| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ |
| #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ |
| |
| #include "assembler.h" |
| #include "mips/assembler-mips.h" |
| #include "v8globals.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declaration. |
| class JumpTarget; |
| |
| // Reserved Register Usage Summary. |
| // |
| // Registers t8, t9, and at are reserved for use by the MacroAssembler. |
| // |
| // The programmer should know that the MacroAssembler may clobber these three, |
| // but won't touch other registers except in special cases. |
| // |
| // Per the MIPS ABI, register t9 must be used for indirect function call |
| // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when |
| // trying to update gp register for position-independent-code. Whenever |
| // MIPS generated code calls C code, it must be via t9 register. |
| |
| |
| // Flags used for the AllocateInNewSpace functions. |
| enum AllocationFlags { |
| // No special flags. |
| NO_ALLOCATION_FLAGS = 0, |
| // Return the pointer to the allocated already tagged as a heap object. |
| TAG_OBJECT = 1 << 0, |
| // The content of the result register already contains the allocation top in |
| // new space. |
| RESULT_CONTAINS_TOP = 1 << 1, |
| // Specify that the requested size of the space to allocate is specified in |
| // words instead of bytes. |
| SIZE_IN_WORDS = 1 << 2 |
| }; |
| |
| // Flags used for the ObjectToDoubleFPURegister function. |
| enum ObjectToDoubleFlags { |
| // No special flags. |
| NO_OBJECT_TO_DOUBLE_FLAGS = 0, |
| // Object is known to be a non smi. |
| OBJECT_NOT_SMI = 1 << 0, |
| // Don't load NaNs or infinities, branch to the non number case instead. |
| AVOID_NANS_AND_INFINITIES = 1 << 1 |
| }; |
| |
| // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls. |
| enum BranchDelaySlot { |
| USE_DELAY_SLOT, |
| PROTECT |
| }; |
| |
| // Flags used for the li macro-assembler function. |
| enum LiFlags { |
| // If the constant value can be represented in just 16 bits, then |
| // optimize the li to use a single instruction, rather than lui/ori pair. |
| OPTIMIZE_SIZE = 0, |
| // Always use 2 instructions (lui/ori pair), even if the constant could |
| // be loaded with just one, so that this value is patchable later. |
| CONSTANT_SIZE = 1 |
| }; |
| |
| |
| enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; |
| enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; |
| enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; |
| |
| bool AreAliased(Register r1, Register r2, Register r3, Register r4); |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| inline MemOperand ContextOperand(Register context, int index) { |
| return MemOperand(context, Context::SlotOffset(index)); |
| } |
| |
| |
| inline MemOperand GlobalObjectOperand() { |
| return ContextOperand(cp, Context::GLOBAL_INDEX); |
| } |
| |
| |
| // Generate a MemOperand for loading a field from an object. |
| inline MemOperand FieldMemOperand(Register object, int offset) { |
| return MemOperand(object, offset - kHeapObjectTag); |
| } |
| |
| |
| // Generate a MemOperand for storing arguments 5..N on the stack |
| // when calling CallCFunction(). |
| inline MemOperand CFunctionArgumentOperand(int index) { |
| ASSERT(index > kCArgSlotCount); |
| // Argument 5 takes the slot just past the four Arg-slots. |
| int offset = (index - 5) * kPointerSize + kCArgsSlotsSize; |
| return MemOperand(sp, offset); |
| } |
| |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class MacroAssembler: public Assembler { |
| public: |
| // The isolate parameter can be NULL if the macro assembler should |
| // not use isolate-dependent functionality. In this case, it's the |
| // responsibility of the caller to never invoke such function on the |
| // macro assembler. |
| MacroAssembler(Isolate* isolate, void* buffer, int size); |
| |
| // Arguments macros. |
| #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2 |
| #define COND_ARGS cond, r1, r2 |
| |
| // Cases when relocation is not needed. |
| #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \ |
| void Name(target_type target, BranchDelaySlot bd = PROTECT); \ |
| inline void Name(BranchDelaySlot bd, target_type target) { \ |
| Name(target, bd); \ |
| } \ |
| void Name(target_type target, \ |
| COND_TYPED_ARGS, \ |
| BranchDelaySlot bd = PROTECT); \ |
| inline void Name(BranchDelaySlot bd, \ |
| target_type target, \ |
| COND_TYPED_ARGS) { \ |
| Name(target, COND_ARGS, bd); \ |
| } |
| |
| #define DECLARE_BRANCH_PROTOTYPES(Name) \ |
| DECLARE_NORELOC_PROTOTYPE(Name, Label*) \ |
| DECLARE_NORELOC_PROTOTYPE(Name, int16_t) |
| |
| DECLARE_BRANCH_PROTOTYPES(Branch) |
| DECLARE_BRANCH_PROTOTYPES(BranchAndLink) |
| |
| #undef DECLARE_BRANCH_PROTOTYPES |
| #undef COND_TYPED_ARGS |
| #undef COND_ARGS |
| |
| |
| // Jump, Call, and Ret pseudo instructions implementing inter-working. |
| #define COND_ARGS Condition cond = al, Register rs = zero_reg, \ |
| const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT |
| |
| void Jump(Register target, COND_ARGS); |
| void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); |
| void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS); |
| static int CallSize(Register target, COND_ARGS); |
| void Call(Register target, COND_ARGS); |
| static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| static int CallSize(Handle<Code> code, |
| RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
| unsigned ast_id = kNoASTId, |
| COND_ARGS); |
| void Call(Handle<Code> code, |
| RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
| unsigned ast_id = kNoASTId, |
| COND_ARGS); |
| void Ret(COND_ARGS); |
| inline void Ret(BranchDelaySlot bd, Condition cond = al, |
| Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) { |
| Ret(cond, rs, rt, bd); |
| } |
| |
| void Branch(Label* L, |
| Condition cond, |
| Register rs, |
| Heap::RootListIndex index, |
| BranchDelaySlot bdslot = PROTECT); |
| |
| #undef COND_ARGS |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the sp register. |
| void Drop(int count, |
| Condition cond = cc_always, |
| Register reg = no_reg, |
| const Operand& op = Operand(no_reg)); |
| |
| // Trivial case of DropAndRet that utilizes the delay slot and only emits |
| // 2 instructions. |
| void DropAndRet(int drop); |
| |
| void DropAndRet(int drop, |
| Condition cond, |
| Register reg, |
| const Operand& op); |
| |
| // Swap two registers. If the scratch register is omitted then a slightly |
| // less efficient form using xor instead of mov is emitted. |
| void Swap(Register reg1, Register reg2, Register scratch = no_reg); |
| |
| void Call(Label* target); |
| |
| inline void Move(Register dst, Register src) { |
| if (!dst.is(src)) { |
| mov(dst, src); |
| } |
| } |
| |
| inline void Move(FPURegister dst, FPURegister src) { |
| if (!dst.is(src)) { |
| mov_d(dst, src); |
| } |
| } |
| |
| inline void Move(Register dst_low, Register dst_high, FPURegister src) { |
| mfc1(dst_low, src); |
| mfc1(dst_high, FPURegister::from_code(src.code() + 1)); |
| } |
| |
| inline void Move(FPURegister dst, Register src_low, Register src_high) { |
| mtc1(src_low, dst); |
| mtc1(src_high, FPURegister::from_code(dst.code() + 1)); |
| } |
| |
| // Conditional move. |
| void Move(FPURegister dst, double imm); |
| void Movz(Register rd, Register rs, Register rt); |
| void Movn(Register rd, Register rs, Register rt); |
| void Movt(Register rd, Register rs, uint16_t cc = 0); |
| void Movf(Register rd, Register rs, uint16_t cc = 0); |
| |
| void Clz(Register rd, Register rs); |
| |
| // Jump unconditionally to given label. |
| // We NEED a nop in the branch delay slot, as it used by v8, for example in |
| // CodeGenerator::ProcessDeferred(). |
| // Currently the branch delay slot is filled by the MacroAssembler. |
| // Use rather b(Label) for code generation. |
| void jmp(Label* L) { |
| Branch(L); |
| } |
| |
| // Load an object from the root table. |
| void LoadRoot(Register destination, |
| Heap::RootListIndex index); |
| void LoadRoot(Register destination, |
| Heap::RootListIndex index, |
| Condition cond, Register src1, const Operand& src2); |
| |
| // Store an object to the root table. |
| void StoreRoot(Register source, |
| Heap::RootListIndex index); |
| void StoreRoot(Register source, |
| Heap::RootListIndex index, |
| Condition cond, Register src1, const Operand& src2); |
| |
| void LoadHeapObject(Register dst, Handle<HeapObject> object); |
| |
| void LoadObject(Register result, Handle<Object> object) { |
| if (object->IsHeapObject()) { |
| LoadHeapObject(result, Handle<HeapObject>::cast(object)); |
| } else { |
| li(result, object); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| // GC Support |
| |
| void IncrementalMarkingRecordWriteHelper(Register object, |
| Register value, |
| Register address); |
| |
| enum RememberedSetFinalAction { |
| kReturnAtEnd, |
| kFallThroughAtEnd |
| }; |
| |
| |
| // Record in the remembered set the fact that we have a pointer to new space |
| // at the address pointed to by the addr register. Only works if addr is not |
| // in new space. |
| void RememberedSetHelper(Register object, // Used for debug code. |
| Register addr, |
| Register scratch, |
| SaveFPRegsMode save_fp, |
| RememberedSetFinalAction and_then); |
| |
| void CheckPageFlag(Register object, |
| Register scratch, |
| int mask, |
| Condition cc, |
| Label* condition_met); |
| |
| // Check if object is in new space. Jumps if the object is not in new space. |
| // The register scratch can be object itself, but it will be clobbered. |
| void JumpIfNotInNewSpace(Register object, |
| Register scratch, |
| Label* branch) { |
| InNewSpace(object, scratch, ne, branch); |
| } |
| |
| // Check if object is in new space. Jumps if the object is in new space. |
| // The register scratch can be object itself, but scratch will be clobbered. |
| void JumpIfInNewSpace(Register object, |
| Register scratch, |
| Label* branch) { |
| InNewSpace(object, scratch, eq, branch); |
| } |
| |
| // Check if an object has a given incremental marking color. |
| void HasColor(Register object, |
| Register scratch0, |
| Register scratch1, |
| Label* has_color, |
| int first_bit, |
| int second_bit); |
| |
| void JumpIfBlack(Register object, |
| Register scratch0, |
| Register scratch1, |
| Label* on_black); |
| |
| // Checks the color of an object. If the object is already grey or black |
| // then we just fall through, since it is already live. If it is white and |
| // we can determine that it doesn't need to be scanned, then we just mark it |
| // black and fall through. For the rest we jump to the label so the |
| // incremental marker can fix its assumptions. |
| void EnsureNotWhite(Register object, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* object_is_white_and_not_data); |
| |
| // Detects conservatively whether an object is data-only, i.e. it does need to |
| // be scanned by the garbage collector. |
| void JumpIfDataObject(Register value, |
| Register scratch, |
| Label* not_data_object); |
| |
| // Notify the garbage collector that we wrote a pointer into an object. |
| // |object| is the object being stored into, |value| is the object being |
| // stored. value and scratch registers are clobbered by the operation. |
| // The offset is the offset from the start of the object, not the offset from |
| // the tagged HeapObject pointer. For use with FieldOperand(reg, off). |
| void RecordWriteField( |
| Register object, |
| int offset, |
| Register value, |
| Register scratch, |
| RAStatus ra_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK); |
| |
| // As above, but the offset has the tag presubtracted. For use with |
| // MemOperand(reg, off). |
| inline void RecordWriteContextSlot( |
| Register context, |
| int offset, |
| Register value, |
| Register scratch, |
| RAStatus ra_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK) { |
| RecordWriteField(context, |
| offset + kHeapObjectTag, |
| value, |
| scratch, |
| ra_status, |
| save_fp, |
| remembered_set_action, |
| smi_check); |
| } |
| |
| // For a given |object| notify the garbage collector that the slot |address| |
| // has been written. |value| is the object being stored. The value and |
| // address registers are clobbered by the operation. |
| void RecordWrite( |
| Register object, |
| Register address, |
| Register value, |
| RAStatus ra_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Inline caching support. |
| |
| // Generate code for checking access rights - used for security checks |
| // on access to global objects across environments. The holder register |
| // is left untouched, whereas both scratch registers are clobbered. |
| void CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss); |
| |
| void GetNumberHash(Register reg0, Register scratch); |
| |
| void LoadFromNumberDictionary(Label* miss, |
| Register elements, |
| Register key, |
| Register result, |
| Register reg0, |
| Register reg1, |
| Register reg2); |
| |
| |
| inline void MarkCode(NopMarkerTypes type) { |
| nop(type); |
| } |
| |
| // Check if the given instruction is a 'type' marker. |
| // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as |
| // nop(type)). These instructions are generated to mark special location in |
| // the code, like some special IC code. |
| static inline bool IsMarkedCode(Instr instr, int type) { |
| ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)); |
| return IsNop(instr, type); |
| } |
| |
| |
| static inline int GetCodeMarker(Instr instr) { |
| uint32_t opcode = ((instr & kOpcodeMask)); |
| uint32_t rt = ((instr & kRtFieldMask) >> kRtShift); |
| uint32_t rs = ((instr & kRsFieldMask) >> kRsShift); |
| uint32_t sa = ((instr & kSaFieldMask) >> kSaShift); |
| |
| // Return <n> if we have a sll zero_reg, zero_reg, n |
| // else return -1. |
| bool sllzz = (opcode == SLL && |
| rt == static_cast<uint32_t>(ToNumber(zero_reg)) && |
| rs == static_cast<uint32_t>(ToNumber(zero_reg))); |
| int type = |
| (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1; |
| ASSERT((type == -1) || |
| ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER))); |
| return type; |
| } |
| |
| |
| |
| // --------------------------------------------------------------------------- |
| // Allocation support. |
| |
| // Allocate an object in new space. The object_size is specified |
| // either in bytes or in words if the allocation flag SIZE_IN_WORDS |
| // is passed. If the new space is exhausted control continues at the |
| // gc_required label. The allocated object is returned in result. If |
| // the flag tag_allocated_object is true the result is tagged as as |
| // a heap object. All registers are clobbered also when control |
| // continues at the gc_required label. |
| void AllocateInNewSpace(int object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags); |
| void AllocateInNewSpace(Register object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| // Undo allocation in new space. The object passed and objects allocated after |
| // it will no longer be allocated. The caller must make sure that no pointers |
| // are left to the object(s) no longer allocated as they would be invalid when |
| // allocation is undone. |
| void UndoAllocationInNewSpace(Register object, Register scratch); |
| |
| |
| void AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateTwoByteConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateAsciiConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateTwoByteSlicedString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateAsciiSlicedString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Allocates a heap number or jumps to the gc_required label if the young |
| // space is full and a scavenge is needed. All registers are clobbered also |
| // when control continues at the gc_required label. |
| void AllocateHeapNumber(Register result, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* gc_required); |
| void AllocateHeapNumberWithValue(Register result, |
| FPURegister value, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // --------------------------------------------------------------------------- |
| // Instruction macros. |
| |
| #define DEFINE_INSTRUCTION(instr) \ |
| void instr(Register rd, Register rs, const Operand& rt); \ |
| void instr(Register rd, Register rs, Register rt) { \ |
| instr(rd, rs, Operand(rt)); \ |
| } \ |
| void instr(Register rs, Register rt, int32_t j) { \ |
| instr(rs, rt, Operand(j)); \ |
| } |
| |
| #define DEFINE_INSTRUCTION2(instr) \ |
| void instr(Register rs, const Operand& rt); \ |
| void instr(Register rs, Register rt) { \ |
| instr(rs, Operand(rt)); \ |
| } \ |
| void instr(Register rs, int32_t j) { \ |
| instr(rs, Operand(j)); \ |
| } |
| |
| DEFINE_INSTRUCTION(Addu); |
| DEFINE_INSTRUCTION(Subu); |
| DEFINE_INSTRUCTION(Mul); |
| DEFINE_INSTRUCTION2(Mult); |
| DEFINE_INSTRUCTION2(Multu); |
| DEFINE_INSTRUCTION2(Div); |
| DEFINE_INSTRUCTION2(Divu); |
| |
| DEFINE_INSTRUCTION(And); |
| DEFINE_INSTRUCTION(Or); |
| DEFINE_INSTRUCTION(Xor); |
| DEFINE_INSTRUCTION(Nor); |
| DEFINE_INSTRUCTION2(Neg); |
| |
| DEFINE_INSTRUCTION(Slt); |
| DEFINE_INSTRUCTION(Sltu); |
| |
| // MIPS32 R2 instruction macro. |
| DEFINE_INSTRUCTION(Ror); |
| |
| #undef DEFINE_INSTRUCTION |
| #undef DEFINE_INSTRUCTION2 |
| |
| |
| // --------------------------------------------------------------------------- |
| // Pseudo-instructions. |
| |
| void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); } |
| |
| // Load int32 in the rd register. |
| void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); |
| inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) { |
| li(rd, Operand(j), mode); |
| } |
| inline void li(Register dst, Handle<Object> value, |
| LiFlags mode = OPTIMIZE_SIZE) { |
| li(dst, Operand(value), mode); |
| } |
| |
| // Push multiple registers on the stack. |
| // Registers are saved in numerical order, with higher numbered registers |
| // saved in higher memory addresses. |
| void MultiPush(RegList regs); |
| void MultiPushReversed(RegList regs); |
| |
| void MultiPushFPU(RegList regs); |
| void MultiPushReversedFPU(RegList regs); |
| |
| // Lower case push() for compatibility with arch-independent code. |
| void push(Register src) { |
| Addu(sp, sp, Operand(-kPointerSize)); |
| sw(src, MemOperand(sp, 0)); |
| } |
| |
| // Push a handle. |
| void Push(Handle<Object> handle); |
| |
| // Push two registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2) { |
| Subu(sp, sp, Operand(2 * kPointerSize)); |
| sw(src1, MemOperand(sp, 1 * kPointerSize)); |
| sw(src2, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| // Push three registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3) { |
| Subu(sp, sp, Operand(3 * kPointerSize)); |
| sw(src1, MemOperand(sp, 2 * kPointerSize)); |
| sw(src2, MemOperand(sp, 1 * kPointerSize)); |
| sw(src3, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| // Push four registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Register src4) { |
| Subu(sp, sp, Operand(4 * kPointerSize)); |
| sw(src1, MemOperand(sp, 3 * kPointerSize)); |
| sw(src2, MemOperand(sp, 2 * kPointerSize)); |
| sw(src3, MemOperand(sp, 1 * kPointerSize)); |
| sw(src4, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| void Push(Register src, Condition cond, Register tst1, Register tst2) { |
| // Since we don't have conditional execution we use a Branch. |
| Branch(3, cond, tst1, Operand(tst2)); |
| Subu(sp, sp, Operand(kPointerSize)); |
| sw(src, MemOperand(sp, 0)); |
| } |
| |
| // Pops multiple values from the stack and load them in the |
| // registers specified in regs. Pop order is the opposite as in MultiPush. |
| void MultiPop(RegList regs); |
| void MultiPopReversed(RegList regs); |
| |
| void MultiPopFPU(RegList regs); |
| void MultiPopReversedFPU(RegList regs); |
| |
| // Lower case pop() for compatibility with arch-independent code. |
| void pop(Register dst) { |
| lw(dst, MemOperand(sp, 0)); |
| Addu(sp, sp, Operand(kPointerSize)); |
| } |
| |
| // Pop two registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2) { |
| ASSERT(!src1.is(src2)); |
| lw(src2, MemOperand(sp, 0 * kPointerSize)); |
| lw(src1, MemOperand(sp, 1 * kPointerSize)); |
| Addu(sp, sp, 2 * kPointerSize); |
| } |
| |
| // Pop three registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2, Register src3) { |
| lw(src3, MemOperand(sp, 0 * kPointerSize)); |
| lw(src2, MemOperand(sp, 1 * kPointerSize)); |
| lw(src1, MemOperand(sp, 2 * kPointerSize)); |
| Addu(sp, sp, 3 * kPointerSize); |
| } |
| |
| void Pop(uint32_t count = 1) { |
| Addu(sp, sp, Operand(count * kPointerSize)); |
| } |
| |
| // Push and pop the registers that can hold pointers, as defined by the |
| // RegList constant kSafepointSavedRegisters. |
| void PushSafepointRegisters(); |
| void PopSafepointRegisters(); |
| void PushSafepointRegistersAndDoubles(); |
| void PopSafepointRegistersAndDoubles(); |
| // Store value in register src in the safepoint stack slot for |
| // register dst. |
| void StoreToSafepointRegisterSlot(Register src, Register dst); |
| void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst); |
| // Load the value of the src register from its safepoint stack slot |
| // into register dst. |
| void LoadFromSafepointRegisterSlot(Register dst, Register src); |
| |
| // Flush the I-cache from asm code. You should use CPU::FlushICache from C. |
| // Does not handle errors. |
| void FlushICache(Register address, unsigned instructions); |
| |
| // MIPS32 R2 instruction macro. |
| void Ins(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void Ext(Register rt, Register rs, uint16_t pos, uint16_t size); |
| |
| // --------------------------------------------------------------------------- |
| // FPU macros. These do not handle special cases like NaN or +- inf. |
| |
| // Convert unsigned word to double. |
| void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch); |
| void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch); |
| |
| // Convert double to unsigned word. |
| void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch); |
| void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch); |
| |
| void Trunc_w_d(FPURegister fd, FPURegister fs); |
| void Round_w_d(FPURegister fd, FPURegister fs); |
| void Floor_w_d(FPURegister fd, FPURegister fs); |
| void Ceil_w_d(FPURegister fd, FPURegister fs); |
| // Wrapper function for the different cmp/branch types. |
| void BranchF(Label* target, |
| Label* nan, |
| Condition cc, |
| FPURegister cmp1, |
| FPURegister cmp2, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Alternate (inline) version for better readability with USE_DELAY_SLOT. |
| inline void BranchF(BranchDelaySlot bd, |
| Label* target, |
| Label* nan, |
| Condition cc, |
| FPURegister cmp1, |
| FPURegister cmp2) { |
| BranchF(target, nan, cc, cmp1, cmp2, bd); |
| }; |
| |
| // Convert the HeapNumber pointed to by source to a 32bits signed integer |
| // dest. If the HeapNumber does not fit into a 32bits signed integer branch |
| // to not_int32 label. If FPU is available double_scratch is used but not |
| // scratch2. |
| void ConvertToInt32(Register source, |
| Register dest, |
| Register scratch, |
| Register scratch2, |
| FPURegister double_scratch, |
| Label *not_int32); |
| |
| // Truncates a double using a specific rounding mode. |
| // The except_flag will contain any exceptions caused by the instruction. |
| // If check_inexact is kDontCheckForInexactConversion, then the inexacat |
| // exception is masked. |
| void EmitFPUTruncate(FPURoundingMode rounding_mode, |
| FPURegister result, |
| DoubleRegister double_input, |
| Register scratch1, |
| Register except_flag, |
| CheckForInexactConversion check_inexact |
| = kDontCheckForInexactConversion); |
| |
| // Helper for EmitECMATruncate. |
| // This will truncate a floating-point value outside of the singed 32bit |
| // integer range to a 32bit signed integer. |
| // Expects the double value loaded in input_high and input_low. |
| // Exits with the answer in 'result'. |
| // Note that this code does not work for values in the 32bit range! |
| void EmitOutOfInt32RangeTruncate(Register result, |
| Register input_high, |
| Register input_low, |
| Register scratch); |
| |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. See ECMA-262 9.5: ToInt32. |
| // Exits with 'result' holding the answer and all other registers clobbered. |
| void EmitECMATruncate(Register result, |
| FPURegister double_input, |
| FPURegister single_scratch, |
| Register scratch, |
| Register scratch2, |
| Register scratch3); |
| |
| // Enter exit frame. |
| // argc - argument count to be dropped by LeaveExitFrame. |
| // save_doubles - saves FPU registers on stack, currently disabled. |
| // stack_space - extra stack space. |
| void EnterExitFrame(bool save_doubles, |
| int stack_space = 0); |
| |
| // Leave the current exit frame. |
| void LeaveExitFrame(bool save_doubles, |
| Register arg_count, |
| bool do_return = false); |
| |
| // Get the actual activation frame alignment for target environment. |
| static int ActivationFrameAlignment(); |
| |
| // Make sure the stack is aligned. Only emits code in debug mode. |
| void AssertStackIsAligned(); |
| |
| void LoadContext(Register dst, int context_chain_length); |
| |
| // Conditionally load the cached Array transitioned map of type |
| // transitioned_kind from the global context if the map in register |
| // map_in_out is the cached Array map in the global context of |
| // expected_kind. |
| void LoadTransitionedArrayMapConditional( |
| ElementsKind expected_kind, |
| ElementsKind transitioned_kind, |
| Register map_in_out, |
| Register scratch, |
| Label* no_map_match); |
| |
| // Load the initial map for new Arrays from a JSFunction. |
| void LoadInitialArrayMap(Register function_in, |
| Register scratch, |
| Register map_out); |
| |
| void LoadGlobalFunction(int index, Register function); |
| |
| // Load the initial map from the global function. The registers |
| // function and map can be the same, function is then overwritten. |
| void LoadGlobalFunctionInitialMap(Register function, |
| Register map, |
| Register scratch); |
| |
| void InitializeRootRegister() { |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(isolate()); |
| li(kRootRegister, Operand(roots_array_start)); |
| } |
| |
| // ------------------------------------------------------------------------- |
| // JavaScript invokes. |
| |
| // Set up call kind marking in t1. The method takes t1 as an |
| // explicit first parameter to make the code more readable at the |
| // call sites. |
| void SetCallKind(Register dst, CallKind kind); |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind); |
| |
| void InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag, |
| CallKind call_kind); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind); |
| |
| void InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind); |
| |
| |
| void IsObjectJSObjectType(Register heap_object, |
| Register map, |
| Register scratch, |
| Label* fail); |
| |
| void IsInstanceJSObjectType(Register map, |
| Register scratch, |
| Label* fail); |
| |
| void IsObjectJSStringType(Register object, |
| Register scratch, |
| Label* fail); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // ------------------------------------------------------------------------- |
| // Debugger Support. |
| |
| void DebugBreak(); |
| #endif |
| |
| |
| // ------------------------------------------------------------------------- |
| // Exception handling. |
| |
| // Push a new try handler and link into try handler chain. |
| void PushTryHandler(StackHandler::Kind kind, int handler_index); |
| |
| // Unlink the stack handler on top of the stack from the try handler chain. |
| // Must preserve the result register. |
| void PopTryHandler(); |
| |
| // Passes thrown value to the handler of top of the try handler chain. |
| void Throw(Register value); |
| |
| // Propagates an uncatchable exception to the top of the current JS stack's |
| // handler chain. |
| void ThrowUncatchable(Register value); |
| |
| // Copies a fixed number of fields of heap objects from src to dst. |
| void CopyFields(Register dst, Register src, RegList temps, int field_count); |
| |
| // Copies a number of bytes from src to dst. All registers are clobbered. On |
| // exit src and dst will point to the place just after where the last byte was |
| // read or written and length will be zero. |
| void CopyBytes(Register src, |
| Register dst, |
| Register length, |
| Register scratch); |
| |
| // Initialize fields with filler values. Fields starting at |start_offset| |
| // not including end_offset are overwritten with the value in |filler|. At |
| // the end the loop, |start_offset| takes the value of |end_offset|. |
| void InitializeFieldsWithFiller(Register start_offset, |
| Register end_offset, |
| Register filler); |
| |
| // ------------------------------------------------------------------------- |
| // Support functions. |
| |
| // Try to get function prototype of a function and puts the value in |
| // the result register. Checks that the function really is a |
| // function and jumps to the miss label if the fast checks fail. The |
| // function register will be untouched; the other registers may be |
| // clobbered. |
| void TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss, |
| bool miss_on_bound_function = false); |
| |
| void GetObjectType(Register function, |
| Register map, |
| Register type_reg); |
| |
| // Check if a map for a JSObject indicates that the object has fast elements. |
| // Jump to the specified label if it does not. |
| void CheckFastElements(Register map, |
| Register scratch, |
| Label* fail); |
| |
| // Check if a map for a JSObject indicates that the object can have both smi |
| // and HeapObject elements. Jump to the specified label if it does not. |
| void CheckFastObjectElements(Register map, |
| Register scratch, |
| Label* fail); |
| |
| // Check if a map for a JSObject indicates that the object has fast smi only |
| // elements. Jump to the specified label if it does not. |
| void CheckFastSmiOnlyElements(Register map, |
| Register scratch, |
| Label* fail); |
| |
| // Check to see if maybe_number can be stored as a double in |
| // FastDoubleElements. If it can, store it at the index specified by key in |
| // the FastDoubleElements array elements. Otherwise jump to fail, in which |
| // case scratch2, scratch3 and scratch4 are unmodified. |
| void StoreNumberToDoubleElements(Register value_reg, |
| Register key_reg, |
| Register receiver_reg, |
| Register elements_reg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Label* fail); |
| |
| // Compare an object's map with the specified map and its transitioned |
| // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to |
| // "branch_to" if the result of the comparison is "cond". If multiple map |
| // compares are required, the compare sequences branches to early_success. |
| void CompareMapAndBranch(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Label* early_success, |
| Condition cond, |
| Label* branch_to, |
| CompareMapMode mode = REQUIRE_EXACT_MAP); |
| |
| // Check if the map of an object is equal to a specified map and branch to |
| // label if not. Skip the smi check if not required (object is known to be a |
| // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match |
| // against maps that are ElementsKind transition maps of the specificed map. |
| void CheckMap(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Label* fail, |
| SmiCheckType smi_check_type, |
| CompareMapMode mode = REQUIRE_EXACT_MAP); |
| |
| |
| void CheckMap(Register obj, |
| Register scratch, |
| Heap::RootListIndex index, |
| Label* fail, |
| SmiCheckType smi_check_type); |
| |
| // Check if the map of an object is equal to a specified map and branch to a |
| // specified target if equal. Skip the smi check if not required (object is |
| // known to be a heap object) |
| void DispatchMap(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Handle<Code> success, |
| SmiCheckType smi_check_type); |
| |
| // Generates code for reporting that an illegal operation has |
| // occurred. |
| void IllegalOperation(int num_arguments); |
| |
| |
| // Load and check the instance type of an object for being a string. |
| // Loads the type into the second argument register. |
| // Returns a condition that will be enabled if the object was a string. |
| Condition IsObjectStringType(Register obj, |
| Register type, |
| Register result) { |
| lw(type, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset)); |
| And(type, type, Operand(kIsNotStringMask)); |
| ASSERT_EQ(0, kStringTag); |
| return eq; |
| } |
| |
| |
| // Picks out an array index from the hash field. |
| // Register use: |
| // hash - holds the index's hash. Clobbered. |
| // index - holds the overwritten index on exit. |
| void IndexFromHash(Register hash, Register index); |
| |
| // Get the number of least significant bits from a register. |
| void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits); |
| void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits); |
| |
| // Load the value of a number object into a FPU double register. If the |
| // object is not a number a jump to the label not_number is performed |
| // and the FPU double register is unchanged. |
| void ObjectToDoubleFPURegister( |
| Register object, |
| FPURegister value, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* not_number, |
| ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS); |
| |
| // Load the value of a smi object into a FPU double register. The register |
| // scratch1 can be the same register as smi in which case smi will hold the |
| // untagged value afterwards. |
| void SmiToDoubleFPURegister(Register smi, |
| FPURegister value, |
| Register scratch1); |
| |
| // ------------------------------------------------------------------------- |
| // Overflow handling functions. |
| // Usage: first call the appropriate arithmetic function, then call one of the |
| // jump functions with the overflow_dst register as the second parameter. |
| |
| void AdduAndCheckForOverflow(Register dst, |
| Register left, |
| Register right, |
| Register overflow_dst, |
| Register scratch = at); |
| |
| void SubuAndCheckForOverflow(Register dst, |
| Register left, |
| Register right, |
| Register overflow_dst, |
| Register scratch = at); |
| |
| void BranchOnOverflow(Label* label, |
| Register overflow_check, |
| BranchDelaySlot bd = PROTECT) { |
| Branch(label, lt, overflow_check, Operand(zero_reg), bd); |
| } |
| |
| void BranchOnNoOverflow(Label* label, |
| Register overflow_check, |
| BranchDelaySlot bd = PROTECT) { |
| Branch(label, ge, overflow_check, Operand(zero_reg), bd); |
| } |
| |
| void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) { |
| Ret(lt, overflow_check, Operand(zero_reg), bd); |
| } |
| |
| void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) { |
| Ret(ge, overflow_check, Operand(zero_reg), bd); |
| } |
| |
| // ------------------------------------------------------------------------- |
| // Runtime calls. |
| |
| // See comments at the beginning of CEntryStub::Generate. |
| inline void PrepareCEntryArgs(int num_args) { |
| li(s0, num_args); |
| li(s1, (num_args - 1) * kPointerSize); |
| } |
| |
| inline void PrepareCEntryFunction(const ExternalReference& ref) { |
| li(s2, Operand(ref)); |
| } |
| |
| // Call a code stub. |
| void CallStub(CodeStub* stub, |
| Condition cond = cc_always, |
| Register r1 = zero_reg, |
| const Operand& r2 = Operand(zero_reg), |
| BranchDelaySlot bd = PROTECT); |
| |
| // Tail call a code stub (jump). |
| void TailCallStub(CodeStub* stub); |
| |
| void CallJSExitStub(CodeStub* stub); |
| |
| // Call a runtime routine. |
| void CallRuntime(const Runtime::Function* f, int num_arguments); |
| void CallRuntimeSaveDoubles(Runtime::FunctionId id); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId fid, int num_arguments); |
| |
| // Convenience function: call an external reference. |
| void CallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Tail call of a runtime routine (jump). |
| // Like JumpToExternalReference, but also takes care of passing the number |
| // of parameters. |
| void TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size); |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size); |
| |
| int CalculateStackPassedWords(int num_reg_arguments, |
| int num_double_arguments); |
| |
| // Before calling a C-function from generated code, align arguments on stack |
| // and add space for the four mips argument slots. |
| // After aligning the frame, non-register arguments must be stored on the |
| // stack, after the argument-slots using helper: CFunctionArgumentOperand(). |
| // The argument count assumes all arguments are word sized. |
| // Some compilers/platforms require the stack to be aligned when calling |
| // C++ code. |
| // Needs a scratch register to do some arithmetic. This register will be |
| // trashed. |
| void PrepareCallCFunction(int num_reg_arguments, |
| int num_double_registers, |
| Register scratch); |
| void PrepareCallCFunction(int num_reg_arguments, |
| Register scratch); |
| |
| // Arguments 1-4 are placed in registers a0 thru a3 respectively. |
| // Arguments 5..n are stored to stack using following: |
| // sw(t0, CFunctionArgumentOperand(5)); |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, int num_arguments); |
| void CallCFunction(ExternalReference function, |
| int num_reg_arguments, |
| int num_double_arguments); |
| void CallCFunction(Register function, |
| int num_reg_arguments, |
| int num_double_arguments); |
| void GetCFunctionDoubleResult(const DoubleRegister dst); |
| |
| // There are two ways of passing double arguments on MIPS, depending on |
| // whether soft or hard floating point ABI is used. These functions |
| // abstract parameter passing for the three different ways we call |
| // C functions from generated code. |
| void SetCallCDoubleArguments(DoubleRegister dreg); |
| void SetCallCDoubleArguments(DoubleRegister dreg1, DoubleRegister dreg2); |
| void SetCallCDoubleArguments(DoubleRegister dreg, Register reg); |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Restores context. stack_space |
| // - space to be unwound on exit (includes the call JS arguments space and |
| // the additional space allocated for the fast call). |
| void CallApiFunctionAndReturn(ExternalReference function, int stack_space); |
| |
| // Jump to the builtin routine. |
| void JumpToExternalReference(const ExternalReference& builtin, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Invoke specified builtin JavaScript function. Adds an entry to |
| // the unresolved list if the name does not resolve. |
| void InvokeBuiltin(Builtins::JavaScript id, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper = NullCallWrapper()); |
| |
| // Store the code object for the given builtin in the target register and |
| // setup the function in a1. |
| void GetBuiltinEntry(Register target, Builtins::JavaScript id); |
| |
| // Store the function for the given builtin in the target register. |
| void GetBuiltinFunction(Register target, Builtins::JavaScript id); |
| |
| struct Unresolved { |
| int pc; |
| uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders. |
| const char* name; |
| }; |
| |
| Handle<Object> CodeObject() { |
| ASSERT(!code_object_.is_null()); |
| return code_object_; |
| } |
| |
| // ------------------------------------------------------------------------- |
| // StatsCounter support. |
| |
| void SetCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| void IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| void DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| |
| |
| // ------------------------------------------------------------------------- |
| // Debugging. |
| |
| // Calls Abort(msg) if the condition cc is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cc, const char* msg, Register rs, Operand rt); |
| void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index); |
| void AssertFastElements(Register elements); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cc, const char* msg, Register rs, Operand rt); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(const char* msg); |
| |
| // Verify restrictions about code generated in stubs. |
| void set_generating_stub(bool value) { generating_stub_ = value; } |
| bool generating_stub() { return generating_stub_; } |
| void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } |
| bool allow_stub_calls() { return allow_stub_calls_; } |
| void set_has_frame(bool value) { has_frame_ = value; } |
| bool has_frame() { return has_frame_; } |
| inline bool AllowThisStubCall(CodeStub* stub); |
| |
| // --------------------------------------------------------------------------- |
| // Number utilities. |
| |
| // Check whether the value of reg is a power of two and not zero. If not |
| // control continues at the label not_power_of_two. If reg is a power of two |
| // the register scratch contains the value of (reg - 1) when control falls |
| // through. |
| void JumpIfNotPowerOfTwoOrZero(Register reg, |
| Register scratch, |
| Label* not_power_of_two_or_zero); |
| |
| // ------------------------------------------------------------------------- |
| // Smi utilities. |
| |
| void SmiTag(Register reg) { |
| Addu(reg, reg, reg); |
| } |
| |
| // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow(). |
| void SmiTagCheckOverflow(Register reg, Register overflow); |
| void SmiTagCheckOverflow(Register dst, Register src, Register overflow); |
| |
| void SmiTag(Register dst, Register src) { |
| Addu(dst, src, src); |
| } |
| |
| void SmiUntag(Register reg) { |
| sra(reg, reg, kSmiTagSize); |
| } |
| |
| void SmiUntag(Register dst, Register src) { |
| sra(dst, src, kSmiTagSize); |
| } |
| |
| // Untag the source value into destination and jump if source is a smi. |
| // Souce and destination can be the same register. |
| void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case); |
| |
| // Untag the source value into destination and jump if source is not a smi. |
| // Souce and destination can be the same register. |
| void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case); |
| |
| // Jump the register contains a smi. |
| void JumpIfSmi(Register value, |
| Label* smi_label, |
| Register scratch = at, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Jump if the register contains a non-smi. |
| void JumpIfNotSmi(Register value, |
| Label* not_smi_label, |
| Register scratch = at, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Jump if either of the registers contain a non-smi. |
| void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi); |
| // Jump if either of the registers contain a smi. |
| void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); |
| |
| // Abort execution if argument is a smi. Used in debug code. |
| void AbortIfSmi(Register object); |
| void AbortIfNotSmi(Register object); |
| |
| // Abort execution if argument is a string. Used in debug code. |
| void AbortIfNotString(Register object); |
| |
| // Abort execution if argument is not the root value with the given index. |
| void AbortIfNotRootValue(Register src, |
| Heap::RootListIndex root_value_index, |
| const char* message); |
| |
| // --------------------------------------------------------------------------- |
| // HeapNumber utilities. |
| |
| void JumpIfNotHeapNumber(Register object, |
| Register heap_number_map, |
| Register scratch, |
| Label* on_not_heap_number); |
| |
| // ------------------------------------------------------------------------- |
| // String utilities. |
| |
| // Checks if both instance types are sequential ASCII strings and jumps to |
| // label if either is not. |
| void JumpIfBothInstanceTypesAreNotSequentialAscii( |
| Register first_object_instance_type, |
| Register second_object_instance_type, |
| Register scratch1, |
| Register scratch2, |
| Label* failure); |
| |
| // Check if instance type is sequential ASCII string and jump to label if |
| // it is not. |
| void JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
| Register scratch, |
| Label* failure); |
| |
| // Test that both first and second are sequential ASCII strings. |
| // Assume that they are non-smis. |
| void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure); |
| |
| // Test that both first and second are sequential ASCII strings. |
| // Check that they are non-smis. |
| void JumpIfNotBothSequentialAsciiStrings(Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure); |
| |
| void ClampUint8(Register output_reg, Register input_reg); |
| |
| void ClampDoubleToUint8(Register result_reg, |
| DoubleRegister input_reg, |
| DoubleRegister temp_double_reg); |
| |
| |
| void LoadInstanceDescriptors(Register map, Register descriptors); |
| |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void LeaveFrame(StackFrame::Type type); |
| |
| // Patch the relocated value (lui/ori pair). |
| void PatchRelocatedValue(Register li_location, |
| Register scratch, |
| Register new_value); |
| // Get the relocatad value (loaded data) from the lui/ori pair. |
| void GetRelocatedValue(Register li_location, |
| Register value, |
| Register scratch); |
| |
| // Expects object in a0 and returns map with validated enum cache |
| // in a0. Assumes that any other register can be used as a scratch. |
| void CheckEnumCache(Register null_value, Label* call_runtime); |
| |
| private: |
| void CallCFunctionHelper(Register function, |
| int num_reg_arguments, |
| int num_double_arguments); |
| |
| void BranchShort(int16_t offset, BranchDelaySlot bdslot = PROTECT); |
| void BranchShort(int16_t offset, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot = PROTECT); |
| void BranchShort(Label* L, BranchDelaySlot bdslot = PROTECT); |
| void BranchShort(Label* L, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot = PROTECT); |
| void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT); |
| void BranchAndLinkShort(int16_t offset, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot = PROTECT); |
| void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT); |
| void BranchAndLinkShort(Label* L, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot = PROTECT); |
| void J(Label* L, BranchDelaySlot bdslot); |
| void Jr(Label* L, BranchDelaySlot bdslot); |
| void Jalr(Label* L, BranchDelaySlot bdslot); |
| |
| // Helper functions for generating invokes. |
| void InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_reg, |
| Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind); |
| |
| // Get the code for the given builtin. Returns if able to resolve |
| // the function in the 'resolved' flag. |
| Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved); |
| |
| void InitializeNewString(Register string, |
| Register length, |
| Heap::RootListIndex map_index, |
| Register scratch1, |
| Register scratch2); |
| |
| // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. |
| void InNewSpace(Register object, |
| Register scratch, |
| Condition cond, // eq for new space, ne otherwise. |
| Label* branch); |
| |
| // Helper for finding the mark bits for an address. Afterwards, the |
| // bitmap register points at the word with the mark bits and the mask |
| // the position of the first bit. Leaves addr_reg unchanged. |
| inline void GetMarkBits(Register addr_reg, |
| Register bitmap_reg, |
| Register mask_reg); |
| |
| // Helper for throwing exceptions. Compute a handler address and jump to |
| // it. See the implementation for register usage. |
| void JumpToHandlerEntry(); |
| |
| // Compute memory operands for safepoint stack slots. |
| static int SafepointRegisterStackIndex(int reg_code); |
| MemOperand SafepointRegisterSlot(Register reg); |
| MemOperand SafepointRegistersAndDoublesSlot(Register reg); |
| |
| bool generating_stub_; |
| bool allow_stub_calls_; |
| bool has_frame_; |
| // This handle will be patched with the code object on installation. |
| Handle<Object> code_object_; |
| |
| // Needs access to SafepointRegisterStackIndex for optimized frame |
| // traversal. |
| friend class OptimizedFrame; |
| }; |
| |
| |
| // The code patcher is used to patch (typically) small parts of code e.g. for |
| // debugging and other types of instrumentation. When using the code patcher |
| // the exact number of bytes specified must be emitted. It is not legal to emit |
| // relocation information. If any of these constraints are violated it causes |
| // an assertion to fail. |
| class CodePatcher { |
| public: |
| CodePatcher(byte* address, int instructions); |
| virtual ~CodePatcher(); |
| |
| // Macro assembler to emit code. |
| MacroAssembler* masm() { return &masm_; } |
| |
| // Emit an instruction directly. |
| void Emit(Instr instr); |
| |
| // Emit an address directly. |
| void Emit(Address addr); |
| |
| // Change the condition part of an instruction leaving the rest of the current |
| // instruction unchanged. |
| void ChangeBranchCondition(Condition cond); |
| |
| private: |
| byte* address_; // The address of the code being patched. |
| int instructions_; // Number of instructions of the expected patch size. |
| int size_; // Number of bytes of the expected patch size. |
| MacroAssembler masm_; // Macro assembler used to generate the code. |
| }; |
| |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| #define CODE_COVERAGE_STRINGIFY(x) #x |
| #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) |
| #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) |
| #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> |
| #else |
| #define ACCESS_MASM(masm) masm-> |
| #endif |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ |