| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the |
| // distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| // OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been modified |
| // significantly by Google Inc. |
| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| |
| #include "disassembler.h" |
| #include "macro-assembler.h" |
| #include "serialize.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of CpuFeatures |
| |
| // Safe default is no features. |
| uint64_t CpuFeatures::supported_ = 0; |
| uint64_t CpuFeatures::enabled_ = 0; |
| uint64_t CpuFeatures::found_by_runtime_probing_ = 0; |
| |
| |
| // The Probe method needs executable memory, so it uses Heap::CreateCode. |
| // Allocation failure is silent and leads to safe default. |
| void CpuFeatures::Probe() { |
| ASSERT(Heap::HasBeenSetup()); |
| ASSERT(supported_ == 0); |
| if (Serializer::enabled()) { |
| supported_ |= OS::CpuFeaturesImpliedByPlatform(); |
| return; // No features if we might serialize. |
| } |
| |
| Assembler assm(NULL, 0); |
| Label cpuid, done; |
| #define __ assm. |
| // Save old esp, since we are going to modify the stack. |
| __ push(ebp); |
| __ pushfd(); |
| __ push(ecx); |
| __ push(ebx); |
| __ mov(ebp, Operand(esp)); |
| |
| // If we can modify bit 21 of the EFLAGS register, then CPUID is supported. |
| __ pushfd(); |
| __ pop(eax); |
| __ mov(edx, Operand(eax)); |
| __ xor_(eax, 0x200000); // Flip bit 21. |
| __ push(eax); |
| __ popfd(); |
| __ pushfd(); |
| __ pop(eax); |
| __ xor_(eax, Operand(edx)); // Different if CPUID is supported. |
| __ j(not_zero, &cpuid); |
| |
| // CPUID not supported. Clear the supported features in edx:eax. |
| __ xor_(eax, Operand(eax)); |
| __ xor_(edx, Operand(edx)); |
| __ jmp(&done); |
| |
| // Invoke CPUID with 1 in eax to get feature information in |
| // ecx:edx. Temporarily enable CPUID support because we know it's |
| // safe here. |
| __ bind(&cpuid); |
| __ mov(eax, 1); |
| supported_ = (1 << CPUID); |
| { Scope fscope(CPUID); |
| __ cpuid(); |
| } |
| supported_ = 0; |
| |
| // Move the result from ecx:edx to edx:eax and make sure to mark the |
| // CPUID feature as supported. |
| __ mov(eax, Operand(edx)); |
| __ or_(eax, 1 << CPUID); |
| __ mov(edx, Operand(ecx)); |
| |
| // Done. |
| __ bind(&done); |
| __ mov(esp, Operand(ebp)); |
| __ pop(ebx); |
| __ pop(ecx); |
| __ popfd(); |
| __ pop(ebp); |
| __ ret(0); |
| #undef __ |
| |
| CodeDesc desc; |
| assm.GetCode(&desc); |
| |
| Object* code; |
| { MaybeObject* maybe_code = Heap::CreateCode(desc, |
| Code::ComputeFlags(Code::STUB), |
| Handle<Code>::null()); |
| if (!maybe_code->ToObject(&code)) return; |
| } |
| if (!code->IsCode()) return; |
| |
| PROFILE(CodeCreateEvent(Logger::BUILTIN_TAG, |
| Code::cast(code), "CpuFeatures::Probe")); |
| typedef uint64_t (*F0)(); |
| F0 probe = FUNCTION_CAST<F0>(Code::cast(code)->entry()); |
| supported_ = probe(); |
| found_by_runtime_probing_ = supported_; |
| uint64_t os_guarantees = OS::CpuFeaturesImpliedByPlatform(); |
| supported_ |= os_guarantees; |
| found_by_runtime_probing_ &= ~os_guarantees; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Displacement |
| |
| void Displacement::init(Label* L, Type type) { |
| ASSERT(!L->is_bound()); |
| int next = 0; |
| if (L->is_linked()) { |
| next = L->pos(); |
| ASSERT(next > 0); // Displacements must be at positions > 0 |
| } |
| // Ensure that we _never_ overflow the next field. |
| ASSERT(NextField::is_valid(Assembler::kMaximalBufferSize)); |
| data_ = NextField::encode(next) | TypeField::encode(type); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| |
| const int RelocInfo::kApplyMask = |
| RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY | |
| 1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE | |
| 1 << RelocInfo::DEBUG_BREAK_SLOT; |
| |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Being |
| // specially coded on IA32 means that it is a relative address, as used by |
| // branch instructions. These are also the ones that need changing when a |
| // code object moves. |
| return (1 << rmode_) & kApplyMask; |
| } |
| |
| |
| void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| // Patch the code at the current address with the supplied instructions. |
| for (int i = 0; i < instruction_count; i++) { |
| *(pc_ + i) = *(instructions + i); |
| } |
| |
| // Indicate that code has changed. |
| CPU::FlushICache(pc_, instruction_count); |
| } |
| |
| |
| // Patch the code at the current PC with a call to the target address. |
| // Additional guard int3 instructions can be added if required. |
| void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| // Call instruction takes up 5 bytes and int3 takes up one byte. |
| static const int kCallCodeSize = 5; |
| int code_size = kCallCodeSize + guard_bytes; |
| |
| // Create a code patcher. |
| CodePatcher patcher(pc_, code_size); |
| |
| // Add a label for checking the size of the code used for returning. |
| #ifdef DEBUG |
| Label check_codesize; |
| patcher.masm()->bind(&check_codesize); |
| #endif |
| |
| // Patch the code. |
| patcher.masm()->call(target, RelocInfo::NONE); |
| |
| // Check that the size of the code generated is as expected. |
| ASSERT_EQ(kCallCodeSize, |
| patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize)); |
| |
| // Add the requested number of int3 instructions after the call. |
| ASSERT_GE(guard_bytes, 0); |
| for (int i = 0; i < guard_bytes; i++) { |
| patcher.masm()->int3(); |
| } |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand |
| |
| Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) { |
| // [base + disp/r] |
| if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { |
| // [base] |
| set_modrm(0, base); |
| if (base.is(esp)) set_sib(times_1, esp, base); |
| } else if (is_int8(disp) && rmode == RelocInfo::NONE) { |
| // [base + disp8] |
| set_modrm(1, base); |
| if (base.is(esp)) set_sib(times_1, esp, base); |
| set_disp8(disp); |
| } else { |
| // [base + disp/r] |
| set_modrm(2, base); |
| if (base.is(esp)) set_sib(times_1, esp, base); |
| set_dispr(disp, rmode); |
| } |
| } |
| |
| |
| Operand::Operand(Register base, |
| Register index, |
| ScaleFactor scale, |
| int32_t disp, |
| RelocInfo::Mode rmode) { |
| ASSERT(!index.is(esp)); // illegal addressing mode |
| // [base + index*scale + disp/r] |
| if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { |
| // [base + index*scale] |
| set_modrm(0, esp); |
| set_sib(scale, index, base); |
| } else if (is_int8(disp) && rmode == RelocInfo::NONE) { |
| // [base + index*scale + disp8] |
| set_modrm(1, esp); |
| set_sib(scale, index, base); |
| set_disp8(disp); |
| } else { |
| // [base + index*scale + disp/r] |
| set_modrm(2, esp); |
| set_sib(scale, index, base); |
| set_dispr(disp, rmode); |
| } |
| } |
| |
| |
| Operand::Operand(Register index, |
| ScaleFactor scale, |
| int32_t disp, |
| RelocInfo::Mode rmode) { |
| ASSERT(!index.is(esp)); // illegal addressing mode |
| // [index*scale + disp/r] |
| set_modrm(0, esp); |
| set_sib(scale, index, ebp); |
| set_dispr(disp, rmode); |
| } |
| |
| |
| bool Operand::is_reg(Register reg) const { |
| return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only. |
| && ((buf_[0] & 0x07) == reg.code()); // register codes match. |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Assembler. |
| |
| // Emit a single byte. Must always be inlined. |
| #define EMIT(x) \ |
| *pc_++ = (x) |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| static void InitCoverageLog(); |
| #endif |
| |
| // Spare buffer. |
| byte* Assembler::spare_buffer_ = NULL; |
| |
| Assembler::Assembler(void* buffer, int buffer_size) |
| : positions_recorder_(this) { |
| if (buffer == NULL) { |
| // Do our own buffer management. |
| if (buffer_size <= kMinimalBufferSize) { |
| buffer_size = kMinimalBufferSize; |
| |
| if (spare_buffer_ != NULL) { |
| buffer = spare_buffer_; |
| spare_buffer_ = NULL; |
| } |
| } |
| if (buffer == NULL) { |
| buffer_ = NewArray<byte>(buffer_size); |
| } else { |
| buffer_ = static_cast<byte*>(buffer); |
| } |
| buffer_size_ = buffer_size; |
| own_buffer_ = true; |
| } else { |
| // Use externally provided buffer instead. |
| ASSERT(buffer_size > 0); |
| buffer_ = static_cast<byte*>(buffer); |
| buffer_size_ = buffer_size; |
| own_buffer_ = false; |
| } |
| |
| // Clear the buffer in debug mode unless it was provided by the |
| // caller in which case we can't be sure it's okay to overwrite |
| // existing code in it; see CodePatcher::CodePatcher(...). |
| #ifdef DEBUG |
| if (own_buffer_) { |
| memset(buffer_, 0xCC, buffer_size); // int3 |
| } |
| #endif |
| |
| // Setup buffer pointers. |
| ASSERT(buffer_ != NULL); |
| pc_ = buffer_; |
| reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| |
| last_pc_ = NULL; |
| #ifdef GENERATED_CODE_COVERAGE |
| InitCoverageLog(); |
| #endif |
| } |
| |
| |
| Assembler::~Assembler() { |
| if (own_buffer_) { |
| if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
| spare_buffer_ = buffer_; |
| } else { |
| DeleteArray(buffer_); |
| } |
| } |
| } |
| |
| |
| void Assembler::GetCode(CodeDesc* desc) { |
| // Finalize code (at this point overflow() may be true, but the gap ensures |
| // that we are still not overlapping instructions and relocation info). |
| ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. |
| // Setup code descriptor. |
| desc->buffer = buffer_; |
| desc->buffer_size = buffer_size_; |
| desc->instr_size = pc_offset(); |
| desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| desc->origin = this; |
| |
| Counters::reloc_info_size.Increment(desc->reloc_size); |
| } |
| |
| |
| void Assembler::Align(int m) { |
| ASSERT(IsPowerOf2(m)); |
| while ((pc_offset() & (m - 1)) != 0) { |
| nop(); |
| } |
| } |
| |
| |
| void Assembler::CodeTargetAlign() { |
| Align(16); // Preferred alignment of jump targets on ia32. |
| } |
| |
| |
| void Assembler::cpuid() { |
| ASSERT(CpuFeatures::IsEnabled(CPUID)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xA2); |
| } |
| |
| |
| void Assembler::pushad() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x60); |
| } |
| |
| |
| void Assembler::popad() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x61); |
| } |
| |
| |
| void Assembler::pushfd() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x9C); |
| } |
| |
| |
| void Assembler::popfd() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x9D); |
| } |
| |
| |
| void Assembler::push(const Immediate& x) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (x.is_int8()) { |
| EMIT(0x6a); |
| EMIT(x.x_); |
| } else { |
| EMIT(0x68); |
| emit(x); |
| } |
| } |
| |
| |
| void Assembler::push(Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x50 | src.code()); |
| } |
| |
| |
| void Assembler::push(const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xFF); |
| emit_operand(esi, src); |
| } |
| |
| |
| void Assembler::pop(Register dst) { |
| ASSERT(reloc_info_writer.last_pc() != NULL); |
| if (FLAG_peephole_optimization && (reloc_info_writer.last_pc() <= last_pc_)) { |
| // (last_pc_ != NULL) is rolled into the above check. |
| // If a last_pc_ is set, we need to make sure that there has not been any |
| // relocation information generated between the last instruction and this |
| // pop instruction. |
| byte instr = last_pc_[0]; |
| if ((instr & ~0x7) == 0x50) { |
| int push_reg_code = instr & 0x7; |
| if (push_reg_code == dst.code()) { |
| pc_ = last_pc_; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%d push/pop (same reg) eliminated\n", pc_offset()); |
| } |
| } else { |
| // Convert 'push src; pop dst' to 'mov dst, src'. |
| last_pc_[0] = 0x8b; |
| Register src = { push_reg_code }; |
| EnsureSpace ensure_space(this); |
| emit_operand(dst, Operand(src)); |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%d push/pop (reg->reg) eliminated\n", pc_offset()); |
| } |
| } |
| last_pc_ = NULL; |
| return; |
| } else if (instr == 0xff) { // push of an operand, convert to a move |
| byte op1 = last_pc_[1]; |
| // Check if the operation is really a push. |
| if ((op1 & 0x38) == (6 << 3)) { |
| op1 = (op1 & ~0x38) | static_cast<byte>(dst.code() << 3); |
| last_pc_[0] = 0x8b; |
| last_pc_[1] = op1; |
| last_pc_ = NULL; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%d push/pop (op->reg) eliminated\n", pc_offset()); |
| } |
| return; |
| } |
| } else if ((instr == 0x89) && |
| (last_pc_[1] == 0x04) && |
| (last_pc_[2] == 0x24)) { |
| // 0x71283c 396 890424 mov [esp],eax |
| // 0x71283f 399 58 pop eax |
| if (dst.is(eax)) { |
| // change to |
| // 0x710fac 216 83c404 add esp,0x4 |
| last_pc_[0] = 0x83; |
| last_pc_[1] = 0xc4; |
| last_pc_[2] = 0x04; |
| last_pc_ = NULL; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%d push/pop (mov-pop) eliminated\n", pc_offset()); |
| } |
| return; |
| } |
| } else if (instr == 0x6a && dst.is(eax)) { // push of immediate 8 bit |
| byte imm8 = last_pc_[1]; |
| if (imm8 == 0) { |
| // 6a00 push 0x0 |
| // 58 pop eax |
| last_pc_[0] = 0x31; |
| last_pc_[1] = 0xc0; |
| // change to |
| // 31c0 xor eax,eax |
| last_pc_ = NULL; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); |
| } |
| return; |
| } else { |
| // 6a00 push 0xXX |
| // 58 pop eax |
| last_pc_[0] = 0xb8; |
| EnsureSpace ensure_space(this); |
| if ((imm8 & 0x80) != 0) { |
| EMIT(0xff); |
| EMIT(0xff); |
| EMIT(0xff); |
| // change to |
| // b8XXffffff mov eax,0xffffffXX |
| } else { |
| EMIT(0x00); |
| EMIT(0x00); |
| EMIT(0x00); |
| // change to |
| // b8XX000000 mov eax,0x000000XX |
| } |
| last_pc_ = NULL; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); |
| } |
| return; |
| } |
| } else if (instr == 0x68 && dst.is(eax)) { // push of immediate 32 bit |
| // 68XXXXXXXX push 0xXXXXXXXX |
| // 58 pop eax |
| last_pc_[0] = 0xb8; |
| last_pc_ = NULL; |
| // change to |
| // b8XXXXXXXX mov eax,0xXXXXXXXX |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); |
| } |
| return; |
| } |
| |
| // Other potential patterns for peephole: |
| // 0x712716 102 890424 mov [esp], eax |
| // 0x712719 105 8b1424 mov edx, [esp] |
| } |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x58 | dst.code()); |
| } |
| |
| |
| void Assembler::pop(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x8F); |
| emit_operand(eax, dst); |
| } |
| |
| |
| void Assembler::enter(const Immediate& size) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xC8); |
| emit_w(size); |
| EMIT(0); |
| } |
| |
| |
| void Assembler::leave() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xC9); |
| } |
| |
| |
| void Assembler::mov_b(Register dst, const Operand& src) { |
| ASSERT(dst.code() < 4); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x8A); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::mov_b(const Operand& dst, int8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xC6); |
| emit_operand(eax, dst); |
| EMIT(imm8); |
| } |
| |
| |
| void Assembler::mov_b(const Operand& dst, Register src) { |
| ASSERT(src.code() < 4); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x88); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::mov_w(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x8B); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::mov_w(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x89); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::mov(Register dst, int32_t imm32) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xB8 | dst.code()); |
| emit(imm32); |
| } |
| |
| |
| void Assembler::mov(Register dst, const Immediate& x) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xB8 | dst.code()); |
| emit(x); |
| } |
| |
| |
| void Assembler::mov(Register dst, Handle<Object> handle) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xB8 | dst.code()); |
| emit(handle); |
| } |
| |
| |
| void Assembler::mov(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x8B); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::mov(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x89); |
| EMIT(0xC0 | src.code() << 3 | dst.code()); |
| } |
| |
| |
| void Assembler::mov(const Operand& dst, const Immediate& x) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xC7); |
| emit_operand(eax, dst); |
| emit(x); |
| } |
| |
| |
| void Assembler::mov(const Operand& dst, Handle<Object> handle) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xC7); |
| emit_operand(eax, dst); |
| emit(handle); |
| } |
| |
| |
| void Assembler::mov(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x89); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::movsx_b(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xBE); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movsx_w(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xBF); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movzx_b(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xB6); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::movzx_w(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xB7); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cmov(Condition cc, Register dst, int32_t imm32) { |
| ASSERT(CpuFeatures::IsEnabled(CMOV)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| UNIMPLEMENTED(); |
| USE(cc); |
| USE(dst); |
| USE(imm32); |
| } |
| |
| |
| void Assembler::cmov(Condition cc, Register dst, Handle<Object> handle) { |
| ASSERT(CpuFeatures::IsEnabled(CMOV)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| UNIMPLEMENTED(); |
| USE(cc); |
| USE(dst); |
| USE(handle); |
| } |
| |
| |
| void Assembler::cmov(Condition cc, Register dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(CMOV)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Opcode: 0f 40 + cc /r. |
| EMIT(0x0F); |
| EMIT(0x40 + cc); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cld() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xFC); |
| } |
| |
| |
| void Assembler::rep_movs() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF3); |
| EMIT(0xA5); |
| } |
| |
| |
| void Assembler::rep_stos() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF3); |
| EMIT(0xAB); |
| } |
| |
| |
| void Assembler::stos() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xAB); |
| } |
| |
| |
| void Assembler::xchg(Register dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (src.is(eax) || dst.is(eax)) { // Single-byte encoding. |
| EMIT(0x90 | (src.is(eax) ? dst.code() : src.code())); |
| } else { |
| EMIT(0x87); |
| EMIT(0xC0 | src.code() << 3 | dst.code()); |
| } |
| } |
| |
| |
| void Assembler::adc(Register dst, int32_t imm32) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(2, Operand(dst), Immediate(imm32)); |
| } |
| |
| |
| void Assembler::adc(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x13); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::add(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x03); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::add(const Operand& dst, const Immediate& x) { |
| ASSERT(reloc_info_writer.last_pc() != NULL); |
| if (FLAG_peephole_optimization && (reloc_info_writer.last_pc() <= last_pc_)) { |
| byte instr = last_pc_[0]; |
| if ((instr & 0xf8) == 0x50) { |
| // Last instruction was a push. Check whether this is a pop without a |
| // result. |
| if ((dst.is_reg(esp)) && |
| (x.x_ == kPointerSize) && (x.rmode_ == RelocInfo::NONE)) { |
| pc_ = last_pc_; |
| last_pc_ = NULL; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%d push/pop(noreg) eliminated\n", pc_offset()); |
| } |
| return; |
| } |
| } |
| } |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(0, dst, x); |
| } |
| |
| |
| void Assembler::and_(Register dst, int32_t imm32) { |
| and_(dst, Immediate(imm32)); |
| } |
| |
| |
| void Assembler::and_(Register dst, const Immediate& x) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(4, Operand(dst), x); |
| } |
| |
| |
| void Assembler::and_(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x23); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::and_(const Operand& dst, const Immediate& x) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(4, dst, x); |
| } |
| |
| |
| void Assembler::and_(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x21); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::cmpb(const Operand& op, int8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x80); |
| emit_operand(edi, op); // edi == 7 |
| EMIT(imm8); |
| } |
| |
| |
| void Assembler::cmpb(const Operand& dst, Register src) { |
| ASSERT(src.is_byte_register()); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x38); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::cmpb(Register dst, const Operand& src) { |
| ASSERT(dst.is_byte_register()); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x3A); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cmpw(const Operand& op, Immediate imm16) { |
| ASSERT(imm16.is_int16()); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x81); |
| emit_operand(edi, op); |
| emit_w(imm16); |
| } |
| |
| |
| void Assembler::cmp(Register reg, int32_t imm32) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(7, Operand(reg), Immediate(imm32)); |
| } |
| |
| |
| void Assembler::cmp(Register reg, Handle<Object> handle) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(7, Operand(reg), Immediate(handle)); |
| } |
| |
| |
| void Assembler::cmp(Register reg, const Operand& op) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x3B); |
| emit_operand(reg, op); |
| } |
| |
| |
| void Assembler::cmp(const Operand& op, const Immediate& imm) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(7, op, imm); |
| } |
| |
| |
| void Assembler::cmp(const Operand& op, Handle<Object> handle) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(7, op, Immediate(handle)); |
| } |
| |
| |
| void Assembler::cmpb_al(const Operand& op) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x38); // CMP r/m8, r8 |
| emit_operand(eax, op); // eax has same code as register al. |
| } |
| |
| |
| void Assembler::cmpw_ax(const Operand& op) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x39); // CMP r/m16, r16 |
| emit_operand(eax, op); // eax has same code as register ax. |
| } |
| |
| |
| void Assembler::dec_b(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xFE); |
| EMIT(0xC8 | dst.code()); |
| } |
| |
| |
| void Assembler::dec_b(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xFE); |
| emit_operand(ecx, dst); |
| } |
| |
| |
| void Assembler::dec(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x48 | dst.code()); |
| } |
| |
| |
| void Assembler::dec(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xFF); |
| emit_operand(ecx, dst); |
| } |
| |
| |
| void Assembler::cdq() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x99); |
| } |
| |
| |
| void Assembler::idiv(Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF7); |
| EMIT(0xF8 | src.code()); |
| } |
| |
| |
| void Assembler::imul(Register reg) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF7); |
| EMIT(0xE8 | reg.code()); |
| } |
| |
| |
| void Assembler::imul(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xAF); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::imul(Register dst, Register src, int32_t imm32) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (is_int8(imm32)) { |
| EMIT(0x6B); |
| EMIT(0xC0 | dst.code() << 3 | src.code()); |
| EMIT(imm32); |
| } else { |
| EMIT(0x69); |
| EMIT(0xC0 | dst.code() << 3 | src.code()); |
| emit(imm32); |
| } |
| } |
| |
| |
| void Assembler::inc(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x40 | dst.code()); |
| } |
| |
| |
| void Assembler::inc(const Operand& dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xFF); |
| emit_operand(eax, dst); |
| } |
| |
| |
| void Assembler::lea(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x8D); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::mul(Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF7); |
| EMIT(0xE0 | src.code()); |
| } |
| |
| |
| void Assembler::neg(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF7); |
| EMIT(0xD8 | dst.code()); |
| } |
| |
| |
| void Assembler::not_(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF7); |
| EMIT(0xD0 | dst.code()); |
| } |
| |
| |
| void Assembler::or_(Register dst, int32_t imm32) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(1, Operand(dst), Immediate(imm32)); |
| } |
| |
| |
| void Assembler::or_(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0B); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::or_(const Operand& dst, const Immediate& x) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(1, dst, x); |
| } |
| |
| |
| void Assembler::or_(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x09); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::rcl(Register dst, uint8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint5(imm8)); // illegal shift count |
| if (imm8 == 1) { |
| EMIT(0xD1); |
| EMIT(0xD0 | dst.code()); |
| } else { |
| EMIT(0xC1); |
| EMIT(0xD0 | dst.code()); |
| EMIT(imm8); |
| } |
| } |
| |
| |
| void Assembler::rcr(Register dst, uint8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint5(imm8)); // illegal shift count |
| if (imm8 == 1) { |
| EMIT(0xD1); |
| EMIT(0xD8 | dst.code()); |
| } else { |
| EMIT(0xC1); |
| EMIT(0xD8 | dst.code()); |
| EMIT(imm8); |
| } |
| } |
| |
| |
| void Assembler::sar(Register dst, uint8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint5(imm8)); // illegal shift count |
| if (imm8 == 1) { |
| EMIT(0xD1); |
| EMIT(0xF8 | dst.code()); |
| } else { |
| EMIT(0xC1); |
| EMIT(0xF8 | dst.code()); |
| EMIT(imm8); |
| } |
| } |
| |
| |
| void Assembler::sar_cl(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD3); |
| EMIT(0xF8 | dst.code()); |
| } |
| |
| |
| void Assembler::sbb(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x1B); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::shld(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xA5); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::shl(Register dst, uint8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint5(imm8)); // illegal shift count |
| if (imm8 == 1) { |
| EMIT(0xD1); |
| EMIT(0xE0 | dst.code()); |
| } else { |
| EMIT(0xC1); |
| EMIT(0xE0 | dst.code()); |
| EMIT(imm8); |
| } |
| } |
| |
| |
| void Assembler::shl_cl(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD3); |
| EMIT(0xE0 | dst.code()); |
| } |
| |
| |
| void Assembler::shrd(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xAD); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::shr(Register dst, uint8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint5(imm8)); // illegal shift count |
| if (imm8 == 1) { |
| EMIT(0xD1); |
| EMIT(0xE8 | dst.code()); |
| } else { |
| EMIT(0xC1); |
| EMIT(0xE8 | dst.code()); |
| EMIT(imm8); |
| } |
| } |
| |
| |
| void Assembler::shr_cl(Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD3); |
| EMIT(0xE8 | dst.code()); |
| } |
| |
| |
| void Assembler::subb(const Operand& op, int8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (op.is_reg(eax)) { |
| EMIT(0x2c); |
| } else { |
| EMIT(0x80); |
| emit_operand(ebp, op); // ebp == 5 |
| } |
| EMIT(imm8); |
| } |
| |
| |
| void Assembler::sub(const Operand& dst, const Immediate& x) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(5, dst, x); |
| } |
| |
| |
| void Assembler::sub(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x2B); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::subb(Register dst, const Operand& src) { |
| ASSERT(dst.code() < 4); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x2A); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::sub(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x29); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::test(Register reg, const Immediate& imm) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| // Only use test against byte for registers that have a byte |
| // variant: eax, ebx, ecx, and edx. |
| if (imm.rmode_ == RelocInfo::NONE && is_uint8(imm.x_) && reg.code() < 4) { |
| uint8_t imm8 = imm.x_; |
| if (reg.is(eax)) { |
| EMIT(0xA8); |
| EMIT(imm8); |
| } else { |
| emit_arith_b(0xF6, 0xC0, reg, imm8); |
| } |
| } else { |
| // This is not using emit_arith because test doesn't support |
| // sign-extension of 8-bit operands. |
| if (reg.is(eax)) { |
| EMIT(0xA9); |
| } else { |
| EMIT(0xF7); |
| EMIT(0xC0 | reg.code()); |
| } |
| emit(imm); |
| } |
| } |
| |
| |
| void Assembler::test(Register reg, const Operand& op) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x85); |
| emit_operand(reg, op); |
| } |
| |
| |
| void Assembler::test_b(Register reg, const Operand& op) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x84); |
| emit_operand(reg, op); |
| } |
| |
| |
| void Assembler::test(const Operand& op, const Immediate& imm) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF7); |
| emit_operand(eax, op); |
| emit(imm); |
| } |
| |
| |
| void Assembler::test_b(const Operand& op, uint8_t imm8) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF6); |
| emit_operand(eax, op); |
| EMIT(imm8); |
| } |
| |
| |
| void Assembler::xor_(Register dst, int32_t imm32) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(6, Operand(dst), Immediate(imm32)); |
| } |
| |
| |
| void Assembler::xor_(Register dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x33); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::xor_(const Operand& src, Register dst) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x31); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::xor_(const Operand& dst, const Immediate& x) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_arith(6, dst, x); |
| } |
| |
| |
| void Assembler::bt(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xA3); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::bts(const Operand& dst, Register src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0xAB); |
| emit_operand(src, dst); |
| } |
| |
| |
| void Assembler::hlt() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF4); |
| } |
| |
| |
| void Assembler::int3() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xCC); |
| } |
| |
| |
| void Assembler::nop() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x90); |
| } |
| |
| |
| void Assembler::rdtsc() { |
| ASSERT(CpuFeatures::IsEnabled(RDTSC)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0x31); |
| } |
| |
| |
| void Assembler::ret(int imm16) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(is_uint16(imm16)); |
| if (imm16 == 0) { |
| EMIT(0xC3); |
| } else { |
| EMIT(0xC2); |
| EMIT(imm16 & 0xFF); |
| EMIT((imm16 >> 8) & 0xFF); |
| } |
| } |
| |
| |
| // Labels refer to positions in the (to be) generated code. |
| // There are bound, linked, and unused labels. |
| // |
| // Bound labels refer to known positions in the already |
| // generated code. pos() is the position the label refers to. |
| // |
| // Linked labels refer to unknown positions in the code |
| // to be generated; pos() is the position of the 32bit |
| // Displacement of the last instruction using the label. |
| |
| |
| void Assembler::print(Label* L) { |
| if (L->is_unused()) { |
| PrintF("unused label\n"); |
| } else if (L->is_bound()) { |
| PrintF("bound label to %d\n", L->pos()); |
| } else if (L->is_linked()) { |
| Label l = *L; |
| PrintF("unbound label"); |
| while (l.is_linked()) { |
| Displacement disp = disp_at(&l); |
| PrintF("@ %d ", l.pos()); |
| disp.print(); |
| PrintF("\n"); |
| disp.next(&l); |
| } |
| } else { |
| PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| } |
| } |
| |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = NULL; |
| ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position |
| while (L->is_linked()) { |
| Displacement disp = disp_at(L); |
| int fixup_pos = L->pos(); |
| if (disp.type() == Displacement::CODE_RELATIVE) { |
| // Relative to Code* heap object pointer. |
| long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag); |
| } else { |
| if (disp.type() == Displacement::UNCONDITIONAL_JUMP) { |
| ASSERT(byte_at(fixup_pos - 1) == 0xE9); // jmp expected |
| } |
| // Relative address, relative to point after address. |
| int imm32 = pos - (fixup_pos + sizeof(int32_t)); |
| long_at_put(fixup_pos, imm32); |
| } |
| disp.next(L); |
| } |
| L->bind_to(pos); |
| } |
| |
| |
| void Assembler::bind(Label* L) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = NULL; |
| ASSERT(!L->is_bound()); // label can only be bound once |
| bind_to(L, pc_offset()); |
| } |
| |
| |
| void Assembler::bind(NearLabel* L) { |
| ASSERT(!L->is_bound()); |
| last_pc_ = NULL; |
| while (L->unresolved_branches_ > 0) { |
| int branch_pos = L->unresolved_positions_[L->unresolved_branches_ - 1]; |
| int disp = pc_offset() - branch_pos; |
| ASSERT(is_int8(disp)); |
| set_byte_at(branch_pos - sizeof(int8_t), disp); |
| L->unresolved_branches_--; |
| } |
| L->bind_to(pc_offset()); |
| } |
| |
| void Assembler::call(Label* L) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (L->is_bound()) { |
| const int long_size = 5; |
| int offs = L->pos() - pc_offset(); |
| ASSERT(offs <= 0); |
| // 1110 1000 #32-bit disp. |
| EMIT(0xE8); |
| emit(offs - long_size); |
| } else { |
| // 1110 1000 #32-bit disp. |
| EMIT(0xE8); |
| emit_disp(L, Displacement::OTHER); |
| } |
| } |
| |
| |
| void Assembler::call(byte* entry, RelocInfo::Mode rmode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
| EMIT(0xE8); |
| emit(entry - (pc_ + sizeof(int32_t)), rmode); |
| } |
| |
| |
| void Assembler::call(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xFF); |
| emit_operand(edx, adr); |
| } |
| |
| |
| void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| EMIT(0xE8); |
| emit(reinterpret_cast<intptr_t>(code.location()), rmode); |
| } |
| |
| |
| void Assembler::jmp(Label* L) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (L->is_bound()) { |
| const int short_size = 2; |
| const int long_size = 5; |
| int offs = L->pos() - pc_offset(); |
| ASSERT(offs <= 0); |
| if (is_int8(offs - short_size)) { |
| // 1110 1011 #8-bit disp. |
| EMIT(0xEB); |
| EMIT((offs - short_size) & 0xFF); |
| } else { |
| // 1110 1001 #32-bit disp. |
| EMIT(0xE9); |
| emit(offs - long_size); |
| } |
| } else { |
| // 1110 1001 #32-bit disp. |
| EMIT(0xE9); |
| emit_disp(L, Displacement::UNCONDITIONAL_JUMP); |
| } |
| } |
| |
| |
| void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
| EMIT(0xE9); |
| emit(entry - (pc_ + sizeof(int32_t)), rmode); |
| } |
| |
| |
| void Assembler::jmp(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xFF); |
| emit_operand(esp, adr); |
| } |
| |
| |
| void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| EMIT(0xE9); |
| emit(reinterpret_cast<intptr_t>(code.location()), rmode); |
| } |
| |
| |
| void Assembler::jmp(NearLabel* L) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (L->is_bound()) { |
| const int short_size = 2; |
| int offs = L->pos() - pc_offset(); |
| ASSERT(offs <= 0); |
| ASSERT(is_int8(offs - short_size)); |
| // 1110 1011 #8-bit disp. |
| EMIT(0xEB); |
| EMIT((offs - short_size) & 0xFF); |
| } else { |
| EMIT(0xEB); |
| EMIT(0x00); // The displacement will be resolved later. |
| L->link_to(pc_offset()); |
| } |
| } |
| |
| |
| void Assembler::j(Condition cc, Label* L, Hint hint) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(0 <= cc && cc < 16); |
| if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); |
| if (L->is_bound()) { |
| const int short_size = 2; |
| const int long_size = 6; |
| int offs = L->pos() - pc_offset(); |
| ASSERT(offs <= 0); |
| if (is_int8(offs - short_size)) { |
| // 0111 tttn #8-bit disp |
| EMIT(0x70 | cc); |
| EMIT((offs - short_size) & 0xFF); |
| } else { |
| // 0000 1111 1000 tttn #32-bit disp |
| EMIT(0x0F); |
| EMIT(0x80 | cc); |
| emit(offs - long_size); |
| } |
| } else { |
| // 0000 1111 1000 tttn #32-bit disp |
| // Note: could eliminate cond. jumps to this jump if condition |
| // is the same however, seems to be rather unlikely case. |
| EMIT(0x0F); |
| EMIT(0x80 | cc); |
| emit_disp(L, Displacement::OTHER); |
| } |
| } |
| |
| |
| void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT((0 <= cc) && (cc < 16)); |
| if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); |
| // 0000 1111 1000 tttn #32-bit disp. |
| EMIT(0x0F); |
| EMIT(0x80 | cc); |
| emit(entry - (pc_ + sizeof(int32_t)), rmode); |
| } |
| |
| |
| void Assembler::j(Condition cc, Handle<Code> code, Hint hint) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); |
| // 0000 1111 1000 tttn #32-bit disp |
| EMIT(0x0F); |
| EMIT(0x80 | cc); |
| emit(reinterpret_cast<intptr_t>(code.location()), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Assembler::j(Condition cc, NearLabel* L, Hint hint) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| ASSERT(0 <= cc && cc < 16); |
| if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); |
| if (L->is_bound()) { |
| const int short_size = 2; |
| int offs = L->pos() - pc_offset(); |
| ASSERT(offs <= 0); |
| ASSERT(is_int8(offs - short_size)); |
| // 0111 tttn #8-bit disp |
| EMIT(0x70 | cc); |
| EMIT((offs - short_size) & 0xFF); |
| } else { |
| EMIT(0x70 | cc); |
| EMIT(0x00); // The displacement will be resolved later. |
| L->link_to(pc_offset()); |
| } |
| } |
| |
| |
| // FPU instructions. |
| |
| void Assembler::fld(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xD9, 0xC0, i); |
| } |
| |
| |
| void Assembler::fstp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDD, 0xD8, i); |
| } |
| |
| |
| void Assembler::fld1() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xE8); |
| } |
| |
| |
| void Assembler::fldpi() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xEB); |
| } |
| |
| |
| void Assembler::fldz() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xEE); |
| } |
| |
| |
| void Assembler::fld_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| emit_operand(eax, adr); |
| } |
| |
| |
| void Assembler::fld_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDD); |
| emit_operand(eax, adr); |
| } |
| |
| |
| void Assembler::fstp_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| emit_operand(ebx, adr); |
| } |
| |
| |
| void Assembler::fstp_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDD); |
| emit_operand(ebx, adr); |
| } |
| |
| |
| void Assembler::fst_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDD); |
| emit_operand(edx, adr); |
| } |
| |
| |
| void Assembler::fild_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDB); |
| emit_operand(eax, adr); |
| } |
| |
| |
| void Assembler::fild_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDF); |
| emit_operand(ebp, adr); |
| } |
| |
| |
| void Assembler::fistp_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDB); |
| emit_operand(ebx, adr); |
| } |
| |
| |
| void Assembler::fisttp_s(const Operand& adr) { |
| ASSERT(CpuFeatures::IsEnabled(SSE3)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDB); |
| emit_operand(ecx, adr); |
| } |
| |
| |
| void Assembler::fisttp_d(const Operand& adr) { |
| ASSERT(CpuFeatures::IsEnabled(SSE3)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDD); |
| emit_operand(ecx, adr); |
| } |
| |
| |
| void Assembler::fist_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDB); |
| emit_operand(edx, adr); |
| } |
| |
| |
| void Assembler::fistp_d(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDF); |
| emit_operand(edi, adr); |
| } |
| |
| |
| void Assembler::fabs() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xE1); |
| } |
| |
| |
| void Assembler::fchs() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xE0); |
| } |
| |
| |
| void Assembler::fcos() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xFF); |
| } |
| |
| |
| void Assembler::fsin() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xFE); |
| } |
| |
| |
| void Assembler::fadd(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDC, 0xC0, i); |
| } |
| |
| |
| void Assembler::fsub(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDC, 0xE8, i); |
| } |
| |
| |
| void Assembler::fisub_s(const Operand& adr) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDA); |
| emit_operand(esp, adr); |
| } |
| |
| |
| void Assembler::fmul(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDC, 0xC8, i); |
| } |
| |
| |
| void Assembler::fdiv(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDC, 0xF8, i); |
| } |
| |
| |
| void Assembler::faddp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xC0, i); |
| } |
| |
| |
| void Assembler::fsubp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xE8, i); |
| } |
| |
| |
| void Assembler::fsubrp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xE0, i); |
| } |
| |
| |
| void Assembler::fmulp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xC8, i); |
| } |
| |
| |
| void Assembler::fdivp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDE, 0xF8, i); |
| } |
| |
| |
| void Assembler::fprem() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xF8); |
| } |
| |
| |
| void Assembler::fprem1() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xF5); |
| } |
| |
| |
| void Assembler::fxch(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xD9, 0xC8, i); |
| } |
| |
| |
| void Assembler::fincstp() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xF7); |
| } |
| |
| |
| void Assembler::ffree(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDD, 0xC0, i); |
| } |
| |
| |
| void Assembler::ftst() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xE4); |
| } |
| |
| |
| void Assembler::fucomp(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| emit_farith(0xDD, 0xE8, i); |
| } |
| |
| |
| void Assembler::fucompp() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDA); |
| EMIT(0xE9); |
| } |
| |
| |
| void Assembler::fucomi(int i) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDB); |
| EMIT(0xE8 + i); |
| } |
| |
| |
| void Assembler::fucomip() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDF); |
| EMIT(0xE9); |
| } |
| |
| |
| void Assembler::fcompp() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDE); |
| EMIT(0xD9); |
| } |
| |
| |
| void Assembler::fnstsw_ax() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDF); |
| EMIT(0xE0); |
| } |
| |
| |
| void Assembler::fwait() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x9B); |
| } |
| |
| |
| void Assembler::frndint() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xD9); |
| EMIT(0xFC); |
| } |
| |
| |
| void Assembler::fnclex() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xDB); |
| EMIT(0xE2); |
| } |
| |
| |
| void Assembler::sahf() { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x9E); |
| } |
| |
| |
| void Assembler::setcc(Condition cc, Register reg) { |
| ASSERT(reg.is_byte_register()); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0x90 | cc); |
| EMIT(0xC0 | reg.code()); |
| } |
| |
| |
| void Assembler::cvttss2si(Register dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF3); |
| EMIT(0x0F); |
| EMIT(0x2C); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvttsd2si(Register dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0x2C); |
| emit_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0x2A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF3); |
| EMIT(0x0F); |
| EMIT(0x5A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::addsd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0x58); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::mulsd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0x59); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::subsd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0x5C); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::divsd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0x5E); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::xorpd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x57); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0x51); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::andpd(XMMRegister dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x54); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::ucomisd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x2E); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movmskpd(Register dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x50); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0xC2); |
| emit_sse_operand(dst, src); |
| EMIT(1); // LT == 1 |
| } |
| |
| |
| void Assembler::movaps(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0x28); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movdqa(const Operand& dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x7F); |
| emit_sse_operand(src, dst); |
| } |
| |
| |
| void Assembler::movdqa(XMMRegister dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x6F); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movdqu(const Operand& dst, XMMRegister src ) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF3); |
| EMIT(0x0F); |
| EMIT(0x7F); |
| emit_sse_operand(src, dst); |
| } |
| |
| |
| void Assembler::movdqu(XMMRegister dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF3); |
| EMIT(0x0F); |
| EMIT(0x6F); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movntdqa(XMMRegister dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE4_1)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x38); |
| EMIT(0x2A); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movntdq(const Operand& dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0xE7); |
| emit_sse_operand(src, dst); |
| } |
| |
| |
| void Assembler::prefetch(const Operand& src, int level) { |
| ASSERT(is_uint2(level)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x0F); |
| EMIT(0x18); |
| XMMRegister code = { level }; // Emit hint number in Reg position of RegR/M. |
| emit_sse_operand(code, src); |
| } |
| |
| |
| void Assembler::movdbl(XMMRegister dst, const Operand& src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| movsd(dst, src); |
| } |
| |
| |
| void Assembler::movdbl(const Operand& dst, XMMRegister src) { |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| movsd(dst, src); |
| } |
| |
| |
| void Assembler::movsd(const Operand& dst, XMMRegister src ) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); // double |
| EMIT(0x0F); |
| EMIT(0x11); // store |
| emit_sse_operand(src, dst); |
| } |
| |
| |
| void Assembler::movsd(XMMRegister dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); // double |
| EMIT(0x0F); |
| EMIT(0x10); // load |
| emit_sse_operand(dst, src); |
| } |
| |
| void Assembler::movsd(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0xF2); |
| EMIT(0x0F); |
| EMIT(0x10); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::movd(XMMRegister dst, const Operand& src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x6E); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::pxor(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0xEF); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::ptest(XMMRegister dst, XMMRegister src) { |
| ASSERT(CpuFeatures::IsEnabled(SSE4_1)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x38); |
| EMIT(0x17); |
| emit_sse_operand(dst, src); |
| } |
| |
| |
| void Assembler::psllq(XMMRegister reg, int8_t imm8) { |
| ASSERT(CpuFeatures::IsEnabled(SSE2)); |
| EnsureSpace ensure_space(this); |
| last_pc_ = pc_; |
| EMIT(0x66); |
| EMIT(0x0F); |
| EMIT(0x73); |
| emit_sse_operand(esi, reg); // esi == 6 |
| EMIT(imm8); |
| } |
| |
| |
| void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) { |
| Register ireg = { reg.code() }; |
| emit_operand(ireg, adr); |
| } |
| |
| |
| void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { |
| EMIT(0xC0 | dst.code() << 3 | src.code()); |
| } |
| |
| |
| void Assembler::emit_sse_operand(Register dst, XMMRegister src) { |
| EMIT(0xC0 | dst.code() << 3 | src.code()); |
| } |
| |
| |
| void Assembler::Print() { |
| Disassembler::Decode(stdout, buffer_, pc_); |
| } |
| |
| |
| void Assembler::RecordJSReturn() { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| RecordRelocInfo(RelocInfo::JS_RETURN); |
| } |
| |
| |
| void Assembler::RecordDebugBreakSlot() { |
| positions_recorder()->WriteRecordedPositions(); |
| EnsureSpace ensure_space(this); |
| RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); |
| } |
| |
| |
| void Assembler::RecordComment(const char* msg) { |
| if (FLAG_debug_code) { |
| EnsureSpace ensure_space(this); |
| RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| } |
| } |
| |
| |
| void Assembler::GrowBuffer() { |
| ASSERT(overflow()); |
| if (!own_buffer_) FATAL("external code buffer is too small"); |
| |
| // Compute new buffer size. |
| CodeDesc desc; // the new buffer |
| if (buffer_size_ < 4*KB) { |
| desc.buffer_size = 4*KB; |
| } else { |
| desc.buffer_size = 2*buffer_size_; |
| } |
| // Some internal data structures overflow for very large buffers, |
| // they must ensure that kMaximalBufferSize is not too large. |
| if ((desc.buffer_size > kMaximalBufferSize) || |
| (desc.buffer_size > Heap::MaxOldGenerationSize())) { |
| V8::FatalProcessOutOfMemory("Assembler::GrowBuffer"); |
| } |
| |
| // Setup new buffer. |
| desc.buffer = NewArray<byte>(desc.buffer_size); |
| desc.instr_size = pc_offset(); |
| desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos()); |
| |
| // Clear the buffer in debug mode. Use 'int3' instructions to make |
| // sure to get into problems if we ever run uninitialized code. |
| #ifdef DEBUG |
| memset(desc.buffer, 0xCC, desc.buffer_size); |
| #endif |
| |
| // Copy the data. |
| int pc_delta = desc.buffer - buffer_; |
| int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
| memmove(desc.buffer, buffer_, desc.instr_size); |
| memmove(rc_delta + reloc_info_writer.pos(), |
| reloc_info_writer.pos(), desc.reloc_size); |
| |
| // Switch buffers. |
| if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { |
| spare_buffer_ = buffer_; |
| } else { |
| DeleteArray(buffer_); |
| } |
| buffer_ = desc.buffer; |
| buffer_size_ = desc.buffer_size; |
| pc_ += pc_delta; |
| if (last_pc_ != NULL) { |
| last_pc_ += pc_delta; |
| } |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| // Relocate runtime entries. |
| for (RelocIterator it(desc); !it.done(); it.next()) { |
| RelocInfo::Mode rmode = it.rinfo()->rmode(); |
| if (rmode == RelocInfo::RUNTIME_ENTRY) { |
| int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc()); |
| *p -= pc_delta; // relocate entry |
| } else if (rmode == RelocInfo::INTERNAL_REFERENCE) { |
| int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc()); |
| if (*p != 0) { // 0 means uninitialized. |
| *p += pc_delta; |
| } |
| } |
| } |
| |
| ASSERT(!overflow()); |
| } |
| |
| |
| void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { |
| ASSERT(is_uint8(op1) && is_uint8(op2)); // wrong opcode |
| ASSERT(is_uint8(imm8)); |
| ASSERT((op1 & 0x01) == 0); // should be 8bit operation |
| EMIT(op1); |
| EMIT(op2 | dst.code()); |
| EMIT(imm8); |
| } |
| |
| |
| void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) { |
| ASSERT((0 <= sel) && (sel <= 7)); |
| Register ireg = { sel }; |
| if (x.is_int8()) { |
| EMIT(0x83); // using a sign-extended 8-bit immediate. |
| emit_operand(ireg, dst); |
| EMIT(x.x_ & 0xFF); |
| } else if (dst.is_reg(eax)) { |
| EMIT((sel << 3) | 0x05); // short form if the destination is eax. |
| emit(x); |
| } else { |
| EMIT(0x81); // using a literal 32-bit immediate. |
| emit_operand(ireg, dst); |
| emit(x); |
| } |
| } |
| |
| |
| void Assembler::emit_operand(Register reg, const Operand& adr) { |
| const unsigned length = adr.len_; |
| ASSERT(length > 0); |
| |
| // Emit updated ModRM byte containing the given register. |
| pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3); |
| |
| // Emit the rest of the encoded operand. |
| for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i]; |
| pc_ += length; |
| |
| // Emit relocation information if necessary. |
| if (length >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) { |
| pc_ -= sizeof(int32_t); // pc_ must be *at* disp32 |
| RecordRelocInfo(adr.rmode_); |
| pc_ += sizeof(int32_t); |
| } |
| } |
| |
| |
| void Assembler::emit_farith(int b1, int b2, int i) { |
| ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode |
| ASSERT(0 <= i && i < 8); // illegal stack offset |
| EMIT(b1); |
| EMIT(b2 + i); |
| } |
| |
| |
| void Assembler::dd(uint32_t data, RelocInfo::Mode reloc_info) { |
| EnsureSpace ensure_space(this); |
| emit(data, reloc_info); |
| } |
| |
| |
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| ASSERT(rmode != RelocInfo::NONE); |
| // Don't record external references unless the heap will be serialized. |
| if (rmode == RelocInfo::EXTERNAL_REFERENCE) { |
| #ifdef DEBUG |
| if (!Serializer::enabled()) { |
| Serializer::TooLateToEnableNow(); |
| } |
| #endif |
| if (!Serializer::enabled() && !FLAG_debug_code) { |
| return; |
| } |
| } |
| RelocInfo rinfo(pc_, rmode, data); |
| reloc_info_writer.Write(&rinfo); |
| } |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| static FILE* coverage_log = NULL; |
| |
| |
| static void InitCoverageLog() { |
| char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
| if (file_name != NULL) { |
| coverage_log = fopen(file_name, "aw+"); |
| } |
| } |
| |
| |
| void LogGeneratedCodeCoverage(const char* file_line) { |
| const char* return_address = (&file_line)[-1]; |
| char* push_insn = const_cast<char*>(return_address - 12); |
| push_insn[0] = 0xeb; // Relative branch insn. |
| push_insn[1] = 13; // Skip over coverage insns. |
| if (coverage_log != NULL) { |
| fprintf(coverage_log, "%s\n", file_line); |
| fflush(coverage_log); |
| } |
| } |
| |
| #endif |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_IA32 |