| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "accessors.h" |
| #include "api.h" |
| #include "execution.h" |
| #include "global-handles.h" |
| #include "ic-inl.h" |
| #include "natives.h" |
| #include "platform.h" |
| #include "runtime.h" |
| #include "serialize.h" |
| #include "stub-cache.h" |
| #include "v8threads.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // 32-bit encoding: a RelativeAddress must be able to fit in a |
| // pointer: it is encoded as an Address with (from LS to MS bits): |
| // - 2 bits identifying this as a HeapObject. |
| // - 4 bits to encode the AllocationSpace (including special values for |
| // code and fixed arrays in LO space) |
| // - 27 bits identifying a word in the space, in one of three formats: |
| // - paged spaces: 16 bits of page number, 11 bits of word offset in page |
| // - NEW space: 27 bits of word offset |
| // - LO space: 27 bits of page number |
| |
| const int kSpaceShift = kHeapObjectTagSize; |
| const int kSpaceBits = 4; |
| const int kSpaceMask = (1 << kSpaceBits) - 1; |
| |
| const int kOffsetShift = kSpaceShift + kSpaceBits; |
| const int kOffsetBits = 11; |
| const int kOffsetMask = (1 << kOffsetBits) - 1; |
| |
| const int kPageShift = kOffsetShift + kOffsetBits; |
| const int kPageBits = 32 - (kOffsetBits + kSpaceBits + kHeapObjectTagSize); |
| const int kPageMask = (1 << kPageBits) - 1; |
| |
| const int kPageAndOffsetShift = kOffsetShift; |
| const int kPageAndOffsetBits = kPageBits + kOffsetBits; |
| const int kPageAndOffsetMask = (1 << kPageAndOffsetBits) - 1; |
| |
| // These values are special allocation space tags used for |
| // serialization. |
| // Mark the pages executable on platforms that support it. |
| const int kLargeCode = LAST_SPACE + 1; |
| // Allocate extra remembered-set bits. |
| const int kLargeFixedArray = LAST_SPACE + 2; |
| |
| |
| static inline AllocationSpace GetSpace(Address addr) { |
| const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| int space_number = (static_cast<int>(encoded >> kSpaceShift) & kSpaceMask); |
| if (space_number > LAST_SPACE) space_number = LO_SPACE; |
| return static_cast<AllocationSpace>(space_number); |
| } |
| |
| |
| static inline bool IsLargeExecutableObject(Address addr) { |
| const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| const int space_number = |
| (static_cast<int>(encoded >> kSpaceShift) & kSpaceMask); |
| return (space_number == kLargeCode); |
| } |
| |
| |
| static inline bool IsLargeFixedArray(Address addr) { |
| const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| const int space_number = |
| (static_cast<int>(encoded >> kSpaceShift) & kSpaceMask); |
| return (space_number == kLargeFixedArray); |
| } |
| |
| |
| static inline int PageIndex(Address addr) { |
| const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| return static_cast<int>(encoded >> kPageShift) & kPageMask; |
| } |
| |
| |
| static inline int PageOffset(Address addr) { |
| const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| const int offset = static_cast<int>(encoded >> kOffsetShift) & kOffsetMask; |
| return offset << kObjectAlignmentBits; |
| } |
| |
| |
| static inline int NewSpaceOffset(Address addr) { |
| const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| const int page_offset = |
| static_cast<int>(encoded >> kPageAndOffsetShift) & kPageAndOffsetMask; |
| return page_offset << kObjectAlignmentBits; |
| } |
| |
| |
| static inline int LargeObjectIndex(Address addr) { |
| const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| return static_cast<int>(encoded >> kPageAndOffsetShift) & kPageAndOffsetMask; |
| } |
| |
| |
| // A RelativeAddress encodes a heap address that is independent of |
| // the actual memory addresses in real heap. The general case (for the |
| // OLD, CODE and MAP spaces) is as a (space id, page number, page offset) |
| // triple. The NEW space has page number == 0, because there are no |
| // pages. The LARGE_OBJECT space has page offset = 0, since there is |
| // exactly one object per page. RelativeAddresses are encodable as |
| // Addresses, so that they can replace the map() pointers of |
| // HeapObjects. The encoded Addresses are also encoded as HeapObjects |
| // and allow for marking (is_marked() see mark(), clear_mark()...) as |
| // used by the Mark-Compact collector. |
| |
| class RelativeAddress { |
| public: |
| RelativeAddress(AllocationSpace space, |
| int page_index, |
| int page_offset) |
| : space_(space), page_index_(page_index), page_offset_(page_offset) { |
| // Assert that the space encoding (plus the two pseudo-spaces for |
| // special large objects) fits in the available bits. |
| ASSERT(((LAST_SPACE + 2) & ~kSpaceMask) == 0); |
| ASSERT(space <= LAST_SPACE && space >= 0); |
| } |
| |
| // Return the encoding of 'this' as an Address. Decode with constructor. |
| Address Encode() const; |
| |
| AllocationSpace space() const { |
| if (space_ > LAST_SPACE) return LO_SPACE; |
| return static_cast<AllocationSpace>(space_); |
| } |
| int page_index() const { return page_index_; } |
| int page_offset() const { return page_offset_; } |
| |
| bool in_paged_space() const { |
| return space_ == CODE_SPACE || |
| space_ == OLD_POINTER_SPACE || |
| space_ == OLD_DATA_SPACE || |
| space_ == MAP_SPACE || |
| space_ == CELL_SPACE; |
| } |
| |
| void next_address(int offset) { page_offset_ += offset; } |
| void next_page(int init_offset = 0) { |
| page_index_++; |
| page_offset_ = init_offset; |
| } |
| |
| #ifdef DEBUG |
| void Verify(); |
| #endif |
| |
| void set_to_large_code_object() { |
| ASSERT(space_ == LO_SPACE); |
| space_ = kLargeCode; |
| } |
| void set_to_large_fixed_array() { |
| ASSERT(space_ == LO_SPACE); |
| space_ = kLargeFixedArray; |
| } |
| |
| |
| private: |
| int space_; |
| int page_index_; |
| int page_offset_; |
| }; |
| |
| |
| Address RelativeAddress::Encode() const { |
| ASSERT(page_index_ >= 0); |
| int word_offset = 0; |
| int result = 0; |
| switch (space_) { |
| case MAP_SPACE: |
| case CELL_SPACE: |
| case OLD_POINTER_SPACE: |
| case OLD_DATA_SPACE: |
| case CODE_SPACE: |
| ASSERT_EQ(0, page_index_ & ~kPageMask); |
| word_offset = page_offset_ >> kObjectAlignmentBits; |
| ASSERT_EQ(0, word_offset & ~kOffsetMask); |
| result = (page_index_ << kPageShift) | (word_offset << kOffsetShift); |
| break; |
| case NEW_SPACE: |
| ASSERT_EQ(0, page_index_); |
| word_offset = page_offset_ >> kObjectAlignmentBits; |
| ASSERT_EQ(0, word_offset & ~kPageAndOffsetMask); |
| result = word_offset << kPageAndOffsetShift; |
| break; |
| case LO_SPACE: |
| case kLargeCode: |
| case kLargeFixedArray: |
| ASSERT_EQ(0, page_offset_); |
| ASSERT_EQ(0, page_index_ & ~kPageAndOffsetMask); |
| result = page_index_ << kPageAndOffsetShift; |
| break; |
| } |
| // OR in AllocationSpace and kHeapObjectTag |
| ASSERT_EQ(0, space_ & ~kSpaceMask); |
| result |= (space_ << kSpaceShift) | kHeapObjectTag; |
| return reinterpret_cast<Address>(result); |
| } |
| |
| |
| #ifdef DEBUG |
| void RelativeAddress::Verify() { |
| ASSERT(page_offset_ >= 0 && page_index_ >= 0); |
| switch (space_) { |
| case MAP_SPACE: |
| case CELL_SPACE: |
| case OLD_POINTER_SPACE: |
| case OLD_DATA_SPACE: |
| case CODE_SPACE: |
| ASSERT(Page::kObjectStartOffset <= page_offset_ && |
| page_offset_ <= Page::kPageSize); |
| break; |
| case NEW_SPACE: |
| ASSERT(page_index_ == 0); |
| break; |
| case LO_SPACE: |
| case kLargeCode: |
| case kLargeFixedArray: |
| ASSERT(page_offset_ == 0); |
| break; |
| } |
| } |
| #endif |
| |
| enum GCTreatment { |
| DataObject, // Object that cannot contain a reference to new space. |
| PointerObject, // Object that can contain a reference to new space. |
| CodeObject // Object that contains executable code. |
| }; |
| |
| // A SimulatedHeapSpace simulates the allocation of objects in a page in |
| // the heap. It uses linear allocation - that is, it doesn't simulate the |
| // use of a free list. This simulated |
| // allocation must exactly match that done by Heap. |
| |
| class SimulatedHeapSpace { |
| public: |
| // The default constructor initializes to an invalid state. |
| SimulatedHeapSpace(): current_(LAST_SPACE, -1, -1) {} |
| |
| // Sets 'this' to the first address in 'space' that would be |
| // returned by allocation in an empty heap. |
| void InitEmptyHeap(AllocationSpace space); |
| |
| // Sets 'this' to the next address in 'space' that would be returned |
| // by allocation in the current heap. Intended only for testing |
| // serialization and deserialization in the current address space. |
| void InitCurrentHeap(AllocationSpace space); |
| |
| // Returns the RelativeAddress where the next |
| // object of 'size' bytes will be allocated, and updates 'this' to |
| // point to the next free address beyond that object. |
| RelativeAddress Allocate(int size, GCTreatment special_gc_treatment); |
| |
| private: |
| RelativeAddress current_; |
| }; |
| |
| |
| void SimulatedHeapSpace::InitEmptyHeap(AllocationSpace space) { |
| switch (space) { |
| case MAP_SPACE: |
| case CELL_SPACE: |
| case OLD_POINTER_SPACE: |
| case OLD_DATA_SPACE: |
| case CODE_SPACE: |
| current_ = RelativeAddress(space, 0, Page::kObjectStartOffset); |
| break; |
| case NEW_SPACE: |
| case LO_SPACE: |
| current_ = RelativeAddress(space, 0, 0); |
| break; |
| } |
| } |
| |
| |
| void SimulatedHeapSpace::InitCurrentHeap(AllocationSpace space) { |
| switch (space) { |
| case MAP_SPACE: |
| case CELL_SPACE: |
| case OLD_POINTER_SPACE: |
| case OLD_DATA_SPACE: |
| case CODE_SPACE: { |
| PagedSpace* ps; |
| if (space == MAP_SPACE) { |
| ps = Heap::map_space(); |
| } else if (space == CELL_SPACE) { |
| ps = Heap::cell_space(); |
| } else if (space == OLD_POINTER_SPACE) { |
| ps = Heap::old_pointer_space(); |
| } else if (space == OLD_DATA_SPACE) { |
| ps = Heap::old_data_space(); |
| } else { |
| ASSERT(space == CODE_SPACE); |
| ps = Heap::code_space(); |
| } |
| Address top = ps->top(); |
| Page* top_page = Page::FromAllocationTop(top); |
| int page_index = 0; |
| PageIterator it(ps, PageIterator::PAGES_IN_USE); |
| while (it.has_next()) { |
| if (it.next() == top_page) break; |
| page_index++; |
| } |
| current_ = RelativeAddress(space, |
| page_index, |
| top_page->Offset(top)); |
| break; |
| } |
| case NEW_SPACE: |
| current_ = RelativeAddress(space, |
| 0, |
| Heap::NewSpaceTop() - Heap::NewSpaceStart()); |
| break; |
| case LO_SPACE: |
| int page_index = 0; |
| for (LargeObjectIterator it(Heap::lo_space()); it.has_next(); it.next()) { |
| page_index++; |
| } |
| current_ = RelativeAddress(space, page_index, 0); |
| break; |
| } |
| } |
| |
| |
| RelativeAddress SimulatedHeapSpace::Allocate(int size, |
| GCTreatment special_gc_treatment) { |
| #ifdef DEBUG |
| current_.Verify(); |
| #endif |
| int alloc_size = OBJECT_SIZE_ALIGN(size); |
| if (current_.in_paged_space() && |
| current_.page_offset() + alloc_size > Page::kPageSize) { |
| ASSERT(alloc_size <= Page::kMaxHeapObjectSize); |
| current_.next_page(Page::kObjectStartOffset); |
| } |
| RelativeAddress result = current_; |
| if (current_.space() == LO_SPACE) { |
| current_.next_page(); |
| if (special_gc_treatment == CodeObject) { |
| result.set_to_large_code_object(); |
| } else if (special_gc_treatment == PointerObject) { |
| result.set_to_large_fixed_array(); |
| } |
| } else { |
| current_.next_address(alloc_size); |
| } |
| #ifdef DEBUG |
| current_.Verify(); |
| result.Verify(); |
| #endif |
| return result; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Coding of external references. |
| |
| // The encoding of an external reference. The type is in the high word. |
| // The id is in the low word. |
| static uint32_t EncodeExternal(TypeCode type, uint16_t id) { |
| return static_cast<uint32_t>(type) << 16 | id; |
| } |
| |
| |
| static int* GetInternalPointer(StatsCounter* counter) { |
| // All counters refer to dummy_counter, if deserializing happens without |
| // setting up counters. |
| static int dummy_counter = 0; |
| return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter; |
| } |
| |
| |
| // ExternalReferenceTable is a helper class that defines the relationship |
| // between external references and their encodings. It is used to build |
| // hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder. |
| class ExternalReferenceTable { |
| public: |
| static ExternalReferenceTable* instance() { |
| if (!instance_) instance_ = new ExternalReferenceTable(); |
| return instance_; |
| } |
| |
| int size() const { return refs_.length(); } |
| |
| Address address(int i) { return refs_[i].address; } |
| |
| uint32_t code(int i) { return refs_[i].code; } |
| |
| const char* name(int i) { return refs_[i].name; } |
| |
| int max_id(int code) { return max_id_[code]; } |
| |
| private: |
| static ExternalReferenceTable* instance_; |
| |
| ExternalReferenceTable() : refs_(64) { PopulateTable(); } |
| ~ExternalReferenceTable() { } |
| |
| struct ExternalReferenceEntry { |
| Address address; |
| uint32_t code; |
| const char* name; |
| }; |
| |
| void PopulateTable(); |
| |
| // For a few types of references, we can get their address from their id. |
| void AddFromId(TypeCode type, uint16_t id, const char* name); |
| |
| // For other types of references, the caller will figure out the address. |
| void Add(Address address, TypeCode type, uint16_t id, const char* name); |
| |
| List<ExternalReferenceEntry> refs_; |
| int max_id_[kTypeCodeCount]; |
| }; |
| |
| |
| ExternalReferenceTable* ExternalReferenceTable::instance_ = NULL; |
| |
| |
| void ExternalReferenceTable::AddFromId(TypeCode type, |
| uint16_t id, |
| const char* name) { |
| Address address; |
| switch (type) { |
| case C_BUILTIN: { |
| ExternalReference ref(static_cast<Builtins::CFunctionId>(id)); |
| address = ref.address(); |
| break; |
| } |
| case BUILTIN: { |
| ExternalReference ref(static_cast<Builtins::Name>(id)); |
| address = ref.address(); |
| break; |
| } |
| case RUNTIME_FUNCTION: { |
| ExternalReference ref(static_cast<Runtime::FunctionId>(id)); |
| address = ref.address(); |
| break; |
| } |
| case IC_UTILITY: { |
| ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id))); |
| address = ref.address(); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| return; |
| } |
| Add(address, type, id, name); |
| } |
| |
| |
| void ExternalReferenceTable::Add(Address address, |
| TypeCode type, |
| uint16_t id, |
| const char* name) { |
| CHECK_NE(NULL, address); |
| ExternalReferenceEntry entry; |
| entry.address = address; |
| entry.code = EncodeExternal(type, id); |
| entry.name = name; |
| CHECK_NE(0, entry.code); |
| refs_.Add(entry); |
| if (id > max_id_[type]) max_id_[type] = id; |
| } |
| |
| |
| void ExternalReferenceTable::PopulateTable() { |
| for (int type_code = 0; type_code < kTypeCodeCount; type_code++) { |
| max_id_[type_code] = 0; |
| } |
| |
| // The following populates all of the different type of external references |
| // into the ExternalReferenceTable. |
| // |
| // NOTE: This function was originally 100k of code. It has since been |
| // rewritten to be mostly table driven, as the callback macro style tends to |
| // very easily cause code bloat. Please be careful in the future when adding |
| // new references. |
| |
| struct RefTableEntry { |
| TypeCode type; |
| uint16_t id; |
| const char* name; |
| }; |
| |
| static const RefTableEntry ref_table[] = { |
| // Builtins |
| #define DEF_ENTRY_C(name) \ |
| { C_BUILTIN, \ |
| Builtins::c_##name, \ |
| "Builtins::" #name }, |
| |
| BUILTIN_LIST_C(DEF_ENTRY_C) |
| #undef DEF_ENTRY_C |
| |
| #define DEF_ENTRY_C(name) \ |
| { BUILTIN, \ |
| Builtins::name, \ |
| "Builtins::" #name }, |
| #define DEF_ENTRY_A(name, kind, state) DEF_ENTRY_C(name) |
| |
| BUILTIN_LIST_C(DEF_ENTRY_C) |
| BUILTIN_LIST_A(DEF_ENTRY_A) |
| BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) |
| #undef DEF_ENTRY_C |
| #undef DEF_ENTRY_A |
| |
| // Runtime functions |
| #define RUNTIME_ENTRY(name, nargs, ressize) \ |
| { RUNTIME_FUNCTION, \ |
| Runtime::k##name, \ |
| "Runtime::" #name }, |
| |
| RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY) |
| #undef RUNTIME_ENTRY |
| |
| // IC utilities |
| #define IC_ENTRY(name) \ |
| { IC_UTILITY, \ |
| IC::k##name, \ |
| "IC::" #name }, |
| |
| IC_UTIL_LIST(IC_ENTRY) |
| #undef IC_ENTRY |
| }; // end of ref_table[]. |
| |
| for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) { |
| AddFromId(ref_table[i].type, ref_table[i].id, ref_table[i].name); |
| } |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Debug addresses |
| Add(Debug_Address(Debug::k_after_break_target_address).address(), |
| DEBUG_ADDRESS, |
| Debug::k_after_break_target_address << kDebugIdShift, |
| "Debug::after_break_target_address()"); |
| Add(Debug_Address(Debug::k_debug_break_return_address).address(), |
| DEBUG_ADDRESS, |
| Debug::k_debug_break_return_address << kDebugIdShift, |
| "Debug::debug_break_return_address()"); |
| const char* debug_register_format = "Debug::register_address(%i)"; |
| size_t dr_format_length = strlen(debug_register_format); |
| for (int i = 0; i < kNumJSCallerSaved; ++i) { |
| Vector<char> name = Vector<char>::New(dr_format_length + 1); |
| OS::SNPrintF(name, debug_register_format, i); |
| Add(Debug_Address(Debug::k_register_address, i).address(), |
| DEBUG_ADDRESS, |
| Debug::k_register_address << kDebugIdShift | i, |
| name.start()); |
| } |
| #endif |
| |
| // Stat counters |
| struct StatsRefTableEntry { |
| StatsCounter* counter; |
| uint16_t id; |
| const char* name; |
| }; |
| |
| static const StatsRefTableEntry stats_ref_table[] = { |
| #define COUNTER_ENTRY(name, caption) \ |
| { &Counters::name, \ |
| Counters::k_##name, \ |
| "Counters::" #name }, |
| |
| STATS_COUNTER_LIST_1(COUNTER_ENTRY) |
| STATS_COUNTER_LIST_2(COUNTER_ENTRY) |
| #undef COUNTER_ENTRY |
| }; // end of stats_ref_table[]. |
| |
| for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) { |
| Add(reinterpret_cast<Address>( |
| GetInternalPointer(stats_ref_table[i].counter)), |
| STATS_COUNTER, |
| stats_ref_table[i].id, |
| stats_ref_table[i].name); |
| } |
| |
| // Top addresses |
| const char* top_address_format = "Top::get_address_from_id(%i)"; |
| size_t top_format_length = strlen(top_address_format); |
| for (uint16_t i = 0; i < Top::k_top_address_count; ++i) { |
| Vector<char> name = Vector<char>::New(top_format_length + 1); |
| const char* chars = name.start(); |
| OS::SNPrintF(name, top_address_format, i); |
| Add(Top::get_address_from_id((Top::AddressId)i), TOP_ADDRESS, i, chars); |
| } |
| |
| // Extensions |
| Add(FUNCTION_ADDR(GCExtension::GC), EXTENSION, 1, |
| "GCExtension::GC"); |
| |
| // Accessors |
| #define ACCESSOR_DESCRIPTOR_DECLARATION(name) \ |
| Add((Address)&Accessors::name, \ |
| ACCESSOR, \ |
| Accessors::k##name, \ |
| "Accessors::" #name); |
| |
| ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION) |
| #undef ACCESSOR_DESCRIPTOR_DECLARATION |
| |
| // Stub cache tables |
| Add(SCTableReference::keyReference(StubCache::kPrimary).address(), |
| STUB_CACHE_TABLE, |
| 1, |
| "StubCache::primary_->key"); |
| Add(SCTableReference::valueReference(StubCache::kPrimary).address(), |
| STUB_CACHE_TABLE, |
| 2, |
| "StubCache::primary_->value"); |
| Add(SCTableReference::keyReference(StubCache::kSecondary).address(), |
| STUB_CACHE_TABLE, |
| 3, |
| "StubCache::secondary_->key"); |
| Add(SCTableReference::valueReference(StubCache::kSecondary).address(), |
| STUB_CACHE_TABLE, |
| 4, |
| "StubCache::secondary_->value"); |
| |
| // Runtime entries |
| Add(ExternalReference::perform_gc_function().address(), |
| RUNTIME_ENTRY, |
| 1, |
| "Runtime::PerformGC"); |
| Add(ExternalReference::random_positive_smi_function().address(), |
| RUNTIME_ENTRY, |
| 2, |
| "V8::RandomPositiveSmi"); |
| |
| // Miscellaneous |
| Add(ExternalReference::builtin_passed_function().address(), |
| UNCLASSIFIED, |
| 1, |
| "Builtins::builtin_passed_function"); |
| Add(ExternalReference::the_hole_value_location().address(), |
| UNCLASSIFIED, |
| 2, |
| "Factory::the_hole_value().location()"); |
| Add(ExternalReference::roots_address().address(), |
| UNCLASSIFIED, |
| 3, |
| "Heap::roots_address()"); |
| Add(ExternalReference::address_of_stack_guard_limit().address(), |
| UNCLASSIFIED, |
| 4, |
| "StackGuard::address_of_jslimit()"); |
| Add(ExternalReference::address_of_regexp_stack_limit().address(), |
| UNCLASSIFIED, |
| 5, |
| "RegExpStack::limit_address()"); |
| Add(ExternalReference::new_space_start().address(), |
| UNCLASSIFIED, |
| 6, |
| "Heap::NewSpaceStart()"); |
| Add(ExternalReference::heap_always_allocate_scope_depth().address(), |
| UNCLASSIFIED, |
| 7, |
| "Heap::always_allocate_scope_depth()"); |
| Add(ExternalReference::new_space_allocation_limit_address().address(), |
| UNCLASSIFIED, |
| 8, |
| "Heap::NewSpaceAllocationLimitAddress()"); |
| Add(ExternalReference::new_space_allocation_top_address().address(), |
| UNCLASSIFIED, |
| 9, |
| "Heap::NewSpaceAllocationTopAddress()"); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| Add(ExternalReference::debug_break().address(), |
| UNCLASSIFIED, |
| 10, |
| "Debug::Break()"); |
| Add(ExternalReference::debug_step_in_fp_address().address(), |
| UNCLASSIFIED, |
| 11, |
| "Debug::step_in_fp_addr()"); |
| #endif |
| Add(ExternalReference::double_fp_operation(Token::ADD).address(), |
| UNCLASSIFIED, |
| 12, |
| "add_two_doubles"); |
| Add(ExternalReference::double_fp_operation(Token::SUB).address(), |
| UNCLASSIFIED, |
| 13, |
| "sub_two_doubles"); |
| Add(ExternalReference::double_fp_operation(Token::MUL).address(), |
| UNCLASSIFIED, |
| 14, |
| "mul_two_doubles"); |
| Add(ExternalReference::double_fp_operation(Token::DIV).address(), |
| UNCLASSIFIED, |
| 15, |
| "div_two_doubles"); |
| Add(ExternalReference::double_fp_operation(Token::MOD).address(), |
| UNCLASSIFIED, |
| 16, |
| "mod_two_doubles"); |
| Add(ExternalReference::compare_doubles().address(), |
| UNCLASSIFIED, |
| 17, |
| "compare_doubles"); |
| #ifdef V8_NATIVE_REGEXP |
| Add(ExternalReference::re_case_insensitive_compare_uc16().address(), |
| UNCLASSIFIED, |
| 18, |
| "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); |
| Add(ExternalReference::re_check_stack_guard_state().address(), |
| UNCLASSIFIED, |
| 19, |
| "RegExpMacroAssembler*::CheckStackGuardState()"); |
| Add(ExternalReference::re_grow_stack().address(), |
| UNCLASSIFIED, |
| 20, |
| "NativeRegExpMacroAssembler::GrowStack()"); |
| #endif |
| } |
| |
| |
| ExternalReferenceEncoder::ExternalReferenceEncoder() |
| : encodings_(Match) { |
| ExternalReferenceTable* external_references = |
| ExternalReferenceTable::instance(); |
| for (int i = 0; i < external_references->size(); ++i) { |
| Put(external_references->address(i), i); |
| } |
| } |
| |
| |
| uint32_t ExternalReferenceEncoder::Encode(Address key) const { |
| int index = IndexOf(key); |
| return index >=0 ? ExternalReferenceTable::instance()->code(index) : 0; |
| } |
| |
| |
| const char* ExternalReferenceEncoder::NameOfAddress(Address key) const { |
| int index = IndexOf(key); |
| return index >=0 ? ExternalReferenceTable::instance()->name(index) : NULL; |
| } |
| |
| |
| int ExternalReferenceEncoder::IndexOf(Address key) const { |
| if (key == NULL) return -1; |
| HashMap::Entry* entry = |
| const_cast<HashMap &>(encodings_).Lookup(key, Hash(key), false); |
| return entry == NULL |
| ? -1 |
| : static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); |
| } |
| |
| |
| void ExternalReferenceEncoder::Put(Address key, int index) { |
| HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true); |
| entry->value = reinterpret_cast<void *>(index); |
| } |
| |
| |
| ExternalReferenceDecoder::ExternalReferenceDecoder() |
| : encodings_(NewArray<Address*>(kTypeCodeCount)) { |
| ExternalReferenceTable* external_references = |
| ExternalReferenceTable::instance(); |
| for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { |
| int max = external_references->max_id(type) + 1; |
| encodings_[type] = NewArray<Address>(max + 1); |
| } |
| for (int i = 0; i < external_references->size(); ++i) { |
| Put(external_references->code(i), external_references->address(i)); |
| } |
| } |
| |
| |
| ExternalReferenceDecoder::~ExternalReferenceDecoder() { |
| for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { |
| DeleteArray(encodings_[type]); |
| } |
| DeleteArray(encodings_); |
| } |
| |
| |
| //------------------------------------------------------------------------------ |
| // Implementation of Serializer |
| |
| |
| // Helper class to write the bytes of the serialized heap. |
| |
| class SnapshotWriter { |
| public: |
| SnapshotWriter() { |
| len_ = 0; |
| max_ = 8 << 10; // 8K initial size |
| str_ = NewArray<byte>(max_); |
| } |
| |
| ~SnapshotWriter() { |
| DeleteArray(str_); |
| } |
| |
| void GetBytes(byte** str, int* len) { |
| *str = NewArray<byte>(len_); |
| memcpy(*str, str_, len_); |
| *len = len_; |
| } |
| |
| void Reserve(int bytes, int pos); |
| |
| void PutC(char c) { |
| InsertC(c, len_); |
| } |
| |
| void PutInt(int i) { |
| InsertInt(i, len_); |
| } |
| |
| void PutAddress(Address p) { |
| PutBytes(reinterpret_cast<byte*>(&p), sizeof(p)); |
| } |
| |
| void PutBytes(const byte* a, int size) { |
| InsertBytes(a, len_, size); |
| } |
| |
| void PutString(const char* s) { |
| InsertString(s, len_); |
| } |
| |
| int InsertC(char c, int pos) { |
| Reserve(1, pos); |
| str_[pos] = c; |
| len_++; |
| return pos + 1; |
| } |
| |
| int InsertInt(int i, int pos) { |
| return InsertBytes(reinterpret_cast<byte*>(&i), pos, sizeof(i)); |
| } |
| |
| int InsertBytes(const byte* a, int pos, int size) { |
| Reserve(size, pos); |
| memcpy(&str_[pos], a, size); |
| len_ += size; |
| return pos + size; |
| } |
| |
| int InsertString(const char* s, int pos); |
| |
| int length() { return len_; } |
| |
| Address position() { return reinterpret_cast<Address>(&str_[len_]); } |
| |
| private: |
| byte* str_; // the snapshot |
| int len_; // the current length of str_ |
| int max_; // the allocated size of str_ |
| }; |
| |
| |
| void SnapshotWriter::Reserve(int bytes, int pos) { |
| CHECK(0 <= pos && pos <= len_); |
| while (len_ + bytes >= max_) { |
| max_ *= 2; |
| byte* old = str_; |
| str_ = NewArray<byte>(max_); |
| memcpy(str_, old, len_); |
| DeleteArray(old); |
| } |
| if (pos < len_) { |
| byte* old = str_; |
| str_ = NewArray<byte>(max_); |
| memcpy(str_, old, pos); |
| memcpy(str_ + pos + bytes, old + pos, len_ - pos); |
| DeleteArray(old); |
| } |
| } |
| |
| int SnapshotWriter::InsertString(const char* s, int pos) { |
| int size = strlen(s); |
| pos = InsertC('[', pos); |
| pos = InsertInt(size, pos); |
| pos = InsertC(']', pos); |
| return InsertBytes(reinterpret_cast<const byte*>(s), pos, size); |
| } |
| |
| |
| class ReferenceUpdater: public ObjectVisitor { |
| public: |
| ReferenceUpdater(HeapObject* obj, Serializer* serializer) |
| : obj_address_(obj->address()), |
| serializer_(serializer), |
| reference_encoder_(serializer->reference_encoder_), |
| offsets_(8), |
| addresses_(8) { |
| } |
| |
| virtual void VisitPointers(Object** start, Object** end) { |
| for (Object** p = start; p < end; ++p) { |
| if ((*p)->IsHeapObject()) { |
| offsets_.Add(reinterpret_cast<Address>(p) - obj_address_); |
| Address a = serializer_->GetSavedAddress(HeapObject::cast(*p)); |
| addresses_.Add(a); |
| } |
| } |
| } |
| |
| virtual void VisitCodeTarget(RelocInfo* rinfo) { |
| ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); |
| Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); |
| Address encoded_target = serializer_->GetSavedAddress(target); |
| offsets_.Add(rinfo->target_address_address() - obj_address_); |
| addresses_.Add(encoded_target); |
| } |
| |
| |
| virtual void VisitExternalReferences(Address* start, Address* end) { |
| for (Address* p = start; p < end; ++p) { |
| uint32_t code = reference_encoder_->Encode(*p); |
| CHECK(*p == NULL ? code == 0 : code != 0); |
| offsets_.Add(reinterpret_cast<Address>(p) - obj_address_); |
| addresses_.Add(reinterpret_cast<Address>(code)); |
| } |
| } |
| |
| virtual void VisitRuntimeEntry(RelocInfo* rinfo) { |
| Address target = rinfo->target_address(); |
| uint32_t encoding = reference_encoder_->Encode(target); |
| CHECK(target == NULL ? encoding == 0 : encoding != 0); |
| offsets_.Add(rinfo->target_address_address() - obj_address_); |
| addresses_.Add(reinterpret_cast<Address>(encoding)); |
| } |
| |
| void Update(Address start_address) { |
| for (int i = 0; i < offsets_.length(); i++) { |
| memcpy(start_address + offsets_[i], &addresses_[i], sizeof(Address)); |
| } |
| } |
| |
| private: |
| Address obj_address_; |
| Serializer* serializer_; |
| ExternalReferenceEncoder* reference_encoder_; |
| List<int> offsets_; |
| List<Address> addresses_; |
| }; |
| |
| |
| // Helper functions for a map of encoded heap object addresses. |
| static uint32_t HeapObjectHash(HeapObject* key) { |
| uint32_t low32bits = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)); |
| return low32bits >> 2; |
| } |
| |
| |
| static bool MatchHeapObject(void* key1, void* key2) { |
| return key1 == key2; |
| } |
| |
| |
| Serializer::Serializer() |
| : global_handles_(4), |
| saved_addresses_(MatchHeapObject) { |
| root_ = true; |
| roots_ = 0; |
| objects_ = 0; |
| reference_encoder_ = NULL; |
| writer_ = new SnapshotWriter(); |
| for (int i = 0; i <= LAST_SPACE; i++) { |
| allocator_[i] = new SimulatedHeapSpace(); |
| } |
| } |
| |
| |
| Serializer::~Serializer() { |
| for (int i = 0; i <= LAST_SPACE; i++) { |
| delete allocator_[i]; |
| } |
| if (reference_encoder_) delete reference_encoder_; |
| delete writer_; |
| } |
| |
| |
| bool Serializer::serialization_enabled_ = false; |
| |
| |
| #ifdef DEBUG |
| static const int kMaxTagLength = 32; |
| |
| void Serializer::Synchronize(const char* tag) { |
| if (FLAG_debug_serialization) { |
| int length = strlen(tag); |
| ASSERT(length <= kMaxTagLength); |
| writer_->PutC('S'); |
| writer_->PutInt(length); |
| writer_->PutBytes(reinterpret_cast<const byte*>(tag), length); |
| } |
| } |
| #endif |
| |
| |
| void Serializer::InitializeAllocators() { |
| for (int i = 0; i <= LAST_SPACE; i++) { |
| allocator_[i]->InitEmptyHeap(static_cast<AllocationSpace>(i)); |
| } |
| } |
| |
| |
| bool Serializer::IsVisited(HeapObject* obj) { |
| HashMap::Entry* entry = |
| saved_addresses_.Lookup(obj, HeapObjectHash(obj), false); |
| return entry != NULL; |
| } |
| |
| |
| Address Serializer::GetSavedAddress(HeapObject* obj) { |
| HashMap::Entry* entry = |
| saved_addresses_.Lookup(obj, HeapObjectHash(obj), false); |
| ASSERT(entry != NULL); |
| return reinterpret_cast<Address>(entry->value); |
| } |
| |
| |
| void Serializer::SaveAddress(HeapObject* obj, Address addr) { |
| HashMap::Entry* entry = |
| saved_addresses_.Lookup(obj, HeapObjectHash(obj), true); |
| entry->value = addr; |
| } |
| |
| |
| void Serializer::Serialize() { |
| // No active threads. |
| CHECK_EQ(NULL, ThreadState::FirstInUse()); |
| // No active or weak handles. |
| CHECK(HandleScopeImplementer::instance()->blocks()->is_empty()); |
| CHECK_EQ(0, GlobalHandles::NumberOfWeakHandles()); |
| // We need a counter function during serialization to resolve the |
| // references to counters in the code on the heap. |
| CHECK(StatsTable::HasCounterFunction()); |
| CHECK(enabled()); |
| InitializeAllocators(); |
| reference_encoder_ = new ExternalReferenceEncoder(); |
| PutHeader(); |
| Heap::IterateRoots(this); |
| PutLog(); |
| PutContextStack(); |
| Disable(); |
| } |
| |
| |
| void Serializer::Finalize(byte** str, int* len) { |
| writer_->GetBytes(str, len); |
| } |
| |
| |
| // Serialize objects by writing them into the stream. |
| |
| void Serializer::VisitPointers(Object** start, Object** end) { |
| bool root = root_; |
| root_ = false; |
| for (Object** p = start; p < end; ++p) { |
| bool serialized; |
| Address a = Encode(*p, &serialized); |
| if (root) { |
| roots_++; |
| // If the object was not just serialized, |
| // write its encoded address instead. |
| if (!serialized) PutEncodedAddress(a); |
| } |
| } |
| root_ = root; |
| } |
| |
| |
| void Serializer::VisitCodeTarget(RelocInfo* rinfo) { |
| ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); |
| Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); |
| bool serialized; |
| Encode(target, &serialized); |
| } |
| |
| |
| class GlobalHandlesRetriever: public ObjectVisitor { |
| public: |
| explicit GlobalHandlesRetriever(List<Object**>* handles) |
| : global_handles_(handles) {} |
| |
| virtual void VisitPointers(Object** start, Object** end) { |
| for (; start != end; ++start) { |
| global_handles_->Add(start); |
| } |
| } |
| |
| private: |
| List<Object**>* global_handles_; |
| }; |
| |
| |
| void Serializer::PutFlags() { |
| writer_->PutC('F'); |
| List<const char*>* argv = FlagList::argv(); |
| writer_->PutInt(argv->length()); |
| writer_->PutC('['); |
| for (int i = 0; i < argv->length(); i++) { |
| if (i > 0) writer_->PutC('|'); |
| writer_->PutString((*argv)[i]); |
| DeleteArray((*argv)[i]); |
| } |
| writer_->PutC(']'); |
| flags_end_ = writer_->length(); |
| delete argv; |
| } |
| |
| |
| void Serializer::PutHeader() { |
| PutFlags(); |
| writer_->PutC('D'); |
| #ifdef DEBUG |
| writer_->PutC(FLAG_debug_serialization ? '1' : '0'); |
| #else |
| writer_->PutC('0'); |
| #endif |
| #ifdef V8_NATIVE_REGEXP |
| writer_->PutC('N'); |
| #else // Interpreted regexp |
| writer_->PutC('I'); |
| #endif |
| // Write sizes of paged memory spaces. Allocate extra space for the old |
| // and code spaces, because objects in new space will be promoted to them. |
| writer_->PutC('S'); |
| writer_->PutC('['); |
| writer_->PutInt(Heap::old_pointer_space()->Size() + |
| Heap::new_space()->Size()); |
| writer_->PutC('|'); |
| writer_->PutInt(Heap::old_data_space()->Size() + Heap::new_space()->Size()); |
| writer_->PutC('|'); |
| writer_->PutInt(Heap::code_space()->Size() + Heap::new_space()->Size()); |
| writer_->PutC('|'); |
| writer_->PutInt(Heap::map_space()->Size()); |
| writer_->PutC('|'); |
| writer_->PutInt(Heap::cell_space()->Size()); |
| writer_->PutC(']'); |
| // Write global handles. |
| writer_->PutC('G'); |
| writer_->PutC('['); |
| GlobalHandlesRetriever ghr(&global_handles_); |
| GlobalHandles::IterateRoots(&ghr); |
| for (int i = 0; i < global_handles_.length(); i++) { |
| writer_->PutC('N'); |
| } |
| writer_->PutC(']'); |
| } |
| |
| |
| void Serializer::PutLog() { |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| if (FLAG_log_code) { |
| Logger::TearDown(); |
| int pos = writer_->InsertC('L', flags_end_); |
| bool exists; |
| Vector<const char> log = ReadFile(FLAG_logfile, &exists); |
| writer_->InsertString(log.start(), pos); |
| log.Dispose(); |
| } |
| #endif |
| } |
| |
| |
| static int IndexOf(const List<Object**>& list, Object** element) { |
| for (int i = 0; i < list.length(); i++) { |
| if (list[i] == element) return i; |
| } |
| return -1; |
| } |
| |
| |
| void Serializer::PutGlobalHandleStack(const List<Handle<Object> >& stack) { |
| writer_->PutC('['); |
| writer_->PutInt(stack.length()); |
| for (int i = stack.length() - 1; i >= 0; i--) { |
| writer_->PutC('|'); |
| int gh_index = IndexOf(global_handles_, stack[i].location()); |
| CHECK_GE(gh_index, 0); |
| writer_->PutInt(gh_index); |
| } |
| writer_->PutC(']'); |
| } |
| |
| |
| void Serializer::PutContextStack() { |
| List<Context*> contexts(2); |
| while (HandleScopeImplementer::instance()->HasSavedContexts()) { |
| Context* context = |
| HandleScopeImplementer::instance()->RestoreContext(); |
| contexts.Add(context); |
| } |
| for (int i = contexts.length() - 1; i >= 0; i--) { |
| HandleScopeImplementer::instance()->SaveContext(contexts[i]); |
| } |
| writer_->PutC('C'); |
| writer_->PutC('['); |
| writer_->PutInt(contexts.length()); |
| if (!contexts.is_empty()) { |
| Object** start = reinterpret_cast<Object**>(&contexts.first()); |
| VisitPointers(start, start + contexts.length()); |
| } |
| writer_->PutC(']'); |
| } |
| |
| void Serializer::PutEncodedAddress(Address addr) { |
| writer_->PutC('P'); |
| writer_->PutAddress(addr); |
| } |
| |
| |
| Address Serializer::Encode(Object* o, bool* serialized) { |
| *serialized = false; |
| if (o->IsSmi()) { |
| return reinterpret_cast<Address>(o); |
| } else { |
| HeapObject* obj = HeapObject::cast(o); |
| if (IsVisited(obj)) { |
| return GetSavedAddress(obj); |
| } else { |
| // First visit: serialize the object. |
| *serialized = true; |
| return PutObject(obj); |
| } |
| } |
| } |
| |
| |
| Address Serializer::PutObject(HeapObject* obj) { |
| Map* map = obj->map(); |
| InstanceType type = map->instance_type(); |
| int size = obj->SizeFromMap(map); |
| |
| // Simulate the allocation of obj to predict where it will be |
| // allocated during deserialization. |
| Address addr = Allocate(obj).Encode(); |
| |
| SaveAddress(obj, addr); |
| |
| if (type == CODE_TYPE) { |
| LOG(CodeMoveEvent(obj->address(), addr)); |
| } |
| |
| // Write out the object prologue: type, size, and simulated address of obj. |
| writer_->PutC('['); |
| CHECK_EQ(0, static_cast<int>(size & kObjectAlignmentMask)); |
| writer_->PutInt(type); |
| writer_->PutInt(size >> kObjectAlignmentBits); |
| PutEncodedAddress(addr); // encodes AllocationSpace |
| |
| // Visit all the pointers in the object other than the map. This |
| // will recursively serialize any as-yet-unvisited objects. |
| obj->Iterate(this); |
| |
| // Mark end of recursively embedded objects, start of object body. |
| writer_->PutC('|'); |
| // Write out the raw contents of the object. No compression, but |
| // fast to deserialize. |
| writer_->PutBytes(obj->address(), size); |
| // Update pointers and external references in the written object. |
| ReferenceUpdater updater(obj, this); |
| obj->Iterate(&updater); |
| updater.Update(writer_->position() - size); |
| |
| #ifdef DEBUG |
| if (FLAG_debug_serialization) { |
| // Write out the object epilogue to catch synchronization errors. |
| PutEncodedAddress(addr); |
| writer_->PutC(']'); |
| } |
| #endif |
| |
| objects_++; |
| return addr; |
| } |
| |
| |
| RelativeAddress Serializer::Allocate(HeapObject* obj) { |
| // Find out which AllocationSpace 'obj' is in. |
| AllocationSpace s; |
| bool found = false; |
| for (int i = FIRST_SPACE; !found && i <= LAST_SPACE; i++) { |
| s = static_cast<AllocationSpace>(i); |
| found = Heap::InSpace(obj, s); |
| } |
| CHECK(found); |
| int size = obj->Size(); |
| if (s == NEW_SPACE) { |
| if (size > Heap::MaxObjectSizeInPagedSpace()) { |
| s = LO_SPACE; |
| } else { |
| OldSpace* space = Heap::TargetSpace(obj); |
| ASSERT(space == Heap::old_pointer_space() || |
| space == Heap::old_data_space()); |
| s = (space == Heap::old_pointer_space()) ? |
| OLD_POINTER_SPACE : |
| OLD_DATA_SPACE; |
| } |
| } |
| GCTreatment gc_treatment = DataObject; |
| if (obj->IsFixedArray()) gc_treatment = PointerObject; |
| else if (obj->IsCode()) gc_treatment = CodeObject; |
| return allocator_[s]->Allocate(size, gc_treatment); |
| } |
| |
| |
| //------------------------------------------------------------------------------ |
| // Implementation of Deserializer |
| |
| |
| static const int kInitArraySize = 32; |
| |
| |
| Deserializer::Deserializer(const byte* str, int len) |
| : reader_(str, len), |
| map_pages_(kInitArraySize), |
| cell_pages_(kInitArraySize), |
| old_pointer_pages_(kInitArraySize), |
| old_data_pages_(kInitArraySize), |
| code_pages_(kInitArraySize), |
| large_objects_(kInitArraySize), |
| global_handles_(4) { |
| root_ = true; |
| roots_ = 0; |
| objects_ = 0; |
| reference_decoder_ = NULL; |
| #ifdef DEBUG |
| expect_debug_information_ = false; |
| #endif |
| } |
| |
| |
| Deserializer::~Deserializer() { |
| if (reference_decoder_) delete reference_decoder_; |
| } |
| |
| |
| void Deserializer::ExpectEncodedAddress(Address expected) { |
| Address a = GetEncodedAddress(); |
| USE(a); |
| ASSERT(a == expected); |
| } |
| |
| |
| #ifdef DEBUG |
| void Deserializer::Synchronize(const char* tag) { |
| if (expect_debug_information_) { |
| char buf[kMaxTagLength]; |
| reader_.ExpectC('S'); |
| int length = reader_.GetInt(); |
| ASSERT(length <= kMaxTagLength); |
| reader_.GetBytes(reinterpret_cast<Address>(buf), length); |
| ASSERT_EQ(strlen(tag), length); |
| ASSERT(strncmp(tag, buf, length) == 0); |
| } |
| } |
| #endif |
| |
| |
| void Deserializer::Deserialize() { |
| // No active threads. |
| ASSERT_EQ(NULL, ThreadState::FirstInUse()); |
| // No active handles. |
| ASSERT(HandleScopeImplementer::instance()->blocks()->is_empty()); |
| reference_decoder_ = new ExternalReferenceDecoder(); |
| // By setting linear allocation only, we forbid the use of free list |
| // allocation which is not predicted by SimulatedAddress. |
| GetHeader(); |
| Heap::IterateRoots(this); |
| GetContextStack(); |
| } |
| |
| |
| void Deserializer::VisitPointers(Object** start, Object** end) { |
| bool root = root_; |
| root_ = false; |
| for (Object** p = start; p < end; ++p) { |
| if (root) { |
| roots_++; |
| // Read the next object or pointer from the stream |
| // pointer in the stream. |
| int c = reader_.GetC(); |
| if (c == '[') { |
| *p = GetObject(); // embedded object |
| } else { |
| ASSERT(c == 'P'); // pointer to previously serialized object |
| *p = Resolve(reader_.GetAddress()); |
| } |
| } else { |
| // A pointer internal to a HeapObject that we've already |
| // read: resolve it to a true address (or Smi) |
| *p = Resolve(reinterpret_cast<Address>(*p)); |
| } |
| } |
| root_ = root; |
| } |
| |
| |
| void Deserializer::VisitCodeTarget(RelocInfo* rinfo) { |
| ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); |
| Address encoded_address = reinterpret_cast<Address>(rinfo->target_object()); |
| Code* target_object = reinterpret_cast<Code*>(Resolve(encoded_address)); |
| rinfo->set_target_address(target_object->instruction_start()); |
| } |
| |
| |
| void Deserializer::VisitExternalReferences(Address* start, Address* end) { |
| for (Address* p = start; p < end; ++p) { |
| uint32_t code = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(*p)); |
| *p = reference_decoder_->Decode(code); |
| } |
| } |
| |
| |
| void Deserializer::VisitRuntimeEntry(RelocInfo* rinfo) { |
| uint32_t* pc = reinterpret_cast<uint32_t*>(rinfo->target_address_address()); |
| uint32_t encoding = *pc; |
| Address target = reference_decoder_->Decode(encoding); |
| rinfo->set_target_address(target); |
| } |
| |
| |
| void Deserializer::GetFlags() { |
| reader_.ExpectC('F'); |
| int argc = reader_.GetInt() + 1; |
| char** argv = NewArray<char*>(argc); |
| reader_.ExpectC('['); |
| for (int i = 1; i < argc; i++) { |
| if (i > 1) reader_.ExpectC('|'); |
| argv[i] = reader_.GetString(); |
| } |
| reader_.ExpectC(']'); |
| has_log_ = false; |
| for (int i = 1; i < argc; i++) { |
| if (strcmp("--log_code", argv[i]) == 0) { |
| has_log_ = true; |
| } else if (strcmp("--nouse_ic", argv[i]) == 0) { |
| FLAG_use_ic = false; |
| } else if (strcmp("--debug_code", argv[i]) == 0) { |
| FLAG_debug_code = true; |
| } else if (strcmp("--nolazy", argv[i]) == 0) { |
| FLAG_lazy = false; |
| } |
| DeleteArray(argv[i]); |
| } |
| |
| DeleteArray(argv); |
| } |
| |
| |
| void Deserializer::GetLog() { |
| if (has_log_) { |
| reader_.ExpectC('L'); |
| char* snapshot_log = reader_.GetString(); |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| if (FLAG_log_code) { |
| LOG(Preamble(snapshot_log)); |
| } |
| #endif |
| DeleteArray(snapshot_log); |
| } |
| } |
| |
| |
| static void InitPagedSpace(PagedSpace* space, |
| int capacity, |
| List<Page*>* page_list) { |
| if (!space->EnsureCapacity(capacity)) { |
| V8::FatalProcessOutOfMemory("InitPagedSpace"); |
| } |
| PageIterator it(space, PageIterator::ALL_PAGES); |
| while (it.has_next()) page_list->Add(it.next()); |
| } |
| |
| |
| void Deserializer::GetHeader() { |
| reader_.ExpectC('D'); |
| #ifdef DEBUG |
| expect_debug_information_ = reader_.GetC() == '1'; |
| #else |
| // In release mode, don't attempt to read a snapshot containing |
| // synchronization tags. |
| if (reader_.GetC() != '0') FATAL("Snapshot contains synchronization tags."); |
| #endif |
| #ifdef V8_NATIVE_REGEXP |
| reader_.ExpectC('N'); |
| #else // Interpreted regexp. |
| reader_.ExpectC('I'); |
| #endif |
| // Ensure sufficient capacity in paged memory spaces to avoid growth |
| // during deserialization. |
| reader_.ExpectC('S'); |
| reader_.ExpectC('['); |
| InitPagedSpace(Heap::old_pointer_space(), |
| reader_.GetInt(), |
| &old_pointer_pages_); |
| reader_.ExpectC('|'); |
| InitPagedSpace(Heap::old_data_space(), reader_.GetInt(), &old_data_pages_); |
| reader_.ExpectC('|'); |
| InitPagedSpace(Heap::code_space(), reader_.GetInt(), &code_pages_); |
| reader_.ExpectC('|'); |
| InitPagedSpace(Heap::map_space(), reader_.GetInt(), &map_pages_); |
| reader_.ExpectC('|'); |
| InitPagedSpace(Heap::cell_space(), reader_.GetInt(), &cell_pages_); |
| reader_.ExpectC(']'); |
| // Create placeholders for global handles later to be fill during |
| // IterateRoots. |
| reader_.ExpectC('G'); |
| reader_.ExpectC('['); |
| int c = reader_.GetC(); |
| while (c != ']') { |
| ASSERT(c == 'N'); |
| global_handles_.Add(GlobalHandles::Create(NULL).location()); |
| c = reader_.GetC(); |
| } |
| } |
| |
| |
| void Deserializer::GetGlobalHandleStack(List<Handle<Object> >* stack) { |
| reader_.ExpectC('['); |
| int length = reader_.GetInt(); |
| for (int i = 0; i < length; i++) { |
| reader_.ExpectC('|'); |
| int gh_index = reader_.GetInt(); |
| stack->Add(global_handles_[gh_index]); |
| } |
| reader_.ExpectC(']'); |
| } |
| |
| |
| void Deserializer::GetContextStack() { |
| reader_.ExpectC('C'); |
| CHECK_EQ(reader_.GetC(), '['); |
| int count = reader_.GetInt(); |
| List<Context*> entered_contexts(count); |
| if (count > 0) { |
| Object** start = reinterpret_cast<Object**>(&entered_contexts.first()); |
| VisitPointers(start, start + count); |
| } |
| reader_.ExpectC(']'); |
| for (int i = 0; i < count; i++) { |
| HandleScopeImplementer::instance()->SaveContext(entered_contexts[i]); |
| } |
| } |
| |
| |
| Address Deserializer::GetEncodedAddress() { |
| reader_.ExpectC('P'); |
| return reader_.GetAddress(); |
| } |
| |
| |
| Object* Deserializer::GetObject() { |
| // Read the prologue: type, size and encoded address. |
| InstanceType type = static_cast<InstanceType>(reader_.GetInt()); |
| int size = reader_.GetInt() << kObjectAlignmentBits; |
| Address a = GetEncodedAddress(); |
| |
| // Get a raw object of the right size in the right space. |
| AllocationSpace space = GetSpace(a); |
| Object* o; |
| if (IsLargeExecutableObject(a)) { |
| o = Heap::lo_space()->AllocateRawCode(size); |
| } else if (IsLargeFixedArray(a)) { |
| o = Heap::lo_space()->AllocateRawFixedArray(size); |
| } else { |
| AllocationSpace retry_space = (space == NEW_SPACE) |
| ? Heap::TargetSpaceId(type) |
| : space; |
| o = Heap::AllocateRaw(size, space, retry_space); |
| } |
| ASSERT(!o->IsFailure()); |
| // Check that the simulation of heap allocation was correct. |
| ASSERT(o == Resolve(a)); |
| |
| // Read any recursively embedded objects. |
| int c = reader_.GetC(); |
| while (c == '[') { |
| GetObject(); |
| c = reader_.GetC(); |
| } |
| ASSERT(c == '|'); |
| |
| HeapObject* obj = reinterpret_cast<HeapObject*>(o); |
| // Read the uninterpreted contents of the object after the map |
| reader_.GetBytes(obj->address(), size); |
| #ifdef DEBUG |
| if (expect_debug_information_) { |
| // Read in the epilogue to check that we're still synchronized |
| ExpectEncodedAddress(a); |
| reader_.ExpectC(']'); |
| } |
| #endif |
| |
| // Resolve the encoded pointers we just read in. |
| // Same as obj->Iterate(this), but doesn't rely on the map pointer being set. |
| VisitPointer(reinterpret_cast<Object**>(obj->address())); |
| obj->IterateBody(type, size, this); |
| |
| if (type == CODE_TYPE) { |
| LOG(CodeMoveEvent(a, obj->address())); |
| } |
| objects_++; |
| return o; |
| } |
| |
| |
| static inline Object* ResolvePaged(int page_index, |
| int page_offset, |
| PagedSpace* space, |
| List<Page*>* page_list) { |
| ASSERT(page_index < page_list->length()); |
| Address address = (*page_list)[page_index]->OffsetToAddress(page_offset); |
| return HeapObject::FromAddress(address); |
| } |
| |
| |
| template<typename T> |
| void ConcatReversed(List<T>* target, const List<T>& source) { |
| for (int i = source.length() - 1; i >= 0; i--) { |
| target->Add(source[i]); |
| } |
| } |
| |
| |
| Object* Deserializer::Resolve(Address encoded) { |
| Object* o = reinterpret_cast<Object*>(encoded); |
| if (o->IsSmi()) return o; |
| |
| // Encoded addresses of HeapObjects always have 'HeapObject' tags. |
| ASSERT(o->IsHeapObject()); |
| |
| switch (GetSpace(encoded)) { |
| // For Map space and Old space, we cache the known Pages in map_pages, |
| // old_pointer_pages and old_data_pages. Even though MapSpace keeps a list |
| // of page addresses, we don't rely on it since GetObject uses AllocateRaw, |
| // and that appears not to update the page list. |
| case MAP_SPACE: |
| return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| Heap::map_space(), &map_pages_); |
| case CELL_SPACE: |
| return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| Heap::cell_space(), &cell_pages_); |
| case OLD_POINTER_SPACE: |
| return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| Heap::old_pointer_space(), &old_pointer_pages_); |
| case OLD_DATA_SPACE: |
| return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| Heap::old_data_space(), &old_data_pages_); |
| case CODE_SPACE: |
| return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| Heap::code_space(), &code_pages_); |
| case NEW_SPACE: |
| return HeapObject::FromAddress(Heap::NewSpaceStart() + |
| NewSpaceOffset(encoded)); |
| case LO_SPACE: |
| // Cache the known large_objects, allocated one per 'page' |
| int index = LargeObjectIndex(encoded); |
| if (index >= large_objects_.length()) { |
| int new_object_count = |
| Heap::lo_space()->PageCount() - large_objects_.length(); |
| List<Object*> new_objects(new_object_count); |
| LargeObjectIterator it(Heap::lo_space()); |
| for (int i = 0; i < new_object_count; i++) { |
| new_objects.Add(it.next()); |
| } |
| #ifdef DEBUG |
| for (int i = large_objects_.length() - 1; i >= 0; i--) { |
| ASSERT(it.next() == large_objects_[i]); |
| } |
| #endif |
| ConcatReversed(&large_objects_, new_objects); |
| ASSERT(index < large_objects_.length()); |
| } |
| return large_objects_[index]; // s.page_offset() is ignored. |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| } } // namespace v8::internal |