blob: f32da6dfb13a4bfe4871456e5023e70ec336ac69 [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_ARM)
#include "code-stubs.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "full-codegen.h"
#include "parser.h"
#include "scopes.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right. The actual
// argument count matches the formal parameter count expected by the
// function.
//
// The live registers are:
// o r1: the JS function object being called (ie, ourselves)
// o cp: our context
// o fp: our caller's frame pointer
// o sp: stack pointer
// o lr: return address
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-arm.h for its layout.
void FullCodeGenerator::Generate(CompilationInfo* info) {
ASSERT(info_ == NULL);
info_ = info;
SetFunctionPosition(function());
Comment cmnt(masm_, "[ function compiled by full code generator");
int locals_count = scope()->num_stack_slots();
__ Push(lr, fp, cp, r1);
if (locals_count > 0) {
// Load undefined value here, so the value is ready for the loop
// below.
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
}
// Adjust fp to point to caller's fp.
__ add(fp, sp, Operand(2 * kPointerSize));
{ Comment cmnt(masm_, "[ Allocate locals");
for (int i = 0; i < locals_count; i++) {
__ push(ip);
}
}
bool function_in_register = true;
// Possibly allocate a local context.
int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment cmnt(masm_, "[ Allocate local context");
// Argument to NewContext is the function, which is in r1.
__ push(r1);
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
__ CallStub(&stub);
} else {
__ CallRuntime(Runtime::kNewContext, 1);
}
function_in_register = false;
// Context is returned in both r0 and cp. It replaces the context
// passed to us. It's saved in the stack and kept live in cp.
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Slot* slot = scope()->parameter(i)->slot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ ldr(r0, MemOperand(fp, parameter_offset));
// Store it in the context.
__ mov(r1, Operand(Context::SlotOffset(slot->index())));
__ str(r0, MemOperand(cp, r1));
// Update the write barrier. This clobbers all involved
// registers, so we have to use two more registers to avoid
// clobbering cp.
__ mov(r2, Operand(cp));
__ RecordWrite(r2, Operand(r1), r3, r0);
}
}
}
Variable* arguments = scope()->arguments()->AsVariable();
if (arguments != NULL) {
// Function uses arguments object.
Comment cmnt(masm_, "[ Allocate arguments object");
if (!function_in_register) {
// Load this again, if it's used by the local context below.
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ mov(r3, r1);
}
// Receiver is just before the parameters on the caller's stack.
int offset = scope()->num_parameters() * kPointerSize;
__ add(r2, fp,
Operand(StandardFrameConstants::kCallerSPOffset + offset));
__ mov(r1, Operand(Smi::FromInt(scope()->num_parameters())));
__ Push(r3, r2, r1);
// Arguments to ArgumentsAccessStub:
// function, receiver address, parameter count.
// The stub will rewrite receiever and parameter count if the previous
// stack frame was an arguments adapter frame.
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
__ CallStub(&stub);
// Duplicate the value; move-to-slot operation might clobber registers.
__ mov(r3, r0);
Move(arguments->slot(), r0, r1, r2);
Slot* dot_arguments_slot =
scope()->arguments_shadow()->AsVariable()->slot();
Move(dot_arguments_slot, r3, r1, r2);
}
{ Comment cmnt(masm_, "[ Declarations");
// For named function expressions, declare the function name as a
// constant.
if (scope()->is_function_scope() && scope()->function() != NULL) {
EmitDeclaration(scope()->function(), Variable::CONST, NULL);
}
// Visit all the explicit declarations unless there is an illegal
// redeclaration.
if (scope()->HasIllegalRedeclaration()) {
scope()->VisitIllegalRedeclaration(this);
} else {
VisitDeclarations(scope()->declarations());
}
}
// Check the stack for overflow or break request.
// Put the lr setup instruction in the delay slot. The kInstrSize is
// added to the implicit 8 byte offset that always applies to operations
// with pc and gives a return address 12 bytes down.
{ Comment cmnt(masm_, "[ Stack check");
__ LoadRoot(r2, Heap::kStackLimitRootIndex);
__ add(lr, pc, Operand(Assembler::kInstrSize));
__ cmp(sp, Operand(r2));
StackCheckStub stub;
__ mov(pc,
Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()),
RelocInfo::CODE_TARGET),
LeaveCC,
lo);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
{ Comment cmnt(masm_, "[ Body");
ASSERT(loop_depth() == 0);
VisitStatements(function()->body());
ASSERT(loop_depth() == 0);
}
{ Comment cmnt(masm_, "[ return <undefined>;");
// Emit a 'return undefined' in case control fell off the end of the
// body.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
}
EmitReturnSequence();
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ b(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in r0.
__ push(r0);
__ CallRuntime(Runtime::kTraceExit, 1);
}
#ifdef DEBUG
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
#endif
// Make sure that the constant pool is not emitted inside of the return
// sequence.
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
// Here we use masm_-> instead of the __ macro to avoid the code coverage
// tool from instrumenting as we rely on the code size here.
int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize;
CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
__ RecordJSReturn();
masm_->mov(sp, fp);
masm_->ldm(ia_w, sp, fp.bit() | lr.bit());
masm_->add(sp, sp, Operand(sp_delta));
masm_->Jump(lr);
}
#ifdef DEBUG
// Check that the size of the code used for returning matches what is
// expected by the debugger. If the sp_delts above cannot be encoded in the
// add instruction the add will generate two instructions.
int return_sequence_length =
masm_->InstructionsGeneratedSince(&check_exit_codesize);
CHECK(return_sequence_length ==
Assembler::kJSReturnSequenceInstructions ||
return_sequence_length ==
Assembler::kJSReturnSequenceInstructions + 1);
#endif
}
}
FullCodeGenerator::ConstantOperand FullCodeGenerator::GetConstantOperand(
Token::Value op, Expression* left, Expression* right) {
ASSERT(ShouldInlineSmiCase(op));
return kNoConstants;
}
void FullCodeGenerator::Apply(Expression::Context context, Register reg) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Nothing to do.
break;
case Expression::kValue:
// Move value into place.
switch (location_) {
case kAccumulator:
if (!reg.is(result_register())) __ mov(result_register(), reg);
break;
case kStack:
__ push(reg);
break;
}
break;
case Expression::kTest:
// For simplicity we always test the accumulator register.
if (!reg.is(result_register())) __ mov(result_register(), reg);
DoTest(true_label_, false_label_, fall_through_);
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context, Slot* slot) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Nothing to do.
break;
case Expression::kValue:
case Expression::kTest:
// On ARM we have to move the value into a register to do anything
// with it.
Move(result_register(), slot);
Apply(context, result_register());
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context, Literal* lit) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
break;
// Nothing to do.
case Expression::kValue:
case Expression::kTest:
// On ARM we have to move the value into a register to do anything
// with it.
__ mov(result_register(), Operand(lit->handle()));
Apply(context, result_register());
break;
}
}
void FullCodeGenerator::ApplyTOS(Expression::Context context) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
__ Drop(1);
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ pop(result_register());
break;
case kStack:
break;
}
break;
case Expression::kTest:
__ pop(result_register());
DoTest(true_label_, false_label_, fall_through_);
break;
}
}
void FullCodeGenerator::DropAndApply(int count,
Expression::Context context,
Register reg) {
ASSERT(count > 0);
ASSERT(!reg.is(sp));
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
__ Drop(count);
break;
case Expression::kValue:
switch (location_) {
case kAccumulator:
__ Drop(count);
if (!reg.is(result_register())) __ mov(result_register(), reg);
break;
case kStack:
if (count > 1) __ Drop(count - 1);
__ str(reg, MemOperand(sp));
break;
}
break;
case Expression::kTest:
__ Drop(count);
if (!reg.is(result_register())) __ mov(result_register(), reg);
DoTest(true_label_, false_label_, fall_through_);
break;
}
}
void FullCodeGenerator::Apply(Expression::Context context,
Label* materialize_true,
Label* materialize_false) {
switch (context) {
case Expression::kUninitialized:
case Expression::kEffect:
ASSERT_EQ(materialize_true, materialize_false);
__ bind(materialize_true);
break;
case Expression::kValue: {
Label done;
switch (location_) {
case kAccumulator:
__ bind(materialize_true);
__ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
__ jmp(&done);
__ bind(materialize_false);
__ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
break;
case kStack:
__ bind(materialize_true);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ push(ip);
__ jmp(&done);
__ bind(materialize_false);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ push(ip);
break;
}
__ bind(&done);
break;
}
case Expression::kTest:
break;
}
}
// Convert constant control flow (true or false) to the result expected for
// a given expression context.
void FullCodeGenerator::Apply(Expression::Context context, bool flag) {
switch (context) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
break;
case Expression::kValue: {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
switch (location_) {
case kAccumulator:
__ LoadRoot(result_register(), value_root_index);
break;
case kStack:
__ LoadRoot(ip, value_root_index);
__ push(ip);
break;
}
break;
}
case Expression::kTest:
if (flag) {
if (true_label_ != fall_through_) __ b(true_label_);
} else {
if (false_label_ != fall_through_) __ b(false_label_);
}
break;
}
}
void FullCodeGenerator::DoTest(Label* if_true,
Label* if_false,
Label* fall_through) {
// Call the runtime to find the boolean value of the source and then
// translate it into control flow to the pair of labels.
__ push(result_register());
__ CallRuntime(Runtime::kToBool, 1);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r0, ip);
Split(eq, if_true, if_false, fall_through);
}
void FullCodeGenerator::Split(Condition cc,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (if_false == fall_through) {
__ b(cc, if_true);
} else if (if_true == fall_through) {
__ b(NegateCondition(cc), if_false);
} else {
__ b(cc, if_true);
__ b(if_false);
}
}
MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) {
switch (slot->type()) {
case Slot::PARAMETER:
case Slot::LOCAL:
return MemOperand(fp, SlotOffset(slot));
case Slot::CONTEXT: {
int context_chain_length =
scope()->ContextChainLength(slot->var()->scope());
__ LoadContext(scratch, context_chain_length);
return CodeGenerator::ContextOperand(scratch, slot->index());
}
case Slot::LOOKUP:
UNREACHABLE();
}
UNREACHABLE();
return MemOperand(r0, 0);
}
void FullCodeGenerator::Move(Register destination, Slot* source) {
// Use destination as scratch.
MemOperand slot_operand = EmitSlotSearch(source, destination);
__ ldr(destination, slot_operand);
}
void FullCodeGenerator::Move(Slot* dst,
Register src,
Register scratch1,
Register scratch2) {
ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented.
ASSERT(!scratch1.is(src) && !scratch2.is(src));
MemOperand location = EmitSlotSearch(dst, scratch1);
__ str(src, location);
// Emit the write barrier code if the location is in the heap.
if (dst->type() == Slot::CONTEXT) {
__ RecordWrite(scratch1,
Operand(Context::SlotOffset(dst->index())),
scratch2,
src);
}
}
void FullCodeGenerator::EmitDeclaration(Variable* variable,
Variable::Mode mode,
FunctionLiteral* function) {
Comment cmnt(masm_, "[ Declaration");
ASSERT(variable != NULL); // Must have been resolved.
Slot* slot = variable->slot();
Property* prop = variable->AsProperty();
if (slot != NULL) {
switch (slot->type()) {
case Slot::PARAMETER:
case Slot::LOCAL:
if (mode == Variable::CONST) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ str(ip, MemOperand(fp, SlotOffset(slot)));
} else if (function != NULL) {
VisitForValue(function, kAccumulator);
__ str(result_register(), MemOperand(fp, SlotOffset(slot)));
}
break;
case Slot::CONTEXT:
// We bypass the general EmitSlotSearch because we know more about
// this specific context.
// The variable in the decl always resides in the current context.
ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
if (FLAG_debug_code) {
// Check if we have the correct context pointer.
__ ldr(r1,
CodeGenerator::ContextOperand(cp, Context::FCONTEXT_INDEX));
__ cmp(r1, cp);
__ Check(eq, "Unexpected declaration in current context.");
}
if (mode == Variable::CONST) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ str(ip, CodeGenerator::ContextOperand(cp, slot->index()));
// No write barrier since the_hole_value is in old space.
} else if (function != NULL) {
VisitForValue(function, kAccumulator);
__ str(result_register(),
CodeGenerator::ContextOperand(cp, slot->index()));
int offset = Context::SlotOffset(slot->index());
// We know that we have written a function, which is not a smi.
__ mov(r1, Operand(cp));
__ RecordWrite(r1, Operand(offset), r2, result_register());
}
break;
case Slot::LOOKUP: {
__ mov(r2, Operand(variable->name()));
// Declaration nodes are always introduced in one of two modes.
ASSERT(mode == Variable::VAR ||
mode == Variable::CONST);
PropertyAttributes attr =
(mode == Variable::VAR) ? NONE : READ_ONLY;
__ mov(r1, Operand(Smi::FromInt(attr)));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (mode == Variable::CONST) {
__ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
__ Push(cp, r2, r1, r0);
} else if (function != NULL) {
__ Push(cp, r2, r1);
// Push initial value for function declaration.
VisitForValue(function, kStack);
} else {
__ mov(r0, Operand(Smi::FromInt(0))); // No initial value!
__ Push(cp, r2, r1, r0);
}
__ CallRuntime(Runtime::kDeclareContextSlot, 4);
break;
}
}
} else if (prop != NULL) {
if (function != NULL || mode == Variable::CONST) {
// We are declaring a function or constant that rewrites to a
// property. Use (keyed) IC to set the initial value.
VisitForValue(prop->obj(), kStack);
if (function != NULL) {
VisitForValue(prop->key(), kStack);
VisitForValue(function, kAccumulator);
__ pop(r1); // Key.
} else {
VisitForValue(prop->key(), kAccumulator);
__ mov(r1, result_register()); // Key.
__ LoadRoot(result_register(), Heap::kTheHoleValueRootIndex);
}
__ pop(r2); // Receiver.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// Value in r0 is ignored (declarations are statements).
}
}
}
void FullCodeGenerator::VisitDeclaration(Declaration* decl) {
EmitDeclaration(decl->proxy()->var(), decl->mode(), decl->fun());
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
// The context is the first argument.
__ mov(r1, Operand(pairs));
__ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
__ Push(cp, r1, r0);
__ CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForValue(stmt->tag(), kStack);
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForValue(clause->label(), kAccumulator);
// Perform the comparison as if via '==='.
__ ldr(r1, MemOperand(sp, 0)); // Switch value.
if (ShouldInlineSmiCase(Token::EQ_STRICT)) {
Label slow_case;
__ orr(r2, r1, r0);
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, &slow_case);
__ cmp(r1, r0);
__ b(ne, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ b(clause->body_target()->entry_label());
__ bind(&slow_case);
}
CompareStub stub(eq, true, kBothCouldBeNaN, true, r1, r0);
__ CallStub(&stub);
__ cmp(r0, Operand(0, RelocInfo::NONE));
__ b(ne, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ b(clause->body_target()->entry_label());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ bind(&next_test);
__ Drop(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ b(nested_statement.break_target());
} else {
__ b(default_clause->body_target()->entry_label());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ bind(clause->body_target()->entry_label());
VisitStatements(clause->statements());
}
__ bind(nested_statement.break_target());
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
Comment cmnt(masm_, "[ ForInStatement");
SetStatementPosition(stmt);
Label loop, exit;
ForIn loop_statement(this, stmt);
increment_loop_depth();
// Get the object to enumerate over. Both SpiderMonkey and JSC
// ignore null and undefined in contrast to the specification; see
// ECMA-262 section 12.6.4.
VisitForValue(stmt->enumerable(), kAccumulator);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
__ b(eq, &exit);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r0, ip);
__ b(eq, &exit);
// Convert the object to a JS object.
Label convert, done_convert;
__ BranchOnSmi(r0, &convert);
__ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
__ b(hs, &done_convert);
__ bind(&convert);
__ push(r0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
__ bind(&done_convert);
__ push(r0);
// TODO(kasperl): Check cache validity in generated code. This is a
// fast case for the JSObject::IsSimpleEnum cache validity
// checks. If we cannot guarantee cache validity, call the runtime
// system to check cache validity or get the property names in a
// fixed array.
// Get the set of properties to enumerate.
__ push(r0); // Duplicate the enumerable object on the stack.
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
Label fixed_array;
__ mov(r2, r0);
__ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kMetaMapRootIndex);
__ cmp(r1, ip);
__ b(ne, &fixed_array);
// We got a map in register r0. Get the enumeration cache from it.
__ ldr(r1, FieldMemOperand(r0, Map::kInstanceDescriptorsOffset));
__ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
__ ldr(r2, FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Setup the four remaining stack slots.
__ push(r0); // Map.
__ ldr(r1, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ mov(r0, Operand(Smi::FromInt(0)));
// Push enumeration cache, enumeration cache length (as smi) and zero.
__ Push(r2, r1, r0);
__ jmp(&loop);
// We got a fixed array in register r0. Iterate through that.
__ bind(&fixed_array);
__ mov(r1, Operand(Smi::FromInt(0))); // Map (0) - force slow check.
__ Push(r1, r0);
__ ldr(r1, FieldMemOperand(r0, FixedArray::kLengthOffset));
__ mov(r0, Operand(Smi::FromInt(0)));
__ Push(r1, r0); // Fixed array length (as smi) and initial index.
// Generate code for doing the condition check.
__ bind(&loop);
// Load the current count to r0, load the length to r1.
__ Ldrd(r0, r1, MemOperand(sp, 0 * kPointerSize));
__ cmp(r0, r1); // Compare to the array length.
__ b(hs, loop_statement.break_target());
// Get the current entry of the array into register r3.
__ ldr(r2, MemOperand(sp, 2 * kPointerSize));
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
// Get the expected map from the stack or a zero map in the
// permanent slow case into register r2.
__ ldr(r2, MemOperand(sp, 3 * kPointerSize));
// Check if the expected map still matches that of the enumerable.
// If not, we have to filter the key.
Label update_each;
__ ldr(r1, MemOperand(sp, 4 * kPointerSize));
__ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r4, Operand(r2));
__ b(eq, &update_each);
// Convert the entry to a string or (smi) 0 if it isn't a property
// any more. If the property has been removed while iterating, we
// just skip it.
__ push(r1); // Enumerable.
__ push(r3); // Current entry.
__ InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS);
__ mov(r3, Operand(r0), SetCC);
__ b(eq, loop_statement.continue_target());
// Update the 'each' property or variable from the possibly filtered
// entry in register r3.
__ bind(&update_each);
__ mov(result_register(), r3);
// Perform the assignment as if via '='.
EmitAssignment(stmt->each());
// Generate code for the body of the loop.
Label stack_limit_hit, stack_check_done;
Visit(stmt->body());
__ StackLimitCheck(&stack_limit_hit);
__ bind(&stack_check_done);
// Generate code for the going to the next element by incrementing
// the index (smi) stored on top of the stack.
__ bind(loop_statement.continue_target());
__ pop(r0);
__ add(r0, r0, Operand(Smi::FromInt(1)));
__ push(r0);
__ b(&loop);
// Slow case for the stack limit check.
StackCheckStub stack_check_stub;
__ bind(&stack_limit_hit);
__ CallStub(&stack_check_stub);
__ b(&stack_check_done);
// Remove the pointers stored on the stack.
__ bind(loop_statement.break_target());
__ Drop(5);
// Exit and decrement the loop depth.
__ bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
if (scope()->is_function_scope() && info->num_literals() == 0) {
FastNewClosureStub stub;
__ mov(r0, Operand(info));
__ push(r0);
__ CallStub(&stub);
} else {
__ mov(r0, Operand(info));
__ Push(cp, r0);
__ CallRuntime(Runtime::kNewClosure, 2);
}
Apply(context_, r0);
}
void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
EmitVariableLoad(expr->var(), context_);
}
void FullCodeGenerator::EmitVariableLoad(Variable* var,
Expression::Context context) {
// Four cases: non-this global variables, lookup slots, all other
// types of slots, and parameters that rewrite to explicit property
// accesses on the arguments object.
Slot* slot = var->slot();
Property* property = var->AsProperty();
if (var->is_global() && !var->is_this()) {
Comment cmnt(masm_, "Global variable");
// Use inline caching. Variable name is passed in r2 and the global
// object (receiver) in r0.
__ ldr(r0, CodeGenerator::GlobalObject());
__ mov(r2, Operand(var->name()));
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET_CONTEXT);
Apply(context, r0);
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
Comment cmnt(masm_, "Lookup slot");
__ mov(r1, Operand(var->name()));
__ Push(cp, r1); // Context and name.
__ CallRuntime(Runtime::kLoadContextSlot, 2);
Apply(context, r0);
} else if (slot != NULL) {
Comment cmnt(masm_, (slot->type() == Slot::CONTEXT)
? "Context slot"
: "Stack slot");
if (var->mode() == Variable::CONST) {
// Constants may be the hole value if they have not been initialized.
// Unhole them.
Label done;
MemOperand slot_operand = EmitSlotSearch(slot, r0);
__ ldr(r0, slot_operand);
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r0, ip);
__ b(ne, &done);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ bind(&done);
Apply(context, r0);
} else {
Apply(context, slot);
}
} else {
Comment cmnt(masm_, "Rewritten parameter");
ASSERT_NOT_NULL(property);
// Rewritten parameter accesses are of the form "slot[literal]".
// Assert that the object is in a slot.
Variable* object_var = property->obj()->AsVariableProxy()->AsVariable();
ASSERT_NOT_NULL(object_var);
Slot* object_slot = object_var->slot();
ASSERT_NOT_NULL(object_slot);
// Load the object.
Move(r1, object_slot);
// Assert that the key is a smi.
Literal* key_literal = property->key()->AsLiteral();
ASSERT_NOT_NULL(key_literal);
ASSERT(key_literal->handle()->IsSmi());
// Load the key.
__ mov(r0, Operand(key_literal->handle()));
// Call keyed load IC. It has arguments key and receiver in r0 and r1.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
Apply(context, r0);
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
Label materialized;
// Registers will be used as follows:
// r4 = JS function, literals array
// r3 = literal index
// r2 = RegExp pattern
// r1 = RegExp flags
// r0 = temp + materialized value (RegExp literal)
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ ldr(r0, FieldMemOperand(r4, literal_offset));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
__ b(ne, &materialized);
// Create regexp literal using runtime function.
// Result will be in r0.
__ mov(r3, Operand(Smi::FromInt(expr->literal_index())));
__ mov(r2, Operand(expr->pattern()));
__ mov(r1, Operand(expr->flags()));
__ Push(r4, r3, r2, r1);
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
__ push(r0);
__ mov(r0, Operand(Smi::FromInt(size)));
__ push(r0);
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
// After this, registers are used as follows:
// r0: Newly allocated regexp.
// r1: Materialized regexp.
// r2: temp.
__ pop(r1);
__ CopyFields(r0, r1, r2.bit(), size / kPointerSize);
Apply(context_, r0);
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
__ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
__ mov(r1, Operand(expr->constant_properties()));
__ mov(r0, Operand(Smi::FromInt(expr->fast_elements() ? 1 : 0)));
__ Push(r3, r2, r1, r0);
if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCreateObjectLiteral, 4);
} else {
__ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
}
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in r0.
bool result_saved = false;
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ push(r0); // Save result on stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
VisitForValue(value, kAccumulator);
__ mov(r2, Operand(key->handle()));
__ ldr(r1, MemOperand(sp));
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
break;
}
// Fall through.
case ObjectLiteral::Property::PROTOTYPE:
// Duplicate receiver on stack.
__ ldr(r0, MemOperand(sp));
__ push(r0);
VisitForValue(key, kStack);
VisitForValue(value, kStack);
__ CallRuntime(Runtime::kSetProperty, 3);
break;
case ObjectLiteral::Property::GETTER:
case ObjectLiteral::Property::SETTER:
// Duplicate receiver on stack.
__ ldr(r0, MemOperand(sp));
__ push(r0);
VisitForValue(key, kStack);
__ mov(r1, Operand(property->kind() == ObjectLiteral::Property::SETTER ?
Smi::FromInt(1) :
Smi::FromInt(0)));
__ push(r1);
VisitForValue(value, kStack);
__ CallRuntime(Runtime::kDefineAccessor, 4);
break;
}
}
if (result_saved) {
ApplyTOS(context_);
} else {
Apply(context_, r0);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
__ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
__ mov(r1, Operand(expr->constant_elements()));
__ Push(r3, r2, r1);
if (expr->constant_elements()->map() == Heap::fixed_cow_array_map()) {
FastCloneShallowArrayStub stub(
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
__ CallStub(&stub);
__ IncrementCounter(&Counters::cow_arrays_created_stub, 1, r1, r2);
} else if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCreateArrayLiteral, 3);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
__ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
} else {
FastCloneShallowArrayStub stub(
FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
__ CallStub(&stub);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (subexpr->AsLiteral() != NULL ||
CompileTimeValue::IsCompileTimeValue(subexpr)) {
continue;
}
if (!result_saved) {
__ push(r0);
result_saved = true;
}
VisitForValue(subexpr, kAccumulator);
// Store the subexpression value in the array's elements.
__ ldr(r1, MemOperand(sp)); // Copy of array literal.
__ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ str(result_register(), FieldMemOperand(r1, offset));
// Update the write barrier for the array store with r0 as the scratch
// register.
__ RecordWrite(r1, Operand(offset), r2, result_register());
}
if (result_saved) {
ApplyTOS(context_);
} else {
Apply(context_, r0);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
Comment cmnt(masm_, "[ Assignment");
// Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
// on the left-hand side.
if (!expr->target()->IsValidLeftHandSide()) {
VisitForEffect(expr->target());
return;
}
// Left-hand side can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* property = expr->target()->AsProperty();
if (property != NULL) {
assign_type = (property->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the accumulator.
VisitForValue(property->obj(), kAccumulator);
__ push(result_register());
} else {
VisitForValue(property->obj(), kStack);
}
break;
case KEYED_PROPERTY:
if (expr->is_compound()) {
VisitForValue(property->obj(), kStack);
VisitForValue(property->key(), kAccumulator);
__ ldr(r1, MemOperand(sp, 0));
__ push(r0);
} else {
VisitForValue(property->obj(), kStack);
VisitForValue(property->key(), kStack);
}
break;
}
if (expr->is_compound()) {
Location saved_location = location_;
location_ = kAccumulator;
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy()->var(),
Expression::kValue);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(property);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(property);
break;
}
Token::Value op = expr->binary_op();
ConstantOperand constant = ShouldInlineSmiCase(op)
? GetConstantOperand(op, expr->target(), expr->value())
: kNoConstants;
ASSERT(constant == kRightConstant || constant == kNoConstants);
if (constant == kNoConstants) {
__ push(r0); // Left operand goes on the stack.
VisitForValue(expr->value(), kAccumulator);
}
OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
? OVERWRITE_RIGHT
: NO_OVERWRITE;
SetSourcePosition(expr->position() + 1);
if (ShouldInlineSmiCase(op)) {
EmitInlineSmiBinaryOp(expr,
op,
Expression::kValue,
mode,
expr->target(),
expr->value(),
constant);
} else {
EmitBinaryOp(op, Expression::kValue, mode);
}
location_ = saved_location;
} else {
VisitForValue(expr->value(), kAccumulator);
}
// Record source position before possible IC call.
SetSourcePosition(expr->position());
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
expr->op(),
context_);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
__ mov(r2, Operand(key->handle()));
// Call load IC. It has arguments receiver and property name r0 and r2.
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
// Call keyed load IC. It has arguments key and receiver in r0 and r1.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
}
void FullCodeGenerator::EmitInlineSmiBinaryOp(Expression* expr,
Token::Value op,
Expression::Context context,
OverwriteMode mode,
Expression* left,
Expression* right,
ConstantOperand constant) {
ASSERT(constant == kNoConstants); // Only handled case.
EmitBinaryOp(op, context, mode);
}
void FullCodeGenerator::EmitBinaryOp(Token::Value op,
Expression::Context context,
OverwriteMode mode) {
__ pop(r1);
GenericBinaryOpStub stub(op, mode, r1, r0);
__ CallStub(&stub);
Apply(context, r0);
}
void FullCodeGenerator::EmitAssignment(Expression* expr) {
// Invalid left-hand sides are rewritten to have a 'throw
// ReferenceError' on the left-hand side.
if (!expr->IsValidLeftHandSide()) {
VisitForEffect(expr);
return;
}
// Left-hand side can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->AsProperty();
if (prop != NULL) {
assign_type = (prop->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
switch (assign_type) {
case VARIABLE: {
Variable* var = expr->AsVariableProxy()->var();
EmitVariableAssignment(var, Token::ASSIGN, Expression::kEffect);
break;
}
case NAMED_PROPERTY: {
__ push(r0); // Preserve value.
VisitForValue(prop->obj(), kAccumulator);
__ mov(r1, r0);
__ pop(r0); // Restore value.
__ mov(r2, Operand(prop->key()->AsLiteral()->handle()));
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
break;
}
case KEYED_PROPERTY: {
__ push(r0); // Preserve value.
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kAccumulator);
__ mov(r1, r0);
__ pop(r2);
__ pop(r0); // Restore value.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
break;
}
}
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var,
Token::Value op,
Expression::Context context) {
// Left-hand sides that rewrite to explicit property accesses do not reach
// here.
ASSERT(var != NULL);
ASSERT(var->is_global() || var->slot() != NULL);
if (var->is_global()) {
ASSERT(!var->is_this());
// Assignment to a global variable. Use inline caching for the
// assignment. Right-hand-side value is passed in r0, variable name in
// r2, and the global object in r1.
__ mov(r2, Operand(var->name()));
__ ldr(r1, CodeGenerator::GlobalObject());
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
} else if (var->mode() != Variable::CONST || op == Token::INIT_CONST) {
// Perform the assignment for non-const variables and for initialization
// of const variables. Const assignments are simply skipped.
Label done;
Slot* slot = var->slot();
switch (slot->type()) {
case Slot::PARAMETER:
case Slot::LOCAL:
if (op == Token::INIT_CONST) {
// Detect const reinitialization by checking for the hole value.
__ ldr(r1, MemOperand(fp, SlotOffset(slot)));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r1, ip);
__ b(ne, &done);
}
// Perform the assignment.
__ str(result_register(), MemOperand(fp, SlotOffset(slot)));
break;
case Slot::CONTEXT: {
MemOperand target = EmitSlotSearch(slot, r1);
if (op == Token::INIT_CONST) {
// Detect const reinitialization by checking for the hole value.
__ ldr(r2, target);
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r2, ip);
__ b(ne, &done);
}
// Perform the assignment and issue the write barrier.
__ str(result_register(), target);
// RecordWrite may destroy all its register arguments.
__ mov(r3, result_register());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ RecordWrite(r1, Operand(offset), r2, r3);
break;
}
case Slot::LOOKUP:
// Call the runtime for the assignment. The runtime will ignore
// const reinitialization.
__ push(r0); // Value.
__ mov(r0, Operand(slot->var()->name()));
__ Push(cp, r0); // Context and name.
if (op == Token::INIT_CONST) {
// The runtime will ignore const redeclaration.
__ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
__ CallRuntime(Runtime::kStoreContextSlot, 3);
}
break;
}
__ bind(&done);
}
Apply(context, result_register());
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->AsLiteral() != NULL);
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(result_register());
__ ldr(ip, MemOperand(sp, kPointerSize)); // Receiver is now under value.
__ push(ip);
__ CallRuntime(Runtime::kToSlowProperties, 1);
__ pop(result_register());
}
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ mov(r2, Operand(prop->key()->AsLiteral()->handle()));
// Load receiver to r1. Leave a copy in the stack if needed for turning the
// receiver into fast case.
if (expr->ends_initialization_block()) {
__ ldr(r1, MemOperand(sp));
} else {
__ pop(r1);
}
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(r0); // Result of assignment, saved even if not needed.
// Receiver is under the result value.
__ ldr(ip, MemOperand(sp, kPointerSize));
__ push(ip);
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(r0);
DropAndApply(1, context_, r0);
} else {
Apply(context_, r0);
}
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(result_register());
// Receiver is now under the key and value.
__ ldr(ip, MemOperand(sp, 2 * kPointerSize));
__ push(ip);
__ CallRuntime(Runtime::kToSlowProperties, 1);
__ pop(result_register());
}
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ pop(r1); // Key.
// Load receiver to r2. Leave a copy in the stack if needed for turning the
// receiver into fast case.
if (expr->ends_initialization_block()) {
__ ldr(r2, MemOperand(sp));
} else {
__ pop(r2);
}
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(r0); // Result of assignment, saved even if not needed.
// Receiver is under the result value.
__ ldr(ip, MemOperand(sp, kPointerSize));
__ push(ip);
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(r0);
DropAndApply(1, context_, r0);
} else {
Apply(context_, r0);
}
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
if (key->IsPropertyName()) {
VisitForValue(expr->obj(), kAccumulator);
EmitNamedPropertyLoad(expr);
Apply(context_, r0);
} else {
VisitForValue(expr->obj(), kStack);
VisitForValue(expr->key(), kAccumulator);
__ pop(r1);
EmitKeyedPropertyLoad(expr);
Apply(context_, r0);
}
}
void FullCodeGenerator::EmitCallWithIC(Call* expr,
Handle<Object> name,
RelocInfo::Mode mode) {
// Code common for calls using the IC.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
__ mov(r2, Operand(name));
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the IC initialization code.
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop);
__ Call(ic, mode);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
Apply(context_, r0);
}
void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
Expression* key,
RelocInfo::Mode mode) {
// Code common for calls using the IC.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
VisitForValue(key, kAccumulator);
__ mov(r2, r0);
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the IC initialization code.
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic = CodeGenerator::ComputeKeyedCallInitialize(arg_count,
in_loop);
__ Call(ic, mode);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
Apply(context_, r0);
}
void FullCodeGenerator::EmitCallWithStub(Call* expr) {
// Code common for calls using the call stub.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
// Record source position for debugger.
SetSourcePosition(expr->position());
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
__ CallStub(&stub);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
DropAndApply(1, context_, r0);
}
void FullCodeGenerator::VisitCall(Call* expr) {
Comment cmnt(masm_, "[ Call");
Expression* fun = expr->expression();
Variable* var = fun->AsVariableProxy()->AsVariable();
if (var != NULL && var->is_possibly_eval()) {
// In a call to eval, we first call %ResolvePossiblyDirectEval to
// resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
VisitForValue(fun, kStack);
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ push(r2); // Reserved receiver slot.
// Push the arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
// Push copy of the function - found below the arguments.
__ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ push(r1);
// Push copy of the first argument or undefined if it doesn't exist.
if (arg_count > 0) {
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
__ push(r1);
} else {
__ push(r2);
}
// Push the receiver of the enclosing function and do runtime call.
__ ldr(r1, MemOperand(fp, (2 + scope()->num_parameters()) * kPointerSize));
__ push(r1);
__ CallRuntime(Runtime::kResolvePossiblyDirectEval, 3);
// The runtime call returns a pair of values in r0 (function) and
// r1 (receiver). Touch up the stack with the right values.
__ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ str(r1, MemOperand(sp, arg_count * kPointerSize));
// Record source position for debugger.
SetSourcePosition(expr->position());
InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
__ CallStub(&stub);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
DropAndApply(1, context_, r0);
} else if (var != NULL && !var->is_this() && var->is_global()) {
// Push global object as receiver for the call IC.
__ ldr(r0, CodeGenerator::GlobalObject());
__ push(r0);
EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// Call to a lookup slot (dynamically introduced variable). Call the
// runtime to find the function to call (returned in eax) and the object
// holding it (returned in edx).
__ push(context_register());
__ mov(r2, Operand(var->name()));
__ push(r2);
__ CallRuntime(Runtime::kLoadContextSlot, 2);
__ push(r0); // Function.
__ push(r1); // Receiver.
EmitCallWithStub(expr);
} else if (fun->AsProperty() != NULL) {
// Call to an object property.
Property* prop = fun->AsProperty();
Literal* key = prop->key()->AsLiteral();
if (key != NULL && key->handle()->IsSymbol()) {
// Call to a named property, use call IC.
VisitForValue(prop->obj(), kStack);
EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET);
} else {
// Call to a keyed property.
// For a synthetic property use keyed load IC followed by function call,
// for a regular property use keyed CallIC.
VisitForValue(prop->obj(), kStack);
if (prop->is_synthetic()) {
VisitForValue(prop->key(), kAccumulator);
// Record source code position for IC call.
SetSourcePosition(prop->position());
__ pop(r1); // We do not need to keep the receiver.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// Push result (function).
__ push(r0);
// Push Global receiver.
__ ldr(r1, CodeGenerator::GlobalObject());
__ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset));
__ push(r1);
EmitCallWithStub(expr);
} else {
EmitKeyedCallWithIC(expr, prop->key(), RelocInfo::CODE_TARGET);
}
}
} else {
// Call to some other expression. If the expression is an anonymous
// function literal not called in a loop, mark it as one that should
// also use the fast code generator.
FunctionLiteral* lit = fun->AsFunctionLiteral();
if (lit != NULL &&
lit->name()->Equals(Heap::empty_string()) &&
loop_depth() == 0) {
lit->set_try_full_codegen(true);
}
VisitForValue(fun, kStack);
// Load global receiver object.
__ ldr(r1, CodeGenerator::GlobalObject());
__ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset));
__ push(r1);
// Emit function call.
EmitCallWithStub(expr);
}
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
VisitForValue(expr->expression(), kStack);
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(expr->position());
// Load function and argument count into r1 and r0.
__ mov(r0, Operand(arg_count));
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
Handle<Code> construct_builtin(Builtins::builtin(Builtins::JSConstructCall));
__ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
Apply(context_, r0);
}
void FullCodeGenerator::EmitIsSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ BranchOnSmi(r0, if_true);
__ b(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ tst(r0, Operand(kSmiTagMask | 0x80000000));
Split(eq, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ BranchOnSmi(r0, if_false);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r0, ip);
__ b(eq, if_true);
__ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
__ tst(r1, Operand(1 << Map::kIsUndetectable));
__ b(ne, if_false);
__ ldrb(r1, FieldMemOperand(r2, Map::kInstanceTypeOffset));
__ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, if_false);
__ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
Split(le, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsSpecObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ BranchOnSmi(r0, if_false);
__ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
Split(ge, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsUndetectableObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ BranchOnSmi(r0, if_false);
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset));
__ tst(r1, Operand(1 << Map::kIsUndetectable));
Split(ne, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
// Just indicate false, as %_IsStringWrapperSafeForDefaultValueOf() is only
// used in a few functions in runtime.js which should not normally be hit by
// this compiler.
__ jmp(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsFunction(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ BranchOnSmi(r0, if_false);
__ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
Split(eq, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ BranchOnSmi(r0, if_false);
__ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
Split(eq, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsRegExp(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ BranchOnSmi(r0, if_false);
__ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
Split(eq, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitIsConstructCall(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
// Get the frame pointer for the calling frame.
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &check_frame_marker);
__ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset));
__ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
Split(eq, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitObjectEquals(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ pop(r1);
__ cmp(r0, r1);
Split(eq, if_true, if_false, fall_through);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitArguments(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
// ArgumentsAccessStub expects the key in edx and the formal
// parameter count in eax.
VisitForValue(args->at(0), kAccumulator);
__ mov(r1, r0);
__ mov(r0, Operand(Smi::FromInt(scope()->num_parameters())));
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
__ CallStub(&stub);
Apply(context_, r0);
}
void FullCodeGenerator::EmitArgumentsLength(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Label exit;
// Get the number of formal parameters.
__ mov(r0, Operand(Smi::FromInt(scope()->num_parameters())));
// Check if the calling frame is an arguments adaptor frame.
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(ne, &exit);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ bind(&exit);
Apply(context_, r0);
}
void FullCodeGenerator::EmitClassOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForValue(args->at(0), kAccumulator);
// If the object is a smi, we return null.
__ BranchOnSmi(r0, &null);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
__ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE); // Map is now in r0.
__ b(lt, &null);
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ cmp(r1, Operand(JS_FUNCTION_TYPE));
__ b(eq, &function);
// Check if the constructor in the map is a function.
__ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset));
__ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
__ b(ne, &non_function_constructor);
// r0 now contains the constructor function. Grab the
// instance class name from there.
__ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset));
__ b(&done);
// Functions have class 'Function'.
__ bind(&function);
__ LoadRoot(r0, Heap::kfunction_class_symbolRootIndex);
__ jmp(&done);
// Objects with a non-function constructor have class 'Object'.
__ bind(&non_function_constructor);
__ LoadRoot(r0, Heap::kfunction_class_symbolRootIndex);
__ jmp(&done);
// Non-JS objects have class null.
__ bind(&null);
__ LoadRoot(r0, Heap::kNullValueRootIndex);
// All done.
__ bind(&done);
Apply(context_, r0);
}
void FullCodeGenerator::EmitLog(ZoneList<Expression*>* args) {
// Conditionally generate a log call.
// Args:
// 0 (literal string): The type of logging (corresponds to the flags).
// This is used to determine whether or not to generate the log call.
// 1 (string): Format string. Access the string at argument index 2
// with '%2s' (see Logger::LogRuntime for all the formats).
// 2 (array): Arguments to the format string.
ASSERT_EQ(args->length(), 3);
#ifdef ENABLE_LOGGING_AND_PROFILING
if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
__ CallRuntime(Runtime::kLog, 2);
}
#endif
// Finally, we're expected to leave a value on the top of the stack.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
Apply(context_, r0);
}
void FullCodeGenerator::EmitRandomHeapNumber(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Label slow_allocate_heapnumber;
Label heapnumber_allocated;
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r4, r1, r2, r6, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
// Allocate a heap number.
__ CallRuntime(Runtime::kNumberAlloc, 0);
__ mov(r4, Operand(r0));
__ bind(&heapnumber_allocated);
// Convert 32 random bits in r0 to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
if (CpuFeatures::IsSupported(VFP3)) {
__ PrepareCallCFunction(0, r1);
__ CallCFunction(ExternalReference::random_uint32_function(), 0);
CpuFeatures::Scope scope(VFP3);
// 0x41300000 is the top half of 1.0 x 2^20 as a double.
// Create this constant using mov/orr to avoid PC relative load.
__ mov(r1, Operand(0x41000000));
__ orr(r1, r1, Operand(0x300000));
// Move 0x41300000xxxxxxxx (x = random bits) to VFP.
__ vmov(d7, r0, r1);
// Move 0x4130000000000000 to VFP.
__ mov(r0, Operand(0, RelocInfo::NONE));
__ vmov(d8, r0, r1);
// Subtract and store the result in the heap number.
__ vsub(d7, d7, d8);
__ sub(r0, r4, Operand(kHeapObjectTag));
__ vstr(d7, r0, HeapNumber::kValueOffset);
__ mov(r0, r4);
} else {
__ mov(r0, Operand(r4));
__ PrepareCallCFunction(1, r1);
__ CallCFunction(
ExternalReference::fill_heap_number_with_random_function(), 1);
}
Apply(context_, r0);
}
void FullCodeGenerator::EmitSubString(ZoneList<Expression*>* args) {
// Load the arguments on the stack and call the stub.
SubStringStub stub;
ASSERT(args->length() == 3);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
__ CallStub(&stub);
Apply(context_, r0);
}
void FullCodeGenerator::EmitRegExpExec(ZoneList<Expression*>* args) {
// Load the arguments on the stack and call the stub.
RegExpExecStub stub;
ASSERT(args->length() == 4);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
VisitForValue(args->at(3), kStack);
__ CallStub(&stub);
Apply(context_, r0);
}
void FullCodeGenerator::EmitValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator); // Load the object.
Label done;
// If the object is a smi return the object.
__ BranchOnSmi(r0, &done);
// If the object is not a value type, return the object.
__ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE);
__ b(ne, &done);
__ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
__ bind(&done);
Apply(context_, r0);
}
void FullCodeGenerator::EmitMathPow(ZoneList<Expression*>* args) {
// Load the arguments on the stack and call the runtime function.
ASSERT(args->length() == 2);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
__ CallRuntime(Runtime::kMath_pow, 2);
Apply(context_, r0);
}
void FullCodeGenerator::EmitSetValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
VisitForValue(args->at(0), kStack); // Load the object.
VisitForValue(args->at(1), kAccumulator); // Load the value.
__ pop(r1); // r0 = value. r1 = object.
Label done;
// If the object is a smi, return the value.
__ BranchOnSmi(r1, &done);
// If the object is not a value type, return the value.
__ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE);
__ b(ne, &done);
// Store the value.
__ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
__ RecordWrite(r1, Operand(JSValue::kValueOffset - kHeapObjectTag), r2, r3);
__ bind(&done);
Apply(context_, r0);
}
void FullCodeGenerator::EmitNumberToString(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and call the stub.
VisitForValue(args->at(0), kStack);
NumberToStringStub stub;
__ CallStub(&stub);
Apply(context_, r0);
}
void FullCodeGenerator::EmitStringCharFromCode(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
Label done;
StringCharFromCodeGenerator generator(r0, r1);
generator.GenerateFast(masm_);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
Apply(context_, r1);
}
void FullCodeGenerator::EmitStringCharCodeAt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kAccumulator);
Register object = r1;
Register index = r0;
Register scratch = r2;
Register result = r3;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object,
index,
scratch,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result, Heap::kNanValueRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Load the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
Apply(context_, result);
}
void FullCodeGenerator::EmitStringCharAt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kAccumulator);
Register object = r1;
Register index = r0;
Register scratch1 = r2;
Register scratch2 = r3;
Register result = r0;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharAtGenerator generator(object,
index,
scratch1,
scratch2,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result, Heap::kEmptyStringRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Move smi zero into the result register, which will trigger
// conversion.
__ mov(result, Operand(Smi::FromInt(0)));
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
Apply(context_, result);
}
void FullCodeGenerator::EmitStringAdd(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
StringAddStub stub(NO_STRING_ADD_FLAGS);
__ CallStub(&stub);
Apply(context_, r0);
}
void FullCodeGenerator::EmitStringCompare(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
StringCompareStub stub;
__ CallStub(&stub);
Apply(context_, r0);
}
void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the runtime.
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kStack);
__ CallRuntime(Runtime::kMath_sin, 1);
Apply(context_, r0);
}
void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the runtime.
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kStack);
__ CallRuntime(Runtime::kMath_cos, 1);
Apply(context_, r0);
}
void FullCodeGenerator::EmitMathSqrt(ZoneList<Expression*>* args) {
// Load the argument on the stack and call the runtime function.
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kStack);
__ CallRuntime(Runtime::kMath_sqrt, 1);
Apply(context_, r0);
}
void FullCodeGenerator::EmitCallFunction(ZoneList<Expression*>* args) {
ASSERT(args->length() >= 2);
int arg_count = args->length() - 2; // For receiver and function.
VisitForValue(args->at(0), kStack); // Receiver.
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i + 1), kStack);
}
VisitForValue(args->at(arg_count + 1), kAccumulator); // Function.
// InvokeFunction requires function in r1. Move it in there.
if (!result_register().is(r1)) __ mov(r1, result_register());
ParameterCount count(arg_count);
__ InvokeFunction(r1, count, CALL_FUNCTION);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
Apply(context_, r0);
}
void FullCodeGenerator::EmitRegExpConstructResult(ZoneList<Expression*>* args) {
ASSERT(args->length() == 3);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
__ CallRuntime(Runtime::kRegExpConstructResult, 3);
Apply(context_, r0);
}
void FullCodeGenerator::EmitSwapElements(ZoneList<Expression*>* args) {
ASSERT(args->length() == 3);
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kStack);
VisitForValue(args->at(2), kStack);
__ CallRuntime(Runtime::kSwapElements, 3);
Apply(context_, r0);
}
void FullCodeGenerator::EmitGetFromCache(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
ASSERT_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
Handle<FixedArray> jsfunction_result_caches(
Top::global_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort("Attempt to use undefined cache.");
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
Apply(context_, r0);
return;
}
VisitForValue(args->at(1), kAccumulator);
Register key = r0;
Register cache = r1;
__ ldr(cache, CodeGenerator::ContextOperand(cp, Context::GLOBAL_INDEX));
__ ldr(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset));
__ ldr(cache,
CodeGenerator::ContextOperand(
cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ ldr(cache,
FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
Label done, not_found;
// tmp now holds finger offset as a smi.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ ldr(r2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
// r2 now holds finger offset as a smi.
__ add(r3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// r3 now points to the start of fixed array elements.
__ ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex));
// Note side effect of PreIndex: r3 now points to the key of the pair.
__ cmp(key, r2);
__ b(ne, &not_found);
__ ldr(r0, MemOperand(r3, kPointerSize));
__ b(&done);
__ bind(&not_found);
// Call runtime to perform the lookup.
__ Push(cache, key);
__ CallRuntime(Runtime::kGetFromCache, 2);
__ bind(&done);
Apply(context_, r0);
}
void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Register right = r0;
Register left = r1;
Register tmp = r2;
Register tmp2 = r3;
VisitForValue(args->at(0), kStack);
VisitForValue(args->at(1), kAccumulator);
__ pop(left);
Label done, fail, ok;
__ cmp(left, Operand(right));
__ b(eq, &ok);
// Fail if either is a non-HeapObject.
__ and_(tmp, left, Operand(right));
__ tst(tmp, Operand(kSmiTagMask));
__ b(eq, &fail);
__ ldr(tmp, FieldMemOperand(left, HeapObject::kMapOffset));
__ ldrb(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset));
__ cmp(tmp2, Operand(JS_REGEXP_TYPE));
__ b(ne, &fail);
__ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ cmp(tmp, Operand(tmp2));
__ b(ne, &fail);
__ ldr(tmp, FieldMemOperand(left, JSRegExp::kDataOffset));
__ ldr(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset));
__ cmp(tmp, tmp2);
__ b(eq, &ok);
__ bind(&fail);
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
__ jmp(&done);
__ bind(&ok);
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
__ bind(&done);
Apply(context_, r0);
}
void FullCodeGenerator::EmitHasCachedArrayIndex(ZoneList<Expression*>* args) {
VisitForValue(args->at(0), kAccumulator);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
__ tst(r0, Operand(String::kContainsCachedArrayIndexMask));
__ b(eq, if_true);
__ b(if_false);
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::EmitGetCachedArrayIndex(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
VisitForValue(args->at(0), kAccumulator);
__ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
__ IndexFromHash(r0, r0);
Apply(context_, r0);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
Handle<String> name = expr->name();
if (name->length() > 0 && name->Get(0) == '_') {
Comment cmnt(masm_, "[ InlineRuntimeCall");
EmitInlineRuntimeCall(expr);
return;
}
Comment cmnt(masm_, "[ CallRuntime");
ZoneList<Expression*>* args = expr->arguments();
if (expr->is_jsruntime()) {
// Prepare for calling JS runtime function.
__ ldr(r0, CodeGenerator::GlobalObject());
__ ldr(r0, FieldMemOperand(r0, GlobalObject::kBuiltinsOffset));
__ push(r0);
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForValue(args->at(i), kStack);
}
if (expr->is_jsruntime()) {
// Call the JS runtime function.
__ mov(r2, Operand(expr->name()));
Handle<Code> ic = CodeGenerator::ComputeCallInitialize(arg_count,
NOT_IN_LOOP);
__ Call(ic, RelocInfo::CODE_TARGET);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
} else {
// Call the C runtime function.
__ CallRuntime(expr->function(), arg_count);
}
Apply(context_, r0);
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* prop = expr->expression()->AsProperty();
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (prop == NULL && var == NULL) {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
Apply(context_, true);
} else if (var != NULL &&
!var->is_global() &&
var->slot() != NULL &&
var->slot()->type() != Slot::LOOKUP) {
// Result of deleting non-global, non-dynamic variables is false.
// The subexpression does not have side effects.
Apply(context_, false);
} else {
// Property or variable reference. Call the delete builtin with
// object and property name as arguments.
if (prop != NULL) {
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kStack);
} else if (var->is_global()) {
__ ldr(r1, CodeGenerator::GlobalObject());
__ mov(r0, Operand(var->name()));
__ Push(r1, r0);
} else {
// Non-global variable. Call the runtime to look up the context
// where the variable was introduced.
__ push(context_register());
__ mov(r2, Operand(var->name()));
__ push(r2);
__ CallRuntime(Runtime::kLookupContext, 2);
__ push(r0);
__ mov(r2, Operand(var->name()));
__ push(r2);
}
__ InvokeBuiltin(Builtins::DELETE, CALL_JS);
Apply(context_, r0);
}
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
break;
case Expression::kEffect:
break;
case Expression::kValue:
__ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex);
switch (location_) {
case kAccumulator:
break;
case kStack:
__ push(result_register());
break;
}
break;
case Expression::kTest:
__ jmp(false_label_);
break;
}
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
// Notice that the labels are swapped.
PrepareTest(&materialize_true, &materialize_false,
&if_false, &if_true, &fall_through);
VisitForControl(expr->expression(), if_true, if_false, fall_through);
Apply(context_, if_false, if_true); // Labels swapped.
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
VisitForTypeofValue(expr->expression(), kStack);
__ CallRuntime(Runtime::kTypeof, 1);
Apply(context_, r0);
break;
}
case Token::ADD: {
Comment cmt(masm_, "[ UnaryOperation (ADD)");
VisitForValue(expr->expression(), kAccumulator);
Label no_conversion;
__ tst(result_register(), Operand(kSmiTagMask));
__ b(eq, &no_conversion);
__ push(r0);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS);
__ bind(&no_conversion);
Apply(context_, result_register());
break;
}
case Token::SUB: {
Comment cmt(masm_, "[ UnaryOperation (SUB)");
bool can_overwrite = expr->expression()->ResultOverwriteAllowed();
UnaryOverwriteMode overwrite =
can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
GenericUnaryOpStub stub(Token::SUB, overwrite);
// GenericUnaryOpStub expects the argument to be in the
// accumulator register r0.
VisitForValue(expr->expression(), kAccumulator);
__ CallStub(&stub);
Apply(context_, r0);
break;
}
case Token::BIT_NOT: {
Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)");
// The generic unary operation stub expects the argument to be
// in the accumulator register r0.
VisitForValue(expr->expression(), kAccumulator);
Label done;
if (ShouldInlineSmiCase(expr->op())) {
Label call_stub;
__ BranchOnNotSmi(r0, &call_stub);
__ mvn(r0, Operand(r0));
// Bit-clear inverted smi-tag.
__ bic(r0, r0, Operand(kSmiTagMask));
__ b(&done);
__ bind(&call_stub);
}
bool overwrite = expr->expression()->ResultOverwriteAllowed();
UnaryOverwriteMode mode =
overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
GenericUnaryOpStub stub(Token::BIT_NOT, mode);
__ CallStub(&stub);
__ bind(&done);
Apply(context_, r0);
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
Comment cmnt(masm_, "[ CountOperation");
SetSourcePosition(expr->position());
// Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
// as the left-hand side.
if (!expr->expression()->IsValidLeftHandSide()) {
VisitForEffect(expr->expression());
return;
}
// Expression can only be a property, a global or a (parameter or local)
// slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->expression()->AsProperty();
// In case of a property we use the uninitialized expression context
// of the key to detect a named property.
if (prop != NULL) {
assign_type =
(prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
}
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
Location saved_location = location_;
location_ = kAccumulator;
EmitVariableLoad(expr->expression()->AsVariableProxy()->var(),
Expression::kValue);
location_ = saved_location;
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && context_ != Expression::kEffect) {
__ mov(ip, Operand(Smi::FromInt(0)));
__ push(ip);
}
if (assign_type == NAMED_PROPERTY) {
// Put the object both on the stack and in the accumulator.
VisitForValue(prop->obj(), kAccumulator);
__ push(r0);
EmitNamedPropertyLoad(prop);
} else {
VisitForValue(prop->obj(), kStack);
VisitForValue(prop->key(), kAccumulator);
__ ldr(r1, MemOperand(sp, 0));
__ push(r0);
EmitKeyedPropertyLoad(prop);
}
}
// Call ToNumber only if operand is not a smi.
Label no_conversion;
__ BranchOnSmi(r0, &no_conversion);
__ push(r0);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS);
__ bind(&no_conversion);
// Save result for postfix expressions.
if (expr->is_postfix()) {
switch (context_) {
case Expression::kUninitialized:
UNREACHABLE();
case Expression::kEffect:
// Do not save result.
break;
case Expression::kValue:
case Expression::kTest:
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(r0);
break;
case NAMED_PROPERTY:
__ str(r0, MemOperand(sp, kPointerSize));
break;
case KEYED_PROPERTY:
__ str(r0, MemOperand(sp, 2 * kPointerSize));
break;
}
break;
}
}
// Inline smi case if we are in a loop.
Label stub_call, done;
int count_value = expr->op() == Token::INC ? 1 : -1;
if (ShouldInlineSmiCase(expr->op())) {
__ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC);
__ b(vs, &stub_call);
// We could eliminate this smi check if we split the code at
// the first smi check before calling ToNumber.
__ BranchOnSmi(r0, &done);
__ bind(&stub_call);
// Call stub. Undo operation first.
__ sub(r0, r0, Operand(Smi::FromInt(count_value)));
}
__ mov(r1, Operand(Smi::FromInt(count_value)));
GenericBinaryOpStub stub(Token::ADD, NO_OVERWRITE, r1, r0);
__ CallStub(&stub);
__ bind(&done);
// Store the value returned in r0.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN,
Expression::kEffect);
// For all contexts except kEffect: We have the result on
// top of the stack.
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN,
context_);
}
break;
case NAMED_PROPERTY: {
__ mov(r2, Operand(prop->key()->AsLiteral()->handle()));
__ pop(r1);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
if (expr->is_postfix()) {
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
Apply(context_, r0);
}
break;
}
case KEYED_PROPERTY: {
__ pop(r1); // Key.
__ pop(r2); // Receiver.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
if (expr->is_postfix()) {
if (context_ != Expression::kEffect) {
ApplyTOS(context_);
}
} else {
Apply(context_, r0);
}
break;
}
}
}
void FullCodeGenerator::VisitForTypeofValue(Expression* expr, Location where) {
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) {
Comment cmnt(masm_, "Global variable");
__ ldr(r0, CodeGenerator::GlobalObject());
__ mov(r2, Operand(proxy->name()));
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
// Use a regular load, not a contextual load, to avoid a reference
// error.
__ Call(ic, RelocInfo::CODE_TARGET);
if (where == kStack) __ push(r0);
} else if (proxy != NULL &&
proxy->var()->slot() != NULL &&
proxy->var()->slot()->type() == Slot::LOOKUP) {
__ mov(r0, Operand(proxy->name()));
__ Push(cp, r0);
__ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
if (where == kStack) __ push(r0);
} else {
// This expression cannot throw a reference error at the top level.
VisitForValue(expr, where);
}
}
bool FullCodeGenerator::TryLiteralCompare(Token::Value op,
Expression* left,
Expression* right,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (op != Token::EQ && op != Token::EQ_STRICT) return false;
// Check for the pattern: typeof <expression> == <string literal>.
Literal* right_literal = right->AsLiteral();
if (right_literal == NULL) return false;
Handle<Object> right_literal_value = right_literal->handle();
if (!right_literal_value->IsString()) return false;
UnaryOperation* left_unary = left->AsUnaryOperation();
if (left_unary == NULL || left_unary->op() != Token::TYPEOF) return false;
Handle<String> check = Handle<String>::cast(right_literal_value);
VisitForTypeofValue(left_unary->expression(), kAccumulator);
if (check->Equals(Heap::number_symbol())) {
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, if_true);
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(r0, ip);
Split(eq, if_true, if_false, fall_through);
} else if (check->Equals(Heap::string_symbol())) {
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, if_false);
// Check for undetectable objects => false.
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
__ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
__ cmp(r1, Operand(1 << Map::kIsUndetectable));
__ b(eq, if_false);
__ ldrb(r1, FieldMemOperand(r0, Map::kInstanceTypeOffset));
__ cmp(r1, Operand(FIRST_NONSTRING_TYPE));
Split(lt, if_true, if_false, fall_through);
} else if (check->Equals(Heap::boolean_symbol())) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r0, ip);
__ b(eq, if_true);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r0, ip);
Split(eq, if_true, if_false, fall_through);
} else if (check->Equals(Heap::undefined_symbol())) {
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
__ b(eq, if_true);
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, if_false);
// Check for undetectable objects => true.
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
__ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
__ cmp(r1, Operand(1 << Map::kIsUndetectable));
Split(eq, if_true, if_false, fall_through);
} else if (check->Equals(Heap::function_symbol())) {
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, if_false);
__ CompareObjectType(r0, r1, r0, JS_FUNCTION_TYPE);
__ b(eq, if_true);
// Regular expressions => 'function' (they are callable).
__ CompareInstanceType(r1, r0, JS_REGEXP_TYPE);
Split(eq, if_true, if_false, fall_through);
} else if (check->Equals(Heap::object_symbol())) {
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, if_false);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r0, ip);
__ b(eq, if_true);
// Regular expressions => 'function', not 'object'.
__ CompareObjectType(r0, r1, r0, JS_REGEXP_TYPE);
__ b(eq, if_false);
// Check for undetectable objects => false.
__ ldrb(r0, FieldMemOperand(r1, Map::kBitFieldOffset));
__ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
__ cmp(r0, Operand(1 << Map::kIsUndetectable));
__ b(eq, if_false);
// Check for JS objects => true.
__ ldrb(r0, FieldMemOperand(r1, Map::kInstanceTypeOffset));
__ cmp(r0, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, if_false);
__ cmp(r0, Operand(LAST_JS_OBJECT_TYPE));
Split(le, if_true, if_false, fall_through);
} else {
if (if_false != fall_through) __ jmp(if_false);
}
return true;
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
SetSourcePosition(expr->position());
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
// First we try a fast inlined version of the compare when one of
// the operands is a literal.
Token::Value op = expr->op();
Expression* left = expr->left();
Expression* right = expr->right();
if (TryLiteralCompare(op, left, right, if_true, if_false, fall_through)) {
Apply(context_, if_true, if_false);
return;
}
VisitForValue(expr->left(), kStack);
switch (op) {
case Token::IN:
VisitForValue(expr->right(), kStack);
__ InvokeBuiltin(Builtins::IN, CALL_JS);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r0, ip);
Split(eq, if_true, if_false, fall_through);
break;
case Token::INSTANCEOF: {
VisitForValue(expr->right(), kStack);
InstanceofStub stub;
__ CallStub(&stub);
// The stub returns 0 for true.
__ tst(r0, r0);
Split(eq, if_true, if_false, fall_through);
break;
}
default: {
VisitForValue(expr->right(), kAccumulator);
Condition cc = eq;
bool strict = false;
switch (op) {
case Token::EQ_STRICT:
strict = true;
// Fall through
case Token::EQ:
cc = eq;
__ pop(r1);
break;
case Token::LT:
cc = lt;
__ pop(r1);
break;
case Token::GT:
// Reverse left and right sides to obtain ECMA-262 conversion order.
cc = lt;
__ mov(r1, result_register());
__ pop(r0);
break;
case Token::LTE:
// Reverse left and right sides to obtain ECMA-262 conversion order.
cc = ge;
__ mov(r1, result_register());
__ pop(r0);
break;
case Token::GTE:
cc = ge;
__ pop(r1);
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
if (ShouldInlineSmiCase(op)) {
Label slow_case;
__ orr(r2, r0, Operand(r1));
__ BranchOnNotSmi(r2, &slow_case);
__ cmp(r1, r0);
Split(cc, if_true, if_false, NULL);
__ bind(&slow_case);
}
CompareStub stub(cc, strict, kBothCouldBeNaN, true, r1, r0);
__ CallStub(&stub);
__ cmp(r0, Operand(0, RelocInfo::NONE));
Split(cc, if_true, if_false, fall_through);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::VisitCompareToNull(CompareToNull* expr) {
Comment cmnt(masm_, "[ CompareToNull");
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
VisitForValue(expr->expression(), kAccumulator);
__ LoadRoot(r1, Heap::kNullValueRootIndex);
__ cmp(r0, r1);
if (expr->is_strict()) {
Split(eq, if_true, if_false, fall_through);
} else {
__ b(eq, if_true);
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
__ cmp(r0, r1);
__ b(eq, if_true);
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, if_false);
// It can be an undetectable object.
__ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset));
__ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
__ cmp(r1, Operand(1 << Map::kIsUndetectable));
Split(eq, if_true, if_false, fall_through);
}
Apply(context_, if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
Apply(context_, r0);
}
Register FullCodeGenerator::result_register() { return r0; }
Register FullCodeGenerator::context_register() { return cp; }
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
__ str(value, MemOperand(fp, frame_offset));
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ ldr(dst, CodeGenerator::ContextOperand(cp, context_index));
}
// ----------------------------------------------------------------------------
// Non-local control flow support.
void FullCodeGenerator::EnterFinallyBlock() {
ASSERT(!result_register().is(r1));
// Store result register while executing finally block.
__ push(result_register());
// Cook return address in link register to stack (smi encoded Code* delta)
__ sub(r1, lr, Operand(masm_->CodeObject()));
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
ASSERT_EQ(0, kSmiTag);
__ add(r1, r1, Operand(r1)); // Convert to smi.
__ push(r1);
}
void FullCodeGenerator::ExitFinallyBlock() {
ASSERT(!result_register().is(r1));
// Restore result register from stack.
__ pop(r1);
// Uncook return address and return.
__ pop(result_register());
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
__ mov(r1, Operand(r1, ASR, 1)); // Un-smi-tag value.
__ add(pc, r1, Operand(masm_->CodeObject()));
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM