| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| |
| #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ |
| #define V8_MIPS_ASSEMBLER_MIPS_H_ |
| |
| #include <stdio.h> |
| #include "assembler.h" |
| #include "constants-mips.h" |
| #include "serialize.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // CPU Registers. |
| // |
| // 1) We would prefer to use an enum, but enum values are assignment- |
| // compatible with int, which has caused code-generation bugs. |
| // |
| // 2) We would prefer to use a class instead of a struct but we don't like |
| // the register initialization to depend on the particular initialization |
| // order (which appears to be different on OS X, Linux, and Windows for the |
| // installed versions of C++ we tried). Using a struct permits C-style |
| // "initialization". Also, the Register objects cannot be const as this |
| // forces initialization stubs in MSVC, making us dependent on initialization |
| // order. |
| // |
| // 3) By not using an enum, we are possibly preventing the compiler from |
| // doing certain constant folds, which may significantly reduce the |
| // code generated for some assembly instructions (because they boil down |
| // to a few constants). If this is a problem, we could change the code |
| // such that we use an enum in optimized mode, and the struct in debug |
| // mode. This way we get the compile-time error checking in debug mode |
| // and best performance in optimized code. |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Register and FPURegister. |
| |
| // Core register. |
| struct Register { |
| static const int kNumRegisters = v8::internal::kNumRegisters; |
| static const int kNumAllocatableRegisters = 14; // v0 through t7. |
| static const int kSizeInBytes = 4; |
| |
| static int ToAllocationIndex(Register reg) { |
| return reg.code() - 2; // zero_reg and 'at' are skipped. |
| } |
| |
| static Register FromAllocationIndex(int index) { |
| ASSERT(index >= 0 && index < kNumAllocatableRegisters); |
| return from_code(index + 2); // zero_reg and 'at' are skipped. |
| } |
| |
| static const char* AllocationIndexToString(int index) { |
| ASSERT(index >= 0 && index < kNumAllocatableRegisters); |
| const char* const names[] = { |
| "v0", |
| "v1", |
| "a0", |
| "a1", |
| "a2", |
| "a3", |
| "t0", |
| "t1", |
| "t2", |
| "t3", |
| "t4", |
| "t5", |
| "t6", |
| "t7", |
| }; |
| return names[index]; |
| } |
| |
| static Register from_code(int code) { |
| Register r = { code }; |
| return r; |
| } |
| |
| bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; } |
| bool is(Register reg) const { return code_ == reg.code_; } |
| int code() const { |
| ASSERT(is_valid()); |
| return code_; |
| } |
| int bit() const { |
| ASSERT(is_valid()); |
| return 1 << code_; |
| } |
| |
| // Unfortunately we can't make this private in a struct. |
| int code_; |
| }; |
| |
| #define REGISTER(N, C) \ |
| const int kRegister_ ## N ## _Code = C; \ |
| const Register N = { C } |
| |
| REGISTER(no_reg, -1); |
| // Always zero. |
| REGISTER(zero_reg, 0); |
| // at: Reserved for synthetic instructions. |
| REGISTER(at, 1); |
| // v0, v1: Used when returning multiple values from subroutines. |
| REGISTER(v0, 2); |
| REGISTER(v1, 3); |
| // a0 - a4: Used to pass non-FP parameters. |
| REGISTER(a0, 4); |
| REGISTER(a1, 5); |
| REGISTER(a2, 6); |
| REGISTER(a3, 7); |
| // t0 - t9: Can be used without reservation, act as temporary registers and are |
| // allowed to be destroyed by subroutines. |
| REGISTER(t0, 8); |
| REGISTER(t1, 9); |
| REGISTER(t2, 10); |
| REGISTER(t3, 11); |
| REGISTER(t4, 12); |
| REGISTER(t5, 13); |
| REGISTER(t6, 14); |
| REGISTER(t7, 15); |
| // s0 - s7: Subroutine register variables. Subroutines that write to these |
| // registers must restore their values before exiting so that the caller can |
| // expect the values to be preserved. |
| REGISTER(s0, 16); |
| REGISTER(s1, 17); |
| REGISTER(s2, 18); |
| REGISTER(s3, 19); |
| REGISTER(s4, 20); |
| REGISTER(s5, 21); |
| REGISTER(s6, 22); |
| REGISTER(s7, 23); |
| REGISTER(t8, 24); |
| REGISTER(t9, 25); |
| // k0, k1: Reserved for system calls and interrupt handlers. |
| REGISTER(k0, 26); |
| REGISTER(k1, 27); |
| // gp: Reserved. |
| REGISTER(gp, 28); |
| // sp: Stack pointer. |
| REGISTER(sp, 29); |
| // fp: Frame pointer. |
| REGISTER(fp, 30); |
| // ra: Return address pointer. |
| REGISTER(ra, 31); |
| |
| #undef REGISTER |
| |
| |
| int ToNumber(Register reg); |
| |
| Register ToRegister(int num); |
| |
| // Coprocessor register. |
| struct FPURegister { |
| static const int kNumRegisters = v8::internal::kNumFPURegisters; |
| |
| // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers |
| // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to |
| // number of Double regs (64-bit regs, or FPU-reg-pairs). |
| |
| // A few double registers are reserved: one as a scratch register and one to |
| // hold 0.0. |
| // f28: 0.0 |
| // f30: scratch register. |
| static const int kNumReservedRegisters = 2; |
| static const int kNumAllocatableRegisters = kNumRegisters / 2 - |
| kNumReservedRegisters; |
| |
| |
| inline static int ToAllocationIndex(FPURegister reg); |
| |
| static FPURegister FromAllocationIndex(int index) { |
| ASSERT(index >= 0 && index < kNumAllocatableRegisters); |
| return from_code(index * 2); |
| } |
| |
| static const char* AllocationIndexToString(int index) { |
| ASSERT(index >= 0 && index < kNumAllocatableRegisters); |
| const char* const names[] = { |
| "f0", |
| "f2", |
| "f4", |
| "f6", |
| "f8", |
| "f10", |
| "f12", |
| "f14", |
| "f16", |
| "f18", |
| "f20", |
| "f22", |
| "f24", |
| "f26" |
| }; |
| return names[index]; |
| } |
| |
| static FPURegister from_code(int code) { |
| FPURegister r = { code }; |
| return r; |
| } |
| |
| bool is_valid() const { return 0 <= code_ && code_ < kNumFPURegisters ; } |
| bool is(FPURegister creg) const { return code_ == creg.code_; } |
| FPURegister low() const { |
| // Find low reg of a Double-reg pair, which is the reg itself. |
| ASSERT(code_ % 2 == 0); // Specified Double reg must be even. |
| FPURegister reg; |
| reg.code_ = code_; |
| ASSERT(reg.is_valid()); |
| return reg; |
| } |
| FPURegister high() const { |
| // Find high reg of a Doubel-reg pair, which is reg + 1. |
| ASSERT(code_ % 2 == 0); // Specified Double reg must be even. |
| FPURegister reg; |
| reg.code_ = code_ + 1; |
| ASSERT(reg.is_valid()); |
| return reg; |
| } |
| |
| int code() const { |
| ASSERT(is_valid()); |
| return code_; |
| } |
| int bit() const { |
| ASSERT(is_valid()); |
| return 1 << code_; |
| } |
| void setcode(int f) { |
| code_ = f; |
| ASSERT(is_valid()); |
| } |
| // Unfortunately we can't make this private in a struct. |
| int code_; |
| }; |
| |
| // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 |
| // 32-bit registers, f0 through f31. When used as 'double' they are used |
| // in pairs, starting with the even numbered register. So a double operation |
| // on f0 really uses f0 and f1. |
| // (Modern mips hardware also supports 32 64-bit registers, via setting |
| // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI, |
| // but it is not in common use. Someday we will want to support this in v8.) |
| |
| // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. |
| typedef FPURegister DoubleRegister; |
| typedef FPURegister FloatRegister; |
| |
| const FPURegister no_freg = { -1 }; |
| |
| const FPURegister f0 = { 0 }; // Return value in hard float mode. |
| const FPURegister f1 = { 1 }; |
| const FPURegister f2 = { 2 }; |
| const FPURegister f3 = { 3 }; |
| const FPURegister f4 = { 4 }; |
| const FPURegister f5 = { 5 }; |
| const FPURegister f6 = { 6 }; |
| const FPURegister f7 = { 7 }; |
| const FPURegister f8 = { 8 }; |
| const FPURegister f9 = { 9 }; |
| const FPURegister f10 = { 10 }; |
| const FPURegister f11 = { 11 }; |
| const FPURegister f12 = { 12 }; // Arg 0 in hard float mode. |
| const FPURegister f13 = { 13 }; |
| const FPURegister f14 = { 14 }; // Arg 1 in hard float mode. |
| const FPURegister f15 = { 15 }; |
| const FPURegister f16 = { 16 }; |
| const FPURegister f17 = { 17 }; |
| const FPURegister f18 = { 18 }; |
| const FPURegister f19 = { 19 }; |
| const FPURegister f20 = { 20 }; |
| const FPURegister f21 = { 21 }; |
| const FPURegister f22 = { 22 }; |
| const FPURegister f23 = { 23 }; |
| const FPURegister f24 = { 24 }; |
| const FPURegister f25 = { 25 }; |
| const FPURegister f26 = { 26 }; |
| const FPURegister f27 = { 27 }; |
| const FPURegister f28 = { 28 }; |
| const FPURegister f29 = { 29 }; |
| const FPURegister f30 = { 30 }; |
| const FPURegister f31 = { 31 }; |
| |
| // Register aliases. |
| // cp is assumed to be a callee saved register. |
| static const Register& kLithiumScratchReg = s3; // Scratch register. |
| static const Register& kLithiumScratchReg2 = s4; // Scratch register. |
| static const Register& kRootRegister = s6; // Roots array pointer. |
| static const Register& cp = s7; // JavaScript context pointer. |
| static const DoubleRegister& kLithiumScratchDouble = f30; |
| static const FPURegister& kDoubleRegZero = f28; |
| |
| // FPU (coprocessor 1) control registers. |
| // Currently only FCSR (#31) is implemented. |
| struct FPUControlRegister { |
| bool is_valid() const { return code_ == kFCSRRegister; } |
| bool is(FPUControlRegister creg) const { return code_ == creg.code_; } |
| int code() const { |
| ASSERT(is_valid()); |
| return code_; |
| } |
| int bit() const { |
| ASSERT(is_valid()); |
| return 1 << code_; |
| } |
| void setcode(int f) { |
| code_ = f; |
| ASSERT(is_valid()); |
| } |
| // Unfortunately we can't make this private in a struct. |
| int code_; |
| }; |
| |
| const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; |
| const FPUControlRegister FCSR = { kFCSRRegister }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Machine instruction Operands. |
| |
| // Class Operand represents a shifter operand in data processing instructions. |
| class Operand BASE_EMBEDDED { |
| public: |
| // Immediate. |
| INLINE(explicit Operand(int32_t immediate, |
| RelocInfo::Mode rmode = RelocInfo::NONE)); |
| INLINE(explicit Operand(const ExternalReference& f)); |
| INLINE(explicit Operand(const char* s)); |
| INLINE(explicit Operand(Object** opp)); |
| INLINE(explicit Operand(Context** cpp)); |
| explicit Operand(Handle<Object> handle); |
| INLINE(explicit Operand(Smi* value)); |
| |
| // Register. |
| INLINE(explicit Operand(Register rm)); |
| |
| // Return true if this is a register operand. |
| INLINE(bool is_reg() const); |
| |
| Register rm() const { return rm_; } |
| |
| private: |
| Register rm_; |
| int32_t imm32_; // Valid if rm_ == no_reg. |
| RelocInfo::Mode rmode_; |
| |
| friend class Assembler; |
| friend class MacroAssembler; |
| }; |
| |
| |
| // On MIPS we have only one adressing mode with base_reg + offset. |
| // Class MemOperand represents a memory operand in load and store instructions. |
| class MemOperand : public Operand { |
| public: |
| explicit MemOperand(Register rn, int32_t offset = 0); |
| int32_t offset() const { return offset_; } |
| |
| bool OffsetIsInt16Encodable() const { |
| return is_int16(offset_); |
| } |
| |
| private: |
| int32_t offset_; |
| |
| friend class Assembler; |
| }; |
| |
| |
| // CpuFeatures keeps track of which features are supported by the target CPU. |
| // Supported features must be enabled by a Scope before use. |
| class CpuFeatures : public AllStatic { |
| public: |
| // Detect features of the target CPU. Set safe defaults if the serializer |
| // is enabled (snapshots must be portable). |
| static void Probe(); |
| |
| // Check whether a feature is supported by the target CPU. |
| static bool IsSupported(CpuFeature f) { |
| ASSERT(initialized_); |
| if (f == FPU && !FLAG_enable_fpu) return false; |
| return (supported_ & (1u << f)) != 0; |
| } |
| |
| |
| #ifdef DEBUG |
| // Check whether a feature is currently enabled. |
| static bool IsEnabled(CpuFeature f) { |
| ASSERT(initialized_); |
| Isolate* isolate = Isolate::UncheckedCurrent(); |
| if (isolate == NULL) { |
| // When no isolate is available, work as if we're running in |
| // release mode. |
| return IsSupported(f); |
| } |
| unsigned enabled = static_cast<unsigned>(isolate->enabled_cpu_features()); |
| return (enabled & (1u << f)) != 0; |
| } |
| #endif |
| |
| // Enable a specified feature within a scope. |
| class Scope BASE_EMBEDDED { |
| #ifdef DEBUG |
| |
| public: |
| explicit Scope(CpuFeature f) { |
| unsigned mask = 1u << f; |
| ASSERT(CpuFeatures::IsSupported(f)); |
| ASSERT(!Serializer::enabled() || |
| (CpuFeatures::found_by_runtime_probing_ & mask) == 0); |
| isolate_ = Isolate::UncheckedCurrent(); |
| old_enabled_ = 0; |
| if (isolate_ != NULL) { |
| old_enabled_ = static_cast<unsigned>(isolate_->enabled_cpu_features()); |
| isolate_->set_enabled_cpu_features(old_enabled_ | mask); |
| } |
| } |
| ~Scope() { |
| ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_); |
| if (isolate_ != NULL) { |
| isolate_->set_enabled_cpu_features(old_enabled_); |
| } |
| } |
| |
| private: |
| Isolate* isolate_; |
| unsigned old_enabled_; |
| #else |
| |
| public: |
| explicit Scope(CpuFeature f) {} |
| #endif |
| }; |
| |
| class TryForceFeatureScope BASE_EMBEDDED { |
| public: |
| explicit TryForceFeatureScope(CpuFeature f) |
| : old_supported_(CpuFeatures::supported_) { |
| if (CanForce()) { |
| CpuFeatures::supported_ |= (1u << f); |
| } |
| } |
| |
| ~TryForceFeatureScope() { |
| if (CanForce()) { |
| CpuFeatures::supported_ = old_supported_; |
| } |
| } |
| |
| private: |
| static bool CanForce() { |
| // It's only safe to temporarily force support of CPU features |
| // when there's only a single isolate, which is guaranteed when |
| // the serializer is enabled. |
| return Serializer::enabled(); |
| } |
| |
| const unsigned old_supported_; |
| }; |
| |
| private: |
| #ifdef DEBUG |
| static bool initialized_; |
| #endif |
| static unsigned supported_; |
| static unsigned found_by_runtime_probing_; |
| |
| DISALLOW_COPY_AND_ASSIGN(CpuFeatures); |
| }; |
| |
| |
| class Assembler : public AssemblerBase { |
| public: |
| // Create an assembler. Instructions and relocation information are emitted |
| // into a buffer, with the instructions starting from the beginning and the |
| // relocation information starting from the end of the buffer. See CodeDesc |
| // for a detailed comment on the layout (globals.h). |
| // |
| // If the provided buffer is NULL, the assembler allocates and grows its own |
| // buffer, and buffer_size determines the initial buffer size. The buffer is |
| // owned by the assembler and deallocated upon destruction of the assembler. |
| // |
| // If the provided buffer is not NULL, the assembler uses the provided buffer |
| // for code generation and assumes its size to be buffer_size. If the buffer |
| // is too small, a fatal error occurs. No deallocation of the buffer is done |
| // upon destruction of the assembler. |
| Assembler(Isolate* isolate, void* buffer, int buffer_size); |
| ~Assembler(); |
| |
| // Overrides the default provided by FLAG_debug_code. |
| void set_emit_debug_code(bool value) { emit_debug_code_ = value; } |
| |
| // GetCode emits any pending (non-emitted) code and fills the descriptor |
| // desc. GetCode() is idempotent; it returns the same result if no other |
| // Assembler functions are invoked in between GetCode() calls. |
| void GetCode(CodeDesc* desc); |
| |
| // Label operations & relative jumps (PPUM Appendix D). |
| // |
| // Takes a branch opcode (cc) and a label (L) and generates |
| // either a backward branch or a forward branch and links it |
| // to the label fixup chain. Usage: |
| // |
| // Label L; // unbound label |
| // j(cc, &L); // forward branch to unbound label |
| // bind(&L); // bind label to the current pc |
| // j(cc, &L); // backward branch to bound label |
| // bind(&L); // illegal: a label may be bound only once |
| // |
| // Note: The same Label can be used for forward and backward branches |
| // but it may be bound only once. |
| void bind(Label* L); // Binds an unbound label L to current code position. |
| // Determines if Label is bound and near enough so that branch instruction |
| // can be used to reach it, instead of jump instruction. |
| bool is_near(Label* L); |
| |
| // Returns the branch offset to the given label from the current code |
| // position. Links the label to the current position if it is still unbound. |
| // Manages the jump elimination optimization if the second parameter is true. |
| int32_t branch_offset(Label* L, bool jump_elimination_allowed); |
| int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) { |
| int32_t o = branch_offset(L, jump_elimination_allowed); |
| ASSERT((o & 3) == 0); // Assert the offset is aligned. |
| return o >> 2; |
| } |
| uint32_t jump_address(Label* L); |
| |
| // Puts a labels target address at the given position. |
| // The high 8 bits are set to zero. |
| void label_at_put(Label* L, int at_offset); |
| |
| // Read/Modify the code target address in the branch/call instruction at pc. |
| static Address target_address_at(Address pc); |
| static void set_target_address_at(Address pc, Address target); |
| |
| static void JumpLabelToJumpRegister(Address pc); |
| |
| static void QuietNaN(HeapObject* nan); |
| |
| // This sets the branch destination (which gets loaded at the call address). |
| // This is for calls and branches within generated code. The serializer |
| // has already deserialized the lui/ori instructions etc. |
| inline static void deserialization_set_special_target_at( |
| Address instruction_payload, Address target) { |
| set_target_address_at( |
| instruction_payload - kInstructionsFor32BitConstant * kInstrSize, |
| target); |
| } |
| |
| // This sets the branch destination. |
| // This is for calls and branches to runtime code. |
| inline static void set_external_target_at(Address instruction_payload, |
| Address target) { |
| set_target_address_at(instruction_payload, target); |
| } |
| |
| // Size of an instruction. |
| static const int kInstrSize = sizeof(Instr); |
| |
| // Difference between address of current opcode and target address offset. |
| static const int kBranchPCOffset = 4; |
| |
| // Here we are patching the address in the LUI/ORI instruction pair. |
| // These values are used in the serialization process and must be zero for |
| // MIPS platform, as Code, Embedded Object or External-reference pointers |
| // are split across two consecutive instructions and don't exist separately |
| // in the code, so the serializer should not step forwards in memory after |
| // a target is resolved and written. |
| static const int kSpecialTargetSize = 0; |
| |
| // Number of consecutive instructions used to store 32bit constant. |
| // Before jump-optimizations, this constant was used in |
| // RelocInfo::target_address_address() function to tell serializer address of |
| // the instruction that follows LUI/ORI instruction pair. Now, with new jump |
| // optimization, where jump-through-register instruction that usually |
| // follows LUI/ORI pair is substituted with J/JAL, this constant equals |
| // to 3 instructions (LUI+ORI+J/JAL/JR/JALR). |
| static const int kInstructionsFor32BitConstant = 3; |
| |
| // Distance between the instruction referring to the address of the call |
| // target and the return address. |
| static const int kCallTargetAddressOffset = 4 * kInstrSize; |
| |
| // Distance between start of patched return sequence and the emitted address |
| // to jump to. |
| static const int kPatchReturnSequenceAddressOffset = 0; |
| |
| // Distance between start of patched debug break slot and the emitted address |
| // to jump to. |
| static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize; |
| |
| // Difference between address of current opcode and value read from pc |
| // register. |
| static const int kPcLoadDelta = 4; |
| |
| // Number of instructions used for the JS return sequence. The constant is |
| // used by the debugger to patch the JS return sequence. |
| static const int kJSReturnSequenceInstructions = 7; |
| static const int kDebugBreakSlotInstructions = 4; |
| static const int kDebugBreakSlotLength = |
| kDebugBreakSlotInstructions * kInstrSize; |
| |
| |
| // --------------------------------------------------------------------------- |
| // Code generation. |
| |
| // Insert the smallest number of nop instructions |
| // possible to align the pc offset to a multiple |
| // of m. m must be a power of 2 (>= 4). |
| void Align(int m); |
| // Aligns code to something that's optimal for a jump target for the platform. |
| void CodeTargetAlign(); |
| |
| // Different nop operations are used by the code generator to detect certain |
| // states of the generated code. |
| enum NopMarkerTypes { |
| NON_MARKING_NOP = 0, |
| DEBUG_BREAK_NOP, |
| // IC markers. |
| PROPERTY_ACCESS_INLINED, |
| PROPERTY_ACCESS_INLINED_CONTEXT, |
| PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, |
| // Helper values. |
| LAST_CODE_MARKER, |
| FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED |
| }; |
| |
| // Type == 0 is the default non-marking type. |
| void nop(unsigned int type = 0) { |
| ASSERT(type < 32); |
| sll(zero_reg, zero_reg, type, true); |
| } |
| |
| |
| // --------Branch-and-jump-instructions---------- |
| // We don't use likely variant of instructions. |
| void b(int16_t offset); |
| void b(Label* L) { b(branch_offset(L, false)>>2); } |
| void bal(int16_t offset); |
| void bal(Label* L) { bal(branch_offset(L, false)>>2); } |
| |
| void beq(Register rs, Register rt, int16_t offset); |
| void beq(Register rs, Register rt, Label* L) { |
| beq(rs, rt, branch_offset(L, false) >> 2); |
| } |
| void bgez(Register rs, int16_t offset); |
| void bgezal(Register rs, int16_t offset); |
| void bgtz(Register rs, int16_t offset); |
| void blez(Register rs, int16_t offset); |
| void bltz(Register rs, int16_t offset); |
| void bltzal(Register rs, int16_t offset); |
| void bne(Register rs, Register rt, int16_t offset); |
| void bne(Register rs, Register rt, Label* L) { |
| bne(rs, rt, branch_offset(L, false)>>2); |
| } |
| |
| // Never use the int16_t b(l)cond version with a branch offset |
| // instead of using the Label* version. |
| |
| // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. |
| void j(int32_t target); |
| void jal(int32_t target); |
| void jalr(Register rs, Register rd = ra); |
| void jr(Register target); |
| void j_or_jr(int32_t target, Register rs); |
| void jal_or_jalr(int32_t target, Register rs); |
| |
| |
| //-------Data-processing-instructions--------- |
| |
| // Arithmetic. |
| void addu(Register rd, Register rs, Register rt); |
| void subu(Register rd, Register rs, Register rt); |
| void mult(Register rs, Register rt); |
| void multu(Register rs, Register rt); |
| void div(Register rs, Register rt); |
| void divu(Register rs, Register rt); |
| void mul(Register rd, Register rs, Register rt); |
| |
| void addiu(Register rd, Register rs, int32_t j); |
| |
| // Logical. |
| void and_(Register rd, Register rs, Register rt); |
| void or_(Register rd, Register rs, Register rt); |
| void xor_(Register rd, Register rs, Register rt); |
| void nor(Register rd, Register rs, Register rt); |
| |
| void andi(Register rd, Register rs, int32_t j); |
| void ori(Register rd, Register rs, int32_t j); |
| void xori(Register rd, Register rs, int32_t j); |
| void lui(Register rd, int32_t j); |
| |
| // Shifts. |
| // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop |
| // and may cause problems in normal code. coming_from_nop makes sure this |
| // doesn't happen. |
| void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); |
| void sllv(Register rd, Register rt, Register rs); |
| void srl(Register rd, Register rt, uint16_t sa); |
| void srlv(Register rd, Register rt, Register rs); |
| void sra(Register rt, Register rd, uint16_t sa); |
| void srav(Register rt, Register rd, Register rs); |
| void rotr(Register rd, Register rt, uint16_t sa); |
| void rotrv(Register rd, Register rt, Register rs); |
| |
| |
| //------------Memory-instructions------------- |
| |
| void lb(Register rd, const MemOperand& rs); |
| void lbu(Register rd, const MemOperand& rs); |
| void lh(Register rd, const MemOperand& rs); |
| void lhu(Register rd, const MemOperand& rs); |
| void lw(Register rd, const MemOperand& rs); |
| void lwl(Register rd, const MemOperand& rs); |
| void lwr(Register rd, const MemOperand& rs); |
| void sb(Register rd, const MemOperand& rs); |
| void sh(Register rd, const MemOperand& rs); |
| void sw(Register rd, const MemOperand& rs); |
| void swl(Register rd, const MemOperand& rs); |
| void swr(Register rd, const MemOperand& rs); |
| |
| |
| //-------------Misc-instructions-------------- |
| |
| // Break / Trap instructions. |
| void break_(uint32_t code, bool break_as_stop = false); |
| void stop(const char* msg, uint32_t code = kMaxStopCode); |
| void tge(Register rs, Register rt, uint16_t code); |
| void tgeu(Register rs, Register rt, uint16_t code); |
| void tlt(Register rs, Register rt, uint16_t code); |
| void tltu(Register rs, Register rt, uint16_t code); |
| void teq(Register rs, Register rt, uint16_t code); |
| void tne(Register rs, Register rt, uint16_t code); |
| |
| // Move from HI/LO register. |
| void mfhi(Register rd); |
| void mflo(Register rd); |
| |
| // Set on less than. |
| void slt(Register rd, Register rs, Register rt); |
| void sltu(Register rd, Register rs, Register rt); |
| void slti(Register rd, Register rs, int32_t j); |
| void sltiu(Register rd, Register rs, int32_t j); |
| |
| // Conditional move. |
| void movz(Register rd, Register rs, Register rt); |
| void movn(Register rd, Register rs, Register rt); |
| void movt(Register rd, Register rs, uint16_t cc = 0); |
| void movf(Register rd, Register rs, uint16_t cc = 0); |
| |
| // Bit twiddling. |
| void clz(Register rd, Register rs); |
| void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); |
| |
| //--------Coprocessor-instructions---------------- |
| |
| // Load, store, and move. |
| void lwc1(FPURegister fd, const MemOperand& src); |
| void ldc1(FPURegister fd, const MemOperand& src); |
| |
| void swc1(FPURegister fs, const MemOperand& dst); |
| void sdc1(FPURegister fs, const MemOperand& dst); |
| |
| void mtc1(Register rt, FPURegister fs); |
| void mfc1(Register rt, FPURegister fs); |
| |
| void ctc1(Register rt, FPUControlRegister fs); |
| void cfc1(Register rt, FPUControlRegister fs); |
| |
| // Arithmetic. |
| void add_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void div_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void abs_d(FPURegister fd, FPURegister fs); |
| void mov_d(FPURegister fd, FPURegister fs); |
| void neg_d(FPURegister fd, FPURegister fs); |
| void sqrt_d(FPURegister fd, FPURegister fs); |
| |
| // Conversion. |
| void cvt_w_s(FPURegister fd, FPURegister fs); |
| void cvt_w_d(FPURegister fd, FPURegister fs); |
| void trunc_w_s(FPURegister fd, FPURegister fs); |
| void trunc_w_d(FPURegister fd, FPURegister fs); |
| void round_w_s(FPURegister fd, FPURegister fs); |
| void round_w_d(FPURegister fd, FPURegister fs); |
| void floor_w_s(FPURegister fd, FPURegister fs); |
| void floor_w_d(FPURegister fd, FPURegister fs); |
| void ceil_w_s(FPURegister fd, FPURegister fs); |
| void ceil_w_d(FPURegister fd, FPURegister fs); |
| |
| void cvt_l_s(FPURegister fd, FPURegister fs); |
| void cvt_l_d(FPURegister fd, FPURegister fs); |
| void trunc_l_s(FPURegister fd, FPURegister fs); |
| void trunc_l_d(FPURegister fd, FPURegister fs); |
| void round_l_s(FPURegister fd, FPURegister fs); |
| void round_l_d(FPURegister fd, FPURegister fs); |
| void floor_l_s(FPURegister fd, FPURegister fs); |
| void floor_l_d(FPURegister fd, FPURegister fs); |
| void ceil_l_s(FPURegister fd, FPURegister fs); |
| void ceil_l_d(FPURegister fd, FPURegister fs); |
| |
| void cvt_s_w(FPURegister fd, FPURegister fs); |
| void cvt_s_l(FPURegister fd, FPURegister fs); |
| void cvt_s_d(FPURegister fd, FPURegister fs); |
| |
| void cvt_d_w(FPURegister fd, FPURegister fs); |
| void cvt_d_l(FPURegister fd, FPURegister fs); |
| void cvt_d_s(FPURegister fd, FPURegister fs); |
| |
| // Conditions and branches. |
| void c(FPUCondition cond, SecondaryField fmt, |
| FPURegister ft, FPURegister fs, uint16_t cc = 0); |
| |
| void bc1f(int16_t offset, uint16_t cc = 0); |
| void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); } |
| void bc1t(int16_t offset, uint16_t cc = 0); |
| void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); } |
| void fcmp(FPURegister src1, const double src2, FPUCondition cond); |
| |
| // Check the code size generated from label to here. |
| int SizeOfCodeGeneratedSince(Label* label) { |
| return pc_offset() - label->pos(); |
| } |
| |
| // Check the number of instructions generated from label to here. |
| int InstructionsGeneratedSince(Label* label) { |
| return SizeOfCodeGeneratedSince(label) / kInstrSize; |
| } |
| |
| // Class for scoping postponing the trampoline pool generation. |
| class BlockTrampolinePoolScope { |
| public: |
| explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { |
| assem_->StartBlockTrampolinePool(); |
| } |
| ~BlockTrampolinePoolScope() { |
| assem_->EndBlockTrampolinePool(); |
| } |
| |
| private: |
| Assembler* assem_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); |
| }; |
| |
| // Class for postponing the assembly buffer growth. Typically used for |
| // sequences of instructions that must be emitted as a unit, before |
| // buffer growth (and relocation) can occur. |
| // This blocking scope is not nestable. |
| class BlockGrowBufferScope { |
| public: |
| explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { |
| assem_->StartBlockGrowBuffer(); |
| } |
| ~BlockGrowBufferScope() { |
| assem_->EndBlockGrowBuffer(); |
| } |
| |
| private: |
| Assembler* assem_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); |
| }; |
| |
| // Debugging. |
| |
| // Mark address of the ExitJSFrame code. |
| void RecordJSReturn(); |
| |
| // Mark address of a debug break slot. |
| void RecordDebugBreakSlot(); |
| |
| // Record the AST id of the CallIC being compiled, so that it can be placed |
| // in the relocation information. |
| void SetRecordedAstId(unsigned ast_id) { |
| ASSERT(recorded_ast_id_ == kNoASTId); |
| recorded_ast_id_ = ast_id; |
| } |
| |
| unsigned RecordedAstId() { |
| ASSERT(recorded_ast_id_ != kNoASTId); |
| return recorded_ast_id_; |
| } |
| |
| void ClearRecordedAstId() { recorded_ast_id_ = kNoASTId; } |
| |
| // Record a comment relocation entry that can be used by a disassembler. |
| // Use --code-comments to enable. |
| void RecordComment(const char* msg); |
| |
| static int RelocateInternalReference(byte* pc, intptr_t pc_delta); |
| |
| // Writes a single byte or word of data in the code stream. Used for |
| // inline tables, e.g., jump-tables. |
| void db(uint8_t data); |
| void dd(uint32_t data); |
| |
| int32_t pc_offset() const { return pc_ - buffer_; } |
| |
| PositionsRecorder* positions_recorder() { return &positions_recorder_; } |
| |
| // Postpone the generation of the trampoline pool for the specified number of |
| // instructions. |
| void BlockTrampolinePoolFor(int instructions); |
| |
| // Check if there is less than kGap bytes available in the buffer. |
| // If this is the case, we need to grow the buffer before emitting |
| // an instruction or relocation information. |
| inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } |
| |
| // Get the number of bytes available in the buffer. |
| inline int available_space() const { return reloc_info_writer.pos() - pc_; } |
| |
| // Read/patch instructions. |
| static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } |
| static void instr_at_put(byte* pc, Instr instr) { |
| *reinterpret_cast<Instr*>(pc) = instr; |
| } |
| Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } |
| void instr_at_put(int pos, Instr instr) { |
| *reinterpret_cast<Instr*>(buffer_ + pos) = instr; |
| } |
| |
| // Check if an instruction is a branch of some kind. |
| static bool IsBranch(Instr instr); |
| static bool IsBeq(Instr instr); |
| static bool IsBne(Instr instr); |
| |
| static bool IsJump(Instr instr); |
| static bool IsJ(Instr instr); |
| static bool IsLui(Instr instr); |
| static bool IsOri(Instr instr); |
| |
| static bool IsJal(Instr instr); |
| static bool IsJr(Instr instr); |
| static bool IsJalr(Instr instr); |
| |
| static bool IsNop(Instr instr, unsigned int type); |
| static bool IsPop(Instr instr); |
| static bool IsPush(Instr instr); |
| static bool IsLwRegFpOffset(Instr instr); |
| static bool IsSwRegFpOffset(Instr instr); |
| static bool IsLwRegFpNegOffset(Instr instr); |
| static bool IsSwRegFpNegOffset(Instr instr); |
| |
| static Register GetRtReg(Instr instr); |
| static Register GetRsReg(Instr instr); |
| static Register GetRdReg(Instr instr); |
| |
| static uint32_t GetRt(Instr instr); |
| static uint32_t GetRtField(Instr instr); |
| static uint32_t GetRs(Instr instr); |
| static uint32_t GetRsField(Instr instr); |
| static uint32_t GetRd(Instr instr); |
| static uint32_t GetRdField(Instr instr); |
| static uint32_t GetSa(Instr instr); |
| static uint32_t GetSaField(Instr instr); |
| static uint32_t GetOpcodeField(Instr instr); |
| static uint32_t GetFunction(Instr instr); |
| static uint32_t GetFunctionField(Instr instr); |
| static uint32_t GetImmediate16(Instr instr); |
| static uint32_t GetLabelConst(Instr instr); |
| |
| static int32_t GetBranchOffset(Instr instr); |
| static bool IsLw(Instr instr); |
| static int16_t GetLwOffset(Instr instr); |
| static Instr SetLwOffset(Instr instr, int16_t offset); |
| |
| static bool IsSw(Instr instr); |
| static Instr SetSwOffset(Instr instr, int16_t offset); |
| static bool IsAddImmediate(Instr instr); |
| static Instr SetAddImmediateOffset(Instr instr, int16_t offset); |
| |
| static bool IsAndImmediate(Instr instr); |
| |
| void CheckTrampolinePool(); |
| |
| protected: |
| // Relocation for a type-recording IC has the AST id added to it. This |
| // member variable is a way to pass the information from the call site to |
| // the relocation info. |
| unsigned recorded_ast_id_; |
| |
| bool emit_debug_code() const { return emit_debug_code_; } |
| |
| int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } |
| |
| // Decode branch instruction at pos and return branch target pos. |
| int target_at(int32_t pos); |
| |
| // Patch branch instruction at pos to branch to given branch target pos. |
| void target_at_put(int32_t pos, int32_t target_pos); |
| |
| // Say if we need to relocate with this mode. |
| bool MustUseReg(RelocInfo::Mode rmode); |
| |
| // Record reloc info for current pc_. |
| void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); |
| |
| // Block the emission of the trampoline pool before pc_offset. |
| void BlockTrampolinePoolBefore(int pc_offset) { |
| if (no_trampoline_pool_before_ < pc_offset) |
| no_trampoline_pool_before_ = pc_offset; |
| } |
| |
| void StartBlockTrampolinePool() { |
| trampoline_pool_blocked_nesting_++; |
| } |
| |
| void EndBlockTrampolinePool() { |
| trampoline_pool_blocked_nesting_--; |
| } |
| |
| bool is_trampoline_pool_blocked() const { |
| return trampoline_pool_blocked_nesting_ > 0; |
| } |
| |
| bool has_exception() const { |
| return internal_trampoline_exception_; |
| } |
| |
| void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); |
| |
| bool is_trampoline_emitted() const { |
| return trampoline_emitted_; |
| } |
| |
| // Temporarily block automatic assembly buffer growth. |
| void StartBlockGrowBuffer() { |
| ASSERT(!block_buffer_growth_); |
| block_buffer_growth_ = true; |
| } |
| |
| void EndBlockGrowBuffer() { |
| ASSERT(block_buffer_growth_); |
| block_buffer_growth_ = false; |
| } |
| |
| bool is_buffer_growth_blocked() const { |
| return block_buffer_growth_; |
| } |
| |
| private: |
| // Code buffer: |
| // The buffer into which code and relocation info are generated. |
| byte* buffer_; |
| int buffer_size_; |
| // True if the assembler owns the buffer, false if buffer is external. |
| bool own_buffer_; |
| |
| // Buffer size and constant pool distance are checked together at regular |
| // intervals of kBufferCheckInterval emitted bytes. |
| static const int kBufferCheckInterval = 1*KB/2; |
| |
| // Code generation. |
| // The relocation writer's position is at least kGap bytes below the end of |
| // the generated instructions. This is so that multi-instruction sequences do |
| // not have to check for overflow. The same is true for writes of large |
| // relocation info entries. |
| static const int kGap = 32; |
| byte* pc_; // The program counter - moves forward. |
| |
| |
| // Repeated checking whether the trampoline pool should be emitted is rather |
| // expensive. By default we only check again once a number of instructions |
| // has been generated. |
| static const int kCheckConstIntervalInst = 32; |
| static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; |
| |
| int next_buffer_check_; // pc offset of next buffer check. |
| |
| // Emission of the trampoline pool may be blocked in some code sequences. |
| int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. |
| int no_trampoline_pool_before_; // Block emission before this pc offset. |
| |
| // Keep track of the last emitted pool to guarantee a maximal distance. |
| int last_trampoline_pool_end_; // pc offset of the end of the last pool. |
| |
| // Automatic growth of the assembly buffer may be blocked for some sequences. |
| bool block_buffer_growth_; // Block growth when true. |
| |
| // Relocation information generation. |
| // Each relocation is encoded as a variable size value. |
| static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; |
| RelocInfoWriter reloc_info_writer; |
| |
| // The bound position, before this we cannot do instruction elimination. |
| int last_bound_pos_; |
| |
| // Code emission. |
| inline void CheckBuffer(); |
| void GrowBuffer(); |
| inline void emit(Instr x); |
| inline void CheckTrampolinePoolQuick(); |
| |
| // Instruction generation. |
| // We have 3 different kind of encoding layout on MIPS. |
| // However due to many different types of objects encoded in the same fields |
| // we have quite a few aliases for each mode. |
| // Using the same structure to refer to Register and FPURegister would spare a |
| // few aliases, but mixing both does not look clean to me. |
| // Anyway we could surely implement this differently. |
| |
| void GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| Register rd, |
| uint16_t sa = 0, |
| SecondaryField func = NULLSF); |
| |
| void GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| uint16_t msb, |
| uint16_t lsb, |
| SecondaryField func); |
| |
| void GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| FPURegister ft, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func = NULLSF); |
| |
| void GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| Register rt, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func = NULLSF); |
| |
| void GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| Register rt, |
| FPUControlRegister fs, |
| SecondaryField func = NULLSF); |
| |
| |
| void GenInstrImmediate(Opcode opcode, |
| Register rs, |
| Register rt, |
| int32_t j); |
| void GenInstrImmediate(Opcode opcode, |
| Register rs, |
| SecondaryField SF, |
| int32_t j); |
| void GenInstrImmediate(Opcode opcode, |
| Register r1, |
| FPURegister r2, |
| int32_t j); |
| |
| |
| void GenInstrJump(Opcode opcode, |
| uint32_t address); |
| |
| // Helpers. |
| void LoadRegPlusOffsetToAt(const MemOperand& src); |
| |
| // Labels. |
| void print(Label* L); |
| void bind_to(Label* L, int pos); |
| void next(Label* L); |
| |
| // One trampoline consists of: |
| // - space for trampoline slots, |
| // - space for labels. |
| // |
| // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. |
| // Space for trampoline slots preceeds space for labels. Each label is of one |
| // instruction size, so total amount for labels is equal to |
| // label_count * kInstrSize. |
| class Trampoline { |
| public: |
| Trampoline() { |
| start_ = 0; |
| next_slot_ = 0; |
| free_slot_count_ = 0; |
| end_ = 0; |
| } |
| Trampoline(int start, int slot_count) { |
| start_ = start; |
| next_slot_ = start; |
| free_slot_count_ = slot_count; |
| end_ = start + slot_count * kTrampolineSlotsSize; |
| } |
| int start() { |
| return start_; |
| } |
| int end() { |
| return end_; |
| } |
| int take_slot() { |
| int trampoline_slot = kInvalidSlotPos; |
| if (free_slot_count_ <= 0) { |
| // We have run out of space on trampolines. |
| // Make sure we fail in debug mode, so we become aware of each case |
| // when this happens. |
| ASSERT(0); |
| // Internal exception will be caught. |
| } else { |
| trampoline_slot = next_slot_; |
| free_slot_count_--; |
| next_slot_ += kTrampolineSlotsSize; |
| } |
| return trampoline_slot; |
| } |
| |
| private: |
| int start_; |
| int end_; |
| int next_slot_; |
| int free_slot_count_; |
| }; |
| |
| int32_t get_trampoline_entry(int32_t pos); |
| int unbound_labels_count_; |
| // If trampoline is emitted, generated code is becoming large. As this is |
| // already a slow case which can possibly break our code generation for the |
| // extreme case, we use this information to trigger different mode of |
| // branch instruction generation, where we use jump instructions rather |
| // than regular branch instructions. |
| bool trampoline_emitted_; |
| static const int kTrampolineSlotsSize = 4 * kInstrSize; |
| static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; |
| static const int kInvalidSlotPos = -1; |
| |
| Trampoline trampoline_; |
| bool internal_trampoline_exception_; |
| |
| friend class RegExpMacroAssemblerMIPS; |
| friend class RelocInfo; |
| friend class CodePatcher; |
| friend class BlockTrampolinePoolScope; |
| |
| PositionsRecorder positions_recorder_; |
| bool emit_debug_code_; |
| friend class PositionsRecorder; |
| friend class EnsureSpace; |
| }; |
| |
| |
| class EnsureSpace BASE_EMBEDDED { |
| public: |
| explicit EnsureSpace(Assembler* assembler) { |
| assembler->CheckBuffer(); |
| } |
| }; |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_ARM_ASSEMBLER_MIPS_H_ |