |
| }; |
| |
| |
| void* Simulator::RedirectExternalReference(void* external_function, |
| ExternalReference::Type type) { |
| Redirection* redirection = Redirection::Get(external_function, type); |
| return redirection->address_of_swi_instruction(); |
| } |
| |
| |
| // Get the active Simulator for the current thread. |
| Simulator* Simulator::current(Isolate* isolate) { |
| v8::internal::Isolate::PerIsolateThreadData* isolate_data = |
| Isolate::CurrentPerIsolateThreadData(); |
| if (isolate_data == NULL) { |
| Isolate::EnterDefaultIsolate(); |
| isolate_data = Isolate::CurrentPerIsolateThreadData(); |
| } |
| ASSERT(isolate_data != NULL); |
| |
| Simulator* sim = isolate_data->simulator(); |
| if (sim == NULL) { |
| // TODO(146): delete the simulator object when a thread/isolate goes away. |
| sim = new Simulator(); |
| isolate_data->set_simulator(sim); |
| } |
| return sim; |
| } |
| |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| void Simulator::set_register(int reg, int32_t value) { |
| ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); |
| if (reg == pc) { |
| pc_modified_ = true; |
| } |
| |
| // zero register always hold 0. |
| registers_[reg] = (reg == 0) ? 0 : value; |
| } |
| |
| |
| void Simulator::set_fpu_register(int fpureg, int32_t value) { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| FPUregisters_[fpureg] = value; |
| } |
| |
| |
| void Simulator::set_fpu_register_float(int fpureg, float value) { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| *BitCast<float*>(&FPUregisters_[fpureg]) = value; |
| } |
| |
| |
| void Simulator::set_fpu_register_double(int fpureg, double value) { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| *BitCast<double*>(&FPUregisters_[fpureg]) = value; |
| } |
| |
| |
| // Get the register from the architecture state. This function does handle |
| // the special case of accessing the PC register. |
| int32_t Simulator::get_register(int reg) const { |
| ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); |
| if (reg == 0) |
| return 0; |
| else |
| return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); |
| } |
| |
| |
| int32_t Simulator::get_fpu_register(int fpureg) const { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return FPUregisters_[fpureg]; |
| } |
| |
| |
| int64_t Simulator::get_fpu_register_long(int fpureg) const { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| return *BitCast<int64_t*>( |
| const_cast<int32_t*>(&FPUregisters_[fpureg])); |
| } |
| |
| |
| float Simulator::get_fpu_register_float(int fpureg) const { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return *BitCast<float*>( |
| const_cast<int32_t*>(&FPUregisters_[fpureg])); |
| } |
| |
| |
| double Simulator::get_fpu_register_double(int fpureg) const { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| return *BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg])); |
| } |
| |
| |
| // Helper functions for setting and testing the FCSR register's bits. |
| void Simulator::set_fcsr_bit(uint32_t cc, bool value) { |
| if (value) { |
| FCSR_ |= (1 << cc); |
| } else { |
| FCSR_ &= ~(1 << cc); |
| } |
| } |
| |
| |
| bool Simulator::test_fcsr_bit(uint32_t cc) { |
| return FCSR_ & (1 << cc); |
| } |
| |
| |
| // Sets the rounding error codes in FCSR based on the result of the rounding. |
| // Returns true if the operation was invalid. |
| bool Simulator::set_fcsr_round_error(double original, double rounded) { |
| if (!isfinite(original) || |
| rounded > LONG_MAX || |
| rounded < LONG_MIN) { |
| set_fcsr_bit(6, true); // Invalid operation. |
| return true; |
| } else if (original != static_cast<double>(rounded)) { |
| set_fcsr_bit(2, true); // Inexact. |
| } |
| return false; |
| } |
| |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(int32_t value) { |
| pc_modified_ = true; |
| registers_[pc] = value; |
| } |
| |
| |
| bool Simulator::has_bad_pc() const { |
| return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); |
| } |
| |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| int32_t Simulator::get_pc() const { |
| return registers_[pc]; |
| } |
| |
| |
| // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an |
| // interrupt is caused. On others it does a funky rotation thing. For now we |
| // simply disallow unaligned reads, but at some point we may want to move to |
| // emulating the rotate behaviour. Note that simulator runs have the runtime |
| // system running directly on the host system and only generated code is |
| // executed in the simulator. Since the host is typically IA32 we will not |
| // get the correct MIPS-like behaviour on unaligned accesses. |
| |
| int Simulator::ReadW(int32_t addr, Instruction* instr) { |
| if (addr >=0 && addr < 0x400) { |
| // this has to be a NULL-dereference |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| if ((addr & kPointerAlignmentMask) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, |
| reinterpret_cast<void*>(instr)); |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { |
| if (addr >= 0 && addr < 0x400) { |
| // this has to be a NULL-dereference |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| if ((addr & kPointerAlignmentMask) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, |
| reinterpret_cast<void*>(instr)); |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| |
| |
| double Simulator::ReadD(int32_t addr, Instruction* instr) { |
| if ((addr & kDoubleAlignmentMask) == 0) { |
| double* ptr = reinterpret_cast<double*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned (double) read at 0x%08x, pc=%p\n", addr, |
| reinterpret_cast<void*>(instr)); |
| OS::Abort(); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { |
| if ((addr & kDoubleAlignmentMask) == 0) { |
| double* ptr = reinterpret_cast<double*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned (double) write at 0x%08x, pc=%p\n", addr, |
| reinterpret_cast<void*>(instr)); |
| OS::Abort(); |
| } |
| |
| |
| uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, |
| reinterpret_cast<void*>(instr)); |
| OS::Abort(); |
| return 0; |
| } |
| |
| |
| int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, |
| reinterpret_cast<void*>(instr)); |
| OS::Abort(); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, |
| reinterpret_cast<void*>(instr)); |
| OS::Abort(); |
| } |
| |
| |
| void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, |
| reinterpret_cast<void*>(instr)); |
| OS::Abort(); |
| } |
| |
| |
| uint32_t Simulator::ReadBU(int32_t addr) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr & 0xff; |
| } |
| |
| |
| int32_t Simulator::ReadB(int32_t addr) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| void Simulator::WriteB(int32_t addr, uint8_t value) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| void Simulator::WriteB(int32_t addr, int8_t value) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| // Returns the limit of the stack area to enable checking for stack overflows. |
| uintptr_t Simulator::StackLimit() const { |
| // Leave a safety margin of 256 bytes to prevent overrunning the stack when |
| // pushing values. |
| return reinterpret_cast<uintptr_t>(stack_) + 256; |
| } |
| |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instruction* instr, const char* format) { |
| PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", |
| reinterpret_cast<intptr_t>(instr), format); |
| UNIMPLEMENTED_MIPS(); |
| } |
| |
| |
| // Calls into the V8 runtime are based on this very simple interface. |
| // Note: To be able to return two values from some calls the code in runtime.cc |
| // uses the ObjectPair which is essentially two 32-bit values stuffed into a |
| // 64-bit value. With the code below we assume that all runtime calls return |
| // 64 bits of result. If they don't, the v1 result register contains a bogus |
| // value, which is fine because it is caller-saved. |
| typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, |
| int32_t arg1, |
| int32_t arg2, |
| int32_t arg3, |
| int32_t arg4, |
| int32_t arg5); |
| typedef double (*SimulatorRuntimeFPCall)(int32_t arg0, |
| int32_t arg1, |
| int32_t arg2, |
| int32_t arg3); |
| |
| // Software interrupt instructions are used by the simulator to call into the |
| // C-based V8 runtime. They are also used for debugging with simulator. |
| void Simulator::SoftwareInterrupt(Instruction* instr) { |
| // There are several instructions that could get us here, |
| // the break_ instruction, or several variants of traps. All |
| // Are "SPECIAL" class opcode, and are distinuished by function. |
| int32_t func = instr->FunctionFieldRaw(); |
| int32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1; |
| |
| // We first check if we met a call_rt_redirected. |
| if (instr->InstructionBits() == rtCallRedirInstr) { |
| // Check if stack is aligned. Error if not aligned is reported below to |
| // include information on the function called. |
| bool stack_aligned = |
| (get_register(sp) |
| & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; |
| Redirection* redirection = Redirection::FromSwiInstruction(instr); |
| int32_t arg0 = get_register(a0); |
| int32_t arg1 = get_register(a1); |
| int32_t arg2 = get_register(a2); |
| int32_t arg3 = get_register(a3); |
| int32_t arg4 = 0; |
| int32_t arg5 = 0; |
| |
| // Need to check if sp is valid before assigning arg4, arg5. |
| // This is a fix for cctest test-api/CatchStackOverflow which causes |
| // the stack to overflow. For some reason arm doesn't need this |
| // stack check here. |
| int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); |
| int32_t* stack = reinterpret_cast<int32_t*>(stack_); |
| if (stack_pointer >= stack && stack_pointer < stack + stack_size_) { |
| arg4 = stack_pointer[0]; |
| arg5 = stack_pointer[1]; |
| } |
| // This is dodgy but it works because the C entry stubs are never moved. |
| // See comment in codegen-arm.cc and bug 1242173. |
| int32_t saved_ra = get_register(ra); |
| |
| intptr_t external = |
| reinterpret_cast<int32_t>(redirection->external_function()); |
| |
| // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware |
| // FPU, or gcc soft-float routines. Hardware FPU is simulated in this |
| // simulator. Soft-float has additional abstraction of ExternalReference, |
| // to support serialization. Finally, when simulated on x86 host, the |
| // x86 softfloat routines are used, and this Redirection infrastructure |
| // lets simulated-mips make calls into x86 C code. |
| // When doing that, the 'double' return type must be handled differently |
| // than the usual int64_t return. The data is returned in different |
| // registers and cannot be cast from one type to the other. However, the |
| // calling arguments are passed the same way in both cases. |
| if (redirection->type() == ExternalReference::FP_RETURN_CALL) { |
| SimulatorRuntimeFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p with args %08x:%08x %08x:%08x", |
| FUNCTION_ADDR(target), arg0, arg1, arg2, arg3); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| double result = target(arg0, arg1, arg2, arg3); |
| // fp result -> registers v0 and v1. |
| int32_t gpreg_pair[2]; |
| memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t)); |
| set_register(v0, gpreg_pair[0]); |
| set_register(v1, gpreg_pair[1]); |
| } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { |
| PrintF("Mips does not yet support ExternalReference::DIRECT_API_CALL\n"); |
| ASSERT(redirection->type() != ExternalReference::DIRECT_API_CALL); |
| } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { |
| PrintF("Mips does not support ExternalReference::DIRECT_GETTER_CALL\n"); |
| ASSERT(redirection->type() != ExternalReference::DIRECT_GETTER_CALL); |
| } else { |
| // Builtin call. |
| ASSERT(redirection->type() == ExternalReference::BUILTIN_CALL); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF( |
| "Call to host function at %p: %08x, %08x, %08x, %08x, %08x, %08x", |
| FUNCTION_ADDR(target), |
| arg0, |
| arg1, |
| arg2, |
| arg3, |
| arg4, |
| arg5); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| |
| int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); |
| set_register(v0, static_cast<int32_t>(result)); |
| set_register(v1, static_cast<int32_t>(result >> 32)); |
| } |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0)); |
| } |
| set_register(ra, saved_ra); |
| set_pc(get_register(ra)); |
| |
| } else if (func == BREAK && code >= 0 && code < 16) { |
| // First 16 break_ codes interpreted as debug markers. |
| MipsDebugger dbg(this); |
| ++break_count_; |
| PrintF("\n---- break %d marker: %3d (instr count: %8d) ----------" |
| "----------------------------------", |
| code, break_count_, icount_); |
| dbg.PrintAllRegs(); // Print registers and continue running. |
| } else { |
| // All remaining break_ codes, and all traps are handled here. |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } |
| } |
| |
| |
| void Simulator::SignalExceptions() { |
| for (int i = 1; i < kNumExceptions; i++) { |
| if (exceptions[i] != 0) { |
| V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i); |
| } |
| } |
| } |
| |
| |
| // Handle execution based on instruction types. |
| |
| void Simulator::ConfigureTypeRegister(Instruction* instr, |
| int32_t& alu_out, |
| int64_t& i64hilo, |
| uint64_t& u64hilo, |
| int32_t& next_pc, |
| bool& do_interrupt) { |
| // Every local variable declared here needs to be const. |
| // This is to make sure that changed values are sent back to |
| // DecodeTypeRegister correctly. |
| |
| // Instruction fields. |
| const Opcode op = instr->OpcodeFieldRaw(); |
| const int32_t rs_reg = instr->RsValue(); |
| const int32_t rs = get_register(rs_reg); |
| const uint32_t rs_u = static_cast<uint32_t>(rs); |
| const int32_t rt_reg = instr->RtValue(); |
| const int32_t rt = get_register(rt_reg); |
| const uint32_t rt_u = static_cast<uint32_t>(rt); |
| const int32_t rd_reg = instr->RdValue(); |
| const uint32_t sa = instr->SaValue(); |
| |
| const int32_t fs_reg = instr->FsValue(); |
| |
| |
| // ---------- Configuration |
| switch (op) { |
| case COP1: // Coprocessor instructions |
| switch (instr->RsFieldRaw()) { |
| case BC1: // Handled in DecodeTypeImmed, should never come here. |
| UNREACHABLE(); |
| break; |
| case CFC1: |
| // At the moment only FCSR is supported. |
| ASSERT(fs_reg == kFCSRRegister); |
| alu_out = FCSR_; |
| break; |
| case MFC1: |
| alu_out = get_fpu_register(fs_reg); |
| break; |
| case MFHC1: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| case CTC1: |
| case MTC1: |
| case MTHC1: |
| // Do the store in the execution step. |
| break; |
| case S: |
| case D: |
| case W: |
| case L: |
| case PS: |
| // Do everything in the execution step. |
| break; |
| default: |
| UNIMPLEMENTED_MIPS(); |
| }; |
| break; |
| case SPECIAL: |
| switch (instr->FunctionFieldRaw()) { |
| case JR: |
| case JALR: |
| next_pc = get_register(instr->RsValue()); |
| break; |
| case SLL: |
| alu_out = rt << sa; |
| break; |
| case SRL: |
| if (rs_reg == 0) { |
| // Regular logical right shift of a word by a fixed number of |
| // bits instruction. RS field is always equal to 0. |
| alu_out = rt_u >> sa; |
| } else { |
| // Logical right-rotate of a word by a fixed number of bits. This |
| // is special case of SRL instruction, added in MIPS32 Release 2. |
| // RS field is equal to 00001 |
| alu_out = (rt_u >> sa) | (rt_u << (32 - sa)); |
| } |
| break; |
| case SRA: |
| alu_out = rt >> sa; |
| break; |
| case SLLV: |
| alu_out = rt << rs; |
| break; |
| case SRLV: |
| if (sa == 0) { |
| // Regular logical right-shift of a word by a variable number of |
| // bits instruction. SA field is always equal to 0. |
| alu_out = rt_u >> rs; |
| } else { |
| // Logical right-rotate of a word by a variable number of bits. |
| // This is special case od SRLV instruction, added in MIPS32 |
| // Release 2. SA field is equal to 00001 |
| alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u)); |
| } |
| break; |
| case SRAV: |
| alu_out = rt >> rs; |
| break; |
| case MFHI: |
| alu_out = get_register(HI); |
| break; |
| case MFLO: |
| alu_out = get_register(LO); |
| break; |
| case MULT: |
| i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt); |
| break; |
| case MULTU: |
| u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u); |
| break; |
| case DIV: |
| case DIVU: |
| exceptions[kDivideByZero] = rt == 0; |
| break; |
| case ADD: |
| if (HaveSameSign(rs, rt)) { |
| if (rs > 0) { |
| exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt); |
| } else if (rs < 0) { |
| exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt); |
| } |
| } |
| alu_out = rs + rt; |
| break; |
| case ADDU: |
| alu_out = rs + rt; |
| break; |
| case SUB: |
| if (!HaveSameSign(rs, rt)) { |
| if (rs > 0) { |
| exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt); |
| } else if (rs < 0) { |
| exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt); |
| } |
| } |
| alu_out = rs - rt; |
| break; |
| case SUBU: |
| alu_out = rs - rt; |
| break; |
| case AND: |
| alu_out = rs & rt; |
| break; |
| case OR: |
| alu_out = rs | rt; |
| break; |
| case XOR: |
| alu_out = rs ^ rt; |
| break; |
| case NOR: |
| alu_out = ~(rs | rt); |
| break; |
| case SLT: |
| alu_out = rs < rt ? 1 : 0; |
| break; |
| case SLTU: |
| alu_out = rs_u < rt_u ? 1 : 0; |
| break; |
| // Break and trap instructions |
| case BREAK: |
| |
| do_interrupt = true; |
| break; |
| case TGE: |
| do_interrupt = rs >= rt; |
| break; |
| case TGEU: |
| do_interrupt = rs_u >= rt_u; |
| break; |
| case TLT: |
| do_interrupt = rs < rt; |
| break; |
| case TLTU: |
| do_interrupt = rs_u < rt_u; |
| break; |
| case TEQ: |
| do_interrupt = rs == rt; |
| break; |
| case TNE: |
| do_interrupt = rs != rt; |
| break; |
| case MOVN: |
| case MOVZ: |
| case MOVCI: |
| // No action taken on decode. |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| case SPECIAL2: |
| switch (instr->FunctionFieldRaw()) { |
| case MUL: |
| alu_out = rs_u * rt_u; // Only the lower 32 bits are kept. |
| break; |
| case CLZ: |
| alu_out = __builtin_clz(rs_u); |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| case SPECIAL3: |
| switch (instr->FunctionFieldRaw()) { |
| case INS: { // Mips32r2 instruction. |
| // Interpret Rd field as 5-bit msb of insert. |
| uint16_t msb = rd_reg; |
| // Interpret sa field as 5-bit lsb of insert. |
| uint16_t lsb = sa; |
| uint16_t size = msb - lsb + 1; |
| uint32_t mask = (1 << size) - 1; |
| alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb); |
| break; |
| } |
| case EXT: { // Mips32r2 instruction. |
| // Interpret Rd field as 5-bit msb of extract. |
| uint16_t msb = rd_reg; |
| // Interpret sa field as 5-bit lsb of extract. |
| uint16_t lsb = sa; |
| uint16_t size = msb + 1; |
| uint32_t mask = (1 << size) - 1; |
| alu_out = (rs_u & (mask << lsb)) >> lsb; |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| } |
| |
| |
| void Simulator::DecodeTypeRegister(Instruction* instr) { |
| // Instruction fields. |
| const Opcode op = instr->OpcodeFieldRaw(); |
| const int32_t rs_reg = instr->RsValue(); |
| const int32_t rs = get_register(rs_reg); |
| const uint32_t rs_u = static_cast<uint32_t>(rs); |
| const int32_t rt_reg = instr->RtValue(); |
| const int32_t rt = get_register(rt_reg); |
| const uint32_t rt_u = static_cast<uint32_t>(rt); |
| const int32_t rd_reg = instr->RdValue(); |
| |
| const int32_t fs_reg = instr->FsValue(); |
| const int32_t ft_reg = instr->FtValue(); |
| const int32_t fd_reg = instr->FdValue(); |
| int64_t i64hilo = 0; |
| uint64_t u64hilo = 0; |
| |
| // ALU output |
| // It should not be used as is. Instructions using it should always |
| // initialize it first. |
| int32_t alu_out = 0x12345678; |
| |
| // For break and trap instructions. |
| bool do_interrupt = false; |
| |
| // For jr and jalr |
| // Get current pc. |
| int32_t current_pc = get_pc(); |
| // Next pc |
| int32_t next_pc = 0; |
| |
| // Setup the variables if needed before executing the instruction. |
| ConfigureTypeRegister(instr, |
| alu_out, |
| i64hilo, |
| u64hilo, |
| next_pc, |
| do_interrupt); |
| |
| // ---------- Raise exceptions triggered. |
| SignalExceptions(); |
| |
| // ---------- Execution |
| switch (op) { |
| case COP1: |
| switch (instr->RsFieldRaw()) { |
| case BC1: // branch on coprocessor condition |
| UNREACHABLE(); |
| break; |
| case CFC1: |
| set_register(rt_reg, alu_out); |
| case MFC1: |
| set_register(rt_reg, alu_out); |
| break; |
| case MFHC1: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| case CTC1: |
| // At the moment only FCSR is supported. |
| ASSERT(fs_reg == kFCSRRegister); |
| FCSR_ = registers_[rt_reg]; |
| break; |
| case MTC1: |
| FPUregisters_[fs_reg] = registers_[rt_reg]; |
| break; |
| case MTHC1: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| case S: |
| float f; |
| switch (instr->FunctionFieldRaw()) { |
| case CVT_D_S: |
| f = get_fpu_register_float(fs_reg); |
| set_fpu_register_double(fd_reg, static_cast<double>(f)); |
| break; |
| case CVT_W_S: |
| case CVT_L_S: |
| case TRUNC_W_S: |
| case TRUNC_L_S: |
| case ROUND_W_S: |
| case ROUND_L_S: |
| case FLOOR_W_S: |
| case FLOOR_L_S: |
| case CEIL_W_S: |
| case CEIL_L_S: |
| case CVT_PS_S: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| case D: |
| double ft, fs; |
| uint32_t cc, fcsr_cc; |
| int64_t i64; |
| fs = get_fpu_register_double(fs_reg); |
| ft = get_fpu_register_double(ft_reg); |
| cc = instr->FCccValue(); |
| fcsr_cc = get_fcsr_condition_bit(cc); |
| switch (instr->FunctionFieldRaw()) { |
| case ADD_D: |
| set_fpu_register_double(fd_reg, fs + ft); |
| break; |
| case SUB_D: |
| set_fpu_register_double(fd_reg, fs - ft); |
| break; |
| case MUL_D: |
| set_fpu_register_double(fd_reg, fs * ft); |
| break; |
| case DIV_D: |
| set_fpu_register_double(fd_reg, fs / ft); |
| break; |
| case ABS_D: |
| set_fpu_register_double(fd_reg, fs < 0 ? -fs : fs); |
| break; |
| case MOV_D: |
| set_fpu_register_double(fd_reg, fs); |
| break; |
| case NEG_D: |
| set_fpu_register_double(fd_reg, -fs); |
| break; |
| case SQRT_D: |
| set_fpu_register_double(fd_reg, sqrt(fs)); |
| break; |
| case C_UN_D: |
| set_fcsr_bit(fcsr_cc, isnan(fs) || isnan(ft)); |
| break; |
| case C_EQ_D: |
| set_fcsr_bit(fcsr_cc, (fs == ft)); |
| break; |
| case C_UEQ_D: |
| set_fcsr_bit(fcsr_cc, (fs == ft) || (isnan(fs) || isnan(ft))); |
| break; |
| case C_OLT_D: |
| set_fcsr_bit(fcsr_cc, (fs < ft)); |
| break; |
| case C_ULT_D: |
| set_fcsr_bit(fcsr_cc, (fs < ft) || (isnan(fs) || isnan(ft))); |
| break; |
| case C_OLE_D: |
| set_fcsr_bit(fcsr_cc, (fs <= ft)); |
| break; |
| case C_ULE_D: |
| set_fcsr_bit(fcsr_cc, (fs <= ft) || (isnan(fs) || isnan(ft))); |
| break; |
| case CVT_W_D: // Convert double to word. |
| // Rounding modes are not yet supported. |
| ASSERT((FCSR_ & 3) == 0); |
| // In rounding mode 0 it should behave like ROUND. |
| case ROUND_W_D: // Round double to word. |
| { |
| double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5); |
| int32_t result = static_cast<int32_t>(rounded); |
| set_fpu_register(fd_reg, result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register(fd_reg, kFPUInvalidResult); |
| } |
| } |
| break; |
| case TRUNC_W_D: // Truncate double to word (round towards 0). |
| { |
| int32_t result = static_cast<int32_t>(fs); |
| set_fpu_register(fd_reg, result); |
| if (set_fcsr_round_error(fs, static_cast<double>(result))) { |
| set_fpu_register(fd_reg, kFPUInvalidResult); |
| } |
| } |
| break; |
| case FLOOR_W_D: // Round double to word towards negative infinity. |
| { |
| double rounded = floor(fs); |
| int32_t result = static_cast<int32_t>(rounded); |
| set_fpu_register(fd_reg, result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register(fd_reg, kFPUInvalidResult); |
| } |
| } |
| break; |
| case CEIL_W_D: // Round double to word towards positive infinity. |
| { |
| double rounded = ceil(fs); |
| int32_t result = static_cast<int32_t>(rounded); |
| set_fpu_register(fd_reg, result); |
| if (set_fcsr_round_error(fs, rounded)) { |
| set_fpu_register(fd_reg, kFPUInvalidResult); |
| } |
| } |
| break; |
| case CVT_S_D: // Convert double to float (single). |
| set_fpu_register_float(fd_reg, static_cast<float>(fs)); |
| break; |
| case CVT_L_D: // Mips32r2: Truncate double to 64-bit long-word. |
| i64 = static_cast<int64_t>(fs); |
| set_fpu_register(fd_reg, i64 & 0xffffffff); |
| set_fpu_register(fd_reg + 1, i64 >> 32); |
| break; |
| case TRUNC_L_D: // Mips32r2 instruction. |
| i64 = static_cast<int64_t>(fs); |
| set_fpu_register(fd_reg, i64 & 0xffffffff); |
| set_fpu_register(fd_reg + 1, i64 >> 32); |
| break; |
| case ROUND_L_D: { // Mips32r2 instruction. |
| double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5); |
| i64 = static_cast<int64_t>(rounded); |
| set_fpu_register(fd_reg, i64 & 0xffffffff); |
| set_fpu_register(fd_reg + 1, i64 >> 32); |
| break; |
| } |
| case FLOOR_L_D: // Mips32r2 instruction. |
| i64 = static_cast<int64_t>(floor(fs)); |
| set_fpu_register(fd_reg, i64 & 0xffffffff); |
| set_fpu_register(fd_reg + 1, i64 >> 32); |
| break; |
| case CEIL_L_D: // Mips32r2 instruction. |
| i64 = static_cast<int64_t>(ceil(fs)); |
| set_fpu_register(fd_reg, i64 & 0xffffffff); |
| set_fpu_register(fd_reg + 1, i64 >> 32); |
| break; |
| case C_F_D: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| case W: |
| switch (instr->FunctionFieldRaw()) { |
| case CVT_S_W: // Convert word to float (single). |
| alu_out = get_fpu_register(fs_reg); |
| set_fpu_register_float(fd_reg, static_cast<float>(alu_out)); |
| break; |
| case CVT_D_W: // Convert word to double. |
| alu_out = get_fpu_register(fs_reg); |
| set_fpu_register_double(fd_reg, static_cast<double>(alu_out)); |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| case L: |
| switch (instr->FunctionFieldRaw()) { |
| case CVT_D_L: // Mips32r2 instruction. |
| // Watch the signs here, we want 2 32-bit vals |
| // to make a sign-64. |
| i64 = (uint32_t) get_fpu_register(fs_reg); |
| i64 |= ((int64_t) get_fpu_register(fs_reg + 1) << 32); |
| set_fpu_register_double(fd_reg, static_cast<double>(i64)); |
| break; |
| case CVT_S_L: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| case PS: |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| case SPECIAL: |
| switch (instr->FunctionFieldRaw()) { |
| case JR: { |
| Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
| current_pc+Instruction::kInstrSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| set_pc(next_pc); |
| pc_modified_ = true; |
| break; |
| } |
| case JALR: { |
| Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
| current_pc+Instruction::kInstrSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| set_register(31, current_pc + 2* Instruction::kInstrSize); |
| set_pc(next_pc); |
| pc_modified_ = true; |
| break; |
| } |
| // Instructions using HI and LO registers. |
| case MULT: |
| set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); |
| set_register(HI, static_cast<int32_t>(i64hilo >> 32)); |
| break; |
| case MULTU: |
| set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); |
| set_register(HI, static_cast<int32_t>(u64hilo >> 32)); |
| break; |
| case DIV: |
| // Divide by zero was checked in the configuration step. |
| set_register(LO, rs / rt); |
| set_register(HI, rs % rt); |
| break; |
| case DIVU: |
| set_register(LO, rs_u / rt_u); |
| set_register(HI, rs_u % rt_u); |
| break; |
| // Break and trap instructions. |
| case BREAK: |
| case TGE: |
| case TGEU: |
| case TLT: |
| case TLTU: |
| case TEQ: |
| case TNE: |
| if (do_interrupt) { |
| SoftwareInterrupt(instr); |
| } |
| break; |
| // Conditional moves. |
| case MOVN: |
| if (rt) set_register(rd_reg, rs); |
| break; |
| case MOVCI: { |
| uint32_t cc = instr->FCccValue(); |
| uint32_t fcsr_cc = get_fcsr_condition_bit(cc); |
| if (instr->Bit(16)) { // Read Tf bit |
| if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); |
| } else { |
| if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); |
| } |
| break; |
| } |
| case MOVZ: |
| if (!rt) set_register(rd_reg, rs); |
| break; |
| default: // For other special opcodes we do the default operation. |
| set_register(rd_reg, alu_out); |
| }; |
| break; |
| case SPECIAL2: |
| switch (instr->FunctionFieldRaw()) { |
| case MUL: |
| set_register(rd_reg, alu_out); |
| // HI and LO are UNPREDICTABLE after the operation. |
| set_register(LO, Unpredictable); |
| set_register(HI, Unpredictable); |
| break; |
| default: // For other special2 opcodes we do the default operation. |
| set_register(rd_reg, alu_out); |
| } |
| break; |
| case SPECIAL3: |
| switch (instr->FunctionFieldRaw()) { |
| case INS: |
| // Ins instr leaves result in Rt, rather than Rd. |
| set_register(rt_reg, alu_out); |
| break; |
| case EXT: |
| // Ext instr leaves result in Rt, rather than Rd. |
| set_register(rt_reg, alu_out); |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| // Unimplemented opcodes raised an error in the configuration step before, |
| // so we can use the default here to set the destination register in common |
| // cases. |
| default: |
| set_register(rd_reg, alu_out); |
| }; |
| } |
| |
| |
| // Type 2: instructions using a 16 bytes immediate. (eg: addi, beq) |
| void Simulator::DecodeTypeImmediate(Instruction* instr) { |
| // Instruction fields. |
| Opcode op = instr->OpcodeFieldRaw(); |
| int32_t rs = get_register(instr->RsValue()); |
| uint32_t rs_u = static_cast<uint32_t>(rs); |
| int32_t rt_reg = instr->RtValue(); // destination register |
| int32_t rt = get_register(rt_reg); |
| int16_t imm16 = instr->Imm16Value(); |
| |
| int32_t ft_reg = instr->FtValue(); // destination register |
| |
| // Zero extended immediate. |
| uint32_t oe_imm16 = 0xffff & imm16; |
| // Sign extended immediate. |
| int32_t se_imm16 = imm16; |
| |
| // Get current pc. |
| int32_t current_pc = get_pc(); |
| // Next pc. |
| int32_t next_pc = bad_ra; |
| |
| // Used for conditional branch instructions. |
| bool do_branch = false; |
| bool execute_branch_delay_instruction = false; |
| |
| // Used for arithmetic instructions. |
| int32_t alu_out = 0; |
| // Floating point. |
| double fp_out = 0.0; |
| uint32_t cc, cc_value, fcsr_cc; |
| |
| // Used for memory instructions. |
| int32_t addr = 0x0; |
| // Value to be written in memory |
| uint32_t mem_value = 0x0; |
| |
| // ---------- Configuration (and execution for REGIMM) |
| switch (op) { |
| // ------------- COP1. Coprocessor instructions. |
| case COP1: |
| switch (instr->RsFieldRaw()) { |
| case BC1: // Branch on coprocessor condition. |
| cc = instr->FBccValue(); |
| fcsr_cc = get_fcsr_condition_bit(cc); |
| cc_value = test_fcsr_bit(fcsr_cc); |
| do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value; |
| execute_branch_delay_instruction = true; |
| // Set next_pc |
| if (do_branch) { |
| next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
| } else { |
| next_pc = current_pc + kBranchReturnOffset; |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| // ------------- REGIMM class |
| case REGIMM: |
| switch (instr->RtFieldRaw()) { |
| case BLTZ: |
| do_branch = (rs < 0); |
| break; |
| case BLTZAL: |
| do_branch = rs < 0; |
| break; |
| case BGEZ: |
| do_branch = rs >= 0; |
| break; |
| case BGEZAL: |
| do_branch = rs >= 0; |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| switch (instr->RtFieldRaw()) { |
| case BLTZ: |
| case BLTZAL: |
| case BGEZ: |
| case BGEZAL: |
| // Branch instructions common part. |
| execute_branch_delay_instruction = true; |
| // Set next_pc |
| if (do_branch) { |
| next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
| if (instr->IsLinkingInstruction()) { |
| set_register(31, current_pc + kBranchReturnOffset); |
| } |
| } else { |
| next_pc = current_pc + kBranchReturnOffset; |
| } |
| default: |
| break; |
| }; |
| break; // case REGIMM |
| // ------------- Branch instructions |
| // When comparing to zero, the encoding of rt field is always 0, so we don't |
| // need to replace rt with zero. |
| case BEQ: |
| do_branch = (rs == rt); |
| break; |
| case BNE: |
| do_branch = rs != rt; |
| break; |
| case BLEZ: |
| do_branch = rs <= 0; |
| break; |
| case BGTZ: |
| do_branch = rs > 0; |
| break; |
| // ------------- Arithmetic instructions |
| case ADDI: |
| if (HaveSameSign(rs, se_imm16)) { |
| if (rs > 0) { |
| exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16); |
| } else if (rs < 0) { |
| exceptions[kIntegerUnderflow] = |
| rs < (Registers::kMinValue - se_imm16); |
| } |
| } |
| alu_out = rs + se_imm16; |
| break; |
| case ADDIU: |
| alu_out = rs + se_imm16; |
| break; |
| case SLTI: |
| alu_out = (rs < se_imm16) ? 1 : 0; |
| break; |
| case SLTIU: |
| alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0; |
| break; |
| case ANDI: |
| alu_out = rs & oe_imm16; |
| break; |
| case ORI: |
| alu_out = rs | oe_imm16; |
| break; |
| case XORI: |
| alu_out = rs ^ oe_imm16; |
| break; |
| case LUI: |
| alu_out = (oe_imm16 << 16); |
| break; |
| // ------------- Memory instructions |
| case LB: |
| addr = rs + se_imm16; |
| alu_out = ReadB(addr); |
| break; |
| case LH: |
| addr = rs + se_imm16; |
| alu_out = ReadH(addr, instr); |
| break; |
| case LWL: { |
| // al_offset is an offset of the effective address within an aligned word |
| uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
| uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
| uint32_t mask = (1 << byte_shift * 8) - 1; |
| addr = rs + se_imm16 - al_offset; |
| alu_out = ReadW(addr, instr); |
| alu_out <<= byte_shift * 8; |
| alu_out |= rt & mask; |
| break; |
| } |
| case LW: |
| addr = rs + se_imm16; |
| alu_out = ReadW(addr, instr); |
| break; |
| case LBU: |
| addr = rs + se_imm16; |
| alu_out = ReadBU(addr); |
| break; |
| case LHU: |
| addr = rs + se_imm16; |
| alu_out = ReadHU(addr, instr); |
| break; |
| case LWR: { |
| // al_offset is an offset of the effective address within an aligned word |
| uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
| uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
| uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; |
| addr = rs + se_imm16 - al_offset; |
| alu_out = ReadW(addr, instr); |
| alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; |
| alu_out |= rt & mask; |
| break; |
| } |
| case SB: |
| addr = rs + se_imm16; |
| break; |
| case SH: |
| addr = rs + se_imm16; |
| break; |
| case SWL: { |
| uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
| uint8_t byte_shift = kPointerAlignmentMask - al_offset; |
| uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; |
| addr = rs + se_imm16 - al_offset; |
| mem_value = ReadW(addr, instr) & mask; |
| mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; |
| break; |
| } |
| case SW: |
| addr = rs + se_imm16; |
| break; |
| case SWR: { |
| uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; |
| uint32_t mask = (1 << al_offset * 8) - 1; |
| addr = rs + se_imm16 - al_offset; |
| mem_value = ReadW(addr, instr); |
| mem_value = (rt << al_offset * 8) | (mem_value & mask); |
| break; |
| } |
| case LWC1: |
| addr = rs + se_imm16; |
| alu_out = ReadW(addr, instr); |
| break; |
| case LDC1: |
| addr = rs + se_imm16; |
| fp_out = ReadD(addr, instr); |
| break; |
| case SWC1: |
| case SDC1: |
| addr = rs + se_imm16; |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| |
| // ---------- Raise exceptions triggered. |
| SignalExceptions(); |
| |
| // ---------- Execution |
| switch (op) { |
| // ------------- Branch instructions |
| case BEQ: |
| case BNE: |
| case BLEZ: |
| case BGTZ: |
| // Branch instructions common part. |
| execute_branch_delay_instruction = true; |
| // Set next_pc |
| if (do_branch) { |
| next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; |
| if (instr->IsLinkingInstruction()) { |
| set_register(31, current_pc + 2* Instruction::kInstrSize); |
| } |
| } else { |
| next_pc = current_pc + 2 * Instruction::kInstrSize; |
| } |
| break; |
| // ------------- Arithmetic instructions |
| case ADDI: |
| case ADDIU: |
| case SLTI: |
| case SLTIU: |
| case ANDI: |
| case ORI: |
| case XORI: |
| case LUI: |
| set_register(rt_reg, alu_out); |
| break; |
| // ------------- Memory instructions |
| case LB: |
| case LH: |
| case LWL: |
| case LW: |
| case LBU: |
| case LHU: |
| case LWR: |
| set_register(rt_reg, alu_out); |
| break; |
| case SB: |
| WriteB(addr, static_cast<int8_t>(rt)); |
| break; |
| case SH: |
| WriteH(addr, static_cast<uint16_t>(rt), instr); |
| break; |
| case SWL: |
| WriteW(addr, mem_value, instr); |
| break; |
| case SW: |
| WriteW(addr, rt, instr); |
| break; |
| case SWR: |
| WriteW(addr, mem_value, instr); |
| break; |
| case LWC1: |
| set_fpu_register(ft_reg, alu_out); |
| break; |
| case LDC1: |
| set_fpu_register_double(ft_reg, fp_out); |
| break; |
| case SWC1: |
| addr = rs + se_imm16; |
| WriteW(addr, get_fpu_register(ft_reg), instr); |
| break; |
| case SDC1: |
| addr = rs + se_imm16; |
| WriteD(addr, get_fpu_register_double(ft_reg), instr); |
| break; |
| default: |
| break; |
| }; |
| |
| |
| if (execute_branch_delay_instruction) { |
| // Execute branch delay slot |
| // We don't check for end_sim_pc. First it should not be met as the current |
| // pc is valid. Secondly a jump should always execute its branch delay slot. |
| Instruction* branch_delay_instr = |
| reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| } |
| |
| // If needed update pc after the branch delay execution. |
| if (next_pc != bad_ra) { |
| set_pc(next_pc); |
| } |
| } |
| |
| |
| // Type 3: instructions using a 26 bytes immediate. (eg: j, jal) |
| void Simulator::DecodeTypeJump(Instruction* instr) { |
| // Get current pc. |
| int32_t current_pc = get_pc(); |
| // Get unchanged bits of pc. |
| int32_t pc_high_bits = current_pc & 0xf0000000; |
| // Next pc |
| int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2); |
| |
| // Execute branch delay slot |
| // We don't check for end_sim_pc. First it should not be met as the current pc |
| // is valid. Secondly a jump should always execute its branch delay slot. |
| Instruction* branch_delay_instr = |
| reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| |
| // Update pc and ra if necessary. |
| // Do this after the branch delay execution. |
| if (instr->IsLinkingInstruction()) { |
| set_register(31, current_pc + 2* Instruction::kInstrSize); |
| } |
| set_pc(next_pc); |
| pc_modified_ = true; |
| } |
| |
| |
| // Executes the current instruction. |
| void Simulator::InstructionDecode(Instruction* instr) { |
| if (v8::internal::FLAG_check_icache) { |
| CheckICache(isolate_->simulator_i_cache(), instr); |
| } |
| pc_modified_ = false; |
| if (::v8::internal::FLAG_trace_sim) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, reinterpret_cast<byte_*>(instr)); |
| PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr), |
| buffer.start()); |
| } |
| |
| switch (instr->InstructionType()) { |
| case Instruction::kRegisterType: |
| DecodeTypeRegister(instr); |
| break; |
| case Instruction::kImmediateType: |
| DecodeTypeImmediate(instr); |
| break; |
| case Instruction::kJumpType: |
| DecodeTypeJump(instr); |
| break; |
| default: |
| UNSUPPORTED(); |
| } |
| if (!pc_modified_) { |
| set_register(pc, reinterpret_cast<int32_t>(instr) + |
| Instruction::kInstrSize); |
| } |
| } |
| |
| |
| |
| void Simulator::Execute() { |
| // Get the PC to simulate. Cannot use the accessor here as we need the |
| // raw PC value and not the one used as input to arithmetic instructions. |
| int program_counter = get_pc(); |
| if (::v8::internal::FLAG_stop_sim_at == 0) { |
| // Fast version of the dispatch loop without checking whether the simulator |
| // should be stopping at a particular executed instruction. |
| while (program_counter != end_sim_pc) { |
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| icount_++; |
| InstructionDecode(instr); |
| program_counter = get_pc(); |
| } |
| } else { |
| // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| // we reach the particular instuction count. |
| while (program_counter != end_sim_pc) { |
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| icount_++; |
| if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
| MipsDebugger dbg(this); |
| dbg.Debug(); |
| } else { |
| InstructionDecode(instr); |
| } |
| program_counter = get_pc(); |
| } |
| } |
| } |
| |
| |
| int32_t Simulator::Call(byte_* entry, int argument_count, ...) { |
| va_list parameters; |
| va_start(parameters, argument_count); |
| // Setup arguments |
| |
| // First four arguments passed in registers. |
| ASSERT(argument_count >= 4); |
| set_register(a0, va_arg(parameters, int32_t)); |
| set_register(a1, va_arg(parameters, int32_t)); |
| set_register(a2, va_arg(parameters, int32_t)); |
| set_register(a3, va_arg(parameters, int32_t)); |
| |
| // Remaining arguments passed on stack. |
| int original_stack = get_register(sp); |
| // Compute position of stack on entry to generated code. |
| int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) |
| - kCArgsSlotsSize); |
| if (OS::ActivationFrameAlignment() != 0) { |
| entry_stack &= -OS::ActivationFrameAlignment(); |
| } |
| // Store remaining arguments on stack, from low to high memory. |
| intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); |
| for (int i = 4; i < argument_count; i++) { |
| stack_argument[i - 4 + kArgsSlotsNum] = va_arg(parameters, int32_t); |
| } |
| va_end(parameters); |
| set_register(sp, entry_stack); |
| |
| // Prepare to execute the code at entry |
| set_register(pc, reinterpret_cast<int32_t>(entry)); |
| // Put down marker for end of simulation. The simulator will stop simulation |
| // when the PC reaches this value. By saving the "end simulation" value into |
| // the LR the simulation stops when returning to this call point. |
| set_register(ra, end_sim_pc); |
| |
| // Remember the values of callee-saved registers. |
| // The code below assumes that r9 is not used as sb (static base) in |
| // simulator code and therefore is regarded as a callee-saved register. |
| int32_t s0_val = get_register(s0); |
| int32_t s1_val = get_register(s1); |
| int32_t s2_val = get_register(s2); |
| int32_t s3_val = get_register(s3); |
| int32_t s4_val = get_register(s4); |
| int32_t s5_val = get_register(s5); |
| int32_t s6_val = get_register(s6); |
| int32_t s7_val = get_register(s7); |
| int32_t gp_val = get_register(gp); |
| int32_t sp_val = get_register(sp); |
| int32_t fp_val = get_register(fp); |
| |
| // Setup the callee-saved registers with a known value. To be able to check |
| // that they are preserved properly across JS execution. |
| int32_t callee_saved_value = icount_; |
| set_register(s0, callee_saved_value); |
| set_register(s1, callee_saved_value); |
| set_register(s2, callee_saved_value); |
| set_register(s3, callee_saved_value); |
| set_register(s4, callee_saved_value); |
| set_register(s5, callee_saved_value); |
| set_register(s6, callee_saved_value); |
| set_register(s7, callee_saved_value); |
| set_register(gp, callee_saved_value); |
| set_register(fp, callee_saved_value); |
| |
| // Start the simulation |
| Execute(); |
| |
| // Check that the callee-saved registers have been preserved. |
| CHECK_EQ(callee_saved_value, get_register(s0)); |
| CHECK_EQ(callee_saved_value, get_register(s1)); |
| CHECK_EQ(callee_saved_value, get_register(s2)); |
| CHECK_EQ(callee_saved_value, get_register(s3)); |
| CHECK_EQ(callee_saved_value, get_register(s4)); |
| CHECK_EQ(callee_saved_value, get_register(s5)); |
| CHECK_EQ(callee_saved_value, get_register(s6)); |
| CHECK_EQ(callee_saved_value, get_register(s7)); |
| CHECK_EQ(callee_saved_value, get_register(gp)); |
| CHECK_EQ(callee_saved_value, get_register(fp)); |
| |
| // Restore callee-saved registers with the original value. |
| set_register(s0, s0_val); |
| set_register(s1, s1_val); |
| set_register(s2, s2_val); |
| set_register(s3, s3_val); |
| set_register(s4, s4_val); |
| set_register(s5, s5_val); |
| set_register(s6, s6_val); |
| set_register(s7, s7_val); |
| set_register(gp, gp_val); |
| set_register(sp, sp_val); |
| set_register(fp, fp_val); |
| |
| // Pop stack passed arguments. |
| CHECK_EQ(entry_stack, get_register(sp)); |
| set_register(sp, original_stack); |
| |
| int32_t result = get_register(v0); |
| return result; |
| } |
| |
| |
| uintptr_t Simulator::PushAddress(uintptr_t address) { |
| int new_sp = get_register(sp) - sizeof(uintptr_t); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
| *stack_slot = address; |
| set_register(sp, new_sp); |
| return new_sp; |
| } |
| |
| |
| uintptr_t Simulator::PopAddress() { |
| int current_sp = get_register(sp); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
| uintptr_t address = *stack_slot; |
| set_register(sp, current_sp + sizeof(uintptr_t)); |
| return address; |
| } |
| |
| |
| #undef UNSUPPORTED |
| |
| } } // namespace v8::internal |
| |
| #endif // USE_SIMULATOR |
| |
| #endif // V8_TARGET_ARCH_MIPS |