| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "mips/lithium-codegen-mips.h" |
| #include "mips/lithium-gap-resolver-mips.h" |
| #include "code-stubs.h" |
| #include "stub-cache.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| class SafepointGenerator : public CallWrapper { |
| public: |
| SafepointGenerator(LCodeGen* codegen, |
| LPointerMap* pointers, |
| Safepoint::DeoptMode mode) |
| : codegen_(codegen), |
| pointers_(pointers), |
| deopt_mode_(mode) { } |
| virtual ~SafepointGenerator() { } |
| |
| virtual void BeforeCall(int call_size) const { } |
| |
| virtual void AfterCall() const { |
| codegen_->RecordSafepoint(pointers_, deopt_mode_); |
| } |
| |
| private: |
| LCodeGen* codegen_; |
| LPointerMap* pointers_; |
| Safepoint::DeoptMode deopt_mode_; |
| }; |
| |
| |
| #define __ masm()-> |
| |
| bool LCodeGen::GenerateCode() { |
| HPhase phase("Z_Code generation", chunk()); |
| ASSERT(is_unused()); |
| status_ = GENERATING; |
| CpuFeatures::Scope scope(FPU); |
| |
| CodeStub::GenerateFPStubs(); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // NONE indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done in GeneratePrologue). |
| FrameScope frame_scope(masm_, StackFrame::NONE); |
| |
| return GeneratePrologue() && |
| GenerateBody() && |
| GenerateDeferredCode() && |
| GenerateSafepointTable(); |
| } |
| |
| |
| void LCodeGen::FinishCode(Handle<Code> code) { |
| ASSERT(is_done()); |
| code->set_stack_slots(GetStackSlotCount()); |
| code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); |
| PopulateDeoptimizationData(code); |
| } |
| |
| |
| void LCodeGen::Abort(const char* format, ...) { |
| if (FLAG_trace_bailout) { |
| SmartArrayPointer<char> name( |
| info()->shared_info()->DebugName()->ToCString()); |
| PrintF("Aborting LCodeGen in @\"%s\": ", *name); |
| va_list arguments; |
| va_start(arguments, format); |
| OS::VPrint(format, arguments); |
| va_end(arguments); |
| PrintF("\n"); |
| } |
| status_ = ABORTED; |
| } |
| |
| |
| void LCodeGen::Comment(const char* format, ...) { |
| if (!FLAG_code_comments) return; |
| char buffer[4 * KB]; |
| StringBuilder builder(buffer, ARRAY_SIZE(buffer)); |
| va_list arguments; |
| va_start(arguments, format); |
| builder.AddFormattedList(format, arguments); |
| va_end(arguments); |
| |
| // Copy the string before recording it in the assembler to avoid |
| // issues when the stack allocated buffer goes out of scope. |
| size_t length = builder.position(); |
| Vector<char> copy = Vector<char>::New(length + 1); |
| memcpy(copy.start(), builder.Finalize(), copy.length()); |
| masm()->RecordComment(copy.start()); |
| } |
| |
| |
| bool LCodeGen::GeneratePrologue() { |
| ASSERT(is_generating()); |
| |
| #ifdef DEBUG |
| if (strlen(FLAG_stop_at) > 0 && |
| info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
| __ stop("stop_at"); |
| } |
| #endif |
| |
| // a1: Callee's JS function. |
| // cp: Callee's context. |
| // fp: Caller's frame pointer. |
| // lr: Caller's pc. |
| |
| // Strict mode functions and builtins need to replace the receiver |
| // with undefined when called as functions (without an explicit |
| // receiver object). r5 is zero for method calls and non-zero for |
| // function calls. |
| if (!info_->is_classic_mode() || info_->is_native()) { |
| Label ok; |
| __ Branch(&ok, eq, t1, Operand(zero_reg)); |
| |
| int receiver_offset = scope()->num_parameters() * kPointerSize; |
| __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); |
| __ sw(a2, MemOperand(sp, receiver_offset)); |
| __ bind(&ok); |
| } |
| |
| __ Push(ra, fp, cp, a1); |
| __ Addu(fp, sp, Operand(2 * kPointerSize)); // Adj. FP to point to saved FP. |
| |
| // Reserve space for the stack slots needed by the code. |
| int slots = GetStackSlotCount(); |
| if (slots > 0) { |
| if (FLAG_debug_code) { |
| __ li(a0, Operand(slots)); |
| __ li(a2, Operand(kSlotsZapValue)); |
| Label loop; |
| __ bind(&loop); |
| __ push(a2); |
| __ Subu(a0, a0, 1); |
| __ Branch(&loop, ne, a0, Operand(zero_reg)); |
| } else { |
| __ Subu(sp, sp, Operand(slots * kPointerSize)); |
| } |
| } |
| |
| // Possibly allocate a local context. |
| int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| if (heap_slots > 0) { |
| Comment(";;; Allocate local context"); |
| // Argument to NewContext is the function, which is in a1. |
| __ push(a1); |
| if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
| FastNewContextStub stub(heap_slots); |
| __ CallStub(&stub); |
| } else { |
| __ CallRuntime(Runtime::kNewFunctionContext, 1); |
| } |
| RecordSafepoint(Safepoint::kNoLazyDeopt); |
| // Context is returned in both v0 and cp. It replaces the context |
| // passed to us. It's saved in the stack and kept live in cp. |
| __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| // Copy any necessary parameters into the context. |
| int num_parameters = scope()->num_parameters(); |
| for (int i = 0; i < num_parameters; i++) { |
| Variable* var = scope()->parameter(i); |
| if (var->IsContextSlot()) { |
| int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
| (num_parameters - 1 - i) * kPointerSize; |
| // Load parameter from stack. |
| __ lw(a0, MemOperand(fp, parameter_offset)); |
| // Store it in the context. |
| MemOperand target = ContextOperand(cp, var->index()); |
| __ sw(a0, target); |
| // Update the write barrier. This clobbers a3 and a0. |
| __ RecordWriteContextSlot( |
| cp, target.offset(), a0, a3, kRAHasBeenSaved, kSaveFPRegs); |
| } |
| } |
| Comment(";;; End allocate local context"); |
| } |
| |
| // Trace the call. |
| if (FLAG_trace) { |
| __ CallRuntime(Runtime::kTraceEnter, 0); |
| } |
| EnsureSpaceForLazyDeopt(); |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateBody() { |
| ASSERT(is_generating()); |
| bool emit_instructions = true; |
| for (current_instruction_ = 0; |
| !is_aborted() && current_instruction_ < instructions_->length(); |
| current_instruction_++) { |
| LInstruction* instr = instructions_->at(current_instruction_); |
| if (instr->IsLabel()) { |
| LLabel* label = LLabel::cast(instr); |
| emit_instructions = !label->HasReplacement(); |
| } |
| |
| if (emit_instructions) { |
| Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); |
| instr->CompileToNative(this); |
| } |
| } |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateDeferredCode() { |
| ASSERT(is_generating()); |
| if (deferred_.length() > 0) { |
| for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { |
| LDeferredCode* code = deferred_[i]; |
| __ bind(code->entry()); |
| Comment(";;; Deferred code @%d: %s.", |
| code->instruction_index(), |
| code->instr()->Mnemonic()); |
| code->Generate(); |
| __ jmp(code->exit()); |
| } |
| } |
| // Deferred code is the last part of the instruction sequence. Mark |
| // the generated code as done unless we bailed out. |
| if (!is_aborted()) status_ = DONE; |
| return !is_aborted(); |
| } |
| |
| |
| bool LCodeGen::GenerateDeoptJumpTable() { |
| // TODO(plind): not clear that this will have advantage for MIPS. |
| // Skipping it for now. Raised issue #100 for this. |
| Abort("Unimplemented: %s", "GenerateDeoptJumpTable"); |
| return false; |
| } |
| |
| |
| bool LCodeGen::GenerateSafepointTable() { |
| ASSERT(is_done()); |
| safepoints_.Emit(masm(), GetStackSlotCount()); |
| return !is_aborted(); |
| } |
| |
| |
| Register LCodeGen::ToRegister(int index) const { |
| return Register::FromAllocationIndex(index); |
| } |
| |
| |
| DoubleRegister LCodeGen::ToDoubleRegister(int index) const { |
| return DoubleRegister::FromAllocationIndex(index); |
| } |
| |
| |
| Register LCodeGen::ToRegister(LOperand* op) const { |
| ASSERT(op->IsRegister()); |
| return ToRegister(op->index()); |
| } |
| |
| |
| Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { |
| if (op->IsRegister()) { |
| return ToRegister(op->index()); |
| } else if (op->IsConstantOperand()) { |
| LConstantOperand* const_op = LConstantOperand::cast(op); |
| Handle<Object> literal = chunk_->LookupLiteral(const_op); |
| Representation r = chunk_->LookupLiteralRepresentation(const_op); |
| if (r.IsInteger32()) { |
| ASSERT(literal->IsNumber()); |
| __ li(scratch, Operand(static_cast<int32_t>(literal->Number()))); |
| } else if (r.IsDouble()) { |
| Abort("EmitLoadRegister: Unsupported double immediate."); |
| } else { |
| ASSERT(r.IsTagged()); |
| if (literal->IsSmi()) { |
| __ li(scratch, Operand(literal)); |
| } else { |
| __ LoadHeapObject(scratch, Handle<HeapObject>::cast(literal)); |
| } |
| } |
| return scratch; |
| } else if (op->IsStackSlot() || op->IsArgument()) { |
| __ lw(scratch, ToMemOperand(op)); |
| return scratch; |
| } |
| UNREACHABLE(); |
| return scratch; |
| } |
| |
| |
| DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { |
| ASSERT(op->IsDoubleRegister()); |
| return ToDoubleRegister(op->index()); |
| } |
| |
| |
| DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, |
| FloatRegister flt_scratch, |
| DoubleRegister dbl_scratch) { |
| if (op->IsDoubleRegister()) { |
| return ToDoubleRegister(op->index()); |
| } else if (op->IsConstantOperand()) { |
| LConstantOperand* const_op = LConstantOperand::cast(op); |
| Handle<Object> literal = chunk_->LookupLiteral(const_op); |
| Representation r = chunk_->LookupLiteralRepresentation(const_op); |
| if (r.IsInteger32()) { |
| ASSERT(literal->IsNumber()); |
| __ li(at, Operand(static_cast<int32_t>(literal->Number()))); |
| __ mtc1(at, flt_scratch); |
| __ cvt_d_w(dbl_scratch, flt_scratch); |
| return dbl_scratch; |
| } else if (r.IsDouble()) { |
| Abort("unsupported double immediate"); |
| } else if (r.IsTagged()) { |
| Abort("unsupported tagged immediate"); |
| } |
| } else if (op->IsStackSlot() || op->IsArgument()) { |
| MemOperand mem_op = ToMemOperand(op); |
| __ ldc1(dbl_scratch, mem_op); |
| return dbl_scratch; |
| } |
| UNREACHABLE(); |
| return dbl_scratch; |
| } |
| |
| |
| Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { |
| Handle<Object> literal = chunk_->LookupLiteral(op); |
| ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged()); |
| return literal; |
| } |
| |
| |
| bool LCodeGen::IsInteger32(LConstantOperand* op) const { |
| return chunk_->LookupLiteralRepresentation(op).IsInteger32(); |
| } |
| |
| |
| int LCodeGen::ToInteger32(LConstantOperand* op) const { |
| Handle<Object> value = chunk_->LookupLiteral(op); |
| ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); |
| ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) == |
| value->Number()); |
| return static_cast<int32_t>(value->Number()); |
| } |
| |
| |
| double LCodeGen::ToDouble(LConstantOperand* op) const { |
| Handle<Object> value = chunk_->LookupLiteral(op); |
| return value->Number(); |
| } |
| |
| |
| Operand LCodeGen::ToOperand(LOperand* op) { |
| if (op->IsConstantOperand()) { |
| LConstantOperand* const_op = LConstantOperand::cast(op); |
| Handle<Object> literal = chunk_->LookupLiteral(const_op); |
| Representation r = chunk_->LookupLiteralRepresentation(const_op); |
| if (r.IsInteger32()) { |
| ASSERT(literal->IsNumber()); |
| return Operand(static_cast<int32_t>(literal->Number())); |
| } else if (r.IsDouble()) { |
| Abort("ToOperand Unsupported double immediate."); |
| } |
| ASSERT(r.IsTagged()); |
| return Operand(literal); |
| } else if (op->IsRegister()) { |
| return Operand(ToRegister(op)); |
| } else if (op->IsDoubleRegister()) { |
| Abort("ToOperand IsDoubleRegister unimplemented"); |
| return Operand(0); |
| } |
| // Stack slots not implemented, use ToMemOperand instead. |
| UNREACHABLE(); |
| return Operand(0); |
| } |
| |
| |
| MemOperand LCodeGen::ToMemOperand(LOperand* op) const { |
| ASSERT(!op->IsRegister()); |
| ASSERT(!op->IsDoubleRegister()); |
| ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); |
| int index = op->index(); |
| if (index >= 0) { |
| // Local or spill slot. Skip the frame pointer, function, and |
| // context in the fixed part of the frame. |
| return MemOperand(fp, -(index + 3) * kPointerSize); |
| } else { |
| // Incoming parameter. Skip the return address. |
| return MemOperand(fp, -(index - 1) * kPointerSize); |
| } |
| } |
| |
| |
| MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { |
| ASSERT(op->IsDoubleStackSlot()); |
| int index = op->index(); |
| if (index >= 0) { |
| // Local or spill slot. Skip the frame pointer, function, context, |
| // and the first word of the double in the fixed part of the frame. |
| return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize); |
| } else { |
| // Incoming parameter. Skip the return address and the first word of |
| // the double. |
| return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize); |
| } |
| } |
| |
| |
| void LCodeGen::WriteTranslation(LEnvironment* environment, |
| Translation* translation) { |
| if (environment == NULL) return; |
| |
| // The translation includes one command per value in the environment. |
| int translation_size = environment->values()->length(); |
| // The output frame height does not include the parameters. |
| int height = translation_size - environment->parameter_count(); |
| |
| WriteTranslation(environment->outer(), translation); |
| int closure_id = DefineDeoptimizationLiteral(environment->closure()); |
| switch (environment->frame_type()) { |
| case JS_FUNCTION: |
| translation->BeginJSFrame(environment->ast_id(), closure_id, height); |
| break; |
| case JS_CONSTRUCT: |
| translation->BeginConstructStubFrame(closure_id, translation_size); |
| break; |
| case ARGUMENTS_ADAPTOR: |
| translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| for (int i = 0; i < translation_size; ++i) { |
| LOperand* value = environment->values()->at(i); |
| // spilled_registers_ and spilled_double_registers_ are either |
| // both NULL or both set. |
| if (environment->spilled_registers() != NULL && value != NULL) { |
| if (value->IsRegister() && |
| environment->spilled_registers()[value->index()] != NULL) { |
| translation->MarkDuplicate(); |
| AddToTranslation(translation, |
| environment->spilled_registers()[value->index()], |
| environment->HasTaggedValueAt(i)); |
| } else if ( |
| value->IsDoubleRegister() && |
| environment->spilled_double_registers()[value->index()] != NULL) { |
| translation->MarkDuplicate(); |
| AddToTranslation( |
| translation, |
| environment->spilled_double_registers()[value->index()], |
| false); |
| } |
| } |
| |
| AddToTranslation(translation, value, environment->HasTaggedValueAt(i)); |
| } |
| } |
| |
| |
| void LCodeGen::AddToTranslation(Translation* translation, |
| LOperand* op, |
| bool is_tagged) { |
| if (op == NULL) { |
| // TODO(twuerthinger): Introduce marker operands to indicate that this value |
| // is not present and must be reconstructed from the deoptimizer. Currently |
| // this is only used for the arguments object. |
| translation->StoreArgumentsObject(); |
| } else if (op->IsStackSlot()) { |
| if (is_tagged) { |
| translation->StoreStackSlot(op->index()); |
| } else { |
| translation->StoreInt32StackSlot(op->index()); |
| } |
| } else if (op->IsDoubleStackSlot()) { |
| translation->StoreDoubleStackSlot(op->index()); |
| } else if (op->IsArgument()) { |
| ASSERT(is_tagged); |
| int src_index = GetStackSlotCount() + op->index(); |
| translation->StoreStackSlot(src_index); |
| } else if (op->IsRegister()) { |
| Register reg = ToRegister(op); |
| if (is_tagged) { |
| translation->StoreRegister(reg); |
| } else { |
| translation->StoreInt32Register(reg); |
| } |
| } else if (op->IsDoubleRegister()) { |
| DoubleRegister reg = ToDoubleRegister(op); |
| translation->StoreDoubleRegister(reg); |
| } else if (op->IsConstantOperand()) { |
| Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op)); |
| int src_index = DefineDeoptimizationLiteral(literal); |
| translation->StoreLiteral(src_index); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::CallCode(Handle<Code> code, |
| RelocInfo::Mode mode, |
| LInstruction* instr) { |
| CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| |
| void LCodeGen::CallCodeGeneric(Handle<Code> code, |
| RelocInfo::Mode mode, |
| LInstruction* instr, |
| SafepointMode safepoint_mode) { |
| ASSERT(instr != NULL); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| __ Call(code, mode); |
| RecordSafepointWithLazyDeopt(instr, safepoint_mode); |
| } |
| |
| |
| void LCodeGen::CallRuntime(const Runtime::Function* function, |
| int num_arguments, |
| LInstruction* instr) { |
| ASSERT(instr != NULL); |
| LPointerMap* pointers = instr->pointer_map(); |
| ASSERT(pointers != NULL); |
| RecordPosition(pointers->position()); |
| |
| __ CallRuntime(function, num_arguments); |
| RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
| } |
| |
| |
| void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, |
| int argc, |
| LInstruction* instr) { |
| __ CallRuntimeSaveDoubles(id); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); |
| } |
| |
| |
| void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, |
| Safepoint::DeoptMode mode) { |
| if (!environment->HasBeenRegistered()) { |
| // Physical stack frame layout: |
| // -x ............. -4 0 ..................................... y |
| // [incoming arguments] [spill slots] [pushed outgoing arguments] |
| |
| // Layout of the environment: |
| // 0 ..................................................... size-1 |
| // [parameters] [locals] [expression stack including arguments] |
| |
| // Layout of the translation: |
| // 0 ........................................................ size - 1 + 4 |
| // [expression stack including arguments] [locals] [4 words] [parameters] |
| // |>------------ translation_size ------------<| |
| |
| int frame_count = 0; |
| int jsframe_count = 0; |
| for (LEnvironment* e = environment; e != NULL; e = e->outer()) { |
| ++frame_count; |
| if (e->frame_type() == JS_FUNCTION) { |
| ++jsframe_count; |
| } |
| } |
| Translation translation(&translations_, frame_count, jsframe_count); |
| WriteTranslation(environment, &translation); |
| int deoptimization_index = deoptimizations_.length(); |
| int pc_offset = masm()->pc_offset(); |
| environment->Register(deoptimization_index, |
| translation.index(), |
| (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); |
| deoptimizations_.Add(environment); |
| } |
| } |
| |
| |
| void LCodeGen::DeoptimizeIf(Condition cc, |
| LEnvironment* environment, |
| Register src1, |
| const Operand& src2) { |
| RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
| ASSERT(environment->HasBeenRegistered()); |
| int id = environment->deoptimization_index(); |
| Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); |
| if (entry == NULL) { |
| Abort("bailout was not prepared"); |
| return; |
| } |
| |
| ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on MIPS. |
| |
| if (FLAG_deopt_every_n_times == 1 && |
| info_->shared_info()->opt_count() == id) { |
| __ Jump(entry, RelocInfo::RUNTIME_ENTRY); |
| return; |
| } |
| |
| if (FLAG_trap_on_deopt) { |
| Label skip; |
| if (cc != al) { |
| __ Branch(&skip, NegateCondition(cc), src1, src2); |
| } |
| __ stop("trap_on_deopt"); |
| __ bind(&skip); |
| } |
| |
| // TODO(plind): The Arm port is a little different here, due to their |
| // DeOpt jump table, which is not used for Mips yet. |
| __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc, src1, src2); |
| } |
| |
| |
| void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { |
| int length = deoptimizations_.length(); |
| if (length == 0) return; |
| Handle<DeoptimizationInputData> data = |
| factory()->NewDeoptimizationInputData(length, TENURED); |
| |
| Handle<ByteArray> translations = translations_.CreateByteArray(); |
| data->SetTranslationByteArray(*translations); |
| data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); |
| |
| Handle<FixedArray> literals = |
| factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); |
| for (int i = 0; i < deoptimization_literals_.length(); i++) { |
| literals->set(i, *deoptimization_literals_[i]); |
| } |
| data->SetLiteralArray(*literals); |
| |
| data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id())); |
| data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); |
| |
| // Populate the deoptimization entries. |
| for (int i = 0; i < length; i++) { |
| LEnvironment* env = deoptimizations_[i]; |
| data->SetAstId(i, Smi::FromInt(env->ast_id())); |
| data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); |
| data->SetArgumentsStackHeight(i, |
| Smi::FromInt(env->arguments_stack_height())); |
| data->SetPc(i, Smi::FromInt(env->pc_offset())); |
| } |
| code->set_deoptimization_data(*data); |
| } |
| |
| |
| int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { |
| int result = deoptimization_literals_.length(); |
| for (int i = 0; i < deoptimization_literals_.length(); ++i) { |
| if (deoptimization_literals_[i].is_identical_to(literal)) return i; |
| } |
| deoptimization_literals_.Add(literal); |
| return result; |
| } |
| |
| |
| void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { |
| ASSERT(deoptimization_literals_.length() == 0); |
| |
| const ZoneList<Handle<JSFunction> >* inlined_closures = |
| chunk()->inlined_closures(); |
| |
| for (int i = 0, length = inlined_closures->length(); |
| i < length; |
| i++) { |
| DefineDeoptimizationLiteral(inlined_closures->at(i)); |
| } |
| |
| inlined_function_count_ = deoptimization_literals_.length(); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithLazyDeopt( |
| LInstruction* instr, SafepointMode safepoint_mode) { |
| if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { |
| RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); |
| } else { |
| ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
| RecordSafepointWithRegisters( |
| instr->pointer_map(), 0, Safepoint::kLazyDeopt); |
| } |
| } |
| |
| |
| void LCodeGen::RecordSafepoint( |
| LPointerMap* pointers, |
| Safepoint::Kind kind, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| ASSERT(expected_safepoint_kind_ == kind); |
| |
| const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); |
| Safepoint safepoint = safepoints_.DefineSafepoint(masm(), |
| kind, arguments, deopt_mode); |
| for (int i = 0; i < operands->length(); i++) { |
| LOperand* pointer = operands->at(i); |
| if (pointer->IsStackSlot()) { |
| safepoint.DefinePointerSlot(pointer->index()); |
| } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { |
| safepoint.DefinePointerRegister(ToRegister(pointer)); |
| } |
| } |
| if (kind & Safepoint::kWithRegisters) { |
| // Register cp always contains a pointer to the context. |
| safepoint.DefinePointerRegister(cp); |
| } |
| } |
| |
| |
| void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { |
| LPointerMap empty_pointers(RelocInfo::kNoPosition); |
| RecordSafepoint(&empty_pointers, deopt_mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint( |
| pointers, Safepoint::kWithRegisters, arguments, deopt_mode); |
| } |
| |
| |
| void LCodeGen::RecordSafepointWithRegistersAndDoubles( |
| LPointerMap* pointers, |
| int arguments, |
| Safepoint::DeoptMode deopt_mode) { |
| RecordSafepoint( |
| pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode); |
| } |
| |
| |
| void LCodeGen::RecordPosition(int position) { |
| if (position == RelocInfo::kNoPosition) return; |
| masm()->positions_recorder()->RecordPosition(position); |
| } |
| |
| |
| void LCodeGen::DoLabel(LLabel* label) { |
| if (label->is_loop_header()) { |
| Comment(";;; B%d - LOOP entry", label->block_id()); |
| } else { |
| Comment(";;; B%d", label->block_id()); |
| } |
| __ bind(label->label()); |
| current_block_ = label->block_id(); |
| DoGap(label); |
| } |
| |
| |
| void LCodeGen::DoParallelMove(LParallelMove* move) { |
| resolver_.Resolve(move); |
| } |
| |
| |
| void LCodeGen::DoGap(LGap* gap) { |
| for (int i = LGap::FIRST_INNER_POSITION; |
| i <= LGap::LAST_INNER_POSITION; |
| i++) { |
| LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); |
| LParallelMove* move = gap->GetParallelMove(inner_pos); |
| if (move != NULL) DoParallelMove(move); |
| } |
| } |
| |
| |
| void LCodeGen::DoInstructionGap(LInstructionGap* instr) { |
| DoGap(instr); |
| } |
| |
| |
| void LCodeGen::DoParameter(LParameter* instr) { |
| // Nothing to do. |
| } |
| |
| |
| void LCodeGen::DoCallStub(LCallStub* instr) { |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| switch (instr->hydrogen()->major_key()) { |
| case CodeStub::RegExpConstructResult: { |
| RegExpConstructResultStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::RegExpExec: { |
| RegExpExecStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::SubString: { |
| SubStringStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::NumberToString: { |
| NumberToStringStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::StringAdd: { |
| StringAddStub stub(NO_STRING_ADD_FLAGS); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::StringCompare: { |
| StringCompareStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| case CodeStub::TranscendentalCache: { |
| __ lw(a0, MemOperand(sp, 0)); |
| TranscendentalCacheStub stub(instr->transcendental_type(), |
| TranscendentalCacheStub::TAGGED); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { |
| // Nothing to do. |
| } |
| |
| |
| void LCodeGen::DoModI(LModI* instr) { |
| Register scratch = scratch0(); |
| const Register left = ToRegister(instr->InputAt(0)); |
| const Register result = ToRegister(instr->result()); |
| |
| Label done; |
| |
| if (instr->hydrogen()->HasPowerOf2Divisor()) { |
| Register scratch = scratch0(); |
| ASSERT(!left.is(scratch)); |
| __ mov(scratch, left); |
| int32_t p2constant = HConstant::cast( |
| instr->hydrogen()->right())->Integer32Value(); |
| ASSERT(p2constant != 0); |
| // Result always takes the sign of the dividend (left). |
| p2constant = abs(p2constant); |
| |
| Label positive_dividend; |
| __ Branch(USE_DELAY_SLOT, &positive_dividend, ge, left, Operand(zero_reg)); |
| __ subu(result, zero_reg, left); |
| __ And(result, result, p2constant - 1); |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); |
| } |
| __ Branch(USE_DELAY_SLOT, &done); |
| __ subu(result, zero_reg, result); |
| __ bind(&positive_dividend); |
| __ And(result, scratch, p2constant - 1); |
| } else { |
| // div runs in the background while we check for special cases. |
| Register right = EmitLoadRegister(instr->InputAt(1), scratch); |
| __ div(left, right); |
| |
| // Check for x % 0. |
| if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { |
| DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg)); |
| } |
| |
| __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg)); |
| __ mfhi(result); |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); |
| } |
| } |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoDivI(LDivI* instr) { |
| const Register left = ToRegister(instr->InputAt(0)); |
| const Register right = ToRegister(instr->InputAt(1)); |
| const Register result = ToRegister(instr->result()); |
| |
| // On MIPS div is asynchronous - it will run in the background while we |
| // check for special cases. |
| __ div(left, right); |
| |
| // Check for x / 0. |
| if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { |
| DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg)); |
| } |
| |
| // Check for (0 / -x) that will produce negative zero. |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| Label left_not_zero; |
| __ Branch(&left_not_zero, ne, left, Operand(zero_reg)); |
| DeoptimizeIf(lt, instr->environment(), right, Operand(zero_reg)); |
| __ bind(&left_not_zero); |
| } |
| |
| // Check for (-kMinInt / -1). |
| if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
| Label left_not_min_int; |
| __ Branch(&left_not_min_int, ne, left, Operand(kMinInt)); |
| DeoptimizeIf(eq, instr->environment(), right, Operand(-1)); |
| __ bind(&left_not_min_int); |
| } |
| |
| __ mfhi(result); |
| DeoptimizeIf(ne, instr->environment(), result, Operand(zero_reg)); |
| __ mflo(result); |
| } |
| |
| |
| void LCodeGen::DoMulI(LMulI* instr) { |
| Register scratch = scratch0(); |
| Register result = ToRegister(instr->result()); |
| // Note that result may alias left. |
| Register left = ToRegister(instr->InputAt(0)); |
| LOperand* right_op = instr->InputAt(1); |
| |
| bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| bool bailout_on_minus_zero = |
| instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
| |
| if (right_op->IsConstantOperand() && !can_overflow) { |
| // Use optimized code for specific constants. |
| int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); |
| |
| if (bailout_on_minus_zero && (constant < 0)) { |
| // The case of a null constant will be handled separately. |
| // If constant is negative and left is null, the result should be -0. |
| DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg)); |
| } |
| |
| switch (constant) { |
| case -1: |
| __ Subu(result, zero_reg, left); |
| break; |
| case 0: |
| if (bailout_on_minus_zero) { |
| // If left is strictly negative and the constant is null, the |
| // result is -0. Deoptimize if required, otherwise return 0. |
| DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg)); |
| } |
| __ mov(result, zero_reg); |
| break; |
| case 1: |
| // Nothing to do. |
| __ Move(result, left); |
| break; |
| default: |
| // Multiplying by powers of two and powers of two plus or minus |
| // one can be done faster with shifted operands. |
| // For other constants we emit standard code. |
| int32_t mask = constant >> 31; |
| uint32_t constant_abs = (constant + mask) ^ mask; |
| |
| if (IsPowerOf2(constant_abs) || |
| IsPowerOf2(constant_abs - 1) || |
| IsPowerOf2(constant_abs + 1)) { |
| if (IsPowerOf2(constant_abs)) { |
| int32_t shift = WhichPowerOf2(constant_abs); |
| __ sll(result, left, shift); |
| } else if (IsPowerOf2(constant_abs - 1)) { |
| int32_t shift = WhichPowerOf2(constant_abs - 1); |
| __ sll(result, left, shift); |
| __ Addu(result, result, left); |
| } else if (IsPowerOf2(constant_abs + 1)) { |
| int32_t shift = WhichPowerOf2(constant_abs + 1); |
| __ sll(result, left, shift); |
| __ Subu(result, result, left); |
| } |
| |
| // Correct the sign of the result is the constant is negative. |
| if (constant < 0) { |
| __ Subu(result, zero_reg, result); |
| } |
| |
| } else { |
| // Generate standard code. |
| __ li(at, constant); |
| __ Mul(result, left, at); |
| } |
| } |
| |
| } else { |
| Register right = EmitLoadRegister(right_op, scratch); |
| if (bailout_on_minus_zero) { |
| __ Or(ToRegister(instr->TempAt(0)), left, right); |
| } |
| |
| if (can_overflow) { |
| // hi:lo = left * right. |
| __ mult(left, right); |
| __ mfhi(scratch); |
| __ mflo(result); |
| __ sra(at, result, 31); |
| DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); |
| } else { |
| __ Mul(result, left, right); |
| } |
| |
| if (bailout_on_minus_zero) { |
| // Bail out if the result is supposed to be negative zero. |
| Label done; |
| __ Branch(&done, ne, result, Operand(zero_reg)); |
| DeoptimizeIf(lt, |
| instr->environment(), |
| ToRegister(instr->TempAt(0)), |
| Operand(zero_reg)); |
| __ bind(&done); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoBitI(LBitI* instr) { |
| LOperand* left_op = instr->InputAt(0); |
| LOperand* right_op = instr->InputAt(1); |
| ASSERT(left_op->IsRegister()); |
| Register left = ToRegister(left_op); |
| Register result = ToRegister(instr->result()); |
| Operand right(no_reg); |
| |
| if (right_op->IsStackSlot() || right_op->IsArgument()) { |
| right = Operand(EmitLoadRegister(right_op, at)); |
| } else { |
| ASSERT(right_op->IsRegister() || right_op->IsConstantOperand()); |
| right = ToOperand(right_op); |
| } |
| |
| switch (instr->op()) { |
| case Token::BIT_AND: |
| __ And(result, left, right); |
| break; |
| case Token::BIT_OR: |
| __ Or(result, left, right); |
| break; |
| case Token::BIT_XOR: |
| __ Xor(result, left, right); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void LCodeGen::DoShiftI(LShiftI* instr) { |
| // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so |
| // result may alias either of them. |
| LOperand* right_op = instr->InputAt(1); |
| Register left = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| |
| if (right_op->IsRegister()) { |
| // No need to mask the right operand on MIPS, it is built into the variable |
| // shift instructions. |
| switch (instr->op()) { |
| case Token::SAR: |
| __ srav(result, left, ToRegister(right_op)); |
| break; |
| case Token::SHR: |
| __ srlv(result, left, ToRegister(right_op)); |
| if (instr->can_deopt()) { |
| DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); |
| } |
| break; |
| case Token::SHL: |
| __ sllv(result, left, ToRegister(right_op)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| // Mask the right_op operand. |
| int value = ToInteger32(LConstantOperand::cast(right_op)); |
| uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); |
| switch (instr->op()) { |
| case Token::SAR: |
| if (shift_count != 0) { |
| __ sra(result, left, shift_count); |
| } else { |
| __ Move(result, left); |
| } |
| break; |
| case Token::SHR: |
| if (shift_count != 0) { |
| __ srl(result, left, shift_count); |
| } else { |
| if (instr->can_deopt()) { |
| __ And(at, left, Operand(0x80000000)); |
| DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); |
| } |
| __ Move(result, left); |
| } |
| break; |
| case Token::SHL: |
| if (shift_count != 0) { |
| __ sll(result, left, shift_count); |
| } else { |
| __ Move(result, left); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoSubI(LSubI* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| LOperand* result = instr->result(); |
| bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| |
| if (!can_overflow) { |
| if (right->IsStackSlot() || right->IsArgument()) { |
| Register right_reg = EmitLoadRegister(right, at); |
| __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg)); |
| } else { |
| ASSERT(right->IsRegister() || right->IsConstantOperand()); |
| __ Subu(ToRegister(result), ToRegister(left), ToOperand(right)); |
| } |
| } else { // can_overflow. |
| Register overflow = scratch0(); |
| Register scratch = scratch1(); |
| if (right->IsStackSlot() || |
| right->IsArgument() || |
| right->IsConstantOperand()) { |
| Register right_reg = EmitLoadRegister(right, scratch); |
| __ SubuAndCheckForOverflow(ToRegister(result), |
| ToRegister(left), |
| right_reg, |
| overflow); // Reg at also used as scratch. |
| } else { |
| ASSERT(right->IsRegister()); |
| // Due to overflow check macros not supporting constant operands, |
| // handling the IsConstantOperand case was moved to prev if clause. |
| __ SubuAndCheckForOverflow(ToRegister(result), |
| ToRegister(left), |
| ToRegister(right), |
| overflow); // Reg at also used as scratch. |
| } |
| DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg)); |
| } |
| } |
| |
| |
| void LCodeGen::DoConstantI(LConstantI* instr) { |
| ASSERT(instr->result()->IsRegister()); |
| __ li(ToRegister(instr->result()), Operand(instr->value())); |
| } |
| |
| |
| void LCodeGen::DoConstantD(LConstantD* instr) { |
| ASSERT(instr->result()->IsDoubleRegister()); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| double v = instr->value(); |
| __ Move(result, v); |
| } |
| |
| |
| void LCodeGen::DoConstantT(LConstantT* instr) { |
| Handle<Object> value = instr->value(); |
| if (value->IsSmi()) { |
| __ li(ToRegister(instr->result()), Operand(value)); |
| } else { |
| __ LoadHeapObject(ToRegister(instr->result()), |
| Handle<HeapObject>::cast(value)); |
| } |
| } |
| |
| |
| void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { |
| Register result = ToRegister(instr->result()); |
| Register array = ToRegister(instr->InputAt(0)); |
| __ lw(result, FieldMemOperand(array, JSArray::kLengthOffset)); |
| } |
| |
| |
| void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) { |
| Register result = ToRegister(instr->result()); |
| Register array = ToRegister(instr->InputAt(0)); |
| __ lw(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset)); |
| } |
| |
| |
| void LCodeGen::DoElementsKind(LElementsKind* instr) { |
| Register result = ToRegister(instr->result()); |
| Register input = ToRegister(instr->InputAt(0)); |
| |
| // Load map into |result|. |
| __ lw(result, FieldMemOperand(input, HeapObject::kMapOffset)); |
| // Load the map's "bit field 2" into |result|. We only need the first byte, |
| // but the following bit field extraction takes care of that anyway. |
| __ lbu(result, FieldMemOperand(result, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ Ext(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount); |
| } |
| |
| |
| void LCodeGen::DoValueOf(LValueOf* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| Register map = ToRegister(instr->TempAt(0)); |
| Label done; |
| |
| // If the object is a smi return the object. |
| __ Move(result, input); |
| __ JumpIfSmi(input, &done); |
| |
| // If the object is not a value type, return the object. |
| __ GetObjectType(input, map, map); |
| __ Branch(&done, ne, map, Operand(JS_VALUE_TYPE)); |
| __ lw(result, FieldMemOperand(input, JSValue::kValueOffset)); |
| |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoDateField(LDateField* instr) { |
| Register object = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| Register scratch = ToRegister(instr->TempAt(0)); |
| Smi* index = instr->index(); |
| Label runtime, done; |
| ASSERT(object.is(a0)); |
| ASSERT(result.is(v0)); |
| ASSERT(!scratch.is(scratch0())); |
| ASSERT(!scratch.is(object)); |
| |
| #ifdef DEBUG |
| __ AbortIfSmi(object); |
| __ GetObjectType(object, scratch, scratch); |
| __ Assert(eq, "Trying to get date field from non-date.", |
| scratch, Operand(JS_DATE_TYPE)); |
| #endif |
| |
| if (index->value() == 0) { |
| __ lw(result, FieldMemOperand(object, JSDate::kValueOffset)); |
| } else { |
| if (index->value() < JSDate::kFirstUncachedField) { |
| ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); |
| __ li(scratch, Operand(stamp)); |
| __ lw(scratch, MemOperand(scratch)); |
| __ lw(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset)); |
| __ Branch(&runtime, ne, scratch, Operand(scratch0())); |
| __ lw(result, FieldMemOperand(object, JSDate::kValueOffset + |
| kPointerSize * index->value())); |
| __ jmp(&done); |
| } |
| __ bind(&runtime); |
| __ PrepareCallCFunction(2, scratch); |
| __ li(a1, Operand(index)); |
| __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoBitNotI(LBitNotI* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| __ Nor(result, zero_reg, Operand(input)); |
| } |
| |
| |
| void LCodeGen::DoThrow(LThrow* instr) { |
| Register input_reg = EmitLoadRegister(instr->InputAt(0), at); |
| __ push(input_reg); |
| CallRuntime(Runtime::kThrow, 1, instr); |
| |
| if (FLAG_debug_code) { |
| __ stop("Unreachable code."); |
| } |
| } |
| |
| |
| void LCodeGen::DoAddI(LAddI* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| LOperand* result = instr->result(); |
| bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
| |
| if (!can_overflow) { |
| if (right->IsStackSlot() || right->IsArgument()) { |
| Register right_reg = EmitLoadRegister(right, at); |
| __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg)); |
| } else { |
| ASSERT(right->IsRegister() || right->IsConstantOperand()); |
| __ Addu(ToRegister(result), ToRegister(left), ToOperand(right)); |
| } |
| } else { // can_overflow. |
| Register overflow = scratch0(); |
| Register scratch = scratch1(); |
| if (right->IsStackSlot() || |
| right->IsArgument() || |
| right->IsConstantOperand()) { |
| Register right_reg = EmitLoadRegister(right, scratch); |
| __ AdduAndCheckForOverflow(ToRegister(result), |
| ToRegister(left), |
| right_reg, |
| overflow); // Reg at also used as scratch. |
| } else { |
| ASSERT(right->IsRegister()); |
| // Due to overflow check macros not supporting constant operands, |
| // handling the IsConstantOperand case was moved to prev if clause. |
| __ AdduAndCheckForOverflow(ToRegister(result), |
| ToRegister(left), |
| ToRegister(right), |
| overflow); // Reg at also used as scratch. |
| } |
| DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg)); |
| } |
| } |
| |
| |
| void LCodeGen::DoArithmeticD(LArithmeticD* instr) { |
| DoubleRegister left = ToDoubleRegister(instr->InputAt(0)); |
| DoubleRegister right = ToDoubleRegister(instr->InputAt(1)); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| switch (instr->op()) { |
| case Token::ADD: |
| __ add_d(result, left, right); |
| break; |
| case Token::SUB: |
| __ sub_d(result, left, right); |
| break; |
| case Token::MUL: |
| __ mul_d(result, left, right); |
| break; |
| case Token::DIV: |
| __ div_d(result, left, right); |
| break; |
| case Token::MOD: { |
| // Save a0-a3 on the stack. |
| RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit(); |
| __ MultiPush(saved_regs); |
| |
| __ PrepareCallCFunction(0, 2, scratch0()); |
| __ SetCallCDoubleArguments(left, right); |
| __ CallCFunction( |
| ExternalReference::double_fp_operation(Token::MOD, isolate()), |
| 0, 2); |
| // Move the result in the double result register. |
| __ GetCFunctionDoubleResult(result); |
| |
| // Restore saved register. |
| __ MultiPop(saved_regs); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void LCodeGen::DoArithmeticT(LArithmeticT* instr) { |
| ASSERT(ToRegister(instr->InputAt(0)).is(a1)); |
| ASSERT(ToRegister(instr->InputAt(1)).is(a0)); |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| BinaryOpStub stub(instr->op(), NO_OVERWRITE); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| // Other arch use a nop here, to signal that there is no inlined |
| // patchable code. Mips does not need the nop, since our marker |
| // instruction (andi zero_reg) will never be used in normal code. |
| } |
| |
| |
| int LCodeGen::GetNextEmittedBlock(int block) { |
| for (int i = block + 1; i < graph()->blocks()->length(); ++i) { |
| LLabel* label = chunk_->GetLabel(i); |
| if (!label->HasReplacement()) return i; |
| } |
| return -1; |
| } |
| |
| |
| void LCodeGen::EmitBranch(int left_block, int right_block, |
| Condition cc, Register src1, const Operand& src2) { |
| int next_block = GetNextEmittedBlock(current_block_); |
| right_block = chunk_->LookupDestination(right_block); |
| left_block = chunk_->LookupDestination(left_block); |
| if (right_block == left_block) { |
| EmitGoto(left_block); |
| } else if (left_block == next_block) { |
| __ Branch(chunk_->GetAssemblyLabel(right_block), |
| NegateCondition(cc), src1, src2); |
| } else if (right_block == next_block) { |
| __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2); |
| } else { |
| __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2); |
| __ Branch(chunk_->GetAssemblyLabel(right_block)); |
| } |
| } |
| |
| |
| void LCodeGen::EmitBranchF(int left_block, int right_block, |
| Condition cc, FPURegister src1, FPURegister src2) { |
| int next_block = GetNextEmittedBlock(current_block_); |
| right_block = chunk_->LookupDestination(right_block); |
| left_block = chunk_->LookupDestination(left_block); |
| if (right_block == left_block) { |
| EmitGoto(left_block); |
| } else if (left_block == next_block) { |
| __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL, |
| NegateCondition(cc), src1, src2); |
| } else if (right_block == next_block) { |
| __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2); |
| } else { |
| __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2); |
| __ Branch(chunk_->GetAssemblyLabel(right_block)); |
| } |
| } |
| |
| |
| void LCodeGen::DoBranch(LBranch* instr) { |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| Representation r = instr->hydrogen()->value()->representation(); |
| if (r.IsInteger32()) { |
| Register reg = ToRegister(instr->InputAt(0)); |
| EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg)); |
| } else if (r.IsDouble()) { |
| DoubleRegister reg = ToDoubleRegister(instr->InputAt(0)); |
| // Test the double value. Zero and NaN are false. |
| EmitBranchF(true_block, false_block, ne, reg, kDoubleRegZero); |
| } else { |
| ASSERT(r.IsTagged()); |
| Register reg = ToRegister(instr->InputAt(0)); |
| HType type = instr->hydrogen()->value()->type(); |
| if (type.IsBoolean()) { |
| __ LoadRoot(at, Heap::kTrueValueRootIndex); |
| EmitBranch(true_block, false_block, eq, reg, Operand(at)); |
| } else if (type.IsSmi()) { |
| EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg)); |
| } else { |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); |
| // Avoid deopts in the case where we've never executed this path before. |
| if (expected.IsEmpty()) expected = ToBooleanStub::all_types(); |
| |
| if (expected.Contains(ToBooleanStub::UNDEFINED)) { |
| // undefined -> false. |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| __ Branch(false_label, eq, reg, Operand(at)); |
| } |
| if (expected.Contains(ToBooleanStub::BOOLEAN)) { |
| // Boolean -> its value. |
| __ LoadRoot(at, Heap::kTrueValueRootIndex); |
| __ Branch(true_label, eq, reg, Operand(at)); |
| __ LoadRoot(at, Heap::kFalseValueRootIndex); |
| __ Branch(false_label, eq, reg, Operand(at)); |
| } |
| if (expected.Contains(ToBooleanStub::NULL_TYPE)) { |
| // 'null' -> false. |
| __ LoadRoot(at, Heap::kNullValueRootIndex); |
| __ Branch(false_label, eq, reg, Operand(at)); |
| } |
| |
| if (expected.Contains(ToBooleanStub::SMI)) { |
| // Smis: 0 -> false, all other -> true. |
| __ Branch(false_label, eq, reg, Operand(zero_reg)); |
| __ JumpIfSmi(reg, true_label); |
| } else if (expected.NeedsMap()) { |
| // If we need a map later and have a Smi -> deopt. |
| __ And(at, reg, Operand(kSmiTagMask)); |
| DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); |
| } |
| |
| const Register map = scratch0(); |
| if (expected.NeedsMap()) { |
| __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| if (expected.CanBeUndetectable()) { |
| // Undetectable -> false. |
| __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset)); |
| __ And(at, at, Operand(1 << Map::kIsUndetectable)); |
| __ Branch(false_label, ne, at, Operand(zero_reg)); |
| } |
| } |
| |
| if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { |
| // spec object -> true. |
| __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| __ Branch(true_label, ge, at, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| } |
| |
| if (expected.Contains(ToBooleanStub::STRING)) { |
| // String value -> false iff empty. |
| Label not_string; |
| __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE)); |
| __ lw(at, FieldMemOperand(reg, String::kLengthOffset)); |
| __ Branch(true_label, ne, at, Operand(zero_reg)); |
| __ Branch(false_label); |
| __ bind(¬_string); |
| } |
| |
| if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { |
| // heap number -> false iff +0, -0, or NaN. |
| DoubleRegister dbl_scratch = double_scratch0(); |
| Label not_heap_number; |
| __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
| __ Branch(¬_heap_number, ne, map, Operand(at)); |
| __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); |
| __ BranchF(true_label, false_label, ne, dbl_scratch, kDoubleRegZero); |
| // Falls through if dbl_scratch == 0. |
| __ Branch(false_label); |
| __ bind(¬_heap_number); |
| } |
| |
| // We've seen something for the first time -> deopt. |
| DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg)); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::EmitGoto(int block) { |
| block = chunk_->LookupDestination(block); |
| int next_block = GetNextEmittedBlock(current_block_); |
| if (block != next_block) { |
| __ jmp(chunk_->GetAssemblyLabel(block)); |
| } |
| } |
| |
| |
| void LCodeGen::DoGoto(LGoto* instr) { |
| EmitGoto(instr->block_id()); |
| } |
| |
| |
| Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { |
| Condition cond = kNoCondition; |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: |
| cond = eq; |
| break; |
| case Token::LT: |
| cond = is_unsigned ? lo : lt; |
| break; |
| case Token::GT: |
| cond = is_unsigned ? hi : gt; |
| break; |
| case Token::LTE: |
| cond = is_unsigned ? ls : le; |
| break; |
| case Token::GTE: |
| cond = is_unsigned ? hs : ge; |
| break; |
| case Token::IN: |
| case Token::INSTANCEOF: |
| default: |
| UNREACHABLE(); |
| } |
| return cond; |
| } |
| |
| |
| void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { |
| LOperand* left = instr->InputAt(0); |
| LOperand* right = instr->InputAt(1); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| |
| Condition cond = TokenToCondition(instr->op(), false); |
| |
| if (left->IsConstantOperand() && right->IsConstantOperand()) { |
| // We can statically evaluate the comparison. |
| double left_val = ToDouble(LConstantOperand::cast(left)); |
| double right_val = ToDouble(LConstantOperand::cast(right)); |
| int next_block = |
| EvalComparison(instr->op(), left_val, right_val) ? true_block |
| : false_block; |
| EmitGoto(next_block); |
| } else { |
| if (instr->is_double()) { |
| // Compare left and right as doubles and load the |
| // resulting flags into the normal status register. |
| FPURegister left_reg = ToDoubleRegister(left); |
| FPURegister right_reg = ToDoubleRegister(right); |
| |
| // If a NaN is involved, i.e. the result is unordered, |
| // jump to false block label. |
| __ BranchF(NULL, chunk_->GetAssemblyLabel(false_block), eq, |
| left_reg, right_reg); |
| |
| EmitBranchF(true_block, false_block, cond, left_reg, right_reg); |
| } else { |
| Register cmp_left; |
| Operand cmp_right = Operand(0); |
| |
| if (right->IsConstantOperand()) { |
| cmp_left = ToRegister(left); |
| cmp_right = Operand(ToInteger32(LConstantOperand::cast(right))); |
| } else if (left->IsConstantOperand()) { |
| cmp_left = ToRegister(right); |
| cmp_right = Operand(ToInteger32(LConstantOperand::cast(left))); |
| // We transposed the operands. Reverse the condition. |
| cond = ReverseCondition(cond); |
| } else { |
| cmp_left = ToRegister(left); |
| cmp_right = Operand(ToRegister(right)); |
| } |
| |
| EmitBranch(true_block, false_block, cond, cmp_left, cmp_right); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { |
| Register left = ToRegister(instr->InputAt(0)); |
| Register right = ToRegister(instr->InputAt(1)); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| |
| EmitBranch(true_block, false_block, eq, left, Operand(right)); |
| } |
| |
| |
| void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) { |
| Register left = ToRegister(instr->InputAt(0)); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| EmitBranch(true_block, false_block, eq, left, |
| Operand(instr->hydrogen()->right())); |
| } |
| |
| |
| |
| void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) { |
| Register scratch = scratch0(); |
| Register reg = ToRegister(instr->InputAt(0)); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| // If the expression is known to be untagged or a smi, then it's definitely |
| // not null, and it can't be a an undetectable object. |
| if (instr->hydrogen()->representation().IsSpecialization() || |
| instr->hydrogen()->type().IsSmi()) { |
| EmitGoto(false_block); |
| return; |
| } |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| |
| Heap::RootListIndex nil_value = instr->nil() == kNullValue ? |
| Heap::kNullValueRootIndex : |
| Heap::kUndefinedValueRootIndex; |
| __ LoadRoot(at, nil_value); |
| if (instr->kind() == kStrictEquality) { |
| EmitBranch(true_block, false_block, eq, reg, Operand(at)); |
| } else { |
| Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ? |
| Heap::kUndefinedValueRootIndex : |
| Heap::kNullValueRootIndex; |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at)); |
| __ LoadRoot(at, other_nil_value); // In the delay slot. |
| __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at)); |
| __ JumpIfSmi(reg, false_label); // In the delay slot. |
| // Check for undetectable objects by looking in the bit field in |
| // the map. The object has already been smi checked. |
| __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
| __ And(scratch, scratch, 1 << Map::kIsUndetectable); |
| EmitBranch(true_block, false_block, ne, scratch, Operand(zero_reg)); |
| } |
| } |
| |
| |
| Condition LCodeGen::EmitIsObject(Register input, |
| Register temp1, |
| Register temp2, |
| Label* is_not_object, |
| Label* is_object) { |
| __ JumpIfSmi(input, is_not_object); |
| |
| __ LoadRoot(temp2, Heap::kNullValueRootIndex); |
| __ Branch(is_object, eq, input, Operand(temp2)); |
| |
| // Load map. |
| __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); |
| // Undetectable objects behave like undefined. |
| __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); |
| __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable)); |
| __ Branch(is_not_object, ne, temp2, Operand(zero_reg)); |
| |
| // Load instance type and check that it is in object type range. |
| __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); |
| __ Branch(is_not_object, |
| lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| |
| return le; |
| } |
| |
| |
| void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { |
| Register reg = ToRegister(instr->InputAt(0)); |
| Register temp1 = ToRegister(instr->TempAt(0)); |
| Register temp2 = scratch0(); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| Condition true_cond = |
| EmitIsObject(reg, temp1, temp2, false_label, true_label); |
| |
| EmitBranch(true_block, false_block, true_cond, temp2, |
| Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| } |
| |
| |
| Condition LCodeGen::EmitIsString(Register input, |
| Register temp1, |
| Label* is_not_string) { |
| __ JumpIfSmi(input, is_not_string); |
| __ GetObjectType(input, temp1, temp1); |
| |
| return lt; |
| } |
| |
| |
| void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { |
| Register reg = ToRegister(instr->InputAt(0)); |
| Register temp1 = ToRegister(instr->TempAt(0)); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| Condition true_cond = |
| EmitIsString(reg, temp1, false_label); |
| |
| EmitBranch(true_block, false_block, true_cond, temp1, |
| Operand(FIRST_NONSTRING_TYPE)); |
| } |
| |
| |
| void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| Register input_reg = EmitLoadRegister(instr->InputAt(0), at); |
| __ And(at, input_reg, kSmiTagMask); |
| EmitBranch(true_block, false_block, eq, at, Operand(zero_reg)); |
| } |
| |
| |
| void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block)); |
| __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset)); |
| __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); |
| __ And(at, temp, Operand(1 << Map::kIsUndetectable)); |
| EmitBranch(true_block, false_block, ne, at, Operand(zero_reg)); |
| } |
| |
| |
| static Condition ComputeCompareCondition(Token::Value op) { |
| switch (op) { |
| case Token::EQ_STRICT: |
| case Token::EQ: |
| return eq; |
| case Token::LT: |
| return lt; |
| case Token::GT: |
| return gt; |
| case Token::LTE: |
| return le; |
| case Token::GTE: |
| return ge; |
| default: |
| UNREACHABLE(); |
| return kNoCondition; |
| } |
| } |
| |
| |
| void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { |
| Token::Value op = instr->op(); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| Handle<Code> ic = CompareIC::GetUninitialized(op); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| |
| Condition condition = ComputeCompareCondition(op); |
| |
| EmitBranch(true_block, false_block, condition, v0, Operand(zero_reg)); |
| } |
| |
| |
| static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == FIRST_TYPE) return to; |
| ASSERT(from == to || to == LAST_TYPE); |
| return from; |
| } |
| |
| |
| static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { |
| InstanceType from = instr->from(); |
| InstanceType to = instr->to(); |
| if (from == to) return eq; |
| if (to == LAST_TYPE) return hs; |
| if (from == FIRST_TYPE) return ls; |
| UNREACHABLE(); |
| return eq; |
| } |
| |
| |
| void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { |
| Register scratch = scratch0(); |
| Register input = ToRegister(instr->InputAt(0)); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| __ JumpIfSmi(input, false_label); |
| |
| __ GetObjectType(input, scratch, scratch); |
| EmitBranch(true_block, |
| false_block, |
| BranchCondition(instr->hydrogen()), |
| scratch, |
| Operand(TestType(instr->hydrogen()))); |
| } |
| |
| |
| void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| |
| if (FLAG_debug_code) { |
| __ AbortIfNotString(input); |
| } |
| |
| __ lw(result, FieldMemOperand(input, String::kHashFieldOffset)); |
| __ IndexFromHash(result, result); |
| } |
| |
| |
| void LCodeGen::DoHasCachedArrayIndexAndBranch( |
| LHasCachedArrayIndexAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register scratch = scratch0(); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| __ lw(scratch, |
| FieldMemOperand(input, String::kHashFieldOffset)); |
| __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask)); |
| EmitBranch(true_block, false_block, eq, at, Operand(zero_reg)); |
| } |
| |
| |
| // Branches to a label or falls through with the answer in flags. Trashes |
| // the temp registers, but not the input. |
| void LCodeGen::EmitClassOfTest(Label* is_true, |
| Label* is_false, |
| Handle<String>class_name, |
| Register input, |
| Register temp, |
| Register temp2) { |
| ASSERT(!input.is(temp)); |
| ASSERT(!input.is(temp2)); |
| ASSERT(!temp.is(temp2)); |
| |
| __ JumpIfSmi(input, is_false); |
| |
| if (class_name->IsEqualTo(CStrVector("Function"))) { |
| // Assuming the following assertions, we can use the same compares to test |
| // for both being a function type and being in the object type range. |
| STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); |
| STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == |
| FIRST_SPEC_OBJECT_TYPE + 1); |
| STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == |
| LAST_SPEC_OBJECT_TYPE - 1); |
| STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
| |
| __ GetObjectType(input, temp, temp2); |
| __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE)); |
| } else { |
| // Faster code path to avoid two compares: subtract lower bound from the |
| // actual type and do a signed compare with the width of the type range. |
| __ GetObjectType(input, temp, temp2); |
| __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - |
| FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| } |
| |
| // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. |
| // Check if the constructor in the map is a function. |
| __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset)); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| __ GetObjectType(temp, temp2, temp2); |
| if (class_name->IsEqualTo(CStrVector("Object"))) { |
| __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE)); |
| } else { |
| __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE)); |
| } |
| |
| // temp now contains the constructor function. Grab the |
| // instance class name from there. |
| __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(temp, FieldMemOperand(temp, |
| SharedFunctionInfo::kInstanceClassNameOffset)); |
| // The class name we are testing against is a symbol because it's a literal. |
| // The name in the constructor is a symbol because of the way the context is |
| // booted. This routine isn't expected to work for random API-created |
| // classes and it doesn't have to because you can't access it with natives |
| // syntax. Since both sides are symbols it is sufficient to use an identity |
| // comparison. |
| |
| // End with the address of this class_name instance in temp register. |
| // On MIPS, the caller must do the comparison with Handle<String>class_name. |
| } |
| |
| |
| void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register temp = scratch0(); |
| Register temp2 = ToRegister(instr->TempAt(0)); |
| Handle<String> class_name = instr->hydrogen()->class_name(); |
| |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2); |
| |
| EmitBranch(true_block, false_block, eq, temp, Operand(class_name)); |
| } |
| |
| |
| void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { |
| Register reg = ToRegister(instr->InputAt(0)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| int true_block = instr->true_block_id(); |
| int false_block = instr->false_block_id(); |
| |
| __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); |
| EmitBranch(true_block, false_block, eq, temp, Operand(instr->map())); |
| } |
| |
| |
| void LCodeGen::DoInstanceOf(LInstanceOf* instr) { |
| Label true_label, done; |
| ASSERT(ToRegister(instr->InputAt(0)).is(a0)); // Object is in a0. |
| ASSERT(ToRegister(instr->InputAt(1)).is(a1)); // Function is in a1. |
| Register result = ToRegister(instr->result()); |
| ASSERT(result.is(v0)); |
| |
| InstanceofStub stub(InstanceofStub::kArgsInRegisters); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| |
| __ Branch(&true_label, eq, result, Operand(zero_reg)); |
| __ li(result, Operand(factory()->false_value())); |
| __ Branch(&done); |
| __ bind(&true_label); |
| __ li(result, Operand(factory()->true_value())); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { |
| class DeferredInstanceOfKnownGlobal: public LDeferredCode { |
| public: |
| DeferredInstanceOfKnownGlobal(LCodeGen* codegen, |
| LInstanceOfKnownGlobal* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { |
| codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); |
| } |
| virtual LInstruction* instr() { return instr_; } |
| Label* map_check() { return &map_check_; } |
| |
| private: |
| LInstanceOfKnownGlobal* instr_; |
| Label map_check_; |
| }; |
| |
| DeferredInstanceOfKnownGlobal* deferred; |
| deferred = new DeferredInstanceOfKnownGlobal(this, instr); |
| |
| Label done, false_result; |
| Register object = ToRegister(instr->InputAt(0)); |
| Register temp = ToRegister(instr->TempAt(0)); |
| Register result = ToRegister(instr->result()); |
| |
| ASSERT(object.is(a0)); |
| ASSERT(result.is(v0)); |
| |
| // A Smi is not instance of anything. |
| __ JumpIfSmi(object, &false_result); |
| |
| // This is the inlined call site instanceof cache. The two occurences of the |
| // hole value will be patched to the last map/result pair generated by the |
| // instanceof stub. |
| Label cache_miss; |
| Register map = temp; |
| __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| |
| Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
| __ bind(deferred->map_check()); // Label for calculating code patching. |
| // We use Factory::the_hole_value() on purpose instead of loading from the |
| // root array to force relocation to be able to later patch with |
| // the cached map. |
| Handle<JSGlobalPropertyCell> cell = |
| factory()->NewJSGlobalPropertyCell(factory()->the_hole_value()); |
| __ li(at, Operand(Handle<Object>(cell))); |
| __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); |
| __ Branch(&cache_miss, ne, map, Operand(at)); |
| // We use Factory::the_hole_value() on purpose instead of loading from the |
| // root array to force relocation to be able to later patch |
| // with true or false. |
| __ li(result, Operand(factory()->the_hole_value()), CONSTANT_SIZE); |
| __ Branch(&done); |
| |
| // The inlined call site cache did not match. Check null and string before |
| // calling the deferred code. |
| __ bind(&cache_miss); |
| // Null is not instance of anything. |
| __ LoadRoot(temp, Heap::kNullValueRootIndex); |
| __ Branch(&false_result, eq, object, Operand(temp)); |
| |
| // String values is not instance of anything. |
| Condition cc = __ IsObjectStringType(object, temp, temp); |
| __ Branch(&false_result, cc, temp, Operand(zero_reg)); |
| |
| // Go to the deferred code. |
| __ Branch(deferred->entry()); |
| |
| __ bind(&false_result); |
| __ LoadRoot(result, Heap::kFalseValueRootIndex); |
| |
| // Here result has either true or false. Deferred code also produces true or |
| // false object. |
| __ bind(deferred->exit()); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, |
| Label* map_check) { |
| Register result = ToRegister(instr->result()); |
| ASSERT(result.is(v0)); |
| |
| InstanceofStub::Flags flags = InstanceofStub::kNoFlags; |
| flags = static_cast<InstanceofStub::Flags>( |
| flags | InstanceofStub::kArgsInRegisters); |
| flags = static_cast<InstanceofStub::Flags>( |
| flags | InstanceofStub::kCallSiteInlineCheck); |
| flags = static_cast<InstanceofStub::Flags>( |
| flags | InstanceofStub::kReturnTrueFalseObject); |
| InstanceofStub stub(flags); |
| |
| PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
| |
| // Get the temp register reserved by the instruction. This needs to be t0 as |
| // its slot of the pushing of safepoint registers is used to communicate the |
| // offset to the location of the map check. |
| Register temp = ToRegister(instr->TempAt(0)); |
| ASSERT(temp.is(t0)); |
| __ LoadHeapObject(InstanceofStub::right(), instr->function()); |
| static const int kAdditionalDelta = 7; |
| int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta; |
| Label before_push_delta; |
| __ bind(&before_push_delta); |
| { |
| Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
| __ li(temp, Operand(delta * kPointerSize), CONSTANT_SIZE); |
| __ StoreToSafepointRegisterSlot(temp, temp); |
| } |
| CallCodeGeneric(stub.GetCode(), |
| RelocInfo::CODE_TARGET, |
| instr, |
| RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
| ASSERT(instr->HasDeoptimizationEnvironment()); |
| LEnvironment* env = instr->deoptimization_environment(); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| // Put the result value into the result register slot and |
| // restore all registers. |
| __ StoreToSafepointRegisterSlot(result, result); |
| } |
| |
| |
| void LCodeGen::DoCmpT(LCmpT* instr) { |
| Token::Value op = instr->op(); |
| |
| Handle<Code> ic = CompareIC::GetUninitialized(op); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| // On MIPS there is no need for a "no inlined smi code" marker (nop). |
| |
| Condition condition = ComputeCompareCondition(op); |
| // A minor optimization that relies on LoadRoot always emitting one |
| // instruction. |
| Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); |
| Label done; |
| __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg)); |
| __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); |
| __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); |
| ASSERT_EQ(3, masm()->InstructionsGeneratedSince(&done)); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoReturn(LReturn* instr) { |
| if (FLAG_trace) { |
| // Push the return value on the stack as the parameter. |
| // Runtime::TraceExit returns its parameter in v0. |
| __ push(v0); |
| __ CallRuntime(Runtime::kTraceExit, 1); |
| } |
| int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize; |
| __ mov(sp, fp); |
| __ Pop(ra, fp); |
| __ Addu(sp, sp, Operand(sp_delta)); |
| __ Jump(ra); |
| } |
| |
| |
| void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { |
| Register result = ToRegister(instr->result()); |
| __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell()))); |
| __ lw(result, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); |
| if (instr->hydrogen()->RequiresHoleCheck()) { |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| DeoptimizeIf(eq, instr->environment(), result, Operand(at)); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { |
| ASSERT(ToRegister(instr->global_object()).is(a0)); |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| __ li(a2, Operand(instr->name())); |
| RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET |
| : RelocInfo::CODE_TARGET_CONTEXT; |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| CallCode(ic, mode, instr); |
| } |
| |
| |
| void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { |
| Register value = ToRegister(instr->value()); |
| Register cell = scratch0(); |
| |
| // Load the cell. |
| __ li(cell, Operand(instr->hydrogen()->cell())); |
| |
| // If the cell we are storing to contains the hole it could have |
| // been deleted from the property dictionary. In that case, we need |
| // to update the property details in the property dictionary to mark |
| // it as no longer deleted. |
| if (instr->hydrogen()->RequiresHoleCheck()) { |
| // We use a temp to check the payload. |
| Register payload = ToRegister(instr->TempAt(0)); |
| __ lw(payload, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset)); |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| DeoptimizeIf(eq, instr->environment(), payload, Operand(at)); |
| } |
| |
| // Store the value. |
| __ sw(value, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset)); |
| // Cells are always rescanned, so no write barrier here. |
| } |
| |
| |
| void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { |
| ASSERT(ToRegister(instr->global_object()).is(a1)); |
| ASSERT(ToRegister(instr->value()).is(a0)); |
| |
| __ li(a2, Operand(instr->name())); |
| Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); |
| } |
| |
| |
| void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { |
| Register context = ToRegister(instr->context()); |
| Register result = ToRegister(instr->result()); |
| |
| __ lw(result, ContextOperand(context, instr->slot_index())); |
| if (instr->hydrogen()->RequiresHoleCheck()) { |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| |
| if (instr->hydrogen()->DeoptimizesOnHole()) { |
| DeoptimizeIf(eq, instr->environment(), result, Operand(at)); |
| } else { |
| Label is_not_hole; |
| __ Branch(&is_not_hole, ne, result, Operand(at)); |
| __ LoadRoot(result, Heap::kUndefinedValueRootIndex); |
| __ bind(&is_not_hole); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { |
| Register context = ToRegister(instr->context()); |
| Register value = ToRegister(instr->value()); |
| Register scratch = scratch0(); |
| MemOperand target = ContextOperand(context, instr->slot_index()); |
| |
| Label skip_assignment; |
| |
| if (instr->hydrogen()->RequiresHoleCheck()) { |
| __ lw(scratch, target); |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| |
| if (instr->hydrogen()->DeoptimizesOnHole()) { |
| DeoptimizeIf(eq, instr->environment(), scratch, Operand(at)); |
| } else { |
| __ Branch(&skip_assignment, ne, scratch, Operand(at)); |
| } |
| } |
| |
| __ sw(value, target); |
| if (instr->hydrogen()->NeedsWriteBarrier()) { |
| HType type = instr->hydrogen()->value()->type(); |
| SmiCheck check_needed = |
| type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
| __ RecordWriteContextSlot(context, |
| target.offset(), |
| value, |
| scratch0(), |
| kRAHasBeenSaved, |
| kSaveFPRegs, |
| EMIT_REMEMBERED_SET, |
| check_needed); |
| } |
| |
| __ bind(&skip_assignment); |
| } |
| |
| |
| void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { |
| Register object = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| if (instr->hydrogen()->is_in_object()) { |
| __ lw(result, FieldMemOperand(object, instr->hydrogen()->offset())); |
| } else { |
| __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
| __ lw(result, FieldMemOperand(result, instr->hydrogen()->offset())); |
| } |
| } |
| |
| |
| void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, |
| Register object, |
| Handle<Map> type, |
| Handle<String> name) { |
| LookupResult lookup(isolate()); |
| type->LookupInDescriptors(NULL, *name, &lookup); |
| ASSERT(lookup.IsFound() && |
| (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION)); |
| if (lookup.type() == FIELD) { |
| int index = lookup.GetLocalFieldIndexFromMap(*type); |
| int offset = index * kPointerSize; |
| if (index < 0) { |
| // Negative property indices are in-object properties, indexed |
| // from the end of the fixed part of the object. |
| __ lw(result, FieldMemOperand(object, offset + type->instance_size())); |
| } else { |
| // Non-negative property indices are in the properties array. |
| __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
| __ lw(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize)); |
| } |
| } else { |
| Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type)); |
| __ LoadHeapObject(result, function); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { |
| Register object = ToRegister(instr->object()); |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| int map_count = instr->hydrogen()->types()->length(); |
| Handle<String> name = instr->hydrogen()->name(); |
| if (map_count == 0) { |
| ASSERT(instr->hydrogen()->need_generic()); |
| __ li(a2, Operand(name)); |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } else { |
| Label done; |
| __ lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| for (int i = 0; i < map_count - 1; ++i) { |
| Handle<Map> map = instr->hydrogen()->types()->at(i); |
| Label next; |
| __ Branch(&next, ne, scratch, Operand(map)); |
| EmitLoadFieldOrConstantFunction(result, object, map, name); |
| __ Branch(&done); |
| __ bind(&next); |
| } |
| Handle<Map> map = instr->hydrogen()->types()->last(); |
| if (instr->hydrogen()->need_generic()) { |
| Label generic; |
| __ Branch(&generic, ne, scratch, Operand(map)); |
| EmitLoadFieldOrConstantFunction(result, object, map, name); |
| __ Branch(&done); |
| __ bind(&generic); |
| __ li(a2, Operand(name)); |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } else { |
| DeoptimizeIf(ne, instr->environment(), scratch, Operand(map)); |
| EmitLoadFieldOrConstantFunction(result, object, map, name); |
| } |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { |
| ASSERT(ToRegister(instr->object()).is(a0)); |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| // Name is always in a2. |
| __ li(a2, Operand(instr->name())); |
| Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { |
| Register scratch = scratch0(); |
| Register function = ToRegister(instr->function()); |
| Register result = ToRegister(instr->result()); |
| |
| // Check that the function really is a function. Load map into the |
| // result register. |
| __ GetObjectType(function, result, scratch); |
| DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_FUNCTION_TYPE)); |
| |
| // Make sure that the function has an instance prototype. |
| Label non_instance; |
| __ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
| __ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); |
| __ Branch(&non_instance, ne, scratch, Operand(zero_reg)); |
| |
| // Get the prototype or initial map from the function. |
| __ lw(result, |
| FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Check that the function has a prototype or an initial map. |
| __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
| DeoptimizeIf(eq, instr->environment(), result, Operand(at)); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| __ GetObjectType(result, scratch, scratch); |
| __ Branch(&done, ne, scratch, Operand(MAP_TYPE)); |
| |
| // Get the prototype from the initial map. |
| __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
| __ Branch(&done); |
| |
| // Non-instance prototype: Fetch prototype from constructor field |
| // in initial map. |
| __ bind(&non_instance); |
| __ lw(result, FieldMemOperand(result, Map::kConstructorOffset)); |
| |
| // All done. |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoLoadElements(LLoadElements* instr) { |
| Register result = ToRegister(instr->result()); |
| Register input = ToRegister(instr->InputAt(0)); |
| Register scratch = scratch0(); |
| |
| __ lw(result, FieldMemOperand(input, JSObject::kElementsOffset)); |
| if (FLAG_debug_code) { |
| Label done, fail; |
| __ lw(scratch, FieldMemOperand(result, HeapObject::kMapOffset)); |
| __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); |
| __ Branch(USE_DELAY_SLOT, &done, eq, scratch, Operand(at)); |
| __ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); // In the delay slot. |
| __ Branch(&done, eq, scratch, Operand(at)); |
| // |scratch| still contains |input|'s map. |
| __ lbu(scratch, FieldMemOperand(scratch, Map::kBitField2Offset)); |
| __ Ext(scratch, scratch, Map::kElementsKindShift, |
| Map::kElementsKindBitCount); |
| __ Branch(&done, eq, scratch, |
| Operand(FAST_ELEMENTS)); |
| __ Branch(&fail, lt, scratch, |
| Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND)); |
| __ Branch(&done, le, scratch, |
| Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND)); |
| __ bind(&fail); |
| __ Abort("Check for fast or external elements failed."); |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadExternalArrayPointer( |
| LLoadExternalArrayPointer* instr) { |
| Register to_reg = ToRegister(instr->result()); |
| Register from_reg = ToRegister(instr->InputAt(0)); |
| __ lw(to_reg, FieldMemOperand(from_reg, |
| ExternalArray::kExternalPointerOffset)); |
| } |
| |
| |
| void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { |
| Register arguments = ToRegister(instr->arguments()); |
| Register length = ToRegister(instr->length()); |
| Register index = ToRegister(instr->index()); |
| Register result = ToRegister(instr->result()); |
| |
| // Bailout index is not a valid argument index. Use unsigned check to get |
| // negative check for free. |
| |
| // TODO(plind): Shoud be optimized to do the sub before the DeoptimizeIf(), |
| // as they do in Arm. It will save us an instruction. |
| DeoptimizeIf(ls, instr->environment(), length, Operand(index)); |
| |
| // There are two words between the frame pointer and the last argument. |
| // Subtracting from length accounts for one of them, add one more. |
| __ subu(length, length, index); |
| __ Addu(length, length, Operand(1)); |
| __ sll(length, length, kPointerSizeLog2); |
| __ Addu(at, arguments, Operand(length)); |
| __ lw(result, MemOperand(at, 0)); |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { |
| Register elements = ToRegister(instr->elements()); |
| Register key = EmitLoadRegister(instr->key(), scratch0()); |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| |
| // Load the result. |
| __ sll(scratch, key, kPointerSizeLog2); // Key indexes words. |
| __ addu(scratch, elements, scratch); |
| __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| |
| // Check for the hole value. |
| if (instr->hydrogen()->RequiresHoleCheck()) { |
| __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); |
| DeoptimizeIf(eq, instr->environment(), result, Operand(scratch)); |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedFastDoubleElement( |
| LLoadKeyedFastDoubleElement* instr) { |
| Register elements = ToRegister(instr->elements()); |
| bool key_is_constant = instr->key()->IsConstantOperand(); |
| Register key = no_reg; |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| Register scratch = scratch0(); |
| |
| int shift_size = |
| ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); |
| int constant_key = 0; |
| if (key_is_constant) { |
| constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
| if (constant_key & 0xF0000000) { |
| Abort("array index constant value too big."); |
| } |
| } else { |
| key = ToRegister(instr->key()); |
| } |
| |
| if (key_is_constant) { |
| __ Addu(elements, elements, Operand(constant_key * (1 << shift_size) + |
| FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| } else { |
| __ sll(scratch, key, shift_size); |
| __ Addu(elements, elements, Operand(scratch)); |
| __ Addu(elements, elements, |
| Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| } |
| |
| __ lw(scratch, MemOperand(elements, sizeof(kHoleNanLower32))); |
| DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32)); |
| |
| __ ldc1(result, MemOperand(elements)); |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedSpecializedArrayElement( |
| LLoadKeyedSpecializedArrayElement* instr) { |
| Register external_pointer = ToRegister(instr->external_pointer()); |
| Register key = no_reg; |
| ElementsKind elements_kind = instr->elements_kind(); |
| bool key_is_constant = instr->key()->IsConstantOperand(); |
| int constant_key = 0; |
| if (key_is_constant) { |
| constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
| if (constant_key & 0xF0000000) { |
| Abort("array index constant value too big."); |
| } |
| } else { |
| key = ToRegister(instr->key()); |
| } |
| int shift_size = ElementsKindToShiftSize(elements_kind); |
| |
| if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || |
| elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
| FPURegister result = ToDoubleRegister(instr->result()); |
| if (key_is_constant) { |
| __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size)); |
| } else { |
| __ sll(scratch0(), key, shift_size); |
| __ Addu(scratch0(), scratch0(), external_pointer); |
| } |
| |
| if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
| __ lwc1(result, MemOperand(scratch0())); |
| __ cvt_d_s(result, result); |
| } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS |
| __ ldc1(result, MemOperand(scratch0())); |
| } |
| } else { |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| MemOperand mem_operand(zero_reg); |
| if (key_is_constant) { |
| mem_operand = MemOperand(external_pointer, |
| constant_key * (1 << shift_size)); |
| } else { |
| __ sll(scratch, key, shift_size); |
| __ Addu(scratch, scratch, external_pointer); |
| mem_operand = MemOperand(scratch); |
| } |
| switch (elements_kind) { |
| case EXTERNAL_BYTE_ELEMENTS: |
| __ lb(result, mem_operand); |
| break; |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| __ lbu(result, mem_operand); |
| break; |
| case EXTERNAL_SHORT_ELEMENTS: |
| __ lh(result, mem_operand); |
| break; |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| __ lhu(result, mem_operand); |
| break; |
| case EXTERNAL_INT_ELEMENTS: |
| __ lw(result, mem_operand); |
| break; |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| __ lw(result, mem_operand); |
| // TODO(danno): we could be more clever here, perhaps having a special |
| // version of the stub that detects if the overflow case actually |
| // happens, and generate code that returns a double rather than int. |
| DeoptimizeIf(Ugreater_equal, instr->environment(), |
| result, Operand(0x80000000)); |
| break; |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_SMI_ONLY_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { |
| ASSERT(ToRegister(instr->object()).is(a1)); |
| ASSERT(ToRegister(instr->key()).is(a0)); |
| |
| Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { |
| Register scratch = scratch0(); |
| Register temp = scratch1(); |
| Register result = ToRegister(instr->result()); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label done, adapted; |
| __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); |
| __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Result is the frame pointer for the frame if not adapted and for the real |
| // frame below the adaptor frame if adapted. |
| __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne). |
| __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq). |
| } |
| |
| |
| void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { |
| Register elem = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| |
| Label done; |
| |
| // If no arguments adaptor frame the number of arguments is fixed. |
| __ Addu(result, zero_reg, Operand(scope()->num_parameters())); |
| __ Branch(&done, eq, fp, Operand(elem)); |
| |
| // Arguments adaptor frame present. Get argument length from there. |
| __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(result, |
| MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(result); |
| |
| // Argument length is in result register. |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { |
| Register receiver = ToRegister(instr->receiver()); |
| Register function = ToRegister(instr->function()); |
| Register scratch = scratch0(); |
| |
| // If the receiver is null or undefined, we have to pass the global |
| // object as a receiver to normal functions. Values have to be |
| // passed unchanged to builtins and strict-mode functions. |
| Label global_object, receiver_ok; |
| |
| // Do not transform the receiver to object for strict mode |
| // functions. |
| __ lw(scratch, |
| FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(scratch, |
| FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); |
| |
| // Do not transform the receiver to object for builtins. |
| int32_t strict_mode_function_mask = |
| 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize); |
| int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize); |
| __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask)); |
| __ Branch(&receiver_ok, ne, scratch, Operand(zero_reg)); |
| |
| // Normal function. Replace undefined or null with global receiver. |
| __ LoadRoot(scratch, Heap::kNullValueRootIndex); |
| __ Branch(&global_object, eq, receiver, Operand(scratch)); |
| __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
| __ Branch(&global_object, eq, receiver, Operand(scratch)); |
| |
| // Deoptimize if the receiver is not a JS object. |
| __ And(scratch, receiver, Operand(kSmiTagMask)); |
| DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg)); |
| |
| __ GetObjectType(receiver, scratch, scratch); |
| DeoptimizeIf(lt, instr->environment(), |
| scratch, Operand(FIRST_SPEC_OBJECT_TYPE)); |
| __ Branch(&receiver_ok); |
| |
| __ bind(&global_object); |
| __ lw(receiver, GlobalObjectOperand()); |
| __ lw(receiver, |
| FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); |
| __ bind(&receiver_ok); |
| } |
| |
| void LCodeGen::DoApplyArguments(LApplyArguments* instr) { |
| Register receiver = ToRegister(instr->receiver()); |
| Register function = ToRegister(instr->function()); |
| Register length = ToRegister(instr->length()); |
| Register elements = ToRegister(instr->elements()); |
| Register scratch = scratch0(); |
| ASSERT(receiver.is(a0)); // Used for parameter count. |
| ASSERT(function.is(a1)); // Required by InvokeFunction. |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| // Copy the arguments to this function possibly from the |
| // adaptor frame below it. |
| const uint32_t kArgumentsLimit = 1 * KB; |
| DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit)); |
| |
| // Push the receiver and use the register to keep the original |
| // number of arguments. |
| __ push(receiver); |
| __ Move(receiver, length); |
| // The arguments are at a one pointer size offset from elements. |
| __ Addu(elements, elements, Operand(1 * kPointerSize)); |
| |
| // Loop through the arguments pushing them onto the execution |
| // stack. |
| Label invoke, loop; |
| // length is a small non-negative integer, due to the test above. |
| __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg)); |
| __ sll(scratch, length, 2); |
| __ bind(&loop); |
| __ Addu(scratch, elements, scratch); |
| __ lw(scratch, MemOperand(scratch)); |
| __ push(scratch); |
| __ Subu(length, length, Operand(1)); |
| __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg)); |
| __ sll(scratch, length, 2); |
| |
| __ bind(&invoke); |
| ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| SafepointGenerator safepoint_generator( |
| this, pointers, Safepoint::kLazyDeopt); |
| // The number of arguments is stored in receiver which is a0, as expected |
| // by InvokeFunction. |
| ParameterCount actual(receiver); |
| __ InvokeFunction(function, actual, CALL_FUNCTION, |
| safepoint_generator, CALL_AS_METHOD); |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| |
| void LCodeGen::DoPushArgument(LPushArgument* instr) { |
| LOperand* argument = instr->InputAt(0); |
| if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { |
| Abort("DoPushArgument not implemented for double type."); |
| } else { |
| Register argument_reg = EmitLoadRegister(argument, at); |
| __ push(argument_reg); |
| } |
| } |
| |
| |
| void LCodeGen::DoThisFunction(LThisFunction* instr) { |
| Register result = ToRegister(instr->result()); |
| __ LoadHeapObject(result, instr->hydrogen()->closure()); |
| } |
| |
| |
| void LCodeGen::DoContext(LContext* instr) { |
| Register result = ToRegister(instr->result()); |
| __ mov(result, cp); |
| } |
| |
| |
| void LCodeGen::DoOuterContext(LOuterContext* instr) { |
| Register context = ToRegister(instr->context()); |
| Register result = ToRegister(instr->result()); |
| __ lw(result, |
| MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| } |
| |
| |
| void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { |
| __ LoadHeapObject(scratch0(), instr->hydrogen()->pairs()); |
| __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); |
| // The context is the first argument. |
| __ Push(cp, scratch0(), scratch1()); |
| CallRuntime(Runtime::kDeclareGlobals, 3, instr); |
| } |
| |
| |
| void LCodeGen::DoGlobalObject(LGlobalObject* instr) { |
| Register result = ToRegister(instr->result()); |
| __ lw(result, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| } |
| |
| |
| void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { |
| Register global = ToRegister(instr->global()); |
| Register result = ToRegister(instr->result()); |
| __ lw(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset)); |
| } |
| |
| |
| void LCodeGen::CallKnownFunction(Handle<JSFunction> function, |
| int arity, |
| LInstruction* instr, |
| CallKind call_kind) { |
| bool can_invoke_directly = !function->NeedsArgumentsAdaption() || |
| function->shared()->formal_parameter_count() == arity; |
| |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| |
| if (can_invoke_directly) { |
| __ LoadHeapObject(a1, function); |
| // Change context if needed. |
| bool change_context = |
| (info()->closure()->context() != function->context()) || |
| scope()->contains_with() || |
| (scope()->num_heap_slots() > 0); |
| if (change_context) { |
| __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| } |
| |
| // Set r0 to arguments count if adaption is not needed. Assumes that r0 |
| // is available to write to at this point. |
| if (!function->NeedsArgumentsAdaption()) { |
| __ li(a0, Operand(arity)); |
| } |
| |
| // Invoke function. |
| __ SetCallKind(t1, call_kind); |
| __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); |
| __ Call(at); |
| |
| // Set up deoptimization. |
| RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); |
| } else { |
| SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
| ParameterCount count(arity); |
| __ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind); |
| } |
| |
| // Restore context. |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| |
| void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| __ mov(a0, v0); |
| CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD); |
| } |
| |
| |
| void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| |
| // Deoptimize if not a heap number. |
| __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); |
| __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
| DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); |
| |
| Label done; |
| Register exponent = scratch0(); |
| scratch = no_reg; |
| __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); |
| // Check the sign of the argument. If the argument is positive, just |
| // return it. |
| __ Move(result, input); |
| __ And(at, exponent, Operand(HeapNumber::kSignMask)); |
| __ Branch(&done, eq, at, Operand(zero_reg)); |
| |
| // Input is negative. Reverse its sign. |
| // Preserve the value of all registers. |
| { |
| PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
| |
| // Registers were saved at the safepoint, so we can use |
| // many scratch registers. |
| Register tmp1 = input.is(a1) ? a0 : a1; |
| Register tmp2 = input.is(a2) ? a0 : a2; |
| Register tmp3 = input.is(a3) ? a0 : a3; |
| Register tmp4 = input.is(t0) ? a0 : t0; |
| |
| // exponent: floating point exponent value. |
| |
| Label allocated, slow; |
| __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); |
| __ Branch(&allocated); |
| |
| // Slow case: Call the runtime system to do the number allocation. |
| __ bind(&slow); |
| |
| CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); |
| // Set the pointer to the new heap number in tmp. |
| if (!tmp1.is(v0)) |
| __ mov(tmp1, v0); |
| // Restore input_reg after call to runtime. |
| __ LoadFromSafepointRegisterSlot(input, input); |
| __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); |
| |
| __ bind(&allocated); |
| // exponent: floating point exponent value. |
| // tmp1: allocated heap number. |
| __ And(exponent, exponent, Operand(~HeapNumber::kSignMask)); |
| __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); |
| __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); |
| __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); |
| |
| __ StoreToSafepointRegisterSlot(tmp1, result); |
| } |
| |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
| Label done; |
| __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg)); |
| __ mov(result, input); |
| ASSERT_EQ(2, masm()->InstructionsGeneratedSince(&done)); |
| __ subu(result, zero_reg, input); |
| // Overflow if result is still negative, i.e. 0x80000000. |
| DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { |
| // Class for deferred case. |
| class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { |
| public: |
| DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, |
| LUnaryMathOperation* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { |
| codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); |
| } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LUnaryMathOperation* instr_; |
| }; |
| |
| Representation r = instr->hydrogen()->value()->representation(); |
| if (r.IsDouble()) { |
| FPURegister input = ToDoubleRegister(instr->InputAt(0)); |
| FPURegister result = ToDoubleRegister(instr->result()); |
| __ abs_d(result, input); |
| } else if (r.IsInteger32()) { |
| EmitIntegerMathAbs(instr); |
| } else { |
| // Representation is tagged. |
| DeferredMathAbsTaggedHeapNumber* deferred = |
| new DeferredMathAbsTaggedHeapNumber(this, instr); |
| Register input = ToRegister(instr->InputAt(0)); |
| // Smi check. |
| __ JumpIfNotSmi(input, deferred->entry()); |
| // If smi, handle it directly. |
| EmitIntegerMathAbs(instr); |
| __ bind(deferred->exit()); |
| } |
| } |
| |
| |
| void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { |
| DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| FPURegister single_scratch = double_scratch0().low(); |
| Register scratch1 = scratch0(); |
| Register except_flag = ToRegister(instr->TempAt(0)); |
| |
| __ EmitFPUTruncate(kRoundToMinusInf, |
| single_scratch, |
| input, |
| scratch1, |
| except_flag); |
| |
| // Deopt if the operation did not succeed. |
| DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); |
| |
| // Load the result. |
| __ mfc1(result, single_scratch); |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // Test for -0. |
| Label done; |
| __ Branch(&done, ne, result, Operand(zero_reg)); |
| __ mfc1(scratch1, input.high()); |
| __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); |
| DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg)); |
| __ bind(&done); |
| } |
| } |
| |
| |
| void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { |
| DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| Label done, check_sign_on_zero; |
| |
| // Extract exponent bits. |
| __ mfc1(result, input.high()); |
| __ Ext(scratch, |
| result, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| |
| // If the number is in ]-0.5, +0.5[, the result is +/- 0. |
| Label skip1; |
| __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2)); |
| __ mov(result, zero_reg); |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| __ Branch(&check_sign_on_zero); |
| } else { |
| __ Branch(&done); |
| } |
| __ bind(&skip1); |
| |
| // The following conversion will not work with numbers |
| // outside of ]-2^32, 2^32[. |
| DeoptimizeIf(ge, instr->environment(), scratch, |
| Operand(HeapNumber::kExponentBias + 32)); |
| |
| // Save the original sign for later comparison. |
| __ And(scratch, result, Operand(HeapNumber::kSignMask)); |
| |
| __ Move(double_scratch0(), 0.5); |
| __ add_d(double_scratch0(), input, double_scratch0()); |
| |
| // Check sign of the result: if the sign changed, the input |
| // value was in ]0.5, 0[ and the result should be -0. |
| __ mfc1(result, double_scratch0().high()); |
| __ Xor(result, result, Operand(scratch)); |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // ARM uses 'mi' here, which is 'lt' |
| DeoptimizeIf(lt, instr->environment(), result, |
| Operand(zero_reg)); |
| } else { |
| Label skip2; |
| // ARM uses 'mi' here, which is 'lt' |
| // Negating it results in 'ge' |
| __ Branch(&skip2, ge, result, Operand(zero_reg)); |
| __ mov(result, zero_reg); |
| __ Branch(&done); |
| __ bind(&skip2); |
| } |
| |
| Register except_flag = scratch; |
| |
| __ EmitFPUTruncate(kRoundToMinusInf, |
| double_scratch0().low(), |
| double_scratch0(), |
| result, |
| except_flag); |
| |
| DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); |
| |
| __ mfc1(result, double_scratch0().low()); |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| // Test for -0. |
| __ Branch(&done, ne, result, Operand(zero_reg)); |
| __ bind(&check_sign_on_zero); |
| __ mfc1(scratch, input.high()); |
| __ And(scratch, scratch, Operand(HeapNumber::kSignMask)); |
| DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg)); |
| } |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { |
| DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| __ sqrt_d(result, input); |
| } |
| |
| |
| void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) { |
| DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); |
| DoubleRegister result = ToDoubleRegister(instr->result()); |
| DoubleRegister temp = ToDoubleRegister(instr->TempAt(0)); |
| |
| ASSERT(!input.is(result)); |
| |
| // Note that according to ECMA-262 15.8.2.13: |
| // Math.pow(-Infinity, 0.5) == Infinity |
| // Math.sqrt(-Infinity) == NaN |
| Label done; |
| __ Move(temp, -V8_INFINITY); |
| __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input); |
| // Set up Infinity in the delay slot. |
| // result is overwritten if the branch is not taken. |
| __ neg_d(result, temp); |
| |
| // Add +0 to convert -0 to +0. |
| __ add_d(result, input, kDoubleRegZero); |
| __ sqrt_d(result, result); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoPower(LPower* instr) { |
| Representation exponent_type = instr->hydrogen()->right()->representation(); |
| // Having marked this as a call, we can use any registers. |
| // Just make sure that the input/output registers are the expected ones. |
| ASSERT(!instr->InputAt(1)->IsDoubleRegister() || |
| ToDoubleRegister(instr->InputAt(1)).is(f4)); |
| ASSERT(!instr->InputAt(1)->IsRegister() || |
| ToRegister(instr->InputAt(1)).is(a2)); |
| ASSERT(ToDoubleRegister(instr->InputAt(0)).is(f2)); |
| ASSERT(ToDoubleRegister(instr->result()).is(f0)); |
| |
| if (exponent_type.IsTagged()) { |
| Label no_deopt; |
| __ JumpIfSmi(a2, &no_deopt); |
| __ lw(t3, FieldMemOperand(a2, HeapObject::kMapOffset)); |
| DeoptimizeIf(ne, instr->environment(), t3, Operand(at)); |
| __ bind(&no_deopt); |
| MathPowStub stub(MathPowStub::TAGGED); |
| __ CallStub(&stub); |
| } else if (exponent_type.IsInteger32()) { |
| MathPowStub stub(MathPowStub::INTEGER); |
| __ CallStub(&stub); |
| } else { |
| ASSERT(exponent_type.IsDouble()); |
| MathPowStub stub(MathPowStub::DOUBLE); |
| __ CallStub(&stub); |
| } |
| } |
| |
| |
| void LCodeGen::DoRandom(LRandom* instr) { |
| class DeferredDoRandom: public LDeferredCode { |
| public: |
| DeferredDoRandom(LCodeGen* codegen, LRandom* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredRandom(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LRandom* instr_; |
| }; |
| |
| DeferredDoRandom* deferred = new DeferredDoRandom(this, instr); |
| // Having marked this instruction as a call we can use any |
| // registers. |
| ASSERT(ToDoubleRegister(instr->result()).is(f0)); |
| ASSERT(ToRegister(instr->InputAt(0)).is(a0)); |
| |
| static const int kSeedSize = sizeof(uint32_t); |
| STATIC_ASSERT(kPointerSize == kSeedSize); |
| |
| __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset)); |
| static const int kRandomSeedOffset = |
| FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize; |
| __ lw(a2, FieldMemOperand(a0, kRandomSeedOffset)); |
| // a2: FixedArray of the global context's random seeds |
| |
| // Load state[0]. |
| __ lw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize)); |
| __ Branch(deferred->entry(), eq, a1, Operand(zero_reg)); |
| // Load state[1]. |
| __ lw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize)); |
| // a1: state[0]. |
| // a0: state[1]. |
| |
| // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16) |
| __ And(a3, a1, Operand(0xFFFF)); |
| __ li(t0, Operand(18273)); |
| __ Mul(a3, a3, t0); |
| __ srl(a1, a1, 16); |
| __ Addu(a1, a3, a1); |
| // Save state[0]. |
| __ sw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize)); |
| |
| // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16) |
| __ And(a3, a0, Operand(0xFFFF)); |
| __ li(t0, Operand(36969)); |
| __ Mul(a3, a3, t0); |
| __ srl(a0, a0, 16), |
| __ Addu(a0, a3, a0); |
| // Save state[1]. |
| __ sw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize)); |
| |
| // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF) |
| __ And(a0, a0, Operand(0x3FFFF)); |
| __ sll(a1, a1, 14); |
| __ Addu(v0, a0, a1); |
| |
| __ bind(deferred->exit()); |
| |
| // 0x41300000 is the top half of 1.0 x 2^20 as a double. |
| __ li(a2, Operand(0x41300000)); |
| // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU. |
| __ Move(f12, v0, a2); |
| // Move 0x4130000000000000 to FPU. |
| __ Move(f14, zero_reg, a2); |
| // Subtract to get the result. |
| __ sub_d(f0, f12, f14); |
| } |
| |
| void LCodeGen::DoDeferredRandom(LRandom* instr) { |
| __ PrepareCallCFunction(1, scratch0()); |
| __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); |
| // Return value is in v0. |
| } |
| |
| |
| void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { |
| ASSERT(ToDoubleRegister(instr->result()).is(f4)); |
| TranscendentalCacheStub stub(TranscendentalCache::LOG, |
| TranscendentalCacheStub::UNTAGGED); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoMathTan(LUnaryMathOperation* instr) { |
| ASSERT(ToDoubleRegister(instr->result()).is(f4)); |
| TranscendentalCacheStub stub(TranscendentalCache::TAN, |
| TranscendentalCacheStub::UNTAGGED); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { |
| ASSERT(ToDoubleRegister(instr->result()).is(f4)); |
| TranscendentalCacheStub stub(TranscendentalCache::COS, |
| TranscendentalCacheStub::UNTAGGED); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { |
| ASSERT(ToDoubleRegister(instr->result()).is(f4)); |
| TranscendentalCacheStub stub(TranscendentalCache::SIN, |
| TranscendentalCacheStub::UNTAGGED); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { |
| switch (instr->op()) { |
| case kMathAbs: |
| DoMathAbs(instr); |
| break; |
| case kMathFloor: |
| DoMathFloor(instr); |
| break; |
| case kMathRound: |
| DoMathRound(instr); |
| break; |
| case kMathSqrt: |
| DoMathSqrt(instr); |
| break; |
| case kMathPowHalf: |
| DoMathPowHalf(instr); |
| break; |
| case kMathCos: |
| DoMathCos(instr); |
| break; |
| case kMathSin: |
| DoMathSin(instr); |
| break; |
| case kMathTan: |
| DoMathTan(instr); |
| break; |
| case kMathLog: |
| DoMathLog(instr); |
| break; |
| default: |
| Abort("Unimplemented type of LUnaryMathOperation."); |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { |
| ASSERT(ToRegister(instr->function()).is(a1)); |
| ASSERT(instr->HasPointerMap()); |
| ASSERT(instr->HasDeoptimizationEnvironment()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); |
| ParameterCount count(instr->arity()); |
| __ InvokeFunction(a1, count, CALL_FUNCTION, generator, CALL_AS_METHOD); |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| |
| void LCodeGen::DoCallKeyed(LCallKeyed* instr) { |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| int arity = instr->arity(); |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| |
| void LCodeGen::DoCallNamed(LCallNamed* instr) { |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| int arity = instr->arity(); |
| RelocInfo::Mode mode = RelocInfo::CODE_TARGET; |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeCallInitialize(arity, mode); |
| __ li(a2, Operand(instr->name())); |
| CallCode(ic, mode, instr); |
| // Restore context register. |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| |
| void LCodeGen::DoCallFunction(LCallFunction* instr) { |
| ASSERT(ToRegister(instr->function()).is(a1)); |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| int arity = instr->arity(); |
| CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| |
| void LCodeGen::DoCallGlobal(LCallGlobal* instr) { |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| int arity = instr->arity(); |
| RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; |
| Handle<Code> ic = |
| isolate()->stub_cache()->ComputeCallInitialize(arity, mode); |
| __ li(a2, Operand(instr->name())); |
| CallCode(ic, mode, instr); |
| __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| } |
| |
| |
| void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION); |
| } |
| |
| |
| void LCodeGen::DoCallNew(LCallNew* instr) { |
| ASSERT(ToRegister(instr->InputAt(0)).is(a1)); |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| |
| CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); |
| __ li(a0, Operand(instr->arity())); |
| CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); |
| } |
| |
| |
| void LCodeGen::DoCallRuntime(LCallRuntime* instr) { |
| CallRuntime(instr->function(), instr->arity(), instr); |
| } |
| |
| |
| void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { |
| Register object = ToRegister(instr->object()); |
| Register value = ToRegister(instr->value()); |
| Register scratch = scratch0(); |
| int offset = instr->offset(); |
| |
| ASSERT(!object.is(value)); |
| |
| if (!instr->transition().is_null()) { |
| __ li(scratch, Operand(instr->transition())); |
| __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| } |
| |
| // Do the store. |
| HType type = instr->hydrogen()->value()->type(); |
| SmiCheck check_needed = |
| type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
| if (instr->is_in_object()) { |
| __ sw(value, FieldMemOperand(object, offset)); |
| if (instr->hydrogen()->NeedsWriteBarrier()) { |
| // Update the write barrier for the object for in-object properties. |
| __ RecordWriteField(object, |
| offset, |
| value, |
| scratch, |
| kRAHasBeenSaved, |
| kSaveFPRegs, |
| EMIT_REMEMBERED_SET, |
| check_needed); |
| } |
| } else { |
| __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
| __ sw(value, FieldMemOperand(scratch, offset)); |
| if (instr->hydrogen()->NeedsWriteBarrier()) { |
| // Update the write barrier for the properties array. |
| // object is used as a scratch register. |
| __ RecordWriteField(scratch, |
| offset, |
| value, |
| object, |
| kRAHasBeenSaved, |
| kSaveFPRegs, |
| EMIT_REMEMBERED_SET, |
| check_needed); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { |
| ASSERT(ToRegister(instr->object()).is(a1)); |
| ASSERT(ToRegister(instr->value()).is(a0)); |
| |
| // Name is always in a2. |
| __ li(a2, Operand(instr->name())); |
| Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) |
| ? isolate()->builtins()->StoreIC_Initialize_Strict() |
| : isolate()->builtins()->StoreIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { |
| DeoptimizeIf(hs, |
| instr->environment(), |
| ToRegister(instr->index()), |
| Operand(ToRegister(instr->length()))); |
| } |
| |
| |
| void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { |
| Register value = ToRegister(instr->value()); |
| Register elements = ToRegister(instr->object()); |
| Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; |
| Register scratch = scratch0(); |
| |
| // Do the store. |
| if (instr->key()->IsConstantOperand()) { |
| ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); |
| LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); |
| int offset = |
| ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize; |
| __ sw(value, FieldMemOperand(elements, offset)); |
| } else { |
| __ sll(scratch, key, kPointerSizeLog2); |
| __ addu(scratch, elements, scratch); |
| __ sw(value, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| } |
| |
| if (instr->hydrogen()->NeedsWriteBarrier()) { |
| HType type = instr->hydrogen()->value()->type(); |
| SmiCheck check_needed = |
| type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
| // Compute address of modified element and store it into key register. |
| __ Addu(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ RecordWrite(elements, |
| key, |
| value, |
| kRAHasBeenSaved, |
| kSaveFPRegs, |
| EMIT_REMEMBERED_SET, |
| check_needed); |
| } |
| } |
| |
| |
| void LCodeGen::DoStoreKeyedFastDoubleElement( |
| LStoreKeyedFastDoubleElement* instr) { |
| DoubleRegister value = ToDoubleRegister(instr->value()); |
| Register elements = ToRegister(instr->elements()); |
| Register key = no_reg; |
| Register scratch = scratch0(); |
| bool key_is_constant = instr->key()->IsConstantOperand(); |
| int constant_key = 0; |
| Label not_nan; |
| |
| // Calculate the effective address of the slot in the array to store the |
| // double value. |
| if (key_is_constant) { |
| constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
| if (constant_key & 0xF0000000) { |
| Abort("array index constant value too big."); |
| } |
| } else { |
| key = ToRegister(instr->key()); |
| } |
| int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); |
| if (key_is_constant) { |
| __ Addu(scratch, elements, Operand(constant_key * (1 << shift_size) + |
| FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| } else { |
| __ sll(scratch, key, shift_size); |
| __ Addu(scratch, elements, Operand(scratch)); |
| __ Addu(scratch, scratch, |
| Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| } |
| |
| Label is_nan; |
| // Check for NaN. All NaNs must be canonicalized. |
| __ BranchF(NULL, &is_nan, eq, value, value); |
| __ Branch(¬_nan); |
| |
| // Only load canonical NaN if the comparison above set the overflow. |
| __ bind(&is_nan); |
| __ Move(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double()); |
| |
| __ bind(¬_nan); |
| __ sdc1(value, MemOperand(scratch)); |
| } |
| |
| |
| void LCodeGen::DoStoreKeyedSpecializedArrayElement( |
| LStoreKeyedSpecializedArrayElement* instr) { |
| |
| Register external_pointer = ToRegister(instr->external_pointer()); |
| Register key = no_reg; |
| ElementsKind elements_kind = instr->elements_kind(); |
| bool key_is_constant = instr->key()->IsConstantOperand(); |
| int constant_key = 0; |
| if (key_is_constant) { |
| constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
| if (constant_key & 0xF0000000) { |
| Abort("array index constant value too big."); |
| } |
| } else { |
| key = ToRegister(instr->key()); |
| } |
| int shift_size = ElementsKindToShiftSize(elements_kind); |
| |
| if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || |
| elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
| FPURegister value(ToDoubleRegister(instr->value())); |
| if (key_is_constant) { |
| __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size)); |
| } else { |
| __ sll(scratch0(), key, shift_size); |
| __ Addu(scratch0(), scratch0(), external_pointer); |
| } |
| |
| if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
| __ cvt_s_d(double_scratch0(), value); |
| __ swc1(double_scratch0(), MemOperand(scratch0())); |
| } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS |
| __ sdc1(value, MemOperand(scratch0())); |
| } |
| } else { |
| Register value(ToRegister(instr->value())); |
| MemOperand mem_operand(zero_reg); |
| Register scratch = scratch0(); |
| if (key_is_constant) { |
| mem_operand = MemOperand(external_pointer, |
| constant_key * (1 << shift_size)); |
| } else { |
| __ sll(scratch, key, shift_size); |
| __ Addu(scratch, scratch, external_pointer); |
| mem_operand = MemOperand(scratch); |
| } |
| switch (elements_kind) { |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| __ sb(value, mem_operand); |
| break; |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| __ sh(value, mem_operand); |
| break; |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| __ sw(value, mem_operand); |
| break; |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_SMI_ONLY_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { |
| ASSERT(ToRegister(instr->object()).is(a2)); |
| ASSERT(ToRegister(instr->key()).is(a1)); |
| ASSERT(ToRegister(instr->value()).is(a0)); |
| |
| Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) |
| ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() |
| : isolate()->builtins()->KeyedStoreIC_Initialize(); |
| CallCode(ic, RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { |
| Register object_reg = ToRegister(instr->object()); |
| Register new_map_reg = ToRegister(instr->new_map_reg()); |
| Register scratch = scratch0(); |
| |
| Handle<Map> from_map = instr->original_map(); |
| Handle<Map> to_map = instr->transitioned_map(); |
| ElementsKind from_kind = from_map->elements_kind(); |
| ElementsKind to_kind = to_map->elements_kind(); |
| |
| __ mov(ToRegister(instr->result()), object_reg); |
| |
| Label not_applicable; |
| __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); |
| __ Branch(¬_applicable, ne, scratch, Operand(from_map)); |
| |
| __ li(new_map_reg, Operand(to_map)); |
| if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) { |
| __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); |
| // Write barrier. |
| __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg, |
| scratch, kRAHasBeenSaved, kDontSaveFPRegs); |
| } else if (from_kind == FAST_SMI_ONLY_ELEMENTS && |
| to_kind == FAST_DOUBLE_ELEMENTS) { |
| Register fixed_object_reg = ToRegister(instr->temp_reg()); |
| ASSERT(fixed_object_reg.is(a2)); |
| ASSERT(new_map_reg.is(a3)); |
| __ mov(fixed_object_reg, object_reg); |
| CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(), |
| RelocInfo::CODE_TARGET, instr); |
| } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) { |
| Register fixed_object_reg = ToRegister(instr->temp_reg()); |
| ASSERT(fixed_object_reg.is(a2)); |
| ASSERT(new_map_reg.is(a3)); |
| __ mov(fixed_object_reg, object_reg); |
| CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(), |
| RelocInfo::CODE_TARGET, instr); |
| } else { |
| UNREACHABLE(); |
| } |
| __ bind(¬_applicable); |
| } |
| |
| |
| void LCodeGen::DoStringAdd(LStringAdd* instr) { |
| __ push(ToRegister(instr->left())); |
| __ push(ToRegister(instr->right())); |
| StringAddStub stub(NO_STRING_CHECK_IN_STUB); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| |
| |
| void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { |
| class DeferredStringCharCodeAt: public LDeferredCode { |
| public: |
| DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LStringCharCodeAt* instr_; |
| }; |
| |
| DeferredStringCharCodeAt* deferred = |
| new DeferredStringCharCodeAt(this, instr); |
| StringCharLoadGenerator::Generate(masm(), |
| ToRegister(instr->string()), |
| ToRegister(instr->index()), |
| ToRegister(instr->result()), |
| deferred->entry()); |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { |
| Register string = ToRegister(instr->string()); |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| |
| // TODO(3095996): Get rid of this. For now, we need to make the |
| // result register contain a valid pointer because it is already |
| // contained in the register pointer map. |
| __ mov(result, zero_reg); |
| |
| PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
| __ push(string); |
| // Push the index as a smi. This is safe because of the checks in |
| // DoStringCharCodeAt above. |
| if (instr->index()->IsConstantOperand()) { |
| int const_index = ToInteger32(LConstantOperand::cast(instr->index())); |
| __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index))); |
| __ push(scratch); |
| } else { |
| Register index = ToRegister(instr->index()); |
| __ SmiTag(index); |
| __ push(index); |
| } |
| CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr); |
| if (FLAG_debug_code) { |
| __ AbortIfNotSmi(v0); |
| } |
| __ SmiUntag(v0); |
| __ StoreToSafepointRegisterSlot(v0, result); |
| } |
| |
| |
| void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { |
| class DeferredStringCharFromCode: public LDeferredCode { |
| public: |
| DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LStringCharFromCode* instr_; |
| }; |
| |
| DeferredStringCharFromCode* deferred = |
| new DeferredStringCharFromCode(this, instr); |
| |
| ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); |
| Register char_code = ToRegister(instr->char_code()); |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| ASSERT(!char_code.is(result)); |
| |
| __ Branch(deferred->entry(), hi, |
| char_code, Operand(String::kMaxAsciiCharCode)); |
| __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); |
| __ sll(scratch, char_code, kPointerSizeLog2); |
| __ Addu(result, result, scratch); |
| __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize)); |
| __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
| __ Branch(deferred->entry(), eq, result, Operand(scratch)); |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { |
| Register char_code = ToRegister(instr->char_code()); |
| Register result = ToRegister(instr->result()); |
| |
| // TODO(3095996): Get rid of this. For now, we need to make the |
| // result register contain a valid pointer because it is already |
| // contained in the register pointer map. |
| __ mov(result, zero_reg); |
| |
| PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
| __ SmiTag(char_code); |
| __ push(char_code); |
| CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr); |
| __ StoreToSafepointRegisterSlot(v0, result); |
| } |
| |
| |
| void LCodeGen::DoStringLength(LStringLength* instr) { |
| Register string = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| __ lw(result, FieldMemOperand(string, String::kLengthOffset)); |
| } |
| |
| |
| void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister() || input->IsStackSlot()); |
| LOperand* output = instr->result(); |
| ASSERT(output->IsDoubleRegister()); |
| FPURegister single_scratch = double_scratch0().low(); |
| if (input->IsStackSlot()) { |
| Register scratch = scratch0(); |
| __ lw(scratch, ToMemOperand(input)); |
| __ mtc1(scratch, single_scratch); |
| } else { |
| __ mtc1(ToRegister(input), single_scratch); |
| } |
| __ cvt_d_w(ToDoubleRegister(output), single_scratch); |
| } |
| |
| |
| void LCodeGen::DoNumberTagI(LNumberTagI* instr) { |
| class DeferredNumberTagI: public LDeferredCode { |
| public: |
| DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LNumberTagI* instr_; |
| }; |
| |
| Register src = ToRegister(instr->InputAt(0)); |
| Register dst = ToRegister(instr->result()); |
| Register overflow = scratch0(); |
| |
| DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr); |
| __ SmiTagCheckOverflow(dst, src, overflow); |
| __ BranchOnOverflow(deferred->entry(), overflow); |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) { |
| Label slow; |
| Register src = ToRegister(instr->InputAt(0)); |
| Register dst = ToRegister(instr->result()); |
| FPURegister dbl_scratch = double_scratch0(); |
| |
| // Preserve the value of all registers. |
| PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
| |
| // There was overflow, so bits 30 and 31 of the original integer |
| // disagree. Try to allocate a heap number in new space and store |
| // the value in there. If that fails, call the runtime system. |
| Label done; |
| if (dst.is(src)) { |
| __ SmiUntag(src, dst); |
| __ Xor(src, src, Operand(0x80000000)); |
| } |
| __ mtc1(src, dbl_scratch); |
| __ cvt_d_w(dbl_scratch, dbl_scratch); |
| if (FLAG_inline_new) { |
| __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(t1, a3, t0, t2, &slow); |
| __ Move(dst, t1); |
| __ Branch(&done); |
| } |
| |
| // Slow case: Call the runtime system to do the number allocation. |
| __ bind(&slow); |
| |
| // TODO(3095996): Put a valid pointer value in the stack slot where the result |
| // register is stored, as this register is in the pointer map, but contains an |
| // integer value. |
| __ StoreToSafepointRegisterSlot(zero_reg, dst); |
| CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); |
| __ Move(dst, v0); |
| |
| // Done. Put the value in dbl_scratch into the value of the allocated heap |
| // number. |
| __ bind(&done); |
| __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); |
| __ StoreToSafepointRegisterSlot(dst, dst); |
| } |
| |
| |
| void LCodeGen::DoNumberTagD(LNumberTagD* instr) { |
| class DeferredNumberTagD: public LDeferredCode { |
| public: |
| DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LNumberTagD* instr_; |
| }; |
| |
| DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0)); |
| Register scratch = scratch0(); |
| Register reg = ToRegister(instr->result()); |
| Register temp1 = ToRegister(instr->TempAt(0)); |
| Register temp2 = ToRegister(instr->TempAt(1)); |
| |
| DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr); |
| if (FLAG_inline_new) { |
| __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry()); |
| } else { |
| __ Branch(deferred->entry()); |
| } |
| __ bind(deferred->exit()); |
| __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset)); |
| } |
| |
| |
| void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { |
| // TODO(3095996): Get rid of this. For now, we need to make the |
| // result register contain a valid pointer because it is already |
| // contained in the register pointer map. |
| Register reg = ToRegister(instr->result()); |
| __ mov(reg, zero_reg); |
| |
| PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
| CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); |
| __ StoreToSafepointRegisterSlot(v0, reg); |
| } |
| |
| |
| void LCodeGen::DoSmiTag(LSmiTag* instr) { |
| ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); |
| __ SmiTag(ToRegister(instr->result()), ToRegister(instr->InputAt(0))); |
| } |
| |
| |
| void LCodeGen::DoSmiUntag(LSmiUntag* instr) { |
| Register scratch = scratch0(); |
| Register input = ToRegister(instr->InputAt(0)); |
| Register result = ToRegister(instr->result()); |
| if (instr->needs_check()) { |
| STATIC_ASSERT(kHeapObjectTag == 1); |
| // If the input is a HeapObject, value of scratch won't be zero. |
| __ And(scratch, input, Operand(kHeapObjectTag)); |
| __ SmiUntag(result, input); |
| DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg)); |
| } else { |
| __ SmiUntag(result, input); |
| } |
| } |
| |
| |
| void LCodeGen::EmitNumberUntagD(Register input_reg, |
| DoubleRegister result_reg, |
| bool deoptimize_on_undefined, |
| bool deoptimize_on_minus_zero, |
| LEnvironment* env) { |
| Register scratch = scratch0(); |
| |
| Label load_smi, heap_number, done; |
| |
| // Smi check. |
| __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); |
| |
| // Heap number map check. |
| __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); |
| __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
| if (deoptimize_on_undefined) { |
| DeoptimizeIf(ne, env, scratch, Operand(at)); |
| } else { |
| Label heap_number; |
| __ Branch(&heap_number, eq, scratch, Operand(at)); |
| |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| DeoptimizeIf(ne, env, input_reg, Operand(at)); |
| |
| // Convert undefined to NaN. |
| __ LoadRoot(at, Heap::kNanValueRootIndex); |
| __ ldc1(result_reg, FieldMemOperand(at, HeapNumber::kValueOffset)); |
| __ Branch(&done); |
| |
| __ bind(&heap_number); |
| } |
| // Heap number to double register conversion. |
| __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); |
| if (deoptimize_on_minus_zero) { |
| __ mfc1(at, result_reg.low()); |
| __ Branch(&done, ne, at, Operand(zero_reg)); |
| __ mfc1(scratch, result_reg.high()); |
| DeoptimizeIf(eq, env, scratch, Operand(HeapNumber::kSignMask)); |
| } |
| __ Branch(&done); |
| |
| // Smi to double register conversion |
| __ bind(&load_smi); |
| // scratch: untagged value of input_reg |
| __ mtc1(scratch, result_reg); |
| __ cvt_d_w(result_reg, result_reg); |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { |
| Register input_reg = ToRegister(instr->InputAt(0)); |
| Register scratch1 = scratch0(); |
| Register scratch2 = ToRegister(instr->TempAt(0)); |
| DoubleRegister double_scratch = double_scratch0(); |
| FPURegister single_scratch = double_scratch.low(); |
| |
| ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2)); |
| ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1)); |
| |
| Label done; |
| |
| // The input is a tagged HeapObject. |
| // Heap number map check. |
| __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); |
| __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
| // This 'at' value and scratch1 map value are used for tests in both clauses |
| // of the if. |
| |
| if (instr->truncating()) { |
| Register scratch3 = ToRegister(instr->TempAt(1)); |
| DoubleRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2)); |
| ASSERT(!scratch3.is(input_reg) && |
| !scratch3.is(scratch1) && |
| !scratch3.is(scratch2)); |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. |
| Label heap_number; |
| __ Branch(&heap_number, eq, scratch1, Operand(at)); // HeapNumber map? |
| // Check for undefined. Undefined is converted to zero for truncating |
| // conversions. |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| DeoptimizeIf(ne, instr->environment(), input_reg, Operand(at)); |
| ASSERT(ToRegister(instr->result()).is(input_reg)); |
| __ mov(input_reg, zero_reg); |
| __ Branch(&done); |
| |
| __ bind(&heap_number); |
| __ ldc1(double_scratch2, |
| FieldMemOperand(input_reg, HeapNumber::kValueOffset)); |
| __ EmitECMATruncate(input_reg, |
| double_scratch2, |
| single_scratch, |
| scratch1, |
| scratch2, |
| scratch3); |
| } else { |
| // Deoptimize if we don't have a heap number. |
| DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at)); |
| |
| // Load the double value. |
| __ ldc1(double_scratch, |
| FieldMemOperand(input_reg, HeapNumber::kValueOffset)); |
| |
| Register except_flag = scratch2; |
| __ EmitFPUTruncate(kRoundToZero, |
| single_scratch, |
| double_scratch, |
| scratch1, |
| except_flag, |
| kCheckForInexactConversion); |
| |
| // Deopt if the operation did not succeed. |
| DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); |
| |
| // Load the result. |
| __ mfc1(input_reg, single_scratch); |
| |
| if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
| __ Branch(&done, ne, input_reg, Operand(zero_reg)); |
| |
| __ mfc1(scratch1, double_scratch.high()); |
| __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); |
| DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg)); |
| } |
| } |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoTaggedToI(LTaggedToI* instr) { |
| class DeferredTaggedToI: public LDeferredCode { |
| public: |
| DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LTaggedToI* instr_; |
| }; |
| |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister()); |
| ASSERT(input->Equals(instr->result())); |
| |
| Register input_reg = ToRegister(input); |
| |
| DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr); |
| |
| // Let the deferred code handle the HeapObject case. |
| __ JumpIfNotSmi(input_reg, deferred->entry()); |
| |
| // Smi to int32 conversion. |
| __ SmiUntag(input_reg); |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister()); |
| LOperand* result = instr->result(); |
| ASSERT(result->IsDoubleRegister()); |
| |
| Register input_reg = ToRegister(input); |
| DoubleRegister result_reg = ToDoubleRegister(result); |
| |
| EmitNumberUntagD(input_reg, result_reg, |
| instr->hydrogen()->deoptimize_on_undefined(), |
| instr->hydrogen()->deoptimize_on_minus_zero(), |
| instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoDoubleToI(LDoubleToI* instr) { |
| Register result_reg = ToRegister(instr->result()); |
| Register scratch1 = scratch0(); |
| Register scratch2 = ToRegister(instr->TempAt(0)); |
| DoubleRegister double_input = ToDoubleRegister(instr->InputAt(0)); |
| FPURegister single_scratch = double_scratch0().low(); |
| |
| if (instr->truncating()) { |
| Register scratch3 = ToRegister(instr->TempAt(1)); |
| __ EmitECMATruncate(result_reg, |
| double_input, |
| single_scratch, |
| scratch1, |
| scratch2, |
| scratch3); |
| } else { |
| Register except_flag = scratch2; |
| |
| __ EmitFPUTruncate(kRoundToMinusInf, |
| single_scratch, |
| double_input, |
| scratch1, |
| except_flag, |
| kCheckForInexactConversion); |
| |
| // Deopt if the operation did not succeed (except_flag != 0). |
| DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); |
| |
| // Load the result. |
| __ mfc1(result_reg, single_scratch); |
| } |
| } |
| |
| |
| void LCodeGen::DoCheckSmi(LCheckSmi* instr) { |
| LOperand* input = instr->InputAt(0); |
| __ And(at, ToRegister(input), Operand(kSmiTagMask)); |
| DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); |
| } |
| |
| |
| void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { |
| LOperand* input = instr->InputAt(0); |
| __ And(at, ToRegister(input), Operand(kSmiTagMask)); |
| DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); |
| } |
| |
| |
| void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| Register scratch = scratch0(); |
| |
| __ GetObjectType(input, scratch, scratch); |
| |
| if (instr->hydrogen()->is_interval_check()) { |
| InstanceType first; |
| InstanceType last; |
| instr->hydrogen()->GetCheckInterval(&first, &last); |
| |
| // If there is only one type in the interval check for equality. |
| if (first == last) { |
| DeoptimizeIf(ne, instr->environment(), scratch, Operand(first)); |
| } else { |
| DeoptimizeIf(lo, instr->environment(), scratch, Operand(first)); |
| // Omit check for the last type. |
| if (last != LAST_TYPE) { |
| DeoptimizeIf(hi, instr->environment(), scratch, Operand(last)); |
| } |
| } |
| } else { |
| uint8_t mask; |
| uint8_t tag; |
| instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); |
| |
| if (IsPowerOf2(mask)) { |
| ASSERT(tag == 0 || IsPowerOf2(tag)); |
| __ And(at, scratch, mask); |
| DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(), |
| at, Operand(zero_reg)); |
| } else { |
| __ And(scratch, scratch, Operand(mask)); |
| DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag)); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoCheckFunction(LCheckFunction* instr) { |
| Register reg = ToRegister(instr->value()); |
| Handle<JSFunction> target = instr->hydrogen()->target(); |
| if (isolate()->heap()->InNewSpace(*target)) { |
| Register reg = ToRegister(instr->value()); |
| Handle<JSGlobalPropertyCell> cell = |
| isolate()->factory()->NewJSGlobalPropertyCell(target); |
| __ li(at, Operand(Handle<Object>(cell))); |
| __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); |
| DeoptimizeIf(ne, instr->environment(), reg, |
| Operand(at)); |
| } else { |
| DeoptimizeIf(ne, instr->environment(), reg, |
| Operand(target)); |
| } |
| } |
| |
| |
| void LCodeGen::DoCheckMapCommon(Register reg, |
| Register scratch, |
| Handle<Map> map, |
| CompareMapMode mode, |
| LEnvironment* env) { |
| Label success; |
| __ CompareMapAndBranch(reg, scratch, map, &success, eq, &success, mode); |
| DeoptimizeIf(al, env); |
| __ bind(&success); |
| } |
| |
| |
| void LCodeGen::DoCheckMap(LCheckMap* instr) { |
| Register scratch = scratch0(); |
| LOperand* input = instr->InputAt(0); |
| ASSERT(input->IsRegister()); |
| Register reg = ToRegister(input); |
| Handle<Map> map = instr->hydrogen()->map(); |
| DoCheckMapCommon(reg, scratch, map, instr->hydrogen()->mode(), |
| instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { |
| DoubleRegister value_reg = ToDoubleRegister(instr->unclamped()); |
| Register result_reg = ToRegister(instr->result()); |
| DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0)); |
| __ ClampDoubleToUint8(result_reg, value_reg, temp_reg); |
| } |
| |
| |
| void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { |
| Register unclamped_reg = ToRegister(instr->unclamped()); |
| Register result_reg = ToRegister(instr->result()); |
| __ ClampUint8(result_reg, unclamped_reg); |
| } |
| |
| |
| void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { |
| Register scratch = scratch0(); |
| Register input_reg = ToRegister(instr->unclamped()); |
| Register result_reg = ToRegister(instr->result()); |
| DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0)); |
| Label is_smi, done, heap_number; |
| |
| // Both smi and heap number cases are handled. |
| __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi); |
| |
| // Check for heap number |
| __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); |
| __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map())); |
| |
| // Check for undefined. Undefined is converted to zero for clamping |
| // conversions. |
| DeoptimizeIf(ne, instr->environment(), input_reg, |
| Operand(factory()->undefined_value())); |
| __ mov(result_reg, zero_reg); |
| __ jmp(&done); |
| |
| // Heap number |
| __ bind(&heap_number); |
| __ ldc1(double_scratch0(), FieldMemOperand(input_reg, |
| HeapNumber::kValueOffset)); |
| __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg); |
| __ jmp(&done); |
| |
| __ bind(&is_smi); |
| __ ClampUint8(result_reg, scratch); |
| |
| __ bind(&done); |
| } |
| |
| |
| void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { |
| Register temp1 = ToRegister(instr->TempAt(0)); |
| Register temp2 = ToRegister(instr->TempAt(1)); |
| |
| Handle<JSObject> holder = instr->holder(); |
| Handle<JSObject> current_prototype = instr->prototype(); |
| |
| // Load prototype object. |
| __ LoadHeapObject(temp1, current_prototype); |
| |
| // Check prototype maps up to the holder. |
| while (!current_prototype.is_identical_to(holder)) { |
| DoCheckMapCommon(temp1, temp2, |
| Handle<Map>(current_prototype->map()), |
| ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment()); |
| current_prototype = |
| Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype())); |
| // Load next prototype object. |
| __ LoadHeapObject(temp1, current_prototype); |
| } |
| |
| // Check the holder map. |
| DoCheckMapCommon(temp1, temp2, |
| Handle<Map>(current_prototype->map()), |
| ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment()); |
| } |
| |
| |
| void LCodeGen::DoAllocateObject(LAllocateObject* instr) { |
| class DeferredAllocateObject: public LDeferredCode { |
| public: |
| DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LAllocateObject* instr_; |
| }; |
| |
| DeferredAllocateObject* deferred = new DeferredAllocateObject(this, instr); |
| |
| Register result = ToRegister(instr->result()); |
| Register scratch = ToRegister(instr->TempAt(0)); |
| Register scratch2 = ToRegister(instr->TempAt(1)); |
| Handle<JSFunction> constructor = instr->hydrogen()->constructor(); |
| Handle<Map> initial_map(constructor->initial_map()); |
| int instance_size = initial_map->instance_size(); |
| ASSERT(initial_map->pre_allocated_property_fields() + |
| initial_map->unused_property_fields() - |
| initial_map->inobject_properties() == 0); |
| |
| // Allocate memory for the object. The initial map might change when |
| // the constructor's prototype changes, but instance size and property |
| // counts remain unchanged (if slack tracking finished). |
| ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress()); |
| __ AllocateInNewSpace(instance_size, |
| result, |
| scratch, |
| scratch2, |
| deferred->entry(), |
| TAG_OBJECT); |
| |
| // Load the initial map. |
| Register map = scratch; |
| __ LoadHeapObject(map, constructor); |
| __ lw(map, FieldMemOperand(map, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Initialize map and fields of the newly allocated object. |
| ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE); |
| __ sw(map, FieldMemOperand(result, JSObject::kMapOffset)); |
| __ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex); |
| __ sw(scratch, FieldMemOperand(result, JSObject::kElementsOffset)); |
| __ sw(scratch, FieldMemOperand(result, JSObject::kPropertiesOffset)); |
| if (initial_map->inobject_properties() != 0) { |
| __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
| for (int i = 0; i < initial_map->inobject_properties(); i++) { |
| int property_offset = JSObject::kHeaderSize + i * kPointerSize; |
| __ sw(scratch, FieldMemOperand(result, property_offset)); |
| } |
| } |
| |
| __ bind(deferred->exit()); |
| } |
| |
| |
| void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) { |
| Register result = ToRegister(instr->result()); |
| Handle<JSFunction> constructor = instr->hydrogen()->constructor(); |
| |
| // TODO(3095996): Get rid of this. For now, we need to make the |
| // result register contain a valid pointer because it is already |
| // contained in the register pointer map. |
| __ mov(result, zero_reg); |
| |
| PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
| __ LoadHeapObject(a0, constructor); |
| __ push(a0); |
| CallRuntimeFromDeferred(Runtime::kNewObject, 1, instr); |
| __ StoreToSafepointRegisterSlot(v0, result); |
| } |
| |
| |
| void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { |
| Heap* heap = isolate()->heap(); |
| ElementsKind boilerplate_elements_kind = |
| instr->hydrogen()->boilerplate_elements_kind(); |
| |
| // Deopt if the array literal boilerplate ElementsKind is of a type different |
| // than the expected one. The check isn't necessary if the boilerplate has |
| // already been converted to FAST_ELEMENTS. |
| if (boilerplate_elements_kind != FAST_ELEMENTS) { |
| __ LoadHeapObject(a1, instr->hydrogen()->boilerplate_object()); |
| // Load map into a2. |
| __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| // Load the map's "bit field 2". |
| __ lbu(a2, FieldMemOperand(a2, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ Ext(a2, a2, Map::kElementsKindShift, Map::kElementsKindBitCount); |
| DeoptimizeIf(ne, |
| instr->environment(), |
| a2, |
| Operand(boilerplate_elements_kind)); |
| } |
| __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); |
| __ li(a2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); |
| // Boilerplate already exists, constant elements are never accessed. |
| // Pass an empty fixed array. |
| __ li(a1, Operand(Handle<FixedArray>(heap->empty_fixed_array()))); |
| __ Push(a3, a2, a1); |
| |
| // Pick the right runtime function or stub to call. |
| int length = instr->hydrogen()->length(); |
| if (instr->hydrogen()->IsCopyOnWrite()) { |
| ASSERT(instr->hydrogen()->depth() == 1); |
| FastCloneShallowArrayStub::Mode mode = |
| FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; |
| FastCloneShallowArrayStub stub(mode, length); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } else if (instr->hydrogen()->depth() > 1) { |
| CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); |
| } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { |
| CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); |
| } else { |
| FastCloneShallowArrayStub::Mode mode = |
| boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS |
| ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS |
| : FastCloneShallowArrayStub::CLONE_ELEMENTS; |
| FastCloneShallowArrayStub stub(mode, length); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| } |
| |
| |
| void LCodeGen::EmitDeepCopy(Handle<JSObject> object, |
| Register result, |
| Register source, |
| int* offset) { |
| ASSERT(!source.is(a2)); |
| ASSERT(!result.is(a2)); |
| |
| // Only elements backing stores for non-COW arrays need to be copied. |
| Handle<FixedArrayBase> elements(object->elements()); |
| bool has_elements = elements->length() > 0 && |
| elements->map() != isolate()->heap()->fixed_cow_array_map(); |
| |
| // Increase the offset so that subsequent objects end up right after |
| // this object and its backing store. |
| int object_offset = *offset; |
| int object_size = object->map()->instance_size(); |
| int elements_offset = *offset + object_size; |
| int elements_size = has_elements ? elements->Size() : 0; |
| *offset += object_size + elements_size; |
| |
| // Copy object header. |
| ASSERT(object->properties()->length() == 0); |
| int inobject_properties = object->map()->inobject_properties(); |
| int header_size = object_size - inobject_properties * kPointerSize; |
| for (int i = 0; i < header_size; i += kPointerSize) { |
| if (has_elements && i == JSObject::kElementsOffset) { |
| __ Addu(a2, result, Operand(elements_offset)); |
| } else { |
| __ lw(a2, FieldMemOperand(source, i)); |
| } |
| __ sw(a2, FieldMemOperand(result, object_offset + i)); |
| } |
| |
| // Copy in-object properties. |
| for (int i = 0; i < inobject_properties; i++) { |
| int total_offset = object_offset + object->GetInObjectPropertyOffset(i); |
| Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i)); |
| if (value->IsJSObject()) { |
| Handle<JSObject> value_object = Handle<JSObject>::cast(value); |
| __ Addu(a2, result, Operand(*offset)); |
| __ sw(a2, FieldMemOperand(result, total_offset)); |
| __ LoadHeapObject(source, value_object); |
| EmitDeepCopy(value_object, result, source, offset); |
| } else if (value->IsHeapObject()) { |
| __ LoadHeapObject(a2, Handle<HeapObject>::cast(value)); |
| __ sw(a2, FieldMemOperand(result, total_offset)); |
| } else { |
| __ li(a2, Operand(value)); |
| __ sw(a2, FieldMemOperand(result, total_offset)); |
| } |
| } |
| |
| |
| if (has_elements) { |
| // Copy elements backing store header. |
| __ LoadHeapObject(source, elements); |
| for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) { |
| __ lw(a2, FieldMemOperand(source, i)); |
| __ sw(a2, FieldMemOperand(result, elements_offset + i)); |
| } |
| |
| // Copy elements backing store content. |
| int elements_length = has_elements ? elements->length() : 0; |
| if (elements->IsFixedDoubleArray()) { |
| Handle<FixedDoubleArray> double_array = |
| Handle<FixedDoubleArray>::cast(elements); |
| for (int i = 0; i < elements_length; i++) { |
| int64_t value = double_array->get_representation(i); |
| // We only support little endian mode... |
| int32_t value_low = value & 0xFFFFFFFF; |
| int32_t value_high = value >> 32; |
| int total_offset = |
| elements_offset + FixedDoubleArray::OffsetOfElementAt(i); |
| __ li(a2, Operand(value_low)); |
| __ sw(a2, FieldMemOperand(result, total_offset)); |
| __ li(a2, Operand(value_high)); |
| __ sw(a2, FieldMemOperand(result, total_offset + 4)); |
| } |
| } else if (elements->IsFixedArray()) { |
| for (int i = 0; i < elements_length; i++) { |
| int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i); |
| Handle<Object> value = JSObject::GetElement(object, i); |
| if (value->IsJSObject()) { |
| Handle<JSObject> value_object = Handle<JSObject>::cast(value); |
| __ Addu(a2, result, Operand(*offset)); |
| __ sw(a2, FieldMemOperand(result, total_offset)); |
| __ LoadHeapObject(source, value_object); |
| EmitDeepCopy(value_object, result, source, offset); |
| } else if (value->IsHeapObject()) { |
| __ LoadHeapObject(a2, Handle<HeapObject>::cast(value)); |
| __ sw(a2, FieldMemOperand(result, total_offset)); |
| } else { |
| __ li(a2, Operand(value)); |
| __ sw(a2, FieldMemOperand(result, total_offset)); |
| } |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| |
| void LCodeGen::DoFastLiteral(LFastLiteral* instr) { |
| int size = instr->hydrogen()->total_size(); |
| |
| // Allocate all objects that are part of the literal in one big |
| // allocation. This avoids multiple limit checks. |
| Label allocated, runtime_allocate; |
| __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); |
| __ jmp(&allocated); |
| |
| __ bind(&runtime_allocate); |
| __ li(a0, Operand(Smi::FromInt(size))); |
| __ push(a0); |
| CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); |
| |
| __ bind(&allocated); |
| int offset = 0; |
| __ LoadHeapObject(a1, instr->hydrogen()->boilerplate()); |
| EmitDeepCopy(instr->hydrogen()->boilerplate(), v0, a1, &offset); |
| ASSERT_EQ(size, offset); |
| } |
| |
| |
| void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) { |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| Handle<FixedArray> literals(instr->environment()->closure()->literals()); |
| Handle<FixedArray> constant_properties = |
| instr->hydrogen()->constant_properties(); |
| |
| // Set up the parameters to the stub/runtime call. |
| __ LoadHeapObject(t0, literals); |
| __ li(a3, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); |
| __ li(a2, Operand(constant_properties)); |
| int flags = instr->hydrogen()->fast_elements() |
| ? ObjectLiteral::kFastElements |
| : ObjectLiteral::kNoFlags; |
| __ li(a1, Operand(Smi::FromInt(flags))); |
| __ Push(t0, a3, a2, a1); |
| |
| // Pick the right runtime function or stub to call. |
| int properties_count = constant_properties->length() / 2; |
| if (instr->hydrogen()->depth() > 1) { |
| CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); |
| } else if (flags != ObjectLiteral::kFastElements || |
| properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { |
| CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); |
| } else { |
| FastCloneShallowObjectStub stub(properties_count); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } |
| } |
| |
| |
| void LCodeGen::DoToFastProperties(LToFastProperties* instr) { |
| ASSERT(ToRegister(instr->InputAt(0)).is(a0)); |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| __ push(a0); |
| CallRuntime(Runtime::kToFastProperties, 1, instr); |
| } |
| |
| |
| void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { |
| Label materialized; |
| // Registers will be used as follows: |
| // a3 = JS function. |
| // t3 = literals array. |
| // a1 = regexp literal. |
| // a0 = regexp literal clone. |
| // a2 and t0-t2 are used as temporaries. |
| __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ lw(t3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); |
| int literal_offset = FixedArray::kHeaderSize + |
| instr->hydrogen()->literal_index() * kPointerSize; |
| __ lw(a1, FieldMemOperand(t3, literal_offset)); |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| __ Branch(&materialized, ne, a1, Operand(at)); |
| |
| // Create regexp literal using runtime function |
| // Result will be in v0. |
| __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); |
| __ li(t1, Operand(instr->hydrogen()->pattern())); |
| __ li(t0, Operand(instr->hydrogen()->flags())); |
| __ Push(t3, t2, t1, t0); |
| CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); |
| __ mov(a1, v0); |
| |
| __ bind(&materialized); |
| int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
| Label allocated, runtime_allocate; |
| |
| __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); |
| __ jmp(&allocated); |
| |
| __ bind(&runtime_allocate); |
| __ li(a0, Operand(Smi::FromInt(size))); |
| __ Push(a1, a0); |
| CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); |
| __ pop(a1); |
| |
| __ bind(&allocated); |
| // Copy the content into the newly allocated memory. |
| // (Unroll copy loop once for better throughput). |
| for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { |
| __ lw(a3, FieldMemOperand(a1, i)); |
| __ lw(a2, FieldMemOperand(a1, i + kPointerSize)); |
| __ sw(a3, FieldMemOperand(v0, i)); |
| __ sw(a2, FieldMemOperand(v0, i + kPointerSize)); |
| } |
| if ((size % (2 * kPointerSize)) != 0) { |
| __ lw(a3, FieldMemOperand(a1, size - kPointerSize)); |
| __ sw(a3, FieldMemOperand(v0, size - kPointerSize)); |
| } |
| } |
| |
| |
| void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { |
| // Use the fast case closure allocation code that allocates in new |
| // space for nested functions that don't need literals cloning. |
| Handle<SharedFunctionInfo> shared_info = instr->shared_info(); |
| bool pretenure = instr->hydrogen()->pretenure(); |
| if (!pretenure && shared_info->num_literals() == 0) { |
| FastNewClosureStub stub(shared_info->language_mode()); |
| __ li(a1, Operand(shared_info)); |
| __ push(a1); |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| } else { |
| __ li(a2, Operand(shared_info)); |
| __ li(a1, Operand(pretenure |
| ? factory()->true_value() |
| : factory()->false_value())); |
| __ Push(cp, a2, a1); |
| CallRuntime(Runtime::kNewClosure, 3, instr); |
| } |
| } |
| |
| |
| void LCodeGen::DoTypeof(LTypeof* instr) { |
| ASSERT(ToRegister(instr->result()).is(v0)); |
| Register input = ToRegister(instr->InputAt(0)); |
| __ push(input); |
| CallRuntime(Runtime::kTypeof, 1, instr); |
| } |
| |
| |
| void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { |
| Register input = ToRegister(instr->InputAt(0)); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| Label* true_label = chunk_->GetAssemblyLabel(true_block); |
| Label* false_label = chunk_->GetAssemblyLabel(false_block); |
| |
| Register cmp1 = no_reg; |
| Operand cmp2 = Operand(no_reg); |
| |
| Condition final_branch_condition = EmitTypeofIs(true_label, |
| false_label, |
| input, |
| instr->type_literal(), |
| cmp1, |
| cmp2); |
| |
| ASSERT(cmp1.is_valid()); |
| ASSERT(!cmp2.is_reg() || cmp2.rm().is_valid()); |
| |
| if (final_branch_condition != kNoCondition) { |
| EmitBranch(true_block, false_block, final_branch_condition, cmp1, cmp2); |
| } |
| } |
| |
| |
| Condition LCodeGen::EmitTypeofIs(Label* true_label, |
| Label* false_label, |
| Register input, |
| Handle<String> type_name, |
| Register& cmp1, |
| Operand& cmp2) { |
| // This function utilizes the delay slot heavily. This is used to load |
| // values that are always usable without depending on the type of the input |
| // register. |
| Condition final_branch_condition = kNoCondition; |
| Register scratch = scratch0(); |
| if (type_name->Equals(heap()->number_symbol())) { |
| __ JumpIfSmi(input, true_label); |
| __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); |
| __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
| cmp1 = input; |
| cmp2 = Operand(at); |
| final_branch_condition = eq; |
| |
| } else if (type_name->Equals(heap()->string_symbol())) { |
| __ JumpIfSmi(input, false_label); |
| __ GetObjectType(input, input, scratch); |
| __ Branch(USE_DELAY_SLOT, false_label, |
| ge, scratch, Operand(FIRST_NONSTRING_TYPE)); |
| // input is an object so we can load the BitFieldOffset even if we take the |
| // other branch. |
| __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); |
| __ And(at, at, 1 << Map::kIsUndetectable); |
| cmp1 = at; |
| cmp2 = Operand(zero_reg); |
| final_branch_condition = eq; |
| |
| } else if (type_name->Equals(heap()->boolean_symbol())) { |
| __ LoadRoot(at, Heap::kTrueValueRootIndex); |
| __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); |
| __ LoadRoot(at, Heap::kFalseValueRootIndex); |
| cmp1 = at; |
| cmp2 = Operand(input); |
| final_branch_condition = eq; |
| |
| } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) { |
| __ LoadRoot(at, Heap::kNullValueRootIndex); |
| cmp1 = at; |
| cmp2 = Operand(input); |
| final_branch_condition = eq; |
| |
| } else if (type_name->Equals(heap()->undefined_symbol())) { |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); |
| // The first instruction of JumpIfSmi is an And - it is safe in the delay |
| // slot. |
| __ JumpIfSmi(input, false_label); |
| // Check for undetectable objects => true. |
| __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); |
| __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); |
| __ And(at, at, 1 << Map::kIsUndetectable); |
| cmp1 = at; |
| cmp2 = Operand(zero_reg); |
| final_branch_condition = ne; |
| |
| } else if (type_name->Equals(heap()->function_symbol())) { |
| STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); |
| __ JumpIfSmi(input, false_label); |
| __ GetObjectType(input, scratch, input); |
| __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE)); |
| cmp1 = input; |
| cmp2 = Operand(JS_FUNCTION_PROXY_TYPE); |
| final_branch_condition = eq; |
| |
| } else if (type_name->Equals(heap()->object_symbol())) { |
| __ JumpIfSmi(input, false_label); |
| if (!FLAG_harmony_typeof) { |
| __ LoadRoot(at, Heap::kNullValueRootIndex); |
| __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); |
| } |
| // input is an object, it is safe to use GetObjectType in the delay slot. |
| __ GetObjectType(input, input, scratch); |
| __ Branch(USE_DELAY_SLOT, false_label, |
| lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| // Still an object, so the InstanceType can be loaded. |
| __ lbu(scratch, FieldMemOperand(input, Map::kInstanceTypeOffset)); |
| __ Branch(USE_DELAY_SLOT, false_label, |
| gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| // Still an object, so the BitField can be loaded. |
| // Check for undetectable objects => false. |
| __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); |
| __ And(at, at, 1 << Map::kIsUndetectable); |
| cmp1 = at; |
| cmp2 = Operand(zero_reg); |
| final_branch_condition = eq; |
| |
| } else { |
| cmp1 = at; |
| cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion. |
| __ Branch(false_label); |
| } |
| |
| return final_branch_condition; |
| } |
| |
| |
| void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { |
| Register temp1 = ToRegister(instr->TempAt(0)); |
| int true_block = chunk_->LookupDestination(instr->true_block_id()); |
| int false_block = chunk_->LookupDestination(instr->false_block_id()); |
| |
| EmitIsConstructCall(temp1, scratch0()); |
| |
| EmitBranch(true_block, false_block, eq, temp1, |
| Operand(Smi::FromInt(StackFrame::CONSTRUCT))); |
| } |
| |
| |
| void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { |
| ASSERT(!temp1.is(temp2)); |
| // Get the frame pointer for the calling frame. |
| __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Skip the arguments adaptor frame if it exists. |
| Label check_frame_marker; |
| __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); |
| __ Branch(&check_frame_marker, ne, temp2, |
| Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Check the marker in the calling frame. |
| __ bind(&check_frame_marker); |
| __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); |
| } |
| |
| |
| void LCodeGen::EnsureSpaceForLazyDeopt() { |
| // Ensure that we have enough space after the previous lazy-bailout |
| // instruction for patching the code here. |
| int current_pc = masm()->pc_offset(); |
| int patch_size = Deoptimizer::patch_size(); |
| if (current_pc < last_lazy_deopt_pc_ + patch_size) { |
| int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc; |
| ASSERT_EQ(0, padding_size % Assembler::kInstrSize); |
| while (padding_size > 0) { |
| __ nop(); |
| padding_size -= Assembler::kInstrSize; |
| } |
| } |
| last_lazy_deopt_pc_ = masm()->pc_offset(); |
| } |
| |
| |
| void LCodeGen::DoLazyBailout(LLazyBailout* instr) { |
| EnsureSpaceForLazyDeopt(); |
| ASSERT(instr->HasEnvironment()); |
| LEnvironment* env = instr->environment(); |
| RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| } |
| |
| |
| void LCodeGen::DoDeoptimize(LDeoptimize* instr) { |
| DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg)); |
| } |
| |
| |
| void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { |
| Register object = ToRegister(instr->object()); |
| Register key = ToRegister(instr->key()); |
| Register strict = scratch0(); |
| __ li(strict, Operand(Smi::FromInt(strict_mode_flag()))); |
| __ Push(object, key, strict); |
| ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| SafepointGenerator safepoint_generator( |
| this, pointers, Safepoint::kLazyDeopt); |
| __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator); |
| } |
| |
| |
| void LCodeGen::DoIn(LIn* instr) { |
| Register obj = ToRegister(instr->object()); |
| Register key = ToRegister(instr->key()); |
| __ Push(key, obj); |
| ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
| LPointerMap* pointers = instr->pointer_map(); |
| RecordPosition(pointers->position()); |
| SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); |
| __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator); |
| } |
| |
| |
| void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { |
| PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
| __ CallRuntimeSaveDoubles(Runtime::kStackGuard); |
| RecordSafepointWithLazyDeopt( |
| instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
| ASSERT(instr->HasEnvironment()); |
| LEnvironment* env = instr->environment(); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| } |
| |
| |
| void LCodeGen::DoStackCheck(LStackCheck* instr) { |
| class DeferredStackCheck: public LDeferredCode { |
| public: |
| DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) |
| : LDeferredCode(codegen), instr_(instr) { } |
| virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } |
| virtual LInstruction* instr() { return instr_; } |
| private: |
| LStackCheck* instr_; |
| }; |
| |
| ASSERT(instr->HasEnvironment()); |
| LEnvironment* env = instr->environment(); |
| // There is no LLazyBailout instruction for stack-checks. We have to |
| // prepare for lazy deoptimization explicitly here. |
| if (instr->hydrogen()->is_function_entry()) { |
| // Perform stack overflow check. |
| Label done; |
| __ LoadRoot(at, Heap::kStackLimitRootIndex); |
| __ Branch(&done, hs, sp, Operand(at)); |
| StackCheckStub stub; |
| CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
| EnsureSpaceForLazyDeopt(); |
| __ bind(&done); |
| RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
| safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); |
| } else { |
| ASSERT(instr->hydrogen()->is_backwards_branch()); |
| // Perform stack overflow check if this goto needs it before jumping. |
| DeferredStackCheck* deferred_stack_check = |
| new DeferredStackCheck(this, instr); |
| __ LoadRoot(at, Heap::kStackLimitRootIndex); |
| __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at)); |
| EnsureSpaceForLazyDeopt(); |
| __ bind(instr->done_label()); |
| deferred_stack_check->SetExit(instr->done_label()); |
| RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); |
| // Don't record a deoptimization index for the safepoint here. |
| // This will be done explicitly when emitting call and the safepoint in |
| // the deferred code. |
| } |
| } |
| |
| |
| void LCodeGen::DoOsrEntry(LOsrEntry* instr) { |
| // This is a pseudo-instruction that ensures that the environment here is |
| // properly registered for deoptimization and records the assembler's PC |
| // offset. |
| LEnvironment* environment = instr->environment(); |
| environment->SetSpilledRegisters(instr->SpilledRegisterArray(), |
| instr->SpilledDoubleRegisterArray()); |
| |
| // If the environment were already registered, we would have no way of |
| // backpatching it with the spill slot operands. |
| ASSERT(!environment->HasBeenRegistered()); |
| RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); |
| ASSERT(osr_pc_offset_ == -1); |
| osr_pc_offset_ = masm()->pc_offset(); |
| } |
| |
| |
| void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { |
| Register result = ToRegister(instr->result()); |
| Register object = ToRegister(instr->object()); |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| DeoptimizeIf(eq, instr->environment(), object, Operand(at)); |
| |
| Register null_value = t1; |
| __ LoadRoot(null_value, Heap::kNullValueRootIndex); |
| DeoptimizeIf(eq, instr->environment(), object, Operand(null_value)); |
| |
| __ And(at, object, kSmiTagMask); |
| DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); |
| |
| STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); |
| __ GetObjectType(object, a1, a1); |
| DeoptimizeIf(le, instr->environment(), a1, Operand(LAST_JS_PROXY_TYPE)); |
| |
| Label use_cache, call_runtime; |
| ASSERT(object.is(a0)); |
| __ CheckEnumCache(null_value, &call_runtime); |
| |
| __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset)); |
| __ Branch(&use_cache); |
| |
| // Get the set of properties to enumerate. |
| __ bind(&call_runtime); |
| __ push(object); |
| CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); |
| |
| __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); |
| ASSERT(result.is(v0)); |
| __ LoadRoot(at, Heap::kMetaMapRootIndex); |
| DeoptimizeIf(ne, instr->environment(), a1, Operand(at)); |
| __ bind(&use_cache); |
| } |
| |
| |
| void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { |
| Register map = ToRegister(instr->map()); |
| Register result = ToRegister(instr->result()); |
| __ LoadInstanceDescriptors(map, result); |
| __ lw(result, |
| FieldMemOperand(result, DescriptorArray::kEnumerationIndexOffset)); |
| __ lw(result, |
| FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); |
| DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); |
| } |
| |
| |
| void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { |
| Register object = ToRegister(instr->value()); |
| Register map = ToRegister(instr->map()); |
| __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); |
| DeoptimizeIf(ne, instr->environment(), map, Operand(scratch0())); |
| } |
| |
| |
| void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { |
| Register object = ToRegister(instr->object()); |
| Register index = ToRegister(instr->index()); |
| Register result = ToRegister(instr->result()); |
| Register scratch = scratch0(); |
| |
| Label out_of_object, done; |
| __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg)); |
| __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize); // In delay slot. |
| |
| STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); |
| __ Addu(scratch, object, scratch); |
| __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); |
| |
| __ Branch(&done); |
| |
| __ bind(&out_of_object); |
| __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
| // Index is equal to negated out of object property index plus 1. |
| __ Subu(scratch, result, scratch); |
| __ lw(result, FieldMemOperand(scratch, |
| FixedArray::kHeaderSize - kPointerSize)); |
| __ bind(&done); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |