| // Copyright 2006-2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_ |
| #define V8_ARM_MACRO_ASSEMBLER_ARM_H_ |
| |
| #include "assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ---------------------------------------------------------------------------- |
| // Static helper functions |
| |
| // Generate a MemOperand for loading a field from an object. |
| static inline MemOperand FieldMemOperand(Register object, int offset) { |
| return MemOperand(object, offset - kHeapObjectTag); |
| } |
| |
| |
| // Give alias names to registers |
| const Register cp = { 8 }; // JavaScript context pointer |
| const Register roots = { 10 }; // Roots array pointer. |
| |
| enum InvokeJSFlags { |
| CALL_JS, |
| JUMP_JS |
| }; |
| |
| |
| // Flags used for the AllocateInNewSpace functions. |
| enum AllocationFlags { |
| // No special flags. |
| NO_ALLOCATION_FLAGS = 0, |
| // Return the pointer to the allocated already tagged as a heap object. |
| TAG_OBJECT = 1 << 0, |
| // The content of the result register already contains the allocation top in |
| // new space. |
| RESULT_CONTAINS_TOP = 1 << 1, |
| // Specify that the requested size of the space to allocate is specified in |
| // words instead of bytes. |
| SIZE_IN_WORDS = 1 << 2 |
| }; |
| |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class MacroAssembler: public Assembler { |
| public: |
| MacroAssembler(void* buffer, int size); |
| |
| // Jump, Call, and Ret pseudo instructions implementing inter-working. |
| void Jump(Register target, Condition cond = al); |
| void Jump(byte* target, RelocInfo::Mode rmode, Condition cond = al); |
| void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); |
| void Call(Register target, Condition cond = al); |
| void Call(byte* target, RelocInfo::Mode rmode, Condition cond = al); |
| void Call(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); |
| void Ret(Condition cond = al); |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the sp register. |
| void Drop(int count, Condition cond = al); |
| |
| |
| // Swap two registers. If the scratch register is omitted then a slightly |
| // less efficient form using xor instead of mov is emitted. |
| void Swap(Register reg1, |
| Register reg2, |
| Register scratch = no_reg, |
| Condition cond = al); |
| |
| |
| void And(Register dst, Register src1, const Operand& src2, |
| Condition cond = al); |
| void Ubfx(Register dst, Register src, int lsb, int width, |
| Condition cond = al); |
| void Sbfx(Register dst, Register src, int lsb, int width, |
| Condition cond = al); |
| void Bfc(Register dst, int lsb, int width, Condition cond = al); |
| |
| void Call(Label* target); |
| void Move(Register dst, Handle<Object> value); |
| // May do nothing if the registers are identical. |
| void Move(Register dst, Register src); |
| // Jumps to the label at the index given by the Smi in "index". |
| void SmiJumpTable(Register index, Vector<Label*> targets); |
| // Load an object from the root table. |
| void LoadRoot(Register destination, |
| Heap::RootListIndex index, |
| Condition cond = al); |
| // Store an object to the root table. |
| void StoreRoot(Register source, |
| Heap::RootListIndex index, |
| Condition cond = al); |
| |
| |
| // Check if object is in new space. |
| // scratch can be object itself, but it will be clobbered. |
| void InNewSpace(Register object, |
| Register scratch, |
| Condition cc, // eq for new space, ne otherwise |
| Label* branch); |
| |
| |
| // For the page containing |object| mark the region covering [object+offset] |
| // dirty. The object address must be in the first 8K of an allocated page. |
| void RecordWriteHelper(Register object, |
| Operand offset, |
| Register scratch0, |
| Register scratch1); |
| |
| // For the page containing |object| mark the region covering [object+offset] |
| // dirty. The object address must be in the first 8K of an allocated page. |
| // The 'scratch' registers are used in the implementation and all 3 registers |
| // are clobbered by the operation, as well as the ip register. |
| void RecordWrite(Register object, |
| Operand offset, |
| Register scratch0, |
| Register scratch1); |
| |
| // Push two registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Condition cond = al) { |
| ASSERT(!src1.is(src2)); |
| if (src1.code() > src2.code()) { |
| stm(db_w, sp, src1.bit() | src2.bit(), cond); |
| } else { |
| str(src1, MemOperand(sp, 4, NegPreIndex), cond); |
| str(src2, MemOperand(sp, 4, NegPreIndex), cond); |
| } |
| } |
| |
| // Push three registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Condition cond = al) { |
| ASSERT(!src1.is(src2)); |
| ASSERT(!src2.is(src3)); |
| ASSERT(!src1.is(src3)); |
| if (src1.code() > src2.code()) { |
| if (src2.code() > src3.code()) { |
| stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond); |
| } else { |
| stm(db_w, sp, src1.bit() | src2.bit(), cond); |
| str(src3, MemOperand(sp, 4, NegPreIndex), cond); |
| } |
| } else { |
| str(src1, MemOperand(sp, 4, NegPreIndex), cond); |
| Push(src2, src3, cond); |
| } |
| } |
| |
| // Push four registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, |
| Register src3, Register src4, Condition cond = al) { |
| ASSERT(!src1.is(src2)); |
| ASSERT(!src2.is(src3)); |
| ASSERT(!src1.is(src3)); |
| ASSERT(!src1.is(src4)); |
| ASSERT(!src2.is(src4)); |
| ASSERT(!src3.is(src4)); |
| if (src1.code() > src2.code()) { |
| if (src2.code() > src3.code()) { |
| if (src3.code() > src4.code()) { |
| stm(db_w, |
| sp, |
| src1.bit() | src2.bit() | src3.bit() | src4.bit(), |
| cond); |
| } else { |
| stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond); |
| str(src4, MemOperand(sp, 4, NegPreIndex), cond); |
| } |
| } else { |
| stm(db_w, sp, src1.bit() | src2.bit(), cond); |
| Push(src3, src4, cond); |
| } |
| } else { |
| str(src1, MemOperand(sp, 4, NegPreIndex), cond); |
| Push(src2, src3, src4, cond); |
| } |
| } |
| |
| // Load two consecutive registers with two consecutive memory locations. |
| void Ldrd(Register dst1, |
| Register dst2, |
| const MemOperand& src, |
| Condition cond = al); |
| |
| // Store two consecutive registers to two consecutive memory locations. |
| void Strd(Register src1, |
| Register src2, |
| const MemOperand& dst, |
| Condition cond = al); |
| |
| // --------------------------------------------------------------------------- |
| // Stack limit support |
| |
| void StackLimitCheck(Label* on_stack_limit_hit); |
| |
| // --------------------------------------------------------------------------- |
| // Activation frames |
| |
| void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } |
| void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } |
| |
| void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } |
| void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } |
| |
| // Enter specific kind of exit frame; either normal or debug mode. |
| // Expects the number of arguments in register r0 and |
| // the builtin function to call in register r1. Exits with argc in |
| // r4, argv in r6, and and the builtin function to call in r5. |
| void EnterExitFrame(ExitFrame::Mode mode); |
| |
| // Leave the current exit frame. Expects the return value in r0. |
| void LeaveExitFrame(ExitFrame::Mode mode); |
| |
| // Get the actual activation frame alignment for target environment. |
| static int ActivationFrameAlignment(); |
| |
| void LoadContext(Register dst, int context_chain_length); |
| |
| // --------------------------------------------------------------------------- |
| // JavaScript invokes |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag); |
| |
| void InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag); |
| |
| void InvokeFunction(JSFunction* function, |
| const ParameterCount& actual, |
| InvokeFlag flag); |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // --------------------------------------------------------------------------- |
| // Debugger Support |
| |
| void SaveRegistersToMemory(RegList regs); |
| void RestoreRegistersFromMemory(RegList regs); |
| void CopyRegistersFromMemoryToStack(Register base, RegList regs); |
| void CopyRegistersFromStackToMemory(Register base, |
| Register scratch, |
| RegList regs); |
| void DebugBreak(); |
| #endif |
| |
| // --------------------------------------------------------------------------- |
| // Exception handling |
| |
| // Push a new try handler and link into try handler chain. |
| // The return address must be passed in register lr. |
| // On exit, r0 contains TOS (code slot). |
| void PushTryHandler(CodeLocation try_location, HandlerType type); |
| |
| // Unlink the stack handler on top of the stack from the try handler chain. |
| // Must preserve the result register. |
| void PopTryHandler(); |
| |
| // --------------------------------------------------------------------------- |
| // Inline caching support |
| |
| // Generates code that verifies that the maps of objects in the |
| // prototype chain of object hasn't changed since the code was |
| // generated and branches to the miss label if any map has. If |
| // necessary the function also generates code for security check |
| // in case of global object holders. The scratch and holder |
| // registers are always clobbered, but the object register is only |
| // clobbered if it the same as the holder register. The function |
| // returns a register containing the holder - either object_reg or |
| // holder_reg. |
| // The function can optionally (when save_at_depth != |
| // kInvalidProtoDepth) save the object at the given depth by moving |
| // it to [sp]. |
| Register CheckMaps(JSObject* object, Register object_reg, |
| JSObject* holder, Register holder_reg, |
| Register scratch, |
| int save_at_depth, |
| Label* miss); |
| |
| // Generate code for checking access rights - used for security checks |
| // on access to global objects across environments. The holder register |
| // is left untouched, whereas both scratch registers are clobbered. |
| void CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Allocation support |
| |
| // Allocate an object in new space. The object_size is specified in words (not |
| // bytes). If the new space is exhausted control continues at the gc_required |
| // label. The allocated object is returned in result. If the flag |
| // tag_allocated_object is true the result is tagged as as a heap object. All |
| // registers are clobbered also when control continues at the gc_required |
| // label. |
| void AllocateInNewSpace(int object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags); |
| void AllocateInNewSpace(Register object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| // Undo allocation in new space. The object passed and objects allocated after |
| // it will no longer be allocated. The caller must make sure that no pointers |
| // are left to the object(s) no longer allocated as they would be invalid when |
| // allocation is undone. |
| void UndoAllocationInNewSpace(Register object, Register scratch); |
| |
| |
| void AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateTwoByteConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateAsciiConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Allocates a heap number or jumps to the gc_required label if the young |
| // space is full and a scavenge is needed. All registers are clobbered also |
| // when control continues at the gc_required label. |
| void AllocateHeapNumber(Register result, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* gc_required); |
| |
| // --------------------------------------------------------------------------- |
| // Support functions. |
| |
| // Try to get function prototype of a function and puts the value in |
| // the result register. Checks that the function really is a |
| // function and jumps to the miss label if the fast checks fail. The |
| // function register will be untouched; the other registers may be |
| // clobbered. |
| void TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss); |
| |
| // Compare object type for heap object. heap_object contains a non-Smi |
| // whose object type should be compared with the given type. This both |
| // sets the flags and leaves the object type in the type_reg register. |
| // It leaves the map in the map register (unless the type_reg and map register |
| // are the same register). It leaves the heap object in the heap_object |
| // register unless the heap_object register is the same register as one of the |
| // other registers. |
| void CompareObjectType(Register heap_object, |
| Register map, |
| Register type_reg, |
| InstanceType type); |
| |
| // Compare instance type in a map. map contains a valid map object whose |
| // object type should be compared with the given type. This both |
| // sets the flags and leaves the object type in the type_reg register. It |
| // leaves the heap object in the heap_object register unless the heap_object |
| // register is the same register as type_reg. |
| void CompareInstanceType(Register map, |
| Register type_reg, |
| InstanceType type); |
| |
| |
| // Check if the map of an object is equal to a specified map (either |
| // given directly or as an index into the root list) and branch to |
| // label if not. Skip the smi check if not required (object is known |
| // to be a heap object) |
| void CheckMap(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Label* fail, |
| bool is_heap_object); |
| |
| void CheckMap(Register obj, |
| Register scratch, |
| Heap::RootListIndex index, |
| Label* fail, |
| bool is_heap_object); |
| |
| |
| // Load and check the instance type of an object for being a string. |
| // Loads the type into the second argument register. |
| // Returns a condition that will be enabled if the object was a string. |
| Condition IsObjectStringType(Register obj, |
| Register type) { |
| ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset)); |
| tst(type, Operand(kIsNotStringMask)); |
| ASSERT_EQ(0, kStringTag); |
| return eq; |
| } |
| |
| |
| inline void BranchOnSmi(Register value, Label* smi_label) { |
| tst(value, Operand(kSmiTagMask)); |
| b(eq, smi_label); |
| } |
| |
| inline void BranchOnNotSmi(Register value, Label* not_smi_label) { |
| tst(value, Operand(kSmiTagMask)); |
| b(ne, not_smi_label); |
| } |
| |
| // Generates code for reporting that an illegal operation has |
| // occurred. |
| void IllegalOperation(int num_arguments); |
| |
| // Get the number of least significant bits from a register |
| void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits); |
| |
| // Uses VFP instructions to Convert a Smi to a double. |
| void IntegerToDoubleConversionWithVFP3(Register inReg, |
| Register outHighReg, |
| Register outLowReg); |
| |
| // Count leading zeros in a 32 bit word. On ARM5 and later it uses the clz |
| // instruction. On pre-ARM5 hardware this routine gives the wrong answer |
| // for 0 (31 instead of 32). |
| void CountLeadingZeros(Register source, |
| Register scratch, |
| Register zeros); |
| |
| // --------------------------------------------------------------------------- |
| // Runtime calls |
| |
| // Call a code stub. |
| void CallStub(CodeStub* stub, Condition cond = al); |
| |
| // Call a code stub. |
| void TailCallStub(CodeStub* stub, Condition cond = al); |
| |
| // Return from a code stub after popping its arguments. |
| void StubReturn(int argc); |
| |
| // Call a runtime routine. |
| void CallRuntime(Runtime::Function* f, int num_arguments); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId fid, int num_arguments); |
| |
| // Convenience function: call an external reference. |
| void CallExternalReference(const ExternalReference& ext, |
| int num_arguments); |
| |
| // Tail call of a runtime routine (jump). |
| // Like JumpToExternalReference, but also takes care of passing the number |
| // of parameters. |
| void TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size); |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size); |
| |
| // Before calling a C-function from generated code, align arguments on stack. |
| // After aligning the frame, non-register arguments must be stored in |
| // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments |
| // are word sized. |
| // Some compilers/platforms require the stack to be aligned when calling |
| // C++ code. |
| // Needs a scratch register to do some arithmetic. This register will be |
| // trashed. |
| void PrepareCallCFunction(int num_arguments, Register scratch); |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, int num_arguments); |
| |
| // Jump to a runtime routine. |
| void JumpToExternalReference(const ExternalReference& builtin); |
| |
| // Invoke specified builtin JavaScript function. Adds an entry to |
| // the unresolved list if the name does not resolve. |
| void InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags); |
| |
| // Store the code object for the given builtin in the target register and |
| // setup the function in r1. |
| void GetBuiltinEntry(Register target, Builtins::JavaScript id); |
| |
| Handle<Object> CodeObject() { return code_object_; } |
| |
| |
| // --------------------------------------------------------------------------- |
| // StatsCounter support |
| |
| void SetCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| void IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| void DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Debugging |
| |
| // Calls Abort(msg) if the condition cc is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cc, const char* msg); |
| void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cc, const char* msg); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(const char* msg); |
| |
| // Verify restrictions about code generated in stubs. |
| void set_generating_stub(bool value) { generating_stub_ = value; } |
| bool generating_stub() { return generating_stub_; } |
| void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } |
| bool allow_stub_calls() { return allow_stub_calls_; } |
| |
| // --------------------------------------------------------------------------- |
| // Smi utilities |
| |
| // Jump if either of the registers contain a non-smi. |
| void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi); |
| // Jump if either of the registers contain a smi. |
| void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); |
| |
| // --------------------------------------------------------------------------- |
| // String utilities |
| |
| // Checks if both objects are sequential ASCII strings and jumps to label |
| // if either is not. Assumes that neither object is a smi. |
| void JumpIfNonSmisNotBothSequentialAsciiStrings(Register object1, |
| Register object2, |
| Register scratch1, |
| Register scratch2, |
| Label* failure); |
| |
| // Checks if both objects are sequential ASCII strings and jumps to label |
| // if either is not. |
| void JumpIfNotBothSequentialAsciiStrings(Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* not_flat_ascii_strings); |
| |
| // Checks if both instance types are sequential ASCII strings and jumps to |
| // label if either is not. |
| void JumpIfBothInstanceTypesAreNotSequentialAscii( |
| Register first_object_instance_type, |
| Register second_object_instance_type, |
| Register scratch1, |
| Register scratch2, |
| Label* failure); |
| |
| // Check if instance type is sequential ASCII string and jump to label if |
| // it is not. |
| void JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
| Register scratch, |
| Label* failure); |
| |
| |
| private: |
| void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al); |
| void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = al); |
| |
| // Helper functions for generating invokes. |
| void InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_reg, |
| Label* done, |
| InvokeFlag flag); |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void LeaveFrame(StackFrame::Type type); |
| |
| void InitializeNewString(Register string, |
| Register length, |
| Heap::RootListIndex map_index, |
| Register scratch1, |
| Register scratch2); |
| |
| bool generating_stub_; |
| bool allow_stub_calls_; |
| // This handle will be patched with the code object on installation. |
| Handle<Object> code_object_; |
| }; |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // The code patcher is used to patch (typically) small parts of code e.g. for |
| // debugging and other types of instrumentation. When using the code patcher |
| // the exact number of bytes specified must be emitted. It is not legal to emit |
| // relocation information. If any of these constraints are violated it causes |
| // an assertion to fail. |
| class CodePatcher { |
| public: |
| CodePatcher(byte* address, int instructions); |
| virtual ~CodePatcher(); |
| |
| // Macro assembler to emit code. |
| MacroAssembler* masm() { return &masm_; } |
| |
| // Emit an instruction directly. |
| void Emit(Instr x); |
| |
| // Emit an address directly. |
| void Emit(Address addr); |
| |
| private: |
| byte* address_; // The address of the code being patched. |
| int instructions_; // Number of instructions of the expected patch size. |
| int size_; // Number of bytes of the expected patch size. |
| MacroAssembler masm_; // Macro assembler used to generate the code. |
| }; |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| #define CODE_COVERAGE_STRINGIFY(x) #x |
| #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) |
| #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) |
| #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> |
| #else |
| #define ACCESS_MASM(masm) masm-> |
| #endif |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_ |