blob: 1ca236d11798b81ccb00bad7de2897749b49076b [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_ARM)
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "ic-inl.h"
#include "jsregexp.h"
#include "jump-target-light-inl.h"
#include "parser.h"
#include "regexp-macro-assembler.h"
#include "regexp-stack.h"
#include "register-allocator-inl.h"
#include "runtime.h"
#include "scopes.h"
#include "virtual-frame-inl.h"
#include "virtual-frame-arm-inl.h"
namespace v8 {
namespace internal {
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Label* slow,
Condition cc,
bool never_nan_nan);
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Label* lhs_not_nan,
Label* slow,
bool strict);
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm);
static void MultiplyByKnownInt(MacroAssembler* masm,
Register source,
Register destination,
int known_int);
static bool IsEasyToMultiplyBy(int x);
#define __ ACCESS_MASM(masm_)
// -------------------------------------------------------------------------
// Platform-specific DeferredCode functions.
void DeferredCode::SaveRegisters() {
// On ARM you either have a completely spilled frame or you
// handle it yourself, but at the moment there's no automation
// of registers and deferred code.
}
void DeferredCode::RestoreRegisters() {
}
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
frame_state_->frame()->AssertIsSpilled();
}
void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
}
void ICRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterInternalFrame();
}
void ICRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
masm->LeaveInternalFrame();
}
// -------------------------------------------------------------------------
// CodeGenState implementation.
CodeGenState::CodeGenState(CodeGenerator* owner)
: owner_(owner),
previous_(owner->state()) {
owner->set_state(this);
}
ConditionCodeGenState::ConditionCodeGenState(CodeGenerator* owner,
JumpTarget* true_target,
JumpTarget* false_target)
: CodeGenState(owner),
true_target_(true_target),
false_target_(false_target) {
owner->set_state(this);
}
TypeInfoCodeGenState::TypeInfoCodeGenState(CodeGenerator* owner,
Slot* slot,
TypeInfo type_info)
: CodeGenState(owner),
slot_(slot) {
owner->set_state(this);
old_type_info_ = owner->set_type_info(slot, type_info);
}
CodeGenState::~CodeGenState() {
ASSERT(owner_->state() == this);
owner_->set_state(previous_);
}
TypeInfoCodeGenState::~TypeInfoCodeGenState() {
owner()->set_type_info(slot_, old_type_info_);
}
// -------------------------------------------------------------------------
// CodeGenerator implementation
CodeGenerator::CodeGenerator(MacroAssembler* masm)
: deferred_(8),
masm_(masm),
info_(NULL),
frame_(NULL),
allocator_(NULL),
cc_reg_(al),
state_(NULL),
loop_nesting_(0),
type_info_(NULL),
function_return_is_shadowed_(false) {
}
// Calling conventions:
// fp: caller's frame pointer
// sp: stack pointer
// r1: called JS function
// cp: callee's context
void CodeGenerator::Generate(CompilationInfo* info) {
// Record the position for debugging purposes.
CodeForFunctionPosition(info->function());
Comment cmnt(masm_, "[ function compiled by virtual frame code generator");
// Initialize state.
info_ = info;
int slots = scope()->num_parameters() + scope()->num_stack_slots();
ScopedVector<TypeInfo> type_info_array(slots);
type_info_ = &type_info_array;
ASSERT(allocator_ == NULL);
RegisterAllocator register_allocator(this);
allocator_ = &register_allocator;
ASSERT(frame_ == NULL);
frame_ = new VirtualFrame();
cc_reg_ = al;
// Adjust for function-level loop nesting.
ASSERT_EQ(0, loop_nesting_);
loop_nesting_ = info->loop_nesting();
{
CodeGenState state(this);
// Entry:
// Stack: receiver, arguments
// lr: return address
// fp: caller's frame pointer
// sp: stack pointer
// r1: called JS function
// cp: callee's context
allocator_->Initialize();
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
frame_->SpillAll();
__ stop("stop-at");
}
#endif
if (info->mode() == CompilationInfo::PRIMARY) {
frame_->Enter();
// tos: code slot
// Allocate space for locals and initialize them. This also checks
// for stack overflow.
frame_->AllocateStackSlots();
VirtualFrame::SpilledScope spilled_scope(frame_);
int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
// Allocate local context.
// Get outer context and create a new context based on it.
__ ldr(r0, frame_->Function());
frame_->EmitPush(r0);
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
frame_->CallStub(&stub, 1);
} else {
frame_->CallRuntime(Runtime::kNewContext, 1);
}
#ifdef DEBUG
JumpTarget verified_true;
__ cmp(r0, cp);
verified_true.Branch(eq);
__ stop("NewContext: r0 is expected to be the same as cp");
verified_true.Bind();
#endif
// Update context local.
__ str(cp, frame_->Context());
}
// TODO(1241774): Improve this code:
// 1) only needed if we have a context
// 2) no need to recompute context ptr every single time
// 3) don't copy parameter operand code from SlotOperand!
{
Comment cmnt2(masm_, "[ copy context parameters into .context");
// Note that iteration order is relevant here! If we have the same
// parameter twice (e.g., function (x, y, x)), and that parameter
// needs to be copied into the context, it must be the last argument
// passed to the parameter that needs to be copied. This is a rare
// case so we don't check for it, instead we rely on the copying
// order: such a parameter is copied repeatedly into the same
// context location and thus the last value is what is seen inside
// the function.
for (int i = 0; i < scope()->num_parameters(); i++) {
Variable* par = scope()->parameter(i);
Slot* slot = par->slot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
ASSERT(!scope()->is_global_scope()); // No params in global scope.
__ ldr(r1, frame_->ParameterAt(i));
// Loads r2 with context; used below in RecordWrite.
__ str(r1, SlotOperand(slot, r2));
// Load the offset into r3.
int slot_offset =
FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ mov(r3, Operand(slot_offset));
__ RecordWrite(r2, r3, r1);
}
}
}
// Store the arguments object. This must happen after context
// initialization because the arguments object may be stored in
// the context.
if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
StoreArgumentsObject(true);
}
// Initialize ThisFunction reference if present.
if (scope()->is_function_scope() && scope()->function() != NULL) {
__ mov(ip, Operand(Factory::the_hole_value()));
frame_->EmitPush(ip);
StoreToSlot(scope()->function()->slot(), NOT_CONST_INIT);
}
} else {
// When used as the secondary compiler for splitting, r1, cp,
// fp, and lr have been pushed on the stack. Adjust the virtual
// frame to match this state.
frame_->Adjust(4);
// Bind all the bailout labels to the beginning of the function.
List<CompilationInfo::Bailout*>* bailouts = info->bailouts();
for (int i = 0; i < bailouts->length(); i++) {
__ bind(bailouts->at(i)->label());
}
}
// Initialize the function return target after the locals are set
// up, because it needs the expected frame height from the frame.
function_return_.SetExpectedHeight();
function_return_is_shadowed_ = false;
// Generate code to 'execute' declarations and initialize functions
// (source elements). In case of an illegal redeclaration we need to
// handle that instead of processing the declarations.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ illegal redeclarations");
scope()->VisitIllegalRedeclaration(this);
} else {
Comment cmnt(masm_, "[ declarations");
ProcessDeclarations(scope()->declarations());
// Bail out if a stack-overflow exception occurred when processing
// declarations.
if (HasStackOverflow()) return;
}
if (FLAG_trace) {
frame_->CallRuntime(Runtime::kTraceEnter, 0);
// Ignore the return value.
}
// Compile the body of the function in a vanilla state. Don't
// bother compiling all the code if the scope has an illegal
// redeclaration.
if (!scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ function body");
#ifdef DEBUG
bool is_builtin = Bootstrapper::IsActive();
bool should_trace =
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
if (should_trace) {
frame_->CallRuntime(Runtime::kDebugTrace, 0);
// Ignore the return value.
}
#endif
VisitStatements(info->function()->body());
}
}
// Generate the return sequence if necessary.
if (has_valid_frame() || function_return_.is_linked()) {
if (!function_return_.is_linked()) {
CodeForReturnPosition(info->function());
}
// exit
// r0: result
// sp: stack pointer
// fp: frame pointer
// cp: callee's context
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
function_return_.Bind();
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns the parameter as it is.
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kTraceExit, 1);
}
#ifdef DEBUG
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
#endif
// Make sure that the constant pool is not emitted inside of the return
// sequence.
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
// Tear down the frame which will restore the caller's frame pointer and
// the link register.
frame_->Exit();
// Here we use masm_-> instead of the __ macro to avoid the code coverage
// tool from instrumenting as we rely on the code size here.
int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize;
masm_->add(sp, sp, Operand(sp_delta));
masm_->Jump(lr);
#ifdef DEBUG
// Check that the size of the code used for returning matches what is
// expected by the debugger. If the sp_delts above cannot be encoded in
// the add instruction the add will generate two instructions.
int return_sequence_length =
masm_->InstructionsGeneratedSince(&check_exit_codesize);
CHECK(return_sequence_length ==
Assembler::kJSReturnSequenceInstructions ||
return_sequence_length ==
Assembler::kJSReturnSequenceInstructions + 1);
#endif
}
}
// Adjust for function-level loop nesting.
ASSERT(loop_nesting_ == info->loop_nesting());
loop_nesting_ = 0;
// Code generation state must be reset.
ASSERT(!has_cc());
ASSERT(state_ == NULL);
ASSERT(loop_nesting() == 0);
ASSERT(!function_return_is_shadowed_);
function_return_.Unuse();
DeleteFrame();
// Process any deferred code using the register allocator.
if (!HasStackOverflow()) {
ProcessDeferred();
}
allocator_ = NULL;
type_info_ = NULL;
}
int CodeGenerator::NumberOfSlot(Slot* slot) {
if (slot == NULL) return kInvalidSlotNumber;
switch (slot->type()) {
case Slot::PARAMETER:
return slot->index();
case Slot::LOCAL:
return slot->index() + scope()->num_parameters();
default:
break;
}
return kInvalidSlotNumber;
}
MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
// Currently, this assertion will fail if we try to assign to
// a constant variable that is constant because it is read-only
// (such as the variable referring to a named function expression).
// We need to implement assignments to read-only variables.
// Ideally, we should do this during AST generation (by converting
// such assignments into expression statements); however, in general
// we may not be able to make the decision until past AST generation,
// that is when the entire program is known.
ASSERT(slot != NULL);
int index = slot->index();
switch (slot->type()) {
case Slot::PARAMETER:
return frame_->ParameterAt(index);
case Slot::LOCAL:
return frame_->LocalAt(index);
case Slot::CONTEXT: {
// Follow the context chain if necessary.
ASSERT(!tmp.is(cp)); // do not overwrite context register
Register context = cp;
int chain_length = scope()->ContextChainLength(slot->var()->scope());
for (int i = 0; i < chain_length; i++) {
// Load the closure.
// (All contexts, even 'with' contexts, have a closure,
// and it is the same for all contexts inside a function.
// There is no need to go to the function context first.)
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
// Load the function context (which is the incoming, outer context).
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// We may have a 'with' context now. Get the function context.
// (In fact this mov may never be the needed, since the scope analysis
// may not permit a direct context access in this case and thus we are
// always at a function context. However it is safe to dereference be-
// cause the function context of a function context is itself. Before
// deleting this mov we should try to create a counter-example first,
// though...)
__ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, index);
}
default:
UNREACHABLE();
return MemOperand(r0, 0);
}
}
MemOperand CodeGenerator::ContextSlotOperandCheckExtensions(
Slot* slot,
Register tmp,
Register tmp2,
JumpTarget* slow) {
ASSERT(slot->type() == Slot::CONTEXT);
Register context = cp;
for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
__ tst(tmp2, tmp2);
slow->Branch(ne);
}
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
}
// Check that last extension is NULL.
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
__ tst(tmp2, tmp2);
slow->Branch(ne);
__ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, slot->index());
}
// Loads a value on TOS. If it is a boolean value, the result may have been
// (partially) translated into branches, or it may have set the condition
// code register. If force_cc is set, the value is forced to set the
// condition code register and no value is pushed. If the condition code
// register was set, has_cc() is true and cc_reg_ contains the condition to
// test for 'true'.
void CodeGenerator::LoadCondition(Expression* x,
JumpTarget* true_target,
JumpTarget* false_target,
bool force_cc) {
ASSERT(!has_cc());
int original_height = frame_->height();
{ ConditionCodeGenState new_state(this, true_target, false_target);
Visit(x);
// If we hit a stack overflow, we may not have actually visited
// the expression. In that case, we ensure that we have a
// valid-looking frame state because we will continue to generate
// code as we unwind the C++ stack.
//
// It's possible to have both a stack overflow and a valid frame
// state (eg, a subexpression overflowed, visiting it returned
// with a dummied frame state, and visiting this expression
// returned with a normal-looking state).
if (HasStackOverflow() &&
has_valid_frame() &&
!has_cc() &&
frame_->height() == original_height) {
frame_->SpillAll();
true_target->Jump();
}
}
if (force_cc && frame_ != NULL && !has_cc()) {
// Convert the TOS value to a boolean in the condition code register.
ToBoolean(true_target, false_target);
}
ASSERT(!force_cc || !has_valid_frame() || has_cc());
ASSERT(!has_valid_frame() ||
(has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
}
void CodeGenerator::Load(Expression* expr) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
JumpTarget true_target;
JumpTarget false_target;
LoadCondition(expr, &true_target, &false_target, false);
if (has_cc()) {
// Convert cc_reg_ into a boolean value.
VirtualFrame::SpilledScope scope(frame_);
JumpTarget loaded;
JumpTarget materialize_true;
materialize_true.Branch(cc_reg_);
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
frame_->EmitPush(r0);
loaded.Jump();
materialize_true.Bind();
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
frame_->EmitPush(r0);
loaded.Bind();
cc_reg_ = al;
}
if (true_target.is_linked() || false_target.is_linked()) {
VirtualFrame::SpilledScope scope(frame_);
// We have at least one condition value that has been "translated"
// into a branch, thus it needs to be loaded explicitly.
JumpTarget loaded;
if (frame_ != NULL) {
loaded.Jump(); // Don't lose the current TOS.
}
bool both = true_target.is_linked() && false_target.is_linked();
// Load "true" if necessary.
if (true_target.is_linked()) {
true_target.Bind();
__ LoadRoot(r0, Heap::kTrueValueRootIndex);
frame_->EmitPush(r0);
}
// If both "true" and "false" need to be loaded jump across the code for
// "false".
if (both) {
loaded.Jump();
}
// Load "false" if necessary.
if (false_target.is_linked()) {
false_target.Bind();
__ LoadRoot(r0, Heap::kFalseValueRootIndex);
frame_->EmitPush(r0);
}
// A value is loaded on all paths reaching this point.
loaded.Bind();
}
ASSERT(has_valid_frame());
ASSERT(!has_cc());
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::LoadGlobal() {
Register reg = frame_->GetTOSRegister();
__ ldr(reg, GlobalObject());
frame_->EmitPush(reg);
}
void CodeGenerator::LoadGlobalReceiver(Register scratch) {
VirtualFrame::SpilledScope spilled_scope(frame_);
__ ldr(scratch, ContextOperand(cp, Context::GLOBAL_INDEX));
__ ldr(scratch,
FieldMemOperand(scratch, GlobalObject::kGlobalReceiverOffset));
frame_->EmitPush(scratch);
}
ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
ASSERT(scope()->arguments_shadow() != NULL);
// We don't want to do lazy arguments allocation for functions that
// have heap-allocated contexts, because it interfers with the
// uninitialized const tracking in the context objects.
return (scope()->num_heap_slots() > 0)
? EAGER_ARGUMENTS_ALLOCATION
: LAZY_ARGUMENTS_ALLOCATION;
}
void CodeGenerator::StoreArgumentsObject(bool initial) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ArgumentsAllocationMode mode = ArgumentsMode();
ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
Comment cmnt(masm_, "[ store arguments object");
if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
// When using lazy arguments allocation, we store the hole value
// as a sentinel indicating that the arguments object hasn't been
// allocated yet.
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
frame_->EmitPush(ip);
} else {
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
__ ldr(r2, frame_->Function());
// The receiver is below the arguments, the return address, and the
// frame pointer on the stack.
const int kReceiverDisplacement = 2 + scope()->num_parameters();
__ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
__ mov(r0, Operand(Smi::FromInt(scope()->num_parameters())));
frame_->Adjust(3);
__ Push(r2, r1, r0);
frame_->CallStub(&stub, 3);
frame_->EmitPush(r0);
}
Variable* arguments = scope()->arguments()->var();
Variable* shadow = scope()->arguments_shadow()->var();
ASSERT(arguments != NULL && arguments->slot() != NULL);
ASSERT(shadow != NULL && shadow->slot() != NULL);
JumpTarget done;
if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
// We have to skip storing into the arguments slot if it has
// already been written to. This can happen if the a function
// has a local variable named 'arguments'.
LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
frame_->EmitPop(r0);
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r0, ip);
done.Branch(ne);
}
StoreToSlot(arguments->slot(), NOT_CONST_INIT);
if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
StoreToSlot(shadow->slot(), NOT_CONST_INIT);
}
void CodeGenerator::LoadTypeofExpression(Expression* expr) {
// Special handling of identifiers as subexpressions of typeof.
Variable* variable = expr->AsVariableProxy()->AsVariable();
if (variable != NULL && !variable->is_this() && variable->is_global()) {
// For a global variable we build the property reference
// <global>.<variable> and perform a (regular non-contextual) property
// load to make sure we do not get reference errors.
Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
Literal key(variable->name());
Property property(&global, &key, RelocInfo::kNoPosition);
Reference ref(this, &property);
ref.GetValue();
} else if (variable != NULL && variable->slot() != NULL) {
// For a variable that rewrites to a slot, we signal it is the immediate
// subexpression of a typeof.
LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF);
} else {
// Anything else can be handled normally.
Load(expr);
}
}
Reference::Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get)
: cgen_(cgen),
expression_(expression),
type_(ILLEGAL),
persist_after_get_(persist_after_get) {
cgen->LoadReference(this);
}
Reference::~Reference() {
ASSERT(is_unloaded() || is_illegal());
}
void CodeGenerator::LoadReference(Reference* ref) {
Comment cmnt(masm_, "[ LoadReference");
Expression* e = ref->expression();
Property* property = e->AsProperty();
Variable* var = e->AsVariableProxy()->AsVariable();
if (property != NULL) {
// The expression is either a property or a variable proxy that rewrites
// to a property.
Load(property->obj());
if (property->key()->IsPropertyName()) {
ref->set_type(Reference::NAMED);
} else {
Load(property->key());
ref->set_type(Reference::KEYED);
}
} else if (var != NULL) {
// The expression is a variable proxy that does not rewrite to a
// property. Global variables are treated as named property references.
if (var->is_global()) {
LoadGlobal();
ref->set_type(Reference::NAMED);
} else {
ASSERT(var->slot() != NULL);
ref->set_type(Reference::SLOT);
}
} else {
// Anything else is a runtime error.
Load(e);
frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
}
}
void CodeGenerator::UnloadReference(Reference* ref) {
int size = ref->size();
ref->set_unloaded();
if (size == 0) return;
// Pop a reference from the stack while preserving TOS.
VirtualFrame::RegisterAllocationScope scope(this);
Comment cmnt(masm_, "[ UnloadReference");
if (size > 0) {
Register tos = frame_->PopToRegister();
frame_->Drop(size);
frame_->EmitPush(tos);
}
}
// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given
// register to a boolean in the condition code register. The code
// may jump to 'false_target' in case the register converts to 'false'.
void CodeGenerator::ToBoolean(JumpTarget* true_target,
JumpTarget* false_target) {
VirtualFrame::SpilledScope spilled_scope(frame_);
// Note: The generated code snippet does not change stack variables.
// Only the condition code should be set.
frame_->EmitPop(r0);
// Fast case checks
// Check if the value is 'false'.
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r0, ip);
false_target->Branch(eq);
// Check if the value is 'true'.
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r0, ip);
true_target->Branch(eq);
// Check if the value is 'undefined'.
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
false_target->Branch(eq);
// Check if the value is a smi.
__ cmp(r0, Operand(Smi::FromInt(0)));
false_target->Branch(eq);
__ tst(r0, Operand(kSmiTagMask));
true_target->Branch(eq);
// Slow case: call the runtime.
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kToBool, 1);
// Convert the result (r0) to a condition code.
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r0, ip);
cc_reg_ = ne;
}
void CodeGenerator::GenericBinaryOperation(Token::Value op,
OverwriteMode overwrite_mode,
GenerateInlineSmi inline_smi,
int constant_rhs) {
// top of virtual frame: y
// 2nd elt. on virtual frame : x
// result : top of virtual frame
// Stub is entered with a call: 'return address' is in lr.
switch (op) {
case Token::ADD:
case Token::SUB:
if (inline_smi) {
JumpTarget done;
Register rhs = frame_->PopToRegister();
Register lhs = frame_->PopToRegister(rhs);
Register scratch = VirtualFrame::scratch0();
__ orr(scratch, rhs, Operand(lhs));
// Check they are both small and positive.
__ tst(scratch, Operand(kSmiTagMask | 0xc0000000));
ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now.
ASSERT_EQ(0, kSmiTag);
if (op == Token::ADD) {
__ add(r0, lhs, Operand(rhs), LeaveCC, eq);
} else {
__ sub(r0, lhs, Operand(rhs), LeaveCC, eq);
}
done.Branch(eq);
GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs);
frame_->SpillAll();
frame_->CallStub(&stub, 0);
done.Bind();
frame_->EmitPush(r0);
break;
} else {
// Fall through!
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
if (inline_smi) {
bool rhs_is_smi = frame_->KnownSmiAt(0);
bool lhs_is_smi = frame_->KnownSmiAt(1);
Register rhs = frame_->PopToRegister();
Register lhs = frame_->PopToRegister(rhs);
Register smi_test_reg;
Condition cond;
if (!rhs_is_smi || !lhs_is_smi) {
if (rhs_is_smi) {
smi_test_reg = lhs;
} else if (lhs_is_smi) {
smi_test_reg = rhs;
} else {
smi_test_reg = VirtualFrame::scratch0();
__ orr(smi_test_reg, rhs, Operand(lhs));
}
// Check they are both Smis.
__ tst(smi_test_reg, Operand(kSmiTagMask));
cond = eq;
} else {
cond = al;
}
ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now.
if (op == Token::BIT_OR) {
__ orr(r0, lhs, Operand(rhs), LeaveCC, cond);
} else if (op == Token::BIT_AND) {
__ and_(r0, lhs, Operand(rhs), LeaveCC, cond);
} else {
ASSERT(op == Token::BIT_XOR);
ASSERT_EQ(0, kSmiTag);
__ eor(r0, lhs, Operand(rhs), LeaveCC, cond);
}
if (cond != al) {
JumpTarget done;
done.Branch(cond);
GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs);
frame_->SpillAll();
frame_->CallStub(&stub, 0);
done.Bind();
}
frame_->EmitPush(r0);
break;
} else {
// Fall through!
}
case Token::MUL:
case Token::DIV:
case Token::MOD:
case Token::SHL:
case Token::SHR:
case Token::SAR: {
Register rhs = frame_->PopToRegister();
Register lhs = frame_->PopToRegister(rhs); // Don't pop to rhs register.
GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs);
frame_->SpillAll();
frame_->CallStub(&stub, 0);
frame_->EmitPush(r0);
break;
}
case Token::COMMA: {
Register scratch = frame_->PopToRegister();
// Simply discard left value.
frame_->Drop();
frame_->EmitPush(scratch);
break;
}
default:
// Other cases should have been handled before this point.
UNREACHABLE();
break;
}
}
class DeferredInlineSmiOperation: public DeferredCode {
public:
DeferredInlineSmiOperation(Token::Value op,
int value,
bool reversed,
OverwriteMode overwrite_mode,
Register tos)
: op_(op),
value_(value),
reversed_(reversed),
overwrite_mode_(overwrite_mode),
tos_register_(tos) {
set_comment("[ DeferredInlinedSmiOperation");
}
virtual void Generate();
private:
Token::Value op_;
int value_;
bool reversed_;
OverwriteMode overwrite_mode_;
Register tos_register_;
};
void DeferredInlineSmiOperation::Generate() {
Register lhs = r1;
Register rhs = r0;
switch (op_) {
case Token::ADD: {
// Revert optimistic add.
if (reversed_) {
__ sub(r0, tos_register_, Operand(Smi::FromInt(value_)));
__ mov(r1, Operand(Smi::FromInt(value_)));
} else {
__ sub(r1, tos_register_, Operand(Smi::FromInt(value_)));
__ mov(r0, Operand(Smi::FromInt(value_)));
}
break;
}
case Token::SUB: {
// Revert optimistic sub.
if (reversed_) {
__ rsb(r0, tos_register_, Operand(Smi::FromInt(value_)));
__ mov(r1, Operand(Smi::FromInt(value_)));
} else {
__ add(r1, tos_register_, Operand(Smi::FromInt(value_)));
__ mov(r0, Operand(Smi::FromInt(value_)));
}
break;
}
// For these operations there is no optimistic operation that needs to be
// reverted.
case Token::MUL:
case Token::MOD:
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
if (reversed_) {
if (tos_register_.is(r0)) {
__ mov(r1, Operand(Smi::FromInt(value_)));
} else {
ASSERT(tos_register_.is(r1));
__ mov(r0, Operand(Smi::FromInt(value_)));
lhs = r0;
rhs = r1;
}
} else {
if (tos_register_.is(r1)) {
__ mov(r0, Operand(Smi::FromInt(value_)));
} else {
ASSERT(tos_register_.is(r0));
__ mov(r1, Operand(Smi::FromInt(value_)));
lhs = r0;
rhs = r1;
}
}
break;
}
case Token::SHL:
case Token::SHR:
case Token::SAR: {
if (!reversed_) {
if (tos_register_.is(r1)) {
__ mov(r0, Operand(Smi::FromInt(value_)));
} else {
ASSERT(tos_register_.is(r0));
__ mov(r1, Operand(Smi::FromInt(value_)));
lhs = r0;
rhs = r1;
}
} else {
ASSERT(op_ == Token::SHL);
__ mov(r1, Operand(Smi::FromInt(value_)));
}
break;
}
default:
// Other cases should have been handled before this point.
UNREACHABLE();
break;
}
GenericBinaryOpStub stub(op_, overwrite_mode_, lhs, rhs, value_);
__ CallStub(&stub);
// The generic stub returns its value in r0, but that's not
// necessarily what we want. We want whatever the inlined code
// expected, which is that the answer is in the same register as
// the operand was.
__ Move(tos_register_, r0);
}
static bool PopCountLessThanEqual2(unsigned int x) {
x &= x - 1;
return (x & (x - 1)) == 0;
}
// Returns the index of the lowest bit set.
static int BitPosition(unsigned x) {
int bit_posn = 0;
while ((x & 0xf) == 0) {
bit_posn += 4;
x >>= 4;
}
while ((x & 1) == 0) {
bit_posn++;
x >>= 1;
}
return bit_posn;
}
void CodeGenerator::SmiOperation(Token::Value op,
Handle<Object> value,
bool reversed,
OverwriteMode mode) {
int int_value = Smi::cast(*value)->value();
bool both_sides_are_smi = frame_->KnownSmiAt(0);
bool something_to_inline;
switch (op) {
case Token::ADD:
case Token::SUB:
case Token::BIT_AND:
case Token::BIT_OR:
case Token::BIT_XOR: {
something_to_inline = true;
break;
}
case Token::SHL: {
something_to_inline = (both_sides_are_smi || !reversed);
break;
}
case Token::SHR:
case Token::SAR: {
if (reversed) {
something_to_inline = false;
} else {
something_to_inline = true;
}
break;
}
case Token::MOD: {
if (reversed || int_value < 2 || !IsPowerOf2(int_value)) {
something_to_inline = false;
} else {
something_to_inline = true;
}
break;
}
case Token::MUL: {
if (!IsEasyToMultiplyBy(int_value)) {
something_to_inline = false;
} else {
something_to_inline = true;
}
break;
}
default: {
something_to_inline = false;
break;
}
}
if (!something_to_inline) {
if (!reversed) {
// Push the rhs onto the virtual frame by putting it in a TOS register.
Register rhs = frame_->GetTOSRegister();
__ mov(rhs, Operand(value));
frame_->EmitPush(rhs, TypeInfo::Smi());
GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, int_value);
} else {
// Pop the rhs, then push lhs and rhs in the right order. Only performs
// at most one pop, the rest takes place in TOS registers.
Register lhs = frame_->GetTOSRegister(); // Get reg for pushing.
Register rhs = frame_->PopToRegister(lhs); // Don't use lhs for this.
__ mov(lhs, Operand(value));
frame_->EmitPush(lhs, TypeInfo::Smi());
TypeInfo t = both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Unknown();
frame_->EmitPush(rhs, t);
GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, kUnknownIntValue);
}
return;
}
// We move the top of stack to a register (normally no move is invoved).
Register tos = frame_->PopToRegister();
// All other registers are spilled. The deferred code expects one argument
// in a register and all other values are flushed to the stack. The
// answer is returned in the same register that the top of stack argument was
// in.
frame_->SpillAll();
switch (op) {
case Token::ADD: {
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos);
__ add(tos, tos, Operand(value), SetCC);
deferred->Branch(vs);
if (!both_sides_are_smi) {
__ tst(tos, Operand(kSmiTagMask));
deferred->Branch(ne);
}
deferred->BindExit();
frame_->EmitPush(tos);
break;
}
case Token::SUB: {
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos);
if (reversed) {
__ rsb(tos, tos, Operand(value), SetCC);
} else {
__ sub(tos, tos, Operand(value), SetCC);
}
deferred->Branch(vs);
if (!both_sides_are_smi) {
__ tst(tos, Operand(kSmiTagMask));
deferred->Branch(ne);
}
deferred->BindExit();
frame_->EmitPush(tos);
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
if (both_sides_are_smi) {
switch (op) {
case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break;
case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break;
case Token::BIT_AND: __ and_(tos, tos, Operand(value)); break;
default: UNREACHABLE();
}
frame_->EmitPush(tos, TypeInfo::Smi());
} else {
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos);
__ tst(tos, Operand(kSmiTagMask));
deferred->Branch(ne);
switch (op) {
case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break;
case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break;
case Token::BIT_AND: __ and_(tos, tos, Operand(value)); break;
default: UNREACHABLE();
}
deferred->BindExit();
TypeInfo result_type =
(op == Token::BIT_AND) ? TypeInfo::Smi() : TypeInfo::Integer32();
frame_->EmitPush(tos, result_type);
}
break;
}
case Token::SHL:
if (reversed) {
ASSERT(both_sides_are_smi);
int max_shift = 0;
int max_result = int_value == 0 ? 1 : int_value;
while (Smi::IsValid(max_result << 1)) {
max_shift++;
max_result <<= 1;
}
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, true, mode, tos);
// Mask off the last 5 bits of the shift operand (rhs). This is part
// of the definition of shift in JS and we know we have a Smi so we
// can safely do this. The masked version gets passed to the
// deferred code, but that makes no difference.
__ and_(tos, tos, Operand(Smi::FromInt(0x1f)));
__ cmp(tos, Operand(Smi::FromInt(max_shift)));
deferred->Branch(ge);
Register scratch = VirtualFrame::scratch0();
__ mov(scratch, Operand(tos, ASR, kSmiTagSize)); // Untag.
__ mov(tos, Operand(Smi::FromInt(int_value))); // Load constant.
__ mov(tos, Operand(tos, LSL, scratch)); // Shift constant.
deferred->BindExit();
TypeInfo result = TypeInfo::Integer32();
frame_->EmitPush(tos, result);
break;
}
// Fall through!
case Token::SHR:
case Token::SAR: {
ASSERT(!reversed);
TypeInfo result = TypeInfo::Integer32();
Register scratch = VirtualFrame::scratch0();
Register scratch2 = VirtualFrame::scratch1();
int shift_value = int_value & 0x1f; // least significant 5 bits
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, shift_value, false, mode, tos);
uint32_t problematic_mask = kSmiTagMask;
// For unsigned shift by zero all negative smis are problematic.
bool skip_smi_test = both_sides_are_smi;
if (shift_value == 0 && op == Token::SHR) {
problematic_mask |= 0x80000000;
skip_smi_test = false;
}
if (!skip_smi_test) {
__ tst(tos, Operand(problematic_mask));
deferred->Branch(ne); // Go slow for problematic input.
}
switch (op) {
case Token::SHL: {
if (shift_value != 0) {
int adjusted_shift = shift_value - kSmiTagSize;
ASSERT(adjusted_shift >= 0);
if (adjusted_shift != 0) {
__ mov(scratch, Operand(tos, LSL, adjusted_shift));
// Check that the *signed* result fits in a smi.
__ add(scratch2, scratch, Operand(0x40000000), SetCC);
deferred->Branch(mi);
__ mov(tos, Operand(scratch, LSL, kSmiTagSize));
} else {
// Check that the *signed* result fits in a smi.
__ add(scratch2, tos, Operand(0x40000000), SetCC);
deferred->Branch(mi);
__ mov(tos, Operand(tos, LSL, kSmiTagSize));
}
}
break;
}
case Token::SHR: {
if (shift_value != 0) {
__ mov(scratch, Operand(tos, ASR, kSmiTagSize)); // Remove tag.
// LSR by immediate 0 means shifting 32 bits.
__ mov(scratch, Operand(scratch, LSR, shift_value));
if (shift_value == 1) {
// check that the *unsigned* result fits in a smi
// neither of the two high-order bits can be set:
// - 0x80000000: high bit would be lost when smi tagging
// - 0x40000000: this number would convert to negative when
// smi tagging these two cases can only happen with shifts
// by 0 or 1 when handed a valid smi
__ tst(scratch, Operand(0xc0000000));
deferred->Branch(ne);
} else {
ASSERT(shift_value >= 2);
result = TypeInfo::Smi(); // SHR by at least 2 gives a Smi.
}
__ mov(tos, Operand(scratch, LSL, kSmiTagSize));
}
break;
}
case Token::SAR: {
// In the ARM instructions set, ASR by immediate 0 means shifting 32
// bits.
if (shift_value != 0) {
// Do the shift and the tag removal in one operation. If the shift
// is 31 bits (the highest possible value) then we emit the
// instruction as a shift by 0 which means shift arithmetically by
// 32.
__ mov(tos, Operand(tos, ASR, (kSmiTagSize + shift_value) & 0x1f));
// Put tag back.
__ mov(tos, Operand(tos, LSL, kSmiTagSize));
// SAR by at least 1 gives a Smi.
result = TypeInfo::Smi();
}
break;
}
default: UNREACHABLE();
}
deferred->BindExit();
frame_->EmitPush(tos, result);
break;
}
case Token::MOD: {
ASSERT(!reversed);
ASSERT(int_value >= 2);
ASSERT(IsPowerOf2(int_value));
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos);
unsigned mask = (0x80000000u | kSmiTagMask);
__ tst(tos, Operand(mask));
deferred->Branch(ne); // Go to deferred code on non-Smis and negative.
mask = (int_value << kSmiTagSize) - 1;
__ and_(tos, tos, Operand(mask));
deferred->BindExit();
// Mod of positive power of 2 Smi gives a Smi if the lhs is an integer.
frame_->EmitPush(
tos,
both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Number());
break;
}
case Token::MUL: {
ASSERT(IsEasyToMultiplyBy(int_value));
DeferredCode* deferred =
new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos);
unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value;
max_smi_that_wont_overflow <<= kSmiTagSize;
unsigned mask = 0x80000000u;
while ((mask & max_smi_that_wont_overflow) == 0) {
mask |= mask >> 1;
}
mask |= kSmiTagMask;
// This does a single mask that checks for a too high value in a
// conservative way and for a non-Smi. It also filters out negative
// numbers, unfortunately, but since this code is inline we prefer
// brevity to comprehensiveness.
__ tst(tos, Operand(mask));
deferred->Branch(ne);
MultiplyByKnownInt(masm_, tos, tos, int_value);
deferred->BindExit();
frame_->EmitPush(tos);
break;
}
default:
UNREACHABLE();
break;
}
}
void CodeGenerator::Comparison(Condition cc,
Expression* left,
Expression* right,
bool strict) {
VirtualFrame::RegisterAllocationScope scope(this);
if (left != NULL) Load(left);
if (right != NULL) Load(right);
// sp[0] : y
// sp[1] : x
// result : cc register
// Strict only makes sense for equality comparisons.
ASSERT(!strict || cc == eq);
Register lhs;
Register rhs;
bool lhs_is_smi;
bool rhs_is_smi;
// We load the top two stack positions into registers chosen by the virtual
// frame. This should keep the register shuffling to a minimum.
// Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
if (cc == gt || cc == le) {
cc = ReverseCondition(cc);
lhs_is_smi = frame_->KnownSmiAt(0);
rhs_is_smi = frame_->KnownSmiAt(1);
lhs = frame_->PopToRegister();
rhs = frame_->PopToRegister(lhs); // Don't pop to the same register again!
} else {
rhs_is_smi = frame_->KnownSmiAt(0);
lhs_is_smi = frame_->KnownSmiAt(1);
rhs = frame_->PopToRegister();
lhs = frame_->PopToRegister(rhs); // Don't pop to the same register again!
}
bool both_sides_are_smi = (lhs_is_smi && rhs_is_smi);
ASSERT(rhs.is(r0) || rhs.is(r1));
ASSERT(lhs.is(r0) || lhs.is(r1));
JumpTarget exit;
if (!both_sides_are_smi) {
// Now we have the two sides in r0 and r1. We flush any other registers
// because the stub doesn't know about register allocation.
frame_->SpillAll();
Register scratch = VirtualFrame::scratch0();
Register smi_test_reg;
if (lhs_is_smi) {
smi_test_reg = rhs;
} else if (rhs_is_smi) {
smi_test_reg = lhs;
} else {
__ orr(scratch, lhs, Operand(rhs));
smi_test_reg = scratch;
}
__ tst(smi_test_reg, Operand(kSmiTagMask));
JumpTarget smi;
smi.Branch(eq);
// Perform non-smi comparison by stub.
// CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0.
// We call with 0 args because there are 0 on the stack.
if (!rhs.is(r0)) {
__ Swap(rhs, lhs, ip);
}
CompareStub stub(cc, strict);
frame_->CallStub(&stub, 0);
__ cmp(r0, Operand(0));
exit.Jump();
smi.Bind();
}
// Do smi comparisons by pointer comparison.
__ cmp(lhs, Operand(rhs));
exit.Bind();
cc_reg_ = cc;
}
// Call the function on the stack with the given arguments.
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
CallFunctionFlags flags,
int position) {
frame_->AssertIsSpilled();
// Push the arguments ("left-to-right") on the stack.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Record the position for debugging purposes.
CodeForSourcePosition(position);
// Use the shared code stub to call the function.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop, flags);
frame_->CallStub(&call_function, arg_count + 1);
// Restore context and pop function from the stack.
__ ldr(cp, frame_->Context());
frame_->Drop(); // discard the TOS
}
void CodeGenerator::CallApplyLazy(Expression* applicand,
Expression* receiver,
VariableProxy* arguments,
int position) {
// An optimized implementation of expressions of the form
// x.apply(y, arguments).
// If the arguments object of the scope has not been allocated,
// and x.apply is Function.prototype.apply, this optimization
// just copies y and the arguments of the current function on the
// stack, as receiver and arguments, and calls x.
// In the implementation comments, we call x the applicand
// and y the receiver.
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
ASSERT(arguments->IsArguments());
// Load applicand.apply onto the stack. This will usually
// give us a megamorphic load site. Not super, but it works.
Load(applicand);
Handle<String> name = Factory::LookupAsciiSymbol("apply");
frame_->Dup();
frame_->CallLoadIC(name, RelocInfo::CODE_TARGET);
frame_->EmitPush(r0);
// Load the receiver and the existing arguments object onto the
// expression stack. Avoid allocating the arguments object here.
Load(receiver);
LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
// Emit the source position information after having loaded the
// receiver and the arguments.
CodeForSourcePosition(position);
// Contents of the stack at this point:
// sp[0]: arguments object of the current function or the hole.
// sp[1]: receiver
// sp[2]: applicand.apply
// sp[3]: applicand.
// Check if the arguments object has been lazily allocated
// already. If so, just use that instead of copying the arguments
// from the stack. This also deals with cases where a local variable
// named 'arguments' has been introduced.
__ ldr(r0, MemOperand(sp, 0));
Label slow, done;
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(ip, r0);
__ b(ne, &slow);
Label build_args;
// Get rid of the arguments object probe.
frame_->Drop();
// Stack now has 3 elements on it.
// Contents of stack at this point:
// sp[0]: receiver
// sp[1]: applicand.apply
// sp[2]: applicand.
// Check that the receiver really is a JavaScript object.
__ ldr(r0, MemOperand(sp, 0));
__ BranchOnSmi(r0, &build_args);
// We allow all JSObjects including JSFunctions. As long as
// JS_FUNCTION_TYPE is the last instance type and it is right
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper
// bound.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CompareObjectType(r0, r1, r2, FIRST_JS_OBJECT_TYPE);
__ b(lt, &build_args);
// Check that applicand.apply is Function.prototype.apply.
__ ldr(r0, MemOperand(sp, kPointerSize));
__ BranchOnSmi(r0, &build_args);
__ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE);
__ b(ne, &build_args);
__ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
__ ldr(r1, FieldMemOperand(r0, SharedFunctionInfo::kCodeOffset));
__ cmp(r1, Operand(apply_code));
__ b(ne, &build_args);
// Check that applicand is a function.
__ ldr(r1, MemOperand(sp, 2 * kPointerSize));
__ BranchOnSmi(r1, &build_args);
__ CompareObjectType(r1, r2, r3, JS_FUNCTION_TYPE);
__ b(ne, &build_args);
// Copy the arguments to this function possibly from the
// adaptor frame below it.
Label invoke, adapted;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &adapted);
// No arguments adaptor frame. Copy fixed number of arguments.
__ mov(r0, Operand(scope()->num_parameters()));
for (int i = 0; i < scope()->num_parameters(); i++) {
__ ldr(r2, frame_->ParameterAt(i));
__ push(r2);
}
__ jmp(&invoke);
// Arguments adaptor frame present. Copy arguments from there, but
// avoid copying too many arguments to avoid stack overflows.
__ bind(&adapted);
static const uint32_t kArgumentsLimit = 1 * KB;
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ mov(r0, Operand(r0, LSR, kSmiTagSize));
__ mov(r3, r0);
__ cmp(r0, Operand(kArgumentsLimit));
__ b(gt, &build_args);
// Loop through the arguments pushing them onto the execution
// stack. We don't inform the virtual frame of the push, so we don't
// have to worry about getting rid of the elements from the virtual
// frame.
Label loop;
// r3 is a small non-negative integer, due to the test above.
__ cmp(r3, Operand(0));
__ b(eq, &invoke);
// Compute the address of the first argument.
__ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2));
__ add(r2, r2, Operand(kPointerSize));
__ bind(&loop);
// Post-decrement argument address by kPointerSize on each iteration.
__ ldr(r4, MemOperand(r2, kPointerSize, NegPostIndex));
__ push(r4);
__ sub(r3, r3, Operand(1), SetCC);
__ b(gt, &loop);
// Invoke the function.
__ bind(&invoke);
ParameterCount actual(r0);
__ InvokeFunction(r1, actual, CALL_FUNCTION);
// Drop applicand.apply and applicand from the stack, and push
// the result of the function call, but leave the spilled frame
// unchanged, with 3 elements, so it is correct when we compile the
// slow-case code.
__ add(sp, sp, Operand(2 * kPointerSize));
__ push(r0);
// Stack now has 1 element:
// sp[0]: result
__ jmp(&done);
// Slow-case: Allocate the arguments object since we know it isn't
// there, and fall-through to the slow-case where we call
// applicand.apply.
__ bind(&build_args);
// Stack now has 3 elements, because we have jumped from where:
// sp[0]: receiver
// sp[1]: applicand.apply
// sp[2]: applicand.
StoreArgumentsObject(false);
// Stack and frame now have 4 elements.
__ bind(&slow);
// Generic computation of x.apply(y, args) with no special optimization.
// Flip applicand.apply and applicand on the stack, so
// applicand looks like the receiver of the applicand.apply call.
// Then process it as a normal function call.
__ ldr(r0, MemOperand(sp, 3 * kPointerSize));
__ ldr(r1, MemOperand(sp, 2 * kPointerSize));
__ Strd(r0, r1, MemOperand(sp, 2 * kPointerSize));
CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
frame_->CallStub(&call_function, 3);
// The function and its two arguments have been dropped.
frame_->Drop(); // Drop the receiver as well.
frame_->EmitPush(r0);
// Stack now has 1 element:
// sp[0]: result
__ bind(&done);
// Restore the context register after a call.
__ ldr(cp, frame_->Context());
}
void CodeGenerator::Branch(bool if_true, JumpTarget* target) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(has_cc());
Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_);
target->Branch(cc);
cc_reg_ = al;
}
void CodeGenerator::CheckStack() {
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ check stack");
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
// Put the lr setup instruction in the delay slot. kInstrSize is added to
// the implicit 8 byte offset that always applies to operations with pc and
// gives a return address 12 bytes down.
masm_->add(lr, pc, Operand(Assembler::kInstrSize));
masm_->cmp(sp, Operand(ip));
StackCheckStub stub;
// Call the stub if lower.
masm_->mov(pc,
Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()),
RelocInfo::CODE_TARGET),
LeaveCC,
lo);
}
void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
for (int i = 0; frame_ != NULL && i < statements->length(); i++) {
Visit(statements->at(i));
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitBlock(Block* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ Block");
CodeForStatementPosition(node);
node->break_target()->SetExpectedHeight();
VisitStatements(node->statements());
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
frame_->EmitPush(cp);
frame_->EmitPush(Operand(pairs));
frame_->EmitPush(Operand(Smi::FromInt(is_eval() ? 1 : 0)));
VirtualFrame::SpilledScope spilled_scope(frame_);
frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
// The result is discarded.
}
void CodeGenerator::VisitDeclaration(Declaration* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Declaration");
Variable* var = node->proxy()->var();
ASSERT(var != NULL); // must have been resolved
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile time,
// we need to "declare" it at runtime to make sure it actually
// exists in the local context.
if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Variables with a "LOOKUP" slot were introduced as non-locals
// during variable resolution and must have mode DYNAMIC.
ASSERT(var->is_dynamic());
// For now, just do a runtime call.
frame_->EmitPush(cp);
frame_->EmitPush(Operand(var->name()));
// Declaration nodes are always declared in only two modes.
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
frame_->EmitPush(Operand(Smi::FromInt(attr)));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (node->mode() == Variable::CONST) {
frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex);
} else if (node->fun() != NULL) {
Load(node->fun());
} else {
frame_->EmitPush(Operand(0));
}
VirtualFrame::SpilledScope spilled_scope(frame_);
frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
// Ignore the return value (declarations are statements).
ASSERT(frame_->height() == original_height);
return;
}
ASSERT(!var->is_global());
// If we have a function or a constant, we need to initialize the variable.
Expression* val = NULL;
if (node->mode() == Variable::CONST) {
val = new Literal(Factory::the_hole_value());
} else {
val = node->fun(); // NULL if we don't have a function
}
if (val != NULL) {
// Set initial value.
Reference target(this, node->proxy());
Load(val);
target.SetValue(NOT_CONST_INIT);
// Get rid of the assigned value (declarations are statements).
frame_->Drop();
}
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ ExpressionStatement");
CodeForStatementPosition(node);
Expression* expression = node->expression();
expression->MarkAsStatement();
Load(expression);
frame_->Drop();
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "// EmptyStatement");
CodeForStatementPosition(node);
// nothing to do
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitIfStatement(IfStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ IfStatement");
// Generate different code depending on which parts of the if statement
// are present or not.
bool has_then_stm = node->HasThenStatement();
bool has_else_stm = node->HasElseStatement();
CodeForStatementPosition(node);
JumpTarget exit;
if (has_then_stm && has_else_stm) {
Comment cmnt(masm_, "[ IfThenElse");
JumpTarget then;
JumpTarget else_;
// if (cond)
LoadCondition(node->condition(), &then, &else_, true);
if (frame_ != NULL) {
Branch(false, &else_);
}
// then
if (frame_ != NULL || then.is_linked()) {
then.Bind();
Visit(node->then_statement());
}
if (frame_ != NULL) {
exit.Jump();
}
// else
if (else_.is_linked()) {
else_.Bind();
Visit(node->else_statement());
}
} else if (has_then_stm) {
Comment cmnt(masm_, "[ IfThen");
ASSERT(!has_else_stm);
JumpTarget then;
// if (cond)
LoadCondition(node->condition(), &then, &exit, true);
if (frame_ != NULL) {
Branch(false, &exit);
}
// then
if (frame_ != NULL || then.is_linked()) {
then.Bind();
Visit(node->then_statement());
}
} else if (has_else_stm) {
Comment cmnt(masm_, "[ IfElse");
ASSERT(!has_then_stm);
JumpTarget else_;
// if (!cond)
LoadCondition(node->condition(), &exit, &else_, true);
if (frame_ != NULL) {
Branch(true, &exit);
}
// else
if (frame_ != NULL || else_.is_linked()) {
else_.Bind();
Visit(node->else_statement());
}
} else {
Comment cmnt(masm_, "[ If");
ASSERT(!has_then_stm && !has_else_stm);
// if (cond)
LoadCondition(node->condition(), &exit, &exit, false);
if (frame_ != NULL) {
if (has_cc()) {
cc_reg_ = al;
} else {
frame_->Drop();
}
}
}
// end
if (exit.is_linked()) {
exit.Bind();
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ ContinueStatement");
CodeForStatementPosition(node);
node->target()->continue_target()->Jump();
}
void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ BreakStatement");
CodeForStatementPosition(node);
node->target()->break_target()->Jump();
}
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ ReturnStatement");
CodeForStatementPosition(node);
Load(node->expression());
if (function_return_is_shadowed_) {
frame_->EmitPop(r0);
function_return_.Jump();
} else {
// Pop the result from the frame and prepare the frame for
// returning thus making it easier to merge.
frame_->EmitPop(r0);
frame_->PrepareForReturn();
function_return_.Jump();
}
}
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ WithEnterStatement");
CodeForStatementPosition(node);
Load(node->expression());
if (node->is_catch_block()) {
frame_->CallRuntime(Runtime::kPushCatchContext, 1);
} else {
frame_->CallRuntime(Runtime::kPushContext, 1);
}
#ifdef DEBUG
JumpTarget verified_true;
__ cmp(r0, cp);
verified_true.Branch(eq);
__ stop("PushContext: r0 is expected to be the same as cp");
verified_true.Bind();
#endif
// Update context local.
__ str(cp, frame_->Context());
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ WithExitStatement");
CodeForStatementPosition(node);
// Pop context.
__ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX));
// Update context local.
__ str(cp, frame_->Context());
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ SwitchStatement");
CodeForStatementPosition(node);
node->break_target()->SetExpectedHeight();
Load(node->tag());
JumpTarget next_test;
JumpTarget fall_through;
JumpTarget default_entry;
JumpTarget default_exit(JumpTarget::BIDIRECTIONAL);
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
CaseClause* default_clause = NULL;
for (int i = 0; i < length; i++) {
CaseClause* clause = cases->at(i);
if (clause->is_default()) {
// Remember the default clause and compile it at the end.
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case clause");
// Compile the test.
next_test.Bind();
next_test.Unuse();
// Duplicate TOS.
__ ldr(r0, frame_->Top());
frame_->EmitPush(r0);
Comparison(eq, NULL, clause->label(), true);
Branch(false, &next_test);
// Before entering the body from the test, remove the switch value from
// the stack.
frame_->Drop();
// Label the body so that fall through is enabled.
if (i > 0 && cases->at(i - 1)->is_default()) {
default_exit.Bind();
} else {
fall_through.Bind();
fall_through.Unuse();
}
VisitStatements(clause->statements());
// If control flow can fall through from the body, jump to the next body
// or the end of the statement.
if (frame_ != NULL) {
if (i < length - 1 && cases->at(i + 1)->is_default()) {
default_entry.Jump();
} else {
fall_through.Jump();
}
}
}
// The final "test" removes the switch value.
next_test.Bind();
frame_->Drop();
// If there is a default clause, compile it.
if (default_clause != NULL) {
Comment cmnt(masm_, "[ Default clause");
default_entry.Bind();
VisitStatements(default_clause->statements());
// If control flow can fall out of the default and there is a case after
// it, jup to that case's body.
if (frame_ != NULL && default_exit.is_bound()) {
default_exit.Jump();
}
}
if (fall_through.is_linked()) {
fall_through.Bind();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ DoWhileStatement");
CodeForStatementPosition(node);
node->break_target()->SetExpectedHeight();
JumpTarget body(JumpTarget::BIDIRECTIONAL);
IncrementLoopNesting();
// Label the top of the loop for the backward CFG edge. If the test
// is always true we can use the continue target, and if the test is
// always false there is no need.
ConditionAnalysis info = AnalyzeCondition(node->cond());
switch (info) {
case ALWAYS_TRUE:
node->continue_target()->SetExpectedHeight();
node->continue_target()->Bind();
break;
case ALWAYS_FALSE:
node->continue_target()->SetExpectedHeight();
break;
case DONT_KNOW:
node->continue_target()->SetExpectedHeight();
body.Bind();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// Compile the test.
switch (info) {
case ALWAYS_TRUE:
// If control can fall off the end of the body, jump back to the
// top.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
break;
case ALWAYS_FALSE:
// If we have a continue in the body, we only have to bind its
// jump target.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
break;
case DONT_KNOW:
// We have to compile the test expression if it can be reached by
// control flow falling out of the body or via continue.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
Comment cmnt(masm_, "[ DoWhileCondition");
CodeForDoWhileConditionPosition(node);
LoadCondition(node->cond(), &body, node->break_target(), true);
if (has_valid_frame()) {
// A invalid frame here indicates that control did not
// fall out of the test expression.
Branch(true, &body);
}
}
break;
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ WhileStatement");
CodeForStatementPosition(node);
// If the test is never true and has no side effects there is no need
// to compile the test or body.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
node->break_target()->SetExpectedHeight();
IncrementLoopNesting();
// Label the top of the loop with the continue target for the backward
// CFG edge.
node->continue_target()->SetExpectedHeight();
node->continue_target()->Bind();
if (info == DONT_KNOW) {
JumpTarget body;
LoadCondition(node->cond(), &body, node->break_target(), true);
if (has_valid_frame()) {
// A NULL frame indicates that control did not fall out of the
// test expression.
Branch(false, node->break_target());
}
if (has_valid_frame() || body.is_linked()) {
body.Bind();
}
}
if (has_valid_frame()) {
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// If control flow can fall out of the body, jump back to the top.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitForStatement(ForStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ ForStatement");
CodeForStatementPosition(node);
if (node->init() != NULL) {
Visit(node->init());
}
// If the test is never true there is no need to compile the test or
// body.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
node->break_target()->SetExpectedHeight();
IncrementLoopNesting();
// We know that the loop index is a smi if it is not modified in the
// loop body and it is checked against a constant limit in the loop
// condition. In this case, we reset the static type information of the
// loop index to smi before compiling the body, the update expression, and
// the bottom check of the loop condition.
TypeInfoCodeGenState type_info_scope(this,
node->is_fast_smi_loop() ?
node->loop_variable()->slot() :
NULL,
TypeInfo::Smi());
// If there is no update statement, label the top of the loop with the
// continue target, otherwise with the loop target.
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
if (node->next() == NULL) {
node->continue_target()->SetExpectedHeight();
node->continue_target()->Bind();
} else {
node->continue_target()->SetExpectedHeight();
loop.Bind();
}
// If the test is always true, there is no need to compile it.
if (info == DONT_KNOW) {
JumpTarget body;
LoadCondition(node->cond(), &body, node->break_target(), true);
if (has_valid_frame()) {
Branch(false, node->break_target());
}
if (has_valid_frame() || body.is_linked()) {
body.Bind();
}
}
if (has_valid_frame()) {
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
if (node->next() == NULL) {
// If there is no update statement and control flow can fall out
// of the loop, jump directly to the continue label.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
} else {
// If there is an update statement and control flow can reach it
// via falling out of the body of the loop or continuing, we
// compile the update statement.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
// Record source position of the statement as this code which is
// after the code for the body actually belongs to the loop
// statement and not the body.
CodeForStatementPosition(node);
Visit(node->next());
loop.Jump();
}
}
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitForInStatement(ForInStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ ForInStatement");
CodeForStatementPosition(node);
JumpTarget primitive;
JumpTarget jsobject;
JumpTarget fixed_array;
JumpTarget entry(JumpTarget::BIDIRECTIONAL);
JumpTarget end_del_check;
JumpTarget exit;
// Get the object to enumerate over (converted to JSObject).
Load(node->enumerable());
// Both SpiderMonkey and kjs ignore null and undefined in contrast
// to the specification. 12.6.4 mandates a call to ToObject.
frame_->EmitPop(r0);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r0, ip);
exit.Branch(eq);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r0, ip);
exit.Branch(eq);
// Stack layout in body:
// [iteration counter (Smi)]
// [length of array]
// [FixedArray]
// [Map or 0]
// [Object]
// Check if enumerable is already a JSObject
__ tst(r0, Operand(kSmiTagMask));
primitive.Branch(eq);
__ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
jsobject.Branch(hs);
primitive.Bind();
frame_->EmitPush(r0);
frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, 1);
jsobject.Bind();
// Get the set of properties (as a FixedArray or Map).
// r0: value to be iterated over
frame_->EmitPush(r0); // Push the object being iterated over.
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
JumpTarget call_runtime;
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
JumpTarget check_prototype;
JumpTarget use_cache;
__ mov(r1, Operand(r0));
loop.Bind();
// Check that there are no elements.
__ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset));
__ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex);
__ cmp(r2, r4);
call_runtime.Branch(ne);
// Check that instance descriptors are not empty so that we can
// check for an enum cache. Leave the map in r3 for the subsequent
// prototype load.
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldr(r2, FieldMemOperand(r3, Map::kInstanceDescriptorsOffset));
__ LoadRoot(ip, Heap::kEmptyDescriptorArrayRootIndex);
__ cmp(r2, ip);
call_runtime.Branch(eq);
// Check that there in an enum cache in the non-empty instance
// descriptors. This is the case if the next enumeration index
// field does not contain a smi.
__ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumerationIndexOffset));
__ tst(r2, Operand(kSmiTagMask));
call_runtime.Branch(eq);
// For all objects but the receiver, check that the cache is empty.
// r4: empty fixed array root.
__ cmp(r1, r0);
check_prototype.Branch(eq);
__ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset));
__ cmp(r2, r4);
call_runtime.Branch(ne);
check_prototype.Bind();
// Load the prototype from the map and loop if non-null.
__ ldr(r1, FieldMemOperand(r3, Map::kPrototypeOffset));
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r1, ip);
loop.Branch(ne);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
__ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
use_cache.Jump();
call_runtime.Bind();
// Call the runtime to get the property names for the object.
frame_->EmitPush(r0); // push the object (slot 4) for the runtime call
frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
// r0: map or fixed array (result from call to
// Runtime::kGetPropertyNamesFast)
__ mov(r2, Operand(r0));
__ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kMetaMapRootIndex);
__ cmp(r1, ip);
fixed_array.Branch(ne);
use_cache.Bind();
// Get enum cache
// r0: map (either the result from a call to
// Runtime::kGetPropertyNamesFast or has been fetched directly from
// the object)
__ mov(r1, Operand(r0));
__ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
__ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
__ ldr(r2,
FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
frame_->EmitPush(r0); // map
frame_->EmitPush(r2); // enum cache bridge cache
__ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset));
frame_->EmitPush(r0);
__ mov(r0, Operand(Smi::FromInt(0)));
frame_->EmitPush(r0);
entry.Jump();
fixed_array.Bind();
__ mov(r1, Operand(Smi::FromInt(0)));
frame_->EmitPush(r1); // insert 0 in place of Map
frame_->EmitPush(r0);
// Push the length of the array and the initial index onto the stack.
__ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset));
frame_->EmitPush(r0);
__ mov(r0, Operand(Smi::FromInt(0))); // init index
frame_->EmitPush(r0);
// Condition.
entry.Bind();
// sp[0] : index
// sp[1] : array/enum cache length
// sp[2] : array or enum cache
// sp[3] : 0 or map
// sp[4] : enumerable
// Grab the current frame's height for the break and continue
// targets only after all the state is pushed on the frame.
node->break_target()->SetExpectedHeight();
node->continue_target()->SetExpectedHeight();
// Load the current count to r0, load the length to r1.
__ Ldrd(r0, r1, frame_->ElementAt(0));
__ cmp(r0, r1); // compare to the array length
node->break_target()->Branch(hs);
// Get the i'th entry of the array.
__ ldr(r2, frame_->ElementAt(2));
__ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
// Get Map or 0.
__ ldr(r2, frame_->ElementAt(3));
// Check if this (still) matches the map of the enumerable.
// If not, we have to filter the key.
__ ldr(r1, frame_->ElementAt(4));
__ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r1, Operand(r2));
end_del_check.Branch(eq);
// Convert the entry to a string (or null if it isn't a property anymore).
__ ldr(r0, frame_->ElementAt(4)); // push enumerable
frame_->EmitPush(r0);
frame_->EmitPush(r3); // push entry
frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, 2);
__ mov(r3, Operand(r0));
// If the property has been removed while iterating, we just skip it.
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r3, ip);
node->continue_target()->Branch(eq);
end_del_check.Bind();
// Store the entry in the 'each' expression and take another spin in the
// loop. r3: i'th entry of the enum cache (or string there of)
frame_->EmitPush(r3); // push entry
{ Reference each(this, node->each());
if (!each.is_illegal()) {
if (each.size() > 0) {
__ ldr(r0, frame_->ElementAt(each.size()));
frame_->EmitPush(r0);
each.SetValue(NOT_CONST_INIT);
frame_->Drop(2);
} else {
// If the reference was to a slot we rely on the convenient property
// that it doesn't matter whether a value (eg, r3 pushed above) is
// right on top of or right underneath a zero-sized reference.
each.SetValue(NOT_CONST_INIT);
frame_->Drop();
}
}
}
// Body.
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// Next. Reestablish a spilled frame in case we are coming here via
// a continue in the body.
node->continue_target()->Bind();
frame_->SpillAll();
frame_->EmitPop(r0);
__ add(r0, r0, Operand(Smi::FromInt(1)));
frame_->EmitPush(r0);
entry.Jump();
// Cleanup. No need to spill because VirtualFrame::Drop is safe for
// any frame.
node->break_target()->Bind();
frame_->Drop(5);
// Exit.
exit.Bind();
node->continue_target()->Unuse();
node->break_target()->Unuse();
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ TryCatchStatement");
CodeForStatementPosition(node);
JumpTarget try_block;
JumpTarget exit;
try_block.Call();
// --- Catch block ---
frame_->EmitPush(r0);
// Store the caught exception in the catch variable.
Variable* catch_var = node->catch_var()->var();
ASSERT(catch_var != NULL && catch_var->slot() != NULL);
StoreToSlot(catch_var->slot(), NOT_CONST_INIT);
// Remove the exception from the stack.
frame_->Drop();
VisitStatements(node->catch_block()->statements());
if (frame_ != NULL) {
exit.Jump();
}
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_CATCH_HANDLER);
int handler_height = frame_->height();
// Shadow the labels for all escapes from the try block, including
// returns. During shadowing, the original label is hidden as the
// LabelShadow and operations on the original actually affect the
// shadowing label.
//
// We should probably try to unify the escaping labels and the return
// label.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatements(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original labels are unshadowed and the
// LabelShadows represent the formerly shadowing labels.
bool has_unlinks = false;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
has_unlinks = has_unlinks || shadows[i]->is_linked();
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// If we can fall off the end of the try block, unlink from try chain.
if (has_valid_frame()) {
// The next handler address is on top of the frame. Unlink from
// the handler list and drop the rest of this handler from the
// frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1);
__ mov(r3, Operand(handler_address));
__ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (has_unlinks) {
exit.Jump();
}
}
// Generate unlink code for the (formerly) shadowing labels that have been
// jumped to. Deallocate each shadow target.
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// Unlink from try chain;
shadows[i]->Bind();
// Because we can be jumping here (to spilled code) from unspilled
// code, we need to reestablish a spilled frame at this block.
frame_->SpillAll();
// Reload sp from the top handler, because some statements that we
// break from (eg, for...in) may have left stuff on the stack.
__ mov(r3, Operand(handler_address));
__ ldr(sp, MemOperand(r3));
frame_->Forget(frame_->height() - handler_height);
ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1);
__ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
frame_->PrepareForReturn();
}
shadows[i]->other_target()->Jump();
}
}
exit.Bind();
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ TryFinallyStatement");
CodeForStatementPosition(node);
// State: Used to keep track of reason for entering the finally
// block. Should probably be extended to hold information for
// break/continue from within the try block.
enum { FALLING, THROWING, JUMPING };
JumpTarget try_block;
JumpTarget finally_block;
try_block.Call();
frame_->EmitPush(r0); // save exception object on the stack
// In case of thrown exceptions, this is where we continue.
__ mov(r2, Operand(Smi::FromInt(THROWING)));
finally_block.Jump();
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_FINALLY_HANDLER);
int handler_height = frame_->height();
// Shadow the labels for all escapes from the try block, including
// returns. Shadowing hides the original label as the LabelShadow and
// operations on the original actually affect the shadowing label.
//
// We should probably try to unify the escaping labels and the return
// label.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatements(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original labels are unshadowed and the
// LabelShadows represent the formerly shadowing labels.
int nof_unlinks = 0;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
if (shadows[i]->is_linked()) nof_unlinks++;
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// If we can fall off the end of the try block, unlink from the try
// chain and set the state on the frame to FALLING.
if (has_valid_frame()) {
// The next handler address is on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1);
__ mov(r3, Operand(handler_address));
__ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
// Fake a top of stack value (unneeded when FALLING) and set the
// state in r2, then jump around the unlink blocks if any.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(r0);
__ mov(r2, Operand(Smi::FromInt(FALLING)));
if (nof_unlinks > 0) {
finally_block.Jump();
}
}
// Generate code to unlink and set the state for the (formerly)
// shadowing targets that have been jumped to.
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// If we have come from the shadowed return, the return value is
// in (a non-refcounted reference to) r0. We must preserve it
// until it is pushed.
//
// Because we can be jumping here (to spilled code) from
// unspilled code, we need to reestablish a spilled frame at
// this block.
shadows[i]->Bind();
frame_->SpillAll();
// Reload sp from the top handler, because some statements that
// we break from (eg, for...in) may have left stuff on the
// stack.
__ mov(r3, Operand(handler_address));
__ ldr(sp, MemOperand(r3));
frame_->Forget(frame_->height() - handler_height);
// Unlink this handler and drop it from the frame. The next
// handler address is currently on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1);
__ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (i == kReturnShadowIndex) {
// If this label shadowed the function return, materialize the
// return value on the stack.
frame_->EmitPush(r0);
} else {
// Fake TOS for targets that shadowed breaks and continues.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(r0);
}
__ mov(r2, Operand(Smi::FromInt(JUMPING + i)));
if (--nof_unlinks > 0) {
// If this is not the last unlink block, jump around the next.
finally_block.Jump();
}
}
}
// --- Finally block ---
finally_block.Bind();
// Push the state on the stack.
frame_->EmitPush(r2);
// We keep two elements on the stack - the (possibly faked) result
// and the state - while evaluating the finally block.
//
// Generate code for the statements in the finally block.
VisitStatements(node->finally_block()->statements());
if (has_valid_frame()) {
// Restore state and return value or faked TOS.
frame_->EmitPop(r2);
frame_->EmitPop(r0);
}
// Generate code to jump to the right destination for all used
// formerly shadowing targets. Deallocate each shadow target.
for (int i = 0; i < shadows.length(); i++) {
if (has_valid_frame() && shadows[i]->is_bound()) {
JumpTarget* original = shadows[i]->other_target();
__ cmp(r2, Operand(Smi::FromInt(JUMPING + i)));
if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
JumpTarget skip;
skip.Branch(ne);
frame_->PrepareForReturn();
original->Jump();
skip.Bind();
} else {
original->Branch(eq);
}
}
}
if (has_valid_frame()) {
// Check if we need to rethrow the exception.
JumpTarget exit;
__ cmp(r2, Operand(Smi::FromInt(THROWING)));
exit.Branch(ne);
// Rethrow exception.
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kReThrow, 1);
// Done.
exit.Bind();
}
ASSERT(!has_valid_frame() || frame_->height() == original_height);
}
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ DebuggerStatament");
CodeForStatementPosition(node);
#ifdef ENABLE_DEBUGGER_SUPPORT
frame_->DebugBreak();
#endif
// Ignore the return value.
ASSERT(frame_->height() == original_height);
}
void CodeGenerator::InstantiateFunction(
Handle<SharedFunctionInfo> function_info) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
if (scope()->is_function_scope() && function_info->num_literals() == 0) {
FastNewClosureStub stub;
frame_->EmitPush(Operand(function_info));
frame_->SpillAll();
frame_->CallStub(&stub, 1);
frame_->EmitPush(r0);
} else {
// Create a new closure.
frame_->EmitPush(cp);
frame_->EmitPush(Operand(function_info));
frame_->CallRuntime(Runtime::kNewClosure, 2);
frame_->EmitPush(r0);
}
}
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function info and instantiate it.
Handle<SharedFunctionInfo> function_info =
Compiler::BuildFunctionInfo(node, script(), this);
// Check for stack-overflow exception.
if (HasStackOverflow()) {
ASSERT(frame_->height() == original_height);
return;
}
InstantiateFunction(function_info);
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
InstantiateFunction(node->shared_function_info());
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitConditional(Conditional* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ Conditional");
JumpTarget then;
JumpTarget else_;
LoadCondition(node->condition(), &then, &else_, true);
if (has_valid_frame()) {
Branch(false, &else_);
}
if (has_valid_frame() || then.is_linked()) {
then.Bind();
Load(node->then_expression());
}
if (else_.is_linked()) {
JumpTarget exit;
if (has_valid_frame()) exit.Jump();
else_.Bind();
Load(node->else_expression());
if (exit.is_linked()) exit.Bind();
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
// JumpTargets do not yet support merging frames so the frame must be
// spilled when jumping to these targets.
JumpTarget slow;
JumpTarget done;
// Generate fast case for loading from slots that correspond to
// local/global variables or arguments unless they are shadowed by
// eval-introduced bindings.
EmitDynamicLoadFromSlotFastCase(slot,
typeof_state,
&slow,
&done);
slow.Bind();
VirtualFrame::SpilledScope spilled_scope(frame_);
frame_->EmitPush(cp);
__ mov(r0, Operand(slot->var()->name()));
frame_->EmitPush(r0);
if (typeof_state == INSIDE_TYPEOF) {
frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
} else {
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
}
done.Bind();
frame_->EmitPush(r0);
} else {
Register scratch = VirtualFrame::scratch0();
TypeInfo info = type_info(slot);
frame_->EmitPush(SlotOperand(slot, scratch), info);
if (slot->var()->mode() == Variable::CONST) {
// Const slots may contain 'the hole' value (the constant hasn't been
// initialized yet) which needs to be converted into the 'undefined'
// value.
Comment cmnt(masm_, "[ Unhole const");
frame_->EmitPop(scratch);
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(scratch, ip);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex, eq);
frame_->EmitPush(scratch);
}
}
}
void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
TypeofState state) {
LoadFromSlot(slot, state);
// Bail out quickly if we're not using lazy arguments allocation.
if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
// ... or if the slot isn't a non-parameter arguments slot.
if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
VirtualFrame::SpilledScope spilled_scope(frame_);
// Load the loaded value from the stack into r0 but leave it on the
// stack.
__ ldr(r0, MemOperand(sp, 0));
// If the loaded value is the sentinel that indicates that we
// haven't loaded the arguments object yet, we need to do it now.
JumpTarget exit;
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r0, ip);
exit.Branch(ne);
frame_->Drop();
StoreArgumentsObject(false);
exit.Bind();
}
void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
ASSERT(slot != NULL);
if (slot->type() == Slot::LOOKUP) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(slot->var()->is_dynamic());
// For now, just do a runtime call.
frame_->EmitPush(cp);
__ mov(r0, Operand(slot->var()->name()));
frame_->EmitPush(r0);
if (init_state == CONST_INIT) {
// Same as the case for a normal store, but ignores attribute
// (e.g. READ_ONLY) of context slot so that we can initialize
// const properties (introduced via eval("const foo = (some
// expr);")). Also, uses the current function context instead of
// the top context.
//
// Note that we must declare the foo upon entry of eval(), via a
// context slot declaration, but we cannot initialize it at the
// same time, because the const declaration may be at the end of
// the eval code (sigh...) and the const variable may have been
// used before (where its value is 'undefined'). Thus, we can only
// do the initialization when we actually encounter the expression
// and when the expression operands are defined and valid, and
// thus we need the split into 2 operations: declaration of the
// context slot followed by initialization.
frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
}
// Storing a variable must keep the (new) value on the expression
// stack. This is necessary for compiling assignment expressions.
frame_->EmitPush(r0);
} else {
ASSERT(!slot->var()->is_dynamic());
Register scratch = VirtualFrame::scratch0();
VirtualFrame::RegisterAllocationScope scope(this);
// The frame must be spilled when branching to this target.
JumpTarget exit;
if (init_state == CONST_INIT) {
ASSERT(slot->var()->mode() == Variable::CONST);
// Only the first const initialization must be executed (the slot
// still contains 'the hole' value). When the assignment is
// executed, the code is identical to a normal store (see below).
Comment cmnt(masm_, "[ Init const");
__ ldr(scratch, SlotOperand(slot, scratch));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(scratch, ip);
frame_->SpillAll();
exit.Branch(ne);
}
// We must execute the store. Storing a variable must keep the
// (new) value on the stack. This is necessary for compiling
// assignment expressions.
//
// Note: We will reach here even with slot->var()->mode() ==
// Variable::CONST because of const declarations which will
// initialize consts to 'the hole' value and by doing so, end up
// calling this code. r2 may be loaded with context; used below in
// RecordWrite.
Register tos = frame_->Peek();
__ str(tos, SlotOperand(slot, scratch));
if (slot->type() == Slot::CONTEXT) {
// Skip write barrier if the written value is a smi.
__ tst(tos, Operand(kSmiTagMask));
// We don't use tos any more after here.
VirtualFrame::SpilledScope spilled_scope(frame_);
exit.Branch(eq);
// scratch is loaded with context when calling SlotOperand above.
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
__ mov(r3, Operand(offset));
// r1 could be identical with tos, but that doesn't matter.
__ RecordWrite(scratch, r3, r1);
}
// If we definitely did not jump over the assignment, we do not need
// to bind the exit label. Doing so can defeat peephole
// optimization.
if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) {
frame_->SpillAll();
exit.Bind();
}
}
}
void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot,
TypeofState typeof_state,
JumpTarget* slow) {
// Check that no extension objects have been created by calls to
// eval from the current scope to the global scope.
Register tmp = frame_->scratch0();
Register tmp2 = frame_->scratch1();
Register context = cp;
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
frame_->SpillAll();
// Check that extension is NULL.
__ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
__ tst(tmp2, tmp2);
slow->Branch(ne);
}
// Load next context in chain.
__ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// If no outer scope calls eval, we do not need to check more
// context extensions.
if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
frame_->SpillAll();
Label next, fast;
__ Move(tmp, context);
__ bind(&next);
// Terminate at global context.
__ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
__ cmp(tmp2, ip);
__ b(eq, &fast);
// Check that extension is NULL.
__ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX));
__ tst(tmp2, tmp2);
slow->Branch(ne);
// Load next context in chain.
__ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX));
__ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
__ b(&next);
__ bind(&fast);
}
// Load the global object.
LoadGlobal();
// Setup the name register and call load IC.
frame_->CallLoadIC(slot->var()->name(),
typeof_state == INSIDE_TYPEOF
? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT);
}
void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
TypeofState typeof_state,
JumpTarget* slow,
JumpTarget* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
frame_->SpillAll();
done->Jump();
} else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
frame_->SpillAll();
Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
if (potential_slot != NULL) {
// Generate fast case for locals that rewrite to slots.
__ ldr(r0,
ContextSlotOperandCheckExtensions(potential_slot,
r1,
r2,
slow));
if (potential_slot->var()->mode() == Variable::CONST) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r0, ip);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
}
done->Jump();
} else if (rewrite != NULL) {
// Generate fast case for argument loads.
Property* property = rewrite->AsProperty();
if (property != NULL) {
VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
Literal* key_literal = property->key()->AsLiteral();
if (obj_proxy != NULL &&
key_literal != NULL &&
obj_proxy->IsArguments() &&
key_literal->handle()->IsSmi()) {
// Load arguments object if there are no eval-introduced
// variables. Then load the argument from the arguments
// object using keyed load.
__ ldr(r0,
ContextSlotOperandCheckExtensions(obj_proxy->var()->slot(),
r1,
r2,
slow));
frame_->EmitPush(r0);
__ mov(r1, Operand(key_literal->handle()));
frame_->EmitPush(r1);
EmitKeyedLoad();
done->Jump();
}
}
}
}
}
void CodeGenerator::VisitSlot(Slot* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Slot");
LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF);
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ VariableProxy");
Variable* var = node->var();
Expression* expr = var->rewrite();
if (expr != NULL) {
Visit(expr);
} else {
ASSERT(var->is_global());
Reference ref(this, node);
ref.GetValue();
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitLiteral(Literal* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Literal");
Register reg = frame_->GetTOSRegister();
bool is_smi = node->handle()->IsSmi();
__ mov(reg, Operand(node->handle()));
frame_->EmitPush(reg, is_smi ? TypeInfo::Smi() : TypeInfo::Unknown());
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ RexExp Literal");
// Retrieve the literal array and check the allocated entry.
// Load the function of this activation.
__ ldr(r1, frame_->Function());
// Load the literals array of the function.
__ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ ldr(r2, FieldMemOperand(r1, literal_offset));
JumpTarget done;
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r2, ip);
done.Branch(ne);
// If the entry is undefined we call the runtime system to computed
// the literal.
frame_->EmitPush(r1); // literal array (0)
__ mov(r0, Operand(Smi::FromInt(node->literal_index())));
frame_->EmitPush(r0); // literal index (1)
__ mov(r0, Operand(node->pattern())); // RegExp pattern (2)
frame_->EmitPush(r0);
__ mov(r0, Operand(node->flags())); // RegExp flags (3)
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
__ mov(r2, Operand(r0));
done.Bind();
// Push the literal.
frame_->EmitPush(r2);
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ ObjectLiteral");
// Load the function of this activation.
__ ldr(r3, frame_->Function());
// Literal array.
__ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
// Literal index.
__ mov(r2, Operand(Smi::FromInt(node->literal_index())));
// Constant properties.
__ mov(r1, Operand(node->constant_properties()));
// Should the object literal have fast elements?
__ mov(r0, Operand(Smi::FromInt(node->fast_elements() ? 1 : 0)));
frame_->EmitPushMultiple(4, r3.bit() | r2.bit() | r1.bit() | r0.bit());
if (node->depth() > 1) {
frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4);
} else {
frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
}
frame_->EmitPush(r0); // save the result
for (int i = 0; i < node->properties()->length(); i++) {
// At the start of each iteration, the top of stack contains
// the newly created object literal.
ObjectLiteral::Property* property = node->properties()->at(i);
Literal* key = property->key();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
break;
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
// else fall through
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
Load(value);
frame_->EmitPop(r0);
__ mov(r2, Operand(key->handle()));
__ ldr(r1, frame_->Top()); // Load the receiver.
frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0);
break;
}
// else fall through
case ObjectLiteral::Property::PROTOTYPE: {
__ ldr(r0, frame_->Top());
frame_->EmitPush(r0); // dup the result
Load(key);
Load(value);
frame_->CallRuntime(Runtime::kSetProperty, 3);
break;
}
case ObjectLiteral::Property::SETTER: {
__ ldr(r0, frame_->Top());
frame_->EmitPush(r0);
Load(key);
__ mov(r0, Operand(Smi::FromInt(1)));
frame_->EmitPush(r0);
Load(value);
frame_->CallRuntime(Runtime::kDefineAccessor, 4);
break;
}
case ObjectLiteral::Property::GETTER: {
__ ldr(r0, frame_->Top());
frame_->EmitPush(r0);
Load(key);
__ mov(r0, Operand(Smi::FromInt(0)));
frame_->EmitPush(r0);
Load(value);
frame_->CallRuntime(Runtime::kDefineAccessor, 4);
break;
}
}
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ ArrayLiteral");
// Load the function of this activation.
__ ldr(r2, frame_->Function());
// Load the literals array of the function.
__ ldr(r2, FieldMemOperand(r2, JSFunction::kLiteralsOffset));
__ mov(r1, Operand(Smi::FromInt(node->literal_index())));
__ mov(r0, Operand(node->constant_elements()));
frame_->EmitPushMultiple(3, r2.bit() | r1.bit() | r0.bit());
int length = node->values()->length();
if (node->depth() > 1) {
frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3);
} else if (length > FastCloneShallowArrayStub::kMaximumLength) {
frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
} else {
FastCloneShallowArrayStub stub(length);
frame_->CallStub(&stub, 3);
}
frame_->EmitPush(r0); // save the result
// r0: created object literal
// Generate code to set the elements in the array that are not
// literals.
for (int i = 0; i < node->values()->length(); i++) {
Expression* value = node->values()->at(i);
// If value is a literal the property value is already set in the
// boilerplate object.
if (value->AsLiteral() != NULL) continue;
// If value is a materialized literal the property value is already set
// in the boilerplate object if it is simple.
if (CompileTimeValue::IsCompileTimeValue(value)) continue;
// The property must be set by generated code.
Load(value);
frame_->EmitPop(r0);
// Fetch the object literal.
__ ldr(r1, frame_->Top());
// Get the elements array.
__ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
// Write to the indexed properties array.
int offset = i * kPointerSize + FixedArray::kHeaderSize;
__ str(r0, FieldMemOperand(r1, offset));
// Update the write barrier for the array address.
__ mov(r3, Operand(offset));
__ RecordWrite(r1, r3, r2);
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
// Call runtime routine to allocate the catch extension object and
// assign the exception value to the catch variable.
Comment cmnt(masm_, "[ CatchExtensionObject");
Load(node->key());
Load(node->value());
frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
frame_->EmitPush(r0);
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::EmitSlotAssignment(Assignment* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm(), "[ Variable Assignment");
Variable* var = node->target()->AsVariableProxy()->AsVariable();
ASSERT(var != NULL);
Slot* slot = var->slot();
ASSERT(slot != NULL);
// Evaluate the right-hand side.
if (node->is_compound()) {
// For a compound assignment the right-hand side is a binary operation
// between the current property value and the actual right-hand side.
LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
// Perform the binary operation.
Literal* literal = node->value()->AsLiteral();
bool overwrite_value =
(node->value()->AsBinaryOperation() != NULL &&
node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
if (literal != NULL && literal->handle()->IsSmi()) {
SmiOperation(node->binary_op(),
literal->handle(),
false,
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
} else {
GenerateInlineSmi inline_smi =
loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI;
if (literal != NULL) {
ASSERT(!literal->handle()->IsSmi());
inline_smi = DONT_GENERATE_INLINE_SMI;
}
Load(node->value());
GenericBinaryOperation(node->binary_op(),
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE,
inline_smi);
}
} else {
Load(node->value());
}
// Perform the assignment.
if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) {
CodeForSourcePosition(node->position());
StoreToSlot(slot,
node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT);
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm(), "[ Named Property Assignment");
Variable* var = node->target()->AsVariableProxy()->AsVariable();
Property* prop = node->target()->AsProperty();
ASSERT(var == NULL || (prop == NULL && var->is_global()));
// Initialize name and evaluate the receiver sub-expression if necessary. If
// the receiver is trivial it is not placed on the stack at this point, but
// loaded whenever actually needed.
Handle<String> name;
bool is_trivial_receiver = false;
if (var != NULL) {
name = var->name();
} else {
Literal* lit = prop->key()->AsLiteral();
ASSERT_NOT_NULL(lit);
name = Handle<String>::cast(lit->handle());
// Do not materialize the receiver on the frame if it is trivial.
is_trivial_receiver = prop->obj()->IsTrivial();
if (!is_trivial_receiver) Load(prop->obj());
}
// Change to slow case in the beginning of an initialization block to
// avoid the quadratic behavior of repeatedly adding fast properties.
if (node->starts_initialization_block()) {
// Initialization block consists of assignments of the form expr.x = ..., so
// this will never be an assignment to a variable, so there must be a
// receiver object.
ASSERT_EQ(NULL, var);
if (is_trivial_receiver) {
Load(prop->obj());
} else {
frame_->Dup();
}
frame_->CallRuntime(Runtime::kToSlowProperties, 1);
}
// Change to fast case at the end of an initialization block. To prepare for
// that add an extra copy of the receiver to the frame, so that it can be
// converted back to fast case after the assignment.
if (node->ends_initialization_block() && !is_trivial_receiver) {
frame_->Dup();
}
// Stack layout:
// [tos] : receiver (only materialized if non-trivial)
// [tos+1] : receiver if at the end of an initialization block
// Evaluate the right-hand side.
if (node->is_compound()) {
// For a compound assignment the right-hand side is a binary operation
// between the current property value and the actual right-hand side.
if (is_trivial_receiver) {
Load(prop->obj());
} else if (var != NULL) {
LoadGlobal();
} else {
frame_->Dup();
}
EmitNamedLoad(name, var != NULL);
// Perform the binary operation.
Literal* literal = node->value()->AsLiteral();
bool overwrite_value =
(node->value()->AsBinaryOperation() != NULL &&
node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
if (literal != NULL && literal->handle()->IsSmi()) {
SmiOperation(node->binary_op(),
literal->handle(),
false,
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
} else {
GenerateInlineSmi inline_smi =
loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI;
if (literal != NULL) {
ASSERT(!literal->handle()->IsSmi());
inline_smi = DONT_GENERATE_INLINE_SMI;
}
Load(node->value());
GenericBinaryOperation(node->binary_op(),
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE,
inline_smi);
}
} else {
// For non-compound assignment just load the right-hand side.
Load(node->value());
}
// Stack layout:
// [tos] : value
// [tos+1] : receiver (only materialized if non-trivial)
// [tos+2] : receiver if at the end of an initialization block
// Perform the assignment. It is safe to ignore constants here.
ASSERT(var == NULL || var->mode() != Variable::CONST);
ASSERT_NE(Token::INIT_CONST, node->op());
if (is_trivial_receiver) {
// Load the receiver and swap with the value.
Load(prop->obj());
Register t0 = frame_->PopToRegister();
Register t1 = frame_->PopToRegister(t0);
frame_->EmitPush(t0);
frame_->EmitPush(t1);
}
CodeForSourcePosition(node->position());
bool is_contextual = (var != NULL);
EmitNamedStore(name, is_contextual);
frame_->EmitPush(r0);
// Change to fast case at the end of an initialization block.
if (node->ends_initialization_block()) {
ASSERT_EQ(NULL, var);
// The argument to the runtime call is the receiver.
if (is_trivial_receiver) {
Load(prop->obj());
} else {
// A copy of the receiver is below the value of the assignment. Swap
// the receiver and the value of the assignment expression.
Register t0 = frame_->PopToRegister();
Register t1 = frame_->PopToRegister(t0);
frame_->EmitPush(t0);
frame_->EmitPush(t1);
}
frame_->CallRuntime(Runtime::kToFastProperties, 1);
}
// Stack layout:
// [tos] : result
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Keyed Property Assignment");
Property* prop = node->target()->AsProperty();
ASSERT_NOT_NULL(prop);
// Evaluate the receiver subexpression.
Load(prop->obj());
// Change to slow case in the beginning of an initialization block to
// avoid the quadratic behavior of repeatedly adding fast properties.
if (node->starts_initialization_block()) {
frame_->Dup();
frame_->CallRuntime(Runtime::kToSlowProperties, 1);
}
// Change to fast case at the end of an initialization block. To prepare for
// that add an extra copy of the receiver to the frame, so that it can be
// converted back to fast case after the assignment.
if (node->ends_initialization_block()) {
frame_->Dup();
}
// Evaluate the key subexpression.
Load(prop->key());
// Stack layout:
// [tos] : key
// [tos+1] : receiver
// [tos+2] : receiver if at the end of an initialization block
// Evaluate the right-hand side.
if (node->is_compound()) {
// For a compound assignment the right-hand side is a binary operation
// between the current property value and the actual right-hand side.
// Duplicate receiver and key for loading the current property value.
frame_->Dup2();
EmitKeyedLoad();
frame_->EmitPush(r0);
// Perform the binary operation.
Literal* literal = node->value()->AsLiteral();
bool overwrite_value =
(node->value()->AsBinaryOperation() != NULL &&
node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
if (literal != NULL && literal->handle()->IsSmi()) {
SmiOperation(node->binary_op(),
literal->handle(),
false,
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
} else {
GenerateInlineSmi inline_smi =
loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI;
if (literal != NULL) {
ASSERT(!literal->handle()->IsSmi());
inline_smi = DONT_GENERATE_INLINE_SMI;
}
Load(node->value());
GenericBinaryOperation(node->binary_op(),
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE,
inline_smi);
}
} else {
// For non-compound assignment just load the right-hand side.
Load(node->value());
}
// Stack layout:
// [tos] : value
// [tos+1] : key
// [tos+2] : receiver
// [tos+3] : receiver if at the end of an initialization block
// Perform the assignment. It is safe to ignore constants here.
ASSERT(node->op() != Token::INIT_CONST);
CodeForSourcePosition(node->position());
EmitKeyedStore(prop->key()->type());
frame_->EmitPush(r0);
// Stack layout:
// [tos] : result
// [tos+1] : receiver if at the end of an initialization block
// Change to fast case at the end of an initialization block.
if (node->ends_initialization_block()) {
// The argument to the runtime call is the extra copy of the receiver,
// which is below the value of the assignment. Swap the receiver and
// the value of the assignment expression.
Register t0 = frame_->PopToRegister();
Register t1 = frame_->PopToRegister(t0);
frame_->EmitPush(t1);
frame_->EmitPush(t0);
frame_->CallRuntime(Runtime::kToFastProperties, 1);
}
// Stack layout:
// [tos] : result
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitAssignment(Assignment* node) {
VirtualFrame::RegisterAllocationScope scope(this);
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Assignment");
Variable* var = node->target()->AsVariableProxy()->AsVariable();
Property* prop = node->target()->AsProperty();
if (var != NULL && !var->is_global()) {
EmitSlotAssignment(node);
} else if ((prop != NULL && prop->key()->IsPropertyName()) ||
(var != NULL && var->is_global())) {
// Properties whose keys are property names and global variables are
// treated as named property references. We do not need to consider
// global 'this' because it is not a valid left-hand side.
EmitNamedPropertyAssignment(node);
} else if (prop != NULL) {
// Other properties (including rewritten parameters for a function that
// uses arguments) are keyed property assignments.
EmitKeyedPropertyAssignment(node);
} else {
// Invalid left-hand side.
Load(node->target());
frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
// The runtime call doesn't actually return but the code generator will
// still generate code and expects a certain frame height.
frame_->EmitPush(r0);
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitThrow(Throw* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Throw");
Load(node->exception());
CodeForSourcePosition(node->position());
frame_->CallRuntime(Runtime::kThrow, 1);
frame_->EmitPush(r0);
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitProperty(Property* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Property");
{ Reference property(this, node);
property.GetValue();
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitCall(Call* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ Call");
Expression* function = node->expression();
ZoneList<Expression*>* args = node->arguments();
// Standard function call.
// Check if the function is a variable or a property.
Variable* var = function->AsVariableProxy()->AsVariable();
Property* property = function->AsProperty();
// ------------------------------------------------------------------------
// Fast-case: Use inline caching.
// ---
// According to ECMA-262, section 11.2.3, page 44, the function to call
// must be resolved after the arguments have been evaluated. The IC code
// automatically handles this by loading the arguments before the function
// is resolved in cache misses (this also holds for megamorphic calls).
// ------------------------------------------------------------------------
if (var != NULL && var->is_possibly_eval()) {
VirtualFrame::SpilledScope spilled_scope(frame_);
// ----------------------------------
// JavaScript example: 'eval(arg)' // eval is not known to be shadowed
// ----------------------------------
// In a call to eval, we first call %ResolvePossiblyDirectEval to
// resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
// Prepare stack for call to resolved function.
Load(function);
// Allocate a frame slot for the receiver.
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(r2);
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// If we know that eval can only be shadowed by eval-introduced
// variables we attempt to load the global eval function directly
// in generated code. If we succeed, there is no need to perform a
// context lookup in the runtime system.
JumpTarget done;
if (var->slot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
ASSERT(var->slot()->type() == Slot::LOOKUP);
JumpTarget slow;
// Prepare the stack for the call to
// ResolvePossiblyDirectEvalNoLookup by pushing the loaded
// function, the first argument to the eval call and the
// receiver.
LoadFromGlobalSlotCheckExtensions(var->slot(),
NOT_INSIDE_TYPEOF,
&slow);
frame_->EmitPush(r0);
if (arg_count > 0) {
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
frame_->EmitPush(r1);
} else {
frame_->EmitPush(r2);
}
__ ldr(r1, frame_->Receiver());
frame_->EmitPush(r1);
frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 3);
done.Jump();
slow.Bind();
}
// Prepare the stack for the call to ResolvePossiblyDirectEval by
// pushing the loaded function, the first argument to the eval
// call and the receiver.
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize));
frame_->EmitPush(r1);
if (arg_count > 0) {
__ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
frame_->EmitPush(r1);
} else {
frame_->EmitPush(r2);
}
__ ldr(r1, frame_->Receiver());
frame_->EmitPush(r1);
// Resolve the call.
frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3);
// If we generated fast-case code bind the jump-target where fast
// and slow case merge.
if (done.is_linked()) done.Bind();
// Touch up stack with the right values for the function and the receiver.
__ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ str(r1, MemOperand(sp, arg_count * kPointerSize));
// Call the function.
CodeForSourcePosition(node->position());
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
frame_->CallStub(&call_function, arg_count + 1);
__ ldr(cp, frame_->Context());
// Remove the function from the stack.
frame_->Drop();
frame_->EmitPush(r0);
} else if (var != NULL && !var->is_this() && var->is_global()) {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is global
// ----------------------------------
// Pass the global object as the receiver and let the IC stub
// patch the stack to use the global proxy as 'this' in the
// invoked function.
LoadGlobal();
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
VirtualFrame::SpilledScope spilled_scope(frame_);
// Setup the name register and call the IC initialization code.
__ mov(r2, Operand(var->name()));
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
CodeForSourcePosition(node->position());
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT,
arg_count + 1);
__ ldr(cp, frame_->Context());
frame_->EmitPush(r0);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
VirtualFrame::SpilledScope spilled_scope(frame_);
// ----------------------------------
// JavaScript examples:
//
// with (obj) foo(1, 2, 3) // foo may be in obj.
//
// function f() {};
// function g() {
// eval(...);
// f(); // f could be in extension object.
// }
// ----------------------------------
// JumpTargets do not yet support merging frames so the frame must be
// spilled when jumping to these targets.
JumpTarget slow, done;
// Generate fast case for loading functions from slots that
// correspond to local/global variables or arguments unless they
// are shadowed by eval-introduced bindings.
EmitDynamicLoadFromSlotFastCase(var->slot(),
NOT_INSIDE_TYPEOF,
&slow,
&done);
slow.Bind();
// Load the function
frame_->EmitPush(cp);
__ mov(r0, Operand(var->name()));
frame_->EmitPush(r0);
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
// r0: slot value; r1: receiver
// Load the receiver.
frame_->EmitPush(r0); // function
frame_->EmitPush(r1); // receiver
// If fast case code has been generated, emit code to push the
// function and receiver and have the slow path jump around this
// code.
if (done.is_linked()) {
JumpTarget call;
call.Jump();
done.Bind();
frame_->EmitPush(r0); // function
LoadGlobalReceiver(r1); // receiver
call.Bind();
}
// Call the function. At this point, everything is spilled but the
// function and receiver are in r0 and r1.
CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
frame_->EmitPush(r0);
} else if (property != NULL) {
// Check if the key is a literal string.
Literal* literal = property->key()->AsLiteral();
if (literal != NULL && literal->handle()->IsSymbol()) {
// ------------------------------------------------------------------
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
// ------------------------------------------------------------------
Handle<String> name = Handle<String>::cast(literal->handle());
if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
name->IsEqualTo(CStrVector("apply")) &&
args->length() == 2 &&
args->at(1)->AsVariableProxy() != NULL &&
args->at(1)->AsVariableProxy()->IsArguments()) {
// Use the optimized Function.prototype.apply that avoids
// allocating lazily allocated arguments objects.
CallApplyLazy(property->obj(),
args->at(0),
args->at(1)->AsVariableProxy(),
node->position());
} else {
Load(property->obj()); // Receiver.
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
VirtualFrame::SpilledScope spilled_scope(frame_);
// Set the name register and call the IC initialization code.
__ mov(r2, Operand(name));
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
CodeForSourcePosition(node->position());
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
__ ldr(cp, frame_->Context());
frame_->EmitPush(r0);
}
} else {
// -------------------------------------------
// JavaScript example: 'array[index](1, 2, 3)'
// -------------------------------------------
VirtualFrame::SpilledScope spilled_scope(frame_);
Load(property->obj());
if (!property->is_synthetic()) {
// Duplicate receiver for later use.
__ ldr(r0, MemOperand(sp, 0));
frame_->EmitPush(r0);
}
Load(property->key());
EmitKeyedLoad();
// Put the function below the receiver.
if (property->is_synthetic()) {
// Use the global receiver.
frame_->EmitPush(r0); // Function.
LoadGlobalReceiver(r0);
} else {
// Switch receiver and function.
frame_->EmitPop(r1); // Receiver.
frame_->EmitPush(r0); // Function.
frame_->EmitPush(r1); // Receiver.
}
// Call the function.
CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position());
frame_->EmitPush(r0);
}
} else {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
// ----------------------------------
// Load the function.
Load(function);
VirtualFrame::SpilledScope spilled_scope(frame_);
// Pass the global proxy as the receiver.
LoadGlobalReceiver(r0);
// Call the function.
CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
frame_->EmitPush(r0);
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitCallNew(CallNew* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments. This is different from ordinary calls, where the
// actual function to call is resolved after the arguments have been
// evaluated.
// Compute function to call and use the global object as the
// receiver. There is no need to use the global proxy here because
// it will always be replaced with a newly allocated object.
Load(node->expression());
LoadGlobal();
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = node->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
VirtualFrame::SpilledScope spilled_scope(frame_);
// r0: the number of arguments.
__ mov(r0, Operand(arg_count));
// Load the function into r1 as per calling convention.
__ ldr(r1, frame_->ElementAt(arg_count + 1));
// Call the construct call builtin that handles allocation and
// constructor invocation.
CodeForSourcePosition(node->position());
Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall));
frame_->CallCodeObject(ic, RelocInfo::CONSTRUCT_CALL, arg_count + 1);
// Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)).
__ str(r0, frame_->Top());
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(args->length() == 1);
JumpTarget leave, null, function, non_function_constructor;
// Load the object into r0.
Load(args->at(0));
frame_->EmitPop(r0);
// If the object is a smi, we return null.
__ tst(r0, Operand(kSmiTagMask));
null.Branch(eq);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
__ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE);
null.Branch(lt);
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ cmp(r1, Operand(JS_FUNCTION_TYPE));
function.Branch(eq);
// Check if the constructor in the map is a function.
__ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset));
__ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
non_function_constructor.Branch(ne);
// The r0 register now contains the constructor function. Grab the
// instance class name from there.
__ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset));
frame_->EmitPush(r0);
leave.Jump();
// Functions have class 'Function'.
function.Bind();
__ mov(r0, Operand(Factory::function_class_symbol()));
frame_->EmitPush(r0);
leave.Jump();
// Objects with a non-function constructor have class 'Object'.
non_function_constructor.Bind();
__ mov(r0, Operand(Factory::Object_symbol()));
frame_->EmitPush(r0);
leave.Jump();
// Non-JS objects have class null.
null.Bind();
__ LoadRoot(r0, Heap::kNullValueRootIndex);
frame_->EmitPush(r0);
// All done.
leave.Bind();
}
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(args->length() == 1);
JumpTarget leave;
Load(args->at(0));
frame_->EmitPop(r0); // r0 contains object.
// if (object->IsSmi()) return the object.
__ tst(r0, Operand(kSmiTagMask));
leave.Branch(eq);
// It is a heap object - get map. If (!object->IsJSValue()) return the object.
__ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE);
leave.Branch(ne);
// Load the value.
__ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
leave.Bind();
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(args->length() == 2);
JumpTarget leave;
Load(args->at(0)); // Load the object.
Load(args->at(1)); // Load the value.
frame_->EmitPop(r0); // r0 contains value
frame_->EmitPop(r1); // r1 contains object
// if (object->IsSmi()) return object.
__ tst(r1, Operand(kSmiTagMask));
leave.Branch(eq);
// It is a heap object - get map. If (!object->IsJSValue()) return the object.
__ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE);
leave.Branch(ne);
// Store the value.
__ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
// Update the write barrier.
__ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag));
__ RecordWrite(r1, r2, r3);
// Leave.
leave.Bind();
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Register reg = frame_->PopToRegister();
__ tst(reg, Operand(kSmiTagMask));
cc_reg_ = eq;
}
void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
// See comment in CodeGenerator::GenerateLog in codegen-ia32.cc.
ASSERT_EQ(args->length(), 3);
#ifdef ENABLE_LOGGING_AND_PROFILING
if (ShouldGenerateLog(args->at(0))) {
Load(args->at(1));
Load(args->at(2));
frame_->CallRuntime(Runtime::kLog, 2);
}
#endif
frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex);
}
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Register reg = frame_->PopToRegister();
__ tst(reg, Operand(kSmiTagMask | 0x80000000u));
cc_reg_ = eq;
}
// Generates the Math.pow method - currently just calls runtime.
void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
frame_->CallRuntime(Runtime::kMath_pow, 2);
frame_->EmitPush(r0);
}
// Generates the Math.sqrt method - currently just calls runtime.
void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
frame_->CallRuntime(Runtime::kMath_sqrt, 1);
frame_->EmitPush(r0);
}
class DeferredStringCharCodeAt : public DeferredCode {
public:
DeferredStringCharCodeAt(Register object,
Register index,
Register scratch,
Register result)
: result_(result),
char_code_at_generator_(object,
index,
scratch,
result,
&need_conversion_,
&need_conversion_,
&index_out_of_range_,
STRING_INDEX_IS_NUMBER) {}
StringCharCodeAtGenerator* fast_case_generator() {
return &char_code_at_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_code_at_generator_.GenerateSlow(masm(), call_helper);
__ bind(&need_conversion_);
// Move the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result_, Heap::kUndefinedValueRootIndex);
__ jmp(exit_label());
__ bind(&index_out_of_range_);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result_, Heap::kNanValueRootIndex);
__ jmp(exit_label());
}
private:
Register result_;
Label need_conversion_;
Label index_out_of_range_;
StringCharCodeAtGenerator char_code_at_generator_;
};
// This generates code that performs a String.prototype.charCodeAt() call
// or returns a smi in order to trigger conversion.
void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment(masm_, "[ GenerateStringCharCodeAt");
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Register index = r1;
Register object = r2;
frame_->EmitPop(r1);
frame_->EmitPop(r2);
// We need two extra registers.
Register scratch = r3;
Register result = r0;
DeferredStringCharCodeAt* deferred =
new DeferredStringCharCodeAt(object,
index,
scratch,
result);
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->EmitPush(result);
}
class DeferredStringCharFromCode : public DeferredCode {
public:
DeferredStringCharFromCode(Register code,
Register result)
: char_from_code_generator_(code, result) {}
StringCharFromCodeGenerator* fast_case_generator() {
return &char_from_code_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_from_code_generator_.GenerateSlow(masm(), call_helper);
}
private:
StringCharFromCodeGenerator char_from_code_generator_;
};
// Generates code for creating a one-char string from a char code.
void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment(masm_, "[ GenerateStringCharFromCode");
ASSERT(args->length() == 1);
Load(args->at(0));
Register code = r1;
Register result = r0;
frame_->EmitPop(code);
DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(
code, result);
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->EmitPush(result);
}
class DeferredStringCharAt : public DeferredCode {
public:
DeferredStringCharAt(Register object,
Register index,
Register scratch1,
Register scratch2,
Register result)
: result_(result),
char_at_generator_(object,
index,
scratch1,
scratch2,
result,
&need_conversion_,
&need_conversion_,
&index_out_of_range_,
STRING_INDEX_IS_NUMBER) {}
StringCharAtGenerator* fast_case_generator() {
return &char_at_generator_;
}
virtual void Generate() {
VirtualFrameRuntimeCallHelper call_helper(frame_state());
char_at_generator_.GenerateSlow(masm(), call_helper);
__ bind(&need_conversion_);
// Move smi zero into the result register, which will trigger
// conversion.
__ mov(result_, Operand(Smi::FromInt(0)));
__ jmp(exit_label());
__ bind(&index_out_of_range_);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result_, Heap::kEmptyStringRootIndex);
__ jmp(exit_label());
}
private:
Register result_;
Label need_conversion_;
Label index_out_of_range_;
StringCharAtGenerator char_at_generator_;
};
// This generates code that performs a String.prototype.charAt() call
// or returns a smi in order to trigger conversion.
void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment(masm_, "[ GenerateStringCharAt");
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
Register index = r1;
Register object = r2;
frame_->EmitPop(r1);
frame_->EmitPop(r2);
// We need three extra registers.
Register scratch1 = r3;
Register scratch2 = r4;
Register result = r0;
DeferredStringCharAt* deferred =
new DeferredStringCharAt(object,
index,
scratch1,
scratch2,
result);
deferred->fast_case_generator()->GenerateFast(masm_);
deferred->BindExit();
frame_->EmitPush(result);
}
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
JumpTarget answer;
// We need the CC bits to come out as not_equal in the case where the
// object is a smi. This can't be done with the usual test opcode so
// we use XOR to get the right CC bits.
Register possible_array = frame_->PopToRegister();
Register scratch = VirtualFrame::scratch0();
__ and_(scratch, possible_array, Operand(kSmiTagMask));
__ eor(scratch, scratch, Operand(kSmiTagMask), SetCC);
answer.Branch(ne);
// It is a heap object - get the map. Check if the object is a JS array.
__ CompareObjectType(possible_array, scratch, scratch, JS_ARRAY_TYPE);
answer.Bind();
cc_reg_ = eq;
}
void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
JumpTarget answer;
// We need the CC bits to come out as not_equal in the case where the
// object is a smi. This can't be done with the usual test opcode so
// we use XOR to get the right CC bits.
Register possible_regexp = frame_->PopToRegister();
Register scratch = VirtualFrame::scratch0();
__ and_(scratch, possible_regexp, Operand(kSmiTagMask));
__ eor(scratch, scratch, Operand(kSmiTagMask), SetCC);
answer.Branch(ne);
// It is a heap object - get the map. Check if the object is a regexp.
__ CompareObjectType(possible_regexp, scratch, scratch, JS_REGEXP_TYPE);
answer.Bind();
cc_reg_ = eq;
}
void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
ASSERT(args->length() == 1);
Load(args->at(0));
Register possible_object = frame_->PopToRegister();
__ tst(possible_object, Operand(kSmiTagMask));
false_target()->Branch(eq);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(possible_object, ip);
true_target()->Branch(eq);
Register map_reg = VirtualFrame::scratch0();
__ ldr(map_reg, FieldMemOperand(possible_object, HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ ldrb(possible_object, FieldMemOperand(map_reg, Map::kBitFieldOffset));
__ tst(possible_object, Operand(1 << Map::kIsUndetectable));
false_target()->Branch(ne);
__ ldrb(possible_object, FieldMemOperand(map_reg, Map::kInstanceTypeOffset));
__ cmp(possible_object, Operand(FIRST_JS_OBJECT_TYPE));
false_target()->Branch(lt);
__ cmp(possible_object, Operand(LAST_JS_OBJECT_TYPE));
cc_reg_ = le;
}
void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (%_ClassOf(arg) === 'Function')
ASSERT(args->length() == 1);
Load(args->at(0));
Register possible_function = frame_->PopToRegister();
__ tst(possible_function, Operand(kSmiTagMask));
false_target()->Branch(eq);
Register map_reg = VirtualFrame::scratch0();
Register scratch = VirtualFrame::scratch1();
__ CompareObjectType(possible_function, map_reg, scratch, JS_FUNCTION_TYPE);
cc_reg_ = eq;
}
void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Register possible_undetectable = frame_->PopToRegister();
__ tst(possible_undetectable, Operand(kSmiTagMask));
false_target()->Branch(eq);
Register scratch = VirtualFrame::scratch0();
__ ldr(scratch,
FieldMemOperand(possible_undetectable, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kIsUndetectable));
cc_reg_ = ne;
}
void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Register scratch0 = VirtualFrame::scratch0();
Register scratch1 = VirtualFrame::scratch1();
// Get the frame pointer for the calling frame.
__ ldr(scratch0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
__ ldr(scratch1,
MemOperand(scratch0, StandardFrameConstants::kContextOffset));
__ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ ldr(scratch0,
MemOperand(scratch0, StandardFrameConstants::kCallerFPOffset), eq);
// Check the marker in the calling frame.
__ ldr(scratch1,
MemOperand(scratch0, StandardFrameConstants::kMarkerOffset));
__ cmp(scratch1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
cc_reg_ = eq;
}
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
Register tos = frame_->GetTOSRegister();
Register scratch0 = VirtualFrame::scratch0();
Register scratch1 = VirtualFrame::scratch1();
// Check if the calling frame is an arguments adaptor frame.
__ ldr(scratch0,
MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(scratch1,
MemOperand(scratch0, StandardFrameConstants::kContextOffset));
__ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Get the number of formal parameters.
__ mov(tos, Operand(Smi::FromInt(scope()->num_parameters())), LeaveCC, ne);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ ldr(tos,
MemOperand(scratch0, ArgumentsAdaptorFrameConstants::kLengthOffset),
eq);
frame_->EmitPush(tos);
}
void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(args->length() == 1);
// Satisfy contract with ArgumentsAccessStub:
// Load the key into r1 and the formal parameters count into r0.
Load(args->at(0));
frame_->EmitPop(r1);
__ mov(r0, Operand(Smi::FromInt(scope()->num_parameters())));
// Call the shared stub to get to arguments[key].
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
frame_->CallStub(&stub, 0);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateRandomHeapNumber(
ZoneList<Expression*>* args) {
VirtualFrame::SpilledScope spilled_scope(frame_);
ASSERT(args->length() == 0);
Label slow_allocate_heapnumber;
Label heapnumber_allocated;
__ AllocateHeapNumber(r4, r1, r2, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
// To allocate a heap number, and ensure that it is not a smi, we
// call the runtime function FUnaryMinus on 0, returning the double
// -0.0. A new, distinct heap number is returned each time.
__ mov(r0, Operand(Smi::FromInt(0)));
__ push(r0);
__ CallRuntime(Runtime::kNumberUnaryMinus, 1);
__ mov(r4, Operand(r0));
__ bind(&heapnumber_allocated);
// Convert 32 random bits in r0 to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
if (CpuFeatures::IsSupported(VFP3)) {
__ PrepareCallCFunction(0, r1);
__ CallCFunction(ExternalReference::random_uint32_function(), 0);
CpuFeatures::Scope scope(VFP3);
// 0x41300000 is the top half of 1.0 x 2^20 as a double.
// Create this constant using mov/orr to avoid PC relative load.
__ mov(r1, Operand(0x41000000));
__ orr(r1, r1, Operand(0x300000));
// Move 0x41300000xxxxxxxx (x = random bits) to VFP.
__ vmov(d7, r0, r1);
// Move 0x4130000000000000 to VFP.
__ mov(r0, Operand(0));
__ vmov(d8, r0, r1);
// Subtract and store the result in the heap number.
__ vsub(d7, d7, d8);
__ sub(r0, r4, Operand(kHeapObjectTag));
__ vstr(d7, r0, HeapNumber::kValueOffset);
frame_->EmitPush(r4);
} else {
__ mov(r0, Operand(r4));
__ PrepareCallCFunction(1, r1);
__ CallCFunction(
ExternalReference::fill_heap_number_with_random_function(), 1);
frame_->EmitPush(r0);
}
}
void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
StringAddStub stub(NO_STRING_ADD_FLAGS);
frame_->SpillAll();
frame_->CallStub(&stub, 2);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
ASSERT_EQ(3, args->length());
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
SubStringStub stub;
frame_->SpillAll();
frame_->CallStub(&stub, 3);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
StringCompareStub stub;
frame_->SpillAll();
frame_->CallStub(&stub, 2);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
ASSERT_EQ(4, args->length());
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
Load(args->at(3));
RegExpExecStub stub;
frame_->SpillAll();
frame_->CallStub(&stub, 4);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) {
// No stub. This code only occurs a few times in regexp.js.
const int kMaxInlineLength = 100;
ASSERT_EQ(3, args->length());
Load(args->at(0)); // Size of array, smi.
Load(args->at(1)); // "index" property value.
Load(args->at(2)); // "input" property value.
{
VirtualFrame::SpilledScope spilled_scope(frame_);
Label slowcase;
Label done;
__ ldr(r1, MemOperand(sp, kPointerSize * 2));
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
__ tst(r1, Operand(kSmiTagMask));
__ b(ne, &slowcase);
__ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
__ b(hi, &slowcase);
// Smi-tagging is equivalent to multiplying by 2.
// Allocate RegExpResult followed by FixedArray with size in ebx.
// JSArray: [Map][empty properties][Elements][Length-smi][index][input]
// Elements: [Map][Length][..elements..]
// Size of JSArray with two in-object properties and the header of a
// FixedArray.
int objects_size =
(JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
__ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
__ add(r2, r5, Operand(objects_size));
__ AllocateInNewSpace(
r2, // In: Size, in words.
r0, // Out: Start of allocation (tagged).
r3, // Scratch register.
r4, // Scratch register.
&slowcase,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// r0: Start of allocated area, object-tagged.
// r1: Number of elements in array, as smi.
// r5: Number of elements, untagged.
// Set JSArray map to global.regexp_result_map().
// Set empty properties FixedArray.
// Set elements to point to FixedArray allocated right after the JSArray.
// Interleave operations for better latency.
__ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
__ add(r3, r0, Operand(JSRegExpResult::kSize));
__ mov(r4, Operand(Factory::empty_fixed_array()));
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
__ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
__ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
__ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
__ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
// Set input, index and length fields from arguments.
__ ldm(ia_w, sp, static_cast<RegList>(r2.bit() | r4.bit()));
__ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset));
__ add(sp, sp, Operand(kPointerSize));
__ str(r4, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
__ str(r2, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
// Fill out the elements FixedArray.
// r0: JSArray, tagged.
// r3: FixedArray, tagged.
// r5: Number of elements in array, untagged.
// Set map.
__ mov(r2, Operand(Factory::fixed_array_map()));
__ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
// Set FixedArray length.
__ mov(r6, Operand(r5, LSL, kSmiTagSize));
__ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
// Fill contents of fixed-array with the-hole.
__ mov(r2, Operand(Factory::the_hole_value()));
__ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// Fill fixed array elements with hole.
// r0: JSArray, tagged.
// r2: the hole.
// r3: Start of elements in FixedArray.
// r5: Number of elements to fill.
Label loop;
__ tst(r5, Operand(r5));
__ bind(&loop);
__ b(le, &done); // Jump if r1 is negative or zero.
__ sub(r5, r5, Operand(1), SetCC);
__ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
__ jmp(&loop);
__ bind(&slowcase);
__ CallRuntime(Runtime::kRegExpConstructResult, 3);
__ bind(&done);
}
frame_->Forget(3);
frame_->EmitPush(r0);
}
class DeferredSearchCache: public DeferredCode {
public:
DeferredSearchCache(Register dst, Register cache, Register key)
: dst_(dst), cache_(cache), key_(key) {
set_comment("[ DeferredSearchCache");
}
virtual void Generate();
private:
Register dst_, cache_, key_;
};
void DeferredSearchCache::Generate() {
__ Push(cache_, key_);
__ CallRuntime(Runtime::kGetFromCache, 2);
if (!dst_.is(r0)) {
__ mov(dst_, r0);
}
}
void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
ASSERT_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
Handle<FixedArray> jsfunction_result_caches(
Top::global_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort("Attempt to use undefined cache.");
frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex);
return;
}
Load(args->at(1));
VirtualFrame::SpilledScope spilled_scope(frame_);
frame_->EmitPop(r2);
__ ldr(r1, ContextOperand(cp, Context::GLOBAL_INDEX));
__ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalContextOffset));
__ ldr(r1, ContextOperand(r1, Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(cache_id)));
DeferredSearchCache* deferred = new DeferredSearchCache(r0, r1, r2);
const int kFingerOffset =
FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex);
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ ldr(r0, FieldMemOperand(r1, kFingerOffset));
// r0 now holds finger offset as a smi.
__ add(r3, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// r3 now points to the start of fixed array elements.
__ ldr(r0, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex));
// Note side effect of PreIndex: r3 now points to the key of the pair.
__ cmp(r2, r0);
deferred->Branch(ne);
__ ldr(r0, MemOperand(r3, kPointerSize));
deferred->BindExit();
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and jump to the runtime.
Load(args->at(0));
NumberToStringStub stub;
frame_->SpillAll();
frame_->CallStub(&stub, 1);
frame_->EmitPush(r0);
}
class DeferredSwapElements: public DeferredCode {
public:
DeferredSwapElements(Register object, Register index1, Register index2)
: object_(object), index1_(index1), index2_(index2) {
set_comment("[ DeferredSwapElements");
}
virtual void Generate();
private:
Register object_, index1_, index2_;
};
void DeferredSwapElements::Generate() {
__ push(object_);
__ push(index1_);
__ push(index2_);
__ CallRuntime(Runtime::kSwapElements, 3);
}
void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) {
Comment cmnt(masm_, "[ GenerateSwapElements");
ASSERT_EQ(3, args->length());
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
VirtualFrame::SpilledScope spilled_scope(frame_);
Register index2 = r2;
Register index1 = r1;
Register object = r0;
Register tmp1 = r3;
Register tmp2 = r4;
frame_->EmitPop(index2);
frame_->EmitPop(index1);
frame_->EmitPop(object);
DeferredSwapElements* deferred =
new DeferredSwapElements(object, index1, index2);
// Fetch the map and check if array is in fast case.
// Check that object doesn't require security checks and
// has no indexed interceptor.
__ CompareObjectType(object, tmp1, tmp2, FIRST_JS_OBJECT_TYPE);
deferred->Branch(lt);
__ ldrb(tmp2, FieldMemOperand(tmp1, Map::kBitFieldOffset));
__ tst(tmp2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask));
deferred->Branch(nz);
// Check the object's elements are in fast case.
__ ldr(tmp1, FieldMemOperand(object, JSObject::kElementsOffset));
__ ldr(tmp2, FieldMemOperand(tmp1, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(tmp2, ip);
deferred->Branch(ne);
// Smi-tagging is equivalent to multiplying by 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
// Check that both indices are smis.
__ mov(tmp2, index1);
__ orr(tmp2, tmp2, index2);
__ tst(tmp2, Operand(kSmiTagMask));
deferred->Branch(nz);
// Bring the offsets into the fixed array in tmp1 into index1 and
// index2.
__ mov(tmp2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ add(index1, tmp2, Operand(index1, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(index2, tmp2, Operand(index2, LSL, kPointerSizeLog2 - kSmiTagSize));
// Swap elements.
Register tmp3 = object;
object = no_reg;
__ ldr(tmp3, MemOperand(tmp1, index1));
__ ldr(tmp2, MemOperand(tmp1, index2));
__ str(tmp3, MemOperand(tmp1, index2));
__ str(tmp2, MemOperand(tmp1, index1));
Label done;
__ InNewSpace(tmp1, tmp2, eq, &done);
// Possible optimization: do a check that both values are Smis
// (or them and test against Smi mask.)
__ mov(tmp2, tmp1);
RecordWriteStub recordWrite1(tmp1, index1, tmp3);
__ CallStub(&recordWrite1);
RecordWriteStub recordWrite2(tmp2, index2, tmp3);
__ CallStub(&recordWrite2);
__ bind(&done);
deferred->BindExit();
__ LoadRoot(tmp1, Heap::kUndefinedValueRootIndex);
frame_->EmitPush(tmp1);
}
void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) {
Comment cmnt(masm_, "[ GenerateCallFunction");
ASSERT(args->length() >= 2);
int n_args = args->length() - 2; // for receiver and function.
Load(args->at(0)); // receiver
for (int i = 0; i < n_args; i++) {
Load(args->at(i + 1));
}
Load(args->at(n_args + 1)); // function
frame_->CallJSFunction(n_args);
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
if (CpuFeatures::IsSupported(VFP3)) {
TranscendentalCacheStub stub(TranscendentalCache::SIN);
frame_->SpillAllButCopyTOSToR0();
frame_->CallStub(&stub, 1);
} else {
frame_->CallRuntime(Runtime::kMath_sin, 1);
}
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
if (CpuFeatures::IsSupported(VFP3)) {
TranscendentalCacheStub stub(TranscendentalCache::COS);
frame_->SpillAllButCopyTOSToR0();
frame_->CallStub(&stub, 1);
} else {
frame_->CallRuntime(Runtime::kMath_cos, 1);
}
frame_->EmitPush(r0);
}
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
Load(args->at(0));
Load(args->at(1));
Register lhs = frame_->PopToRegister();
Register rhs = frame_->PopToRegister(lhs);
__ cmp(lhs, rhs);
cc_reg_ = eq;
}
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
if (CheckForInlineRuntimeCall(node)) {
ASSERT((has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
return;
}
ZoneList<Expression*>* args = node->arguments();
Comment cmnt(masm_, "[ CallRuntime");
Runtime::Function* function = node->function();
if (function == NULL) {
// Prepare stack for calling JS runtime function.
// Push the builtins object found in the current global object.
Register scratch = VirtualFrame::scratch0();
__ ldr(scratch, GlobalObject());
Register builtins = frame_->GetTOSRegister();
__ ldr(builtins, FieldMemOperand(scratch, GlobalObject::kBuiltinsOffset));
frame_->EmitPush(builtins);
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
VirtualFrame::SpilledScope spilled_scope(frame_);
if (function == NULL) {
// Call the JS runtime function.
__ mov(r2, Operand(node->name()));
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop);
frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
__ ldr(cp, frame_->Context());
frame_->EmitPush(r0);
} else {
// Call the C runtime function.
frame_->CallRuntime(function, arg_count);
frame_->EmitPush(r0);
}
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
VirtualFrame::SpilledScope spilled_scope(frame_);
Comment cmnt(masm_, "[ UnaryOperation");
Token::Value op = node->op();
if (op == Token::NOT) {
LoadCondition(node->expression(), false_target(), true_target(), true);
// LoadCondition may (and usually does) leave a test and branch to
// be emitted by the caller. In that case, negate the condition.
if (has_cc()) cc_reg_ = NegateCondition(cc_reg_);
} else if (op == Token::DELETE) {
Property* property = node->expression()->AsProperty();
Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
if (property != NULL) {
Load(property->obj());
Load(property->key());
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2);
frame_->EmitPush(r0);
} else if (variable != NULL) {
Slot* slot = variable->slot();
if (variable->is_global()) {
LoadGlobal();
frame_->EmitPush(Operand(variable->name()));
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2);
frame_->EmitPush(r0);
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
// lookup the context holding the named variable
frame_->EmitPush(cp);
frame_->EmitPush(Operand(variable->name()));
frame_->CallRuntime(Runtime::kLookupContext, 2);
// r0: context
frame_->EmitPush(r0);
frame_->EmitPush(Operand(variable->name()));
frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2);
frame_->EmitPush(r0);
} else {
// Default: Result of deleting non-global, not dynamically
// introduced variables is false.
frame_->EmitPushRoot(Heap::kFalseValueRootIndex);
}
} else {
// Default: Result of deleting expressions is true.
Load(node->expression()); // may have side-effects
frame_->Drop();
frame_->EmitPushRoot(Heap::kTrueValueRootIndex);
}
} else if (op == Token::TYPEOF) {
// Special case for loading the typeof expression; see comment on
// LoadTypeofExpression().
LoadTypeofExpression(node->expression());
frame_->CallRuntime(Runtime::kTypeof, 1);
frame_->EmitPush(r0); // r0 has result
} else {
bool overwrite =
(node->expression()->AsBinaryOperation() != NULL &&
node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
Load(node->expression());
switch (op) {
case Token::NOT:
case Token::DELETE:
case Token::TYPEOF:
UNREACHABLE(); // handled above
break;
case Token::SUB: {
VirtualFrame::SpilledScope spilled(frame_);
frame_->EmitPop(r0);
GenericUnaryOpStub stub(Token::SUB, overwrite);
frame_->CallStub(&stub, 0);
frame_->EmitPush(r0); // r0 has result
break;
}
case Token::BIT_NOT: {
// smi check
VirtualFrame::SpilledScope spilled(frame_);
frame_->EmitPop(r0);
JumpTarget smi_label;
JumpTarget continue_label;
__ tst(r0, Operand(kSmiTagMask));
smi_label.Branch(eq);
GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
frame_->CallStub(&stub, 0);
continue_label.Jump();
smi_label.Bind();
__ mvn(r0, Operand(r0));
__ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag
continue_label.Bind();
frame_->EmitPush(r0); // r0 has result
break;
}
case Token::VOID:
frame_->Drop();
frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex);
break;
case Token::ADD: {
VirtualFrame::SpilledScope spilled(frame_);
frame_->EmitPop(r0);
// Smi check.
JumpTarget continue_label;
__ tst(r0, Operand(kSmiTagMask));
continue_label.Branch(eq);
frame_->EmitPush(r0);
frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1);
continue_label.Bind();
frame_->EmitPush(r0); // r0 has result
break;
}
default:
UNREACHABLE();
}
}
ASSERT(!has_valid_frame() ||
(has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
}
void CodeGenerator::VisitCountOperation(CountOperation* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ CountOperation");
bool is_postfix = node->is_postfix();
bool is_increment = node->op() == Token::INC;
Variable* var = node->expression()->AsVariableProxy()->AsVariable();
bool is_const = (var != NULL && var->mode() == Variable::CONST);
bool is_slot = (var != NULL && var->mode() == Variable::VAR);
if (!is_const && is_slot && type_info(var->slot()).IsSmi()) {
// The type info declares that this variable is always a Smi. That
// means it is a Smi both before and after the increment/decrement.
// Lets make use of that to make a very minimal count.
Reference target(this, node->expression(), !is_const);
ASSERT(!target.is_illegal());
target.GetValue(); // Pushes the value.
Register value = frame_->PopToRegister();
if (is_postfix) frame_->EmitPush(value);
if (is_increment) {
__ add(value, value, Operand(Smi::FromInt(1)));
} else {
__ sub(value, value, Operand(Smi::FromInt(1)));
}
frame_->EmitPush(value);
target.SetValue(NOT_CONST_INIT);
if (is_postfix) frame_->Pop();
ASSERT_EQ(original_height + 1, frame_->height());
return;
}
// If it's a postfix expression and its result is not ignored and the
// reference is non-trivial, then push a placeholder on the stack now
// to hold the result of the expression.
bool placeholder_pushed = false;
if (!is_slot && is_postfix) {
frame_->EmitPush(Operand(Smi::FromInt(0)));
placeholder_pushed = true;
}
// A constant reference is not saved to, so a constant reference is not a
// compound assignment reference.
{ Reference target(this, node->expression(), !is_const);
if (target.is_illegal()) {
// Spoof the virtual frame to have the expected height (one higher
// than on entry).
if (!placeholder_pushed) frame_->EmitPush(Operand(Smi::FromInt(0)));
ASSERT_EQ(original_height + 1, frame_->height());
return;
}
// This pushes 0, 1 or 2 words on the object to be used later when updating
// the target. It also pushes the current value of the target.
target.GetValue();
JumpTarget slow;
JumpTarget exit;
Register value = frame_->PopToRegister();
// Postfix: Store the old value as the result.
if (placeholder_pushed) {
frame_->SetElementAt(value, target.size());
} else if (is_postfix) {
frame_->EmitPush(value);
__ mov(VirtualFrame::scratch0(), value);
value = VirtualFrame::scratch0();
}
// Check for smi operand.
__ tst(value, Operand(kSmiTagMask));
slow.Branch(ne);
// Perform optimistic increment/decrement.
if (is_increment) {
__ add(value, value, Operand(Smi::FromInt(1)), SetCC);
} else {
__ sub(value, value, Operand(Smi::FromInt(1)), SetCC);
}
// If the increment/decrement didn't overflow, we're done.
exit.Branch(vc);
// Revert optimistic increment/decrement.
if (is_increment) {
__ sub(value, value, Operand(Smi::FromInt(1)));
} else {
__ add(value, value, Operand(Smi::FromInt(1)));
}
// Slow case: Convert to number. At this point the
// value to be incremented is in the value register..
slow.Bind();
// Convert the operand to a number.
frame_->EmitPush(value);
{
VirtualFrame::SpilledScope spilled(frame_);
frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1);
if (is_postfix) {
// Postfix: store to result (on the stack).
__ str(r0, frame_->ElementAt(target.size()));
}
// Compute the new value.
frame_->EmitPush(r0);
frame_->EmitPush(Operand(Smi::FromInt(1)));
if (is_increment) {
frame_->CallRuntime(Runtime::kNumberAdd, 2);
} else {
frame_->CallRuntime(Runtime::kNumberSub, 2);
}
}
__ Move(value, r0);
// Store the new value in the target if not const.
// At this point the answer is in the value register.
exit.Bind();
frame_->EmitPush(value);
// Set the target with the result, leaving the result on
// top of the stack. Removes the target from the stack if
// it has a non-zero size.
if (!is_const) target.SetValue(NOT_CONST_INIT);
}
// Postfix: Discard the new value and use the old.
if (is_postfix) frame_->Pop();
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
// According to ECMA-262 section 11.11, page 58, the binary logical
// operators must yield the result of one of the two expressions
// before any ToBoolean() conversions. This means that the value
// produced by a && or || operator is not necessarily a boolean.
// NOTE: If the left hand side produces a materialized value (not in
// the CC register), we force the right hand side to do the
// same. This is necessary because we may have to branch to the exit
// after evaluating the left hand side (due to the shortcut
// semantics), but the compiler must (statically) know if the result
// of compiling the binary operation is materialized or not.
VirtualFrame::SpilledScope spilled_scope(frame_);
if (node->op() == Token::AND) {
JumpTarget is_true;
LoadCondition(node->left(), &is_true, false_target(), false);
if (has_valid_frame() && !has_cc()) {
// The left-hand side result is on top of the virtual frame.
JumpTarget pop_and_continue;
JumpTarget exit;
frame_->Dup();
// Avoid popping the result if it converts to 'false' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
ToBoolean(&pop_and_continue, &exit);
Branch(false, &exit);
// Pop the result of evaluating the first part.
pop_and_continue.Bind();
frame_->Pop();
// Evaluate right side expression.
is_true.Bind();
Load(node->right());
// Exit (always with a materialized value).
exit.Bind();
} else if (has_cc() || is_true.is_linked()) {
// The left-hand side is either (a) partially compiled to
// control flow with a final branch left to emit or (b) fully
// compiled to control flow and possibly true.
if (has_cc()) {
Branch(false, false_target());
}
is_true.Bind();
LoadCondition(node->right(), true_target(), false_target(), false);
} else {
// Nothing to do.
ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked());
}
} else {
ASSERT(node->op() == Token::OR);
JumpTarget is_false;
LoadCondition(node->left(), true_target(), &is_false, false);
if (has_valid_frame() && !has_cc()) {
// The left-hand side result is on top of the virtual frame.
JumpTarget pop_and_continue;
JumpTarget exit;
frame_->Dup();
// Avoid popping the result if it converts to 'true' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
ToBoolean(&exit, &pop_and_continue);
Branch(true, &exit);
// Pop the result of evaluating the first part.
pop_and_continue.Bind();
frame_->Pop();
// Evaluate right side expression.
is_false.Bind();
Load(node->right());
// Exit (always with a materialized value).
exit.Bind();
} else if (has_cc() || is_false.is_linked()) {
// The left-hand side is either (a) partially compiled to
// control flow with a final branch left to emit or (b) fully
// compiled to control flow and possibly false.
if (has_cc()) {
Branch(true, true_target());
}
is_false.Bind();
LoadCondition(node->right(), true_target(), false_target(), false);
} else {
// Nothing to do.
ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked());
}
}
}
void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ BinaryOperation");
if (node->op() == Token::AND || node->op() == Token::OR) {
GenerateLogicalBooleanOperation(node);
} else {
// Optimize for the case where (at least) one of the expressions
// is a literal small integer.
Literal* lliteral = node->left()->AsLiteral();
Literal* rliteral = node->right()->AsLiteral();
// NOTE: The code below assumes that the slow cases (calls to runtime)
// never return a constant/immutable object.
bool overwrite_left =
(node->left()->AsBinaryOperation() != NULL &&
node->left()->AsBinaryOperation()->ResultOverwriteAllowed());
bool overwrite_right =
(node->right()->AsBinaryOperation() != NULL &&
node->right()->AsBinaryOperation()->ResultOverwriteAllowed());
if (rliteral != NULL && rliteral->handle()->IsSmi()) {
VirtualFrame::RegisterAllocationScope scope(this);
Load(node->left());
if (frame_->KnownSmiAt(0)) overwrite_left = false;
SmiOperation(node->op(),
rliteral->handle(),
false,
overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE);
} else if (lliteral != NULL && lliteral->handle()->IsSmi()) {
VirtualFrame::RegisterAllocationScope scope(this);
Load(node->right());
if (frame_->KnownSmiAt(0)) overwrite_right = false;
SmiOperation(node->op(),
lliteral->handle(),
true,
overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE);
} else {
GenerateInlineSmi inline_smi =
loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI;
if (lliteral != NULL) {
ASSERT(!lliteral->handle()->IsSmi());
inline_smi = DONT_GENERATE_INLINE_SMI;
}
if (rliteral != NULL) {
ASSERT(!rliteral->handle()->IsSmi());
inline_smi = DONT_GENERATE_INLINE_SMI;
}
VirtualFrame::RegisterAllocationScope scope(this);
OverwriteMode overwrite_mode = NO_OVERWRITE;
if (overwrite_left) {
overwrite_mode = OVERWRITE_LEFT;
} else if (overwrite_right) {
overwrite_mode = OVERWRITE_RIGHT;
}
Load(node->left());
Load(node->right());
GenericBinaryOperation(node->op(), overwrite_mode, inline_smi);
}
}
ASSERT(!has_valid_frame() ||
(has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
}
void CodeGenerator::VisitThisFunction(ThisFunction* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
frame_->EmitPush(MemOperand(frame_->Function()));
ASSERT_EQ(original_height + 1, frame_->height());
}
void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
Comment cmnt(masm_, "[ CompareOperation");
VirtualFrame::RegisterAllocationScope nonspilled_scope(this);
// Get the expressions from the node.
Expression* left = node->left();
Expression* right = node->right();
Token::Value op = node->op();
// To make null checks efficient, we check if either left or right is the
// literal 'null'. If so, we optimize the code by inlining a null check
// instead of calling the (very) general runtime routine for checking
// equality.
if (op == Token::EQ || op == Token::EQ_STRICT) {
bool left_is_null =
left->AsLiteral() != NULL && left->AsLiteral()->IsNull();
bool right_is_null =
right->AsLiteral() != NULL && right->AsLiteral()->IsNull();
// The 'null' value can only be equal to 'null' or 'undefined'.
if (left_is_null || right_is_null) {
Load(left_is_null ? right : left);
Register tos = frame_->PopToRegister();
// JumpTargets can't cope with register allocation yet.
frame_->SpillAll();
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(tos, ip);
// The 'null' value is only equal to 'undefined' if using non-strict
// comparisons.
if (op != Token::EQ_STRICT) {
true_target()->Branch(eq);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(tos, Operand(ip));
true_target()->Branch(eq);
__ tst(tos, Operand(kSmiTagMask));
false_target()->Branch(eq);
// It can be an undetectable object.
__ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset));
__ ldrb(tos, FieldMemOperand(tos, Map::kBitFieldOffset));
__ and_(tos, tos, Operand(1 << Map::kIsUndetectable));
__ cmp(tos, Operand(1 << Map::kIsUndetectable));
}
cc_reg_ = eq;
ASSERT(has_cc() && frame_->height() == original_height);
return;
}
}
// To make typeof testing for natives implemented in JavaScript really
// efficient, we generate special code for expressions of the form:
// 'typeof <expression> == <string>'.
UnaryOperation* operation = left->AsUnaryOperation();
if ((op == Token::EQ || op == Token::EQ_STRICT) &&
(operation != NULL && operation->op() == Token::TYPEOF) &&
(right->AsLiteral() != NULL &&
right->AsLiteral()->handle()->IsString())) {
Handle<String> check(String::cast(*right->AsLiteral()->handle()));
// Load the operand, move it to a register.
LoadTypeofExpression(operation->expression());
Register tos = frame_->PopToRegister();
// JumpTargets can't cope with register allocation yet.
frame_->SpillAll();
Register scratch = VirtualFrame::scratch0();
if (check->Equals(Heap::number_symbol())) {
__ tst(tos, Operand(kSmiTagMask));
true_target()->Branch(eq);
__ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(tos, ip);
cc_reg_ = eq;
} else if (check->Equals(Heap::string_symbol())) {
__ tst(tos, Operand(kSmiTagMask));
false_target()->Branch(eq);
__ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset));
// It can be an undetectable string object.
__ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset));
__ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable));
__ cmp(scratch, Operand(1 << Map::kIsUndetectable));
false_target()->Branch(eq);
__ ldrb(scratch, FieldMemOperand(tos, Map::kInstanceTypeOffset));
__ cmp(scratch, Operand(FIRST_NONSTRING_TYPE));
cc_reg_ = lt;
} else if (check->Equals(Heap::boolean_symbol())) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(tos, ip);
true_target()->Branch(eq);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(tos, ip);
cc_reg_ = eq;
} else if (check->Equals(Heap::undefined_symbol())) {
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(tos, ip);
true_target()->Branch(eq);
__ tst(tos, Operand(kSmiTagMask));
false_target()->Branch(eq);
// It can be an undetectable object.
__ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset));
__ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable));
__ cmp(scratch, Operand(1 << Map::kIsUndetectable));
cc_reg_ = eq;
} else if (check->Equals(Heap::function_symbol())) {
__ tst(tos, Operand(kSmiTagMask));
false_target()->Branch(eq);
Register map_reg = scratch;
__ CompareObjectType(tos, map_reg, tos, JS_FUNCTION_TYPE);
true_target()->Branch(eq);
// Regular expressions are callable so typeof == 'function'.
__ CompareInstanceType(map_reg, tos, JS_REGEXP_TYPE);
cc_reg_ = eq;
} else if (check->Equals(Heap::object_symbol())) {
__ tst(tos, Operand(kSmiTagMask));
false_target()->Branch(eq);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(tos, ip);
true_target()->Branch(eq);
Register map_reg = scratch;
__ CompareObjectType(tos, map_reg, tos, JS_REGEXP_TYPE);
false_target()->Branch(eq);
// It can be an undetectable object.
__ ldrb(tos, FieldMemOperand(map_reg, Map::kBitFieldOffset));
__ and_(tos, tos, Operand(1 << Map::kIsUndetectable));
__ cmp(tos, Operand(1 << Map::kIsUndetectable));
false_target()->Branch(eq);
__ ldrb(tos, FieldMemOperand(map_reg, Map::kInstanceTypeOffset));
__ cmp(tos, Operand(FIRST_JS_OBJECT_TYPE));
false_target()->Branch(lt);
__ cmp(tos, Operand(LAST_JS_OBJECT_TYPE));
cc_reg_ = le;
} else {
// Uncommon case: typeof testing against a string literal that is
// never returned from the typeof operator.
false_target()->Jump();
}
ASSERT(!has_valid_frame() ||
(has_cc() && frame_->height() == original_height));
return;
}
switch (op) {
case Token::EQ:
Comparison(eq, left, right, false);
break;
case Token::LT:
Comparison(lt, left, right);
break;
case Token::GT:
Comparison(gt, left, right);
break;
case Token::LTE:
Comparison(le, left, right);
break;
case Token::GTE:
Comparison(ge, left, right);
break;
case Token::EQ_STRICT:
Comparison(eq, left, right, true);
break;
case Token::IN: {
VirtualFrame::SpilledScope scope(frame_);
Load(left);
Load(right);
frame_->InvokeBuiltin(Builtins::IN, CALL_JS, 2);
frame_->EmitPush(r0);
break;
}
case Token::INSTANCEOF: {
VirtualFrame::SpilledScope scope(frame_);
Load(left);
Load(right);
InstanceofStub stub;
frame_->CallStub(&stub, 2);
// At this point if instanceof succeeded then r0 == 0.
__ tst(r0, Operand(r0));
cc_reg_ = eq;
break;
}
default:
UNREACHABLE();
}
ASSERT((has_cc() && frame_->height() == original_height) ||
(!has_cc() && frame_->height() == original_height + 1));
}
class DeferredReferenceGetNamedValue: public DeferredCode {
public:
explicit DeferredReferenceGetNamedValue(Register receiver,
Handle<String> name)
: receiver_(receiver), name_(name) {
set_comment("[ DeferredReferenceGetNamedValue");
}
virtual void Generate();
private:
Register receiver_;
Handle<String> name_;
};
// Convention for this is that on entry the receiver is in a register that
// is not used by the stack. On exit the answer is found in that same
// register and the stack has the same height.
void DeferredReferenceGetNamedValue::Generate() {
#ifdef DEBUG
int expected_height = frame_state()->frame()->height();
#endif
VirtualFrame copied_frame(*frame_state()->frame());
copied_frame.SpillAll();
Register scratch1 = VirtualFrame::scratch0();
Register scratch2 = VirtualFrame::scratch1();
ASSERT(!receiver_.is(scratch1) && !receiver_.is(scratch2));
__ DecrementCounter(&Counters::named_load_inline, 1, scratch1, scratch2);
__ IncrementCounter(&Counters::named_load_inline_miss, 1, scratch1, scratch2);
// Ensure receiver in r0 and name in r2 to match load ic calling convention.
__ Move(r0, receiver_);
__ mov(r2, Operand(name_));
// The rest of the instructions in the deferred code must be together.
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The call must be followed by a nop(1) instruction to indicate that the
// in-object has been inlined.
__ nop(PROPERTY_ACCESS_INLINED);
// At this point the answer is in r0. We move it to the expected register
// if necessary.
__ Move(receiver_, r0);
// Now go back to the frame that we entered with. This will not overwrite
// the receiver register since that register was not in use when we came
// in. The instructions emitted by this merge are skipped over by the
// inline load patching mechanism when looking for the branch instruction
// that tells it where the code to patch is.
copied_frame.MergeTo(frame_state()->frame());
// Block the constant pool for one more instruction after leaving this
// constant pool block scope to include the branch instruction ending the
// deferred code.
__ BlockConstPoolFor(1);
}
ASSERT_EQ(expected_height, frame_state()->frame()->height());
}
class DeferredReferenceGetKeyedValue: public DeferredCode {
public:
DeferredReferenceGetKeyedValue(Register key, Register receiver)
: key_(key), receiver_(receiver) {
set_comment("[ DeferredReferenceGetKeyedValue");
}
virtual void Generate();
private:
Register key_;
Register receiver_;
};
void DeferredReferenceGetKeyedValue::Generate() {
ASSERT((key_.is(r0) && receiver_.is(r1)) ||
(key_.is(r1) && receiver_.is(r0)));
Register scratch1 = VirtualFrame::scratch0();
Register scratch2 = VirtualFrame::scratch1();
__ DecrementCounter(&Counters::keyed_load_inline, 1, scratch1, scratch2);
__ IncrementCounter(&Counters::keyed_load_inline_miss, 1, scratch1, scratch2);
// Ensure key in r0 and receiver in r1 to match keyed load ic calling
// convention.
if (key_.is(r1)) {
__ Swap(r0, r1, ip);
}
// The rest of the instructions in the deferred code must be together.
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
// Call keyed load IC. It has the arguments key and receiver in r0 and r1.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The call must be followed by a nop instruction to indicate that the
// keyed load has been inlined.
__ nop(PROPERTY_ACCESS_INLINED);
// Block the constant pool for one more instruction after leaving this
// constant pool block scope to include the branch instruction ending the
// deferred code.
__ BlockConstPoolFor(1);
}
}
class DeferredReferenceSetKeyedValue: public DeferredCode {
public:
DeferredReferenceSetKeyedValue(Register value,
Register key,
Register receiver)
: value_(value), key_(key), receiver_(receiver) {
set_comment("[ DeferredReferenceSetKeyedValue");
}
virtual void Generate();
private:
Register value_;
Register key_;
Register receiver_;
};
void DeferredReferenceSetKeyedValue::Generate() {
Register scratch1 = VirtualFrame::scratch0();
Register scratch2 = VirtualFrame::scratch1();
__ DecrementCounter(&Counters::keyed_store_inline, 1, scratch1, scratch2);
__ IncrementCounter(
&Counters::keyed_store_inline_miss, 1, scratch1, scratch2);
// Ensure value in r0, key in r1 and receiver in r2 to match keyed store ic
// calling convention.
if (value_.is(r1)) {
__ Swap(r0, r1, ip);
}
ASSERT(receiver_.is(r2));
// The rest of the instructions in the deferred code must be together.
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
// Call keyed store IC. It has the arguments value, key and receiver in r0,
// r1 and r2.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The call must be followed by a nop instruction to indicate that the
// keyed store has been inlined.
__ nop(PROPERTY_ACCESS_INLINED);
// Block the constant pool for one more instruction after leaving this
// constant pool block scope to include the branch instruction ending the
// deferred code.
__ BlockConstPoolFor(1);
}
}
// Consumes the top of stack (the receiver) and pushes the result instead.
void CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) {
if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
Comment cmnt(masm(), "[ Load from named Property");
// Setup the name register and call load IC.
frame_->CallLoadIC(name,
is_contextual
? RelocInfo::CODE_TARGET_CONTEXT
: RelocInfo::CODE_TARGET);
frame_->EmitPush(r0); // Push answer.
} else {
// Inline the in-object property case.
Comment cmnt(masm(), "[ Inlined named property load");
// Counter will be decremented in the deferred code. Placed here to avoid
// having it in the instruction stream below where patching will occur.
__ IncrementCounter(&Counters::named_load_inline, 1,
frame_->scratch0(), frame_->scratch1());
// The following instructions are the inlined load of an in-object property.
// Parts of this code is patched, so the exact instructions generated needs
// to be fixed. Therefore the instruction pool is blocked when generating
// this code
// Load the receiver from the stack.
Register receiver = frame_->PopToRegister();
DeferredReferenceGetNamedValue* deferred =
new DeferredReferenceGetNamedValue(receiver, name);
#ifdef DEBUG
int kInlinedNamedLoadInstructions = 7;
Label check_inlined_codesize;
masm_->bind(&check_inlined_codesize);
#endif
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
// Check that the receiver is a heap object.
__ tst(receiver, Operand(kSmiTagMask));
deferred->Branch(eq);
Register scratch = VirtualFrame::scratch0();
Register scratch2 = VirtualFrame::scratch1();
// Check the map. The null map used below is patched by the inline cache
// code. Therefore we can't use a LoadRoot call.
__ ldr(scratch, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ mov(scratch2, Operand(Factory::null_value()));
__ cmp(scratch, scratch2);
deferred->Branch(ne);
// Initially use an invalid index. The index will be patched by the
// inline cache code.
__ ldr(receiver, MemOperand(receiver, 0));
// Make sure that the expected number of instructions are generated.
ASSERT_EQ(kInlinedNamedLoadInstructions,
masm_->InstructionsGeneratedSince(&check_inlined_codesize));
}
deferred->BindExit();
// At this point the receiver register has the result, either from the
// deferred code or from the inlined code.
frame_->EmitPush(receiver);
}
}
void CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) {
#ifdef DEBUG
int expected_height = frame_->height() - (is_contextual ? 1 : 2);
#endif
frame_->CallStoreIC(name, is_contextual);
ASSERT_EQ(expected_height, frame_->height());
}
void CodeGenerator::EmitKeyedLoad() {
if (loop_nesting() == 0) {
Comment cmnt(masm_, "[ Load from keyed property");
frame_->CallKeyedLoadIC();
} else {
// Inline the keyed load.
Comment cmnt(masm_, "[ Inlined load from keyed property");
// Counter will be decremented in the deferred code. Placed here to avoid
// having it in the instruction stream below where patching will occur.
__ IncrementCounter(&Counters::keyed_load_inline, 1,
frame_->scratch0(), frame_->scratch1());
// Load the key and receiver from the stack.
bool key_is_known_smi = frame_->KnownSmiAt(0);
Register key = frame_->PopToRegister();
Register receiver = frame_->PopToRegister(key);
VirtualFrame::SpilledScope spilled(frame_);
// The deferred code expects key and receiver in registers.
DeferredReferenceGetKeyedValue* deferred =
new DeferredReferenceGetKeyedValue(key, receiver);
// Check that the receiver is a heap object.
__ tst(receiver, Operand(kSmiTagMask));
deferred->Branch(eq);
// The following instructions are the part of the inlined load keyed
// property code which can be patched. Therefore the exact number of
// instructions generated need to be fixed, so the constant pool is blocked
// while generating this code.
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
Register scratch1 = VirtualFrame::scratch0();
Register scratch2 = VirtualFrame::scratch1();
// Check the map. The null map used below is patched by the inline cache
// code.
__ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the key is a smi.
if (!key_is_known_smi) {
__ tst(key, Operand(kSmiTagMask));
deferred->Branch(ne);
}
#ifdef DEBUG
Label check_inlined_codesize;
masm_->bind(&check_inlined_codesize);
#endif
__ mov(scratch2, Operand(Factory::null_value()));
__ cmp(scratch1, scratch2);
deferred->Branch(ne);
// Get the elements array from the receiver and check that it
// is not a dictionary.
__ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(scratch2, FieldMemOperand(scratch1, JSObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(scratch2, ip);
deferred->Branch(ne);
// Check that key is within bounds. Use unsigned comparison to handle
// negative keys.
__ ldr(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset));
__ cmp(scratch2, key);
deferred->Branch(ls); // Unsigned less equal.
// Load and check that the result is not the hole (key is a smi).
__ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex);
__ add(scratch1,
scratch1,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(scratch1,
MemOperand(scratch1, key, LSL,
kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize)));
__ cmp(scratch1, scratch2);
deferred->Branch(eq);
__ mov(r0, scratch1);
// Make sure that the expected number of instructions are generated.
ASSERT_EQ(kInlinedKeyedLoadInstructionsAfterPatch,
masm_->InstructionsGeneratedSince(&check_inlined_codesize));
}
deferred->BindExit();
}
}
void CodeGenerator::EmitKeyedStore(StaticType* key_type) {
// Generate inlined version of the keyed store if the code is in a loop
// and the key is likely to be a smi.
if (loop_nesting() > 0 && key_type->IsLikelySmi()) {
// Inline the keyed store.
Comment cmnt(masm_, "[ Inlined store to keyed property");
Register scratch1 = VirtualFrame::scratch0();
Register scratch2 = VirtualFrame::scratch1();
Register scratch3 = r3;
// Counter will be decremented in the deferred code. Placed here to avoid
// having it in the instruction stream below where patching will occur.
__ IncrementCounter(&Counters::keyed_store_inline, 1,
scratch1, scratch2);
// Load the value, key and receiver from the stack.
Register value = frame_->PopToRegister();
Register key = frame_->PopToRegister(value);
Register receiver = r2;
frame_->EmitPop(receiver);
VirtualFrame::SpilledScope spilled(frame_);
// The deferred code expects value, key and receiver in registers.
DeferredReferenceSetKeyedValue* deferred =
new DeferredReferenceSetKeyedValue(value, key, receiver);
// Check that the value is a smi. As this inlined code does not set the
// write barrier it is only possible to store smi values.
__ tst(value, Operand(kSmiTagMask));
deferred->Branch(ne);
// Check that the key is a smi.
__ tst(key, Operand(kSmiTagMask));
deferred->Branch(ne);
// Check that the receiver is a heap object.
__ tst(receiver, Operand(kSmiTagMask));
deferred->Branch(eq);
// Check that the receiver is a JSArray.
__ CompareObjectType(receiver, scratch1, scratch1, JS_ARRAY_TYPE);
deferred->Branch(ne);
// Check that the key is within bounds. Both the key and the length of
// the JSArray are smis. Use unsigned comparison to handle negative keys.
__ ldr(scratch1, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ cmp(scratch1, key);
deferred->Branch(ls); // Unsigned less equal.
// The following instructions are the part of the inlined store keyed
// property code which can be patched. Therefore the exact number of
// instructions generated need to be fixed, so the constant pool is blocked
// while generating this code.
{ Assembler::BlockConstPoolScope block_const_pool(masm_);
// Get the elements array from the receiver and check that it
// is not a dictionary.
__ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(scratch2, FieldMemOperand(scratch1, JSObject::kMapOffset));
// Read the fixed array map from the constant pool (not from the root
// array) so that the value can be patched. When debugging, we patch this
// comparison to always fail so that we will hit the IC call in the
// deferred code which will allow the debugger to break for fast case
// stores.
#ifdef DEBUG
Label check_inlined_codesize;
masm_->bind(&check_inlined_codesize);
#endif
__ mov(scratch3, Operand(Factory::fixed_array_map()));
__ cmp(scratch2, scratch3);
deferred->Branch(ne);
// Store the value.
__ add(scratch1, scratch1,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ str(value,
MemOperand(scratch1, key, LSL,
kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize)));
// Make sure that the expected number of instructions are generated.
ASSERT_EQ(kInlinedKeyedStoreInstructionsAfterPatch,
masm_->InstructionsGeneratedSince(&check_inlined_codesize));
}
deferred->BindExit();
} else {
frame()->CallKeyedStoreIC();
}
}
#ifdef DEBUG
bool CodeGenerator::HasValidEntryRegisters() { return true; }
#endif
#undef __
#define __ ACCESS_MASM(masm)
Handle<String> Reference::GetName() {
ASSERT(type_ == NAMED);
Property* property = expression_->AsProperty();
if (property == NULL) {
// Global variable reference treated as a named property reference.
VariableProxy* proxy = expression_->AsVariableProxy();
ASSERT(proxy->AsVariable() != NULL);
ASSERT(proxy->AsVariable()->is_global());
return proxy->name();
} else {
Literal* raw_name = property->key()->AsLiteral();
ASSERT(raw_name != NULL);
return Handle<String>(String::cast(*raw_name->handle()));
}
}
void Reference::DupIfPersist() {
if (persist_after_get_) {
switch (type_) {
case KEYED:
cgen_->frame()->Dup2();
break;
case NAMED:
cgen_->frame()->Dup();
// Fall through.
case UNLOADED:
case ILLEGAL:
case SLOT:
// Do nothing.
;
}
} else {
set_unloaded();
}
}
void Reference::GetValue() {
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
ASSERT(!cgen_->has_cc());
MacroAssembler* masm = cgen_->masm();
Property* property = expression_->AsProperty();
if (property != NULL) {
cgen_->CodeForSourcePosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Load from Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
DupIfPersist();
cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
break;
}
case NAMED: {
Variable* var = expression_->AsVariableProxy()->AsVariable();
bool is_global = var != NULL;
ASSERT(!is_global || var->is_global());
Handle<String> name = GetName();
DupIfPersist();
cgen_->EmitNamedLoad(name, is_global);
break;
}
case KEYED: {
ASSERT(property != NULL);
DupIfPersist();
cgen_->EmitKeyedLoad();
cgen_->frame()->EmitPush(r0);
break;
}
default:
UNREACHABLE();
}
}
void Reference::SetValue(InitState init_state) {
ASSERT(!is_illegal());
ASSERT(!cgen_->has_cc());
MacroAssembler* masm = cgen_->masm();
VirtualFrame* frame = cgen_->frame();
Property* property = expression_->AsProperty();
if (property != NULL) {
cgen_->CodeForSourcePosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Store to Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
cgen_->StoreToSlot(slot, init_state);
set_unloaded();
break;
}
case NAMED: {
Comment cmnt(masm, "[ Store to named Property");
cgen_->EmitNamedStore(GetName(), false);
frame->EmitPush(r0);
set_unloaded();
break;
}
case KEYED: {
Comment cmnt(masm, "[ Store to keyed Property");
Property* property = expression_->AsProperty();
ASSERT(property != NULL);
cgen_->CodeForSourcePosition(property->position());
cgen_->EmitKeyedStore(property->key()->type());
frame->EmitPush(r0);
set_unloaded();
break;
}
default:
UNREACHABLE();
}
}
void FastNewClosureStub::Generate(MacroAssembler* masm) {
// Create a new closure from the given function info in new
// space. Set the context to the current context in cp.
Label gc;
// Pop the function info from the stack.
__ pop(r3);
// Attempt to allocate new JSFunction in new space.
__ AllocateInNewSpace(JSFunction::kSize,
r0,
r1,
r2,
&gc,
TAG_OBJECT);
// Compute the function map in the current global context and set that
// as the map of the allocated object.
__ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
__ ldr(r2, MemOperand(r2, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
__ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
// Initialize the rest of the function. We don't have to update the
// write barrier because the allocated object is in new space.
__ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
__ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
__ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
__ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
__ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
__ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
__ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
__ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
// Return result. The argument function info has been popped already.
__ Ret();
// Create a new closure through the slower runtime call.
__ bind(&gc);
__ Push(cp, r3);
__ TailCallRuntime(Runtime::kNewClosure, 2, 1);
}
void FastNewContextStub::Generate(MacroAssembler* masm) {
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
// Attempt to allocate the context in new space.
__ AllocateInNewSpace(FixedArray::SizeFor(length),
r0,
r1,
r2,
&gc,
TAG_OBJECT);
// Load the function from the stack.
__ ldr(r3, MemOperand(sp, 0));
// Setup the object header.
__ LoadRoot(r2, Heap::kContextMapRootIndex);
__ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
__ mov(r2, Operand(Smi::FromInt(length)));
__ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
// Setup the fixed slots.
__ mov(r1, Operand(Smi::FromInt(0)));
__ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
__ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX)));
__ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
__ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
// Copy the global object from the surrounding context.
__ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Initialize the rest of the slots to undefined.
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
__ str(r1, MemOperand(r0, Context::SlotOffset(i)));
}
// Remove the on-stack argument and return.
__ mov(cp, r0);
__ pop();
__ Ret();
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(Runtime::kNewContext, 1, 1);
}
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [sp]: constant elements.
// [sp + kPointerSize]: literal index.
// [sp + (2 * kPointerSize)]: literals array.
// All sizes here are multiples of kPointerSize.
int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
int size = JSArray::kSize + elements_size;
// Load boilerplate object into r3 and check if we need to create a
// boilerplate.
Label slow_case;
__ ldr(r3, MemOperand(sp, 2 * kPointerSize));
__ ldr(r0, MemOperand(sp, 1 * kPointerSize));
__ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r3, ip);
__ b(eq, &slow_case);
// Allocate both the JS array and the elements array in one big
// allocation. This avoids multiple limit checks.
__ AllocateInNewSpace(size,
r0,
r1,
r2,
&slow_case,
TAG_OBJECT);
// Copy the JS array part.
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
__ ldr(r1, FieldMemOperand(r3, i));
__ str(r1, FieldMemOperand(r0, i));
}
}
if (length_ > 0) {
// Get hold of the elements array of the boilerplate and setup the
// elements pointer in the resulting object.
__ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
__ add(r2, r0, Operand(JSArray::kSize));
__ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
// Copy the elements array.
for (int i = 0; i < elements_size; i += kPointerSize) {
__ ldr(r1, FieldMemOperand(r3, i));
__ str(r1, FieldMemOperand(r2, i));
}
}
// Return and remove the on-stack parameters.
__ add(sp, sp, Operand(3 * kPointerSize));
__ Ret();
__ bind(&slow_case);
__ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}
// Takes a Smi and converts to an IEEE 64 bit floating point value in two
// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
// scratch register. Destroys the source register. No GC occurs during this
// stub so you don't have to set up the frame.
class ConvertToDoubleStub : public CodeStub {
public:
ConvertToDoubleStub(Register result_reg_1,
Register result_reg_2,
Register source_reg,
Register scratch_reg)
: result1_(result_reg_1),
result2_(result_reg_2),
source_(source_reg),
zeros_(scratch_reg) { }
private:
Register result1_;
Register result2_;
Register source_;
Register zeros_;
// Minor key encoding in 16 bits.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 14> {};
Major MajorKey() { return ConvertToDouble; }
int MinorKey() {
// Encode the parameters in a unique 16 bit value.
return result1_.code() +
(result2_.code() << 4) +
(source_.code() << 8) +
(zeros_.code() << 12);
}
void Generate(MacroAssembler* masm);
const char* GetName() { return "ConvertToDoubleStub"; }
#ifdef DEBUG
void Print() { PrintF("ConvertToDoubleStub\n"); }
#endif
};
void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
#ifndef BIG_ENDIAN_FLOATING_POINT
Register exponent = result1_;
Register mantissa = result2_;
#else
Register exponent = result2_;
Register mantissa = result1_;
#endif
Label not_special;
// Convert from Smi to integer.
__ mov(source_, Operand(source_, ASR, kSmiTagSize));
// Move sign bit from source to destination. This works because the sign bit
// in the exponent word of the double has the same position and polarity as
// the 2's complement sign bit in a Smi.
ASSERT(HeapNumber::kSignMask == 0x80000000u);
__ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
// Subtract from 0 if source was negative.
__ rsb(source_, source_, Operand(0), LeaveCC, ne);
// We have -1, 0 or 1, which we treat specially. Register source_ contains
// absolute value: it is either equal to 1 (special case of -1 and 1),
// greater than 1 (not a special case) or less than 1 (special case of 0).
__ cmp(source_, Operand(1));
__ b(gt, &not_special);
// For 1 or -1 we need to or in the 0 exponent (biased to 1023).
static const uint32_t exponent_word_for_1 =
HeapNumber::kExponentBias << HeapNumber::kExponentShift;
__ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
// 1, 0 and -1 all have 0 for the second word.
__ mov(mantissa, Operand(0));
__ Ret();
__ bind(&not_special);
// Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
// Gets the wrong answer for 0, but we already checked for that case above.
__ CountLeadingZeros(source_, mantissa, zeros_);
// Compute exponent and or it into the exponent register.
// We use mantissa as a scratch register here.
__ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias));
__ orr(exponent,
exponent,
Operand(mantissa, LSL, HeapNumber::kExponentShift));
// Shift up the source chopping the top bit off.
__ add(zeros_, zeros_, Operand(1));
// This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
__ mov(source_, Operand(source_, LSL, zeros_));
// Compute lower part of fraction (last 12 bits).
__ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
// And the top (top 20 bits).
__ orr(exponent,
exponent,
Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
__ Ret();
}
// See comment for class.
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
Label max_negative_int;
// the_int_ has the answer which is a signed int32 but not a Smi.
// We test for the special value that has a different exponent. This test
// has the neat side effect of setting the flags according to the sign.
ASSERT(HeapNumber::kSignMask == 0x80000000u);
__ cmp(the_int_, Operand(0x80000000u));
__ b(eq, &max_negative_int);
// Set up the correct exponent in scratch_. All non-Smi int32s have the same.
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
__ mov(scratch_, Operand(non_smi_exponent));
// Set the sign bit in scratch_ if the value was negative.
__ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
// Subtract from 0 if the value was negative.
__ rsb(the_int_, the_int_, Operand(0), LeaveCC, cs);
// We should be masking the implict first digit of the mantissa away here,
// but it just ends up combining harmlessly with the last digit of the
// exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
// the most significant 1 to hit the last bit of the 12 bit sign and exponent.
ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
__ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
__ str(scratch_, FieldMemOperand(the_heap_number_,
HeapNumber::kExponentOffset));
__ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
__ str(scratch_, FieldMemOperand(the_heap_number_,
HeapNumber::kMantissaOffset));
__ Ret();
__ bind(&max_negative_int);
// The max negative int32 is stored as a positive number in the mantissa of
// a double because it uses a sign bit instead of using two's complement.
// The actual mantissa bits stored are all 0 because the implicit most
// significant 1 bit is not stored.
non_smi_exponent += 1 << HeapNumber::kExponentShift;
__ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
__ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
__ mov(ip, Operand(0));
__ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
__ Ret();
}
// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Label* slow,
Condition cc,
bool never_nan_nan) {
Label not_identical;
Label heap_number, return_equal;
Register exp_mask_reg = r5;
__ cmp(r0, r1);
__ b(ne, &not_identical);
// The two objects are identical. If we know that one of them isn't NaN then
// we now know they test equal.
if (cc != eq || !never_nan_nan) {
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
if (cc == lt || cc == gt) {
__ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
__ b(ge, slow);
} else {
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
__ b(eq, &heap_number);
// Comparing JS objects with <=, >= is complicated.
if (cc != eq) {
__ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
__ b(ge, slow);
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if (cc == le || cc == ge) {
__ cmp(r4, Operand(ODDBALL_TYPE));
__ b(ne, &return_equal);
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ cmp(r0, r2);
__ b(ne, &return_equal);
if (cc == le) {
// undefined <= undefined should fail.
__ mov(r0, Operand(GREATER));
} else {
// undefined >= undefined should fail.
__ mov(r0, Operand(LESS));
}
__ mov(pc, Operand(lr)); // Return.
}
}
}
}
__ bind(&return_equal);
if (cc == lt) {
__ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
} else if (cc == gt) {
__ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
} else {
__ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
}
__ mov(pc, Operand(lr)); // Return.
if (cc != eq || !never_nan_nan) {
// For less and greater we don't have to check for NaN since the result of
// x < x is false regardless. For the others here is some code to check
// for NaN.
if (cc != lt && cc != gt) {
__ bind(&heap_number);
// It is a heap number, so return non-equal if it's NaN and equal if it's
// not NaN.
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// Read top bits of double representation (second word of value).
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
// Test that exponent bits are all set.
__ and_(r3, r2, Operand(exp_mask_reg));
__ cmp(r3, Operand(exp_mask_reg));
__ b(ne, &return_equal);
// Shift out flag and all exponent bits, retaining only mantissa.
__ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
// Or with all low-bits of mantissa.
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ orr(r0, r3, Operand(r2), SetCC);
// For equal we already have the right value in r0: Return zero (equal)
// if all bits in mantissa are zero (it's an Infinity) and non-zero if
// not (it's a NaN). For <= and >= we need to load r0 with the failing
// value if it's a NaN.
if (cc != eq) {
// All-zero means Infinity means equal.
__ mov(pc, Operand(lr), LeaveCC, eq); // Return equal
if (cc == le) {
__ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
} else {
__ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
}
}
__ mov(pc, Operand(lr)); // Return.
}
// No fall through here.
}
__ bind(&not_identical);
}
// See comment at call site.
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Label* lhs_not_nan,
Label* slow,
bool strict) {
Label rhs_is_smi;
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &rhs_is_smi);
// Lhs is a Smi. Check whether the rhs is a heap number.
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
if (strict) {
// If rhs is not a number and lhs is a Smi then strict equality cannot
// succeed. Return non-equal (r0 is already not zero)
__ mov(pc, Operand(lr), LeaveCC, ne); // Return.
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ b(ne, slow);
}
// Lhs (r1) is a smi, rhs (r0) is a number.
if (CpuFeatures::IsSupported(VFP3)) {
// Convert lhs to a double in d7 .
CpuFeatures::Scope scope(VFP3);
__ mov(r7, Operand(r1, ASR, kSmiTagSize));
__ vmov(s15, r7);
__ vcvt_f64_s32(d7, s15);
// Load the double from rhs, tagged HeapNumber r0, to d6.
__ sub(r7, r0, Operand(kHeapObjectTag));
__ vldr(d6, r7, HeapNumber::kValueOffset);
} else {
__ push(lr);
// Convert lhs to a double in r2, r3.
__ mov(r7, Operand(r1));
ConvertToDoubleStub stub1(r3, r2, r7, r6);
__ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
// Load rhs to a double in r0, r1.
__ Ldrd(r0, r1, FieldMemOperand(r0, HeapNumber::kValueOffset));
__ pop(lr);
}
// We now have both loaded as doubles but we can skip the lhs nan check
// since it's a smi.
__ jmp(lhs_not_nan);
__ bind(&rhs_is_smi);
// Rhs is a smi. Check whether the non-smi lhs is a heap number.
__ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
if (strict) {
// If lhs is not a number and rhs is a smi then strict equality cannot
// succeed. Return non-equal.
__ mov(r0, Operand(1), LeaveCC, ne); // Non-zero indicates not equal.
__ mov(pc, Operand(lr), LeaveCC, ne); // Return.
} else {
// Smi compared non-strictly with a non-smi non-heap-number. Call
// the runtime.
__ b(ne, slow);
}
// Rhs (r0) is a smi, lhs (r1) is a heap number.
if (CpuFeatures::IsSupported(VFP3)) {
// Convert rhs to a double in d6 .
CpuFeatures::Scope scope(VFP3);
// Load the double from lhs, tagged HeapNumber r1, to d7.
__ sub(r7, r1, Operand(kHeapObjectTag));
__ vldr(d7, r7, HeapNumber::kValueOffset);
__ mov(r7, Operand(r0, ASR, kSmiTagSize));
__ vmov(s13, r7);
__ vcvt_f64_s32(d6, s13);
} else {
__ push(lr);
// Load lhs to a double in r2, r3.
__ Ldrd(r2, r3, FieldMemOperand(r1, HeapNumber::kValueOffset));
// Convert rhs to a double in r0, r1.
__ mov(r7, Operand(r0));
ConvertToDoubleStub stub2(r1, r0, r7, r6);
__ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
}
// Fall through to both_loaded_as_doubles.
}
void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cc) {
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
Register rhs_exponent = exp_first ? r0 : r1;
Register lhs_exponent = exp_first ? r2 : r3;
Register rhs_mantissa = exp_first ? r1 : r0;
Register lhs_mantissa = exp_first ? r3 : r2;
Label one_is_nan, neither_is_nan;
Label lhs_not_nan_exp_mask_is_loaded;
Register exp_mask_reg = r5;
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
__ and_(r4, lhs_exponent, Operand(exp_mask_reg));
__ cmp(r4, Operand(exp_mask_reg));
__ b(ne, &lhs_not_nan_exp_mask_is_loaded);
__ mov(r4,
Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
SetCC);
__ b(ne, &one_is_nan);
__ cmp(lhs_mantissa, Operand(0));
__ b(ne, &one_is_nan);
__ bind(lhs_not_nan);
__ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
__ bind(&lhs_not_nan_exp_mask_is_loaded);
__ and_(r4, rhs_exponent, Operand(exp_mask_reg));
__ cmp(r4, Operand(exp_mask_reg));
__ b(ne, &neither_is_nan);
__ mov(r4,
Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
SetCC);
__ b(ne, &one_is_nan);
__ cmp(rhs_mantissa, Operand(0));
__ b(eq, &neither_is_nan);
__ bind(&one_is_nan);
// NaN comparisons always fail.
// Load whatever we need in r0 to make the comparison fail.
if (cc == lt || cc == le) {
__ mov(r0, Operand(GREATER));
} else {
__ mov(r0, Operand(LESS));
}
__ mov(pc, Operand(lr)); // Return.
__ bind(&neither_is_nan);
}
// See comment at call site.
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
Register rhs_exponent = exp_first ? r0 : r1;
Register lhs_exponent = exp_first ? r2 : r3;
Register rhs_mantissa = exp_first ? r1 : r0;
Register lhs_mantissa = exp_first ? r3 : r2;
// r0, r1, r2, r3 have the two doubles. Neither is a NaN.
if (cc == eq) {
// Doubles are not equal unless they have the same bit pattern.
// Exception: 0 and -0.
__ cmp(rhs_mantissa, Operand(lhs_mantissa));
__ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
// Return non-zero if the numbers are unequal.
__ mov(pc, Operand(lr), LeaveCC, ne);
__ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
// If exponents are equal then return 0.
__ mov(pc, Operand(lr), LeaveCC, eq);
// Exponents are unequal. The only way we can return that the numbers
// are equal is if one is -0 and the other is 0. We already dealt
// with the case where both are -0 or both are 0.
// We start by seeing if the mantissas (that are equal) or the bottom
// 31 bits of the rhs exponent are non-zero. If so we return not
// equal.
__ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
__ mov(r0, Operand(r4), LeaveCC, ne);
__ mov(pc, Operand(lr), LeaveCC, ne); // Return conditionally.
// Now they are equal if and only if the lhs exponent is zero in its
// low 31 bits.
__ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
__ mov(pc, Operand(lr));
} else {
// Call a native function to do a comparison between two non-NaNs.
// Call C routine that may not cause GC or other trouble.
__ push(lr);
__ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments.
__ CallCFunction(ExternalReference::compare_doubles(), 4);
__ pop(pc); // Return.
}
}
// See comment at call site.
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm) {
// If either operand is a JSObject or an oddball value, then they are
// not equal since their pointers are different.
// There is no test for undetectability in strict equality.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
Label first_non_object;
// Get the type of the first operand into r2 and compare it with
// FIRST_JS_OBJECT_TYPE.
__ CompareObjectType(r0, r2, r2, FIRST_JS_OBJECT_TYPE);
__ b(lt, &first_non_object);
// Return non-zero (r0 is not zero)
Label return_not_equal;
__ bind(&return_not_equal);
__ mov(pc, Operand(lr)); // Return.
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ cmp(r2, Operand(ODDBALL_TYPE));
__ b(eq, &return_not_equal);
__ CompareObjectType(r1, r3, r3, FIRST_JS_OBJECT_TYPE);
__ b(ge, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ cmp(r3, Operand(ODDBALL_TYPE));
__ b(eq, &return_not_equal);
// Now that we have the types we might as well check for symbol-symbol.
// Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
ASSERT(kSymbolTag != 0);
__ and_(r2, r2, Operand(r3));
__ tst(r2, Operand(kIsSymbolMask));
__ b(ne, &return_not_equal);
}
// See comment at call site.
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
Label* both_loaded_as_doubles,
Label* not_heap_numbers,
Label* slow) {
__ CompareObjectType(r0, r3, r2, HEAP_NUMBER_TYPE);
__ b(ne, not_heap_numbers);
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r2, r3);
__ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
// Both are heap numbers. Load them up then jump to the code we have
// for that.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ sub(r7, r0, Operand(kHeapObjectTag));
__ vldr(d6, r7, HeapNumber::kValueOffset);
__ sub(r7, r1, Operand(kHeapObjectTag));
__ vldr(d7, r7, HeapNumber::kValueOffset);
} else {
__ Ldrd(r2, r3, FieldMemOperand(r1, HeapNumber::kValueOffset));
__ Ldrd(r0, r1, FieldMemOperand(r0, HeapNumber::kValueOffset));
}
__ jmp(both_loaded_as_doubles);
}
// Fast negative check for symbol-to-symbol equality.
static void EmitCheckForSymbols(MacroAssembler* masm, Label* slow) {
// r2 is object type of r0.
// Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
ASSERT(kSymbolTag != 0);
__ tst(r2, Operand(kIsSymbolMask));
__ b(eq, slow);
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
__ tst(r3, Operand(kIsSymbolMask));
__ b(eq, slow);
// Both are symbols. We already checked they weren't the same pointer
// so they are not equal.
__ mov(r0, Operand(1)); // Non-zero indicates not equal.
__ mov(pc, Operand(lr)); // Return.
}
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
bool object_is_smi,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch3;
// Load the number string cache.
__ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
__ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
// Divide length by two (length is a smi).
__ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
__ sub(mask, mask, Operand(1)); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Label is_smi;
Label load_result_from_cache;
if (!object_is_smi) {
__ BranchOnSmi(object, &is_smi);
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ CheckMap(object,
scratch1,
Heap::kHeapNumberMapRootIndex,
not_found,
true);
ASSERT_EQ(8, kDoubleSize);
__ add(scratch1,
object,
Operand(HeapNumber::kValueOffset - kHeapObjectTag));
__ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
__ eor(scratch1, scratch1, Operand(scratch2));
__ and_(scratch1, scratch1, Operand(mask));
// Calculate address of entry in string cache: each entry consists
// of two pointer sized fields.
__ add(scratch1,
number_string_cache,
Operand(scratch1, LSL, kPointerSizeLog2 + 1));
Register probe = mask;
__ ldr(probe,
FieldMemOperand(scratch1, FixedArray::kHeaderSize));
__ BranchOnSmi(probe, not_found);
__ sub(scratch2, object, Operand(kHeapObjectTag));
__ vldr(d0, scratch2, HeapNumber::kValueOffset);
__ sub(probe, probe, Operand(kHeapObjectTag));
__ vldr(d1, probe, HeapNumber::kValueOffset);
__ vcmp(d0, d1);
__ vmrs(pc);
__ b(ne, not_found); // The cache did not contain this value.
__ b(&load_result_from_cache);
} else {
__ b(not_found);
}
}
__ bind(&is_smi);
Register scratch = scratch1;
__ and_(scratch, mask, Operand(object, ASR, 1));
// Calculate address of entry in string cache: each entry consists
// of two pointer sized fields.
__ add(scratch,
number_string_cache,
Operand(scratch, LSL, kPointerSizeLog2 + 1));
// Check if the entry is the smi we are looking for.
Register probe = mask;
__ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
__ cmp(object, probe);
__ b(ne, not_found);
// Get the result from the cache.
__ bind(&load_result_from_cache);
__ ldr(result,
FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
__ IncrementCounter(&Counters::number_to_string_native,
1,
scratch1,
scratch2);
}
void NumberToStringStub::Generate(MacroAssembler* masm) {
Label runtime;
__ ldr(r1, MemOperand(sp, 0));
// Generate code to lookup number in the number string cache.
GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
__ add(sp, sp, Operand(1 * kPointerSize));
__ Ret();
__ bind(&runtime);
// Handle number to string in the runtime system if not found in the cache.
__ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
}
void RecordWriteStub::Generate(MacroAssembler* masm) {
__ RecordWriteHelper(object_, offset_, scratch_);
__ Ret();
}
// On entry r0 (rhs) and r1 (lhs) are the values to be compared.
// On exit r0 is 0, positive or negative to indicate the result of
// the comparison.
void CompareStub::Generate(MacroAssembler* masm) {
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles, lhs_not_nan;
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
// If either is a Smi (we know that not both are), then they can only
// be strictly equal if the other is a HeapNumber.
ASSERT_EQ(0, kSmiTag);
ASSERT_EQ(0, Smi::FromInt(0));
__ and_(r2, r0, Operand(r1));
__ tst(r2, Operand(kSmiTagMask));
__ b(ne, &not_smis);
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
// 1) Return the answer.
// 2) Go to slow.
// 3) Fall through to both_loaded_as_doubles.
// 4) Jump to lhs_not_nan.
// In cases 3 and 4 we have found out we were dealing with a number-number
// comparison. If VFP3 is supported the double values of the numbers have
// been loaded into d7 and d6. Otherwise, the double values have been loaded
// into r0, r1, r2, and r3.
EmitSmiNonsmiComparison(masm, &lhs_not_nan, &slow, strict_);
__ bind(&both_loaded_as_doubles);
// The arguments have been converted to doubles and stored in d6 and d7, if
// VFP3 is supported, or in r0, r1, r2, and r3.
if (CpuFeatures::IsSupported(VFP3)) {
__ bind(&lhs_not_nan);
CpuFeatures::Scope scope(VFP3);
Label no_nan;
// ARMv7 VFP3 instructions to implement double precision comparison.
__ vcmp(d7, d6);
__ vmrs(pc); // Move vector status bits to normal status bits.
Label nan;
__ b(vs, &nan);
__ mov(r0, Operand(EQUAL), LeaveCC, eq);
__ mov(r0, Operand(LESS), LeaveCC, lt);
__ mov(r0, Operand(GREATER), LeaveCC, gt);
__ mov(pc, Operand(lr));
__ bind(&nan);
// If one of the sides was a NaN then the v flag is set. Load r0 with
// whatever it takes to make the comparison fail, since comparisons with NaN
// always fail.
if (cc_ == lt || cc_ == le) {
__ mov(r0, Operand(GREATER));
} else {
__ mov(r0, Operand(LESS));
}
__ mov(pc, Operand(lr));
} else {
// Checks for NaN in the doubles we have loaded. Can return the answer or
// fall through if neither is a NaN. Also binds lhs_not_nan.
EmitNanCheck(masm, &lhs_not_nan, cc_);
// Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
// answer. Never falls through.
EmitTwoNonNanDoubleComparison(masm, cc_);
}
__ bind(&not_smis);
// At this point we know we are dealing with two different objects,
// and neither of them is a Smi. The objects are in r0 and r1.
if (strict_) {
// This returns non-equal for some object types, or falls through if it
// was not lucky.
EmitStrictTwoHeapObjectCompare(masm);
}
Label check_for_symbols;
Label flat_string_check;
// Check for heap-number-heap-number comparison. Can jump to slow case,
// or load both doubles into r0, r1, r2, r3 and jump to the code that handles
// that case. If the inputs are not doubles then jumps to check_for_symbols.
// In this case r2 will contain the type of r0. Never falls through.
EmitCheckForTwoHeapNumbers(masm,
&both_loaded_as_doubles,
&check_for_symbols,
&flat_string_check);
__ bind(&check_for_symbols);
// In the strict case the EmitStrictTwoHeapObjectCompare already took care of
// symbols.
if (cc_ == eq && !strict_) {
// Either jumps to slow or returns the answer. Assumes that r2 is the type
// of r0 on entry.
EmitCheckForSymbols(masm, &flat_string_check);
}
// Check for both being sequential ASCII strings, and inline if that is the
// case.
__ bind(&flat_string_check);
__ JumpIfNonSmisNotBothSequentialAsciiStrings(r0, r1, r2, r3, &slow);
__ IncrementCounter(&Counters::string_compare_native, 1, r2, r3);
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
r1,
r0,
r2,
r3,
r4,
r5);
// Never falls through to here.
__ bind(&slow);
__ Push(r1, r0);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript native;
if (cc_ == eq) {
native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
native = Builtins::COMPARE;
int ncr; // NaN compare result
if (cc_ == lt || cc_ == le) {
ncr = GREATER;
} else {
ASSERT(cc_ == gt || cc_ == ge); // remaining cases
ncr = LESS;
}
__ mov(r0, Operand(Smi::FromInt(ncr)));
__ push(r0);
}
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(native, JUMP_JS);
}
// We fall into this code if the operands were Smis, but the result was
// not (eg. overflow). We branch into this code (to the not_smi label) if
// the operands were not both Smi. The operands are in r0 and r1. In order
// to call the C-implemented binary fp operation routines we need to end up
// with the double precision floating point operands in r0 and r1 (for the
// value in r1) and r2 and r3 (for the value in r0).
void GenericBinaryOpStub::HandleBinaryOpSlowCases(
MacroAssembler* masm,
Label* not_smi,
Register lhs,
Register rhs,
const Builtins::JavaScript& builtin) {
Label slow, slow_reverse, do_the_call;
bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && Token::MOD != op_;
ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0)));
if (ShouldGenerateSmiCode()) {
// Smi-smi case (overflow).
// Since both are Smis there is no heap number to overwrite, so allocate.
// The new heap number is in r5. r6 and r7 are scratch.
__ AllocateHeapNumber(r5, r6, r7, lhs.is(r0) ? &slow_reverse : &slow);
// If we have floating point hardware, inline ADD, SUB, MUL, and DIV,
// using registers d7 and d6 for the double values.
if (use_fp_registers) {
CpuFeatures::Scope scope(VFP3);
__ mov(r7, Operand(rhs, ASR, kSmiTagSize));
__ vmov(s15, r7);
__ vcvt_f64_s32(d7, s15);
__ mov(r7, Operand(lhs, ASR, kSmiTagSize));
__ vmov(s13, r7);
__ vcvt_f64_s32(d6, s13);
} else {
// Write Smi from rhs to r3 and r2 in double format. r6 is scratch.
__ mov(r7, Operand(rhs));
ConvertToDoubleStub stub1(r3, r2, r7, r6);
__ push(lr);
__ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
// Write Smi from lhs to r1 and r0 in double format. r6 is scratch.
__ mov(r7, Operand(lhs));
ConvertToDoubleStub stub2(r1, r0, r7, r6);
__ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
}
__ jmp(&do_the_call); // Tail call. No return.
}
// We branch here if at least one of r0 and r1 is not a Smi.
__ bind(not_smi);
// After this point we have the left hand side in r1 and the right hand side
// in r0.
if (lhs.is(r0)) {
__ Swap(r0, r1, ip);
}
if (ShouldGenerateFPCode()) {
Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1;
if (runtime_operands_type_ == BinaryOpIC::DEFAULT) {
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
GenerateTypeTransition(masm);
break;
default:
break;
}
}
if (mode_ == NO_OVERWRITE) {
// In the case where there is no chance of an overwritable float we may as
// well do the allocation immediately while r0 and r1 are untouched.
__ AllocateHeapNumber(r5, r6, r7, &slow);
}
// Move r0 to a double in r2-r3.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
__ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
if (mode_ == OVERWRITE_RIGHT) {
__ mov(r5, Operand(r0)); // Overwrite this heap number.
}
if (use_fp_registers) {
CpuFeatures::Scope scope(VFP3);
// Load the double from tagged HeapNumber r0 to d7.
__ sub(r7, r0, Operand(kHeapObjectTag));
__ vldr(d7, r7, HeapNumber::kValueOffset);
} else {
// Calling convention says that second double is in r2 and r3.
__ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset));
}
__ jmp(&finished_loading_r0);
__ bind(&r0_is_smi);
if (mode_ == OVERWRITE_RIGHT) {
// We can't overwrite a Smi so get address of new heap number into r5.
__ AllocateHeapNumber(r5, r6, r7, &slow);
}
if (use_fp_registers) {
CpuFeatures::Scope scope(VFP3);
// Convert smi in r0 to double in d7.
__ mov(r7, Operand(r0, ASR, kSmiTagSize));
__ vmov(s15, r7);
__ vcvt_f64_s32(d7, s15);
} else {
// Write Smi from r0 to r3 and r2 in double format.
__ mov(r7, Operand(r0));
ConvertToDoubleStub stub3(r3, r2, r7, r6);
__ push(lr);
__ Call(stub3.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
}
// HEAP_NUMBERS stub is slower than GENERIC on a pair of smis.
// r0 is known to be a smi. If r1 is also a smi then switch to GENERIC.
Label r1_is_not_smi;
if (runtime_operands_type_ == BinaryOpIC::HEAP_NUMBERS) {
__ tst(r1, Operand(kSmiTagMask));
__ b(ne, &r1_is_not_smi);
GenerateTypeTransition(masm);
__ jmp(&r1_is_smi);
}
__ bind(&finished_loading_r0);
// Move r1 to a double in r0-r1.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
__ bind(&r1_is_not_smi);
__ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
if (mode_ == OVERWRITE_LEFT) {
__ mov(r5, Operand(r1)); // Overwrite this heap number.
}
if (use_fp_registers) {
CpuFeatures::Scope scope(VFP3);
// Load the double from tagged HeapNumber r1 to d6.
__ sub(r7, r1, Operand(kHeapObjectTag));
__ vldr(d6, r7, HeapNumber::kValueOffset);
} else {
// Calling convention says that first double is in r0 and r1.
__ Ldrd(r0, r1, FieldMemOperand(r1, HeapNumber::kValueOffset));
}
__ jmp(&finished_loading_r1);
__ bind(&r1_is_smi);
if (mode_ == OVERWRITE_LEFT) {
// We can't overwrite a Smi so get address of new heap number into r5.
__ AllocateHeapNumber(r5, r6, r7, &slow);
}
if (use_fp_registers) {
CpuFeatures::Scope scope(VFP3);
// Convert smi in r1 to double in d6.
__ mov(r7, Operand(r1, ASR, kSmiTagSize));
__ vmov(s13, r7);
__ vcvt_f64_s32(d6, s13);
} else {
// Write Smi from r1 to r1 and r0 in double format.
__ mov(r7, Operand(r1));
ConvertToDoubleStub stub4(r1, r0, r7, r6);
__ push(lr);
__ Call(stub4.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
}
__ bind(&finished_loading_r1);
__ bind(&do_the_call);
// If we are inlining the operation using VFP3 instructions for
// add, subtract, multiply, or divide, the arguments are in d6 and d7.
if (use_fp_registers) {
CpuFeatures::Scope scope(VFP3);
// ARMv7 VFP3 instructions to implement
// double precision, add, subtract, multiply, divide.
if (Token::MUL == op_) {
__ vmul(d5, d6, d7);
} else if (Token::DIV == op_) {
__ vdiv(d5, d6, d7);
} else if (Token::ADD == op_) {
__ vadd(d5, d6, d7);
} else if (Token::SUB == op_) {
__ vsub(d5, d6, d7);
} else {
UNREACHABLE();
}
__ sub(r0, r5, Operand(kHeapObjectTag));
__ vstr(d5, r0, HeapNumber::kValueOffset);
__ add(r0, r0, Operand(kHeapObjectTag));
__ mov(pc, lr);
} else {
// If we did not inline the operation, then the arguments are in:
// r0: Left value (least significant part of mantissa).
// r1: Left value (sign, exponent, top of mantissa).
// r2: Right value (least significant part of mantissa).
// r3: Right value (sign, exponent, top of mantissa).
// r5: Address of heap number for result.
__ push(lr); // For later.
__ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments.
// Call C routine that may not cause GC or other trouble. r5 is callee
// save.
__ CallCFunction(ExternalReference::double_fp_operation(op_), 4);
// Store answer in the overwritable heap number.
#if !defined(USE_ARM_EABI)
// Double returned in fp coprocessor register 0 and 1, encoded as register
// cr8. Offsets must be divisible by 4 for coprocessor so we need to
// substract the tag from r5.
__ sub(r4, r5, Operand(kHeapObjectTag));
__ stc(p1, cr8, MemOperand(r4, HeapNumber::kValueOffset));
#else
// Double returned in registers 0 and 1.
__ Strd(r0, r1, FieldMemOperand(r5, HeapNumber::kValueOffset));
#endif
__ mov(r0, Operand(r5));
// And we are done.
__ pop(pc);
}
}
if (lhs.is(r0)) {
__ b(&slow);
__ bind(&slow_reverse);
__ Swap(r0, r1, ip);
}
// We jump to here if something goes wrong (one param is not a number of any
// sort or new-space allocation fails).
__ bind(&slow);
// Push arguments to the stack
__ Push(r1, r0);
if (Token::ADD == op_) {
// Test for string arguments before calling runtime.
// r1 : first argument
// r0 : second argument
// sp[0] : second argument
// sp[4] : first argument
Label not_strings, not_string1, string1, string1_smi2;
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &not_string1);
__ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE);
__ b(ge, &not_string1);
// First argument is a a string, test second.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &string1_smi2);
__ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
__ b(ge, &string1);
// First and second argument are strings.
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
__ TailCallStub(&string_add_stub);
__ bind(&string1_smi2);
// First argument is a string, second is a smi. Try to lookup the number
// string for the smi in the number string cache.
NumberToStringStub::GenerateLookupNumberStringCache(
masm, r0, r2, r4, r5, r6, true, &string1);
// Replace second argument on stack and tailcall string add stub to make
// the result.
__ str(r2, MemOperand(sp, 0));
__ TailCallStub(&string_add_stub);
// Only first argument is a string.
__ bind(&string1);
__ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS);
// First argument was not a string, test second.
__ bind(&not_string1);
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &not_strings);
__ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
__ b(ge, &not_strings);
// Only second argument is a string.
__ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS);
__ bind(&not_strings);
}
__ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return.
}
// Tries to get a signed int32 out of a double precision floating point heap
// number. Rounds towards 0. Fastest for doubles that are in the ranges
// -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds
// almost to the range of signed int32 values that are not Smis. Jumps to the
// label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0
// (excluding the endpoints).
static void GetInt32(MacroAssembler* masm,
Register source,
Register dest,
Register scratch,
Register scratch2,
Label* slow) {
Label right_exponent, done;
// Get exponent word.
__ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
// Get exponent alone in scratch2.
__ and_(scratch2, scratch, Operand(HeapNumber::kExponentMask));
// Load dest with zero. We use this either for the final shift or
// for the answer.
__ mov(dest, Operand(0));
// Check whether the exponent matches a 32 bit signed int that is not a Smi.
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
// the exponent that we are fastest at and also the highest exponent we can
// handle here.
const uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
__ cmp(scratch2, Operand(non_smi_exponent));
// If we have a match of the int32-but-not-Smi exponent then skip some logic.
__ b(eq, &right_exponent);
// If the exponent is higher than that then go to slow case. This catches
// numbers that don't fit in a signed int32, infinities and NaNs.
__ b(gt, slow);
// We know the exponent is smaller than 30 (biased). If it is less than
// 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
// it rounds to zero.
const uint32_t zero_exponent =
(HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
__ sub(scratch2, scratch2, Operand(zero_exponent), SetCC);
// Dest already has a Smi zero.
__ b(lt, &done);
if (!CpuFeatures::IsSupported(VFP3)) {
// We have a shifted exponent between 0 and 30 in scratch2.
__ mov(dest, Operand(scratch2, LSR, HeapNumber::kExponentShift));
// We now have the exponent in dest. Subtract from 30 to get
// how much to shift down.
__ rsb(dest, dest, Operand(30));
}
__ bind(&right_exponent);
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
// ARMv7 VFP3 instructions implementing double precision to integer
// conversion using round to zero.
__ ldr(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset));
__ vmov(d7, scratch2, scratch);
__ vcvt_s32_f64(s15, d7);
__ vmov(dest, s15);
} else {
// Get the top bits of the mantissa.
__ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
// Put back the implicit 1.
__ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
// Shift up the mantissa bits to take up the space the exponent used to
// take. We just orred in the implicit bit so that took care of one and
// we want to leave the sign bit 0 so we subtract 2 bits from the shift
// distance.
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
__ mov(scratch2, Operand(scratch2, LSL, shift_distance));
// Put sign in zero flag.
__ tst(scratch, Operand(HeapNumber::kSignMask));
// Get the second half of the double. For some exponents we don't
// actually need this because the bits get shifted out again, but
// it's probably slower to test than just to do it.
__ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
// Shift down 22 bits to get the last 10 bits.
__ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
// Move down according to the exponent.
__ mov(dest, Operand(scratch, LSR, dest));
// Fix sign if sign bit was set.
__ rsb(dest, dest, Operand(0), LeaveCC, ne);
}
__ bind(&done);
}
// For bitwise ops where the inputs are not both Smis we here try to determine
// whether both inputs are either Smis or at least heap numbers that can be
// represented by a 32 bit signed value. We truncate towards zero as required
// by the ES spec. If this is the case we do the bitwise op and see if the
// result is a Smi. If so, great, otherwise we try to find a heap number to
// write the answer into (either by allocating or by overwriting).
// On entry the operands are in lhs and rhs. On exit the answer is in r0.
void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm,
Register lhs,
Register rhs) {
Label slow, result_not_a_smi;
Label rhs_is_smi, lhs_is_smi;
Label done_checking_rhs, done_checking_lhs;
__ tst(lhs, Operand(kSmiTagMask));
__ b(eq, &lhs_is_smi); // It's a Smi so don't check it's a heap number.
__ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
GetInt32(masm, lhs, r3, r5, r4, &slow);
__ jmp(&done_checking_lhs);
__ bind(&lhs_is_smi);
__ mov(r3, Operand(lhs, ASR, 1));
__ bind(&done_checking_lhs);
__ tst(rhs, Operand(kSmiTagMask));
__ b(eq, &rhs_is_smi); // It's a Smi so don't check it's a heap number.
__ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
GetInt32(masm, rhs, r2, r5, r4, &slow);
__ jmp(&done_checking_rhs);
__ bind(&rhs_is_smi);
__ mov(r2, Operand(rhs, ASR, 1));
__ bind(&done_checking_rhs);
ASSERT(((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))));
// r0 and r1: Original operands (Smi or heap numbers).
// r2 and r3: Signed int32 operands.
switch (op_) {
case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break;
case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break;
case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break;
case Token::SAR:
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r2, Operand(r3, ASR, r2));
break;
case Token::SHR:
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r2, Operand(r3, LSR, r2), SetCC);
// SHR is special because it is required to produce a positive answer.
// The code below for writing into heap numbers isn't capable of writing
// the register as an unsigned int so we go to slow case if we hit this
// case.
__ b(mi, &slow);
break;
case Token::SHL:
// Use only the 5 least significant bits of the shift count.
__ and_(r2, r2, Operand(0x1f));
__ mov(r2, Operand(r3, LSL, r2));
break;
default: UNREACHABLE();
}
// check that the *signed* result fits in a smi
__ add(r3, r2, Operand(0x40000000), SetCC);
__ b(mi, &result_not_a_smi);
__ mov(r0, Operand(r2, LSL, kSmiTagSize));
__ Ret();
Label have_to_allocate, got_a_heap_number;
__ bind(&result_not_a_smi);
switch (mode_) {
case OVERWRITE_RIGHT: {
__ tst(rhs, Operand(kSmiTagMask));
__ b(eq, &have_to_allocate);
__ mov(r5, Operand(rhs));
break;
}
case OVERWRITE_LEFT: {
__ tst(lhs, Operand(kSmiTagMask));
__ b(eq, &have_to_allocate);
__ mov(r5, Operand(lhs));
break;
}
case NO_OVERWRITE: {
// Get a new heap number in r5. r6 and r7 are scratch.
__ AllocateHeapNumber(r5, r6, r7, &slow);
}
default: break;
}
__ bind(&got_a_heap_number);
// r2: Answer as signed int32.
// r5: Heap number to write answer into.
// Nothing can go wrong now, so move the heap number to r0, which is the
// result.
__ mov(r0, Operand(r5));
// Tail call that writes the int32 in r2 to the heap number in r0, using
// r3 as scratch. r0 is preserved and returned.
WriteInt32ToHeapNumberStub stub(r2, r0, r3);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
if (mode_ != NO_OVERWRITE) {
__ bind(&have_to_allocate);
// Get a new heap number in r5. r6 and r7 are scratch.
__ AllocateHeapNumber(r5, r6, r7, &slow);
__ jmp(&got_a_heap_number);
}
// If all else failed then we go to the runtime system.
__ bind(&slow);
__ Push(lhs, rhs); // Restore stack.
switch (op_) {
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_JS);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_JS);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_JS);
break;
default:
UNREACHABLE();
}
}
// Can we multiply by x with max two shifts and an add.
// This answers yes to all integers from 2 to 10.
static bool IsEasyToMultiplyBy(int x) {
if (x < 2) return false; // Avoid special cases.
if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows.
if (IsPowerOf2(x)) return true; // Simple shift.
if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift.
if (IsPowerOf2(x + 1)) return true; // Patterns like 11111.
return false;
}
// Can multiply by anything that IsEasyToMultiplyBy returns true for.
// Source and destination may be the same register. This routine does
// not set carry and overflow the way a mul instruction would.
static void MultiplyByKnownInt(MacroAssembler* masm,
Register source,
Register destination,
int known_int) {
if (IsPowerOf2(known_int)) {
__ mov(destination, Operand(source, LSL, BitPosition(known_int)));
} else if (PopCountLessThanEqual2(known_int)) {
int first_bit = BitPosition(known_int);
int second_bit = BitPosition(known_int ^ (1 << first_bit));
__ add(destination, source, Operand(source, LSL, second_bit - first_bit));
if (first_bit != 0) {
__ mov(destination, Operand(destination, LSL, first_bit));
}
} else {
ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111.
int the_bit = BitPosition(known_int + 1);
__ rsb(destination, source, Operand(source, LSL, the_bit));
}
}
// This function (as opposed to MultiplyByKnownInt) takes the known int in a
// a register for the cases where it doesn't know a good trick, and may deliver
// a result that needs shifting.
static void MultiplyByKnownInt2(
MacroAssembler* masm,
Register result,
Register source,
Register known_int_register, // Smi tagged.
int known_int,
int* required_shift) { // Including Smi tag shift
switch (known_int) {
case 3:
__ add(result, source, Operand(source, LSL, 1));
*required_shift = 1;
break;
case 5:
__ add(result, source, Operand(source, LSL, 2));
*required_shift = 1;
break;
case 6:
__ add(result, source, Operand(source, LSL, 1));
*required_shift = 2;
break;
case 7:
__ rsb(result, source, Operand(source, LSL, 3));
*required_shift = 1;
break;
case 9:
__ add(result, source, Operand(source, LSL, 3));
*required_shift = 1;
break;
case 10:
__ add(result, source, Operand(source, LSL, 2));
*required_shift = 2;
break;
default:
ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient.
__ mul(result, source, known_int_register);
*required_shift = 0;
}
}
const char* GenericBinaryOpStub::GetName() {
if (name_ != NULL) return name_;
const int len = 100;
name_ = Bootstrapper::AllocateAutoDeletedArray(len);
if (name_ == NULL) return "OOM";
const char* op_name = Token::Name(op_);
const char* overwrite_name;
switch (mode_) {
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
default: overwrite_name = "UnknownOverwrite"; break;
}
OS::SNPrintF(Vector<char>(name_, len),
"GenericBinaryOpStub_%s_%s%s",
op_name,
overwrite_name,
specialized_on_rhs_ ? "_ConstantRhs" : 0);
return name_;
}
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
// lhs_ : x
// rhs_ : y
// r0 : result
Register result = r0;
Register lhs = lhs_;
Register rhs = rhs_;
// This code can't cope with other register allocations yet.
ASSERT(result.is(r0) &&
((lhs.is(r0) && rhs.is(r1)) ||
(lhs.is(r1) && rhs.is(r0))));
Register smi_test_reg = VirtualFrame::scratch0();
Register scratch = VirtualFrame::scratch1();
// All ops need to know whether we are dealing with two Smis. Set up
// smi_test_reg to tell us that.
if (ShouldGenerateSmiCode()) {
__ orr(smi_test_reg, lhs, Operand(rhs));
}
switch (op_) {
case Token::ADD: {
Label not_smi;
// Fast path.
if (ShouldGenerateSmiCode()) {
ASSERT(kSmiTag == 0); // Adjust code below.
__ tst(smi_test_reg, Operand(kSmiTagMask));
__ b(ne, &not_smi);
__ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
// Return if no overflow.
__ Ret(vc);
__ sub(r0, r0, Operand(r1)); // Revert optimistic add.
}
HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::ADD);
break;
}
case Token::SUB: {
Label not_smi;
// Fast path.
if (ShouldGenerateSmiCode()) {
ASSERT(kSmiTag == 0); // Adjust code below.
__ tst(smi_test_reg, Operand(kSmiTagMask));
__ b(ne, &not_smi);
if (lhs.is(r1)) {
__ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
// Return if no overflow.
__ Ret(vc);
__ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
} else {
__ sub(r0, r0, Operand(r1), SetCC); // Subtract y optimistically.
// Return if no overflow.
__ Ret(vc);
__ add(r0, r0, Operand(r1)); // Revert optimistic subtract.
}
}
HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::SUB);
break;
}
case Token::MUL: {
Label not_smi, slow;
if (ShouldGenerateSmiCode()) {
ASSERT(kSmiTag == 0); // adjust code below
__ tst(smi_test_reg, Operand(kSmiTagMask));
Register scratch2 = smi_test_reg;
smi_test_reg = no_reg;
__ b(ne, &not_smi);
// Remove tag from one operand (but keep sign), so that result is Smi.
__ mov(ip, Operand(rhs, ASR, kSmiTagSize));
// Do multiplication
// scratch = lower 32 bits of ip * lhs.
__ smull(scratch, scratch2, lhs, ip);
// Go slow on overflows (overflow bit is not set).
__ mov(ip, Operand(scratch, ASR, 31));
// No overflow if higher 33 bits are identical.
__ cmp(ip, Operand(scratch2));
__ b(ne, &slow);
// Go slow on zero result to handle -0.
__ tst(scratch, Operand(scratch));
__ mov(result, Operand(scratch), LeaveCC, ne);
__ Ret(ne);
// We need -0 if we were multiplying a negative number with 0 to get 0.
// We know one of them was zero.
__ add(scratch2, rhs, Operand(lhs), SetCC);
__ mov(result, Operand(Smi::FromInt(0)), LeaveCC, pl);
__ Ret(pl); // Return Smi 0 if the non-zero one was positive.
// Slow case. We fall through here if we multiplied a negative number
// with 0, because that would mean we should produce -0.
__ bind(&slow);
}
HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::MUL);
break;
}
case Token::DIV:
case Token::MOD: {
Label not_smi;
if (ShouldGenerateSmiCode() && specialized_on_rhs_) {
Label smi_is_unsuitable;
__ BranchOnNotSmi(lhs, &not_smi);
if (IsPowerOf2(constant_rhs_)) {
if (op_ == Token::MOD) {
__ and_(rhs,
lhs,
Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)),
SetCC);
// We now have the answer, but if the input was negative we also
// have the sign bit. Our work is done if the result is
// positive or zero:
if (!rhs.is(r0)) {
__ mov(r0, rhs, LeaveCC, pl);
}
__ Ret(pl);
// A mod of a negative left hand side must return a negative number.
// Unfortunately if the answer is 0 then we must return -0. And we
// already optimistically trashed rhs so we may need to restore it.
__ eor(rhs, rhs, Operand(0x80000000u), SetCC);
// Next two instructions are conditional on the answer being -0.
__ mov(rhs, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq);
__ b(eq, &smi_is_unsuitable);
// We need to subtract the dividend. Eg. -3 % 4 == -3.
__ sub(result, rhs, Operand(Smi::FromInt(constant_rhs_)));
} else {
ASSERT(op_ == Token::DIV);
__ tst(lhs,
Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)));
__ b(ne, &smi_is_unsuitable); // Go slow on negative or remainder.
int shift = 0;
int d = constant_rhs_;
while ((d & 1) == 0) {
d >>= 1;
shift++;
}
__ mov(r0, Operand(lhs, LSR, shift));
__ bic(r0, r0, Operand(kSmiTagMask));
}
} else {
// Not a power of 2.
__ tst(lhs, Operand(0x80000000u));
__ b(ne, &smi_is_unsuitable);
// Find a fixed point reciprocal of the divisor so we can divide by
// multiplying.
double divisor = 1.0 / constant_rhs_;
int shift = 32;
double scale = 4294967296.0; // 1 << 32.
uint32_t mul;
// Maximise the precision of the fixed point reciprocal.
while (true) {
mul = static_cast<uint32_t>(scale * divisor);
if (mul >= 0x7fffffff) break;
scale *= 2.0;
shift++;
}
mul++;
Register scratch2 = smi_test_reg;
smi_test_reg = no_reg;
__ mov(scratch2, Operand(mul));
__ umull(scratch, scratch2, scratch2, lhs);
__ mov(scratch2, Operand(scratch2, LSR, shift - 31));
// scratch2 is lhs / rhs. scratch2 is not Smi tagged.
// rhs is still the known rhs. rhs is Smi tagged.
// lhs is still the unkown lhs. lhs is Smi tagged.
int required_scratch_shift = 0; // Including the Smi tag shift of 1.
// scratch = scratch2 * rhs.
MultiplyByKnownInt2(masm,
scratch,
scratch2,
rhs,
constant_rhs_,
&required_scratch_shift);
// scratch << required_scratch_shift is now the Smi tagged rhs *
// (lhs / rhs) where / indicates integer division.
if (op_ == Token::DIV) {
__ cmp(lhs, Operand(scratch, LSL, required_scratch_shift));
__ b(ne, &smi_is_unsuitable); // There was a remainder.
__ mov(result, Operand(scratch2, LSL, kSmiTagSize));
} else {
ASSERT(op_ == Token::MOD);
__ sub(result, lhs, Operand(scratch, LSL, required_scratch_shift));
}
}
__ Ret();
__ bind(&smi_is_unsuitable);
}
HandleBinaryOpSlowCases(
masm,
&not_smi,
lhs,
rhs,
op_ == Token::MOD ? Builtins::MOD : Builtins::DIV);
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHR:
case Token::SHL: {
Label slow;
ASSERT(kSmiTag == 0); // adjust code below
__ tst(smi_test_reg, Operand(kSmiTagMask));
__ b(ne, &slow);
Register scratch2 = smi_test_reg;
smi_test_reg = no_reg;
switch (op_) {
case Token::BIT_OR: __ orr(result, rhs, Operand(lhs)); break;
case Token::BIT_AND: __ and_(result, rhs, Operand(lhs)); break;
case Token::BIT_XOR: __ eor(result, rhs, Operand(lhs)); break;
case Token::SAR:
// Remove tags from right operand.
__ GetLeastBitsFromSmi(scratch2, rhs, 5);
__ mov(result, Operand(lhs, ASR, scratch2));
// Smi tag result.
__ bic(result, result, Operand(kSmiTagMask));
break;
case Token::SHR:
// Remove tags from operands. We can't do this on a 31 bit number
// because then the 0s get shifted into bit 30 instead of bit 31.
__ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
__ GetLeastBitsFromSmi(scratch2, rhs, 5);
__ mov(scratch, Operand(scratch, LSR, scratch2));
// Unsigned shift is not allowed to produce a negative number, so
// check the sign bit and the sign bit after Smi tagging.
__ tst(scratch, Operand(0xc0000000));
__ b(ne, &slow);
// Smi tag result.
__ mov(result, Operand(scratch, LSL, kSmiTagSize));
break;
case Token::SHL:
// Remove tags from operands.
__ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
__ GetLeastBitsFromSmi(scratch2, rhs, 5);
__ mov(scratch, Operand(scratch, LSL, scratch2));
// Check that the signed result fits in a Smi.
__ add(scratch2, scratch, Operand(0x40000000), SetCC);
__ b(mi, &slow);
__ mov(result, Operand(scratch, LSL, kSmiTagSize));
break;
default: UNREACHABLE();
}
__ Ret();
__ bind(&slow);
HandleNonSmiBitwiseOp(masm, lhs, rhs);
break;
}
default: UNREACHABLE();
}
// This code should be unreachable.
__ stop("Unreachable");
// Generate an unreachable reference to the DEFAULT stub so that it can be
// found at the end of this stub when clearing ICs at GC.
// TODO(kaznacheev): Check performance impact and get rid of this.
if (runtime_operands_type_ != BinaryOpIC::DEFAULT) {
GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT);
__ CallStub(&uninit);
}
}
void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Label get_result;
__ Push(r1, r0);
// Internal frame is necessary to handle exceptions properly.
__ EnterInternalFrame();
// Call the stub proper to get the result in r0.
__ Call(&get_result);
__ LeaveInternalFrame();
__ push(r0);
__ mov(r0, Operand(Smi::FromInt(MinorKey())));
__ push(r0);
__ mov(r0, Operand(Smi::FromInt(op_)));
__ push(r0);
__ mov(r0, Operand(Smi::FromInt(runtime_operands_type_)));
__ push(r0);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
6,
1);
// The entry point for the result calculation is assumed to be immediately
// after this sequence.
__ bind(&get_result);
}
Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
GenericBinaryOpStub stub(key, type_info);
return stub.GetCode();
}
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// Argument is a number and is on stack and in r0.
Label runtime_call;
Label input_not_smi;
Label loaded;
if (CpuFeatures::IsSupported(VFP3)) {
// Load argument and check if it is a smi.
__ BranchOnNotSmi(r0, &input_not_smi);
CpuFeatures::Scope scope(VFP3);
// Input is a smi. Convert to double and load the low and high words
// of the double into r2, r3.
__ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
__ b(&loaded);
__ bind(&input_not_smi);
// Check if input is a HeapNumber.
__ CheckMap(r0,
r1,
Heap::kHeapNumberMapRootIndex,
&runtime_call,
true);
// Input is a HeapNumber. Load it to a double register and store the
// low and high words into r2, r3.
__ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset));
__ bind(&loaded);
// r2 = low 32 bits of double value
// r3 = high 32 bits of double value
// Compute hash:
// h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
__ eor(r1, r2, Operand(r3));
__ eor(r1, r1, Operand(r1, LSR, 16));
__ eor(r1, r1, Operand(r1, LSR, 8));
ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
if (CpuFeatures::IsSupported(ARMv7)) {
const int kTranscendentalCacheSizeBits = 9;
ASSERT_EQ(1 << kTranscendentalCacheSizeBits,
TranscendentalCache::kCacheSize);
__ ubfx(r1, r1, 0, kTranscendentalCacheSizeBits);
} else {
__ and_(r1, r1, Operand(TranscendentalCache::kCacheSize - 1));
}
// r2 = low 32 bits of double value.
// r3 = high 32 bits of double value.
// r1 = TranscendentalCache::hash(double value).
__ mov(r0,
Operand(ExternalReference::transcendental_cache_array_address()));
// r0 points to cache array.
__ ldr(r0, MemOperand(r0, type_ * sizeof(TranscendentalCache::caches_[0])));
// r0 points to the cache for the type type_.
// If NULL, the cache hasn't been initialized yet, so go through runtime.
__ cmp(r0, Operand(0));
__ b(eq, &runtime_call);
#ifdef DEBUG
// Check that the layout of cache elements match expectations.
{ TranscendentalCache::Element test_elem[2];
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
CHECK_EQ(0, elem_in0 - elem_start);
CHECK_EQ(kIntSize, elem_in1 - elem_start);
CHECK_EQ(2 * kIntSize, elem_out - elem_start);
}
#endif
// Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
__ add(r1, r1, Operand(r1, LSL, 1));
__ add(r0, r0, Operand(r1, LSL, 2));
// Check if cache matches: Double value is stored in uint32_t[2] array.
__ ldm(ia, r0, r4.bit()| r5.bit() | r6.bit());
__ cmp(r2, r4);
__ b(ne, &runtime_call);
__ cmp(r3, r5);
__ b(ne, &runtime_call);
// Cache hit. Load result, pop argument and return.
__ mov(r0, Operand(r6));
__ pop();
__ Ret();
}
__ bind(&runtime_call);
__ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
}
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
switch (type_) {
// Add more cases when necessary.
case TranscendentalCache::SIN: return Runtime::kMath_sin;
case TranscendentalCache::COS: return Runtime::kMath_cos;
default:
UNIMPLEMENTED();
return Runtime::kAbort;
}
}
void StackCheckStub::Generate(MacroAssembler* masm) {
// Do tail-call to runtime routine. Runtime routines expect at least one
// argument, so give it a Smi.
__ mov(r0, Operand(Smi::FromInt(0)));
__ push(r0);
__ TailCallRuntime(Runtime::kStackGuard, 1, 1);
__ StubReturn(1);
}
void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
Label slow, done;
if (op_ == Token::SUB) {
// Check whether the value is a smi.
Label try_float;
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, &try_float);
// Go slow case if the value of the expression is zero
// to make sure that we switch between 0 and -0.
__ cmp(r0, Operand(0));
__ b(eq, &slow);
// The value of the expression is a smi that is not zero. Try
// optimistic subtraction '0 - value'.
__ rsb(r1, r0, Operand(0), SetCC);
__ b(vs, &slow);
__ mov(r0, Operand(r1)); // Set r0 to result.
__ b(&done);
__ bind(&try_float);
__ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
// r0 is a heap number. Get a new heap number in r1.
if (overwrite_) {
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
__ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
__ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
} else {
__ AllocateHeapNumber(r1, r2, r3, &slow);
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
__ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
__ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
__ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
__ mov(r0, Operand(r1));
}
} else if (op_ == Token::BIT_NOT) {
// Check if the operand is a heap number.
__ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
// Convert the heap number is r0 to an untagged integer in r1.
GetInt32(masm, r0, r1, r2, r3, &slow);
// Do the bitwise operation (move negated) and check if the result
// fits in a smi.
Label try_float;
__ mvn(r1, Operand(r1));
__ add(r2, r1, Operand(0x40000000), SetCC);
__ b(mi, &try_float);
__ mov(r0, Operand(r1, LSL, kSmiTagSize));
__ b(&done);
__ bind(&try_float);
if (!overwrite_) {
// Allocate a fresh heap number, but don't overwrite r0 until
// we're sure we can do it without going through the slow case
// that needs the value in r0.
__ AllocateHeapNumber(r2, r3, r4, &slow);
__ mov(r0, Operand(r2));
}
// WriteInt32ToHeapNumberStub does not trigger GC, so we do not
// have to set up a frame.
WriteInt32ToHeapNumberStub stub(r1, r0, r2);
__ push(lr);
__ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
__ pop(lr);
} else {
UNIMPLEMENTED();
}
__ bind(&done);
__ StubReturn(1);
// Handle the slow case by jumping to the JavaScript builtin.
__ bind(&slow);
__ push(r0);
switch (op_) {
case Token::SUB:
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
break;
case Token::BIT_NOT:
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS);
break;
default:
UNREACHABLE();
}
}
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// r0 holds the exception.
// Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// Drop the sp to the top of the handler.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(sp, MemOperand(r3));
// Restore the next handler and frame pointer, discard handler state.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ pop(r2);
__ str(r2, MemOperand(r3));
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
__ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
// Before returning we restore the context from the frame pointer if
// not NULL. The frame pointer is NULL in the exception handler of a
// JS entry frame.
__ cmp(fp, Operand(0));
// Set cp to NULL if fp is NULL.
__ mov(cp, Operand(0), LeaveCC, eq);
// Restore cp otherwise.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
#ifdef DEBUG
if (FLAG_debug_code) {
__ mov(lr, Operand(pc));
}
#endif
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
__ pop(pc);
}
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) {
// Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// Drop sp to the top stack handler.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(sp, MemOperand(r3));
// Unwind the handlers until the ENTRY handler is found.
Label loop, done;
__ bind(&loop);
// Load the type of the current stack handler.
const int kStateOffset = StackHandlerConstants::kStateOffset;
__ ldr(r2, MemOperand(sp, kStateOffset));
__ cmp(r2, Operand(StackHandler::ENTRY));
__ b(eq, &done);
// Fetch the next handler in the list.
const int kNextOffset = StackHandlerConstants::kNextOffset;
__ ldr(sp, MemOperand(sp, kNextOffset));
__ jmp(&loop);
__ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ pop(r2);
__ str(r2, MemOperand(r3));
if (type == OUT_OF_MEMORY) {
// Set external caught exception to false.
ExternalReference external_caught(Top::k_external_caught_exception_address);
__ mov(r0, Operand(false));
__ mov(r2, Operand(external_caught));
__ str(r0, MemOperand(r2));
// Set pending exception and r0 to out of memory exception.
Failure* out_of_memory = Failure::OutOfMemoryException();
__ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
__ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
__ str(r0, MemOperand(r2));
}
// Stack layout at this point. See also StackHandlerConstants.
// sp -> state (ENTRY)
// fp
// lr
// Discard handler state (r2 is not used) and restore frame pointer.
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
__ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
// Before returning we restore the context from the frame pointer if
// not NULL. The frame pointer is NULL in the exception handler of a
// JS entry frame.
__ cmp(fp, Operand(0));
// Set cp to NULL if fp is NULL.
__ mov(cp, Operand(0), LeaveCC, eq);
// Restore cp otherwise.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
#ifdef DEBUG
if (FLAG_debug_code) {
__ mov(lr, Operand(pc));
}
#endif
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
__ pop(pc);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
bool do_gc,
bool always_allocate,
int frame_alignment_skew) {
// r0: result parameter for PerformGC, if any
// r4: number of arguments including receiver (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
// r6: pointer to the first argument (C callee-saved)
if (do_gc) {
// Passing r0.
__ PrepareCallCFunction(1, r1);
__ CallCFunction(ExternalReference::perform_gc_function(), 1);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth();
if (always_allocate) {
__ mov(r0, Operand(scope_depth));
__ ldr(r1, MemOperand(r0));
__ add(r1, r1, Operand(1));
__ str(r1, MemOperand(r0));
}
// Call C built-in.
// r0 = argc, r1 = argv
__ mov(r0, Operand(r4));
__ mov(r1, Operand(r6));
int frame_alignment = MacroAssembler::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
#if defined(V8_HOST_ARCH_ARM)
if (FLAG_debug_code) {
if (frame_alignment > kPointerSize) {
Label alignment_as_expected;
ASSERT(IsPowerOf2(frame_alignment));
__ sub(r2, sp, Operand(frame_alignment_skew));
__ tst(r2, Operand(frame_alignment_mask));
__ b(eq, &alignment_as_expected);
// Don't use Check here, as it will call Runtime_Abort re-entering here.
__ stop("Unexpected alignment");
__ bind(&alignment_as_expected);
}
}
#endif
// Just before the call (jump) below lr is pushed, so the actual alignment is
// adding one to the current skew.
int alignment_before_call =
(frame_alignment_skew + kPointerSize) & frame_alignment_mask;
if (alignment_before_call > 0) {
// Push until the alignment before the call is met.
__ mov(r2, Operand(0));
for (int i = alignment_before_call;
(i & frame_alignment_mask) != 0;
i += kPointerSize) {
__ push(r2);
}
}
// TODO(1242173): To let the GC traverse the return address of the exit
// frames, we need to know where the return address is. Right now,
// we push it on the stack to be able to find it again, but we never
// restore from it in case of changes, which makes it impossible to
// support moving the C entry code stub. This should be fixed, but currently
// this is OK because the CEntryStub gets generated so early in the V8 boot
// sequence that it is not moving ever.
masm->add(lr, pc, Operand(4)); // Compute return address: (pc + 8) + 4
masm->push(lr);
masm->Jump(r5);
// Restore sp back to before aligning the stack.
if (alignment_before_call > 0) {
__ add(sp, sp, Operand(alignment_before_call));
}
if (always_allocate) {
// It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
// though (contain the result).
__ mov(r2, Operand(scope_depth));
__ ldr(r3, MemOperand(r2));
__ sub(r3, r3, Operand(1));
__ str(r3, MemOperand(r2));
}
// check for failure result
Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
// Lower 2 bits of r2 are 0 iff r0 has failure tag.
__ add(r2, r0, Operand(1));
__ tst(r2, Operand(kFailureTagMask));
__ b(eq, &failure_returned);
// Exit C frame and return.
// r0:r1: result
// sp: stack pointer
// fp: frame pointer
__ LeaveExitFrame(mode_);
// check if we should retry or throw exception
Label retry;
__ bind(&failure_returned);
ASSERT(Failure::RETRY_AFTER_GC == 0);
__ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ b(eq, &retry);
// Special handling of out of memory exceptions.
Failure* out_of_memory = Failure::OutOfMemoryException();
__ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
__ b(eq, throw_out_of_memory_exception);
// Retrieve the pending exception and clear the variable.
__ mov(ip, Operand(ExternalReference::the_hole_value_location()));
__ ldr(r3, MemOperand(ip));
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
__ ldr(r0, MemOperand(ip));
__ str(r3, MemOperand(ip));
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ cmp(r0, Operand(Factory::termination_exception()));
__ b(eq, throw_termination_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
__ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
}
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function
// r0: number of arguments including receiver
// r1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
// Result returned in r0 or r0+r1 by default.
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
// Enter the exit frame that transitions from JavaScript to C++.
__ EnterExitFrame(mode_);
// r4: number of arguments (C callee-saved)
// r5: pointer to builtin function (C callee-saved)
// r6: pointer to first argument (C callee-saved)
Label throw_normal_exception;
Label throw_termination_exception;
Label throw_out_of_memory_exception;
// Call into the runtime system.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
false,
false,
-kPointerSize);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
false,
0);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
true,
kPointerSize);
__ bind(&throw_out_of_memory_exception);
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
__ bind(&throw_termination_exception);
GenerateThrowUncatchable(masm, TERMINATION);
__ bind(&throw_normal_exception);
GenerateThrowTOS(masm);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// [sp+0]: argv
Label invoke, exit;
// Called from C, so do not pop argc and args on exit (preserve sp)
// No need to save register-passed args
// Save callee-saved registers (incl. cp and fp), sp, and lr
__ stm(db_w, sp, kCalleeSaved | lr.bit());
// Get address of argv, see stm above.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
__ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv
// Push a frame with special values setup to mark it as an entry frame.
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
__ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
__ mov(r7, Operand(Smi::FromInt(marker)));
__ mov(r6, Operand(Smi::FromInt(marker)));
__ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
__ ldr(r5, MemOperand(r5));
__ Push(r8, r7, r6, r5);
// Setup frame pointer for the frame to be pushed.
__ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Call a faked try-block that does the invoke.
__ bl(&invoke);
// Caught exception: Store result (exception) in the pending
// exception field in the JSEnv and return a failure sentinel.
// Coming in here the fp will be invalid because the PushTryHandler below
// sets it to 0 to signal the existence of the JSEntry frame.
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
__ str(r0, MemOperand(ip));
__ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
__ b(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
// Must preserve r0-r4, r5-r7 are available.
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bl(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Clear any pending exceptions.
__ mov(ip, Operand(ExternalReference::the_hole_value_location()));
__ ldr(r5, MemOperand(ip));
__ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
__ str(r5, MemOperand(ip));
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
if (is_construct) {
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
__ mov(ip, Operand(construct_entry));
} else {
ExternalReference entry(Builtins::JSEntryTrampoline);
__ mov(ip, Operand(entry));
}
__ ldr(ip, MemOperand(ip)); // deref address
// Branch and link to JSEntryTrampoline. We don't use the double underscore
// macro for the add instruction because we don't want the coverage tool
// inserting instructions here after we read the pc.
__ mov(lr, Operand(pc));
masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
// Unlink this frame from the handler chain. When reading the
// address of the next handler, there is no need to use the address
// displacement since the current stack pointer (sp) points directly
// to the stack handler.
__ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
__ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
__ str(r3, MemOperand(ip));
// No need to restore registers
__ add(sp, sp, Operand(StackHandlerConstants::kSize));
__ bind(&exit); // r0 holds result
// Restore the top frame descriptors from the stack.
__ pop(r3);
__ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
__ str(r3, MemOperand(ip));
// Reset the stack to the callee saved registers.
__ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Restore callee-saved registers and return.
#ifdef DEBUG
if (FLAG_debug_code) {
__ mov(lr, Operand(pc));
}
#endif
__ ldm(ia_w, sp, kCalleeSaved | pc.bit());
}
// This stub performs an instanceof, calling the builtin function if
// necessary. Uses r1 for the object, r0 for the function that it may
// be an instance of (these are fetched from the stack).
void InstanceofStub::Generate(MacroAssembler* masm) {
// Get the object - slow case for smis (we may need to throw an exception
// depending on the rhs).
Label slow, loop, is_instance, is_not_instance;
__ ldr(r0, MemOperand(sp, 1 * kPointerSize));
__ BranchOnSmi(r0, &slow);
// Check that the left hand is a JS object and put map in r3.
__ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE);
__ b(lt, &slow);
__ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
__ b(gt, &slow);
// Get the prototype of the function (r4 is result, r2 is scratch).
__ ldr(r1, MemOperand(sp, 0));
// r1 is function, r3 is map.
// Look up the function and the map in the instanceof cache.
Label miss;
__ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex);
__ cmp(r1, ip);
__ b(ne, &miss);
__ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex);
__ cmp(r3, ip);
__ b(ne, &miss);
__ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
__ pop();
__ pop();
__ mov(pc, Operand(lr));
__ bind(&miss);
__ TryGetFunctionPrototype(r1, r4, r2, &slow);
// Check that the function prototype is a JS object.
__ BranchOnSmi(r4, &slow);
__ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE);
__ b(lt, &slow);
__ cmp(r5, Operand(LAST_JS_OBJECT_TYPE));
__ b(gt, &slow);
__ StoreRoot(r1, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(r3, Heap::kInstanceofCacheMapRootIndex);
// Register mapping: r3 is object map and r4 is function prototype.
// Get prototype of object into r2.
__ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset));
// Loop through the prototype chain looking for the function prototype.
__ bind(&loop);
__ cmp(r2, Operand(r4));
__ b(eq, &is_instance);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r2, ip);
__ b(eq, &is_not_instance);
__ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
__ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset));
__ jmp(&loop);
__ bind(&is_instance);
__ mov(r0, Operand(Smi::FromInt(0)));
__ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
__ pop();
__ pop();
__ mov(pc, Operand(lr)); // Return.
__ bind(&is_not_instance);
__ mov(r0, Operand(Smi::FromInt(1)));
__ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
__ pop();
__ pop();
__ mov(pc, Operand(lr)); // Return.
// Slow-case. Tail call builtin.
__ bind(&slow);
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS);
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The displacement is the offset of the last parameter (if any)
// relative to the frame pointer.
static const int kDisplacement =
StandardFrameConstants::kCallerSPOffset - kPointerSize;
// Check that the key is a smi.
Label slow;
__ BranchOnNotSmi(r1, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &adaptor);
// Check index against formal parameters count limit passed in
// through register r0. Use unsigned comparison to get negative
// check for free.
__ cmp(r1, r0);
__ b(cs, &slow);
// Read the argument from the stack and return it.
__ sub(r3, r0, r1);
__ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(r0, MemOperand(r3, kDisplacement));
__ Jump(lr);
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmp(r1, r0);
__ b(cs, &slow);
// Read the argument from the adaptor frame and return it.
__ sub(r3, r0, r1);
__ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(r0, MemOperand(r3, kDisplacement));
__ Jump(lr);
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ push(r1);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
// sp[0] : number of parameters
// sp[4] : receiver displacement
// sp[8] : function
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
__ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ b(eq, &adaptor_frame);
// Get the length from the frame.
__ ldr(r1, MemOperand(sp, 0));
__ b(&try_allocate);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
__ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ str(r1, MemOperand(sp, 0));
__ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
__ str(r3, MemOperand(sp, 1 * kPointerSize));
// Try the new space allocation. Start out with computing the size
// of the arguments object and the elements array in words.
Label add_arguments_object;
__ bind(&try_allocate);
__ cmp(r1, Operand(0));
__ b(eq, &add_arguments_object);
__ mov(r1, Operand(r1, LSR, kSmiTagSize));
__ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
__ bind(&add_arguments_object);
__ add(r1, r1, Operand(Heap::kArgumentsObjectSize / kPointerSize));
// Do the allocation of both objects in one go.
__ AllocateInNewSpace(
r1,
r0,
r2,
r3,
&runtime,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// Get the arguments boilerplate from the current (global) context.
int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
__ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
__ ldr(r4, MemOperand(r4, offset));
// Copy the JS object part.
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
__ ldr(r3, FieldMemOperand(r4, i));
__ str(r3, FieldMemOperand(r0, i));
}
// Setup the callee in-object property.
ASSERT(Heap::arguments_callee_index == 0);
__ ldr(r3, MemOperand(sp, 2 * kPointerSize));
__ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize));
// Get the length (smi tagged) and set that as an in-object property too.
ASSERT(Heap::arguments_length_index == 1);
__ ldr(r1, MemOperand(sp, 0 * kPointerSize));
__ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize));
// If there are no actual arguments, we're done.
Label done;
__ cmp(r1, Operand(0));
__ b(eq, &done);
// Get the parameters pointer from the stack.
__ ldr(r2, MemOperand(sp, 1 * kPointerSize));
// Setup the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
__ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
__ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
__ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
__ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
__ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
__ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop.
// Copy the fixed array slots.
Label loop;
// Setup r4 to point to the first array slot.
__ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
// Pre-decrement r2 with kPointerSize on each iteration.
// Pre-decrement in order to skip receiver.
__ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
// Post-increment r4 with kPointerSize on each iteration.
__ str(r3, MemOperand(r4, kPointerSize, PostIndex));
__ sub(r1, r1, Operand(1));
__ cmp(r1, Operand(0));
__ b(ne, &loop);
// Return and remove the on-stack parameters.
__ bind(&done);
__ add(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#else // V8_INTERPRETED_REGEXP
if (!FLAG_regexp_entry_native) {
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
return;
}
// Stack frame on entry.
// sp[0]: last_match_info (expected JSArray)
// sp[4]: previous index
// sp[8]: subject string
// sp[12]: JSRegExp object
static const int kLastMatchInfoOffset = 0 * kPointerSize;
static const int kPreviousIndexOffset = 1 * kPointerSize;
static const int kSubjectOffset = 2 * kPointerSize;
static const int kJSRegExpOffset = 3 * kPointerSize;
Label runtime, invoke_regexp;
// Allocation of registers for this function. These are in callee save
// registers and will be preserved by the call to the native RegExp code, as
// this code is called using the normal C calling convention. When calling
// directly from generated code the native RegExp code will not do a GC and
// therefore the content of these registers are safe to use after the call.
Register subject = r4;
Register regexp_data = r5;
Register last_match_info_elements = r6;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address();
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size();
__ mov(r0, Operand(address_of_regexp_stack_memory_size));
__ ldr(r0, MemOperand(r0, 0));
__ tst(r0, Operand(r0));
__ b(eq, &runtime);
// Check that the first argument is a JSRegExp object.
__ ldr(r0, MemOperand(sp, kJSRegExpOffset));
ASSERT_EQ(0, kSmiTag);
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &runtime);
__ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
__ b(ne, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
__ tst(regexp_data, Operand(kSmiTagMask));
__ Check(nz, "Unexpected type for RegExp data, FixedArray expected");
__ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
__ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
}
// regexp_data: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
__ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
__ b(ne, &runtime);
// regexp_data: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ ldr(r2,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2. This
// uses the asumption that smis are 2 * their untagged value.
ASSERT_EQ(0, kSmiTag);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
__ add(r2, r2, Operand(2)); // r2 was a smi.
// Check that the static offsets vector buffer is large enough.
__ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
__ b(hi, &runtime);
// r2: Number of capture registers
// regexp_data: RegExp data (FixedArray)
// Check that the second argument is a string.
__ ldr(subject, MemOperand(sp, kSubjectOffset));
__ tst(subject, Operand(kSmiTagMask));
__ b(eq, &runtime);
Condition is_string = masm->IsObjectStringType(subject, r0);
__ b(NegateCondition(is_string), &runtime);
// Get the length of the string to r3.
__ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
// r2: Number of capture registers
// r3: Length of subject string as a smi
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Check that the third argument is a positive smi less than the subject
// string length. A negative value will be greater (unsigned comparison).
__ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, &runtime);
__ cmp(r3, Operand(r0));
__ b(ls, &runtime);
// r2: Number of capture registers
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Check that the fourth object is a JSArray object.
__ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &runtime);
__ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
__ b(ne, &runtime);
// Check that the JSArray is in fast case.
__ ldr(last_match_info_elements,
FieldMemOperand(r0, JSArray::kElementsOffset));
__ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(r0, ip);
__ b(ne, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information.
__ ldr(r0,
FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
__ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
__ cmp(r2, Operand(r0, ASR, kSmiTagSize));
__ b(gt, &runtime);
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Check the representation and encoding of the subject string.
Label seq_string;
const int kStringRepresentationEncodingMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
__ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
__ and_(r1, r0, Operand(kStringRepresentationEncodingMask));
// First check for sequential string.
ASSERT_EQ(0, kStringTag);
ASSERT_EQ(0, kSeqStringTag);
__ tst(r1, Operand(kIsNotStringMask | kStringRepresentationMask));
__ b(eq, &seq_string);
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Check for flat cons string.
// A flat cons string is a cons string where the second part is the empty
// string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string.
__ and_(r0, r0, Operand(kStringRepresentationMask));
__ cmp(r0, Operand(kConsStringTag));
__ b(ne, &runtime);
__ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
__ LoadRoot(r1, Heap::kEmptyStringRootIndex);
__ cmp(r0, r1);
__ b(ne, &runtime);
__ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
__ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
ASSERT_EQ(0, kSeqStringTag);
__ tst(r0, Operand(kStringRepresentationMask));
__ b(nz, &runtime);
__ and_(r1, r0, Operand(kStringRepresentationEncodingMask));
__ bind(&seq_string);
// r1: suject string type & kStringRepresentationEncodingMask
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Check that the irregexp code has been generated for an ascii string. If
// it has, the field contains a code object otherwise it contains the hole.
#ifdef DEBUG
const int kSeqAsciiString = kStringTag | kSeqStringTag | kAsciiStringTag;
const int kSeqTwoByteString = kStringTag | kSeqStringTag | kTwoByteStringTag;
CHECK_EQ(4, kSeqAsciiString);
CHECK_EQ(0, kSeqTwoByteString);
#endif
// Find the code object based on the assumptions above.
__ mov(r3, Operand(r1, ASR, 2), SetCC);
__ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
__ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// the hole.
__ CompareObjectType(r7, r0, r0, CODE_TYPE);
__ b(ne, &runtime);
// r3: encoding of subject string (1 if ascii, 0 if two_byte);
// r7: code
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// Load used arguments before starting to push arguments for call to native
// RegExp code to avoid handling changing stack height.
__ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
__ mov(r1, Operand(r1, ASR, kSmiTagSize));
// r1: previous index
// r3: encoding of subject string (1 if ascii, 0 if two_byte);
// r7: code
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(&Counters::regexp_entry_native, 1, r0, r2);
static const int kRegExpExecuteArguments = 7;
__ push(lr);
__ PrepareCallCFunction(kRegExpExecuteArguments, r0);
// Argument 7 (sp[8]): Indicate that this is a direct call from JavaScript.
__ mov(r0, Operand(1));
__ str(r0, MemOperand(sp, 2 * kPointerSize));
// Argument 6 (sp[4]): Start (high end) of backtracking stack memory area.
__ mov(r0, Operand(address_of_regexp_stack_memory_address));
__ ldr(r0, MemOperand(r0, 0));
__ mov(r2, Operand(address_of_regexp_stack_memory_size));
__ ldr(r2, MemOperand(r2, 0));
__ add(r0, r0, Operand(r2));
__ str(r0, MemOperand(sp, 1 * kPointerSize));
// Argument 5 (sp[0]): static offsets vector buffer.
__ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector()));
__ str(r0, MemOperand(sp, 0 * kPointerSize));
// For arguments 4 and 3 get string length, calculate start of string data and
// calculate the shift of the index (0 for ASCII and 1 for two byte).
__ ldr(r0, FieldMemOperand(subject, String::kLengthOffset));
__ mov(r0, Operand(r0, ASR, kSmiTagSize));
ASSERT_EQ(SeqAsciiString::kHeaderSize, SeqTwoByteString::kHeaderSize);
__ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ eor(r3, r3, Operand(1));
// Argument 4 (r3): End of string data
// Argument 3 (r2): Start of string data
__ add(r2, r9, Operand(r1, LSL, r3));
__ add(r3, r9, Operand(r0, LSL, r3));
// Argument 2 (r1): Previous index.
// Already there
// Argument 1 (r0): Subject string.
__ mov(r0, subject);
// Locate the code entry and call it.
__ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
__ CallCFunction(r7, kRegExpExecuteArguments);
__ pop(lr);
// r0: result
// subject: subject string (callee saved)
// regexp_data: RegExp data (callee saved)
// last_match_info_elements: Last match info elements (callee saved)
// Check the result.
Label success;
__ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
__ b(eq, &success);
Label failure;
__ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
__ b(eq, &failure);
__ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
// If not exception it can only be retry. Handle that in the runtime system.
__ b(ne, &runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
__ mov(r0, Operand(ExternalReference::the_hole_value_location()));
__ ldr(r0, MemOperand(r0, 0));
__ mov(r1, Operand(ExternalReference(Top::k_pending_exception_address)));
__ ldr(r1, MemOperand(r1, 0));
__ cmp(r0, r1);
__ b(eq, &runtime);
__ bind(&failure);
// For failure and exception return null.
__ mov(r0, Operand(Factory::null_value()));
__ add(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Process the result from the native regexp code.
__ bind(&success);
__ ldr(r1,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
ASSERT_EQ(0, kSmiTag);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
__ add(r1, r1, Operand(2)); // r1 was a smi.
// r1: number of capture registers
// r4: subject string
// Store the capture count.
__ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
__ str(r2, FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastCaptureCountOffset));
// Store last subject and last input.
__ mov(r3, last_match_info_elements); // Moved up to reduce latency.
__ mov(r2, Operand(RegExpImpl::kLastSubjectOffset)); // Ditto.
__ str(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastSubjectOffset));
__ RecordWrite(r3, r2, r7);
__ str(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastInputOffset));
__ mov(r3, last_match_info_elements);
__ mov(r2, Operand(RegExpImpl::kLastInputOffset));
__ RecordWrite(r3, r2, r7);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector();
__ mov(r2, Operand(address_of_static_offsets_vector));
// r1: number of capture registers
// r2: offsets vector
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wraping after zero.
__ add(r0,
last_match_info_elements,
Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
__ bind(&next_capture);
__ sub(r1, r1, Operand(1), SetCC);
__ b(mi, &done);
// Read the value from the static offsets vector buffer.
__ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
// Store the smi value in the last match info.
__ mov(r3, Operand(r3, LSL, kSmiTagSize));
__ str(r3, MemOperand(r0, kPointerSize, PostIndex));
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
__ add(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#endif // V8_INTERPRETED_REGEXP
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
// If the receiver might be a value (string, number or boolean) check for this
// and box it if it is.
if (ReceiverMightBeValue()) {
// Get the receiver from the stack.
// function, receiver [, arguments]
Label receiver_is_value, receiver_is_js_object;
__ ldr(r1, MemOperand(sp, argc_ * kPointerSize));
// Check if receiver is a smi (which is a number value).
__ BranchOnSmi(r1, &receiver_is_value);
// Check if the receiver is a valid JS object.
__ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE);
__ b(ge, &receiver_is_js_object);
// Call the runtime to box the value.
__ bind(&receiver_is_value);
__ EnterInternalFrame();
__ push(r1);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
__ LeaveInternalFrame();
__ str(r0, MemOperand(sp, argc_ * kPointerSize));
__ bind(&receiver_is_js_object);
}
// Get the function to call from the stack.
// function, receiver [, arguments]
__ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
// Check that the function is really a JavaScript function.
// r1: pushed function (to be verified)
__ BranchOnSmi(r1, &slow);
// Get the map of the function object.
__ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
__ b(ne, &slow);
// Fast-case: Invoke the function now.
// r1: pushed function
ParameterCount actual(argc_);
__ InvokeFunction(r1, actual, JUMP_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ str(r1, MemOperand(sp, argc_ * kPointerSize));
__ mov(r0, Operand(argc_)); // Setup the number of arguments.
__ mov(r2, Operand(0));
__ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
__ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)),
RelocInfo::CODE_TARGET);
}
// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
const char* CompareStub::GetName() {
if (name_ != NULL) return name_;
const int kMaxNameLength = 100;
name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
if (name_ == NULL) return "OOM";
const char* cc_name;
switch (cc_) {
case lt: cc_name = "LT"; break;
case gt: cc_name = "GT"; break;
case le: cc_name = "LE"; break;
case ge: cc_name = "GE"; break;
case eq: cc_name = "EQ"; break;
case ne: cc_name = "NE"; break;
default: cc_name = "UnknownCondition"; break;
}
const char* strict_name = "";
if (strict_ && (cc_ == eq || cc_ == ne)) {
strict_name = "_STRICT";
}
const char* never_nan_nan_name = "";
if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) {
never_nan_nan_name = "_NO_NAN";
}
const char* include_number_compare_name = "";
if (!include_number_compare_) {
include_number_compare_name = "_NO_NUMBER";
}
OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
"CompareStub_%s%s%s%s",
cc_name,
strict_name,
never_nan_nan_name,
include_number_compare_name);
return name_;
}
int CompareStub::MinorKey() {
// Encode the three parameters in a unique 16 bit value. To avoid duplicate
// stubs the never NaN NaN condition is only taken into account if the
// condition is equals.
ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 13));
return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
| StrictField::encode(strict_)
| NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
| IncludeNumberCompareField::encode(include_number_compare_);
}
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
Label flat_string;
Label ascii_string;
Label got_char_code;
// If the receiver is a smi trigger the non-string case.
__ BranchOnSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ tst(result_, Operand(kIsNotStringMask));
__ b(ne, receiver_not_string_);
// If the index is non-smi trigger the non-smi case.
__ BranchOnNotSmi(index_, &index_not_smi_);
// Put smi-tagged index into scratch register.
__ mov(scratch_, index_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
__ cmp(ip, Operand(scratch_));
__ b(ls, index_out_of_range_);
// We need special handling for non-flat strings.
ASSERT(kSeqStringTag == 0);
__ tst(result_, Operand(kStringRepresentationMask));
__ b(eq, &flat_string);
// Handle non-flat strings.
__ tst(result_, Operand(kIsConsStringMask));
__ b(eq, &call_runtime_);
// ConsString.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
__ LoadRoot(ip, Heap::kEmptyStringRootIndex);
__ cmp(result_, Operand(ip));
__ b(ne, &call_runtime_);
// Get the first of the two strings and load its instance type.
__ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
__ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the first cons component is also non-flat, then go to runtime.
ASSERT(kSeqStringTag == 0);
__ tst(result_, Operand(kStringRepresentationMask));
__ b(nz, &call_runtime_);
// Check for 1-byte or 2-byte string.
__ bind(&flat_string);
ASSERT(kAsciiStringTag != 0);
__ tst(result_, Operand(kStringEncodingMask));
__ b(nz, &ascii_string);
// 2-byte string.
// Load the 2-byte character code into the result register. We can
// add without shifting since the smi tag size is the log2 of the
// number of bytes in a two-byte character.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
__ add(scratch_, object_, Operand(scratch_));
__ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
__ jmp(&got_char_code);
// ASCII string.
// Load the byte into the result register.
__ bind(&ascii_string);
__ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize));
__ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
__ bind(&got_char_code);
__ mov(result_, Operand(result_, LSL, kSmiTagSize));
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharCodeAt slow case");
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
scratch_,
Heap::kHeapNumberMapRootIndex,
index_not_number_,
true);
call_helper.BeforeCall(masm);
__ Push(object_, index_);
__ push(index_); // Consumed by runtime conversion function.
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
} else {
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
// NumberToSmi discards numbers that are not exact integers.
__ CallRuntime(Runtime::kNumberToSmi, 1);
}
if (!scratch_.is(r0)) {
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ mov(scratch_, r0);
}
__ pop(index_);
__ pop(object_);
// Reload the instance type.
__ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ BranchOnNotSmi(scratch_, index_out_of_range_);
// Otherwise, return to the fast path.
__ jmp(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ Push(object_, index_);
__ CallRuntime(Runtime::kStringCharCodeAt, 2);
if (!result_.is(r0)) {
__ mov(result_, r0);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharCodeAt slow case");
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
ASSERT(kSmiTag == 0);
ASSERT(kSmiShiftSize == 0);
ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
__ tst(code_,
Operand(kSmiTagMask |
((~String::kMaxAsciiCharCode) << kSmiTagSize)));
__ b(nz, &slow_case_);
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
// At this point code register contains smi tagged ascii char code.
ASSERT(kSmiTag == 0);
__ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(result_, Operand(ip));
__ b(eq, &slow_case_);
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharFromCode slow case");
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
if (!result_.is(r0)) {
__ mov(result_, r0);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharFromCode slow case");
}
// -------------------------------------------------------------------------
// StringCharAtGenerator
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
char_code_at_generator_.GenerateFast(masm);
char_from_code_generator_.GenerateFast(masm);
}
void StringCharAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
char_code_at_generator_.GenerateSlow(masm, call_helper);
char_from_code_generator_.GenerateSlow(masm, call_helper);
}
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii) {
Label loop;
Label done;
// This loop just copies one character at a time, as it is only used for very
// short strings.
if (!ascii) {
__ add(count, count, Operand(count), SetCC);
} else {
__ cmp(count, Operand(0));
}
__ b(eq, &done);
__ bind(&loop);
__ ldrb(scratch, MemOperand(src, 1, PostIndex));
// Perform sub between load and dependent store to get the load time to
// complete.
__ sub(count, count, Operand(1), SetCC);
__ strb(scratch, MemOperand(dest, 1, PostIndex));
// last iteration.
__ b(gt, &loop);
__ bind(&done);
}
enum CopyCharactersFlags {
COPY_ASCII = 1,
DEST_ALWAYS_ALIGNED = 2
};
void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
int flags) {
bool ascii = (flags & COPY_ASCII) != 0;
bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
if (dest_always_aligned && FLAG_debug_code) {
// Check that destination is actually word aligned if the flag says
// that it is.
__ tst(dest, Operand(kPointerAlignmentMask));
__ Check(eq, "Destination of copy not aligned.");
}
const int kReadAlignment = 4;
const int kReadAlignmentMask = kReadAlignment - 1;
// Ensure that reading an entire aligned word containing the last character
// of a string will not read outside the allocated area (because we pad up
// to kObjectAlignment).
ASSERT(kObjectAlignment >= kReadAlignment);
// Assumes word reads and writes are little endian.
// Nothing to do for zero characters.
Label done;
if (!ascii) {
__ add(count, count, Operand(count), SetCC);
} else {
__ cmp(count, Operand(0));
}
__ b(eq, &done);
// Assume that you cannot read (or write) unaligned.
Label byte_loop;
// Must copy at least eight bytes, otherwise just do it one byte at a time.
__ cmp(count, Operand(8));
__ add(count, dest, Operand(count));
Register limit = count; // Read until src equals this.
__ b(lt, &byte_loop);
if (!dest_always_aligned) {
// Align dest by byte copying. Copies between zero and three bytes.
__ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
Label dest_aligned;
__ b(eq, &dest_aligned);
__ cmp(scratch4, Operand(2));
__ ldrb(scratch1, MemOperand(src, 1, PostIndex));
__ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
__ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
__ strb(scratch1, MemOperand(dest, 1, PostIndex));
__ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
__ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
__ bind(&dest_aligned);
}
Label simple_loop;
__ sub(scratch4, dest, Operand(src));
__ and_(scratch4, scratch4, Operand(0x03), SetCC);
__ b(eq, &simple_loop);
// Shift register is number of bits in a source word that
// must be combined with bits in the next source word in order
// to create a destination word.
// Complex loop for src/dst that are not aligned the same way.
{
Label loop;
__ mov(scratch4, Operand(scratch4, LSL, 3));
Register left_shift = scratch4;
__ and_(src, src, Operand(~3)); // Round down to load previous word.
__ ldr(scratch1, MemOperand(src, 4, PostIndex));
// Store the "shift" most significant bits of scratch in the least
// signficant bits (i.e., shift down by (32-shift)).
__ rsb(scratch2, left_shift, Operand(32));
Register right_shift = scratch2;
__ mov(scratch1, Operand(scratch1, LSR, right_shift));
__ bind(&loop);
__ ldr(scratch3, MemOperand(src, 4, PostIndex));
__ sub(scratch5, limit, Operand(dest));
__ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
__ str(scratch1, MemOperand(dest, 4, PostIndex));
__ mov(scratch1, Operand(scratch3, LSR, right_shift));
// Loop if four or more bytes left to copy.
// Compare to eight, because we did the subtract before increasing dst.
__ sub(scratch5, scratch5, Operand(8), SetCC);
__ b(ge, &loop);
}
// There is now between zero and three bytes left to copy (negative that
// number is in scratch5), and between one and three bytes already read into
// scratch1 (eight times that number in scratch4). We may have read past
// the end of the string, but because objects are aligned, we have not read
// past the end of the object.
// Find the minimum of remaining characters to move and preloaded characters
// and write those as bytes.
__ add(scratch5, scratch5, Operand(4), SetCC);
__ b(eq, &done);
__ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
// Move minimum of bytes read and bytes left to copy to scratch4.
__ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
// Between one and three (value in scratch5) characters already read into
// scratch ready to write.
__ cmp(scratch5, Operand(2));
__ strb(scratch1, MemOperand(dest, 1, PostIndex));
__ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
__ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
__ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
__ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
// Copy any remaining bytes.
__ b(&byte_loop);
// Simple loop.
// Copy words from src to dst, until less than four bytes left.
// Both src and dest are word aligned.
__ bind(&simple_loop);
{
Label loop;
__ bind(&loop);
__ ldr(scratch1, MemOperand(src, 4, PostIndex));
__ sub(scratch3, limit, Operand(dest));
__ str(scratch1, MemOperand(dest, 4, PostIndex));
// Compare to 8, not 4, because we do the substraction before increasing
// dest.
__ cmp(scratch3, Operand(8));
__ b(ge, &loop);
}
// Copy bytes from src to dst until dst hits limit.
__ bind(&byte_loop);
__ cmp(dest, Operand(limit));
__ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
__ b(ge, &done);
__ strb(scratch1, MemOperand(dest, 1, PostIndex));
__ b(&byte_loop);
__ bind(&done);
}
void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
Label* not_found) {
// Register scratch3 is the general scratch register in this function.
Register scratch = scratch3;
// Make sure that both characters are not digits as such strings has a
// different hash algorithm. Don't try to look for these in the symbol table.
Label not_array_index;
__ sub(scratch, c1, Operand(static_cast<int>('0')));
__ cmp(scratch, Operand(static_cast<int>('9' - '0')));
__ b(hi, &not_array_index);
__ sub(scratch, c2, Operand(static_cast<int>('0')));
__ cmp(scratch, Operand(static_cast<int>('9' - '0')));
// If check failed combine both characters into single halfword.
// This is required by the contract of the method: code at the
// not_found branch expects this combination in c1 register
__ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
__ b(ls, not_found);
__ bind(&not_array_index);
// Calculate the two character string hash.
Register hash = scratch1;
StringHelper::GenerateHashInit(masm, hash, c1);
StringHelper::GenerateHashAddCharacter(masm, hash, c2);
StringHelper::GenerateHashGetHash(masm, hash);
// Collect the two characters in a register.
Register chars = c1;
__ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string.
// Load symbol table
// Load address of first element of the symbol table.
Register symbol_table = c2;
__ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
// Load undefined value
Register undefined = scratch4;
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
// Calculate capacity mask from the symbol table capacity.
Register mask = scratch2;
__ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
__ mov(mask, Operand(mask, ASR, 1));
__ sub(mask, mask, Operand(1));
// Calculate untagged address of the first element of the symbol table.
Register first_symbol_table_element = symbol_table;
__ add(first_symbol_table_element, symbol_table,
Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
// Registers
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string
// mask: capacity mask
// first_symbol_table_element: address of the first element of
// the symbol table
// scratch: -
// Perform a number of probes in the symbol table.
static const int kProbes = 4;
Label found_in_symbol_table;
Label next_probe[kProbes];
for (int i = 0; i < kProbes; i++) {
Register candidate = scratch5; // Scratch register contains candidate.
// Calculate entry in symbol table.
if (i > 0) {
__ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
} else {
__ mov(candidate, hash);
}
__ and_(candidate, candidate, Operand(mask));
// Load the entry from the symble table.
ASSERT_EQ(1, SymbolTable::kEntrySize);
__ ldr(candidate,
MemOperand(first_symbol_table_element,
candidate,
LSL,
kPointerSizeLog2));
// If entry is undefined no string with this hash can be found.
__ cmp(candidate, undefined);
__ b(eq, not_found);
// If length is not 2 the string is not a candidate.
__ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
__ cmp(scratch, Operand(Smi::FromInt(2)));
__ b(ne, &next_probe[i]);
// Check that the candidate is a non-external ascii string.
__ ldr(scratch, FieldMemOperand(candidate, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch,
&next_probe[i]);
// Check if the two characters match.
// Assumes that word load is little endian.
__ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
__ cmp(chars, scratch);
__ b(eq, &found_in_symbol_table);
__ bind(&next_probe[i]);
}
// No matching 2 character string found by probing.
__ jmp(not_found);
// Scratch register contains result when we fall through to here.
Register result = scratch;
__ bind(&found_in_symbol_table);
__ Move(r0, result);
}
void StringHelper::GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character) {
// hash = character + (character << 10);
__ add(hash, character, Operand(character, LSL, 10));
// hash ^= hash >> 6;
__ eor(hash, hash, Operand(hash, ASR, 6));
}
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character) {
// hash += character;
__ add(hash, hash, Operand(character));
// hash += hash << 10;
__ add(hash, hash, Operand(hash, LSL, 10));
// hash ^= hash >> 6;
__ eor(hash, hash, Operand(hash, ASR, 6));
}
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
Register hash) {
// hash += hash << 3;
__ add(hash, hash, Operand(hash, LSL, 3));
// hash ^= hash >> 11;
__ eor(hash, hash, Operand(hash, ASR, 11));
// hash += hash << 15;
__ add(hash, hash, Operand(hash, LSL, 15), SetCC);
// if (hash == 0) hash = 27;
__ mov(hash, Operand(27), LeaveCC, nz);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// lr: return address
// sp[0]: to
// sp[4]: from
// sp[8]: string
// This stub is called from the native-call %_SubString(...), so
// nothing can be assumed about the arguments. It is tested that:
// "string" is a sequential string,
// both "from" and "to" are smis, and
// 0 <= from <= to <= string.length.
// If any of these assumptions fail, we call the runtime system.
static const int kToOffset = 0 * kPointerSize;
static const int kFromOffset = 1 * kPointerSize;
static const int kStringOffset = 2 * kPointerSize;
// Check bounds and smi-ness.
__ ldr(r7, MemOperand(sp, kToOffset));
__ ldr(r6, MemOperand(sp, kFromOffset));
ASSERT_EQ(0, kSmiTag);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
// I.e., arithmetic shift right by one un-smi-tags.
__ mov(r2, Operand(r7, ASR, 1), SetCC);
__ mov(r3, Operand(r6, ASR, 1), SetCC, cc);
// If either r2 or r6 had the smi tag bit set, then carry is set now.
__ b(cs, &runtime); // Either "from" or "to" is not a smi.
__ b(mi, &runtime); // From is negative.
__ sub(r2, r2, Operand(r3), SetCC);
__ b(mi, &runtime); // Fail if from > to.
// Special handling of sub-strings of length 1 and 2. One character strings
// are handled in the runtime system (looked up in the single character
// cache). Two character strings are looked for in the symbol cache.
__ cmp(r2, Operand(2));
__ b(lt, &runtime);
// r2: length
// r3: from index (untaged smi)
// r6: from (smi)
// r7: to (smi)
// Make sure first argument is a sequential (or flat) string.
__ ldr(r5, MemOperand(sp, kStringOffset));
ASSERT_EQ(0, kSmiTag);
__ tst(r5, Operand(kSmiTagMask));
__ b(eq, &runtime);
Condition is_string = masm->IsObjectStringType(r5, r1);
__ b(NegateCondition(is_string), &runtime);
// r1: instance type
// r2: length
// r3: from index (untaged smi)
// r5: string
// r6: from (smi)
// r7: to (smi)
Label seq_string;
__ and_(r4, r1, Operand(kStringRepresentationMask));
ASSERT(kSeqStringTag < kConsStringTag);
ASSERT(kExternalStringTag > kConsStringTag);
__ cmp(r4, Operand(kConsStringTag));
__ b(gt, &runtime); // External strings go to runtime.
__ b(lt, &seq_string); // Sequential strings are handled directly.
// Cons string. Try to recurse (once) on the first substring.
// (This adds a little more generality than necessary to handle flattened
// cons strings, but not much).
__ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset));
__ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ tst(r1, Operand(kStringRepresentationMask));
ASSERT_EQ(0, kSeqStringTag);
__ b(ne, &runtime); // Cons and External strings go to runtime.
// Definitly a sequential string.
__ bind(&seq_string);
// r1: instance type.
// r2: length
// r3: from index (untaged smi)
// r5: string
// r6: from (smi)
// r7: to (smi)
__ ldr(r4, FieldMemOperand(r5, String::kLengthOffset));
__ cmp(r4, Operand(r7));
__ b(lt, &runtime); // Fail if to > length.
// r1: instance type.
// r2: result string length.
// r3: from index (untaged smi)
// r5: string.
// r6: from offset (smi)
// Check for flat ascii string.
Label non_ascii_flat;
__ tst(r1, Operand(kStringEncodingMask));
ASSERT_EQ(0, kTwoByteStringTag);
__ b(eq, &non_ascii_flat);
Label result_longer_than_two;
__ cmp(r2, Operand(2));
__ b(gt, &result_longer_than_two);
// Sub string of length 2 requested.
// Get the two characters forming the sub string.
__ add(r5, r5, Operand(r3));
__ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize));
__ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1));
// Try to lookup two character string in symbol table.
Label make_two_character_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
__ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
__ add(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// r2: result string length.
// r3: two characters combined into halfword in little endian byte order.
__ bind(&make_two_character_string);
__ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
__ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
__ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
__ add(sp, sp, Operand(3 * kPointerSize));
__ Ret();
__ bind(&result_longer_than_two);
// Allocate the result.
__ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime);
// r0: result string.
// r2: result string length.
// r5: string.
// r6: from offset (smi)
// Locate first character of result.
__ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Locate 'from' character of string.
__ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ add(r5, r5, Operand(r6, ASR, 1));
// r0: result string.
// r1: first character of result string.
// r2: result string length.
// r5: first character of sub string to copy.
ASSERT_EQ(0, SeqAsciiString::kHeaderSize & kObjectAlignmentMask);
StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
COPY_ASCII | DEST_ALWAYS_ALIGNED);
__ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
__ add(sp, sp, Operand(3 * kPointerSize));
__ Ret();
__ bind(&non_ascii_flat);
// r2: result string length.
// r5: string.
// r6: from offset (smi)
// Check for flat two byte string.
// Allocate the result.
__ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime);
// r0: result string.
// r2: result string length.
// r5: string.
// Locate first character of result.
__ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Locate 'from' character of string.
__ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// As "from" is a smi it is 2 times the value which matches the size of a two
// byte character.
__ add(r5, r5, Operand(r6));
// r0: result string.
// r1: first character of result.
// r2: result length.
// r5: first character of string to copy.
ASSERT_EQ(0, SeqTwoByteString::kHeaderSize & kObjectAlignmentMask);
StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
DEST_ALWAYS_ALIGNED);
__ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
__ add(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Just jump to runtime to create the sub string.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kSubString, 3, 1);
}
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
Label compare_lengths;
// Find minimum length and length difference.
__ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
__ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ sub(scratch3, scratch1, Operand(scratch2), SetCC);
Register length_delta = scratch3;
__ mov(scratch1, scratch2, LeaveCC, gt);
Register min_length = scratch1;
ASSERT(kSmiTag == 0);
__ tst(min_length, Operand(min_length));
__ b(eq, &compare_lengths);
// Untag smi.
__ mov(min_length, Operand(min_length, ASR, kSmiTagSize));
// Setup registers so that we only need to increment one register
// in the loop.
__ add(scratch2, min_length,
Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ add(left, left, Operand(scratch2));
__ add(right, right, Operand(scratch2));
// Registers left and right points to the min_length character of strings.
__ rsb(min_length, min_length, Operand(-1));
Register index = min_length;
// Index starts at -min_length.
{
// Compare loop.
Label loop;
__ bind(&loop);
// Compare characters.
__ add(index, index, Operand(1), SetCC);
__ ldrb(scratch2, MemOperand(left, index), ne);
__ ldrb(scratch4, MemOperand(right, index), ne);
// Skip to compare lengths with eq condition true.
__ b(eq, &compare_lengths);
__ cmp(scratch2, scratch4);
__ b(eq, &loop);
// Fallthrough with eq condition false.
}
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use zero length_delta as result.
__ mov(r0, Operand(length_delta), SetCC, eq);
// Fall through to here if characters compare not-equal.
__ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
__ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
__ Ret();
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// sp[0]: right string
// sp[4]: left string
__ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // left
__ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // right
Label not_same;
__ cmp(r0, r1);
__ b(ne, &not_same);
ASSERT_EQ(0, EQUAL);
ASSERT_EQ(0, kSmiTag);
__ mov(r0, Operand(Smi::FromInt(EQUAL)));
__ IncrementCounter(&Counters::string_compare_native, 1, r1, r2);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&not_same);
// Check that both objects are sequential ascii strings.
__ JumpIfNotBothSequentialAsciiStrings(r0, r1, r2, r3, &runtime);
// Compare flat ascii strings natively. Remove arguments from stack first.
__ IncrementCounter(&Counters::string_compare_native, 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
GenerateCompareFlatAsciiStrings(masm, r0, r1, r2, r3, r4, r5);
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
void StringAddStub::Generate(MacroAssembler* masm) {
Label string_add_runtime;
// Stack on entry:
// sp[0]: second argument.
// sp[4]: first argument.
// Load the two arguments.
__ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
__ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
// Make sure that both arguments are strings if not known in advance.
if (string_check_) {
ASSERT_EQ(0, kSmiTag);
__ JumpIfEitherSmi(r0, r1, &string_add_runtime);
// Load instance types.
__ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
ASSERT_EQ(0, kStringTag);
// If either is not a string, go to runtime.
__ tst(r4, Operand(kIsNotStringMask));
__ tst(r5, Operand(kIsNotStringMask), eq);
__ b(ne, &string_add_runtime);
}
// Both arguments are strings.
// r0: first string
// r1: second string
// r4: first string instance type (if string_check_)
// r5: second string instance type (if string_check_)
{
Label strings_not_empty;
// Check if either of the strings are empty. In that case return the other.
__ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
__ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
ASSERT(kSmiTag == 0);
__ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
__ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
ASSERT(kSmiTag == 0);
// Else test if second string is empty.
__ cmp(r3, Operand(Smi::FromInt(0)), ne);
__ b(ne, &strings_not_empty); // If either string was empty, return r0.
__ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&strings_not_empty);
}
__ mov(r2, Operand(r2, ASR, kSmiTagSize));
__ mov(r3, Operand(r3, ASR, kSmiTagSize));
// Both strings are non-empty.
// r0: first string
// r1: second string
// r2: length of first string
// r3: length of second string
// r4: first string instance type (if string_check_)
// r5: second string instance type (if string_check_)
// Look at the length of the result of adding the two strings.
Label string_add_flat_result, longer_than_two;
// Adding two lengths can't overflow.
ASSERT(String::kMaxLength * 2 > String::kMaxLength);
__ add(r6, r2, Operand(r3));
// Use the runtime system when adding two one character strings, as it
// contains optimizations for this specific case using the symbol table.
__ cmp(r6, Operand(2));
__ b(ne, &longer_than_two);
// Check that both strings are non-external ascii strings.
if (!string_check_) {
__ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
}
__ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
&string_add_runtime);
// Get the two characters forming the sub string.
__ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
__ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
// Try to lookup two character string in symbol table. If it is not found
// just allocate a new one.
Label make_two_character_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
__ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&make_two_character_string);
// Resulting string has length 2 and first chars of two strings
// are combined into single halfword in r2 register.
// So we can fill resulting string without two loops by a single
// halfword store instruction (which assumes that processor is
// in a little endian mode)
__ mov(r6, Operand(2));
__ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime);
__ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
__ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&longer_than_two);
// Check if resulting string will be flat.
__ cmp(r6, Operand(String::kMinNonFlatLength));
__ b(lt, &string_add_flat_result);
// Handle exceptionally long strings in the runtime system.
ASSERT((String::kMaxLength & 0x80000000) == 0);
ASSERT(IsPowerOf2(String::kMaxLength + 1));
// kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
__ cmp(r6, Operand(String::kMaxLength + 1));
__ b(hs, &string_add_runtime);
// If result is not supposed to be flat, allocate a cons string object.
// If both strings are ascii the result is an ascii cons string.
if (!string_check_) {
__ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
}
Label non_ascii, allocated;
ASSERT_EQ(0, kTwoByteStringTag);
__ tst(r4, Operand(kStringEncodingMask));
__ tst(r5, Operand(kStringEncodingMask), ne);
__ b(eq, &non_ascii);
// Allocate an ASCII cons string.
__ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime);
__ bind(&allocated);
// Fill the fields of the cons string.
__ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
__ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
__ mov(r0, Operand(r7));
__ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&non_ascii);
// Allocate a two byte cons string.
__ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime);
__ jmp(&allocated);
// Handle creating a flat result. First check that both strings are
// sequential and that they have the same encoding.
// r0: first string
// r1: second string
// r2: length of first string
// r3: length of second string
// r4: first string instance type (if string_check_)
// r5: second string instance type (if string_check_)
// r6: sum of lengths.
__ bind(&string_add_flat_result);
if (!string_check_) {
__ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
}
// Check that both strings are sequential.
ASSERT_EQ(0, kSeqStringTag);
__ tst(r4, Operand(kStringRepresentationMask));
__ tst(r5, Operand(kStringRepresentationMask), eq);
__ b(ne, &string_add_runtime);
// Now check if both strings have the same encoding (ASCII/Two-byte).
// r0: first string.
// r1: second string.
// r2: length of first string.
// r3: length of second string.
// r6: sum of lengths..
Label non_ascii_string_add_flat_result;
ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
__ eor(r7, r4, Operand(r5));
__ tst(r7, Operand(kStringEncodingMask));
__ b(ne, &string_add_runtime);
// And see if it's ASCII or two-byte.
__ tst(r4, Operand(kStringEncodingMask));
__ b(eq, &non_ascii_string_add_flat_result);
// Both strings are sequential ASCII strings. We also know that they are
// short (since the sum of the lengths is less than kMinNonFlatLength).
// r6: length of resulting flat string
__ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime);
// Locate first character of result.
__ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument.
__ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// r0: first character of first string.
// r1: second string.
// r2: length of first string.
// r3: length of second string.
// r6: first character of result.
// r7: result string.
StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true);
// Load second argument and locate first character.
__ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// r1: first character of second string.
// r3: length of second string.
// r6: next character of result.
// r7: result string.
StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
__ mov(r0, Operand(r7));
__ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&non_ascii_string_add_flat_result);
// Both strings are sequential two byte strings.
// r0: first string.
// r1: second string.
// r2: length of first string.
// r3: length of second string.
// r6: sum of length of strings.
__ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime);
// r0: first string.
// r1: second string.
// r2: length of first string.
// r3: length of second string.
// r7: result string.
// Locate first character of result.
__ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument.
__ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// r0: first character of first string.
// r1: second string.
// r2: length of first string.
// r3: length of second string.
// r6: first character of result.
// r7: result string.
StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false);
// Locate first character of second argument.
__ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// r1: first character of second string.
// r3: length of second string.
// r6: next character of result (after copy of first string).
// r7: result string.
StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
__ mov(r0, Operand(r7));
__ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Ret();
// Just jump to runtime to add the two strings.
__ bind(&string_add_runtime);
__ TailCallRuntime(Runtime::kStringAdd, 2, 1);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM