blob: 54f55b3ceb3b587fda01fec1b67a048834a41bfc [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_MIPS)
#include "ic-inl.h"
#include "codegen.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register receiver,
Register name,
// Number of the cache entry, not scaled.
Register offset,
Register scratch,
Register scratch2,
Register offset_scratch) {
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
ExternalReference map_offset(isolate->stub_cache()->map_reference(table));
uint32_t key_off_addr = reinterpret_cast<uint32_t>(key_offset.address());
uint32_t value_off_addr = reinterpret_cast<uint32_t>(value_offset.address());
uint32_t map_off_addr = reinterpret_cast<uint32_t>(map_offset.address());
// Check the relative positions of the address fields.
ASSERT(value_off_addr > key_off_addr);
ASSERT((value_off_addr - key_off_addr) % 4 == 0);
ASSERT((value_off_addr - key_off_addr) < (256 * 4));
ASSERT(map_off_addr > key_off_addr);
ASSERT((map_off_addr - key_off_addr) % 4 == 0);
ASSERT((map_off_addr - key_off_addr) < (256 * 4));
Label miss;
Register base_addr = scratch;
scratch = no_reg;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ sll(offset_scratch, offset, 1);
__ Addu(offset_scratch, offset_scratch, offset);
// Calculate the base address of the entry.
__ li(base_addr, Operand(key_offset));
__ sll(at, offset_scratch, kPointerSizeLog2);
__ Addu(base_addr, base_addr, at);
// Check that the key in the entry matches the name.
__ lw(at, MemOperand(base_addr, 0));
__ Branch(&miss, ne, name, Operand(at));
// Check the map matches.
__ lw(at, MemOperand(base_addr, map_off_addr - key_off_addr));
__ lw(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Branch(&miss, ne, at, Operand(scratch2));
// Get the code entry from the cache.
Register code = scratch2;
scratch2 = no_reg;
__ lw(code, MemOperand(base_addr, value_off_addr - key_off_addr));
// Check that the flags match what we're looking for.
Register flags_reg = base_addr;
base_addr = no_reg;
__ lw(flags_reg, FieldMemOperand(code, Code::kFlagsOffset));
__ And(flags_reg, flags_reg, Operand(~Code::kFlagsNotUsedInLookup));
__ Branch(&miss, ne, flags_reg, Operand(flags));
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ Addu(at, code, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
// Miss: fall through.
__ bind(&miss);
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
static void GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
Handle<String> name,
Register scratch0,
Register scratch1) {
ASSERT(name->IsSymbol());
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
__ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
Label done;
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
Register map = scratch1;
__ lw(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ lbu(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
__ And(scratch0, scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
__ Branch(miss_label, ne, scratch0, Operand(zero_reg));
// Check that receiver is a JSObject.
__ lbu(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(miss_label, lt, scratch0, Operand(FIRST_SPEC_OBJECT_TYPE));
// Load properties array.
Register properties = scratch0;
__ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ lw(map, FieldMemOperand(properties, HeapObject::kMapOffset));
Register tmp = properties;
__ LoadRoot(tmp, Heap::kHashTableMapRootIndex);
__ Branch(miss_label, ne, map, Operand(tmp));
// Restore the temporarily used register.
__ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
StringDictionaryLookupStub::GenerateNegativeLookup(masm,
miss_label,
&done,
receiver,
properties,
name,
scratch1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2,
Register extra3) {
Isolate* isolate = masm->isolate();
Label miss;
// Make sure that code is valid. The multiplying code relies on the
// entry size being 12.
ASSERT(sizeof(Entry) == 12);
// Make sure the flags does not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
ASSERT(!extra.is(receiver));
ASSERT(!extra.is(name));
ASSERT(!extra.is(scratch));
ASSERT(!extra2.is(receiver));
ASSERT(!extra2.is(name));
ASSERT(!extra2.is(scratch));
ASSERT(!extra2.is(extra));
// Check register validity.
ASSERT(!scratch.is(no_reg));
ASSERT(!extra.is(no_reg));
ASSERT(!extra2.is(no_reg));
ASSERT(!extra3.is(no_reg));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1,
extra2, extra3);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ lw(scratch, FieldMemOperand(name, String::kHashFieldOffset));
__ lw(at, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Addu(scratch, scratch, at);
uint32_t mask = kPrimaryTableSize - 1;
// We shift out the last two bits because they are not part of the hash and
// they are always 01 for maps.
__ srl(scratch, scratch, kHeapObjectTagSize);
__ Xor(scratch, scratch, Operand((flags >> kHeapObjectTagSize) & mask));
__ And(scratch, scratch, Operand(mask));
// Probe the primary table.
ProbeTable(isolate,
masm,
flags,
kPrimary,
receiver,
name,
scratch,
extra,
extra2,
extra3);
// Primary miss: Compute hash for secondary probe.
__ srl(at, name, kHeapObjectTagSize);
__ Subu(scratch, scratch, at);
uint32_t mask2 = kSecondaryTableSize - 1;
__ Addu(scratch, scratch, Operand((flags >> kHeapObjectTagSize) & mask2));
__ And(scratch, scratch, Operand(mask2));
// Probe the secondary table.
ProbeTable(isolate,
masm,
flags,
kSecondary,
receiver,
name,
scratch,
extra,
extra2,
extra3);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1,
extra2, extra3);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
// Load the global or builtins object from the current context.
__ lw(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
__ lw(prototype,
FieldMemOperand(prototype, GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
__ lw(prototype, MemOperand(prototype, Context::SlotOffset(index)));
// Load the initial map. The global functions all have initial maps.
__ lw(prototype,
FieldMemOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ lw(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm,
int index,
Register prototype,
Label* miss) {
Isolate* isolate = masm->isolate();
// Check we're still in the same context.
__ lw(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
ASSERT(!prototype.is(at));
__ li(at, isolate->global());
__ Branch(miss, ne, prototype, Operand(at));
// Get the global function with the given index.
Handle<JSFunction> function(
JSFunction::cast(isolate->global_context()->get(index)));
// Load its initial map. The global functions all have initial maps.
__ li(prototype, Handle<Map>(function->initial_map()));
// Load the prototype from the initial map.
__ lw(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
}
// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst,
Register src,
Handle<JSObject> holder,
int index) {
// Adjust for the number of properties stored in the holder.
index -= holder->map()->inobject_properties();
if (index < 0) {
// Get the property straight out of the holder.
int offset = holder->map()->instance_size() + (index * kPointerSize);
__ lw(dst, FieldMemOperand(src, offset));
} else {
// Calculate the offset into the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ lw(dst, FieldMemOperand(src, JSObject::kPropertiesOffset));
__ lw(dst, FieldMemOperand(dst, offset));
}
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ GetObjectType(receiver, scratch, scratch);
__ Branch(miss_label, ne, scratch, Operand(JS_ARRAY_TYPE));
// Load length directly from the JS array.
__ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Ret();
}
// Generate code to check if an object is a string. If the object is a
// heap object, its map's instance type is left in the scratch1 register.
// If this is not needed, scratch1 and scratch2 may be the same register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* smi,
Label* non_string_object) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, smi, t0);
// Check that the object is a string.
__ lw(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ And(scratch2, scratch1, Operand(kIsNotStringMask));
// The cast is to resolve the overload for the argument of 0x0.
__ Branch(non_string_object,
ne,
scratch2,
Operand(static_cast<int32_t>(kStringTag)));
}
// Generate code to load the length from a string object and return the length.
// If the receiver object is not a string or a wrapped string object the
// execution continues at the miss label. The register containing the
// receiver is potentially clobbered.
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss,
bool support_wrappers) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch1 register.
GenerateStringCheck(masm, receiver, scratch1, scratch2, miss,
support_wrappers ? &check_wrapper : miss);
// Load length directly from the string.
__ lw(v0, FieldMemOperand(receiver, String::kLengthOffset));
__ Ret();
if (support_wrappers) {
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ Branch(miss, ne, scratch1, Operand(JS_VALUE_TYPE));
// Unwrap the value and check if the wrapped value is a string.
__ lw(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss);
__ lw(v0, FieldMemOperand(scratch1, String::kLengthOffset));
__ Ret();
}
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ mov(v0, scratch1);
__ Ret();
}
// Generate StoreField code, value is passed in a0 register.
// After executing generated code, the receiver_reg and name_reg
// may be clobbered.
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
Handle<JSObject> object,
int index,
Handle<Map> transition,
Register receiver_reg,
Register name_reg,
Register scratch,
Label* miss_label) {
// a0 : value.
Label exit;
// Check that the map of the object hasn't changed.
CompareMapMode mode = transition.is_null() ? ALLOW_ELEMENT_TRANSITION_MAPS
: REQUIRE_EXACT_MAP;
__ CheckMap(receiver_reg, scratch, Handle<Map>(object->map()), miss_label,
DO_SMI_CHECK, mode);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if (!transition.is_null() && (object->map()->unused_property_fields() == 0)) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ push(receiver_reg);
__ li(a2, Operand(transition));
__ Push(a2, a0);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
masm->isolate()),
3, 1);
return;
}
if (!transition.is_null()) {
// Update the map of the object; no write barrier updating is
// needed because the map is never in new space.
__ li(t0, Operand(transition));
__ sw(t0, FieldMemOperand(receiver_reg, HeapObject::kMapOffset));
}
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ sw(a0, FieldMemOperand(receiver_reg, offset));
// Skip updating write barrier if storing a smi.
__ JumpIfSmi(a0, &exit, scratch);
// Update the write barrier for the array address.
// Pass the now unused name_reg as a scratch register.
__ mov(name_reg, a0);
__ RecordWriteField(receiver_reg,
offset,
name_reg,
scratch,
kRAHasNotBeenSaved,
kDontSaveFPRegs);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array.
__ lw(scratch, FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset));
__ sw(a0, FieldMemOperand(scratch, offset));
// Skip updating write barrier if storing a smi.
__ JumpIfSmi(a0, &exit);
// Update the write barrier for the array address.
// Ok to clobber receiver_reg and name_reg, since we return.
__ mov(name_reg, a0);
__ RecordWriteField(scratch,
offset,
name_reg,
receiver_reg,
kRAHasNotBeenSaved,
kDontSaveFPRegs);
}
// Return the value (register v0).
__ bind(&exit);
__ mov(v0, a0);
__ Ret();
}
void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
Handle<Code> code = (kind == Code::LOAD_IC)
? masm->isolate()->builtins()->LoadIC_Miss()
: masm->isolate()->builtins()->KeyedLoadIC_Miss();
__ Jump(code, RelocInfo::CODE_TARGET);
}
static void GenerateCallFunction(MacroAssembler* masm,
Handle<Object> object,
const ParameterCount& arguments,
Label* miss,
Code::ExtraICState extra_ic_state) {
// ----------- S t a t e -------------
// -- a0: receiver
// -- a1: function to call
// -----------------------------------
// Check that the function really is a function.
__ JumpIfSmi(a1, miss);
__ GetObjectType(a1, a3, a3);
__ Branch(miss, ne, a3, Operand(JS_FUNCTION_TYPE));
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ lw(a3, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
__ sw(a3, MemOperand(sp, arguments.immediate() * kPointerSize));
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(a1, arguments, JUMP_FUNCTION, NullCallWrapper(), call_kind);
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
__ push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor));
Register scratch = name;
__ li(scratch, Operand(interceptor));
__ Push(scratch, receiver, holder);
__ lw(scratch, FieldMemOperand(scratch, InterceptorInfo::kDataOffset));
__ push(scratch);
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly),
masm->isolate());
__ PrepareCEntryArgs(5);
__ PrepareCEntryFunction(ref);
CEntryStub stub(1);
__ CallStub(&stub);
}
static const int kFastApiCallArguments = 3;
// Reserves space for the extra arguments to FastHandleApiCall in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiDirectCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm,
Register scratch) {
ASSERT(Smi::FromInt(0) == 0);
for (int i = 0; i < kFastApiCallArguments; i++) {
__ push(zero_reg);
}
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm) {
__ Drop(kFastApiCallArguments);
}
static void GenerateFastApiDirectCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc) {
// ----------- S t a t e -------------
// -- sp[0] : holder (set by CheckPrototypes)
// -- sp[4] : callee JS function
// -- sp[8] : call data
// -- sp[12] : last JS argument
// -- ...
// -- sp[(argc + 3) * 4] : first JS argument
// -- sp[(argc + 4) * 4] : receiver
// -----------------------------------
// Get the function and setup the context.
Handle<JSFunction> function = optimization.constant_function();
__ LoadHeapObject(t1, function);
__ lw(cp, FieldMemOperand(t1, JSFunction::kContextOffset));
// Pass the additional arguments FastHandleApiCall expects.
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data(api_call_info->data());
if (masm->isolate()->heap()->InNewSpace(*call_data)) {
__ li(a0, api_call_info);
__ lw(t2, FieldMemOperand(a0, CallHandlerInfo::kDataOffset));
} else {
__ li(t2, call_data);
}
// Store JS function and call data.
__ sw(t1, MemOperand(sp, 1 * kPointerSize));
__ sw(t2, MemOperand(sp, 2 * kPointerSize));
// a2 points to call data as expected by Arguments
// (refer to layout above).
__ Addu(a2, sp, Operand(2 * kPointerSize));
const int kApiStackSpace = 4;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
// NOTE: the O32 abi requires a0 to hold a special pointer when returning a
// struct from the function (which is currently the case). This means we pass
// the first argument in a1 instead of a0. TryCallApiFunctionAndReturn
// will handle setting up a0.
// a1 = v8::Arguments&
// Arguments is built at sp + 1 (sp is a reserved spot for ra).
__ Addu(a1, sp, kPointerSize);
// v8::Arguments::implicit_args = data
__ sw(a2, MemOperand(a1, 0 * kPointerSize));
// v8::Arguments::values = last argument
__ Addu(t0, a2, Operand(argc * kPointerSize));
__ sw(t0, MemOperand(a1, 1 * kPointerSize));
// v8::Arguments::length_ = argc
__ li(t0, Operand(argc));
__ sw(t0, MemOperand(a1, 2 * kPointerSize));
// v8::Arguments::is_construct_call = 0
__ sw(zero_reg, MemOperand(a1, 3 * kPointerSize));
const int kStackUnwindSpace = argc + kFastApiCallArguments + 1;
Address function_address = v8::ToCData<Address>(api_call_info->callback());
ApiFunction fun(function_address);
ExternalReference ref =
ExternalReference(&fun,
ExternalReference::DIRECT_API_CALL,
masm->isolate());
AllowExternalCallThatCantCauseGC scope(masm);
__ CallApiFunctionAndReturn(ref, kStackUnwindSpace);
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(StubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name,
Code::ExtraICState extra_ic_state)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name),
extra_ic_state_(extra_ic_state) {}
void Compile(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3,
holder, lookup, name, optimization, miss);
} else {
CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3,
name, holder, miss);
}
}
private:
void CompileCacheable(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Handle<String> name,
const CallOptimization& optimization,
Label* miss_label) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
Counters* counters = masm->isolate()->counters();
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 = optimization.GetPrototypeDepthOfExpectedType(
object, interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 = optimization.GetPrototypeDepthOfExpectedType(
interceptor_holder, Handle<JSObject>(lookup->holder()));
}
can_do_fast_api_call =
depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth;
}
__ IncrementCounter(counters->call_const_interceptor(), 1,
scratch1, scratch2);
if (can_do_fast_api_call) {
__ IncrementCounter(counters->call_const_interceptor_fast_api(), 1,
scratch1, scratch2);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder, scratch2,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (*interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
Handle<JSObject>(lookup->holder()),
scratch1, scratch2, scratch3,
name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
GenerateFastApiDirectCall(masm, optimization, arguments_.immediate());
} else {
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(optimization.constant_function(), arguments_,
JUMP_FUNCTION, NullCallWrapper(), call_kind);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm);
__ Branch(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm);
}
}
void CompileRegular(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<String> name,
Handle<JSObject> interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss_label);
// Call a runtime function to load the interceptor property.
FrameScope scope(masm, StackFrame::INTERNAL);
// Save the name_ register across the call.
__ push(name_);
PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder);
__ CallExternalReference(
ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForCall),
masm->isolate()),
5);
// Restore the name_ register.
__ pop(name_);
// Leave the internal frame.
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Handle<JSObject> holder_obj,
Register scratch,
Label* interceptor_succeeded) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(holder, name_);
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
}
// If interceptor returns no-result sentinel, call the constant function.
__ LoadRoot(scratch, Heap::kNoInterceptorResultSentinelRootIndex);
__ Branch(interceptor_succeeded, ne, v0, Operand(scratch));
}
StubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
Code::ExtraICState extra_ic_state_;
};
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
static void GenerateCheckPropertyCell(MacroAssembler* masm,
Handle<GlobalObject> global,
Handle<String> name,
Register scratch,
Label* miss) {
Handle<JSGlobalPropertyCell> cell =
GlobalObject::EnsurePropertyCell(global, name);
ASSERT(cell->value()->IsTheHole());
__ li(scratch, Operand(cell));
__ lw(scratch,
FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(miss, ne, scratch, Operand(at));
}
// Calls GenerateCheckPropertyCell for each global object in the prototype chain
// from object to (but not including) holder.
static void GenerateCheckPropertyCells(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
Register scratch,
Label* miss) {
Handle<JSObject> current = object;
while (!current.is_identical_to(holder)) {
if (current->IsGlobalObject()) {
GenerateCheckPropertyCell(masm,
Handle<GlobalObject>::cast(current),
name,
scratch,
miss);
}
current = Handle<JSObject>(JSObject::cast(current->GetPrototype()));
}
}
// Convert and store int passed in register ival to IEEE 754 single precision
// floating point value at memory location (dst + 4 * wordoffset)
// If FPU is available use it for conversion.
static void StoreIntAsFloat(MacroAssembler* masm,
Register dst,
Register wordoffset,
Register ival,
Register fval,
Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ mtc1(ival, f0);
__ cvt_s_w(f0, f0);
__ sll(scratch1, wordoffset, 2);
__ addu(scratch1, dst, scratch1);
__ swc1(f0, MemOperand(scratch1, 0));
} else {
// FPU is not available, do manual conversions.
Label not_special, done;
// Move sign bit from source to destination. This works because the sign
// bit in the exponent word of the double has the same position and polarity
// as the 2's complement sign bit in a Smi.
ASSERT(kBinary32SignMask == 0x80000000u);
__ And(fval, ival, Operand(kBinary32SignMask));
// Negate value if it is negative.
__ subu(scratch1, zero_reg, ival);
__ Movn(ival, scratch1, fval);
// We have -1, 0 or 1, which we treat specially. Register ival contains
// absolute value: it is either equal to 1 (special case of -1 and 1),
// greater than 1 (not a special case) or less than 1 (special case of 0).
__ Branch(&not_special, gt, ival, Operand(1));
// For 1 or -1 we need to or in the 0 exponent (biased).
static const uint32_t exponent_word_for_1 =
kBinary32ExponentBias << kBinary32ExponentShift;
__ Xor(scratch1, ival, Operand(1));
__ li(scratch2, exponent_word_for_1);
__ or_(scratch2, fval, scratch2);
__ Movz(fval, scratch2, scratch1); // Only if ival is equal to 1.
__ Branch(&done);
__ bind(&not_special);
// Count leading zeros.
// Gets the wrong answer for 0, but we already checked for that case above.
Register zeros = scratch2;
__ Clz(zeros, ival);
// Compute exponent and or it into the exponent register.
__ li(scratch1, (kBitsPerInt - 1) + kBinary32ExponentBias);
__ subu(scratch1, scratch1, zeros);
__ sll(scratch1, scratch1, kBinary32ExponentShift);
__ or_(fval, fval, scratch1);
// Shift up the source chopping the top bit off.
__ Addu(zeros, zeros, Operand(1));
// This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
__ sllv(ival, ival, zeros);
// And the top (top 20 bits).
__ srl(scratch1, ival, kBitsPerInt - kBinary32MantissaBits);
__ or_(fval, fval, scratch1);
__ bind(&done);
__ sll(scratch1, wordoffset, 2);
__ addu(scratch1, dst, scratch1);
__ sw(fval, MemOperand(scratch1, 0));
}
}
// Convert unsigned integer with specified number of leading zeroes in binary
// representation to IEEE 754 double.
// Integer to convert is passed in register hiword.
// Resulting double is returned in registers hiword:loword.
// This functions does not work correctly for 0.
static void GenerateUInt2Double(MacroAssembler* masm,
Register hiword,
Register loword,
Register scratch,
int leading_zeroes) {
const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
const int mantissa_shift_for_hi_word =
meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
const int mantissa_shift_for_lo_word =
kBitsPerInt - mantissa_shift_for_hi_word;
__ li(scratch, biased_exponent << HeapNumber::kExponentShift);
if (mantissa_shift_for_hi_word > 0) {
__ sll(loword, hiword, mantissa_shift_for_lo_word);
__ srl(hiword, hiword, mantissa_shift_for_hi_word);
__ or_(hiword, scratch, hiword);
} else {
__ mov(loword, zero_reg);
__ sll(hiword, hiword, mantissa_shift_for_hi_word);
__ or_(hiword, scratch, hiword);
}
// If least significant bit of biased exponent was not 1 it was corrupted
// by most significant bit of mantissa so we should fix that.
if (!(biased_exponent & 1)) {
__ li(scratch, 1 << HeapNumber::kExponentShift);
__ nor(scratch, scratch, scratch);
__ and_(hiword, hiword, scratch);
}
}
#undef __
#define __ ACCESS_MASM(masm())
Register StubCompiler::CheckPrototypes(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<String> name,
int save_at_depth,
Label* miss) {
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg.
Register reg = object_reg;
int depth = 0;
if (save_at_depth == depth) {
__ sw(reg, MemOperand(sp));
}
// Check the maps in the prototype chain.
// Traverse the prototype chain from the object and do map checks.
Handle<JSObject> current = object;
while (!current.is_identical_to(holder)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
Handle<JSObject> prototype(JSObject::cast(current->GetPrototype()));
if (!current->HasFastProperties() &&
!current->IsJSGlobalObject() &&
!current->IsJSGlobalProxy()) {
if (!name->IsSymbol()) {
name = factory()->LookupSymbol(name);
}
ASSERT(current->property_dictionary()->FindEntry(*name) ==
StringDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
scratch1, scratch2);
__ lw(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ lw(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
} else {
Handle<Map> current_map(current->map());
__ CheckMap(reg, scratch1, current_map, miss, DONT_DO_SMI_CHECK,
ALLOW_ELEMENT_TRANSITION_MAPS);
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch2, miss);
}
reg = holder_reg; // From now on the object will be in holder_reg.
if (heap()->InNewSpace(*prototype)) {
// The prototype is in new space; we cannot store a reference to it
// in the code. Load it from the map.
__ lw(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
} else {
// The prototype is in old space; load it directly.
__ li(reg, Operand(prototype));
}
}
if (save_at_depth == depth) {
__ sw(reg, MemOperand(sp));
}
// Go to the next object in the prototype chain.
current = prototype;
}
// Log the check depth.
LOG(masm()->isolate(), IntEvent("check-maps-depth", depth + 1));
// Check the holder map.
__ CheckMap(reg, scratch1, Handle<Map>(current->map()), miss,
DONT_DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);
// Perform security check for access to the global object.
ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded());
if (holder->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// If we've skipped any global objects, it's not enough to verify that
// their maps haven't changed. We also need to check that the property
// cell for the property is still empty.
GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss);
// Return the register containing the holder.
return reg;
}
void StubCompiler::GenerateLoadField(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
int index,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
Register reg = CheckPrototypes(
object, receiver, holder, scratch1, scratch2, scratch3, name, miss);
GenerateFastPropertyLoad(masm(), v0, reg, holder, index);
__ Ret();
}
void StubCompiler::GenerateLoadConstant(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<JSFunction> value,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss, scratch1);
// Check that the maps haven't changed.
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, scratch3, name, miss);
// Return the constant value.
__ LoadHeapObject(v0, value);
__ Ret();
}
void StubCompiler::GenerateLoadCallback(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<AccessorInfo> callback,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss, scratch1);
// Check that the maps haven't changed.
Register reg = CheckPrototypes(object, receiver, holder, scratch1,
scratch2, scratch3, name, miss);
// Build AccessorInfo::args_ list on the stack and push property name below
// the exit frame to make GC aware of them and store pointers to them.
__ push(receiver);
__ mov(scratch2, sp); // scratch2 = AccessorInfo::args_
if (heap()->InNewSpace(callback->data())) {
__ li(scratch3, callback);
__ lw(scratch3, FieldMemOperand(scratch3, AccessorInfo::kDataOffset));
} else {
__ li(scratch3, Handle<Object>(callback->data()));
}
__ Push(reg, scratch3, name_reg);
__ mov(a2, scratch2); // Saved in case scratch2 == a1.
__ mov(a1, sp); // a1 (first argument - see note below) = Handle<String>
// NOTE: the O32 abi requires a0 to hold a special pointer when returning a
// struct from the function (which is currently the case). This means we pass
// the arguments in a1-a2 instead of a0-a1. TryCallApiFunctionAndReturn
// will handle setting up a0.
const int kApiStackSpace = 1;
FrameScope frame_scope(masm(), StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
// Create AccessorInfo instance on the stack above the exit frame with
// scratch2 (internal::Object** args_) as the data.
__ sw(a2, MemOperand(sp, kPointerSize));
// a2 (second argument - see note above) = AccessorInfo&
__ Addu(a2, sp, kPointerSize);
const int kStackUnwindSpace = 4;
Address getter_address = v8::ToCData<Address>(callback->getter());
ApiFunction fun(getter_address);
ExternalReference ref =
ExternalReference(&fun,
ExternalReference::DIRECT_GETTER_CALL,
masm()->isolate());
__ CallApiFunctionAndReturn(ref, kStackUnwindSpace);
}
void StubCompiler::GenerateLoadInterceptor(Handle<JSObject> object,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<String> name,
Label* miss) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsFound() && lookup->IsCacheable()) {
if (lookup->type() == FIELD) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsAccessorInfo()) {
compile_followup_inline =
AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL;
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1));
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
// CALLBACKS case needs a receiver to be passed into C++ callback.
__ Push(receiver, holder_reg, name_reg);
} else {
__ Push(holder_reg, name_reg);
}
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method).
CompileCallLoadPropertyWithInterceptor(masm(),
receiver,
holder_reg,
name_reg,
interceptor_holder);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ LoadRoot(scratch1, Heap::kNoInterceptorResultSentinelRootIndex);
__ Branch(&interceptor_failed, eq, v0, Operand(scratch1));
frame_scope.GenerateLeaveFrame();
__ Ret();
__ bind(&interceptor_failed);
__ pop(name_reg);
__ pop(holder_reg);
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
__ pop(receiver);
}
// Leave the internal frame.
}
// Check that the maps from interceptor's holder to lookup's holder
// haven't changed. And load lookup's holder into |holder| register.
if (*interceptor_holder != lookup->holder()) {
holder_reg = CheckPrototypes(interceptor_holder,
holder_reg,
Handle<JSObject>(lookup->holder()),
scratch1,
scratch2,
scratch3,
name,
miss);
}
if (lookup->type() == FIELD) {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
GenerateFastPropertyLoad(masm(), v0, holder_reg,
Handle<JSObject>(lookup->holder()),
lookup->GetFieldIndex());
__ Ret();
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
Handle<AccessorInfo> callback(
AccessorInfo::cast(lookup->GetCallbackObject()));
ASSERT(callback->getter() != NULL);
// Tail call to runtime.
// Important invariant in CALLBACKS case: the code above must be
// structured to never clobber |receiver| register.
__ li(scratch2, callback);
// holder_reg is either receiver or scratch1.
if (!receiver.is(holder_reg)) {
ASSERT(scratch1.is(holder_reg));
__ Push(receiver, holder_reg);
__ lw(scratch3,
FieldMemOperand(scratch2, AccessorInfo::kDataOffset));
__ Push(scratch3, scratch2, name_reg);
} else {
__ push(receiver);
__ lw(scratch3,
FieldMemOperand(scratch2, AccessorInfo::kDataOffset));
__ Push(holder_reg, scratch3, scratch2, name_reg);
}
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty),
masm()->isolate());
__ TailCallExternalReference(ref, 5, 1);
}
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
PushInterceptorArguments(masm(), receiver, holder_reg,
name_reg, interceptor_holder);
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), masm()->isolate());
__ TailCallExternalReference(ref, 5, 1);
}
}
void CallStubCompiler::GenerateNameCheck(Handle<String> name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ Branch(miss, ne, a2, Operand(name));
}
}
void CallStubCompiler::GenerateGlobalReceiverCheck(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
Label* miss) {
ASSERT(holder->IsGlobalObject());
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ lw(a0, MemOperand(sp, argc * kPointerSize));
// Check that the maps haven't changed.
__ JumpIfSmi(a0, miss);
CheckPrototypes(object, a0, holder, a3, a1, t0, name, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Label* miss) {
// Get the value from the cell.
__ li(a3, Operand(cell));
__ lw(a1, FieldMemOperand(a3, JSGlobalPropertyCell::kValueOffset));
// Check that the cell contains the same function.
if (heap()->InNewSpace(*function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
__ JumpIfSmi(a1, miss);
__ GetObjectType(a1, a3, a3);
__ Branch(miss, ne, a3, Operand(JS_FUNCTION_TYPE));
// Check the shared function info. Make sure it hasn't changed.
__ li(a3, Handle<SharedFunctionInfo>(function->shared()));
__ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ Branch(miss, ne, t0, Operand(a3));
} else {
__ Branch(miss, ne, a1, Operand(function));
}
}
void CallStubCompiler::GenerateMissBranch() {
Handle<Code> code =
isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(),
kind_,
extra_state_);
__ Jump(code, RelocInfo::CODE_TARGET);
}
Handle<Code> CallStubCompiler::CompileCallField(Handle<JSObject> object,
Handle<JSObject> holder,
int index,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
const int argc = arguments().immediate();
// Get the receiver of the function from the stack into a0.
__ lw(a0, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(a0, &miss, t0);
// Do the right check and compute the holder register.
Register reg = CheckPrototypes(object, a0, holder, a1, a3, t0, name, &miss);
GenerateFastPropertyLoad(masm(), a1, reg, holder, index);
GenerateCallFunction(masm(), object, arguments(), &miss, extra_state_);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(FIELD, name);
}
Handle<Code> CallStubCompiler::CompileArrayPushCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || !cell.is_null()) return Handle<Code>::null();
Label miss;
GenerateNameCheck(name, &miss);
Register receiver = a1;
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ lw(receiver, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Check that the maps haven't changed.
CheckPrototypes(Handle<JSObject>::cast(object), receiver, holder, a3, v0, t0,
name, &miss);
if (argc == 0) {
// Nothing to do, just return the length.
__ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Drop(argc + 1);
__ Ret();
} else {
Label call_builtin;
if (argc == 1) { // Otherwise fall through to call the builtin.
Label attempt_to_grow_elements;
Register elements = t2;
Register end_elements = t1;
// Get the elements array of the object.
__ lw(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CheckMap(elements,
v0,
Heap::kFixedArrayMapRootIndex,
&call_builtin,
DONT_DO_SMI_CHECK);
// Get the array's length into v0 and calculate new length.
__ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ Addu(v0, v0, Operand(Smi::FromInt(argc)));
// Get the elements' length.
__ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ Branch(&attempt_to_grow_elements, gt, v0, Operand(t0));
// Check if value is a smi.
Label with_write_barrier;
__ lw(t0, MemOperand(sp, (argc - 1) * kPointerSize));
__ JumpIfNotSmi(t0, &with_write_barrier);
// Save new length.
__ sw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
// Store the value.
// We may need a register containing the address end_elements below,
// so write back the value in end_elements.
__ sll(end_elements, v0, kPointerSizeLog2 - kSmiTagSize);
__ Addu(end_elements, elements, end_elements);
const int kEndElementsOffset =
FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize;
__ Addu(end_elements, end_elements, kEndElementsOffset);
__ sw(t0, MemOperand(end_elements));
// Check for a smi.
__ Drop(argc + 1);
__ Ret();
__ bind(&with_write_barrier);
__ lw(a3, FieldMemOperand(receiver, HeapObject::kMapOffset));
if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) {
Label fast_object, not_fast_object;
__ CheckFastObjectElements(a3, t3, &not_fast_object);
__ jmp(&fast_object);
// In case of fast smi-only, convert to fast object, otherwise bail out.
__ bind(&not_fast_object);
__ CheckFastSmiOnlyElements(a3, t3, &call_builtin);
// edx: receiver
// r3: map
__ LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
FAST_ELEMENTS,
a3,
t3,
&call_builtin);
__ mov(a2, receiver);
ElementsTransitionGenerator::GenerateSmiOnlyToObject(masm());
__ bind(&fast_object);
} else {
__ CheckFastObjectElements(a3, a3, &call_builtin);
}
// Save new length.
__ sw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
// Store the value.
// We may need a register containing the address end_elements below,
// so write back the value in end_elements.
__ sll(end_elements, v0, kPointerSizeLog2 - kSmiTagSize);
__ Addu(end_elements, elements, end_elements);
__ Addu(end_elements, end_elements, kEndElementsOffset);
__ sw(t0, MemOperand(end_elements));
__ RecordWrite(elements,
end_elements,
t0,
kRAHasNotBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Drop(argc + 1);
__ Ret();
__ bind(&attempt_to_grow_elements);
// v0: array's length + 1.
// t0: elements' length.
if (!FLAG_inline_new) {
__ Branch(&call_builtin);
}
__ lw(a2, MemOperand(sp, (argc - 1) * kPointerSize));
// Growing elements that are SMI-only requires special handling in case
// the new element is non-Smi. For now, delegate to the builtin.
Label no_fast_elements_check;
__ JumpIfSmi(a2, &no_fast_elements_check);
__ lw(t3, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ CheckFastObjectElements(t3, t3, &call_builtin);
__ bind(&no_fast_elements_check);
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(
masm()->isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(
masm()->isolate());
const int kAllocationDelta = 4;
// Load top and check if it is the end of elements.
__ sll(end_elements, v0, kPointerSizeLog2 - kSmiTagSize);
__ Addu(end_elements, elements, end_elements);
__ Addu(end_elements, end_elements, Operand(kEndElementsOffset));
__ li(t3, Operand(new_space_allocation_top));
__ lw(a3, MemOperand(t3));
__ Branch(&call_builtin, ne, end_elements, Operand(a3));
__ li(t5, Operand(new_space_allocation_limit));
__ lw(t5, MemOperand(t5));
__ Addu(a3, a3, Operand(kAllocationDelta * kPointerSize));
__ Branch(&call_builtin, hi, a3, Operand(t5));
// We fit and could grow elements.
// Update new_space_allocation_top.
__ sw(a3, MemOperand(t3));
// Push the argument.
__ sw(a2, MemOperand(end_elements));
// Fill the rest with holes.
__ LoadRoot(a3, Heap::kTheHoleValueRootIndex);
for (int i = 1; i < kAllocationDelta; i++) {
__ sw(a3, MemOperand(end_elements, i * kPointerSize));
}
// Update elements' and array's sizes.
__ sw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Addu(t0, t0, Operand(Smi::FromInt(kAllocationDelta)));
__ sw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));
// Elements are in new space, so write barrier is not required.
__ Drop(argc + 1);
__ Ret();
}
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush,
masm()->isolate()),
argc + 1,
1);
}
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileArrayPopCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || !cell.is_null()) return Handle<Code>::null();
Label miss, return_undefined, call_builtin;
Register receiver = a1;
Register elements = a3;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ lw(receiver, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Check that the maps haven't changed.
CheckPrototypes(Handle<JSObject>::cast(object), receiver, holder, elements,
t0, v0, name, &miss);
// Get the elements array of the object.
__ lw(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CheckMap(elements,
v0,
Heap::kFixedArrayMapRootIndex,
&call_builtin,
DONT_DO_SMI_CHECK);
// Get the array's length into t0 and calculate new length.
__ lw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Subu(t0, t0, Operand(Smi::FromInt(1)));
__ Branch(&return_undefined, lt, t0, Operand(zero_reg));
// Get the last element.
__ LoadRoot(t2, Heap::kTheHoleValueRootIndex);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
// We can't address the last element in one operation. Compute the more
// expensive shift first, and use an offset later on.
__ sll(t1, t0, kPointerSizeLog2 - kSmiTagSize);
__ Addu(elements, elements, t1);
__ lw(v0, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag));
__ Branch(&call_builtin, eq, v0, Operand(t2));
// Set the array's length.
__ sw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset));
// Fill with the hole.
__ sw(t2, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag));
__ Drop(argc + 1);
__ Ret();
__ bind(&return_undefined);
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
__ Drop(argc + 1);
__ Ret();
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop,
masm()->isolate()),
argc + 1,
1);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringCharCodeAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : function name
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) return Handle<Code>::null();
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
v0,
&miss);
ASSERT(!object.is_identical_to(holder));
CheckPrototypes(Handle<JSObject>(JSObject::cast(object->GetPrototype())),
v0, holder, a1, a3, t0, name, &miss);
Register receiver = a1;
Register index = t1;
Register result = v0;
__ lw(receiver, MemOperand(sp, argc * kPointerSize));
if (argc > 0) {
__ lw(index, MemOperand(sp, (argc - 1) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharCodeAtGenerator generator(receiver,
index,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(v0, Heap::kNanValueRootIndex);
__ Drop(argc + 1);
__ Ret();
}
__ bind(&miss);
// Restore function name in a2.
__ li(a2, name);
__ bind(&name_miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringCharAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : function name
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) return Handle<Code>::null();
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
v0,
&miss);
ASSERT(!object.is_identical_to(holder));
CheckPrototypes(Handle<JSObject>(JSObject::cast(object->GetPrototype())),
v0, holder, a1, a3, t0, name, &miss);
Register receiver = v0;
Register index = t1;
Register scratch = a3;
Register result = v0;
__ lw(receiver, MemOperand(sp, argc * kPointerSize));
if (argc > 0) {
__ lw(index, MemOperand(sp, (argc - 1) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharAtGenerator generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(v0, Heap::kEmptyStringRootIndex);
__ Drop(argc + 1);
__ Ret();
}
__ bind(&miss);
// Restore function name in a2.
__ li(a2, name);
__ bind(&name_miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringFromCharCodeCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : function name
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ lw(a1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(a1, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, v0, a3, t0,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = a1;
__ lw(code, MemOperand(sp, 0 * kPointerSize));
// Check the code is a smi.
Label slow;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(code, &slow);
// Convert the smi code to uint16.
__ And(code, code, Operand(Smi::FromInt(0xffff)));
StringCharFromCodeGenerator generator(code, v0);
generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(
function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// a2: function name.
GenerateMissBranch();
// Return the generated code.
return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name);
}
Handle<Code> CallStubCompiler::CompileMathFloorCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : function name
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
if (!CpuFeatures::IsSupported(FPU)) {
return Handle<Code>::null();
}
CpuFeatures::Scope scope_fpu(FPU);
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();
Label miss, slow;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ lw(a1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(a1, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, a0, a3, t0,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into v0.
__ lw(v0, MemOperand(sp, 0 * kPointerSize));
// If the argument is a smi, just return.
STATIC_ASSERT(kSmiTag == 0);
__ And(t0, v0, Operand(kSmiTagMask));
__ Drop(argc + 1, eq, t0, Operand(zero_reg));
__ Ret(eq, t0, Operand(zero_reg));
__ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK);
Label wont_fit_smi, no_fpu_error, restore_fcsr_and_return;
// If fpu is enabled, we use the floor instruction.
// Load the HeapNumber value.
__ ldc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
// Backup FCSR.
__ cfc1(a3, FCSR);
// Clearing FCSR clears the exception mask with no side-effects.
__ ctc1(zero_reg, FCSR);
// Convert the argument to an integer.
__ floor_w_d(f0, f0);
// Start checking for special cases.
// Get the argument exponent and clear the sign bit.
__ lw(t1, FieldMemOperand(v0, HeapNumber::kValueOffset + kPointerSize));
__ And(t2, t1, Operand(~HeapNumber::kSignMask));
__ srl(t2, t2, HeapNumber::kMantissaBitsInTopWord);
// Retrieve FCSR and check for fpu errors.
__ cfc1(t5, FCSR);
__ And(t5, t5, Operand(kFCSRExceptionFlagMask));
__ Branch(&no_fpu_error, eq, t5, Operand(zero_reg));
// Check for NaN, Infinity, and -Infinity.
// They are invariant through a Math.Floor call, so just
// return the original argument.
__ Subu(t3, t2, Operand(HeapNumber::kExponentMask
>> HeapNumber::kMantissaBitsInTopWord));
__ Branch(&restore_fcsr_and_return, eq, t3, Operand(zero_reg));
// We had an overflow or underflow in the conversion. Check if we
// have a big exponent.
// If greater or equal, the argument is already round and in v0.
__ Branch(&restore_fcsr_and_return, ge, t3,
Operand(HeapNumber::kMantissaBits));
__ Branch(&wont_fit_smi);
__ bind(&no_fpu_error);
// Move the result back to v0.
__ mfc1(v0, f0);
// Check if the result fits into a smi.
__ Addu(a1, v0, Operand(0x40000000));
__ Branch(&wont_fit_smi, lt, a1, Operand(zero_reg));
// Tag the result.
STATIC_ASSERT(kSmiTag == 0);
__ sll(v0, v0, kSmiTagSize);
// Check for -0.
__ Branch(&restore_fcsr_and_return, ne, v0, Operand(zero_reg));
// t1 already holds the HeapNumber exponent.
__ And(t0, t1, Operand(HeapNumber::kSignMask));
// If our HeapNumber is negative it was -0, so load its address and return.
// Else v0 is loaded with 0, so we can also just return.
__ Branch(&restore_fcsr_and_return, eq, t0, Operand(zero_reg));
__ lw(v0, MemOperand(sp, 0 * kPointerSize));
__ bind(&restore_fcsr_and_return);
// Restore FCSR and return.
__ ctc1(a3, FCSR);
__ Drop(argc + 1);
__ Ret();
__ bind(&wont_fit_smi);
// Restore FCSR and fall to slow case.
__ ctc1(a3, FCSR);
__ bind(&slow);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ InvokeFunction(
function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// a2: function name.
GenerateMissBranch();
// Return the generated code.
return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name);
}
Handle<Code> CallStubCompiler::CompileMathAbsCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : function name
// -- ra : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ lw(a1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(a1, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, v0, a3, t0,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into v0.
__ lw(v0, MemOperand(sp, 0 * kPointerSize));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(v0, &not_smi);
// Do bitwise not or do nothing depending on the sign of the
// argument.
__ sra(t0, v0, kBitsPerInt - 1);
__ Xor(a1, v0, t0);
// Add 1 or do nothing depending on the sign of the argument.
__ Subu(v0, a1, t0);
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ Branch(&slow, lt, v0, Operand(zero_reg));
// Smi case done.
__ Drop(argc + 1);
__ Ret();
// Check if the argument is a heap number and load its exponent and
// sign.
__ bind(&not_smi);
__ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK);
__ lw(a1, FieldMemOperand(v0, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
__ And(t0, a1, Operand(HeapNumber::kSignMask));
__ Branch(&negative_sign, ne, t0, Operand(zero_reg));
__ Drop(argc + 1);
__ Ret();
// If the argument is negative, clear the sign, and return a new
// number.
__ bind(&negative_sign);
__ Xor(a1, a1, Operand(HeapNumber::kSignMask));
__ lw(a3, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
__ LoadRoot(t2, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(v0, t0, t1, t2, &slow);
__ sw(a1, FieldMemOperand(v0, HeapNumber::kExponentOffset));
__ sw(a3, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
__ Drop(argc + 1);
__ Ret();
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(
function, arguments(), JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// a2: function name.
GenerateMissBranch();
// Return the generated code.
return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name);
}
Handle<Code> CallStubCompiler::CompileFastApiCall(
const CallOptimization& optimization,
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
Counters* counters = isolate()->counters();
ASSERT(optimization.is_simple_api_call());
// Bail out if object is a global object as we don't want to
// repatch it to global receiver.
if (object->IsGlobalObject()) return Handle<Code>::null();
if (!cell.is_null()) return Handle<Code>::null();
if (!object->IsJSObject()) return Handle<Code>::null();
int depth = optimization.GetPrototypeDepthOfExpectedType(
Handle<JSObject>::cast(object), holder);
if (depth == kInvalidProtoDepth) return Handle<Code>::null();
Label miss, miss_before_stack_reserved;
GenerateNameCheck(name, &miss_before_stack_reserved);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ lw(a1, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(a1, &miss_before_stack_reserved);
__ IncrementCounter(counters->call_const(), 1, a0, a3);
__ IncrementCounter(counters->call_const_fast_api(), 1, a0, a3);
ReserveSpaceForFastApiCall(masm(), a0);
// Check that the maps haven't changed and find a Holder as a side effect.
CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, a0, a3, t0, name,
depth, &miss);
GenerateFastApiDirectCall(masm(), optimization, argc);
__ bind(&miss);
FreeSpaceForFastApiCall(masm());
__ bind(&miss_before_stack_reserved);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileCallConstant(Handle<Object> object,
Handle<JSObject> holder,
Handle<JSFunction> function,
Handle<String> name,
CheckType check) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(object, holder,
Handle<JSGlobalPropertyCell>::null(),
function, name);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ lw(a1, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ JumpIfSmi(a1, &miss);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(masm()->isolate()->counters()->call_const(),
1, a0, a3);
// Check that the maps haven't changed.
CheckPrototypes(Handle<JSObject>::cast(object), a1, holder, a0, a3, t0,
name, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ lw(a3, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
__ sw(a3, MemOperand(sp, argc * kPointerSize));
}
break;
case STRING_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
// Check that the object is a two-byte string or a symbol.
__ GetObjectType(a1, a3, a3);
__ Branch(&miss, Ugreater_equal, a3, Operand(FIRST_NONSTRING_TYPE));
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, a0, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
a0, holder, a3, a1, t0, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
case NUMBER_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
Label fast;
// Check that the object is a smi or a heap number.
__ JumpIfSmi(a1, &fast);
__ GetObjectType(a1, a0, a0);
__ Branch(&miss, ne, a0, Operand(HEAP_NUMBER_TYPE));
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, a0, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
a0, holder, a3, a1, t0, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
case BOOLEAN_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
Label fast;
// Check that the object is a boolean.
__ LoadRoot(t0, Heap::kTrueValueRootIndex);
__ Branch(&fast, eq, a1, Operand(t0));
__ LoadRoot(t0, Heap::kFalseValueRootIndex);
__ Branch(&miss, ne, a1, Operand(t0));
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, a0, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
a0, holder, a3, a1, t0, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
}
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(
function, arguments(), JUMP_FUNCTION, NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileCallInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ lw(a1, MemOperand(sp, argc * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), a2, extra_state_);
compiler.Compile(masm(), object, holder, name, &lookup, a1, a3, t0, a0,
&miss);
// Move returned value, the function to call, to a1.
__ mov(a1, v0);
// Restore receiver.
__ lw(a0, MemOperand(sp, argc * kPointerSize));
GenerateCallFunction(masm(), object, arguments(), &miss, extra_state_);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> CallStubCompiler::CompileCallGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(object, holder, cell, function, name);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
GenerateGlobalReceiverCheck(object, holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ lw(a3, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
__ sw(a3, MemOperand(sp, argc * kPointerSize));
}
// Set up the context (function already in r1).
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->call_global_inline(), 1, a3, t0);
ParameterCount expected(function->shared()->formal_parameter_count());
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
__ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ InvokeCode(a3, expected, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(counters->call_global_inline_miss(), 1, a1, a3);
GenerateMissBranch();
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> StoreStubCompiler::CompileStoreField(Handle<JSObject> object,
int index,
Handle<Map> transition,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
// Name register might be clobbered.
GenerateStoreField(masm(), object, index, transition, a1, a2, a3, &miss);
__ bind(&miss);
__ li(a2, Operand(Handle<String>(name))); // Restore name.
Handle<Code> ic = masm()->isolate()->builtins()->Builtins::StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name);
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<AccessorInfo> callback,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
// Check that the map of the object hasn't changed.
__ CheckMap(a1, a3, Handle<Map>(object->map()), &miss,
DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(a1, a3, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
__ push(a1); // Receiver.
__ li(a3, Operand(callback)); // Callback info.
__ Push(a3, a2, a0);
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty),
masm()->isolate());
__ TailCallExternalReference(store_callback_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> StoreStubCompiler::CompileStoreInterceptor(
Handle<JSObject> receiver,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
// Check that the map of the object hasn't changed.
__ CheckMap(a1, a3, Handle<Map>(receiver->map()), &miss,
DO_SMI_CHECK, ALLOW_ELEMENT_TRANSITION_MAPS);
// Perform global security token check if needed.
if (receiver->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(a1, a3, &miss);
}
// Stub is never generated for non-global objects that require access
// checks.
ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());
__ Push(a1, a2, a0); // Receiver, name, value.
__ li(a0, Operand(Smi::FromInt(strict_mode_)));
__ push(a0); // Strict mode.
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty),
masm()->isolate());
__ TailCallExternalReference(store_ic_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = masm()->isolate()->builtins()->Builtins::StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> StoreStubCompiler::CompileStoreGlobal(
Handle<GlobalObject> object,
Handle<JSGlobalPropertyCell> cell,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
__ Branch(&miss, ne, a3, Operand(Handle<Map>(object->map())));
// Check that the value in the cell is not the hole. If it is, this
// cell could have been deleted and reintroducing the global needs
// to update the property details in the property dictionary of the
// global object. We bail out to the runtime system to do that.
__ li(t0, Operand(cell));
__ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
__ lw(t2, FieldMemOperand(t0, JSGlobalPropertyCell::kValueOffset));
__ Branch(&miss, eq, t1, Operand(t2));
// Store the value in the cell.
__ sw(a0, FieldMemOperand(t0, JSGlobalPropertyCell::kValueOffset));
__ mov(v0, a0); // Stored value must be returned in v0.
// Cells are always rescanned, so no write barrier here.
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->named_store_global_inline(), 1, a1, a3);
__ Ret();
// Handle store cache miss.
__ bind(&miss);
__ IncrementCounter(counters->named_store_global_inline_miss(), 1, a1, a3);
Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> LoadStubCompiler::CompileLoadNonexistent(Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> last) {
// ----------- S t a t e -------------
// -- a0 : receiver
// -- ra : return address
// -----------------------------------
Label miss;
// Check that the receiver is not a smi.
__ JumpIfSmi(a0, &miss);
// Check the maps of the full prototype chain.
CheckPrototypes(object, a0, last, a3, a1, t0, name, &miss);
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last->IsGlobalObject()) {
GenerateCheckPropertyCell(
masm(), Handle<GlobalObject>::cast(last), name, a1, &miss);
}
// Return undefined if maps of the full prototype chain is still the same.
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
__ Ret();
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NONEXISTENT, factory()->empty_string());
}
Handle<Code> LoadStubCompiler::CompileLoadField(Handle<JSObject> object,
Handle<JSObject> holder,
int index,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a0 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
__ mov(v0, a0);
GenerateLoadField(object, holder, v0, a3, a1, t0, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
Handle<Code> LoadStubCompiler::CompileLoadCallback(
Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
// ----------- S t a t e -------------
// -- a0 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
GenerateLoadCallback(object, holder, a0, a2, a3, a1, t0, callback, name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> LoadStubCompiler::CompileLoadConstant(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<JSFunction> value,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a0 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
GenerateLoadConstant(object, holder, a0, a3, a1, t0, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
Handle<Code> LoadStubCompiler::CompileLoadInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a0 : receiver
// -- a2 : name
// -- ra : return address
// -- [sp] : receiver
// -----------------------------------
Label miss;
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(object, holder, &lookup, a0, a2, a3, a1, t0, name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> LoadStubCompiler::CompileLoadGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<String> name,
bool is_dont_delete) {
// ----------- S t a t e -------------
// -- a0 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ JumpIfSmi(a0, &miss);
CheckPrototypes(object, a0, holder, a3, t0, a1, name, &miss);
// Get the value from the cell.
__ li(a3, Operand(cell));
__ lw(t0, FieldMemOperand(a3, JSGlobalPropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Branch(&miss, eq, t0, Operand(at));
}
__ mov(v0, t0);
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1, a1, a3);
__ Ret();
__ bind(&miss);
__ IncrementCounter(counters->named_load_global_stub_miss(), 1, a1, a3);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadField(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
int index) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ Branch(&miss, ne, a0, Operand(name));
GenerateLoadField(receiver, holder, a1, a2, a3, t0, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(FIELD, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadCallback(
Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ Branch(&miss, ne, a0, Operand(name));
GenerateLoadCallback(receiver, holder, a1, a0, a2, a3, t0, callback, name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadConstant(
Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<JSFunction> value) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ Branch(&miss, ne, a0, Operand(name));
GenerateLoadConstant(receiver, holder, a1, a2, a3, t0, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadInterceptor(
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ Branch(&miss, ne, a0, Operand(name));
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(receiver, holder, &lookup, a1, a0, a2, a3, t0, name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(INTERCEPTOR, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadArrayLength(
Handle<String> name) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ Branch(&miss, ne, a0, Operand(name));
GenerateLoadArrayLength(masm(), a1, a2, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadStringLength(
Handle<String> name) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss;
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->keyed_load_string_length(), 1, a2, a3);
// Check the key is the cached one.
__ Branch(&miss, ne, a0, Operand(name));
GenerateLoadStringLength(masm(), a1, a2, a3, &miss, true);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_string_length(), 1, a2, a3);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadFunctionPrototype(
Handle<String> name) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss;
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->keyed_load_function_prototype(), 1, a2, a3);
// Check the name hasn't changed.
__ Branch(&miss, ne, a0, Operand(name));
GenerateLoadFunctionPrototype(masm(), a1, a2, a3, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_function_prototype(), 1, a2, a3);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadElement(
Handle<Map> receiver_map) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
ElementsKind elements_kind = receiver_map->elements_kind();
Handle<Code> stub = KeyedLoadElementStub(elements_kind).GetCode();
__ DispatchMap(a1, a2, receiver_map, stub, DO_SMI_CHECK);
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string());
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadPolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_ics) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss;
__ JumpIfSmi(a1, &miss);
int receiver_count = receiver_maps->length();
__ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
for (int current = 0; current < receiver_count; ++current) {
__ Jump(handler_ics->at(current), RelocInfo::CODE_TARGET,
eq, a2, Operand(receiver_maps->at(current)));
}
__ bind(&miss);
Handle<Code> miss_ic = isolate()->builtins()->KeyedLoadIC_Miss();
__ Jump(miss_ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC);
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreField(Handle<JSObject> object,
int index,
Handle<Map> transition,
Handle<String> name) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
Label miss;
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->keyed_store_field(), 1, a3, t0);
// Check that the name has not changed.
__ Branch(&miss, ne, a1, Operand(name));
// a3 is used as scratch register. a1 and a2 keep their values if a jump to
// the miss label is generated.
GenerateStoreField(masm(), object, index, transition, a2, a1, a3, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_store_field(), 1, a3, t0);
Handle<Code> ic = masm()->isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name);
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreElement(
Handle<Map> receiver_map) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -- a3 : scratch
// -----------------------------------
ElementsKind elements_kind = receiver_map->elements_kind();
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
Handle<Code> stub =
KeyedStoreElementStub(is_js_array, elements_kind, grow_mode_).GetCode();
__ DispatchMap(a2, a3, receiver_map, stub, DO_SMI_CHECK);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string());
}
Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -- a3 : scratch
// -----------------------------------
Label miss;
__ JumpIfSmi(a2, &miss);
int receiver_count = receiver_maps->length();
__ lw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
for (int i = 0; i < receiver_count; ++i) {
if (transitioned_maps->at(i).is_null()) {
__ Jump(handler_stubs->at(i), RelocInfo::CODE_TARGET, eq,
a3, Operand(receiver_maps->at(i)));
} else {
Label next_map;
__ Branch(&next_map, ne, a3, Operand(receiver_maps->at(i)));
__ li(a3, Operand(transitioned_maps->at(i)));
__ Jump(handler_stubs->at(i), RelocInfo::CODE_TARGET);
__ bind(&next_map);
}
}
__ bind(&miss);
Handle<Code> miss_ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(miss_ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC);
}
Handle<Code> ConstructStubCompiler::CompileConstructStub(
Handle<JSFunction> function) {
// a0 : argc
// a1 : constructor
// ra : return address
// [sp] : last argument
Label generic_stub_call;
// Use t7 for holding undefined which is used in several places below.
__ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check to see whether there are any break points in the function code. If
// there are jump to the generic constructor stub which calls the actual
// code for the function thereby hitting the break points.
__ lw(t5, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lw(a2, FieldMemOperand(t5, SharedFunctionInfo::kDebugInfoOffset));
__ Branch(&generic_stub_call, ne, a2, Operand(t7));
#endif
// Load the initial map and verify that it is in fact a map.
// a1: constructor function
// t7: undefined
__ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(a2, &generic_stub_call);
__ GetObjectType(a2, a3, t0);
__ Branch(&generic_stub_call, ne, t0, Operand(MAP_TYPE));
#ifdef DEBUG
// Cannot construct functions this way.
// a0: argc
// a1: constructor function
// a2: initial map
// t7: undefined
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
__ Check(ne, "Function constructed by construct stub.",
a3, Operand(JS_FUNCTION_TYPE));
#endif
// Now allocate the JSObject in new space.
// a0: argc
// a1: constructor function
// a2: initial map
// t7: undefined
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
__ AllocateInNewSpace(a3, t4, t5, t6, &generic_stub_call, SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to initial
// map and properties and elements are set to empty fixed array.
// a0: argc
// a1: constructor function
// a2: initial map
// a3: object size (in words)
// t4: JSObject (not tagged)
// t7: undefined
__ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex);
__ mov(t5, t4);
__ sw(a2, MemOperand(t5, JSObject::kMapOffset));
__ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset));
__ sw(t6, MemOperand(t5, JSObject::kElementsOffset));
__ Addu(t5, t5, Operand(3 * kPointerSize));
ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
// Calculate the location of the first argument. The stack contains only the
// argc arguments.
__ sll(a1, a0, kPointerSizeLog2);
__ Addu(a1, a1, sp);
// Fill all the in-object properties with undefined.
// a0: argc
// a1: first argument
// a3: object size (in words)
// t4: JSObject (not tagged)
// t5: First in-object property of JSObject (not tagged)
// t7: undefined
// Fill the initialized properties with a constant value or a passed argument
// depending on the this.x = ...; assignment in the function.
Handle<SharedFunctionInfo> shared(function->shared());
for (int i = 0; i < shared->this_property_assignments_count(); i++) {
if (shared->IsThisPropertyAssignmentArgument(i)) {
Label not_passed, next;
// Check if the argument assigned to the property is actually passed.
int arg_number = shared->GetThisPropertyAssignmentArgument(i);
__ Branch(&not_passed, less_equal, a0, Operand(arg_number));
// Argument passed - find it on the stack.
__ lw(a2, MemOperand(a1, (arg_number + 1) * -kPointerSize));
__ sw(a2, MemOperand(t5));
__ Addu(t5, t5, kPointerSize);
__ jmp(&next);
__ bind(&not_passed);
// Set the property to undefined.
__ sw(t7, MemOperand(t5));
__ Addu(t5, t5, Operand(kPointerSize));
__ bind(&next);
} else {
// Set the property to the constant value.
Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
__ li(a2, Operand(constant));
__ sw(a2, MemOperand(t5));
__ Addu(t5, t5, kPointerSize);
}
}
// Fill the unused in-object property fields with undefined.
ASSERT(function->has_initial_map());
for (int i = shared->this_property_assignments_count();
i < function->initial_map()->inobject_properties();
i++) {
__ sw(t7, MemOperand(t5));
__ Addu(t5, t5, kPointerSize);
}
// a0: argc
// t4: JSObject (not tagged)
// Move argc to a1 and the JSObject to return to v0 and tag it.
__ mov(a1, a0);
__ mov(v0, t4);
__ Or(v0, v0, Operand(kHeapObjectTag));
// v0: JSObject
// a1: argc
// Remove caller arguments and receiver from the stack and return.
__ sll(t0, a1, kPointerSizeLog2);
__ Addu(sp, sp, t0);
__ Addu(sp, sp, Operand(kPointerSize));
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1, a1, a2);
__ IncrementCounter(counters->constructed_objects_stub(), 1, a1, a2);
__ Ret();
// Jump to the generic stub in case the specialized code cannot handle the
// construction.
__ bind(&generic_stub_call);
Handle<Code> generic_construct_stub =
masm()->isolate()->builtins()->JSConstructStubGeneric();
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode();
}
#undef __
#define __ ACCESS_MASM(masm)
void KeyedLoadStubCompiler::GenerateLoadDictionaryElement(
MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label slow, miss_force_generic;
Register key = a0;
Register receiver = a1;
__ JumpIfNotSmi(key, &miss_force_generic);
__ lw(t0, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ sra(a2, a0, kSmiTagSize);
__ LoadFromNumberDictionary(&slow, t0, a0, v0, a2, a3, t1);
__ Ret();
// Slow case, key and receiver still in a0 and a1.
__ bind(&slow);
__ IncrementCounter(
masm->isolate()->counters()->keyed_load_external_array_slow(),
1, a2, a3);
// Entry registers are intact.
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ Jump(slow_ic, RelocInfo::CODE_TARGET);
// Miss case, call the runtime.
__ bind(&miss_force_generic);
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ Jump(miss_ic, RelocInfo::CODE_TARGET);
}
static bool IsElementTypeSigned(ElementsKind elements_kind) {
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
return true;
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
return false;
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
return false;
}
return false;
}
void KeyedLoadStubCompiler::GenerateLoadExternalArray(
MacroAssembler* masm,
ElementsKind elements_kind) {
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss_force_generic, slow, failed_allocation;
Register key = a0;
Register receiver = a1;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &miss_force_generic);
__ lw(a3, FieldMemOperand(receiver, JSObject::kElementsOffset));
// a3: elements array
// Check that the index is in range.
__ lw(t1, FieldMemOperand(a3, ExternalArray::kLengthOffset));
__ sra(t2, key, kSmiTagSize);
// Unsigned comparison catches both negative and too-large values.
__ Branch(&miss_force_generic, Ugreater_equal, key, Operand(t1));
__ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset));
// a3: base pointer of external storage
// We are not untagging smi key and instead work with it
// as if it was premultiplied by 2.
STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
Register value = a2;
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
__ srl(t2, key, 1);
__ addu(t3, a3, t2);
__ lb(value, MemOperand(t3, 0));
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ srl(t2, key, 1);
__ addu(t3, a3, t2);
__ lbu(value, MemOperand(t3, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
__ addu(t3, a3, key);
__ lh(value, MemOperand(t3, 0));
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ addu(t3, a3, key);
__ lhu(value, MemOperand(t3, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ sll(t2, key, 1);
__ addu(t3, a3, t2);
__ lw(value, MemOperand(t3, 0));
break;
case EXTERNAL_FLOAT_ELEMENTS:
__ sll(t3, t2, 2);
__ addu(t3, a3, t3);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ lwc1(f0, MemOperand(t3, 0));
} else {
__ lw(value, MemOperand(t3, 0));
}
break;
case EXTERNAL_DOUBLE_ELEMENTS:
__ sll(t2, key, 2);
__ addu(t3, a3, t2);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ ldc1(f0, MemOperand(t3, 0));
} else {
// t3: pointer to the beginning of the double we want to load.
__ lw(a2, MemOperand(t3, 0));
__ lw(a3, MemOperand(t3, Register::kSizeInBytes));
}
break;
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
// For integer array types:
// a2: value
// For float array type:
// f0: value (if FPU is supported)
// a2: value (if FPU is not supported)
// For double array type:
// f0: value (if FPU is supported)
// a2/a3: value (if FPU is not supported)
if (elements_kind == EXTERNAL_INT_ELEMENTS) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
__ Subu(t3, value, Operand(0xC0000000)); // Non-smi value gives neg result.
__ Branch(&box_int, lt, t3, Operand(zero_reg));
// Tag integer as smi and return it.
__ sll(v0, value, kSmiTagSize);
__ Ret();
__ bind(&box_int);
// Allocate a HeapNumber for the result and perform int-to-double
// conversion.
// The arm version uses a temporary here to save r0, but we don't need to
// (a0 is not modified).
__ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(v0, a3, t0, t1, &slow);
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ mtc1(value, f0);
__ cvt_d_w(f0, f0);
__ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset - kHeapObjectTag));
__ Ret();
} else {
Register dst1 = t2;
Register dst2 = t3;
FloatingPointHelper::Destination dest =
FloatingPointHelper::kCoreRegisters;
FloatingPointHelper::ConvertIntToDouble(masm,
value,
dest,
f0,
dst1,
dst2,
t1,
f2);
__ sw(dst1, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
__ sw(dst2, FieldMemOperand(v0, HeapNumber::kExponentOffset));
__ Ret();
}
} else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle either of the top two bits being set in the value.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
Label pl_box_int;
__ And(t2, value, Operand(0xC0000000));
__ Branch(&pl_box_int, ne, t2, Operand(zero_reg));
// It can fit in an Smi.
// Tag integer as smi and return it.
__ sll(v0, value, kSmiTagSize);
__ Ret();
__ bind(&pl_box_int);
// Allocate a HeapNumber for the result and perform int-to-double
// conversion. Don't use a0 and a1 as AllocateHeapNumber clobbers all
// registers - also when jumping due to exhausted young space.
__ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(v0, t2, t3, t6, &slow);
// This is replaced by a macro:
// __ mtc1(value, f0); // LS 32-bits.
// __ mtc1(zero_reg, f1); // MS 32-bits are all zero.
// __ cvt_d_l(f0, f0); // Use 64 bit conv to get correct unsigned 32-bit.
__ Cvt_d_uw(f0, value, f22);
__ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset - kHeapObjectTag));
__ Ret();
} else {
// Check whether unsigned integer fits into smi.
Label box_int_0, box_int_1, done;
__ And(t2, value, Operand(0x80000000));
__ Branch(&box_int_0, ne, t2, Operand(zero_reg));
__ And(t2, value, Operand(0x40000000));
__ Branch(&box_int_1, ne, t2, Operand(zero_reg));
// Tag integer as smi and return it.
__ sll(v0, value, kSmiTagSize);
__ Ret();
Register hiword = value; // a2.
Register loword = a3;
__ bind(&box_int_0);
// Integer does not have leading zeros.
GenerateUInt2Double(masm, hiword, loword, t0, 0);
__ Branch(&done);
__ bind(&box_int_1);
// Integer has one leading zero.
GenerateUInt2Double(masm, hiword, loword, t0, 1);
__ bind(&done);
// Integer was converted to double in registers hiword:loword.
// Wrap it into a HeapNumber. Don't use a0 and a1 as AllocateHeapNumber
// clobbers all registers - also when jumping due to exhausted young
// space.
__ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(t2, t3, t5, t6, &slow);
__ sw(hiword, FieldMemOperand(t2, HeapNumber::kExponentOffset));
__ sw(loword, FieldMemOperand(t2, HeapNumber::kMantissaOffset));
__ mov(v0, t2);
__ Ret();
}
} else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// Allocate a HeapNumber for the result. Don't use a0 and a1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(v0, t3, t5, t6, &slow);
// The float (single) value is already in fpu reg f0 (if we use float).
__ cvt_d_s(f0, f0);
__ sdc1(f0, MemOperand(v0, HeapNumber::kValueOffset - kHeapObjectTag));
__ Ret();
} else {
// Allocate a HeapNumber for the result. Don't use a0 and a1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(v0, t3, t5, t6, &slow);
// FPU is not available, do manual single to double conversion.
// a2: floating point value (binary32).
// v0: heap number for result
// Extract mantissa to t4.
__ And(t4, value, Operand(kBinary32MantissaMask));
// Extract exponent to t5.
__ srl(t5, value, kBinary32MantissaBits);
__ And(t5, t5, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
Label exponent_rebiased;
__ Branch(&exponent_rebiased, eq, t5, Operand(zero_reg));
__ li(t0, 0x7ff);
__ Xor(t1, t5, Operand(0xFF));
__ Movz(t5, t0, t1); // Set t5 to 0x7ff only if t5 is equal to 0xff.
__ Branch(&exponent_rebiased, eq, t0, Operand(0xff));
// Rebias exponent.
__ Addu(t5,
t5,
Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
__ bind(&exponent_rebiased);
__ And(a2, value, Operand(kBinary32SignMask));
value = no_reg;
__ sll(t0, t5, HeapNumber::kMantissaBitsInTopWord);
__ or_(a2, a2, t0);
// Shift mantissa.
static const int kMantissaShiftForHiWord =
kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
static const int kMantissaShiftForLoWord =
kBitsPerInt - kMantissaShiftForHiWord;
__ srl(t0, t4, kMantissaShiftForHiWord);
__ or_(a2, a2, t0);
__ sll(a0, t4, kMantissaShiftForLoWord);
__ sw(a2, FieldMemOperand(v0, HeapNumber::kExponentOffset));
__ sw(a0, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
__ Ret();
}
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
// Allocate a HeapNumber for the result. Don't use a0 and a1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(v0, t3, t5, t6, &slow);
// The double value is already in f0
__ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
__ Ret();
} else {
// Allocate a HeapNumber for the result. Don't use a0 and a1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(v0, t3, t5, t6, &slow);
__ sw(a2, FieldMemOperand(v0, HeapNumber::kMantissaOffset));
__ sw(a3, FieldMemOperand(v0, HeapNumber::kExponentOffset));
__ Ret();
}
} else {
// Tag integer as smi and return it.
__ sll(v0, value, kSmiTagSize);
__ Ret();
}
// Slow case, key and receiver still in a0 and a1.
__ bind(&slow);
__ IncrementCounter(
masm->isolate()->counters()->keyed_load_external_array_slow(),
1, a2, a3);
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
__ Push(a1, a0);
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
__ bind(&miss_force_generic);
Handle<Code> stub =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ Jump(stub, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreExternalArray(
MacroAssembler* masm,
ElementsKind elements_kind) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
Label slow, check_heap_number, miss_force_generic;
// Register usage.
Register value = a0;
Register key = a1;
Register receiver = a2;
// a3 mostly holds the elements array or the destination external array.
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &miss_force_generic);
__ lw(a3, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check that the index is in range.
__ lw(t1, FieldMemOperand(a3, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ Branch(&miss_force_generic, Ugreater_equal, key, Operand(t1));
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// a3: external array.
if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) {
// Double to pixel conversion is only implemented in the runtime for now.
__ JumpIfNotSmi(value, &slow);
} else {
__ JumpIfNotSmi(value, &check_heap_number);
}
__ SmiUntag(t1, value);
__ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset));
// a3: base pointer of external storage.
// t1: value (integer).
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS: {
// Clamp the value to [0..255].
// v0 is used as a scratch register here.
Label done;
__ li(v0, Operand(255));
// Normal branch: nop in delay slot.
__ Branch(&done, gt, t1, Operand(v0));
// Use delay slot in this branch.
__ Branch(USE_DELAY_SLOT, &done, lt, t1, Operand(zero_reg));
__ mov(v0, zero_reg); // In delay slot.
__ mov(v0, t1); // Value is in range 0..255.
__ bind(&done);
__ mov(t1, v0);
__ srl(t8, key, 1);
__ addu(t8, a3, t8);
__ sb(t1, MemOperand(t8, 0));
}
break;
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ srl(t8, key, 1);
__ addu(t8, a3, t8);
__ sb(t1, MemOperand(t8, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ addu(t8, a3, key);
__ sh(t1, MemOperand(t8, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ sll(t8, key, 1);
__ addu(t8, a3, t8);
__ sw(t1, MemOperand(t8, 0));
break;
case EXTERNAL_FLOAT_ELEMENTS:
// Perform int-to-float conversion and store to memory.
__ SmiUntag(t0, key);
StoreIntAsFloat(masm, a3, t0, t1, t2, t3, t4);
break;
case EXTERNAL_DOUBLE_ELEMENTS:
__ sll(t8, key, 2);
__ addu(a3, a3, t8);
// a3: effective address of the double element
FloatingPointHelper::Destination destination;
if (CpuFeatures::IsSupported(FPU)) {
destination = FloatingPointHelper::kFPURegisters;
} else {
destination = FloatingPointHelper::kCoreRegisters;
}
FloatingPointHelper::ConvertIntToDouble(
masm, t1, destination,
f0, t2, t3, // These are: double_dst, dst1, dst2.
t0, f2); // These are: scratch2, single_scratch.
if (destination == FloatingPointHelper::kFPURegisters) {
CpuFeatures::Scope scope(FPU);
__ sdc1(f0, MemOperand(a3, 0));
} else {
__ sw(t2, MemOperand(a3, 0));
__ sw(t3, MemOperand(a3, Register::kSizeInBytes));
}
break;
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
// Entry registers are intact, a0 holds the value which is the return value.
__ mov(v0, a0);
__ Ret();
if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) {
// a3: external array.
__ bind(&check_heap_number);
__ GetObjectType(value, t1, t2);
__ Branch(&slow, ne, t2, Operand(HEAP_NUMBER_TYPE));
__ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset));
// a3: base pointer of external storage.
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
if (CpuFeatures::IsSupported(FPU)) {
CpuFeatures::Scope scope(FPU);
__ ldc1(f0, FieldMemOperand(a0, HeapNumber::kValueOffset));
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
__ cvt_s_d(f0, f0);
__ sll(t8, key, 1);
__ addu(t8, a3, t8);
__ swc1(f0, MemOperand(t8, 0));
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ sll(t8, key, 2);
__ addu(t8, a3, t8);
__ sdc1(f0, MemOperand(t8, 0));
} else {
__ EmitECMATruncate(t3, f0, f2, t2, t1, t5);
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ srl(t8, key, 1);
__ addu(t8, a3, t8);
__ sb(t3, MemOperand(t8, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ addu(t8, a3, key);
__ sh(t3, MemOperand(t8, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ sll(t8, key, 1);
__ addu(t8, a3, t8);
__ sw(t3, MemOperand(t8, 0));
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
// Entry registers are intact, a0 holds the value
// which is the return value.
__ mov(v0, a0);
__ Ret();
} else {
// FPU is not available, do manual conversions.
__ lw(t3, FieldMemOperand(value, HeapNumber::kExponentOffset));
__ lw(t4, FieldMemOperand(value, HeapNumber::kMantissaOffset));
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
Label done, nan_or_infinity_or_zero;
static const int kMantissaInHiWordShift =
kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
static const int kMantissaInLoWordShift =
kBitsPerInt - kMantissaInHiWordShift;
// Test for all special exponent values: zeros, subnormal numbers, NaNs
// and infinities. All these should be converted to 0.
__ li(t5, HeapNumber::kExponentMask);
__ and_(t6, t3, t5);
__ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(zero_reg));
__ xor_(t1, t6, t5);
__ li(t2, kBinary32ExponentMask);
__ Movz(t6, t2, t1); // Only if t6 is equal to t5.
__ Branch(&nan_or_infinity_or_zero, eq, t6, Operand(t5));
// Rebias exponent.
__ srl(t6, t6, HeapNumber::kExponentShift);
__ Addu(t6,
t6,
Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
__ li(t1, Operand(kBinary32MaxExponent));
__ Slt(t1, t1, t6);
__ And(t2, t3, Operand(HeapNumber::kSignMask));
__ Or(t2, t2, Operand(kBinary32ExponentMask));
__ Movn(t3, t2, t1); // Only if t6 is gt kBinary32MaxExponent.
__ Branch(&done, gt, t6, Operand(kBinary32MaxExponent));
__ Slt(t1, t6, Operand(kBinary32MinExponent));
__ And(t2, t3, Operand(HeapNumber::kSignMask));
__ Movn(t3, t2, t1); // Only if t6 is lt kBinary32MinExponent.
__ Branch(&done, lt, t6, Operand(kBinary32MinExponent));
__ And(t7, t3, Operand(HeapNumber::kSignMask));
__ And(t3, t3, Operand(HeapNumber::kMantissaMask));
__ sll(t3, t3, kMantissaInHiWordShift);
__ or_(t7, t7, t3);
__ srl(t4, t4, kMantissaInLoWordShift);
__ or_(t7, t7, t4);
__ sll(t6, t6, kBinary32ExponentShift);
__ or_(t3, t7, t6);
__ bind(&done);
__ sll(t9, key, 1);
__ addu(t9, a2, t9);
__ sw(t3, MemOperand(t9, 0));
// Entry registers are intact, a0 holds the value which is the return
// value.
__ mov(v0, a0);
__ Ret();
__ bind(&nan_or_infinity_or_zero);
__ And(t7, t3, Operand(HeapNumber::kSignMask));
__ And(t3, t3, Operand(HeapNumber::kMantissaMask));
__ or_(t6, t6, t7);
__ sll(t3, t3, kMantissaInHiWordShift);
__ or_(t6, t6, t3);
__ srl(t4, t4, kMantissaInLoWordShift);
__ or_(t3, t6, t4);
__ Branch(&done);
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ sll(t8, t0, 3);
__ addu(t8, a3, t8);
// t8: effective address of destination element.
__ sw(t4, MemOperand(t8, 0));
__ sw(t3, MemOperand(t8, Register::kSizeInBytes));
__ mov(v0, a0);
__ Ret();
} else {
bool is_signed_type = IsElementTypeSigned(elements_kind);
int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
Label done, sign;
// Test for all special exponent values: zeros, subnormal numbers, NaNs
// and infinities. All these should be converted to 0.
__ li(t5, HeapNumber::kExponentMask);
__ and_(t6, t3, t5);
__ Movz(t3, zero_reg, t6); // Only if t6 is equal to zero.
__ Branch(&done, eq, t6, Operand(zero_reg));
__ xor_(t2, t6, t5);
__ Movz(t3, zero_reg, t2); // Only if t6 is equal to t5.
__ Branch(&done, eq, t6, Operand(t5));
// Unbias exponent.
__ srl(t6, t6, HeapNumber::kExponentShift);
__ Subu(t6, t6, Operand(HeapNumber::kExponentBias));
// If exponent is negative then result is 0.
__ slt(t2, t6, zero_reg);
__ Movn(t3, zero_reg, t2); // Only if exponent is negative.
__ Branch(&done, lt, t6, Operand(zero_reg));
// If exponent is too big then result is minimal value.
__ slti(t1, t6, meaningfull_bits - 1);
__ li(t2, min_value);
__ Movz(t3, t2, t1); // Only if t6 is ge meaningfull_bits - 1.
__ Branch(&done, ge, t6, Operand(meaningfull_bits - 1));
__ And(t5, t3, Operand(HeapNumber::kSignMask));
__ And(t3, t3, Operand(HeapNumber::kMantissaMask));
__ Or(t3, t3, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
__ li(t9, HeapNumber::kMantissaBitsInTopWord);
__ subu(t6, t9, t6);
__ slt(t1, t6, zero_reg);
__ srlv(t2, t3, t6);
__ Movz(t3, t2, t1); // Only if t6 is positive.
__ Branch(&sign, ge, t6, Operand(zero_reg));
__ subu(t6, zero_reg, t6);
__ sllv(t3, t3, t6);
__ li(t9, meaningfull_bits);
__ subu(t6, t9, t6);
__ srlv(t4, t4, t6);
__ or_(t3, t3, t4);
__ bind(&sign);
__ subu(t2, t3, zero_reg);
__ Movz(t3, t2, t5); // Only if t5 is zero.
__ bind(&done);
// Result is in t3.
// This switch block should be exactly the same as above (FPU mode).
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ srl(t8, key, 1);
__ addu(t8, a3, t8);
__ sb(t3, MemOperand(t8, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ addu(t8, a3, key);
__ sh(t3, MemOperand(t8, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ sll(t8, key, 1);
__ addu(t8, a3, t8);
__ sw(t3, MemOperand(t8, 0));
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
}
}
// Slow case, key and receiver still in a0 and a1.
__ bind(&slow);
__ IncrementCounter(
masm->isolate()->counters()->keyed_load_external_array_slow(),
1, a2, a3);
// Entry registers are intact.
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ Jump(slow_ic, RelocInfo::CODE_TARGET);
// Miss case, call the runtime.
__ bind(&miss_force_generic);
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ Jump(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(a0, &miss_force_generic, at, USE_DELAY_SLOT);
// The delay slot can be safely used here, a1 is an object pointer.
// Get the elements array.
__ lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset));
__ AssertFastElements(a2);
// Check that the key is within bounds.
__ lw(a3, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ Branch(USE_DELAY_SLOT, &miss_force_generic, hs, a0, Operand(a3));
// Load the result and make sure it's not the hole.
__ Addu(a3, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
__ Addu(t0, t0, a3);
__ lw(t0, MemOperand(t0));
__ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
__ Branch(&miss_force_generic, eq, t0, Operand(t1));
__ Ret(USE_DELAY_SLOT);
__ mov(v0, t0);
__ bind(&miss_force_generic);
Handle<Code> stub =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ Jump(stub, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label miss_force_generic, slow_allocate_heapnumber;
Register key_reg = a0;
Register receiver_reg = a1;
Register elements_reg = a2;
Register heap_number_reg = a2;
Register indexed_double_offset = a3;
Register scratch = t0;
Register scratch2 = t1;
Register scratch3 = t2;
Register heap_number_map = t3;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(key_reg, &miss_force_generic);
// Get the elements array.
__ lw(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
// Check that the key is within bounds.
__ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
__ Branch(&miss_force_generic, hs, key_reg, Operand(scratch));
// Load the upper word of the double in the fixed array and test for NaN.
__ sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
__ Addu(indexed_double_offset, elements_reg, Operand(scratch2));
uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32);
__ lw(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset));
__ Branch(&miss_force_generic, eq, scratch, Operand(kHoleNanUpper32));
// Non-NaN. Allocate a new heap number and copy the double value into it.
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(heap_number_reg, scratch2, scratch3,
heap_number_map, &slow_allocate_heapnumber);
// Don't need to reload the upper 32 bits of the double, it's already in
// scratch.
__ sw(scratch, FieldMemOperand(heap_number_reg,
HeapNumber::kExponentOffset));
__ lw(scratch, FieldMemOperand(indexed_double_offset,
FixedArray::kHeaderSize));
__ sw(scratch, FieldMemOperand(heap_number_reg,
HeapNumber::kMantissaOffset));
__ mov(v0, heap_number_reg);
__ Ret();
__ bind(&slow_allocate_heapnumber);
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ Jump(slow_ic, RelocInfo::CODE_TARGET);
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ Jump(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreFastElement(
MacroAssembler* masm,
bool is_js_array,
ElementsKind elements_kind,
KeyedAccessGrowMode grow_mode) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -- a3 : scratch
// -- a4 : scratch (elements)
// -----------------------------------
Label miss_force_generic, transition_elements_kind, grow, slow;
Label finish_store, check_capacity;
Register value_reg = a0;
Register key_reg = a1;
Register receiver_reg = a2;
Register scratch = t0;
Register elements_reg = a3;
Register length_reg = t1;
Register scratch2 = t2;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(key_reg, &miss_force_generic);
if (elements_kind == FAST_SMI_ONLY_ELEMENTS) {
__ JumpIfNotSmi(value_reg, &transition_elements_kind);
}
// Check that the key is within bounds.
__ lw(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
if (is_js_array) {
__ lw(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
} else {
__ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
}
// Compare smis.
if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) {
__ Branch(&grow, hs, key_reg, Operand(scratch));
} else {
__ Branch(&miss_force_generic, hs, key_reg, Operand(scratch));
}
// Make sure elements is a fast element array, not 'cow'.
__ CheckMap(elements_reg,
scratch,
Heap::kFixedArrayMapRootIndex,
&miss_force_generic,
DONT_DO_SMI_CHECK);
__ bind(&finish_store);
if (elements_kind == FAST_SMI_ONLY_ELEMENTS) {
__ Addu(scratch,
elements_reg,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ sll(scratch2, key_reg, kPointerSizeLog2 - kSmiTagSize);
__ Addu(scratch, scratch, scratch2);
__ sw(value_reg, MemOperand(scratch));
} else {
ASSERT(elements_kind == FAST_ELEMENTS);
__ Addu(scratch,
elements_reg,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ sll(scratch2, key_reg, kPointerSizeLog2 - kSmiTagSize);
__ Addu(scratch, scratch, scratch2);
__ sw(value_reg, MemOperand(scratch));
__ mov(receiver_reg, value_reg);
ASSERT(elements_kind == FAST_ELEMENTS);
__ RecordWrite(elements_reg, // Object.
scratch, // Address.
receiver_reg, // Value.
kRAHasNotBeenSaved,
kDontSaveFPRegs);
}
// value_reg (a0) is preserved.
// Done.
__ Ret();
__ bind(&miss_force_generic);
Handle<Code> ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ Jump(ic, RelocInfo::CODE_TARGET);
__ bind(&transition_elements_kind);
Handle<Code> ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(ic_miss, RelocInfo::CODE_TARGET);
if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) {
// Grow the array by a single element if possible.
__ bind(&grow);
// Make sure the array is only growing by a single element, anything else
// must be handled by the runtime.
__ Branch(&miss_force_generic, ne, key_reg, Operand(scratch));
// Check for the empty array, and preallocate a small backing store if
// possible.
__ lw(length_reg,
FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
__ lw(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
__ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
__ Branch(&check_capacity, ne, elements_reg, Operand(at));
int size = FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
__ AllocateInNewSpace(size, elements_reg, scratch, scratch2, &slow,
TAG_OBJECT);
__ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
__ sw(scratch, FieldMemOperand(elements_reg, JSObject::kMapOffset));
__ li(scratch, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)));
__ sw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
__ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
for (int i = 1; i < JSArray::kPreallocatedArrayElements; ++i) {
__ sw(scratch, FieldMemOperand(elements_reg, FixedArray::SizeFor(i)));
}
// Store the element at index zero.
__ sw(value_reg, FieldMemOperand(elements_reg, FixedArray::SizeFor(0)));
// Install the new backing store in the JSArray.
__ sw(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
__ RecordWriteField(receiver_reg, JSObject::kElementsOffset, elements_reg,
scratch, kRAHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
// Increment the length of the array.
__ li(length_reg, Operand(Smi::FromInt(1)));
__ sw(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
__ Ret();
__ bind(&check_capacity);
// Check for cow elements, in general they are not handled by this stub
__ CheckMap(elements_reg,
scratch,
Heap::kFixedCOWArrayMapRootIndex,
&miss_force_generic,
DONT_DO_SMI_CHECK);
__ lw(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
__ Branch(&slow, hs, length_reg, Operand(scratch));
// Grow the array and finish the store.
__ Addu(length_reg, length_reg, Operand(Smi::FromInt(1)));
__ sw(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
__ jmp(&finish_store);
__ bind(&slow);
Handle<Code> ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ Jump(ic_slow, RelocInfo::CODE_TARGET);
}
}
void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement(
MacroAssembler* masm,
bool is_js_array,
KeyedAccessGrowMode grow_mode) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -- a3 : scratch
// -- t0 : scratch (elements_reg)
// -- t1 : scratch (mantissa_reg)
// -- t2 : scratch (exponent_reg)
// -- t3 : scratch4
// -----------------------------------
Label miss_force_generic, transition_elements_kind, grow, slow;
Label finish_store, check_capacity;
Register value_reg = a0;
Register key_reg = a1;
Register receiver_reg = a2;
Register elements_reg = a3;
Register scratch1 = t0;
Register scratch2 = t1;
Register scratch3 = t2;
Register scratch4 = t3;
Register length_reg = t3;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
__ JumpIfNotSmi(key_reg, &miss_force_generic);
__ lw(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
// Check that the key is within bounds.
if (is_js_array) {
__ lw(scratch1, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
} else {
__ lw(scratch1,
FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
}
// Compare smis, unsigned compare catches both negative and out-of-bound
// indexes.
if (grow_mode == ALLOW_JSARRAY_GROWTH) {
__ Branch(&grow, hs, key_reg, Operand(scratch1));
} else {
__ Branch(&miss_force_generic, hs, key_reg, Operand(scratch1));
}
__ bind(&finish_store);
__ StoreNumberToDoubleElements(value_reg,
key_reg,
receiver_reg,
elements_reg,
scratch1,
scratch2,
scratch3,
scratch4,
&transition_elements_kind);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, value_reg); // In delay slot.
// Handle store cache miss, replacing the ic with the generic stub.
__ bind(&miss_force_generic);
Handle<Code> ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ Jump(ic, RelocInfo::CODE_TARGET);
__ bind(&transition_elements_kind);
Handle<Code> ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(ic_miss, RelocInfo::CODE_TARGET);
if (is_js_array && grow_mode == ALLOW_JSARRAY_GROWTH) {
// Grow the array by a single element if possible.
__ bind(&grow);
// Make sure the array is only growing by a single element, anything else
// must be handled by the runtime.
__ Branch(&miss_force_generic, ne, key_reg, Operand(scratch1));
// Transition on values that can't be stored in a FixedDoubleArray.
Label value_is_smi;
__ JumpIfSmi(value_reg, &value_is_smi);
__ lw(scratch1, FieldMemOperand(value_reg, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&transition_elements_kind, ne, scratch1, Operand(at));
__ bind(&value_is_smi);
// Check for the empty array, and preallocate a small backing store if
// possible.
__ lw(length_reg,
FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
__ lw(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
__ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
__ Branch(&check_capacity, ne, elements_reg, Operand(at));
int size = FixedDoubleArray::SizeFor(JSArray::kPreallocatedArrayElements);
__ AllocateInNewSpace(size, elements_reg, scratch1, scratch2, &slow,
TAG_OBJECT);
// Initialize the new FixedDoubleArray. Leave elements unitialized for
// efficiency, they are guaranteed to be initialized before use.
__ LoadRoot(scratch1, Heap::kFixedDoubleArrayMapRootIndex);
__ sw(scratch1, FieldMemOperand(elements_reg, JSObject::kMapOffset));
__ li(scratch1, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)));
__ sw(scratch1,
FieldMemOperand(elements_reg, FixedDoubleArray::kLengthOffset));
// Install the new backing store in the JSArray.
__ sw(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
__ RecordWriteField(receiver_reg, JSObject::kElementsOffset, elements_reg,
scratch1, kRAHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
// Increment the length of the array.
__ li(length_reg, Operand(Smi::FromInt(1)));
__ sw(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
__ lw(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
__ jmp(&finish_store);
__ bind(&check_capacity);
// Make sure that the backing store can hold additional elements.
__ lw(scratch1,
FieldMemOperand(elements_reg, FixedDoubleArray::kLengthOffset));
__ Branch(&slow, hs, length_reg, Operand(scratch1));
// Grow the array and finish the store.
__ Addu(length_reg, length_reg, Operand(Smi::FromInt(1)));
__ sw(length_reg, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
__ jmp(&finish_store);
__ bind(&slow);
Handle<Code> ic_slow = masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ Jump(ic_slow, RelocInfo::CODE_TARGET);
}
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS