blob: 36f6283c967158152dba481d8996e1adf51a0014 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_CONSTANTS_ARM_H_
#define V8_ARM_CONSTANTS_ARM_H_
// The simulator emulates the EABI so we define the USE_ARM_EABI macro if we
// are not running on real ARM hardware. One reason for this is that the
// old ABI uses fp registers in the calling convention and the simulator does
// not simulate fp registers or coroutine instructions.
#if defined(__ARM_EABI__) || !defined(__arm__)
# define USE_ARM_EABI 1
#endif
// This means that interwork-compatible jump instructions are generated. We
// want to generate them on the simulator too so it makes snapshots that can
// be used on real hardware.
#if defined(__THUMB_INTERWORK__) || !defined(__arm__)
# define USE_THUMB_INTERWORK 1
#endif
#if defined(__ARM_ARCH_7A__) || \
defined(__ARM_ARCH_7R__) || \
defined(__ARM_ARCH_7__)
# define CAN_USE_ARMV7_INSTRUCTIONS 1
#endif
#if defined(__ARM_ARCH_6__) || \
defined(__ARM_ARCH_6J__) || \
defined(__ARM_ARCH_6K__) || \
defined(__ARM_ARCH_6Z__) || \
defined(__ARM_ARCH_6ZK__) || \
defined(__ARM_ARCH_6T2__) || \
defined(CAN_USE_ARMV7_INSTRUCTIONS)
# define CAN_USE_ARMV6_INSTRUCTIONS 1
#endif
#if defined(__ARM_ARCH_5T__) || \
defined(__ARM_ARCH_5TE__) || \
defined(CAN_USE_ARMV6_INSTRUCTIONS)
# define CAN_USE_ARMV5_INSTRUCTIONS 1
# define CAN_USE_THUMB_INSTRUCTIONS 1
#endif
// Simulator should support ARM5 instructions and unaligned access by default.
#if !defined(__arm__)
# define CAN_USE_ARMV5_INSTRUCTIONS 1
# define CAN_USE_THUMB_INSTRUCTIONS 1
# ifndef CAN_USE_UNALIGNED_ACCESSES
# define CAN_USE_UNALIGNED_ACCESSES 1
# endif
#endif
#if CAN_USE_UNALIGNED_ACCESSES
#define V8_TARGET_CAN_READ_UNALIGNED 1
#endif
// Using blx may yield better code, so use it when required or when available
#if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS)
#define USE_BLX 1
#endif
namespace assembler {
namespace arm {
// Number of registers in normal ARM mode.
static const int kNumRegisters = 16;
// VFP support.
static const int kNumVFPSingleRegisters = 32;
static const int kNumVFPDoubleRegisters = 16;
static const int kNumVFPRegisters =
kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
// PC is register 15.
static const int kPCRegister = 15;
static const int kNoRegister = -1;
// Defines constants and accessor classes to assemble, disassemble and
// simulate ARM instructions.
//
// Section references in the code refer to the "ARM Architecture Reference
// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
//
// Constants for specific fields are defined in their respective named enums.
// General constants are in an anonymous enum in class Instr.
typedef unsigned char byte;
// Values for the condition field as defined in section A3.2
enum Condition {
no_condition = -1,
EQ = 0, // equal
NE = 1, // not equal
CS = 2, // carry set/unsigned higher or same
CC = 3, // carry clear/unsigned lower
MI = 4, // minus/negative
PL = 5, // plus/positive or zero
VS = 6, // overflow
VC = 7, // no overflow
HI = 8, // unsigned higher
LS = 9, // unsigned lower or same
GE = 10, // signed greater than or equal
LT = 11, // signed less than
GT = 12, // signed greater than
LE = 13, // signed less than or equal
AL = 14, // always (unconditional)
special_condition = 15, // special condition (refer to section A3.2.1)
max_condition = 16
};
// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
// as defined in section A3.4
enum Opcode {
no_operand = -1,
AND = 0, // Logical AND
EOR = 1, // Logical Exclusive OR
SUB = 2, // Subtract
RSB = 3, // Reverse Subtract
ADD = 4, // Add
ADC = 5, // Add with Carry
SBC = 6, // Subtract with Carry
RSC = 7, // Reverse Subtract with Carry
TST = 8, // Test
TEQ = 9, // Test Equivalence
CMP = 10, // Compare
CMN = 11, // Compare Negated
ORR = 12, // Logical (inclusive) OR
MOV = 13, // Move
BIC = 14, // Bit Clear
MVN = 15, // Move Not
max_operand = 16
};
// The bits for bit 7-4 for some type 0 miscellaneous instructions.
enum MiscInstructionsBits74 {
// With bits 22-21 01.
BX = 1,
BXJ = 2,
BLX = 3,
BKPT = 7,
// With bits 22-21 11.
CLZ = 1
};
// Shifter types for Data-processing operands as defined in section A5.1.2.
enum Shift {
no_shift = -1,
LSL = 0, // Logical shift left
LSR = 1, // Logical shift right
ASR = 2, // Arithmetic shift right
ROR = 3, // Rotate right
max_shift = 4
};
// Special Software Interrupt codes when used in the presence of the ARM
// simulator.
// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
enum SoftwareInterruptCodes {
// transition to C code
call_rt_redirected = 0x10,
// break point
break_point = 0x20,
// stop
stop = 1 << 23
};
static const int32_t kStopCodeMask = stop - 1;
static const uint32_t kMaxStopCode = stop - 1;
// Type of VFP register. Determines register encoding.
enum VFPRegPrecision {
kSinglePrecision = 0,
kDoublePrecision = 1
};
// VFP rounding modes. See ARM DDI 0406B Page A2-29.
enum FPSCRRoundingModes {
RN, // Round to Nearest.
RP, // Round towards Plus Infinity.
RM, // Round towards Minus Infinity.
RZ // Round towards zero.
};
typedef int32_t instr_t;
// The class Instr enables access to individual fields defined in the ARM
// architecture instruction set encoding as described in figure A3-1.
//
// Example: Test whether the instruction at ptr does set the condition code
// bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
// Instr* instr = Instr::At(ptr);
// int type = instr->TypeField();
// return ((type == 0) || (type == 1)) && instr->HasS();
// }
//
class Instr {
public:
enum {
kInstrSize = 4,
kInstrSizeLog2 = 2,
kPCReadOffset = 8
};
// Get the raw instruction bits.
inline instr_t InstructionBits() const {
return *reinterpret_cast<const instr_t*>(this);
}
// Set the raw instruction bits to value.
inline void SetInstructionBits(instr_t value) {
*reinterpret_cast<instr_t*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int Bit(int nr) const {
return (InstructionBits() >> nr) & 1;
}
// Read a bit field out of the instruction bits.
inline int Bits(int hi, int lo) const {
return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
}
// Accessors for the different named fields used in the ARM encoding.
// The naming of these accessor corresponds to figure A3-1.
// Generally applicable fields
inline Condition ConditionField() const {
return static_cast<Condition>(Bits(31, 28));
}
inline int TypeField() const { return Bits(27, 25); }
inline int RnField() const { return Bits(19, 16); }
inline int RdField() const { return Bits(15, 12); }
inline int CoprocessorField() const { return Bits(11, 8); }
// Support for VFP.
// Vn(19-16) | Vd(15-12) | Vm(3-0)
inline int VnField() const { return Bits(19, 16); }
inline int VmField() const { return Bits(3, 0); }
inline int VdField() const { return Bits(15, 12); }
inline int NField() const { return Bit(7); }
inline int MField() const { return Bit(5); }
inline int DField() const { return Bit(22); }
inline int RtField() const { return Bits(15, 12); }
inline int PField() const { return Bit(24); }
inline int UField() const { return Bit(23); }
inline int Opc1Field() const { return (Bit(23) << 2) | Bits(21, 20); }
inline int Opc2Field() const { return Bits(19, 16); }
inline int Opc3Field() const { return Bits(7, 6); }
inline int SzField() const { return Bit(8); }
inline int VLField() const { return Bit(20); }
inline int VCField() const { return Bit(8); }
inline int VAField() const { return Bits(23, 21); }
inline int VBField() const { return Bits(6, 5); }
inline int VFPNRegCode(VFPRegPrecision pre) {
return VFPGlueRegCode(pre, 16, 7);
}
inline int VFPMRegCode(VFPRegPrecision pre) {
return VFPGlueRegCode(pre, 0, 5);
}
inline int VFPDRegCode(VFPRegPrecision pre) {
return VFPGlueRegCode(pre, 12, 22);
}
// Fields used in Data processing instructions
inline Opcode OpcodeField() const {
return static_cast<Opcode>(Bits(24, 21));
}
inline int SField() const { return Bit(20); }
// with register
inline int RmField() const { return Bits(3, 0); }
inline Shift ShiftField() const { return static_cast<Shift>(Bits(6, 5)); }
inline int RegShiftField() const { return Bit(4); }
inline int RsField() const { return Bits(11, 8); }
inline int ShiftAmountField() const { return Bits(11, 7); }
// with immediate
inline int RotateField() const { return Bits(11, 8); }
inline int Immed8Field() const { return Bits(7, 0); }
inline int Immed4Field() const { return Bits(19, 16); }
inline int ImmedMovwMovtField() const {
return Immed4Field() << 12 | Offset12Field(); }
// Fields used in Load/Store instructions
inline int PUField() const { return Bits(24, 23); }
inline int BField() const { return Bit(22); }
inline int WField() const { return Bit(21); }
inline int LField() const { return Bit(20); }
// with register uses same fields as Data processing instructions above
// with immediate
inline int Offset12Field() const { return Bits(11, 0); }
// multiple
inline int RlistField() const { return Bits(15, 0); }
// extra loads and stores
inline int SignField() const { return Bit(6); }
inline int HField() const { return Bit(5); }
inline int ImmedHField() const { return Bits(11, 8); }
inline int ImmedLField() const { return Bits(3, 0); }
// Fields used in Branch instructions
inline int LinkField() const { return Bit(24); }
inline int SImmed24Field() const { return ((InstructionBits() << 8) >> 8); }
// Fields used in Software interrupt instructions
inline SoftwareInterruptCodes SvcField() const {
return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
}
// Test for special encodings of type 0 instructions (extra loads and stores,
// as well as multiplications).
inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
// Test for miscellaneous instructions encodings of type 0 instructions.
inline bool IsMiscType0() const { return (Bit(24) == 1)
&& (Bit(23) == 0)
&& (Bit(20) == 0)
&& ((Bit(7) == 0)); }
// Special accessors that test for existence of a value.
inline bool HasS() const { return SField() == 1; }
inline bool HasB() const { return BField() == 1; }
inline bool HasW() const { return WField() == 1; }
inline bool HasL() const { return LField() == 1; }
inline bool HasU() const { return UField() == 1; }
inline bool HasSign() const { return SignField() == 1; }
inline bool HasH() const { return HField() == 1; }
inline bool HasLink() const { return LinkField() == 1; }
// Decoding the double immediate in the vmov instruction.
double DoubleImmedVmov() const;
// Instructions are read of out a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instr.
// Use the At(pc) function to create references to Instr.
static Instr* At(byte* pc) { return reinterpret_cast<Instr*>(pc); }
private:
// Join split register codes, depending on single or double precision.
// four_bit is the position of the least-significant bit of the four
// bit specifier. one_bit is the position of the additional single bit
// specifier.
inline int VFPGlueRegCode(VFPRegPrecision pre, int four_bit, int one_bit) {
if (pre == kSinglePrecision) {
return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
}
return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
}
// We need to prevent the creation of instances of class Instr.
DISALLOW_IMPLICIT_CONSTRUCTORS(Instr);
};
// Helper functions for converting between register numbers and names.
class Registers {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int reg;
const char* name;
};
private:
static const char* names_[kNumRegisters];
static const RegisterAlias aliases_[];
};
// Helper functions for converting between VFP register numbers and names.
class VFPRegisters {
public:
// Return the name of the register.
static const char* Name(int reg, bool is_double);
// Lookup the register number for the name provided.
// Set flag pointed by is_double to true if register
// is double-precision.
static int Number(const char* name, bool* is_double);
private:
static const char* names_[kNumVFPRegisters];
};
} } // namespace assembler::arm
#endif // V8_ARM_CONSTANTS_ARM_H_