| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "bootstrapper.h" |
| #include "codegen-inl.h" |
| #include "compiler.h" |
| #include "debug.h" |
| #include "ic-inl.h" |
| #include "jsregexp.h" |
| #include "jump-target-light-inl.h" |
| #include "parser.h" |
| #include "regexp-macro-assembler.h" |
| #include "regexp-stack.h" |
| #include "register-allocator-inl.h" |
| #include "runtime.h" |
| #include "scopes.h" |
| #include "virtual-frame-inl.h" |
| #include "virtual-frame-arm-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cc, |
| bool never_nan_nan); |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Label* lhs_not_nan, |
| Label* slow, |
| bool strict); |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm); |
| static void MultiplyByKnownInt(MacroAssembler* masm, |
| Register source, |
| Register destination, |
| int known_int); |
| static bool IsEasyToMultiplyBy(int x); |
| |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| // ------------------------------------------------------------------------- |
| // Platform-specific DeferredCode functions. |
| |
| void DeferredCode::SaveRegisters() { |
| // On ARM you either have a completely spilled frame or you |
| // handle it yourself, but at the moment there's no automation |
| // of registers and deferred code. |
| } |
| |
| |
| void DeferredCode::RestoreRegisters() { |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // Platform-specific RuntimeCallHelper functions. |
| |
| void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
| frame_state_->frame()->AssertIsSpilled(); |
| } |
| |
| |
| void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
| } |
| |
| |
| void ICRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
| masm->EnterInternalFrame(); |
| } |
| |
| |
| void ICRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
| masm->LeaveInternalFrame(); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenState implementation. |
| |
| CodeGenState::CodeGenState(CodeGenerator* owner) |
| : owner_(owner), |
| previous_(owner->state()) { |
| owner->set_state(this); |
| } |
| |
| |
| ConditionCodeGenState::ConditionCodeGenState(CodeGenerator* owner, |
| JumpTarget* true_target, |
| JumpTarget* false_target) |
| : CodeGenState(owner), |
| true_target_(true_target), |
| false_target_(false_target) { |
| owner->set_state(this); |
| } |
| |
| |
| TypeInfoCodeGenState::TypeInfoCodeGenState(CodeGenerator* owner, |
| Slot* slot, |
| TypeInfo type_info) |
| : CodeGenState(owner), |
| slot_(slot) { |
| owner->set_state(this); |
| old_type_info_ = owner->set_type_info(slot, type_info); |
| } |
| |
| |
| CodeGenState::~CodeGenState() { |
| ASSERT(owner_->state() == this); |
| owner_->set_state(previous_); |
| } |
| |
| |
| TypeInfoCodeGenState::~TypeInfoCodeGenState() { |
| owner()->set_type_info(slot_, old_type_info_); |
| } |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenerator implementation |
| |
| CodeGenerator::CodeGenerator(MacroAssembler* masm) |
| : deferred_(8), |
| masm_(masm), |
| info_(NULL), |
| frame_(NULL), |
| allocator_(NULL), |
| cc_reg_(al), |
| state_(NULL), |
| loop_nesting_(0), |
| type_info_(NULL), |
| function_return_is_shadowed_(false) { |
| } |
| |
| |
| // Calling conventions: |
| // fp: caller's frame pointer |
| // sp: stack pointer |
| // r1: called JS function |
| // cp: callee's context |
| |
| void CodeGenerator::Generate(CompilationInfo* info) { |
| // Record the position for debugging purposes. |
| CodeForFunctionPosition(info->function()); |
| Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); |
| |
| // Initialize state. |
| info_ = info; |
| |
| int slots = scope()->num_parameters() + scope()->num_stack_slots(); |
| ScopedVector<TypeInfo> type_info_array(slots); |
| type_info_ = &type_info_array; |
| |
| ASSERT(allocator_ == NULL); |
| RegisterAllocator register_allocator(this); |
| allocator_ = ®ister_allocator; |
| ASSERT(frame_ == NULL); |
| frame_ = new VirtualFrame(); |
| cc_reg_ = al; |
| |
| // Adjust for function-level loop nesting. |
| ASSERT_EQ(0, loop_nesting_); |
| loop_nesting_ = info->loop_nesting(); |
| |
| { |
| CodeGenState state(this); |
| |
| // Entry: |
| // Stack: receiver, arguments |
| // lr: return address |
| // fp: caller's frame pointer |
| // sp: stack pointer |
| // r1: called JS function |
| // cp: callee's context |
| allocator_->Initialize(); |
| |
| #ifdef DEBUG |
| if (strlen(FLAG_stop_at) > 0 && |
| info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
| frame_->SpillAll(); |
| __ stop("stop-at"); |
| } |
| #endif |
| |
| if (info->mode() == CompilationInfo::PRIMARY) { |
| frame_->Enter(); |
| // tos: code slot |
| |
| // Allocate space for locals and initialize them. This also checks |
| // for stack overflow. |
| frame_->AllocateStackSlots(); |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| if (heap_slots > 0) { |
| // Allocate local context. |
| // Get outer context and create a new context based on it. |
| __ ldr(r0, frame_->Function()); |
| frame_->EmitPush(r0); |
| if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
| FastNewContextStub stub(heap_slots); |
| frame_->CallStub(&stub, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kNewContext, 1); |
| } |
| |
| #ifdef DEBUG |
| JumpTarget verified_true; |
| __ cmp(r0, cp); |
| verified_true.Branch(eq); |
| __ stop("NewContext: r0 is expected to be the same as cp"); |
| verified_true.Bind(); |
| #endif |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| } |
| |
| // TODO(1241774): Improve this code: |
| // 1) only needed if we have a context |
| // 2) no need to recompute context ptr every single time |
| // 3) don't copy parameter operand code from SlotOperand! |
| { |
| Comment cmnt2(masm_, "[ copy context parameters into .context"); |
| // Note that iteration order is relevant here! If we have the same |
| // parameter twice (e.g., function (x, y, x)), and that parameter |
| // needs to be copied into the context, it must be the last argument |
| // passed to the parameter that needs to be copied. This is a rare |
| // case so we don't check for it, instead we rely on the copying |
| // order: such a parameter is copied repeatedly into the same |
| // context location and thus the last value is what is seen inside |
| // the function. |
| for (int i = 0; i < scope()->num_parameters(); i++) { |
| Variable* par = scope()->parameter(i); |
| Slot* slot = par->slot(); |
| if (slot != NULL && slot->type() == Slot::CONTEXT) { |
| ASSERT(!scope()->is_global_scope()); // No params in global scope. |
| __ ldr(r1, frame_->ParameterAt(i)); |
| // Loads r2 with context; used below in RecordWrite. |
| __ str(r1, SlotOperand(slot, r2)); |
| // Load the offset into r3. |
| int slot_offset = |
| FixedArray::kHeaderSize + slot->index() * kPointerSize; |
| __ mov(r3, Operand(slot_offset)); |
| __ RecordWrite(r2, r3, r1); |
| } |
| } |
| } |
| |
| // Store the arguments object. This must happen after context |
| // initialization because the arguments object may be stored in |
| // the context. |
| if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { |
| StoreArgumentsObject(true); |
| } |
| |
| // Initialize ThisFunction reference if present. |
| if (scope()->is_function_scope() && scope()->function() != NULL) { |
| __ mov(ip, Operand(Factory::the_hole_value())); |
| frame_->EmitPush(ip); |
| StoreToSlot(scope()->function()->slot(), NOT_CONST_INIT); |
| } |
| } else { |
| // When used as the secondary compiler for splitting, r1, cp, |
| // fp, and lr have been pushed on the stack. Adjust the virtual |
| // frame to match this state. |
| frame_->Adjust(4); |
| |
| // Bind all the bailout labels to the beginning of the function. |
| List<CompilationInfo::Bailout*>* bailouts = info->bailouts(); |
| for (int i = 0; i < bailouts->length(); i++) { |
| __ bind(bailouts->at(i)->label()); |
| } |
| } |
| |
| // Initialize the function return target after the locals are set |
| // up, because it needs the expected frame height from the frame. |
| function_return_.SetExpectedHeight(); |
| function_return_is_shadowed_ = false; |
| |
| // Generate code to 'execute' declarations and initialize functions |
| // (source elements). In case of an illegal redeclaration we need to |
| // handle that instead of processing the declarations. |
| if (scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ illegal redeclarations"); |
| scope()->VisitIllegalRedeclaration(this); |
| } else { |
| Comment cmnt(masm_, "[ declarations"); |
| ProcessDeclarations(scope()->declarations()); |
| // Bail out if a stack-overflow exception occurred when processing |
| // declarations. |
| if (HasStackOverflow()) return; |
| } |
| |
| if (FLAG_trace) { |
| frame_->CallRuntime(Runtime::kTraceEnter, 0); |
| // Ignore the return value. |
| } |
| |
| // Compile the body of the function in a vanilla state. Don't |
| // bother compiling all the code if the scope has an illegal |
| // redeclaration. |
| if (!scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ function body"); |
| #ifdef DEBUG |
| bool is_builtin = Bootstrapper::IsActive(); |
| bool should_trace = |
| is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; |
| if (should_trace) { |
| frame_->CallRuntime(Runtime::kDebugTrace, 0); |
| // Ignore the return value. |
| } |
| #endif |
| VisitStatements(info->function()->body()); |
| } |
| } |
| |
| // Generate the return sequence if necessary. |
| if (has_valid_frame() || function_return_.is_linked()) { |
| if (!function_return_.is_linked()) { |
| CodeForReturnPosition(info->function()); |
| } |
| // exit |
| // r0: result |
| // sp: stack pointer |
| // fp: frame pointer |
| // cp: callee's context |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| |
| function_return_.Bind(); |
| if (FLAG_trace) { |
| // Push the return value on the stack as the parameter. |
| // Runtime::TraceExit returns the parameter as it is. |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kTraceExit, 1); |
| } |
| |
| #ifdef DEBUG |
| // Add a label for checking the size of the code used for returning. |
| Label check_exit_codesize; |
| masm_->bind(&check_exit_codesize); |
| #endif |
| // Make sure that the constant pool is not emitted inside of the return |
| // sequence. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Tear down the frame which will restore the caller's frame pointer and |
| // the link register. |
| frame_->Exit(); |
| |
| // Here we use masm_-> instead of the __ macro to avoid the code coverage |
| // tool from instrumenting as we rely on the code size here. |
| int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize; |
| masm_->add(sp, sp, Operand(sp_delta)); |
| masm_->Jump(lr); |
| |
| #ifdef DEBUG |
| // Check that the size of the code used for returning matches what is |
| // expected by the debugger. If the sp_delts above cannot be encoded in |
| // the add instruction the add will generate two instructions. |
| int return_sequence_length = |
| masm_->InstructionsGeneratedSince(&check_exit_codesize); |
| CHECK(return_sequence_length == |
| Assembler::kJSReturnSequenceInstructions || |
| return_sequence_length == |
| Assembler::kJSReturnSequenceInstructions + 1); |
| #endif |
| } |
| } |
| |
| // Adjust for function-level loop nesting. |
| ASSERT(loop_nesting_ == info->loop_nesting()); |
| loop_nesting_ = 0; |
| |
| // Code generation state must be reset. |
| ASSERT(!has_cc()); |
| ASSERT(state_ == NULL); |
| ASSERT(loop_nesting() == 0); |
| ASSERT(!function_return_is_shadowed_); |
| function_return_.Unuse(); |
| DeleteFrame(); |
| |
| // Process any deferred code using the register allocator. |
| if (!HasStackOverflow()) { |
| ProcessDeferred(); |
| } |
| |
| allocator_ = NULL; |
| type_info_ = NULL; |
| } |
| |
| |
| int CodeGenerator::NumberOfSlot(Slot* slot) { |
| if (slot == NULL) return kInvalidSlotNumber; |
| switch (slot->type()) { |
| case Slot::PARAMETER: |
| return slot->index(); |
| case Slot::LOCAL: |
| return slot->index() + scope()->num_parameters(); |
| default: |
| break; |
| } |
| return kInvalidSlotNumber; |
| } |
| |
| |
| MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
| // Currently, this assertion will fail if we try to assign to |
| // a constant variable that is constant because it is read-only |
| // (such as the variable referring to a named function expression). |
| // We need to implement assignments to read-only variables. |
| // Ideally, we should do this during AST generation (by converting |
| // such assignments into expression statements); however, in general |
| // we may not be able to make the decision until past AST generation, |
| // that is when the entire program is known. |
| ASSERT(slot != NULL); |
| int index = slot->index(); |
| switch (slot->type()) { |
| case Slot::PARAMETER: |
| return frame_->ParameterAt(index); |
| |
| case Slot::LOCAL: |
| return frame_->LocalAt(index); |
| |
| case Slot::CONTEXT: { |
| // Follow the context chain if necessary. |
| ASSERT(!tmp.is(cp)); // do not overwrite context register |
| Register context = cp; |
| int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
| for (int i = 0; i < chain_length; i++) { |
| // Load the closure. |
| // (All contexts, even 'with' contexts, have a closure, |
| // and it is the same for all contexts inside a function. |
| // There is no need to go to the function context first.) |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| // Load the function context (which is the incoming, outer context). |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| // We may have a 'with' context now. Get the function context. |
| // (In fact this mov may never be the needed, since the scope analysis |
| // may not permit a direct context access in this case and thus we are |
| // always at a function context. However it is safe to dereference be- |
| // cause the function context of a function context is itself. Before |
| // deleting this mov we should try to create a counter-example first, |
| // though...) |
| __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
| return ContextOperand(tmp, index); |
| } |
| |
| default: |
| UNREACHABLE(); |
| return MemOperand(r0, 0); |
| } |
| } |
| |
| |
| MemOperand CodeGenerator::ContextSlotOperandCheckExtensions( |
| Slot* slot, |
| Register tmp, |
| Register tmp2, |
| JumpTarget* slow) { |
| ASSERT(slot->type() == Slot::CONTEXT); |
| Register context = cp; |
| |
| for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| } |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| } |
| // Check that last extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
| return ContextOperand(tmp, slot->index()); |
| } |
| |
| |
| // Loads a value on TOS. If it is a boolean value, the result may have been |
| // (partially) translated into branches, or it may have set the condition |
| // code register. If force_cc is set, the value is forced to set the |
| // condition code register and no value is pushed. If the condition code |
| // register was set, has_cc() is true and cc_reg_ contains the condition to |
| // test for 'true'. |
| void CodeGenerator::LoadCondition(Expression* x, |
| JumpTarget* true_target, |
| JumpTarget* false_target, |
| bool force_cc) { |
| ASSERT(!has_cc()); |
| int original_height = frame_->height(); |
| |
| { ConditionCodeGenState new_state(this, true_target, false_target); |
| Visit(x); |
| |
| // If we hit a stack overflow, we may not have actually visited |
| // the expression. In that case, we ensure that we have a |
| // valid-looking frame state because we will continue to generate |
| // code as we unwind the C++ stack. |
| // |
| // It's possible to have both a stack overflow and a valid frame |
| // state (eg, a subexpression overflowed, visiting it returned |
| // with a dummied frame state, and visiting this expression |
| // returned with a normal-looking state). |
| if (HasStackOverflow() && |
| has_valid_frame() && |
| !has_cc() && |
| frame_->height() == original_height) { |
| frame_->SpillAll(); |
| true_target->Jump(); |
| } |
| } |
| if (force_cc && frame_ != NULL && !has_cc()) { |
| // Convert the TOS value to a boolean in the condition code register. |
| ToBoolean(true_target, false_target); |
| } |
| ASSERT(!force_cc || !has_valid_frame() || has_cc()); |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::Load(Expression* expr) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| JumpTarget true_target; |
| JumpTarget false_target; |
| LoadCondition(expr, &true_target, &false_target, false); |
| |
| if (has_cc()) { |
| // Convert cc_reg_ into a boolean value. |
| VirtualFrame::SpilledScope scope(frame_); |
| JumpTarget loaded; |
| JumpTarget materialize_true; |
| materialize_true.Branch(cc_reg_); |
| __ LoadRoot(r0, Heap::kFalseValueRootIndex); |
| frame_->EmitPush(r0); |
| loaded.Jump(); |
| materialize_true.Bind(); |
| __ LoadRoot(r0, Heap::kTrueValueRootIndex); |
| frame_->EmitPush(r0); |
| loaded.Bind(); |
| cc_reg_ = al; |
| } |
| |
| if (true_target.is_linked() || false_target.is_linked()) { |
| VirtualFrame::SpilledScope scope(frame_); |
| // We have at least one condition value that has been "translated" |
| // into a branch, thus it needs to be loaded explicitly. |
| JumpTarget loaded; |
| if (frame_ != NULL) { |
| loaded.Jump(); // Don't lose the current TOS. |
| } |
| bool both = true_target.is_linked() && false_target.is_linked(); |
| // Load "true" if necessary. |
| if (true_target.is_linked()) { |
| true_target.Bind(); |
| __ LoadRoot(r0, Heap::kTrueValueRootIndex); |
| frame_->EmitPush(r0); |
| } |
| // If both "true" and "false" need to be loaded jump across the code for |
| // "false". |
| if (both) { |
| loaded.Jump(); |
| } |
| // Load "false" if necessary. |
| if (false_target.is_linked()) { |
| false_target.Bind(); |
| __ LoadRoot(r0, Heap::kFalseValueRootIndex); |
| frame_->EmitPush(r0); |
| } |
| // A value is loaded on all paths reaching this point. |
| loaded.Bind(); |
| } |
| ASSERT(has_valid_frame()); |
| ASSERT(!has_cc()); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::LoadGlobal() { |
| Register reg = frame_->GetTOSRegister(); |
| __ ldr(reg, GlobalObject()); |
| frame_->EmitPush(reg); |
| } |
| |
| |
| void CodeGenerator::LoadGlobalReceiver(Register scratch) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| __ ldr(scratch, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ ldr(scratch, |
| FieldMemOperand(scratch, GlobalObject::kGlobalReceiverOffset)); |
| frame_->EmitPush(scratch); |
| } |
| |
| |
| ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { |
| if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; |
| ASSERT(scope()->arguments_shadow() != NULL); |
| // We don't want to do lazy arguments allocation for functions that |
| // have heap-allocated contexts, because it interfers with the |
| // uninitialized const tracking in the context objects. |
| return (scope()->num_heap_slots() > 0) |
| ? EAGER_ARGUMENTS_ALLOCATION |
| : LAZY_ARGUMENTS_ALLOCATION; |
| } |
| |
| |
| void CodeGenerator::StoreArgumentsObject(bool initial) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| ArgumentsAllocationMode mode = ArgumentsMode(); |
| ASSERT(mode != NO_ARGUMENTS_ALLOCATION); |
| |
| Comment cmnt(masm_, "[ store arguments object"); |
| if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { |
| // When using lazy arguments allocation, we store the hole value |
| // as a sentinel indicating that the arguments object hasn't been |
| // allocated yet. |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| frame_->EmitPush(ip); |
| } else { |
| ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); |
| __ ldr(r2, frame_->Function()); |
| // The receiver is below the arguments, the return address, and the |
| // frame pointer on the stack. |
| const int kReceiverDisplacement = 2 + scope()->num_parameters(); |
| __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize)); |
| __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
| frame_->Adjust(3); |
| __ Push(r2, r1, r0); |
| frame_->CallStub(&stub, 3); |
| frame_->EmitPush(r0); |
| } |
| |
| Variable* arguments = scope()->arguments()->var(); |
| Variable* shadow = scope()->arguments_shadow()->var(); |
| ASSERT(arguments != NULL && arguments->slot() != NULL); |
| ASSERT(shadow != NULL && shadow->slot() != NULL); |
| JumpTarget done; |
| if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { |
| // We have to skip storing into the arguments slot if it has |
| // already been written to. This can happen if the a function |
| // has a local variable named 'arguments'. |
| LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); |
| frame_->EmitPop(r0); |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(r0, ip); |
| done.Branch(ne); |
| } |
| StoreToSlot(arguments->slot(), NOT_CONST_INIT); |
| if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); |
| StoreToSlot(shadow->slot(), NOT_CONST_INIT); |
| } |
| |
| |
| void CodeGenerator::LoadTypeofExpression(Expression* expr) { |
| // Special handling of identifiers as subexpressions of typeof. |
| Variable* variable = expr->AsVariableProxy()->AsVariable(); |
| if (variable != NULL && !variable->is_this() && variable->is_global()) { |
| // For a global variable we build the property reference |
| // <global>.<variable> and perform a (regular non-contextual) property |
| // load to make sure we do not get reference errors. |
| Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
| Literal key(variable->name()); |
| Property property(&global, &key, RelocInfo::kNoPosition); |
| Reference ref(this, &property); |
| ref.GetValue(); |
| } else if (variable != NULL && variable->slot() != NULL) { |
| // For a variable that rewrites to a slot, we signal it is the immediate |
| // subexpression of a typeof. |
| LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF); |
| } else { |
| // Anything else can be handled normally. |
| Load(expr); |
| } |
| } |
| |
| |
| Reference::Reference(CodeGenerator* cgen, |
| Expression* expression, |
| bool persist_after_get) |
| : cgen_(cgen), |
| expression_(expression), |
| type_(ILLEGAL), |
| persist_after_get_(persist_after_get) { |
| cgen->LoadReference(this); |
| } |
| |
| |
| Reference::~Reference() { |
| ASSERT(is_unloaded() || is_illegal()); |
| } |
| |
| |
| void CodeGenerator::LoadReference(Reference* ref) { |
| Comment cmnt(masm_, "[ LoadReference"); |
| Expression* e = ref->expression(); |
| Property* property = e->AsProperty(); |
| Variable* var = e->AsVariableProxy()->AsVariable(); |
| |
| if (property != NULL) { |
| // The expression is either a property or a variable proxy that rewrites |
| // to a property. |
| Load(property->obj()); |
| if (property->key()->IsPropertyName()) { |
| ref->set_type(Reference::NAMED); |
| } else { |
| Load(property->key()); |
| ref->set_type(Reference::KEYED); |
| } |
| } else if (var != NULL) { |
| // The expression is a variable proxy that does not rewrite to a |
| // property. Global variables are treated as named property references. |
| if (var->is_global()) { |
| LoadGlobal(); |
| ref->set_type(Reference::NAMED); |
| } else { |
| ASSERT(var->slot() != NULL); |
| ref->set_type(Reference::SLOT); |
| } |
| } else { |
| // Anything else is a runtime error. |
| Load(e); |
| frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
| } |
| } |
| |
| |
| void CodeGenerator::UnloadReference(Reference* ref) { |
| int size = ref->size(); |
| ref->set_unloaded(); |
| if (size == 0) return; |
| |
| // Pop a reference from the stack while preserving TOS. |
| VirtualFrame::RegisterAllocationScope scope(this); |
| Comment cmnt(masm_, "[ UnloadReference"); |
| if (size > 0) { |
| Register tos = frame_->PopToRegister(); |
| frame_->Drop(size); |
| frame_->EmitPush(tos); |
| } |
| } |
| |
| |
| // ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given |
| // register to a boolean in the condition code register. The code |
| // may jump to 'false_target' in case the register converts to 'false'. |
| void CodeGenerator::ToBoolean(JumpTarget* true_target, |
| JumpTarget* false_target) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| // Note: The generated code snippet does not change stack variables. |
| // Only the condition code should be set. |
| frame_->EmitPop(r0); |
| |
| // Fast case checks |
| |
| // Check if the value is 'false'. |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(r0, ip); |
| false_target->Branch(eq); |
| |
| // Check if the value is 'true'. |
| __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
| __ cmp(r0, ip); |
| true_target->Branch(eq); |
| |
| // Check if the value is 'undefined'. |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, ip); |
| false_target->Branch(eq); |
| |
| // Check if the value is a smi. |
| __ cmp(r0, Operand(Smi::FromInt(0))); |
| false_target->Branch(eq); |
| __ tst(r0, Operand(kSmiTagMask)); |
| true_target->Branch(eq); |
| |
| // Slow case: call the runtime. |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kToBool, 1); |
| // Convert the result (r0) to a condition code. |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(r0, ip); |
| |
| cc_reg_ = ne; |
| } |
| |
| |
| void CodeGenerator::GenericBinaryOperation(Token::Value op, |
| OverwriteMode overwrite_mode, |
| GenerateInlineSmi inline_smi, |
| int constant_rhs) { |
| // top of virtual frame: y |
| // 2nd elt. on virtual frame : x |
| // result : top of virtual frame |
| |
| // Stub is entered with a call: 'return address' is in lr. |
| switch (op) { |
| case Token::ADD: |
| case Token::SUB: |
| if (inline_smi) { |
| JumpTarget done; |
| Register rhs = frame_->PopToRegister(); |
| Register lhs = frame_->PopToRegister(rhs); |
| Register scratch = VirtualFrame::scratch0(); |
| __ orr(scratch, rhs, Operand(lhs)); |
| // Check they are both small and positive. |
| __ tst(scratch, Operand(kSmiTagMask | 0xc0000000)); |
| ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. |
| ASSERT_EQ(0, kSmiTag); |
| if (op == Token::ADD) { |
| __ add(r0, lhs, Operand(rhs), LeaveCC, eq); |
| } else { |
| __ sub(r0, lhs, Operand(rhs), LeaveCC, eq); |
| } |
| done.Branch(eq); |
| GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 0); |
| done.Bind(); |
| frame_->EmitPush(r0); |
| break; |
| } else { |
| // Fall through! |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| if (inline_smi) { |
| bool rhs_is_smi = frame_->KnownSmiAt(0); |
| bool lhs_is_smi = frame_->KnownSmiAt(1); |
| Register rhs = frame_->PopToRegister(); |
| Register lhs = frame_->PopToRegister(rhs); |
| Register smi_test_reg; |
| Condition cond; |
| if (!rhs_is_smi || !lhs_is_smi) { |
| if (rhs_is_smi) { |
| smi_test_reg = lhs; |
| } else if (lhs_is_smi) { |
| smi_test_reg = rhs; |
| } else { |
| smi_test_reg = VirtualFrame::scratch0(); |
| __ orr(smi_test_reg, rhs, Operand(lhs)); |
| } |
| // Check they are both Smis. |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| cond = eq; |
| } else { |
| cond = al; |
| } |
| ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. |
| if (op == Token::BIT_OR) { |
| __ orr(r0, lhs, Operand(rhs), LeaveCC, cond); |
| } else if (op == Token::BIT_AND) { |
| __ and_(r0, lhs, Operand(rhs), LeaveCC, cond); |
| } else { |
| ASSERT(op == Token::BIT_XOR); |
| ASSERT_EQ(0, kSmiTag); |
| __ eor(r0, lhs, Operand(rhs), LeaveCC, cond); |
| } |
| if (cond != al) { |
| JumpTarget done; |
| done.Branch(cond); |
| GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 0); |
| done.Bind(); |
| } |
| frame_->EmitPush(r0); |
| break; |
| } else { |
| // Fall through! |
| } |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| case Token::SHL: |
| case Token::SHR: |
| case Token::SAR: { |
| Register rhs = frame_->PopToRegister(); |
| Register lhs = frame_->PopToRegister(rhs); // Don't pop to rhs register. |
| GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); |
| break; |
| } |
| |
| case Token::COMMA: { |
| Register scratch = frame_->PopToRegister(); |
| // Simply discard left value. |
| frame_->Drop(); |
| frame_->EmitPush(scratch); |
| break; |
| } |
| |
| default: |
| // Other cases should have been handled before this point. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| class DeferredInlineSmiOperation: public DeferredCode { |
| public: |
| DeferredInlineSmiOperation(Token::Value op, |
| int value, |
| bool reversed, |
| OverwriteMode overwrite_mode, |
| Register tos) |
| : op_(op), |
| value_(value), |
| reversed_(reversed), |
| overwrite_mode_(overwrite_mode), |
| tos_register_(tos) { |
| set_comment("[ DeferredInlinedSmiOperation"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Token::Value op_; |
| int value_; |
| bool reversed_; |
| OverwriteMode overwrite_mode_; |
| Register tos_register_; |
| }; |
| |
| |
| void DeferredInlineSmiOperation::Generate() { |
| Register lhs = r1; |
| Register rhs = r0; |
| switch (op_) { |
| case Token::ADD: { |
| // Revert optimistic add. |
| if (reversed_) { |
| __ sub(r0, tos_register_, Operand(Smi::FromInt(value_))); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } else { |
| __ sub(r1, tos_register_, Operand(Smi::FromInt(value_))); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } |
| break; |
| } |
| |
| case Token::SUB: { |
| // Revert optimistic sub. |
| if (reversed_) { |
| __ rsb(r0, tos_register_, Operand(Smi::FromInt(value_))); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } else { |
| __ add(r1, tos_register_, Operand(Smi::FromInt(value_))); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } |
| break; |
| } |
| |
| // For these operations there is no optimistic operation that needs to be |
| // reverted. |
| case Token::MUL: |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: { |
| if (reversed_) { |
| if (tos_register_.is(r0)) { |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } else { |
| ASSERT(tos_register_.is(r1)); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| lhs = r0; |
| rhs = r1; |
| } |
| } else { |
| if (tos_register_.is(r1)) { |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } else { |
| ASSERT(tos_register_.is(r0)); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| lhs = r0; |
| rhs = r1; |
| } |
| } |
| break; |
| } |
| |
| case Token::SHL: |
| case Token::SHR: |
| case Token::SAR: { |
| if (!reversed_) { |
| if (tos_register_.is(r1)) { |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } else { |
| ASSERT(tos_register_.is(r0)); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| lhs = r0; |
| rhs = r1; |
| } |
| } else { |
| ASSERT(op_ == Token::SHL); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } |
| break; |
| } |
| |
| default: |
| // Other cases should have been handled before this point. |
| UNREACHABLE(); |
| break; |
| } |
| |
| GenericBinaryOpStub stub(op_, overwrite_mode_, lhs, rhs, value_); |
| __ CallStub(&stub); |
| // The generic stub returns its value in r0, but that's not |
| // necessarily what we want. We want whatever the inlined code |
| // expected, which is that the answer is in the same register as |
| // the operand was. |
| __ Move(tos_register_, r0); |
| } |
| |
| |
| static bool PopCountLessThanEqual2(unsigned int x) { |
| x &= x - 1; |
| return (x & (x - 1)) == 0; |
| } |
| |
| |
| // Returns the index of the lowest bit set. |
| static int BitPosition(unsigned x) { |
| int bit_posn = 0; |
| while ((x & 0xf) == 0) { |
| bit_posn += 4; |
| x >>= 4; |
| } |
| while ((x & 1) == 0) { |
| bit_posn++; |
| x >>= 1; |
| } |
| return bit_posn; |
| } |
| |
| |
| void CodeGenerator::SmiOperation(Token::Value op, |
| Handle<Object> value, |
| bool reversed, |
| OverwriteMode mode) { |
| int int_value = Smi::cast(*value)->value(); |
| |
| bool both_sides_are_smi = frame_->KnownSmiAt(0); |
| |
| bool something_to_inline; |
| switch (op) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::BIT_AND: |
| case Token::BIT_OR: |
| case Token::BIT_XOR: { |
| something_to_inline = true; |
| break; |
| } |
| case Token::SHL: { |
| something_to_inline = (both_sides_are_smi || !reversed); |
| break; |
| } |
| case Token::SHR: |
| case Token::SAR: { |
| if (reversed) { |
| something_to_inline = false; |
| } else { |
| something_to_inline = true; |
| } |
| break; |
| } |
| case Token::MOD: { |
| if (reversed || int_value < 2 || !IsPowerOf2(int_value)) { |
| something_to_inline = false; |
| } else { |
| something_to_inline = true; |
| } |
| break; |
| } |
| case Token::MUL: { |
| if (!IsEasyToMultiplyBy(int_value)) { |
| something_to_inline = false; |
| } else { |
| something_to_inline = true; |
| } |
| break; |
| } |
| default: { |
| something_to_inline = false; |
| break; |
| } |
| } |
| |
| if (!something_to_inline) { |
| if (!reversed) { |
| // Push the rhs onto the virtual frame by putting it in a TOS register. |
| Register rhs = frame_->GetTOSRegister(); |
| __ mov(rhs, Operand(value)); |
| frame_->EmitPush(rhs, TypeInfo::Smi()); |
| GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, int_value); |
| } else { |
| // Pop the rhs, then push lhs and rhs in the right order. Only performs |
| // at most one pop, the rest takes place in TOS registers. |
| Register lhs = frame_->GetTOSRegister(); // Get reg for pushing. |
| Register rhs = frame_->PopToRegister(lhs); // Don't use lhs for this. |
| __ mov(lhs, Operand(value)); |
| frame_->EmitPush(lhs, TypeInfo::Smi()); |
| TypeInfo t = both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Unknown(); |
| frame_->EmitPush(rhs, t); |
| GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, kUnknownIntValue); |
| } |
| return; |
| } |
| |
| // We move the top of stack to a register (normally no move is invoved). |
| Register tos = frame_->PopToRegister(); |
| // All other registers are spilled. The deferred code expects one argument |
| // in a register and all other values are flushed to the stack. The |
| // answer is returned in the same register that the top of stack argument was |
| // in. |
| frame_->SpillAll(); |
| |
| switch (op) { |
| case Token::ADD: { |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| |
| __ add(tos, tos, Operand(value), SetCC); |
| deferred->Branch(vs); |
| if (!both_sides_are_smi) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| } |
| deferred->BindExit(); |
| frame_->EmitPush(tos); |
| break; |
| } |
| |
| case Token::SUB: { |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| |
| if (reversed) { |
| __ rsb(tos, tos, Operand(value), SetCC); |
| } else { |
| __ sub(tos, tos, Operand(value), SetCC); |
| } |
| deferred->Branch(vs); |
| if (!both_sides_are_smi) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| } |
| deferred->BindExit(); |
| frame_->EmitPush(tos); |
| break; |
| } |
| |
| |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: { |
| if (both_sides_are_smi) { |
| switch (op) { |
| case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; |
| case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; |
| case Token::BIT_AND: __ and_(tos, tos, Operand(value)); break; |
| default: UNREACHABLE(); |
| } |
| frame_->EmitPush(tos, TypeInfo::Smi()); |
| } else { |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| __ tst(tos, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| switch (op) { |
| case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; |
| case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; |
| case Token::BIT_AND: __ and_(tos, tos, Operand(value)); break; |
| default: UNREACHABLE(); |
| } |
| deferred->BindExit(); |
| TypeInfo result_type = |
| (op == Token::BIT_AND) ? TypeInfo::Smi() : TypeInfo::Integer32(); |
| frame_->EmitPush(tos, result_type); |
| } |
| break; |
| } |
| |
| case Token::SHL: |
| if (reversed) { |
| ASSERT(both_sides_are_smi); |
| int max_shift = 0; |
| int max_result = int_value == 0 ? 1 : int_value; |
| while (Smi::IsValid(max_result << 1)) { |
| max_shift++; |
| max_result <<= 1; |
| } |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, true, mode, tos); |
| // Mask off the last 5 bits of the shift operand (rhs). This is part |
| // of the definition of shift in JS and we know we have a Smi so we |
| // can safely do this. The masked version gets passed to the |
| // deferred code, but that makes no difference. |
| __ and_(tos, tos, Operand(Smi::FromInt(0x1f))); |
| __ cmp(tos, Operand(Smi::FromInt(max_shift))); |
| deferred->Branch(ge); |
| Register scratch = VirtualFrame::scratch0(); |
| __ mov(scratch, Operand(tos, ASR, kSmiTagSize)); // Untag. |
| __ mov(tos, Operand(Smi::FromInt(int_value))); // Load constant. |
| __ mov(tos, Operand(tos, LSL, scratch)); // Shift constant. |
| deferred->BindExit(); |
| TypeInfo result = TypeInfo::Integer32(); |
| frame_->EmitPush(tos, result); |
| break; |
| } |
| // Fall through! |
| case Token::SHR: |
| case Token::SAR: { |
| ASSERT(!reversed); |
| TypeInfo result = TypeInfo::Integer32(); |
| Register scratch = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| int shift_value = int_value & 0x1f; // least significant 5 bits |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, shift_value, false, mode, tos); |
| uint32_t problematic_mask = kSmiTagMask; |
| // For unsigned shift by zero all negative smis are problematic. |
| bool skip_smi_test = both_sides_are_smi; |
| if (shift_value == 0 && op == Token::SHR) { |
| problematic_mask |= 0x80000000; |
| skip_smi_test = false; |
| } |
| if (!skip_smi_test) { |
| __ tst(tos, Operand(problematic_mask)); |
| deferred->Branch(ne); // Go slow for problematic input. |
| } |
| switch (op) { |
| case Token::SHL: { |
| if (shift_value != 0) { |
| int adjusted_shift = shift_value - kSmiTagSize; |
| ASSERT(adjusted_shift >= 0); |
| if (adjusted_shift != 0) { |
| __ mov(scratch, Operand(tos, LSL, adjusted_shift)); |
| // Check that the *signed* result fits in a smi. |
| __ add(scratch2, scratch, Operand(0x40000000), SetCC); |
| deferred->Branch(mi); |
| __ mov(tos, Operand(scratch, LSL, kSmiTagSize)); |
| } else { |
| // Check that the *signed* result fits in a smi. |
| __ add(scratch2, tos, Operand(0x40000000), SetCC); |
| deferred->Branch(mi); |
| __ mov(tos, Operand(tos, LSL, kSmiTagSize)); |
| } |
| } |
| break; |
| } |
| case Token::SHR: { |
| if (shift_value != 0) { |
| __ mov(scratch, Operand(tos, ASR, kSmiTagSize)); // Remove tag. |
| // LSR by immediate 0 means shifting 32 bits. |
| __ mov(scratch, Operand(scratch, LSR, shift_value)); |
| if (shift_value == 1) { |
| // check that the *unsigned* result fits in a smi |
| // neither of the two high-order bits can be set: |
| // - 0x80000000: high bit would be lost when smi tagging |
| // - 0x40000000: this number would convert to negative when |
| // smi tagging these two cases can only happen with shifts |
| // by 0 or 1 when handed a valid smi |
| __ tst(scratch, Operand(0xc0000000)); |
| deferred->Branch(ne); |
| } else { |
| ASSERT(shift_value >= 2); |
| result = TypeInfo::Smi(); // SHR by at least 2 gives a Smi. |
| } |
| __ mov(tos, Operand(scratch, LSL, kSmiTagSize)); |
| } |
| break; |
| } |
| case Token::SAR: { |
| // In the ARM instructions set, ASR by immediate 0 means shifting 32 |
| // bits. |
| if (shift_value != 0) { |
| // Do the shift and the tag removal in one operation. If the shift |
| // is 31 bits (the highest possible value) then we emit the |
| // instruction as a shift by 0 which means shift arithmetically by |
| // 32. |
| __ mov(tos, Operand(tos, ASR, (kSmiTagSize + shift_value) & 0x1f)); |
| // Put tag back. |
| __ mov(tos, Operand(tos, LSL, kSmiTagSize)); |
| // SAR by at least 1 gives a Smi. |
| result = TypeInfo::Smi(); |
| } |
| break; |
| } |
| default: UNREACHABLE(); |
| } |
| deferred->BindExit(); |
| frame_->EmitPush(tos, result); |
| break; |
| } |
| |
| case Token::MOD: { |
| ASSERT(!reversed); |
| ASSERT(int_value >= 2); |
| ASSERT(IsPowerOf2(int_value)); |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| unsigned mask = (0x80000000u | kSmiTagMask); |
| __ tst(tos, Operand(mask)); |
| deferred->Branch(ne); // Go to deferred code on non-Smis and negative. |
| mask = (int_value << kSmiTagSize) - 1; |
| __ and_(tos, tos, Operand(mask)); |
| deferred->BindExit(); |
| // Mod of positive power of 2 Smi gives a Smi if the lhs is an integer. |
| frame_->EmitPush( |
| tos, |
| both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Number()); |
| break; |
| } |
| |
| case Token::MUL: { |
| ASSERT(IsEasyToMultiplyBy(int_value)); |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value; |
| max_smi_that_wont_overflow <<= kSmiTagSize; |
| unsigned mask = 0x80000000u; |
| while ((mask & max_smi_that_wont_overflow) == 0) { |
| mask |= mask >> 1; |
| } |
| mask |= kSmiTagMask; |
| // This does a single mask that checks for a too high value in a |
| // conservative way and for a non-Smi. It also filters out negative |
| // numbers, unfortunately, but since this code is inline we prefer |
| // brevity to comprehensiveness. |
| __ tst(tos, Operand(mask)); |
| deferred->Branch(ne); |
| MultiplyByKnownInt(masm_, tos, tos, int_value); |
| deferred->BindExit(); |
| frame_->EmitPush(tos); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void CodeGenerator::Comparison(Condition cc, |
| Expression* left, |
| Expression* right, |
| bool strict) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| |
| if (left != NULL) Load(left); |
| if (right != NULL) Load(right); |
| |
| // sp[0] : y |
| // sp[1] : x |
| // result : cc register |
| |
| // Strict only makes sense for equality comparisons. |
| ASSERT(!strict || cc == eq); |
| |
| Register lhs; |
| Register rhs; |
| |
| bool lhs_is_smi; |
| bool rhs_is_smi; |
| |
| // We load the top two stack positions into registers chosen by the virtual |
| // frame. This should keep the register shuffling to a minimum. |
| // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
| if (cc == gt || cc == le) { |
| cc = ReverseCondition(cc); |
| lhs_is_smi = frame_->KnownSmiAt(0); |
| rhs_is_smi = frame_->KnownSmiAt(1); |
| lhs = frame_->PopToRegister(); |
| rhs = frame_->PopToRegister(lhs); // Don't pop to the same register again! |
| } else { |
| rhs_is_smi = frame_->KnownSmiAt(0); |
| lhs_is_smi = frame_->KnownSmiAt(1); |
| rhs = frame_->PopToRegister(); |
| lhs = frame_->PopToRegister(rhs); // Don't pop to the same register again! |
| } |
| |
| bool both_sides_are_smi = (lhs_is_smi && rhs_is_smi); |
| |
| ASSERT(rhs.is(r0) || rhs.is(r1)); |
| ASSERT(lhs.is(r0) || lhs.is(r1)); |
| |
| JumpTarget exit; |
| |
| if (!both_sides_are_smi) { |
| // Now we have the two sides in r0 and r1. We flush any other registers |
| // because the stub doesn't know about register allocation. |
| frame_->SpillAll(); |
| Register scratch = VirtualFrame::scratch0(); |
| Register smi_test_reg; |
| if (lhs_is_smi) { |
| smi_test_reg = rhs; |
| } else if (rhs_is_smi) { |
| smi_test_reg = lhs; |
| } else { |
| __ orr(scratch, lhs, Operand(rhs)); |
| smi_test_reg = scratch; |
| } |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| JumpTarget smi; |
| smi.Branch(eq); |
| |
| // Perform non-smi comparison by stub. |
| // CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0. |
| // We call with 0 args because there are 0 on the stack. |
| if (!rhs.is(r0)) { |
| __ Swap(rhs, lhs, ip); |
| } |
| |
| CompareStub stub(cc, strict); |
| frame_->CallStub(&stub, 0); |
| __ cmp(r0, Operand(0)); |
| exit.Jump(); |
| |
| smi.Bind(); |
| } |
| |
| // Do smi comparisons by pointer comparison. |
| __ cmp(lhs, Operand(rhs)); |
| |
| exit.Bind(); |
| cc_reg_ = cc; |
| } |
| |
| |
| // Call the function on the stack with the given arguments. |
| void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
| CallFunctionFlags flags, |
| int position) { |
| frame_->AssertIsSpilled(); |
| |
| // Push the arguments ("left-to-right") on the stack. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Record the position for debugging purposes. |
| CodeForSourcePosition(position); |
| |
| // Use the shared code stub to call the function. |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| CallFunctionStub call_function(arg_count, in_loop, flags); |
| frame_->CallStub(&call_function, arg_count + 1); |
| |
| // Restore context and pop function from the stack. |
| __ ldr(cp, frame_->Context()); |
| frame_->Drop(); // discard the TOS |
| } |
| |
| |
| void CodeGenerator::CallApplyLazy(Expression* applicand, |
| Expression* receiver, |
| VariableProxy* arguments, |
| int position) { |
| // An optimized implementation of expressions of the form |
| // x.apply(y, arguments). |
| // If the arguments object of the scope has not been allocated, |
| // and x.apply is Function.prototype.apply, this optimization |
| // just copies y and the arguments of the current function on the |
| // stack, as receiver and arguments, and calls x. |
| // In the implementation comments, we call x the applicand |
| // and y the receiver. |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); |
| ASSERT(arguments->IsArguments()); |
| |
| // Load applicand.apply onto the stack. This will usually |
| // give us a megamorphic load site. Not super, but it works. |
| Load(applicand); |
| Handle<String> name = Factory::LookupAsciiSymbol("apply"); |
| frame_->Dup(); |
| frame_->CallLoadIC(name, RelocInfo::CODE_TARGET); |
| frame_->EmitPush(r0); |
| |
| // Load the receiver and the existing arguments object onto the |
| // expression stack. Avoid allocating the arguments object here. |
| Load(receiver); |
| LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); |
| |
| // Emit the source position information after having loaded the |
| // receiver and the arguments. |
| CodeForSourcePosition(position); |
| // Contents of the stack at this point: |
| // sp[0]: arguments object of the current function or the hole. |
| // sp[1]: receiver |
| // sp[2]: applicand.apply |
| // sp[3]: applicand. |
| |
| // Check if the arguments object has been lazily allocated |
| // already. If so, just use that instead of copying the arguments |
| // from the stack. This also deals with cases where a local variable |
| // named 'arguments' has been introduced. |
| __ ldr(r0, MemOperand(sp, 0)); |
| |
| Label slow, done; |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(ip, r0); |
| __ b(ne, &slow); |
| |
| Label build_args; |
| // Get rid of the arguments object probe. |
| frame_->Drop(); |
| // Stack now has 3 elements on it. |
| // Contents of stack at this point: |
| // sp[0]: receiver |
| // sp[1]: applicand.apply |
| // sp[2]: applicand. |
| |
| // Check that the receiver really is a JavaScript object. |
| __ ldr(r0, MemOperand(sp, 0)); |
| __ BranchOnSmi(r0, &build_args); |
| // We allow all JSObjects including JSFunctions. As long as |
| // JS_FUNCTION_TYPE is the last instance type and it is right |
| // after LAST_JS_OBJECT_TYPE, we do not have to check the upper |
| // bound. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
| __ CompareObjectType(r0, r1, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &build_args); |
| |
| // Check that applicand.apply is Function.prototype.apply. |
| __ ldr(r0, MemOperand(sp, kPointerSize)); |
| __ BranchOnSmi(r0, &build_args); |
| __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE); |
| __ b(ne, &build_args); |
| __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); |
| Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply)); |
| __ ldr(r1, FieldMemOperand(r0, SharedFunctionInfo::kCodeOffset)); |
| __ cmp(r1, Operand(apply_code)); |
| __ b(ne, &build_args); |
| |
| // Check that applicand is a function. |
| __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); |
| __ BranchOnSmi(r1, &build_args); |
| __ CompareObjectType(r1, r2, r3, JS_FUNCTION_TYPE); |
| __ b(ne, &build_args); |
| |
| // Copy the arguments to this function possibly from the |
| // adaptor frame below it. |
| Label invoke, adapted; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adapted); |
| |
| // No arguments adaptor frame. Copy fixed number of arguments. |
| __ mov(r0, Operand(scope()->num_parameters())); |
| for (int i = 0; i < scope()->num_parameters(); i++) { |
| __ ldr(r2, frame_->ParameterAt(i)); |
| __ push(r2); |
| } |
| __ jmp(&invoke); |
| |
| // Arguments adaptor frame present. Copy arguments from there, but |
| // avoid copying too many arguments to avoid stack overflows. |
| __ bind(&adapted); |
| static const uint32_t kArgumentsLimit = 1 * KB; |
| __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ mov(r0, Operand(r0, LSR, kSmiTagSize)); |
| __ mov(r3, r0); |
| __ cmp(r0, Operand(kArgumentsLimit)); |
| __ b(gt, &build_args); |
| |
| // Loop through the arguments pushing them onto the execution |
| // stack. We don't inform the virtual frame of the push, so we don't |
| // have to worry about getting rid of the elements from the virtual |
| // frame. |
| Label loop; |
| // r3 is a small non-negative integer, due to the test above. |
| __ cmp(r3, Operand(0)); |
| __ b(eq, &invoke); |
| // Compute the address of the first argument. |
| __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2)); |
| __ add(r2, r2, Operand(kPointerSize)); |
| __ bind(&loop); |
| // Post-decrement argument address by kPointerSize on each iteration. |
| __ ldr(r4, MemOperand(r2, kPointerSize, NegPostIndex)); |
| __ push(r4); |
| __ sub(r3, r3, Operand(1), SetCC); |
| __ b(gt, &loop); |
| |
| // Invoke the function. |
| __ bind(&invoke); |
| ParameterCount actual(r0); |
| __ InvokeFunction(r1, actual, CALL_FUNCTION); |
| // Drop applicand.apply and applicand from the stack, and push |
| // the result of the function call, but leave the spilled frame |
| // unchanged, with 3 elements, so it is correct when we compile the |
| // slow-case code. |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ push(r0); |
| // Stack now has 1 element: |
| // sp[0]: result |
| __ jmp(&done); |
| |
| // Slow-case: Allocate the arguments object since we know it isn't |
| // there, and fall-through to the slow-case where we call |
| // applicand.apply. |
| __ bind(&build_args); |
| // Stack now has 3 elements, because we have jumped from where: |
| // sp[0]: receiver |
| // sp[1]: applicand.apply |
| // sp[2]: applicand. |
| StoreArgumentsObject(false); |
| |
| // Stack and frame now have 4 elements. |
| __ bind(&slow); |
| |
| // Generic computation of x.apply(y, args) with no special optimization. |
| // Flip applicand.apply and applicand on the stack, so |
| // applicand looks like the receiver of the applicand.apply call. |
| // Then process it as a normal function call. |
| __ ldr(r0, MemOperand(sp, 3 * kPointerSize)); |
| __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); |
| __ Strd(r0, r1, MemOperand(sp, 2 * kPointerSize)); |
| |
| CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); |
| frame_->CallStub(&call_function, 3); |
| // The function and its two arguments have been dropped. |
| frame_->Drop(); // Drop the receiver as well. |
| frame_->EmitPush(r0); |
| // Stack now has 1 element: |
| // sp[0]: result |
| __ bind(&done); |
| |
| // Restore the context register after a call. |
| __ ldr(cp, frame_->Context()); |
| } |
| |
| |
| void CodeGenerator::Branch(bool if_true, JumpTarget* target) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| ASSERT(has_cc()); |
| Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_); |
| target->Branch(cc); |
| cc_reg_ = al; |
| } |
| |
| |
| void CodeGenerator::CheckStack() { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ check stack"); |
| __ LoadRoot(ip, Heap::kStackLimitRootIndex); |
| // Put the lr setup instruction in the delay slot. kInstrSize is added to |
| // the implicit 8 byte offset that always applies to operations with pc and |
| // gives a return address 12 bytes down. |
| masm_->add(lr, pc, Operand(Assembler::kInstrSize)); |
| masm_->cmp(sp, Operand(ip)); |
| StackCheckStub stub; |
| // Call the stub if lower. |
| masm_->mov(pc, |
| Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()), |
| RelocInfo::CODE_TARGET), |
| LeaveCC, |
| lo); |
| } |
| |
| |
| void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| for (int i = 0; frame_ != NULL && i < statements->length(); i++) { |
| Visit(statements->at(i)); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitBlock(Block* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ Block"); |
| CodeForStatementPosition(node); |
| node->break_target()->SetExpectedHeight(); |
| VisitStatements(node->statements()); |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| node->break_target()->Unuse(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(pairs)); |
| frame_->EmitPush(Operand(Smi::FromInt(is_eval() ? 1 : 0))); |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| frame_->CallRuntime(Runtime::kDeclareGlobals, 3); |
| // The result is discarded. |
| } |
| |
| |
| void CodeGenerator::VisitDeclaration(Declaration* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Declaration"); |
| Variable* var = node->proxy()->var(); |
| ASSERT(var != NULL); // must have been resolved |
| Slot* slot = var->slot(); |
| |
| // If it was not possible to allocate the variable at compile time, |
| // we need to "declare" it at runtime to make sure it actually |
| // exists in the local context. |
| if (slot != NULL && slot->type() == Slot::LOOKUP) { |
| // Variables with a "LOOKUP" slot were introduced as non-locals |
| // during variable resolution and must have mode DYNAMIC. |
| ASSERT(var->is_dynamic()); |
| // For now, just do a runtime call. |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(var->name())); |
| // Declaration nodes are always declared in only two modes. |
| ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); |
| PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; |
| frame_->EmitPush(Operand(Smi::FromInt(attr))); |
| // Push initial value, if any. |
| // Note: For variables we must not push an initial value (such as |
| // 'undefined') because we may have a (legal) redeclaration and we |
| // must not destroy the current value. |
| if (node->mode() == Variable::CONST) { |
| frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); |
| } else if (node->fun() != NULL) { |
| Load(node->fun()); |
| } else { |
| frame_->EmitPush(Operand(0)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); |
| // Ignore the return value (declarations are statements). |
| |
| ASSERT(frame_->height() == original_height); |
| return; |
| } |
| |
| ASSERT(!var->is_global()); |
| |
| // If we have a function or a constant, we need to initialize the variable. |
| Expression* val = NULL; |
| if (node->mode() == Variable::CONST) { |
| val = new Literal(Factory::the_hole_value()); |
| } else { |
| val = node->fun(); // NULL if we don't have a function |
| } |
| |
| if (val != NULL) { |
| // Set initial value. |
| Reference target(this, node->proxy()); |
| Load(val); |
| target.SetValue(NOT_CONST_INIT); |
| |
| // Get rid of the assigned value (declarations are statements). |
| frame_->Drop(); |
| } |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ ExpressionStatement"); |
| CodeForStatementPosition(node); |
| Expression* expression = node->expression(); |
| expression->MarkAsStatement(); |
| Load(expression); |
| frame_->Drop(); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "// EmptyStatement"); |
| CodeForStatementPosition(node); |
| // nothing to do |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitIfStatement(IfStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ IfStatement"); |
| // Generate different code depending on which parts of the if statement |
| // are present or not. |
| bool has_then_stm = node->HasThenStatement(); |
| bool has_else_stm = node->HasElseStatement(); |
| |
| CodeForStatementPosition(node); |
| |
| JumpTarget exit; |
| if (has_then_stm && has_else_stm) { |
| Comment cmnt(masm_, "[ IfThenElse"); |
| JumpTarget then; |
| JumpTarget else_; |
| // if (cond) |
| LoadCondition(node->condition(), &then, &else_, true); |
| if (frame_ != NULL) { |
| Branch(false, &else_); |
| } |
| // then |
| if (frame_ != NULL || then.is_linked()) { |
| then.Bind(); |
| Visit(node->then_statement()); |
| } |
| if (frame_ != NULL) { |
| exit.Jump(); |
| } |
| // else |
| if (else_.is_linked()) { |
| else_.Bind(); |
| Visit(node->else_statement()); |
| } |
| |
| } else if (has_then_stm) { |
| Comment cmnt(masm_, "[ IfThen"); |
| ASSERT(!has_else_stm); |
| JumpTarget then; |
| // if (cond) |
| LoadCondition(node->condition(), &then, &exit, true); |
| if (frame_ != NULL) { |
| Branch(false, &exit); |
| } |
| // then |
| if (frame_ != NULL || then.is_linked()) { |
| then.Bind(); |
| Visit(node->then_statement()); |
| } |
| |
| } else if (has_else_stm) { |
| Comment cmnt(masm_, "[ IfElse"); |
| ASSERT(!has_then_stm); |
| JumpTarget else_; |
| // if (!cond) |
| LoadCondition(node->condition(), &exit, &else_, true); |
| if (frame_ != NULL) { |
| Branch(true, &exit); |
| } |
| // else |
| if (frame_ != NULL || else_.is_linked()) { |
| else_.Bind(); |
| Visit(node->else_statement()); |
| } |
| |
| } else { |
| Comment cmnt(masm_, "[ If"); |
| ASSERT(!has_then_stm && !has_else_stm); |
| // if (cond) |
| LoadCondition(node->condition(), &exit, &exit, false); |
| if (frame_ != NULL) { |
| if (has_cc()) { |
| cc_reg_ = al; |
| } else { |
| frame_->Drop(); |
| } |
| } |
| } |
| |
| // end |
| if (exit.is_linked()) { |
| exit.Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ ContinueStatement"); |
| CodeForStatementPosition(node); |
| node->target()->continue_target()->Jump(); |
| } |
| |
| |
| void CodeGenerator::VisitBreakStatement(BreakStatement* node) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ BreakStatement"); |
| CodeForStatementPosition(node); |
| node->target()->break_target()->Jump(); |
| } |
| |
| |
| void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ ReturnStatement"); |
| |
| CodeForStatementPosition(node); |
| Load(node->expression()); |
| if (function_return_is_shadowed_) { |
| frame_->EmitPop(r0); |
| function_return_.Jump(); |
| } else { |
| // Pop the result from the frame and prepare the frame for |
| // returning thus making it easier to merge. |
| frame_->EmitPop(r0); |
| frame_->PrepareForReturn(); |
| |
| function_return_.Jump(); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ WithEnterStatement"); |
| CodeForStatementPosition(node); |
| Load(node->expression()); |
| if (node->is_catch_block()) { |
| frame_->CallRuntime(Runtime::kPushCatchContext, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kPushContext, 1); |
| } |
| #ifdef DEBUG |
| JumpTarget verified_true; |
| __ cmp(r0, cp); |
| verified_true.Branch(eq); |
| __ stop("PushContext: r0 is expected to be the same as cp"); |
| verified_true.Bind(); |
| #endif |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ WithExitStatement"); |
| CodeForStatementPosition(node); |
| // Pop context. |
| __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX)); |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ SwitchStatement"); |
| CodeForStatementPosition(node); |
| node->break_target()->SetExpectedHeight(); |
| |
| Load(node->tag()); |
| |
| JumpTarget next_test; |
| JumpTarget fall_through; |
| JumpTarget default_entry; |
| JumpTarget default_exit(JumpTarget::BIDIRECTIONAL); |
| ZoneList<CaseClause*>* cases = node->cases(); |
| int length = cases->length(); |
| CaseClause* default_clause = NULL; |
| |
| for (int i = 0; i < length; i++) { |
| CaseClause* clause = cases->at(i); |
| if (clause->is_default()) { |
| // Remember the default clause and compile it at the end. |
| default_clause = clause; |
| continue; |
| } |
| |
| Comment cmnt(masm_, "[ Case clause"); |
| // Compile the test. |
| next_test.Bind(); |
| next_test.Unuse(); |
| // Duplicate TOS. |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); |
| Comparison(eq, NULL, clause->label(), true); |
| Branch(false, &next_test); |
| |
| // Before entering the body from the test, remove the switch value from |
| // the stack. |
| frame_->Drop(); |
| |
| // Label the body so that fall through is enabled. |
| if (i > 0 && cases->at(i - 1)->is_default()) { |
| default_exit.Bind(); |
| } else { |
| fall_through.Bind(); |
| fall_through.Unuse(); |
| } |
| VisitStatements(clause->statements()); |
| |
| // If control flow can fall through from the body, jump to the next body |
| // or the end of the statement. |
| if (frame_ != NULL) { |
| if (i < length - 1 && cases->at(i + 1)->is_default()) { |
| default_entry.Jump(); |
| } else { |
| fall_through.Jump(); |
| } |
| } |
| } |
| |
| // The final "test" removes the switch value. |
| next_test.Bind(); |
| frame_->Drop(); |
| |
| // If there is a default clause, compile it. |
| if (default_clause != NULL) { |
| Comment cmnt(masm_, "[ Default clause"); |
| default_entry.Bind(); |
| VisitStatements(default_clause->statements()); |
| // If control flow can fall out of the default and there is a case after |
| // it, jup to that case's body. |
| if (frame_ != NULL && default_exit.is_bound()) { |
| default_exit.Jump(); |
| } |
| } |
| |
| if (fall_through.is_linked()) { |
| fall_through.Bind(); |
| } |
| |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| node->break_target()->Unuse(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ DoWhileStatement"); |
| CodeForStatementPosition(node); |
| node->break_target()->SetExpectedHeight(); |
| JumpTarget body(JumpTarget::BIDIRECTIONAL); |
| IncrementLoopNesting(); |
| |
| // Label the top of the loop for the backward CFG edge. If the test |
| // is always true we can use the continue target, and if the test is |
| // always false there is no need. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| switch (info) { |
| case ALWAYS_TRUE: |
| node->continue_target()->SetExpectedHeight(); |
| node->continue_target()->Bind(); |
| break; |
| case ALWAYS_FALSE: |
| node->continue_target()->SetExpectedHeight(); |
| break; |
| case DONT_KNOW: |
| node->continue_target()->SetExpectedHeight(); |
| body.Bind(); |
| break; |
| } |
| |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| // Compile the test. |
| switch (info) { |
| case ALWAYS_TRUE: |
| // If control can fall off the end of the body, jump back to the |
| // top. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| break; |
| case ALWAYS_FALSE: |
| // If we have a continue in the body, we only have to bind its |
| // jump target. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| break; |
| case DONT_KNOW: |
| // We have to compile the test expression if it can be reached by |
| // control flow falling out of the body or via continue. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (has_valid_frame()) { |
| Comment cmnt(masm_, "[ DoWhileCondition"); |
| CodeForDoWhileConditionPosition(node); |
| LoadCondition(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| // A invalid frame here indicates that control did not |
| // fall out of the test expression. |
| Branch(true, &body); |
| } |
| } |
| break; |
| } |
| |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| DecrementLoopNesting(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitWhileStatement(WhileStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ WhileStatement"); |
| CodeForStatementPosition(node); |
| |
| // If the test is never true and has no side effects there is no need |
| // to compile the test or body. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| if (info == ALWAYS_FALSE) return; |
| |
| node->break_target()->SetExpectedHeight(); |
| IncrementLoopNesting(); |
| |
| // Label the top of the loop with the continue target for the backward |
| // CFG edge. |
| node->continue_target()->SetExpectedHeight(); |
| node->continue_target()->Bind(); |
| |
| if (info == DONT_KNOW) { |
| JumpTarget body; |
| LoadCondition(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| // A NULL frame indicates that control did not fall out of the |
| // test expression. |
| Branch(false, node->break_target()); |
| } |
| if (has_valid_frame() || body.is_linked()) { |
| body.Bind(); |
| } |
| } |
| |
| if (has_valid_frame()) { |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| // If control flow can fall out of the body, jump back to the top. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| DecrementLoopNesting(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitForStatement(ForStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ ForStatement"); |
| CodeForStatementPosition(node); |
| if (node->init() != NULL) { |
| Visit(node->init()); |
| } |
| |
| // If the test is never true there is no need to compile the test or |
| // body. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| if (info == ALWAYS_FALSE) return; |
| |
| node->break_target()->SetExpectedHeight(); |
| IncrementLoopNesting(); |
| |
| // We know that the loop index is a smi if it is not modified in the |
| // loop body and it is checked against a constant limit in the loop |
| // condition. In this case, we reset the static type information of the |
| // loop index to smi before compiling the body, the update expression, and |
| // the bottom check of the loop condition. |
| TypeInfoCodeGenState type_info_scope(this, |
| node->is_fast_smi_loop() ? |
| node->loop_variable()->slot() : |
| NULL, |
| TypeInfo::Smi()); |
| |
| // If there is no update statement, label the top of the loop with the |
| // continue target, otherwise with the loop target. |
| JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
| if (node->next() == NULL) { |
| node->continue_target()->SetExpectedHeight(); |
| node->continue_target()->Bind(); |
| } else { |
| node->continue_target()->SetExpectedHeight(); |
| loop.Bind(); |
| } |
| |
| // If the test is always true, there is no need to compile it. |
| if (info == DONT_KNOW) { |
| JumpTarget body; |
| LoadCondition(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| Branch(false, node->break_target()); |
| } |
| if (has_valid_frame() || body.is_linked()) { |
| body.Bind(); |
| } |
| } |
| |
| if (has_valid_frame()) { |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| if (node->next() == NULL) { |
| // If there is no update statement and control flow can fall out |
| // of the loop, jump directly to the continue label. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| } else { |
| // If there is an update statement and control flow can reach it |
| // via falling out of the body of the loop or continuing, we |
| // compile the update statement. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (has_valid_frame()) { |
| // Record source position of the statement as this code which is |
| // after the code for the body actually belongs to the loop |
| // statement and not the body. |
| CodeForStatementPosition(node); |
| Visit(node->next()); |
| loop.Jump(); |
| } |
| } |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| DecrementLoopNesting(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitForInStatement(ForInStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ ForInStatement"); |
| CodeForStatementPosition(node); |
| |
| JumpTarget primitive; |
| JumpTarget jsobject; |
| JumpTarget fixed_array; |
| JumpTarget entry(JumpTarget::BIDIRECTIONAL); |
| JumpTarget end_del_check; |
| JumpTarget exit; |
| |
| // Get the object to enumerate over (converted to JSObject). |
| Load(node->enumerable()); |
| |
| // Both SpiderMonkey and kjs ignore null and undefined in contrast |
| // to the specification. 12.6.4 mandates a call to ToObject. |
| frame_->EmitPop(r0); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, ip); |
| exit.Branch(eq); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r0, ip); |
| exit.Branch(eq); |
| |
| // Stack layout in body: |
| // [iteration counter (Smi)] |
| // [length of array] |
| // [FixedArray] |
| // [Map or 0] |
| // [Object] |
| |
| // Check if enumerable is already a JSObject |
| __ tst(r0, Operand(kSmiTagMask)); |
| primitive.Branch(eq); |
| __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); |
| jsobject.Branch(hs); |
| |
| primitive.Bind(); |
| frame_->EmitPush(r0); |
| frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, 1); |
| |
| jsobject.Bind(); |
| // Get the set of properties (as a FixedArray or Map). |
| // r0: value to be iterated over |
| frame_->EmitPush(r0); // Push the object being iterated over. |
| |
| // Check cache validity in generated code. This is a fast case for |
| // the JSObject::IsSimpleEnum cache validity checks. If we cannot |
| // guarantee cache validity, call the runtime system to check cache |
| // validity or get the property names in a fixed array. |
| JumpTarget call_runtime; |
| JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
| JumpTarget check_prototype; |
| JumpTarget use_cache; |
| __ mov(r1, Operand(r0)); |
| loop.Bind(); |
| // Check that there are no elements. |
| __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); |
| __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex); |
| __ cmp(r2, r4); |
| call_runtime.Branch(ne); |
| // Check that instance descriptors are not empty so that we can |
| // check for an enum cache. Leave the map in r3 for the subsequent |
| // prototype load. |
| __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldr(r2, FieldMemOperand(r3, Map::kInstanceDescriptorsOffset)); |
| __ LoadRoot(ip, Heap::kEmptyDescriptorArrayRootIndex); |
| __ cmp(r2, ip); |
| call_runtime.Branch(eq); |
| // Check that there in an enum cache in the non-empty instance |
| // descriptors. This is the case if the next enumeration index |
| // field does not contain a smi. |
| __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumerationIndexOffset)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| call_runtime.Branch(eq); |
| // For all objects but the receiver, check that the cache is empty. |
| // r4: empty fixed array root. |
| __ cmp(r1, r0); |
| check_prototype.Branch(eq); |
| __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| __ cmp(r2, r4); |
| call_runtime.Branch(ne); |
| check_prototype.Bind(); |
| // Load the prototype from the map and loop if non-null. |
| __ ldr(r1, FieldMemOperand(r3, Map::kPrototypeOffset)); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r1, ip); |
| loop.Branch(ne); |
| // The enum cache is valid. Load the map of the object being |
| // iterated over and use the cache for the iteration. |
| __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| use_cache.Jump(); |
| |
| call_runtime.Bind(); |
| // Call the runtime to get the property names for the object. |
| frame_->EmitPush(r0); // push the object (slot 4) for the runtime call |
| frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); |
| |
| // If we got a map from the runtime call, we can do a fast |
| // modification check. Otherwise, we got a fixed array, and we have |
| // to do a slow check. |
| // r0: map or fixed array (result from call to |
| // Runtime::kGetPropertyNamesFast) |
| __ mov(r2, Operand(r0)); |
| __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kMetaMapRootIndex); |
| __ cmp(r1, ip); |
| fixed_array.Branch(ne); |
| |
| use_cache.Bind(); |
| // Get enum cache |
| // r0: map (either the result from a call to |
| // Runtime::kGetPropertyNamesFast or has been fetched directly from |
| // the object) |
| __ mov(r1, Operand(r0)); |
| __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset)); |
| __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset)); |
| __ ldr(r2, |
| FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| |
| frame_->EmitPush(r0); // map |
| frame_->EmitPush(r2); // enum cache bridge cache |
| __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r0); |
| entry.Jump(); |
| |
| fixed_array.Bind(); |
| __ mov(r1, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r1); // insert 0 in place of Map |
| frame_->EmitPush(r0); |
| |
| // Push the length of the array and the initial index onto the stack. |
| __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(Smi::FromInt(0))); // init index |
| frame_->EmitPush(r0); |
| |
| // Condition. |
| entry.Bind(); |
| // sp[0] : index |
| // sp[1] : array/enum cache length |
| // sp[2] : array or enum cache |
| // sp[3] : 0 or map |
| // sp[4] : enumerable |
| // Grab the current frame's height for the break and continue |
| // targets only after all the state is pushed on the frame. |
| node->break_target()->SetExpectedHeight(); |
| node->continue_target()->SetExpectedHeight(); |
| |
| // Load the current count to r0, load the length to r1. |
| __ Ldrd(r0, r1, frame_->ElementAt(0)); |
| __ cmp(r0, r1); // compare to the array length |
| node->break_target()->Branch(hs); |
| |
| // Get the i'th entry of the array. |
| __ ldr(r2, frame_->ElementAt(2)); |
| __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| |
| // Get Map or 0. |
| __ ldr(r2, frame_->ElementAt(3)); |
| // Check if this (still) matches the map of the enumerable. |
| // If not, we have to filter the key. |
| __ ldr(r1, frame_->ElementAt(4)); |
| __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ cmp(r1, Operand(r2)); |
| end_del_check.Branch(eq); |
| |
| // Convert the entry to a string (or null if it isn't a property anymore). |
| __ ldr(r0, frame_->ElementAt(4)); // push enumerable |
| frame_->EmitPush(r0); |
| frame_->EmitPush(r3); // push entry |
| frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, 2); |
| __ mov(r3, Operand(r0)); |
| |
| // If the property has been removed while iterating, we just skip it. |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r3, ip); |
| node->continue_target()->Branch(eq); |
| |
| end_del_check.Bind(); |
| // Store the entry in the 'each' expression and take another spin in the |
| // loop. r3: i'th entry of the enum cache (or string there of) |
| frame_->EmitPush(r3); // push entry |
| { Reference each(this, node->each()); |
| if (!each.is_illegal()) { |
| if (each.size() > 0) { |
| __ ldr(r0, frame_->ElementAt(each.size())); |
| frame_->EmitPush(r0); |
| each.SetValue(NOT_CONST_INIT); |
| frame_->Drop(2); |
| } else { |
| // If the reference was to a slot we rely on the convenient property |
| // that it doesn't matter whether a value (eg, r3 pushed above) is |
| // right on top of or right underneath a zero-sized reference. |
| each.SetValue(NOT_CONST_INIT); |
| frame_->Drop(); |
| } |
| } |
| } |
| // Body. |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| // Next. Reestablish a spilled frame in case we are coming here via |
| // a continue in the body. |
| node->continue_target()->Bind(); |
| frame_->SpillAll(); |
| frame_->EmitPop(r0); |
| __ add(r0, r0, Operand(Smi::FromInt(1))); |
| frame_->EmitPush(r0); |
| entry.Jump(); |
| |
| // Cleanup. No need to spill because VirtualFrame::Drop is safe for |
| // any frame. |
| node->break_target()->Bind(); |
| frame_->Drop(5); |
| |
| // Exit. |
| exit.Bind(); |
| node->continue_target()->Unuse(); |
| node->break_target()->Unuse(); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ TryCatchStatement"); |
| CodeForStatementPosition(node); |
| |
| JumpTarget try_block; |
| JumpTarget exit; |
| |
| try_block.Call(); |
| // --- Catch block --- |
| frame_->EmitPush(r0); |
| |
| // Store the caught exception in the catch variable. |
| Variable* catch_var = node->catch_var()->var(); |
| ASSERT(catch_var != NULL && catch_var->slot() != NULL); |
| StoreToSlot(catch_var->slot(), NOT_CONST_INIT); |
| |
| // Remove the exception from the stack. |
| frame_->Drop(); |
| |
| VisitStatements(node->catch_block()->statements()); |
| if (frame_ != NULL) { |
| exit.Jump(); |
| } |
| |
| |
| // --- Try block --- |
| try_block.Bind(); |
| |
| frame_->PushTryHandler(TRY_CATCH_HANDLER); |
| int handler_height = frame_->height(); |
| |
| // Shadow the labels for all escapes from the try block, including |
| // returns. During shadowing, the original label is hidden as the |
| // LabelShadow and operations on the original actually affect the |
| // shadowing label. |
| // |
| // We should probably try to unify the escaping labels and the return |
| // label. |
| int nof_escapes = node->escaping_targets()->length(); |
| List<ShadowTarget*> shadows(1 + nof_escapes); |
| |
| // Add the shadow target for the function return. |
| static const int kReturnShadowIndex = 0; |
| shadows.Add(new ShadowTarget(&function_return_)); |
| bool function_return_was_shadowed = function_return_is_shadowed_; |
| function_return_is_shadowed_ = true; |
| ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
| |
| // Add the remaining shadow targets. |
| for (int i = 0; i < nof_escapes; i++) { |
| shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
| } |
| |
| // Generate code for the statements in the try block. |
| VisitStatements(node->try_block()->statements()); |
| |
| // Stop the introduced shadowing and count the number of required unlinks. |
| // After shadowing stops, the original labels are unshadowed and the |
| // LabelShadows represent the formerly shadowing labels. |
| bool has_unlinks = false; |
| for (int i = 0; i < shadows.length(); i++) { |
| shadows[i]->StopShadowing(); |
| has_unlinks = has_unlinks || shadows[i]->is_linked(); |
| } |
| function_return_is_shadowed_ = function_return_was_shadowed; |
| |
| // Get an external reference to the handler address. |
| ExternalReference handler_address(Top::k_handler_address); |
| |
| // If we can fall off the end of the try block, unlink from try chain. |
| if (has_valid_frame()) { |
| // The next handler address is on top of the frame. Unlink from |
| // the handler list and drop the rest of this handler from the |
| // frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ mov(r3, Operand(handler_address)); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| if (has_unlinks) { |
| exit.Jump(); |
| } |
| } |
| |
| // Generate unlink code for the (formerly) shadowing labels that have been |
| // jumped to. Deallocate each shadow target. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (shadows[i]->is_linked()) { |
| // Unlink from try chain; |
| shadows[i]->Bind(); |
| // Because we can be jumping here (to spilled code) from unspilled |
| // code, we need to reestablish a spilled frame at this block. |
| frame_->SpillAll(); |
| |
| // Reload sp from the top handler, because some statements that we |
| // break from (eg, for...in) may have left stuff on the stack. |
| __ mov(r3, Operand(handler_address)); |
| __ ldr(sp, MemOperand(r3)); |
| frame_->Forget(frame_->height() - handler_height); |
| |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
| frame_->PrepareForReturn(); |
| } |
| shadows[i]->other_target()->Jump(); |
| } |
| } |
| |
| exit.Bind(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ TryFinallyStatement"); |
| CodeForStatementPosition(node); |
| |
| // State: Used to keep track of reason for entering the finally |
| // block. Should probably be extended to hold information for |
| // break/continue from within the try block. |
| enum { FALLING, THROWING, JUMPING }; |
| |
| JumpTarget try_block; |
| JumpTarget finally_block; |
| |
| try_block.Call(); |
| |
| frame_->EmitPush(r0); // save exception object on the stack |
| // In case of thrown exceptions, this is where we continue. |
| __ mov(r2, Operand(Smi::FromInt(THROWING))); |
| finally_block.Jump(); |
| |
| // --- Try block --- |
| try_block.Bind(); |
| |
| frame_->PushTryHandler(TRY_FINALLY_HANDLER); |
| int handler_height = frame_->height(); |
| |
| // Shadow the labels for all escapes from the try block, including |
| // returns. Shadowing hides the original label as the LabelShadow and |
| // operations on the original actually affect the shadowing label. |
| // |
| // We should probably try to unify the escaping labels and the return |
| // label. |
| int nof_escapes = node->escaping_targets()->length(); |
| List<ShadowTarget*> shadows(1 + nof_escapes); |
| |
| // Add the shadow target for the function return. |
| static const int kReturnShadowIndex = 0; |
| shadows.Add(new ShadowTarget(&function_return_)); |
| bool function_return_was_shadowed = function_return_is_shadowed_; |
| function_return_is_shadowed_ = true; |
| ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
| |
| // Add the remaining shadow targets. |
| for (int i = 0; i < nof_escapes; i++) { |
| shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
| } |
| |
| // Generate code for the statements in the try block. |
| VisitStatements(node->try_block()->statements()); |
| |
| // Stop the introduced shadowing and count the number of required unlinks. |
| // After shadowing stops, the original labels are unshadowed and the |
| // LabelShadows represent the formerly shadowing labels. |
| int nof_unlinks = 0; |
| for (int i = 0; i < shadows.length(); i++) { |
| shadows[i]->StopShadowing(); |
| if (shadows[i]->is_linked()) nof_unlinks++; |
| } |
| function_return_is_shadowed_ = function_return_was_shadowed; |
| |
| // Get an external reference to the handler address. |
| ExternalReference handler_address(Top::k_handler_address); |
| |
| // If we can fall off the end of the try block, unlink from the try |
| // chain and set the state on the frame to FALLING. |
| if (has_valid_frame()) { |
| // The next handler address is on top of the frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ mov(r3, Operand(handler_address)); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| // Fake a top of stack value (unneeded when FALLING) and set the |
| // state in r2, then jump around the unlink blocks if any. |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r0); |
| __ mov(r2, Operand(Smi::FromInt(FALLING))); |
| if (nof_unlinks > 0) { |
| finally_block.Jump(); |
| } |
| } |
| |
| // Generate code to unlink and set the state for the (formerly) |
| // shadowing targets that have been jumped to. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (shadows[i]->is_linked()) { |
| // If we have come from the shadowed return, the return value is |
| // in (a non-refcounted reference to) r0. We must preserve it |
| // until it is pushed. |
| // |
| // Because we can be jumping here (to spilled code) from |
| // unspilled code, we need to reestablish a spilled frame at |
| // this block. |
| shadows[i]->Bind(); |
| frame_->SpillAll(); |
| |
| // Reload sp from the top handler, because some statements that |
| // we break from (eg, for...in) may have left stuff on the |
| // stack. |
| __ mov(r3, Operand(handler_address)); |
| __ ldr(sp, MemOperand(r3)); |
| frame_->Forget(frame_->height() - handler_height); |
| |
| // Unlink this handler and drop it from the frame. The next |
| // handler address is currently on top of the frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| if (i == kReturnShadowIndex) { |
| // If this label shadowed the function return, materialize the |
| // return value on the stack. |
| frame_->EmitPush(r0); |
| } else { |
| // Fake TOS for targets that shadowed breaks and continues. |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r0); |
| } |
| __ mov(r2, Operand(Smi::FromInt(JUMPING + i))); |
| if (--nof_unlinks > 0) { |
| // If this is not the last unlink block, jump around the next. |
| finally_block.Jump(); |
| } |
| } |
| } |
| |
| // --- Finally block --- |
| finally_block.Bind(); |
| |
| // Push the state on the stack. |
| frame_->EmitPush(r2); |
| |
| // We keep two elements on the stack - the (possibly faked) result |
| // and the state - while evaluating the finally block. |
| // |
| // Generate code for the statements in the finally block. |
| VisitStatements(node->finally_block()->statements()); |
| |
| if (has_valid_frame()) { |
| // Restore state and return value or faked TOS. |
| frame_->EmitPop(r2); |
| frame_->EmitPop(r0); |
| } |
| |
| // Generate code to jump to the right destination for all used |
| // formerly shadowing targets. Deallocate each shadow target. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (has_valid_frame() && shadows[i]->is_bound()) { |
| JumpTarget* original = shadows[i]->other_target(); |
| __ cmp(r2, Operand(Smi::FromInt(JUMPING + i))); |
| if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
| JumpTarget skip; |
| skip.Branch(ne); |
| frame_->PrepareForReturn(); |
| original->Jump(); |
| skip.Bind(); |
| } else { |
| original->Branch(eq); |
| } |
| } |
| } |
| |
| if (has_valid_frame()) { |
| // Check if we need to rethrow the exception. |
| JumpTarget exit; |
| __ cmp(r2, Operand(Smi::FromInt(THROWING))); |
| exit.Branch(ne); |
| |
| // Rethrow exception. |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kReThrow, 1); |
| |
| // Done. |
| exit.Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ DebuggerStatament"); |
| CodeForStatementPosition(node); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| frame_->DebugBreak(); |
| #endif |
| // Ignore the return value. |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::InstantiateFunction( |
| Handle<SharedFunctionInfo> function_info) { |
| // Use the fast case closure allocation code that allocates in new |
| // space for nested functions that don't need literals cloning. |
| if (scope()->is_function_scope() && function_info->num_literals() == 0) { |
| FastNewClosureStub stub; |
| frame_->EmitPush(Operand(function_info)); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 1); |
| frame_->EmitPush(r0); |
| } else { |
| // Create a new closure. |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(function_info)); |
| frame_->CallRuntime(Runtime::kNewClosure, 2); |
| frame_->EmitPush(r0); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ FunctionLiteral"); |
| |
| // Build the function info and instantiate it. |
| Handle<SharedFunctionInfo> function_info = |
| Compiler::BuildFunctionInfo(node, script(), this); |
| // Check for stack-overflow exception. |
| if (HasStackOverflow()) { |
| ASSERT(frame_->height() == original_height); |
| return; |
| } |
| InstantiateFunction(function_info); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitSharedFunctionInfoLiteral( |
| SharedFunctionInfoLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); |
| InstantiateFunction(node->shared_function_info()); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitConditional(Conditional* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ Conditional"); |
| JumpTarget then; |
| JumpTarget else_; |
| LoadCondition(node->condition(), &then, &else_, true); |
| if (has_valid_frame()) { |
| Branch(false, &else_); |
| } |
| if (has_valid_frame() || then.is_linked()) { |
| then.Bind(); |
| Load(node->then_expression()); |
| } |
| if (else_.is_linked()) { |
| JumpTarget exit; |
| if (has_valid_frame()) exit.Jump(); |
| else_.Bind(); |
| Load(node->else_expression()); |
| if (exit.is_linked()) exit.Bind(); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
| if (slot->type() == Slot::LOOKUP) { |
| ASSERT(slot->var()->is_dynamic()); |
| |
| // JumpTargets do not yet support merging frames so the frame must be |
| // spilled when jumping to these targets. |
| JumpTarget slow; |
| JumpTarget done; |
| |
| // Generate fast case for loading from slots that correspond to |
| // local/global variables or arguments unless they are shadowed by |
| // eval-introduced bindings. |
| EmitDynamicLoadFromSlotFastCase(slot, |
| typeof_state, |
| &slow, |
| &done); |
| |
| slow.Bind(); |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(slot->var()->name())); |
| frame_->EmitPush(r0); |
| |
| if (typeof_state == INSIDE_TYPEOF) { |
| frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
| } else { |
| frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
| } |
| |
| done.Bind(); |
| frame_->EmitPush(r0); |
| |
| } else { |
| Register scratch = VirtualFrame::scratch0(); |
| TypeInfo info = type_info(slot); |
| frame_->EmitPush(SlotOperand(slot, scratch), info); |
| if (slot->var()->mode() == Variable::CONST) { |
| // Const slots may contain 'the hole' value (the constant hasn't been |
| // initialized yet) which needs to be converted into the 'undefined' |
| // value. |
| Comment cmnt(masm_, "[ Unhole const"); |
| frame_->EmitPop(scratch); |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(scratch, ip); |
| __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex, eq); |
| frame_->EmitPush(scratch); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, |
| TypeofState state) { |
| LoadFromSlot(slot, state); |
| |
| // Bail out quickly if we're not using lazy arguments allocation. |
| if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; |
| |
| // ... or if the slot isn't a non-parameter arguments slot. |
| if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| // Load the loaded value from the stack into r0 but leave it on the |
| // stack. |
| __ ldr(r0, MemOperand(sp, 0)); |
| |
| // If the loaded value is the sentinel that indicates that we |
| // haven't loaded the arguments object yet, we need to do it now. |
| JumpTarget exit; |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(r0, ip); |
| exit.Branch(ne); |
| frame_->Drop(); |
| StoreArgumentsObject(false); |
| exit.Bind(); |
| } |
| |
| |
| void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { |
| ASSERT(slot != NULL); |
| if (slot->type() == Slot::LOOKUP) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| ASSERT(slot->var()->is_dynamic()); |
| |
| // For now, just do a runtime call. |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(slot->var()->name())); |
| frame_->EmitPush(r0); |
| |
| if (init_state == CONST_INIT) { |
| // Same as the case for a normal store, but ignores attribute |
| // (e.g. READ_ONLY) of context slot so that we can initialize |
| // const properties (introduced via eval("const foo = (some |
| // expr);")). Also, uses the current function context instead of |
| // the top context. |
| // |
| // Note that we must declare the foo upon entry of eval(), via a |
| // context slot declaration, but we cannot initialize it at the |
| // same time, because the const declaration may be at the end of |
| // the eval code (sigh...) and the const variable may have been |
| // used before (where its value is 'undefined'). Thus, we can only |
| // do the initialization when we actually encounter the expression |
| // and when the expression operands are defined and valid, and |
| // thus we need the split into 2 operations: declaration of the |
| // context slot followed by initialization. |
| frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
| } else { |
| frame_->CallRuntime(Runtime::kStoreContextSlot, 3); |
| } |
| // Storing a variable must keep the (new) value on the expression |
| // stack. This is necessary for compiling assignment expressions. |
| frame_->EmitPush(r0); |
| |
| } else { |
| ASSERT(!slot->var()->is_dynamic()); |
| Register scratch = VirtualFrame::scratch0(); |
| VirtualFrame::RegisterAllocationScope scope(this); |
| |
| // The frame must be spilled when branching to this target. |
| JumpTarget exit; |
| |
| if (init_state == CONST_INIT) { |
| ASSERT(slot->var()->mode() == Variable::CONST); |
| // Only the first const initialization must be executed (the slot |
| // still contains 'the hole' value). When the assignment is |
| // executed, the code is identical to a normal store (see below). |
| Comment cmnt(masm_, "[ Init const"); |
| __ ldr(scratch, SlotOperand(slot, scratch)); |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(scratch, ip); |
| frame_->SpillAll(); |
| exit.Branch(ne); |
| } |
| |
| // We must execute the store. Storing a variable must keep the |
| // (new) value on the stack. This is necessary for compiling |
| // assignment expressions. |
| // |
| // Note: We will reach here even with slot->var()->mode() == |
| // Variable::CONST because of const declarations which will |
| // initialize consts to 'the hole' value and by doing so, end up |
| // calling this code. r2 may be loaded with context; used below in |
| // RecordWrite. |
| Register tos = frame_->Peek(); |
| __ str(tos, SlotOperand(slot, scratch)); |
| if (slot->type() == Slot::CONTEXT) { |
| // Skip write barrier if the written value is a smi. |
| __ tst(tos, Operand(kSmiTagMask)); |
| // We don't use tos any more after here. |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| exit.Branch(eq); |
| // scratch is loaded with context when calling SlotOperand above. |
| int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
| __ mov(r3, Operand(offset)); |
| // r1 could be identical with tos, but that doesn't matter. |
| __ RecordWrite(scratch, r3, r1); |
| } |
| // If we definitely did not jump over the assignment, we do not need |
| // to bind the exit label. Doing so can defeat peephole |
| // optimization. |
| if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) { |
| frame_->SpillAll(); |
| exit.Bind(); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot, |
| TypeofState typeof_state, |
| JumpTarget* slow) { |
| // Check that no extension objects have been created by calls to |
| // eval from the current scope to the global scope. |
| Register tmp = frame_->scratch0(); |
| Register tmp2 = frame_->scratch1(); |
| Register context = cp; |
| Scope* s = scope(); |
| while (s != NULL) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| frame_->SpillAll(); |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| } |
| // Load next context in chain. |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| // If no outer scope calls eval, we do not need to check more |
| // context extensions. |
| if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
| s = s->outer_scope(); |
| } |
| |
| if (s->is_eval_scope()) { |
| frame_->SpillAll(); |
| Label next, fast; |
| __ Move(tmp, context); |
| __ bind(&next); |
| // Terminate at global context. |
| __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kGlobalContextMapRootIndex); |
| __ cmp(tmp2, ip); |
| __ b(eq, &fast); |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| // Load next context in chain. |
| __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| __ b(&next); |
| __ bind(&fast); |
| } |
| |
| // Load the global object. |
| LoadGlobal(); |
| // Setup the name register and call load IC. |
| frame_->CallLoadIC(slot->var()->name(), |
| typeof_state == INSIDE_TYPEOF |
| ? RelocInfo::CODE_TARGET |
| : RelocInfo::CODE_TARGET_CONTEXT); |
| } |
| |
| |
| void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, |
| TypeofState typeof_state, |
| JumpTarget* slow, |
| JumpTarget* done) { |
| // Generate fast-case code for variables that might be shadowed by |
| // eval-introduced variables. Eval is used a lot without |
| // introducing variables. In those cases, we do not want to |
| // perform a runtime call for all variables in the scope |
| // containing the eval. |
| if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
| LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); |
| frame_->SpillAll(); |
| done->Jump(); |
| |
| } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
| frame_->SpillAll(); |
| Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); |
| Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); |
| if (potential_slot != NULL) { |
| // Generate fast case for locals that rewrite to slots. |
| __ ldr(r0, |
| ContextSlotOperandCheckExtensions(potential_slot, |
| r1, |
| r2, |
| slow)); |
| if (potential_slot->var()->mode() == Variable::CONST) { |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(r0, ip); |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); |
| } |
| done->Jump(); |
| } else if (rewrite != NULL) { |
| // Generate fast case for argument loads. |
| Property* property = rewrite->AsProperty(); |
| if (property != NULL) { |
| VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); |
| Literal* key_literal = property->key()->AsLiteral(); |
| if (obj_proxy != NULL && |
| key_literal != NULL && |
| obj_proxy->IsArguments() && |
| key_literal->handle()->IsSmi()) { |
| // Load arguments object if there are no eval-introduced |
| // variables. Then load the argument from the arguments |
| // object using keyed load. |
| __ ldr(r0, |
| ContextSlotOperandCheckExtensions(obj_proxy->var()->slot(), |
| r1, |
| r2, |
| slow)); |
| frame_->EmitPush(r0); |
| __ mov(r1, Operand(key_literal->handle())); |
| frame_->EmitPush(r1); |
| EmitKeyedLoad(); |
| done->Jump(); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::VisitSlot(Slot* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Slot"); |
| LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitVariableProxy(VariableProxy* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ VariableProxy"); |
| |
| Variable* var = node->var(); |
| Expression* expr = var->rewrite(); |
| if (expr != NULL) { |
| Visit(expr); |
| } else { |
| ASSERT(var->is_global()); |
| Reference ref(this, node); |
| ref.GetValue(); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitLiteral(Literal* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Literal"); |
| Register reg = frame_->GetTOSRegister(); |
| bool is_smi = node->handle()->IsSmi(); |
| __ mov(reg, Operand(node->handle())); |
| frame_->EmitPush(reg, is_smi ? TypeInfo::Smi() : TypeInfo::Unknown()); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ RexExp Literal"); |
| |
| // Retrieve the literal array and check the allocated entry. |
| |
| // Load the function of this activation. |
| __ ldr(r1, frame_->Function()); |
| |
| // Load the literals array of the function. |
| __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset)); |
| |
| // Load the literal at the ast saved index. |
| int literal_offset = |
| FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
| __ ldr(r2, FieldMemOperand(r1, literal_offset)); |
| |
| JumpTarget done; |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r2, ip); |
| done.Branch(ne); |
| |
| // If the entry is undefined we call the runtime system to computed |
| // the literal. |
| frame_->EmitPush(r1); // literal array (0) |
| __ mov(r0, Operand(Smi::FromInt(node->literal_index()))); |
| frame_->EmitPush(r0); // literal index (1) |
| __ mov(r0, Operand(node->pattern())); // RegExp pattern (2) |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(node->flags())); // RegExp flags (3) |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); |
| __ mov(r2, Operand(r0)); |
| |
| done.Bind(); |
| // Push the literal. |
| frame_->EmitPush(r2); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ ObjectLiteral"); |
| |
| // Load the function of this activation. |
| __ ldr(r3, frame_->Function()); |
| // Literal array. |
| __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); |
| // Literal index. |
| __ mov(r2, Operand(Smi::FromInt(node->literal_index()))); |
| // Constant properties. |
| __ mov(r1, Operand(node->constant_properties())); |
| // Should the object literal have fast elements? |
| __ mov(r0, Operand(Smi::FromInt(node->fast_elements() ? 1 : 0))); |
| frame_->EmitPushMultiple(4, r3.bit() | r2.bit() | r1.bit() | r0.bit()); |
| if (node->depth() > 1) { |
| frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); |
| } else { |
| frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); |
| } |
| frame_->EmitPush(r0); // save the result |
| for (int i = 0; i < node->properties()->length(); i++) { |
| // At the start of each iteration, the top of stack contains |
| // the newly created object literal. |
| ObjectLiteral::Property* property = node->properties()->at(i); |
| Literal* key = property->key(); |
| Expression* value = property->value(); |
| switch (property->kind()) { |
| case ObjectLiteral::Property::CONSTANT: |
| break; |
| case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
| if (CompileTimeValue::IsCompileTimeValue(property->value())) break; |
| // else fall through |
| case ObjectLiteral::Property::COMPUTED: |
| if (key->handle()->IsSymbol()) { |
| Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); |
| Load(value); |
| frame_->EmitPop(r0); |
| __ mov(r2, Operand(key->handle())); |
| __ ldr(r1, frame_->Top()); // Load the receiver. |
| frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); |
| break; |
| } |
| // else fall through |
| case ObjectLiteral::Property::PROTOTYPE: { |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); // dup the result |
| Load(key); |
| Load(value); |
| frame_->CallRuntime(Runtime::kSetProperty, 3); |
| break; |
| } |
| case ObjectLiteral::Property::SETTER: { |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); |
| Load(key); |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| frame_->EmitPush(r0); |
| Load(value); |
| frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
| break; |
| } |
| case ObjectLiteral::Property::GETTER: { |
| __ ldr(r0, frame_->Top()); |
| frame_->EmitPush(r0); |
| Load(key); |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r0); |
| Load(value); |
| frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
| break; |
| } |
| } |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ ArrayLiteral"); |
| |
| // Load the function of this activation. |
| __ ldr(r2, frame_->Function()); |
| // Load the literals array of the function. |
| __ ldr(r2, FieldMemOperand(r2, JSFunction::kLiteralsOffset)); |
| __ mov(r1, Operand(Smi::FromInt(node->literal_index()))); |
| __ mov(r0, Operand(node->constant_elements())); |
| frame_->EmitPushMultiple(3, r2.bit() | r1.bit() | r0.bit()); |
| int length = node->values()->length(); |
| if (node->depth() > 1) { |
| frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); |
| } else if (length > FastCloneShallowArrayStub::kMaximumLength) { |
| frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); |
| } else { |
| FastCloneShallowArrayStub stub(length); |
| frame_->CallStub(&stub, 3); |
| } |
| frame_->EmitPush(r0); // save the result |
| // r0: created object literal |
| |
| // Generate code to set the elements in the array that are not |
| // literals. |
| for (int i = 0; i < node->values()->length(); i++) { |
| Expression* value = node->values()->at(i); |
| |
| // If value is a literal the property value is already set in the |
| // boilerplate object. |
| if (value->AsLiteral() != NULL) continue; |
| // If value is a materialized literal the property value is already set |
| // in the boilerplate object if it is simple. |
| if (CompileTimeValue::IsCompileTimeValue(value)) continue; |
| |
| // The property must be set by generated code. |
| Load(value); |
| frame_->EmitPop(r0); |
| |
| // Fetch the object literal. |
| __ ldr(r1, frame_->Top()); |
| // Get the elements array. |
| __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); |
| |
| // Write to the indexed properties array. |
| int offset = i * kPointerSize + FixedArray::kHeaderSize; |
| __ str(r0, FieldMemOperand(r1, offset)); |
| |
| // Update the write barrier for the array address. |
| __ mov(r3, Operand(offset)); |
| __ RecordWrite(r1, r3, r2); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| // Call runtime routine to allocate the catch extension object and |
| // assign the exception value to the catch variable. |
| Comment cmnt(masm_, "[ CatchExtensionObject"); |
| Load(node->key()); |
| Load(node->value()); |
| frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); |
| frame_->EmitPush(r0); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::EmitSlotAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm(), "[ Variable Assignment"); |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| ASSERT(var != NULL); |
| Slot* slot = var->slot(); |
| ASSERT(slot != NULL); |
| |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| // For a compound assignment the right-hand side is a binary operation |
| // between the current property value and the actual right-hand side. |
| LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
| |
| // Perform the binary operation. |
| Literal* literal = node->value()->AsLiteral(); |
| bool overwrite_value = |
| (node->value()->AsBinaryOperation() != NULL && |
| node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| if (literal != NULL && literal->handle()->IsSmi()) { |
| SmiOperation(node->binary_op(), |
| literal->handle(), |
| false, |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| GenerateInlineSmi inline_smi = |
| loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
| if (literal != NULL) { |
| ASSERT(!literal->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| Load(node->value()); |
| GenericBinaryOperation(node->binary_op(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
| inline_smi); |
| } |
| } else { |
| Load(node->value()); |
| } |
| |
| // Perform the assignment. |
| if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { |
| CodeForSourcePosition(node->position()); |
| StoreToSlot(slot, |
| node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm(), "[ Named Property Assignment"); |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| Property* prop = node->target()->AsProperty(); |
| ASSERT(var == NULL || (prop == NULL && var->is_global())); |
| |
| // Initialize name and evaluate the receiver sub-expression if necessary. If |
| // the receiver is trivial it is not placed on the stack at this point, but |
| // loaded whenever actually needed. |
| Handle<String> name; |
| bool is_trivial_receiver = false; |
| if (var != NULL) { |
| name = var->name(); |
| } else { |
| Literal* lit = prop->key()->AsLiteral(); |
| ASSERT_NOT_NULL(lit); |
| name = Handle<String>::cast(lit->handle()); |
| // Do not materialize the receiver on the frame if it is trivial. |
| is_trivial_receiver = prop->obj()->IsTrivial(); |
| if (!is_trivial_receiver) Load(prop->obj()); |
| } |
| |
| // Change to slow case in the beginning of an initialization block to |
| // avoid the quadratic behavior of repeatedly adding fast properties. |
| if (node->starts_initialization_block()) { |
| // Initialization block consists of assignments of the form expr.x = ..., so |
| // this will never be an assignment to a variable, so there must be a |
| // receiver object. |
| ASSERT_EQ(NULL, var); |
| if (is_trivial_receiver) { |
| Load(prop->obj()); |
| } else { |
| frame_->Dup(); |
| } |
| frame_->CallRuntime(Runtime::kToSlowProperties, 1); |
| } |
| |
| // Change to fast case at the end of an initialization block. To prepare for |
| // that add an extra copy of the receiver to the frame, so that it can be |
| // converted back to fast case after the assignment. |
| if (node->ends_initialization_block() && !is_trivial_receiver) { |
| frame_->Dup(); |
| } |
| |
| // Stack layout: |
| // [tos] : receiver (only materialized if non-trivial) |
| // [tos+1] : receiver if at the end of an initialization block |
| |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| // For a compound assignment the right-hand side is a binary operation |
| // between the current property value and the actual right-hand side. |
| if (is_trivial_receiver) { |
| Load(prop->obj()); |
| } else if (var != NULL) { |
| LoadGlobal(); |
| } else { |
| frame_->Dup(); |
| } |
| EmitNamedLoad(name, var != NULL); |
| |
| // Perform the binary operation. |
| Literal* literal = node->value()->AsLiteral(); |
| bool overwrite_value = |
| (node->value()->AsBinaryOperation() != NULL && |
| node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| if (literal != NULL && literal->handle()->IsSmi()) { |
| SmiOperation(node->binary_op(), |
| literal->handle(), |
| false, |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| GenerateInlineSmi inline_smi = |
| loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
| if (literal != NULL) { |
| ASSERT(!literal->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| Load(node->value()); |
| GenericBinaryOperation(node->binary_op(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
| inline_smi); |
| } |
| } else { |
| // For non-compound assignment just load the right-hand side. |
| Load(node->value()); |
| } |
| |
| // Stack layout: |
| // [tos] : value |
| // [tos+1] : receiver (only materialized if non-trivial) |
| // [tos+2] : receiver if at the end of an initialization block |
| |
| // Perform the assignment. It is safe to ignore constants here. |
| ASSERT(var == NULL || var->mode() != Variable::CONST); |
| ASSERT_NE(Token::INIT_CONST, node->op()); |
| if (is_trivial_receiver) { |
| // Load the receiver and swap with the value. |
| Load(prop->obj()); |
| Register t0 = frame_->PopToRegister(); |
| Register t1 = frame_->PopToRegister(t0); |
| frame_->EmitPush(t0); |
| frame_->EmitPush(t1); |
| } |
| CodeForSourcePosition(node->position()); |
| bool is_contextual = (var != NULL); |
| EmitNamedStore(name, is_contextual); |
| frame_->EmitPush(r0); |
| |
| // Change to fast case at the end of an initialization block. |
| if (node->ends_initialization_block()) { |
| ASSERT_EQ(NULL, var); |
| // The argument to the runtime call is the receiver. |
| if (is_trivial_receiver) { |
| Load(prop->obj()); |
| } else { |
| // A copy of the receiver is below the value of the assignment. Swap |
| // the receiver and the value of the assignment expression. |
| Register t0 = frame_->PopToRegister(); |
| Register t1 = frame_->PopToRegister(t0); |
| frame_->EmitPush(t0); |
| frame_->EmitPush(t1); |
| } |
| frame_->CallRuntime(Runtime::kToFastProperties, 1); |
| } |
| |
| // Stack layout: |
| // [tos] : result |
| |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Keyed Property Assignment"); |
| Property* prop = node->target()->AsProperty(); |
| ASSERT_NOT_NULL(prop); |
| |
| // Evaluate the receiver subexpression. |
| Load(prop->obj()); |
| |
| // Change to slow case in the beginning of an initialization block to |
| // avoid the quadratic behavior of repeatedly adding fast properties. |
| if (node->starts_initialization_block()) { |
| frame_->Dup(); |
| frame_->CallRuntime(Runtime::kToSlowProperties, 1); |
| } |
| |
| // Change to fast case at the end of an initialization block. To prepare for |
| // that add an extra copy of the receiver to the frame, so that it can be |
| // converted back to fast case after the assignment. |
| if (node->ends_initialization_block()) { |
| frame_->Dup(); |
| } |
| |
| // Evaluate the key subexpression. |
| Load(prop->key()); |
| |
| // Stack layout: |
| // [tos] : key |
| // [tos+1] : receiver |
| // [tos+2] : receiver if at the end of an initialization block |
| |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| // For a compound assignment the right-hand side is a binary operation |
| // between the current property value and the actual right-hand side. |
| // Duplicate receiver and key for loading the current property value. |
| frame_->Dup2(); |
| EmitKeyedLoad(); |
| frame_->EmitPush(r0); |
| |
| // Perform the binary operation. |
| Literal* literal = node->value()->AsLiteral(); |
| bool overwrite_value = |
| (node->value()->AsBinaryOperation() != NULL && |
| node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| if (literal != NULL && literal->handle()->IsSmi()) { |
| SmiOperation(node->binary_op(), |
| literal->handle(), |
| false, |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| GenerateInlineSmi inline_smi = |
| loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
| if (literal != NULL) { |
| ASSERT(!literal->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| Load(node->value()); |
| GenericBinaryOperation(node->binary_op(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
| inline_smi); |
| } |
| } else { |
| // For non-compound assignment just load the right-hand side. |
| Load(node->value()); |
| } |
| |
| // Stack layout: |
| // [tos] : value |
| // [tos+1] : key |
| // [tos+2] : receiver |
| // [tos+3] : receiver if at the end of an initialization block |
| |
| // Perform the assignment. It is safe to ignore constants here. |
| ASSERT(node->op() != Token::INIT_CONST); |
| CodeForSourcePosition(node->position()); |
| EmitKeyedStore(prop->key()->type()); |
| frame_->EmitPush(r0); |
| |
| // Stack layout: |
| // [tos] : result |
| // [tos+1] : receiver if at the end of an initialization block |
| |
| // Change to fast case at the end of an initialization block. |
| if (node->ends_initialization_block()) { |
| // The argument to the runtime call is the extra copy of the receiver, |
| // which is below the value of the assignment. Swap the receiver and |
| // the value of the assignment expression. |
| Register t0 = frame_->PopToRegister(); |
| Register t1 = frame_->PopToRegister(t0); |
| frame_->EmitPush(t1); |
| frame_->EmitPush(t0); |
| frame_->CallRuntime(Runtime::kToFastProperties, 1); |
| } |
| |
| // Stack layout: |
| // [tos] : result |
| |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitAssignment(Assignment* node) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Assignment"); |
| |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| Property* prop = node->target()->AsProperty(); |
| |
| if (var != NULL && !var->is_global()) { |
| EmitSlotAssignment(node); |
| |
| } else if ((prop != NULL && prop->key()->IsPropertyName()) || |
| (var != NULL && var->is_global())) { |
| // Properties whose keys are property names and global variables are |
| // treated as named property references. We do not need to consider |
| // global 'this' because it is not a valid left-hand side. |
| EmitNamedPropertyAssignment(node); |
| |
| } else if (prop != NULL) { |
| // Other properties (including rewritten parameters for a function that |
| // uses arguments) are keyed property assignments. |
| EmitKeyedPropertyAssignment(node); |
| |
| } else { |
| // Invalid left-hand side. |
| Load(node->target()); |
| frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
| // The runtime call doesn't actually return but the code generator will |
| // still generate code and expects a certain frame height. |
| frame_->EmitPush(r0); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitThrow(Throw* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Throw"); |
| |
| Load(node->exception()); |
| CodeForSourcePosition(node->position()); |
| frame_->CallRuntime(Runtime::kThrow, 1); |
| frame_->EmitPush(r0); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitProperty(Property* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Property"); |
| |
| { Reference property(this, node); |
| property.GetValue(); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitCall(Call* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Call"); |
| |
| Expression* function = node->expression(); |
| ZoneList<Expression*>* args = node->arguments(); |
| |
| // Standard function call. |
| // Check if the function is a variable or a property. |
| Variable* var = function->AsVariableProxy()->AsVariable(); |
| Property* property = function->AsProperty(); |
| |
| // ------------------------------------------------------------------------ |
| // Fast-case: Use inline caching. |
| // --- |
| // According to ECMA-262, section 11.2.3, page 44, the function to call |
| // must be resolved after the arguments have been evaluated. The IC code |
| // automatically handles this by loading the arguments before the function |
| // is resolved in cache misses (this also holds for megamorphic calls). |
| // ------------------------------------------------------------------------ |
| |
| if (var != NULL && var->is_possibly_eval()) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| // ---------------------------------- |
| // JavaScript example: 'eval(arg)' // eval is not known to be shadowed |
| // ---------------------------------- |
| |
| // In a call to eval, we first call %ResolvePossiblyDirectEval to |
| // resolve the function we need to call and the receiver of the |
| // call. Then we call the resolved function using the given |
| // arguments. |
| |
| // Prepare stack for call to resolved function. |
| Load(function); |
| |
| // Allocate a frame slot for the receiver. |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r2); |
| |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // If we know that eval can only be shadowed by eval-introduced |
| // variables we attempt to load the global eval function directly |
| // in generated code. If we succeed, there is no need to perform a |
| // context lookup in the runtime system. |
| JumpTarget done; |
| if (var->slot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { |
| ASSERT(var->slot()->type() == Slot::LOOKUP); |
| JumpTarget slow; |
| // Prepare the stack for the call to |
| // ResolvePossiblyDirectEvalNoLookup by pushing the loaded |
| // function, the first argument to the eval call and the |
| // receiver. |
| LoadFromGlobalSlotCheckExtensions(var->slot(), |
| NOT_INSIDE_TYPEOF, |
| &slow); |
| frame_->EmitPush(r0); |
| if (arg_count > 0) { |
| __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); |
| frame_->EmitPush(r1); |
| } else { |
| frame_->EmitPush(r2); |
| } |
| __ ldr(r1, frame_->Receiver()); |
| frame_->EmitPush(r1); |
| |
| frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 3); |
| |
| done.Jump(); |
| slow.Bind(); |
| } |
| |
| // Prepare the stack for the call to ResolvePossiblyDirectEval by |
| // pushing the loaded function, the first argument to the eval |
| // call and the receiver. |
| __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize)); |
| frame_->EmitPush(r1); |
| if (arg_count > 0) { |
| __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); |
| frame_->EmitPush(r1); |
| } else { |
| frame_->EmitPush(r2); |
| } |
| __ ldr(r1, frame_->Receiver()); |
| frame_->EmitPush(r1); |
| |
| // Resolve the call. |
| frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); |
| |
| // If we generated fast-case code bind the jump-target where fast |
| // and slow case merge. |
| if (done.is_linked()) done.Bind(); |
| |
| // Touch up stack with the right values for the function and the receiver. |
| __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); |
| __ str(r1, MemOperand(sp, arg_count * kPointerSize)); |
| |
| // Call the function. |
| CodeForSourcePosition(node->position()); |
| |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); |
| frame_->CallStub(&call_function, arg_count + 1); |
| |
| __ ldr(cp, frame_->Context()); |
| // Remove the function from the stack. |
| frame_->Drop(); |
| frame_->EmitPush(r0); |
| |
| } else if (var != NULL && !var->is_this() && var->is_global()) { |
| // ---------------------------------- |
| // JavaScript example: 'foo(1, 2, 3)' // foo is global |
| // ---------------------------------- |
| // Pass the global object as the receiver and let the IC stub |
| // patch the stack to use the global proxy as 'this' in the |
| // invoked function. |
| LoadGlobal(); |
| |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| // Setup the name register and call the IC initialization code. |
| __ mov(r2, Operand(var->name())); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop); |
| CodeForSourcePosition(node->position()); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT, |
| arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| |
| } else if (var != NULL && var->slot() != NULL && |
| var->slot()->type() == Slot::LOOKUP) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| // ---------------------------------- |
| // JavaScript examples: |
| // |
| // with (obj) foo(1, 2, 3) // foo may be in obj. |
| // |
| // function f() {}; |
| // function g() { |
| // eval(...); |
| // f(); // f could be in extension object. |
| // } |
| // ---------------------------------- |
| |
| // JumpTargets do not yet support merging frames so the frame must be |
| // spilled when jumping to these targets. |
| JumpTarget slow, done; |
| |
| // Generate fast case for loading functions from slots that |
| // correspond to local/global variables or arguments unless they |
| // are shadowed by eval-introduced bindings. |
| EmitDynamicLoadFromSlotFastCase(var->slot(), |
| NOT_INSIDE_TYPEOF, |
| &slow, |
| &done); |
| |
| slow.Bind(); |
| // Load the function |
| frame_->EmitPush(cp); |
| __ mov(r0, Operand(var->name())); |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
| // r0: slot value; r1: receiver |
| |
| // Load the receiver. |
| frame_->EmitPush(r0); // function |
| frame_->EmitPush(r1); // receiver |
| |
| // If fast case code has been generated, emit code to push the |
| // function and receiver and have the slow path jump around this |
| // code. |
| if (done.is_linked()) { |
| JumpTarget call; |
| call.Jump(); |
| done.Bind(); |
| frame_->EmitPush(r0); // function |
| LoadGlobalReceiver(r1); // receiver |
| call.Bind(); |
| } |
| |
| // Call the function. At this point, everything is spilled but the |
| // function and receiver are in r0 and r1. |
| CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
| frame_->EmitPush(r0); |
| |
| } else if (property != NULL) { |
| // Check if the key is a literal string. |
| Literal* literal = property->key()->AsLiteral(); |
| |
| if (literal != NULL && literal->handle()->IsSymbol()) { |
| // ------------------------------------------------------------------ |
| // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' |
| // ------------------------------------------------------------------ |
| |
| Handle<String> name = Handle<String>::cast(literal->handle()); |
| |
| if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && |
| name->IsEqualTo(CStrVector("apply")) && |
| args->length() == 2 && |
| args->at(1)->AsVariableProxy() != NULL && |
| args->at(1)->AsVariableProxy()->IsArguments()) { |
| // Use the optimized Function.prototype.apply that avoids |
| // allocating lazily allocated arguments objects. |
| CallApplyLazy(property->obj(), |
| args->at(0), |
| args->at(1)->AsVariableProxy(), |
| node->position()); |
| |
| } else { |
| Load(property->obj()); // Receiver. |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| // Set the name register and call the IC initialization code. |
| __ mov(r2, Operand(name)); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop); |
| CodeForSourcePosition(node->position()); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| } |
| |
| } else { |
| // ------------------------------------------- |
| // JavaScript example: 'array[index](1, 2, 3)' |
| // ------------------------------------------- |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| Load(property->obj()); |
| if (!property->is_synthetic()) { |
| // Duplicate receiver for later use. |
| __ ldr(r0, MemOperand(sp, 0)); |
| frame_->EmitPush(r0); |
| } |
| Load(property->key()); |
| EmitKeyedLoad(); |
| // Put the function below the receiver. |
| if (property->is_synthetic()) { |
| // Use the global receiver. |
| frame_->EmitPush(r0); // Function. |
| LoadGlobalReceiver(r0); |
| } else { |
| // Switch receiver and function. |
| frame_->EmitPop(r1); // Receiver. |
| frame_->EmitPush(r0); // Function. |
| frame_->EmitPush(r1); // Receiver. |
| } |
| |
| // Call the function. |
| CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); |
| frame_->EmitPush(r0); |
| } |
| |
| } else { |
| // ---------------------------------- |
| // JavaScript example: 'foo(1, 2, 3)' // foo is not global |
| // ---------------------------------- |
| |
| // Load the function. |
| Load(function); |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| // Pass the global proxy as the receiver. |
| LoadGlobalReceiver(r0); |
| |
| // Call the function. |
| CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
| frame_->EmitPush(r0); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitCallNew(CallNew* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ CallNew"); |
| |
| // According to ECMA-262, section 11.2.2, page 44, the function |
| // expression in new calls must be evaluated before the |
| // arguments. This is different from ordinary calls, where the |
| // actual function to call is resolved after the arguments have been |
| // evaluated. |
| |
| // Compute function to call and use the global object as the |
| // receiver. There is no need to use the global proxy here because |
| // it will always be replaced with a newly allocated object. |
| Load(node->expression()); |
| LoadGlobal(); |
| |
| // Push the arguments ("left-to-right") on the stack. |
| ZoneList<Expression*>* args = node->arguments(); |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| // r0: the number of arguments. |
| __ mov(r0, Operand(arg_count)); |
| // Load the function into r1 as per calling convention. |
| __ ldr(r1, frame_->ElementAt(arg_count + 1)); |
| |
| // Call the construct call builtin that handles allocation and |
| // constructor invocation. |
| CodeForSourcePosition(node->position()); |
| Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall)); |
| frame_->CallCodeObject(ic, RelocInfo::CONSTRUCT_CALL, arg_count + 1); |
| |
| // Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)). |
| __ str(r0, frame_->Top()); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| ASSERT(args->length() == 1); |
| JumpTarget leave, null, function, non_function_constructor; |
| |
| // Load the object into r0. |
| Load(args->at(0)); |
| frame_->EmitPop(r0); |
| |
| // If the object is a smi, we return null. |
| __ tst(r0, Operand(kSmiTagMask)); |
| null.Branch(eq); |
| |
| // Check that the object is a JS object but take special care of JS |
| // functions to make sure they have 'Function' as their class. |
| __ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE); |
| null.Branch(lt); |
| |
| // As long as JS_FUNCTION_TYPE is the last instance type and it is |
| // right after LAST_JS_OBJECT_TYPE, we can avoid checking for |
| // LAST_JS_OBJECT_TYPE. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
| __ cmp(r1, Operand(JS_FUNCTION_TYPE)); |
| function.Branch(eq); |
| |
| // Check if the constructor in the map is a function. |
| __ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset)); |
| __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE); |
| non_function_constructor.Branch(ne); |
| |
| // The r0 register now contains the constructor function. Grab the |
| // instance class name from there. |
| __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset)); |
| frame_->EmitPush(r0); |
| leave.Jump(); |
| |
| // Functions have class 'Function'. |
| function.Bind(); |
| __ mov(r0, Operand(Factory::function_class_symbol())); |
| frame_->EmitPush(r0); |
| leave.Jump(); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| non_function_constructor.Bind(); |
| __ mov(r0, Operand(Factory::Object_symbol())); |
| frame_->EmitPush(r0); |
| leave.Jump(); |
| |
| // Non-JS objects have class null. |
| null.Bind(); |
| __ LoadRoot(r0, Heap::kNullValueRootIndex); |
| frame_->EmitPush(r0); |
| |
| // All done. |
| leave.Bind(); |
| } |
| |
| |
| void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| ASSERT(args->length() == 1); |
| JumpTarget leave; |
| Load(args->at(0)); |
| frame_->EmitPop(r0); // r0 contains object. |
| // if (object->IsSmi()) return the object. |
| __ tst(r0, Operand(kSmiTagMask)); |
| leave.Branch(eq); |
| // It is a heap object - get map. If (!object->IsJSValue()) return the object. |
| __ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE); |
| leave.Branch(ne); |
| // Load the value. |
| __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset)); |
| leave.Bind(); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| ASSERT(args->length() == 2); |
| JumpTarget leave; |
| Load(args->at(0)); // Load the object. |
| Load(args->at(1)); // Load the value. |
| frame_->EmitPop(r0); // r0 contains value |
| frame_->EmitPop(r1); // r1 contains object |
| // if (object->IsSmi()) return object. |
| __ tst(r1, Operand(kSmiTagMask)); |
| leave.Branch(eq); |
| // It is a heap object - get map. If (!object->IsJSValue()) return the object. |
| __ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE); |
| leave.Branch(ne); |
| // Store the value. |
| __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset)); |
| // Update the write barrier. |
| __ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag)); |
| __ RecordWrite(r1, r2, r3); |
| // Leave. |
| leave.Bind(); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register reg = frame_->PopToRegister(); |
| __ tst(reg, Operand(kSmiTagMask)); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
| // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc. |
| ASSERT_EQ(args->length(), 3); |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| if (ShouldGenerateLog(args->at(0))) { |
| Load(args->at(1)); |
| Load(args->at(2)); |
| frame_->CallRuntime(Runtime::kLog, 2); |
| } |
| #endif |
| frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
| } |
| |
| |
| void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register reg = frame_->PopToRegister(); |
| __ tst(reg, Operand(kSmiTagMask | 0x80000000u)); |
| cc_reg_ = eq; |
| } |
| |
| |
| // Generates the Math.pow method - currently just calls runtime. |
| void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| Load(args->at(0)); |
| Load(args->at(1)); |
| frame_->CallRuntime(Runtime::kMath_pow, 2); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| // Generates the Math.sqrt method - currently just calls runtime. |
| void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| frame_->CallRuntime(Runtime::kMath_sqrt, 1); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| class DeferredStringCharCodeAt : public DeferredCode { |
| public: |
| DeferredStringCharCodeAt(Register object, |
| Register index, |
| Register scratch, |
| Register result) |
| : result_(result), |
| char_code_at_generator_(object, |
| index, |
| scratch, |
| result, |
| &need_conversion_, |
| &need_conversion_, |
| &index_out_of_range_, |
| STRING_INDEX_IS_NUMBER) {} |
| |
| StringCharCodeAtGenerator* fast_case_generator() { |
| return &char_code_at_generator_; |
| } |
| |
| virtual void Generate() { |
| VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
| char_code_at_generator_.GenerateSlow(masm(), call_helper); |
| |
| __ bind(&need_conversion_); |
| // Move the undefined value into the result register, which will |
| // trigger conversion. |
| __ LoadRoot(result_, Heap::kUndefinedValueRootIndex); |
| __ jmp(exit_label()); |
| |
| __ bind(&index_out_of_range_); |
| // When the index is out of range, the spec requires us to return |
| // NaN. |
| __ LoadRoot(result_, Heap::kNanValueRootIndex); |
| __ jmp(exit_label()); |
| } |
| |
| private: |
| Register result_; |
| |
| Label need_conversion_; |
| Label index_out_of_range_; |
| |
| StringCharCodeAtGenerator char_code_at_generator_; |
| }; |
| |
| |
| // This generates code that performs a String.prototype.charCodeAt() call |
| // or returns a smi in order to trigger conversion. |
| void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment(masm_, "[ GenerateStringCharCodeAt"); |
| ASSERT(args->length() == 2); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| Register index = r1; |
| Register object = r2; |
| |
| frame_->EmitPop(r1); |
| frame_->EmitPop(r2); |
| |
| // We need two extra registers. |
| Register scratch = r3; |
| Register result = r0; |
| |
| DeferredStringCharCodeAt* deferred = |
| new DeferredStringCharCodeAt(object, |
| index, |
| scratch, |
| result); |
| deferred->fast_case_generator()->GenerateFast(masm_); |
| deferred->BindExit(); |
| frame_->EmitPush(result); |
| } |
| |
| |
| class DeferredStringCharFromCode : public DeferredCode { |
| public: |
| DeferredStringCharFromCode(Register code, |
| Register result) |
| : char_from_code_generator_(code, result) {} |
| |
| StringCharFromCodeGenerator* fast_case_generator() { |
| return &char_from_code_generator_; |
| } |
| |
| virtual void Generate() { |
| VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
| char_from_code_generator_.GenerateSlow(masm(), call_helper); |
| } |
| |
| private: |
| StringCharFromCodeGenerator char_from_code_generator_; |
| }; |
| |
| |
| // Generates code for creating a one-char string from a char code. |
| void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment(masm_, "[ GenerateStringCharFromCode"); |
| ASSERT(args->length() == 1); |
| |
| Load(args->at(0)); |
| |
| Register code = r1; |
| Register result = r0; |
| |
| frame_->EmitPop(code); |
| |
| DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( |
| code, result); |
| deferred->fast_case_generator()->GenerateFast(masm_); |
| deferred->BindExit(); |
| frame_->EmitPush(result); |
| } |
| |
| |
| class DeferredStringCharAt : public DeferredCode { |
| public: |
| DeferredStringCharAt(Register object, |
| Register index, |
| Register scratch1, |
| Register scratch2, |
| Register result) |
| : result_(result), |
| char_at_generator_(object, |
| index, |
| scratch1, |
| scratch2, |
| result, |
| &need_conversion_, |
| &need_conversion_, |
| &index_out_of_range_, |
| STRING_INDEX_IS_NUMBER) {} |
| |
| StringCharAtGenerator* fast_case_generator() { |
| return &char_at_generator_; |
| } |
| |
| virtual void Generate() { |
| VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
| char_at_generator_.GenerateSlow(masm(), call_helper); |
| |
| __ bind(&need_conversion_); |
| // Move smi zero into the result register, which will trigger |
| // conversion. |
| __ mov(result_, Operand(Smi::FromInt(0))); |
| __ jmp(exit_label()); |
| |
| __ bind(&index_out_of_range_); |
| // When the index is out of range, the spec requires us to return |
| // the empty string. |
| __ LoadRoot(result_, Heap::kEmptyStringRootIndex); |
| __ jmp(exit_label()); |
| } |
| |
| private: |
| Register result_; |
| |
| Label need_conversion_; |
| Label index_out_of_range_; |
| |
| StringCharAtGenerator char_at_generator_; |
| }; |
| |
| |
| // This generates code that performs a String.prototype.charAt() call |
| // or returns a smi in order to trigger conversion. |
| void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment(masm_, "[ GenerateStringCharAt"); |
| ASSERT(args->length() == 2); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| Register index = r1; |
| Register object = r2; |
| |
| frame_->EmitPop(r1); |
| frame_->EmitPop(r2); |
| |
| // We need three extra registers. |
| Register scratch1 = r3; |
| Register scratch2 = r4; |
| Register result = r0; |
| |
| DeferredStringCharAt* deferred = |
| new DeferredStringCharAt(object, |
| index, |
| scratch1, |
| scratch2, |
| result); |
| deferred->fast_case_generator()->GenerateFast(masm_); |
| deferred->BindExit(); |
| frame_->EmitPush(result); |
| } |
| |
| |
| void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| JumpTarget answer; |
| // We need the CC bits to come out as not_equal in the case where the |
| // object is a smi. This can't be done with the usual test opcode so |
| // we use XOR to get the right CC bits. |
| Register possible_array = frame_->PopToRegister(); |
| Register scratch = VirtualFrame::scratch0(); |
| __ and_(scratch, possible_array, Operand(kSmiTagMask)); |
| __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); |
| answer.Branch(ne); |
| // It is a heap object - get the map. Check if the object is a JS array. |
| __ CompareObjectType(possible_array, scratch, scratch, JS_ARRAY_TYPE); |
| answer.Bind(); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| JumpTarget answer; |
| // We need the CC bits to come out as not_equal in the case where the |
| // object is a smi. This can't be done with the usual test opcode so |
| // we use XOR to get the right CC bits. |
| Register possible_regexp = frame_->PopToRegister(); |
| Register scratch = VirtualFrame::scratch0(); |
| __ and_(scratch, possible_regexp, Operand(kSmiTagMask)); |
| __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); |
| answer.Branch(ne); |
| // It is a heap object - get the map. Check if the object is a regexp. |
| __ CompareObjectType(possible_regexp, scratch, scratch, JS_REGEXP_TYPE); |
| answer.Bind(); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register possible_object = frame_->PopToRegister(); |
| __ tst(possible_object, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(possible_object, ip); |
| true_target()->Branch(eq); |
| |
| Register map_reg = VirtualFrame::scratch0(); |
| __ ldr(map_reg, FieldMemOperand(possible_object, HeapObject::kMapOffset)); |
| // Undetectable objects behave like undefined when tested with typeof. |
| __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kBitFieldOffset)); |
| __ tst(possible_object, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(ne); |
| |
| __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); |
| __ cmp(possible_object, Operand(FIRST_JS_OBJECT_TYPE)); |
| false_target()->Branch(lt); |
| __ cmp(possible_object, Operand(LAST_JS_OBJECT_TYPE)); |
| cc_reg_ = le; |
| } |
| |
| |
| void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (%_ClassOf(arg) === 'Function') |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register possible_function = frame_->PopToRegister(); |
| __ tst(possible_function, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| Register map_reg = VirtualFrame::scratch0(); |
| Register scratch = VirtualFrame::scratch1(); |
| __ CompareObjectType(possible_function, map_reg, scratch, JS_FUNCTION_TYPE); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register possible_undetectable = frame_->PopToRegister(); |
| __ tst(possible_undetectable, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| Register scratch = VirtualFrame::scratch0(); |
| __ ldr(scratch, |
| FieldMemOperand(possible_undetectable, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
| __ tst(scratch, Operand(1 << Map::kIsUndetectable)); |
| cc_reg_ = ne; |
| } |
| |
| |
| void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| |
| Register scratch0 = VirtualFrame::scratch0(); |
| Register scratch1 = VirtualFrame::scratch1(); |
| // Get the frame pointer for the calling frame. |
| __ ldr(scratch0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Skip the arguments adaptor frame if it exists. |
| __ ldr(scratch1, |
| MemOperand(scratch0, StandardFrameConstants::kContextOffset)); |
| __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ ldr(scratch0, |
| MemOperand(scratch0, StandardFrameConstants::kCallerFPOffset), eq); |
| |
| // Check the marker in the calling frame. |
| __ ldr(scratch1, |
| MemOperand(scratch0, StandardFrameConstants::kMarkerOffset)); |
| __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| |
| Register tos = frame_->GetTOSRegister(); |
| Register scratch0 = VirtualFrame::scratch0(); |
| Register scratch1 = VirtualFrame::scratch1(); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| __ ldr(scratch0, |
| MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(scratch1, |
| MemOperand(scratch0, StandardFrameConstants::kContextOffset)); |
| __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Get the number of formal parameters. |
| __ mov(tos, Operand(Smi::FromInt(scope()->num_parameters())), LeaveCC, ne); |
| |
| // Arguments adaptor case: Read the arguments length from the |
| // adaptor frame. |
| __ ldr(tos, |
| MemOperand(scratch0, ArgumentsAdaptorFrameConstants::kLengthOffset), |
| eq); |
| |
| frame_->EmitPush(tos); |
| } |
| |
| |
| void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| ASSERT(args->length() == 1); |
| |
| // Satisfy contract with ArgumentsAccessStub: |
| // Load the key into r1 and the formal parameters count into r0. |
| Load(args->at(0)); |
| frame_->EmitPop(r1); |
| __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
| |
| // Call the shared stub to get to arguments[key]. |
| ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateRandomHeapNumber( |
| ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| ASSERT(args->length() == 0); |
| |
| Label slow_allocate_heapnumber; |
| Label heapnumber_allocated; |
| |
| __ AllocateHeapNumber(r4, r1, r2, &slow_allocate_heapnumber); |
| __ jmp(&heapnumber_allocated); |
| |
| __ bind(&slow_allocate_heapnumber); |
| // To allocate a heap number, and ensure that it is not a smi, we |
| // call the runtime function FUnaryMinus on 0, returning the double |
| // -0.0. A new, distinct heap number is returned each time. |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| __ push(r0); |
| __ CallRuntime(Runtime::kNumberUnaryMinus, 1); |
| __ mov(r4, Operand(r0)); |
| |
| __ bind(&heapnumber_allocated); |
| |
| // Convert 32 random bits in r0 to 0.(32 random bits) in a double |
| // by computing: |
| // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ PrepareCallCFunction(0, r1); |
| __ CallCFunction(ExternalReference::random_uint32_function(), 0); |
| |
| CpuFeatures::Scope scope(VFP3); |
| // 0x41300000 is the top half of 1.0 x 2^20 as a double. |
| // Create this constant using mov/orr to avoid PC relative load. |
| __ mov(r1, Operand(0x41000000)); |
| __ orr(r1, r1, Operand(0x300000)); |
| // Move 0x41300000xxxxxxxx (x = random bits) to VFP. |
| __ vmov(d7, r0, r1); |
| // Move 0x4130000000000000 to VFP. |
| __ mov(r0, Operand(0)); |
| __ vmov(d8, r0, r1); |
| // Subtract and store the result in the heap number. |
| __ vsub(d7, d7, d8); |
| __ sub(r0, r4, Operand(kHeapObjectTag)); |
| __ vstr(d7, r0, HeapNumber::kValueOffset); |
| frame_->EmitPush(r4); |
| } else { |
| __ mov(r0, Operand(r4)); |
| __ PrepareCallCFunction(1, r1); |
| __ CallCFunction( |
| ExternalReference::fill_heap_number_with_random_function(), 1); |
| frame_->EmitPush(r0); |
| } |
| } |
| |
| |
| void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| StringAddStub stub(NO_STRING_ADD_FLAGS); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 2); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(3, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| |
| SubStringStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 3); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| StringCompareStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 2); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { |
| ASSERT_EQ(4, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| Load(args->at(3)); |
| RegExpExecStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 4); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) { |
| // No stub. This code only occurs a few times in regexp.js. |
| const int kMaxInlineLength = 100; |
| ASSERT_EQ(3, args->length()); |
| Load(args->at(0)); // Size of array, smi. |
| Load(args->at(1)); // "index" property value. |
| Load(args->at(2)); // "input" property value. |
| { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Label slowcase; |
| Label done; |
| __ ldr(r1, MemOperand(sp, kPointerSize * 2)); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(ne, &slowcase); |
| __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength))); |
| __ b(hi, &slowcase); |
| // Smi-tagging is equivalent to multiplying by 2. |
| // Allocate RegExpResult followed by FixedArray with size in ebx. |
| // JSArray: [Map][empty properties][Elements][Length-smi][index][input] |
| // Elements: [Map][Length][..elements..] |
| // Size of JSArray with two in-object properties and the header of a |
| // FixedArray. |
| int objects_size = |
| (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize; |
| __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize)); |
| __ add(r2, r5, Operand(objects_size)); |
| __ AllocateInNewSpace( |
| r2, // In: Size, in words. |
| r0, // Out: Start of allocation (tagged). |
| r3, // Scratch register. |
| r4, // Scratch register. |
| &slowcase, |
| static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| // r0: Start of allocated area, object-tagged. |
| // r1: Number of elements in array, as smi. |
| // r5: Number of elements, untagged. |
| |
| // Set JSArray map to global.regexp_result_map(). |
| // Set empty properties FixedArray. |
| // Set elements to point to FixedArray allocated right after the JSArray. |
| // Interleave operations for better latency. |
| __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ add(r3, r0, Operand(JSRegExpResult::kSize)); |
| __ mov(r4, Operand(Factory::empty_fixed_array())); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); |
| __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX)); |
| __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset)); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| |
| // Set input, index and length fields from arguments. |
| __ ldm(ia_w, sp, static_cast<RegList>(r2.bit() | r4.bit())); |
| __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset)); |
| __ add(sp, sp, Operand(kPointerSize)); |
| __ str(r4, FieldMemOperand(r0, JSRegExpResult::kIndexOffset)); |
| __ str(r2, FieldMemOperand(r0, JSRegExpResult::kInputOffset)); |
| |
| // Fill out the elements FixedArray. |
| // r0: JSArray, tagged. |
| // r3: FixedArray, tagged. |
| // r5: Number of elements in array, untagged. |
| |
| // Set map. |
| __ mov(r2, Operand(Factory::fixed_array_map())); |
| __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| // Set FixedArray length. |
| __ mov(r6, Operand(r5, LSL, kSmiTagSize)); |
| __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset)); |
| // Fill contents of fixed-array with the-hole. |
| __ mov(r2, Operand(Factory::the_hole_value())); |
| __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| // Fill fixed array elements with hole. |
| // r0: JSArray, tagged. |
| // r2: the hole. |
| // r3: Start of elements in FixedArray. |
| // r5: Number of elements to fill. |
| Label loop; |
| __ tst(r5, Operand(r5)); |
| __ bind(&loop); |
| __ b(le, &done); // Jump if r1 is negative or zero. |
| __ sub(r5, r5, Operand(1), SetCC); |
| __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2)); |
| __ jmp(&loop); |
| |
| __ bind(&slowcase); |
| __ CallRuntime(Runtime::kRegExpConstructResult, 3); |
| |
| __ bind(&done); |
| } |
| frame_->Forget(3); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| class DeferredSearchCache: public DeferredCode { |
| public: |
| DeferredSearchCache(Register dst, Register cache, Register key) |
| : dst_(dst), cache_(cache), key_(key) { |
| set_comment("[ DeferredSearchCache"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register dst_, cache_, key_; |
| }; |
| |
| |
| void DeferredSearchCache::Generate() { |
| __ Push(cache_, key_); |
| __ CallRuntime(Runtime::kGetFromCache, 2); |
| if (!dst_.is(r0)) { |
| __ mov(dst_, r0); |
| } |
| } |
| |
| |
| void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| ASSERT_NE(NULL, args->at(0)->AsLiteral()); |
| int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); |
| |
| Handle<FixedArray> jsfunction_result_caches( |
| Top::global_context()->jsfunction_result_caches()); |
| if (jsfunction_result_caches->length() <= cache_id) { |
| __ Abort("Attempt to use undefined cache."); |
| frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
| return; |
| } |
| |
| Load(args->at(1)); |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| frame_->EmitPop(r2); |
| |
| __ ldr(r1, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r1, ContextOperand(r1, Context::JSFUNCTION_RESULT_CACHES_INDEX)); |
| __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(cache_id))); |
| |
| DeferredSearchCache* deferred = new DeferredSearchCache(r0, r1, r2); |
| |
| const int kFingerOffset = |
| FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex); |
| ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ ldr(r0, FieldMemOperand(r1, kFingerOffset)); |
| // r0 now holds finger offset as a smi. |
| __ add(r3, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| // r3 now points to the start of fixed array elements. |
| __ ldr(r0, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex)); |
| // Note side effect of PreIndex: r3 now points to the key of the pair. |
| __ cmp(r2, r0); |
| deferred->Branch(ne); |
| |
| __ ldr(r0, MemOperand(r3, kPointerSize)); |
| |
| deferred->BindExit(); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| |
| // Load the argument on the stack and jump to the runtime. |
| Load(args->at(0)); |
| |
| NumberToStringStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 1); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| class DeferredSwapElements: public DeferredCode { |
| public: |
| DeferredSwapElements(Register object, Register index1, Register index2) |
| : object_(object), index1_(index1), index2_(index2) { |
| set_comment("[ DeferredSwapElements"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register object_, index1_, index2_; |
| }; |
| |
| |
| void DeferredSwapElements::Generate() { |
| __ push(object_); |
| __ push(index1_); |
| __ push(index2_); |
| __ CallRuntime(Runtime::kSwapElements, 3); |
| } |
| |
| |
| void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) { |
| Comment cmnt(masm_, "[ GenerateSwapElements"); |
| |
| ASSERT_EQ(3, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| Register index2 = r2; |
| Register index1 = r1; |
| Register object = r0; |
| Register tmp1 = r3; |
| Register tmp2 = r4; |
| |
| frame_->EmitPop(index2); |
| frame_->EmitPop(index1); |
| frame_->EmitPop(object); |
| |
| DeferredSwapElements* deferred = |
| new DeferredSwapElements(object, index1, index2); |
| |
| // Fetch the map and check if array is in fast case. |
| // Check that object doesn't require security checks and |
| // has no indexed interceptor. |
| __ CompareObjectType(object, tmp1, tmp2, FIRST_JS_OBJECT_TYPE); |
| deferred->Branch(lt); |
| __ ldrb(tmp2, FieldMemOperand(tmp1, Map::kBitFieldOffset)); |
| __ tst(tmp2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask)); |
| deferred->Branch(nz); |
| |
| // Check the object's elements are in fast case. |
| __ ldr(tmp1, FieldMemOperand(object, JSObject::kElementsOffset)); |
| __ ldr(tmp2, FieldMemOperand(tmp1, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(tmp2, ip); |
| deferred->Branch(ne); |
| |
| // Smi-tagging is equivalent to multiplying by 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| |
| // Check that both indices are smis. |
| __ mov(tmp2, index1); |
| __ orr(tmp2, tmp2, index2); |
| __ tst(tmp2, Operand(kSmiTagMask)); |
| deferred->Branch(nz); |
| |
| // Bring the offsets into the fixed array in tmp1 into index1 and |
| // index2. |
| __ mov(tmp2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ add(index1, tmp2, Operand(index1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(index2, tmp2, Operand(index2, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| |
| // Swap elements. |
| Register tmp3 = object; |
| object = no_reg; |
| __ ldr(tmp3, MemOperand(tmp1, index1)); |
| __ ldr(tmp2, MemOperand(tmp1, index2)); |
| __ str(tmp3, MemOperand(tmp1, index2)); |
| __ str(tmp2, MemOperand(tmp1, index1)); |
| |
| Label done; |
| __ InNewSpace(tmp1, tmp2, eq, &done); |
| // Possible optimization: do a check that both values are Smis |
| // (or them and test against Smi mask.) |
| |
| __ mov(tmp2, tmp1); |
| RecordWriteStub recordWrite1(tmp1, index1, tmp3); |
| __ CallStub(&recordWrite1); |
| |
| RecordWriteStub recordWrite2(tmp2, index2, tmp3); |
| __ CallStub(&recordWrite2); |
| |
| __ bind(&done); |
| |
| deferred->BindExit(); |
| __ LoadRoot(tmp1, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(tmp1); |
| } |
| |
| |
| void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) { |
| Comment cmnt(masm_, "[ GenerateCallFunction"); |
| |
| ASSERT(args->length() >= 2); |
| |
| int n_args = args->length() - 2; // for receiver and function. |
| Load(args->at(0)); // receiver |
| for (int i = 0; i < n_args; i++) { |
| Load(args->at(i + 1)); |
| } |
| Load(args->at(n_args + 1)); // function |
| frame_->CallJSFunction(n_args); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| Load(args->at(0)); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| TranscendentalCacheStub stub(TranscendentalCache::SIN); |
| frame_->SpillAllButCopyTOSToR0(); |
| frame_->CallStub(&stub, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kMath_sin, 1); |
| } |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| Load(args->at(0)); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| TranscendentalCacheStub stub(TranscendentalCache::COS); |
| frame_->SpillAllButCopyTOSToR0(); |
| frame_->CallStub(&stub, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kMath_cos, 1); |
| } |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| |
| // Load the two objects into registers and perform the comparison. |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Register lhs = frame_->PopToRegister(); |
| Register rhs = frame_->PopToRegister(lhs); |
| __ cmp(lhs, rhs); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| if (CheckForInlineRuntimeCall(node)) { |
| ASSERT((has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| return; |
| } |
| |
| ZoneList<Expression*>* args = node->arguments(); |
| Comment cmnt(masm_, "[ CallRuntime"); |
| Runtime::Function* function = node->function(); |
| |
| if (function == NULL) { |
| // Prepare stack for calling JS runtime function. |
| // Push the builtins object found in the current global object. |
| Register scratch = VirtualFrame::scratch0(); |
| __ ldr(scratch, GlobalObject()); |
| Register builtins = frame_->GetTOSRegister(); |
| __ ldr(builtins, FieldMemOperand(scratch, GlobalObject::kBuiltinsOffset)); |
| frame_->EmitPush(builtins); |
| } |
| |
| // Push the arguments ("left-to-right"). |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| if (function == NULL) { |
| // Call the JS runtime function. |
| __ mov(r2, Operand(node->name())); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = ComputeCallInitialize(arg_count, in_loop); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| } else { |
| // Call the C runtime function. |
| frame_->CallRuntime(function, arg_count); |
| frame_->EmitPush(r0); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ UnaryOperation"); |
| |
| Token::Value op = node->op(); |
| |
| if (op == Token::NOT) { |
| LoadCondition(node->expression(), false_target(), true_target(), true); |
| // LoadCondition may (and usually does) leave a test and branch to |
| // be emitted by the caller. In that case, negate the condition. |
| if (has_cc()) cc_reg_ = NegateCondition(cc_reg_); |
| |
| } else if (op == Token::DELETE) { |
| Property* property = node->expression()->AsProperty(); |
| Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
| if (property != NULL) { |
| Load(property->obj()); |
| Load(property->key()); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| |
| } else if (variable != NULL) { |
| Slot* slot = variable->slot(); |
| if (variable->is_global()) { |
| LoadGlobal(); |
| frame_->EmitPush(Operand(variable->name())); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| |
| } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
| // lookup the context holding the named variable |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(variable->name())); |
| frame_->CallRuntime(Runtime::kLookupContext, 2); |
| // r0: context |
| frame_->EmitPush(r0); |
| frame_->EmitPush(Operand(variable->name())); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| |
| } else { |
| // Default: Result of deleting non-global, not dynamically |
| // introduced variables is false. |
| frame_->EmitPushRoot(Heap::kFalseValueRootIndex); |
| } |
| |
| } else { |
| // Default: Result of deleting expressions is true. |
| Load(node->expression()); // may have side-effects |
| frame_->Drop(); |
| frame_->EmitPushRoot(Heap::kTrueValueRootIndex); |
| } |
| |
| } else if (op == Token::TYPEOF) { |
| // Special case for loading the typeof expression; see comment on |
| // LoadTypeofExpression(). |
| LoadTypeofExpression(node->expression()); |
| frame_->CallRuntime(Runtime::kTypeof, 1); |
| frame_->EmitPush(r0); // r0 has result |
| |
| } else { |
| bool overwrite = |
| (node->expression()->AsBinaryOperation() != NULL && |
| node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| Load(node->expression()); |
| switch (op) { |
| case Token::NOT: |
| case Token::DELETE: |
| case Token::TYPEOF: |
| UNREACHABLE(); // handled above |
| break; |
| |
| case Token::SUB: { |
| VirtualFrame::SpilledScope spilled(frame_); |
| frame_->EmitPop(r0); |
| GenericUnaryOpStub stub(Token::SUB, overwrite); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); // r0 has result |
| break; |
| } |
| |
| case Token::BIT_NOT: { |
| // smi check |
| VirtualFrame::SpilledScope spilled(frame_); |
| frame_->EmitPop(r0); |
| JumpTarget smi_label; |
| JumpTarget continue_label; |
| __ tst(r0, Operand(kSmiTagMask)); |
| smi_label.Branch(eq); |
| |
| GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); |
| frame_->CallStub(&stub, 0); |
| continue_label.Jump(); |
| |
| smi_label.Bind(); |
| __ mvn(r0, Operand(r0)); |
| __ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag |
| continue_label.Bind(); |
| frame_->EmitPush(r0); // r0 has result |
| break; |
| } |
| |
| case Token::VOID: |
| frame_->Drop(); |
| frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
| break; |
| |
| case Token::ADD: { |
| VirtualFrame::SpilledScope spilled(frame_); |
| frame_->EmitPop(r0); |
| // Smi check. |
| JumpTarget continue_label; |
| __ tst(r0, Operand(kSmiTagMask)); |
| continue_label.Branch(eq); |
| frame_->EmitPush(r0); |
| frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); |
| continue_label.Bind(); |
| frame_->EmitPush(r0); // r0 has result |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::VisitCountOperation(CountOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ CountOperation"); |
| |
| bool is_postfix = node->is_postfix(); |
| bool is_increment = node->op() == Token::INC; |
| |
| Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
| bool is_const = (var != NULL && var->mode() == Variable::CONST); |
| bool is_slot = (var != NULL && var->mode() == Variable::VAR); |
| |
| if (!is_const && is_slot && type_info(var->slot()).IsSmi()) { |
| // The type info declares that this variable is always a Smi. That |
| // means it is a Smi both before and after the increment/decrement. |
| // Lets make use of that to make a very minimal count. |
| Reference target(this, node->expression(), !is_const); |
| ASSERT(!target.is_illegal()); |
| target.GetValue(); // Pushes the value. |
| Register value = frame_->PopToRegister(); |
| if (is_postfix) frame_->EmitPush(value); |
| if (is_increment) { |
| __ add(value, value, Operand(Smi::FromInt(1))); |
| } else { |
| __ sub(value, value, Operand(Smi::FromInt(1))); |
| } |
| frame_->EmitPush(value); |
| target.SetValue(NOT_CONST_INIT); |
| if (is_postfix) frame_->Pop(); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| return; |
| } |
| |
| // If it's a postfix expression and its result is not ignored and the |
| // reference is non-trivial, then push a placeholder on the stack now |
| // to hold the result of the expression. |
| bool placeholder_pushed = false; |
| if (!is_slot && is_postfix) { |
| frame_->EmitPush(Operand(Smi::FromInt(0))); |
| placeholder_pushed = true; |
| } |
| |
| // A constant reference is not saved to, so a constant reference is not a |
| // compound assignment reference. |
| { Reference target(this, node->expression(), !is_const); |
| if (target.is_illegal()) { |
| // Spoof the virtual frame to have the expected height (one higher |
| // than on entry). |
| if (!placeholder_pushed) frame_->EmitPush(Operand(Smi::FromInt(0))); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| return; |
| } |
| |
| // This pushes 0, 1 or 2 words on the object to be used later when updating |
| // the target. It also pushes the current value of the target. |
| target.GetValue(); |
| |
| JumpTarget slow; |
| JumpTarget exit; |
| |
| Register value = frame_->PopToRegister(); |
| |
| // Postfix: Store the old value as the result. |
| if (placeholder_pushed) { |
| frame_->SetElementAt(value, target.size()); |
| } else if (is_postfix) { |
| frame_->EmitPush(value); |
| __ mov(VirtualFrame::scratch0(), value); |
| value = VirtualFrame::scratch0(); |
| } |
| |
| // Check for smi operand. |
| __ tst(value, Operand(kSmiTagMask)); |
| slow.Branch(ne); |
| |
| // Perform optimistic increment/decrement. |
| if (is_increment) { |
| __ add(value, value, Operand(Smi::FromInt(1)), SetCC); |
| } else { |
| __ sub(value, value, Operand(Smi::FromInt(1)), SetCC); |
| } |
| |
| // If the increment/decrement didn't overflow, we're done. |
| exit.Branch(vc); |
| |
| // Revert optimistic increment/decrement. |
| if (is_increment) { |
| __ sub(value, value, Operand(Smi::FromInt(1))); |
| } else { |
| __ add(value, value, Operand(Smi::FromInt(1))); |
| } |
| |
| // Slow case: Convert to number. At this point the |
| // value to be incremented is in the value register.. |
| slow.Bind(); |
| |
| // Convert the operand to a number. |
| frame_->EmitPush(value); |
| |
| { |
| VirtualFrame::SpilledScope spilled(frame_); |
| frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); |
| |
| if (is_postfix) { |
| // Postfix: store to result (on the stack). |
| __ str(r0, frame_->ElementAt(target.size())); |
| } |
| |
| // Compute the new value. |
| frame_->EmitPush(r0); |
| frame_->EmitPush(Operand(Smi::FromInt(1))); |
| if (is_increment) { |
| frame_->CallRuntime(Runtime::kNumberAdd, 2); |
| } else { |
| frame_->CallRuntime(Runtime::kNumberSub, 2); |
| } |
| } |
| |
| __ Move(value, r0); |
| // Store the new value in the target if not const. |
| // At this point the answer is in the value register. |
| exit.Bind(); |
| frame_->EmitPush(value); |
| // Set the target with the result, leaving the result on |
| // top of the stack. Removes the target from the stack if |
| // it has a non-zero size. |
| if (!is_const) target.SetValue(NOT_CONST_INIT); |
| } |
| |
| // Postfix: Discard the new value and use the old. |
| if (is_postfix) frame_->Pop(); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { |
| // According to ECMA-262 section 11.11, page 58, the binary logical |
| // operators must yield the result of one of the two expressions |
| // before any ToBoolean() conversions. This means that the value |
| // produced by a && or || operator is not necessarily a boolean. |
| |
| // NOTE: If the left hand side produces a materialized value (not in |
| // the CC register), we force the right hand side to do the |
| // same. This is necessary because we may have to branch to the exit |
| // after evaluating the left hand side (due to the shortcut |
| // semantics), but the compiler must (statically) know if the result |
| // of compiling the binary operation is materialized or not. |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| if (node->op() == Token::AND) { |
| JumpTarget is_true; |
| LoadCondition(node->left(), &is_true, false_target(), false); |
| if (has_valid_frame() && !has_cc()) { |
| // The left-hand side result is on top of the virtual frame. |
| JumpTarget pop_and_continue; |
| JumpTarget exit; |
| |
| frame_->Dup(); |
| // Avoid popping the result if it converts to 'false' using the |
| // standard ToBoolean() conversion as described in ECMA-262, |
| // section 9.2, page 30. |
| ToBoolean(&pop_and_continue, &exit); |
| Branch(false, &exit); |
| |
| // Pop the result of evaluating the first part. |
| pop_and_continue.Bind(); |
| frame_->Pop(); |
| |
| // Evaluate right side expression. |
| is_true.Bind(); |
| Load(node->right()); |
| |
| // Exit (always with a materialized value). |
| exit.Bind(); |
| } else if (has_cc() || is_true.is_linked()) { |
| // The left-hand side is either (a) partially compiled to |
| // control flow with a final branch left to emit or (b) fully |
| // compiled to control flow and possibly true. |
| if (has_cc()) { |
| Branch(false, false_target()); |
| } |
| is_true.Bind(); |
| LoadCondition(node->right(), true_target(), false_target(), false); |
| } else { |
| // Nothing to do. |
| ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked()); |
| } |
| |
| } else { |
| ASSERT(node->op() == Token::OR); |
| JumpTarget is_false; |
| LoadCondition(node->left(), true_target(), &is_false, false); |
| if (has_valid_frame() && !has_cc()) { |
| // The left-hand side result is on top of the virtual frame. |
| JumpTarget pop_and_continue; |
| JumpTarget exit; |
| |
| frame_->Dup(); |
| // Avoid popping the result if it converts to 'true' using the |
| // standard ToBoolean() conversion as described in ECMA-262, |
| // section 9.2, page 30. |
| ToBoolean(&exit, &pop_and_continue); |
| Branch(true, &exit); |
| |
| // Pop the result of evaluating the first part. |
| pop_and_continue.Bind(); |
| frame_->Pop(); |
| |
| // Evaluate right side expression. |
| is_false.Bind(); |
| Load(node->right()); |
| |
| // Exit (always with a materialized value). |
| exit.Bind(); |
| } else if (has_cc() || is_false.is_linked()) { |
| // The left-hand side is either (a) partially compiled to |
| // control flow with a final branch left to emit or (b) fully |
| // compiled to control flow and possibly false. |
| if (has_cc()) { |
| Branch(true, true_target()); |
| } |
| is_false.Bind(); |
| LoadCondition(node->right(), true_target(), false_target(), false); |
| } else { |
| // Nothing to do. |
| ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked()); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ BinaryOperation"); |
| |
| if (node->op() == Token::AND || node->op() == Token::OR) { |
| GenerateLogicalBooleanOperation(node); |
| } else { |
| // Optimize for the case where (at least) one of the expressions |
| // is a literal small integer. |
| Literal* lliteral = node->left()->AsLiteral(); |
| Literal* rliteral = node->right()->AsLiteral(); |
| // NOTE: The code below assumes that the slow cases (calls to runtime) |
| // never return a constant/immutable object. |
| bool overwrite_left = |
| (node->left()->AsBinaryOperation() != NULL && |
| node->left()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| bool overwrite_right = |
| (node->right()->AsBinaryOperation() != NULL && |
| node->right()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| |
| if (rliteral != NULL && rliteral->handle()->IsSmi()) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| Load(node->left()); |
| if (frame_->KnownSmiAt(0)) overwrite_left = false; |
| SmiOperation(node->op(), |
| rliteral->handle(), |
| false, |
| overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE); |
| } else if (lliteral != NULL && lliteral->handle()->IsSmi()) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| Load(node->right()); |
| if (frame_->KnownSmiAt(0)) overwrite_right = false; |
| SmiOperation(node->op(), |
| lliteral->handle(), |
| true, |
| overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| GenerateInlineSmi inline_smi = |
| loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
| if (lliteral != NULL) { |
| ASSERT(!lliteral->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| if (rliteral != NULL) { |
| ASSERT(!rliteral->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| VirtualFrame::RegisterAllocationScope scope(this); |
| OverwriteMode overwrite_mode = NO_OVERWRITE; |
| if (overwrite_left) { |
| overwrite_mode = OVERWRITE_LEFT; |
| } else if (overwrite_right) { |
| overwrite_mode = OVERWRITE_RIGHT; |
| } |
| Load(node->left()); |
| Load(node->right()); |
| GenericBinaryOperation(node->op(), overwrite_mode, inline_smi); |
| } |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| frame_->EmitPush(MemOperand(frame_->Function())); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ CompareOperation"); |
| |
| VirtualFrame::RegisterAllocationScope nonspilled_scope(this); |
| |
| // Get the expressions from the node. |
| Expression* left = node->left(); |
| Expression* right = node->right(); |
| Token::Value op = node->op(); |
| |
| // To make null checks efficient, we check if either left or right is the |
| // literal 'null'. If so, we optimize the code by inlining a null check |
| // instead of calling the (very) general runtime routine for checking |
| // equality. |
| if (op == Token::EQ || op == Token::EQ_STRICT) { |
| bool left_is_null = |
| left->AsLiteral() != NULL && left->AsLiteral()->IsNull(); |
| bool right_is_null = |
| right->AsLiteral() != NULL && right->AsLiteral()->IsNull(); |
| // The 'null' value can only be equal to 'null' or 'undefined'. |
| if (left_is_null || right_is_null) { |
| Load(left_is_null ? right : left); |
| Register tos = frame_->PopToRegister(); |
| // JumpTargets can't cope with register allocation yet. |
| frame_->SpillAll(); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(tos, ip); |
| |
| // The 'null' value is only equal to 'undefined' if using non-strict |
| // comparisons. |
| if (op != Token::EQ_STRICT) { |
| true_target()->Branch(eq); |
| |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(tos, Operand(ip)); |
| true_target()->Branch(eq); |
| |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
| __ ldrb(tos, FieldMemOperand(tos, Map::kBitFieldOffset)); |
| __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(tos, Operand(1 << Map::kIsUndetectable)); |
| } |
| |
| cc_reg_ = eq; |
| ASSERT(has_cc() && frame_->height() == original_height); |
| return; |
| } |
| } |
| |
| // To make typeof testing for natives implemented in JavaScript really |
| // efficient, we generate special code for expressions of the form: |
| // 'typeof <expression> == <string>'. |
| UnaryOperation* operation = left->AsUnaryOperation(); |
| if ((op == Token::EQ || op == Token::EQ_STRICT) && |
| (operation != NULL && operation->op() == Token::TYPEOF) && |
| (right->AsLiteral() != NULL && |
| right->AsLiteral()->handle()->IsString())) { |
| Handle<String> check(String::cast(*right->AsLiteral()->handle())); |
| |
| // Load the operand, move it to a register. |
| LoadTypeofExpression(operation->expression()); |
| Register tos = frame_->PopToRegister(); |
| |
| // JumpTargets can't cope with register allocation yet. |
| frame_->SpillAll(); |
| |
| Register scratch = VirtualFrame::scratch0(); |
| |
| if (check->Equals(Heap::number_symbol())) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| true_target()->Branch(eq); |
| __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); |
| __ cmp(tos, ip); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::string_symbol())) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
| |
| // It can be an undetectable string object. |
| __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); |
| __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(eq); |
| |
| __ ldrb(scratch, FieldMemOperand(tos, Map::kInstanceTypeOffset)); |
| __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); |
| cc_reg_ = lt; |
| |
| } else if (check->Equals(Heap::boolean_symbol())) { |
| __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
| __ cmp(tos, ip); |
| true_target()->Branch(eq); |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(tos, ip); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::undefined_symbol())) { |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(tos, ip); |
| true_target()->Branch(eq); |
| |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); |
| __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
| |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::function_symbol())) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| Register map_reg = scratch; |
| __ CompareObjectType(tos, map_reg, tos, JS_FUNCTION_TYPE); |
| true_target()->Branch(eq); |
| // Regular expressions are callable so typeof == 'function'. |
| __ CompareInstanceType(map_reg, tos, JS_REGEXP_TYPE); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::object_symbol())) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(tos, ip); |
| true_target()->Branch(eq); |
| |
| Register map_reg = scratch; |
| __ CompareObjectType(tos, map_reg, tos, JS_REGEXP_TYPE); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldrb(tos, FieldMemOperand(map_reg, Map::kBitFieldOffset)); |
| __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(tos, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(eq); |
| |
| __ ldrb(tos, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); |
| __ cmp(tos, Operand(FIRST_JS_OBJECT_TYPE)); |
| false_target()->Branch(lt); |
| __ cmp(tos, Operand(LAST_JS_OBJECT_TYPE)); |
| cc_reg_ = le; |
| |
| } else { |
| // Uncommon case: typeof testing against a string literal that is |
| // never returned from the typeof operator. |
| false_target()->Jump(); |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height)); |
| return; |
| } |
| |
| switch (op) { |
| case Token::EQ: |
| Comparison(eq, left, right, false); |
| break; |
| |
| case Token::LT: |
| Comparison(lt, left, right); |
| break; |
| |
| case Token::GT: |
| Comparison(gt, left, right); |
| break; |
| |
| case Token::LTE: |
| Comparison(le, left, right); |
| break; |
| |
| case Token::GTE: |
| Comparison(ge, left, right); |
| break; |
| |
| case Token::EQ_STRICT: |
| Comparison(eq, left, right, true); |
| break; |
| |
| case Token::IN: { |
| VirtualFrame::SpilledScope scope(frame_); |
| Load(left); |
| Load(right); |
| frame_->InvokeBuiltin(Builtins::IN, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| break; |
| } |
| |
| case Token::INSTANCEOF: { |
| VirtualFrame::SpilledScope scope(frame_); |
| Load(left); |
| Load(right); |
| InstanceofStub stub; |
| frame_->CallStub(&stub, 2); |
| // At this point if instanceof succeeded then r0 == 0. |
| __ tst(r0, Operand(r0)); |
| cc_reg_ = eq; |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| ASSERT((has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| class DeferredReferenceGetNamedValue: public DeferredCode { |
| public: |
| explicit DeferredReferenceGetNamedValue(Register receiver, |
| Handle<String> name) |
| : receiver_(receiver), name_(name) { |
| set_comment("[ DeferredReferenceGetNamedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register receiver_; |
| Handle<String> name_; |
| }; |
| |
| |
| // Convention for this is that on entry the receiver is in a register that |
| // is not used by the stack. On exit the answer is found in that same |
| // register and the stack has the same height. |
| void DeferredReferenceGetNamedValue::Generate() { |
| #ifdef DEBUG |
| int expected_height = frame_state()->frame()->height(); |
| #endif |
| VirtualFrame copied_frame(*frame_state()->frame()); |
| copied_frame.SpillAll(); |
| |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| ASSERT(!receiver_.is(scratch1) && !receiver_.is(scratch2)); |
| __ DecrementCounter(&Counters::named_load_inline, 1, scratch1, scratch2); |
| __ IncrementCounter(&Counters::named_load_inline_miss, 1, scratch1, scratch2); |
| |
| // Ensure receiver in r0 and name in r2 to match load ic calling convention. |
| __ Move(r0, receiver_); |
| __ mov(r2, Operand(name_)); |
| |
| // The rest of the instructions in the deferred code must be together. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); |
| __ Call(ic, RelocInfo::CODE_TARGET); |
| // The call must be followed by a nop(1) instruction to indicate that the |
| // in-object has been inlined. |
| __ nop(PROPERTY_ACCESS_INLINED); |
| |
| // At this point the answer is in r0. We move it to the expected register |
| // if necessary. |
| __ Move(receiver_, r0); |
| |
| // Now go back to the frame that we entered with. This will not overwrite |
| // the receiver register since that register was not in use when we came |
| // in. The instructions emitted by this merge are skipped over by the |
| // inline load patching mechanism when looking for the branch instruction |
| // that tells it where the code to patch is. |
| copied_frame.MergeTo(frame_state()->frame()); |
| |
| // Block the constant pool for one more instruction after leaving this |
| // constant pool block scope to include the branch instruction ending the |
| // deferred code. |
| __ BlockConstPoolFor(1); |
| } |
| ASSERT_EQ(expected_height, frame_state()->frame()->height()); |
| } |
| |
| |
| class DeferredReferenceGetKeyedValue: public DeferredCode { |
| public: |
| DeferredReferenceGetKeyedValue(Register key, Register receiver) |
| : key_(key), receiver_(receiver) { |
| set_comment("[ DeferredReferenceGetKeyedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register key_; |
| Register receiver_; |
| }; |
| |
| |
| void DeferredReferenceGetKeyedValue::Generate() { |
| ASSERT((key_.is(r0) && receiver_.is(r1)) || |
| (key_.is(r1) && receiver_.is(r0))); |
| |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| __ DecrementCounter(&Counters::keyed_load_inline, 1, scratch1, scratch2); |
| __ IncrementCounter(&Counters::keyed_load_inline_miss, 1, scratch1, scratch2); |
| |
| // Ensure key in r0 and receiver in r1 to match keyed load ic calling |
| // convention. |
| if (key_.is(r1)) { |
| __ Swap(r0, r1, ip); |
| } |
| |
| // The rest of the instructions in the deferred code must be together. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Call keyed load IC. It has the arguments key and receiver in r0 and r1. |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); |
| __ Call(ic, RelocInfo::CODE_TARGET); |
| // The call must be followed by a nop instruction to indicate that the |
| // keyed load has been inlined. |
| __ nop(PROPERTY_ACCESS_INLINED); |
| |
| // Block the constant pool for one more instruction after leaving this |
| // constant pool block scope to include the branch instruction ending the |
| // deferred code. |
| __ BlockConstPoolFor(1); |
| } |
| } |
| |
| |
| class DeferredReferenceSetKeyedValue: public DeferredCode { |
| public: |
| DeferredReferenceSetKeyedValue(Register value, |
| Register key, |
| Register receiver) |
| : value_(value), key_(key), receiver_(receiver) { |
| set_comment("[ DeferredReferenceSetKeyedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register value_; |
| Register key_; |
| Register receiver_; |
| }; |
| |
| |
| void DeferredReferenceSetKeyedValue::Generate() { |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| __ DecrementCounter(&Counters::keyed_store_inline, 1, scratch1, scratch2); |
| __ IncrementCounter( |
| &Counters::keyed_store_inline_miss, 1, scratch1, scratch2); |
| |
| // Ensure value in r0, key in r1 and receiver in r2 to match keyed store ic |
| // calling convention. |
| if (value_.is(r1)) { |
| __ Swap(r0, r1, ip); |
| } |
| ASSERT(receiver_.is(r2)); |
| |
| // The rest of the instructions in the deferred code must be together. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Call keyed store IC. It has the arguments value, key and receiver in r0, |
| // r1 and r2. |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); |
| __ Call(ic, RelocInfo::CODE_TARGET); |
| // The call must be followed by a nop instruction to indicate that the |
| // keyed store has been inlined. |
| __ nop(PROPERTY_ACCESS_INLINED); |
| |
| // Block the constant pool for one more instruction after leaving this |
| // constant pool block scope to include the branch instruction ending the |
| // deferred code. |
| __ BlockConstPoolFor(1); |
| } |
| } |
| |
| |
| // Consumes the top of stack (the receiver) and pushes the result instead. |
| void CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { |
| if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { |
| Comment cmnt(masm(), "[ Load from named Property"); |
| // Setup the name register and call load IC. |
| frame_->CallLoadIC(name, |
| is_contextual |
| ? RelocInfo::CODE_TARGET_CONTEXT |
| : RelocInfo::CODE_TARGET); |
| frame_->EmitPush(r0); // Push answer. |
| } else { |
| // Inline the in-object property case. |
| Comment cmnt(masm(), "[ Inlined named property load"); |
| |
| // Counter will be decremented in the deferred code. Placed here to avoid |
| // having it in the instruction stream below where patching will occur. |
| __ IncrementCounter(&Counters::named_load_inline, 1, |
| frame_->scratch0(), frame_->scratch1()); |
| |
| // The following instructions are the inlined load of an in-object property. |
| // Parts of this code is patched, so the exact instructions generated needs |
| // to be fixed. Therefore the instruction pool is blocked when generating |
| // this code |
| |
| // Load the receiver from the stack. |
| Register receiver = frame_->PopToRegister(); |
| |
| DeferredReferenceGetNamedValue* deferred = |
| new DeferredReferenceGetNamedValue(receiver, name); |
| |
| #ifdef DEBUG |
| int kInlinedNamedLoadInstructions = 7; |
| Label check_inlined_codesize; |
| masm_->bind(&check_inlined_codesize); |
| #endif |
| |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Check that the receiver is a heap object. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| deferred->Branch(eq); |
| |
| Register scratch = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| |
| // Check the map. The null map used below is patched by the inline cache |
| // code. Therefore we can't use a LoadRoot call. |
| __ ldr(scratch, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| __ mov(scratch2, Operand(Factory::null_value())); |
| __ cmp(scratch, scratch2); |
| deferred->Branch(ne); |
| |
| // Initially use an invalid index. The index will be patched by the |
| // inline cache code. |
| __ ldr(receiver, MemOperand(receiver, 0)); |
| |
| // Make sure that the expected number of instructions are generated. |
| ASSERT_EQ(kInlinedNamedLoadInstructions, |
| masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
| } |
| |
| deferred->BindExit(); |
| // At this point the receiver register has the result, either from the |
| // deferred code or from the inlined code. |
| frame_->EmitPush(receiver); |
| } |
| } |
| |
| |
| void CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { |
| #ifdef DEBUG |
| int expected_height = frame_->height() - (is_contextual ? 1 : 2); |
| #endif |
| frame_->CallStoreIC(name, is_contextual); |
| |
| ASSERT_EQ(expected_height, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::EmitKeyedLoad() { |
| if (loop_nesting() == 0) { |
| Comment cmnt(masm_, "[ Load from keyed property"); |
| frame_->CallKeyedLoadIC(); |
| } else { |
| // Inline the keyed load. |
| Comment cmnt(masm_, "[ Inlined load from keyed property"); |
| |
| // Counter will be decremented in the deferred code. Placed here to avoid |
| // having it in the instruction stream below where patching will occur. |
| __ IncrementCounter(&Counters::keyed_load_inline, 1, |
| frame_->scratch0(), frame_->scratch1()); |
| |
| // Load the key and receiver from the stack. |
| bool key_is_known_smi = frame_->KnownSmiAt(0); |
| Register key = frame_->PopToRegister(); |
| Register receiver = frame_->PopToRegister(key); |
| VirtualFrame::SpilledScope spilled(frame_); |
| |
| // The deferred code expects key and receiver in registers. |
| DeferredReferenceGetKeyedValue* deferred = |
| new DeferredReferenceGetKeyedValue(key, receiver); |
| |
| // Check that the receiver is a heap object. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| deferred->Branch(eq); |
| |
| // The following instructions are the part of the inlined load keyed |
| // property code which can be patched. Therefore the exact number of |
| // instructions generated need to be fixed, so the constant pool is blocked |
| // while generating this code. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| // Check the map. The null map used below is patched by the inline cache |
| // code. |
| __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| |
| // Check that the key is a smi. |
| if (!key_is_known_smi) { |
| __ tst(key, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| } |
| |
| #ifdef DEBUG |
| Label check_inlined_codesize; |
| masm_->bind(&check_inlined_codesize); |
| #endif |
| __ mov(scratch2, Operand(Factory::null_value())); |
| __ cmp(scratch1, scratch2); |
| deferred->Branch(ne); |
| |
| // Get the elements array from the receiver and check that it |
| // is not a dictionary. |
| __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| __ ldr(scratch2, FieldMemOperand(scratch1, JSObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(scratch2, ip); |
| deferred->Branch(ne); |
| |
| // Check that key is within bounds. Use unsigned comparison to handle |
| // negative keys. |
| __ ldr(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset)); |
| __ cmp(scratch2, key); |
| deferred->Branch(ls); // Unsigned less equal. |
| |
| // Load and check that the result is not the hole (key is a smi). |
| __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex); |
| __ add(scratch1, |
| scratch1, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(scratch1, |
| MemOperand(scratch1, key, LSL, |
| kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); |
| __ cmp(scratch1, scratch2); |
| deferred->Branch(eq); |
| |
| __ mov(r0, scratch1); |
| // Make sure that the expected number of instructions are generated. |
| ASSERT_EQ(kInlinedKeyedLoadInstructionsAfterPatch, |
| masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
| } |
| |
| deferred->BindExit(); |
| } |
| } |
| |
| |
| void CodeGenerator::EmitKeyedStore(StaticType* key_type) { |
| // Generate inlined version of the keyed store if the code is in a loop |
| // and the key is likely to be a smi. |
| if (loop_nesting() > 0 && key_type->IsLikelySmi()) { |
| // Inline the keyed store. |
| Comment cmnt(masm_, "[ Inlined store to keyed property"); |
| |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| Register scratch3 = r3; |
| |
| // Counter will be decremented in the deferred code. Placed here to avoid |
| // having it in the instruction stream below where patching will occur. |
| __ IncrementCounter(&Counters::keyed_store_inline, 1, |
| scratch1, scratch2); |
| |
| // Load the value, key and receiver from the stack. |
| Register value = frame_->PopToRegister(); |
| Register key = frame_->PopToRegister(value); |
| Register receiver = r2; |
| frame_->EmitPop(receiver); |
| VirtualFrame::SpilledScope spilled(frame_); |
| |
| // The deferred code expects value, key and receiver in registers. |
| DeferredReferenceSetKeyedValue* deferred = |
| new DeferredReferenceSetKeyedValue(value, key, receiver); |
| |
| // Check that the value is a smi. As this inlined code does not set the |
| // write barrier it is only possible to store smi values. |
| __ tst(value, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| |
| // Check that the key is a smi. |
| __ tst(key, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| |
| // Check that the receiver is a heap object. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| deferred->Branch(eq); |
| |
| // Check that the receiver is a JSArray. |
| __ CompareObjectType(receiver, scratch1, scratch1, JS_ARRAY_TYPE); |
| deferred->Branch(ne); |
| |
| // Check that the key is within bounds. Both the key and the length of |
| // the JSArray are smis. Use unsigned comparison to handle negative keys. |
| __ ldr(scratch1, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| __ cmp(scratch1, key); |
| deferred->Branch(ls); // Unsigned less equal. |
| |
| // The following instructions are the part of the inlined store keyed |
| // property code which can be patched. Therefore the exact number of |
| // instructions generated need to be fixed, so the constant pool is blocked |
| // while generating this code. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Get the elements array from the receiver and check that it |
| // is not a dictionary. |
| __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| __ ldr(scratch2, FieldMemOperand(scratch1, JSObject::kMapOffset)); |
| // Read the fixed array map from the constant pool (not from the root |
| // array) so that the value can be patched. When debugging, we patch this |
| // comparison to always fail so that we will hit the IC call in the |
| // deferred code which will allow the debugger to break for fast case |
| // stores. |
| #ifdef DEBUG |
| Label check_inlined_codesize; |
| masm_->bind(&check_inlined_codesize); |
| #endif |
| __ mov(scratch3, Operand(Factory::fixed_array_map())); |
| __ cmp(scratch2, scratch3); |
| deferred->Branch(ne); |
| |
| // Store the value. |
| __ add(scratch1, scratch1, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ str(value, |
| MemOperand(scratch1, key, LSL, |
| kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); |
| |
| // Make sure that the expected number of instructions are generated. |
| ASSERT_EQ(kInlinedKeyedStoreInstructionsAfterPatch, |
| masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
| } |
| |
| deferred->BindExit(); |
| } else { |
| frame()->CallKeyedStoreIC(); |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| bool CodeGenerator::HasValidEntryRegisters() { return true; } |
| #endif |
| |
| |
| #undef __ |
| #define __ ACCESS_MASM(masm) |
| |
| |
| Handle<String> Reference::GetName() { |
| ASSERT(type_ == NAMED); |
| Property* property = expression_->AsProperty(); |
| if (property == NULL) { |
| // Global variable reference treated as a named property reference. |
| VariableProxy* proxy = expression_->AsVariableProxy(); |
| ASSERT(proxy->AsVariable() != NULL); |
| ASSERT(proxy->AsVariable()->is_global()); |
| return proxy->name(); |
| } else { |
| Literal* raw_name = property->key()->AsLiteral(); |
| ASSERT(raw_name != NULL); |
| return Handle<String>(String::cast(*raw_name->handle())); |
| } |
| } |
| |
| |
| void Reference::DupIfPersist() { |
| if (persist_after_get_) { |
| switch (type_) { |
| case KEYED: |
| cgen_->frame()->Dup2(); |
| break; |
| case NAMED: |
| cgen_->frame()->Dup(); |
| // Fall through. |
| case UNLOADED: |
| case ILLEGAL: |
| case SLOT: |
| // Do nothing. |
| ; |
| } |
| } else { |
| set_unloaded(); |
| } |
| } |
| |
| |
| void Reference::GetValue() { |
| ASSERT(cgen_->HasValidEntryRegisters()); |
| ASSERT(!is_illegal()); |
| ASSERT(!cgen_->has_cc()); |
| MacroAssembler* masm = cgen_->masm(); |
| Property* property = expression_->AsProperty(); |
| if (property != NULL) { |
| cgen_->CodeForSourcePosition(property->position()); |
| } |
| |
| switch (type_) { |
| case SLOT: { |
| Comment cmnt(masm, "[ Load from Slot"); |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
| ASSERT(slot != NULL); |
| DupIfPersist(); |
| cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
| break; |
| } |
| |
| case NAMED: { |
| Variable* var = expression_->AsVariableProxy()->AsVariable(); |
| bool is_global = var != NULL; |
| ASSERT(!is_global || var->is_global()); |
| Handle<String> name = GetName(); |
| DupIfPersist(); |
| cgen_->EmitNamedLoad(name, is_global); |
| break; |
| } |
| |
| case KEYED: { |
| ASSERT(property != NULL); |
| DupIfPersist(); |
| cgen_->EmitKeyedLoad(); |
| cgen_->frame()->EmitPush(r0); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void Reference::SetValue(InitState init_state) { |
| ASSERT(!is_illegal()); |
| ASSERT(!cgen_->has_cc()); |
| MacroAssembler* masm = cgen_->masm(); |
| VirtualFrame* frame = cgen_->frame(); |
| Property* property = expression_->AsProperty(); |
| if (property != NULL) { |
| cgen_->CodeForSourcePosition(property->position()); |
| } |
| |
| switch (type_) { |
| case SLOT: { |
| Comment cmnt(masm, "[ Store to Slot"); |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
| cgen_->StoreToSlot(slot, init_state); |
| set_unloaded(); |
| break; |
| } |
| |
| case NAMED: { |
| Comment cmnt(masm, "[ Store to named Property"); |
| cgen_->EmitNamedStore(GetName(), false); |
| frame->EmitPush(r0); |
| set_unloaded(); |
| break; |
| } |
| |
| case KEYED: { |
| Comment cmnt(masm, "[ Store to keyed Property"); |
| Property* property = expression_->AsProperty(); |
| ASSERT(property != NULL); |
| cgen_->CodeForSourcePosition(property->position()); |
| cgen_->EmitKeyedStore(property->key()->type()); |
| frame->EmitPush(r0); |
| set_unloaded(); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| // Create a new closure from the given function info in new |
| // space. Set the context to the current context in cp. |
| Label gc; |
| |
| // Pop the function info from the stack. |
| __ pop(r3); |
| |
| // Attempt to allocate new JSFunction in new space. |
| __ AllocateInNewSpace(JSFunction::kSize, |
| r0, |
| r1, |
| r2, |
| &gc, |
| TAG_OBJECT); |
| |
| // Compute the function map in the current global context and set that |
| // as the map of the allocated object. |
| __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r2, MemOperand(r2, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| |
| // Initialize the rest of the function. We don't have to update the |
| // write barrier because the allocated object is in new space. |
| __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex); |
| __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); |
| __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset)); |
| __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); |
| __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset)); |
| __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); |
| |
| // Return result. The argument function info has been popped already. |
| __ Ret(); |
| |
| // Create a new closure through the slower runtime call. |
| __ bind(&gc); |
| __ Push(cp, r3); |
| __ TailCallRuntime(Runtime::kNewClosure, 2, 1); |
| } |
| |
| |
| void FastNewContextStub::Generate(MacroAssembler* masm) { |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| |
| // Attempt to allocate the context in new space. |
| __ AllocateInNewSpace(FixedArray::SizeFor(length), |
| r0, |
| r1, |
| r2, |
| &gc, |
| TAG_OBJECT); |
| |
| // Load the function from the stack. |
| __ ldr(r3, MemOperand(sp, 0)); |
| |
| // Setup the object header. |
| __ LoadRoot(r2, Heap::kContextMapRootIndex); |
| __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ mov(r2, Operand(Smi::FromInt(length))); |
| __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
| |
| // Setup the fixed slots. |
| __ mov(r1, Operand(Smi::FromInt(0))); |
| __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX))); |
| |
| // Copy the global object from the surrounding context. |
| __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| |
| // Initialize the rest of the slots to undefined. |
| __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| __ str(r1, MemOperand(r0, Context::SlotOffset(i))); |
| } |
| |
| // Remove the on-stack argument and return. |
| __ mov(cp, r0); |
| __ pop(); |
| __ Ret(); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
| } |
| |
| |
| void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [sp]: constant elements. |
| // [sp + kPointerSize]: literal index. |
| // [sp + (2 * kPointerSize)]: literals array. |
| |
| // All sizes here are multiples of kPointerSize. |
| int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| int size = JSArray::kSize + elements_size; |
| |
| // Load boilerplate object into r3 and check if we need to create a |
| // boilerplate. |
| Label slow_case; |
| __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r3, ip); |
| __ b(eq, &slow_case); |
| |
| // Allocate both the JS array and the elements array in one big |
| // allocation. This avoids multiple limit checks. |
| __ AllocateInNewSpace(size, |
| r0, |
| r1, |
| r2, |
| &slow_case, |
| TAG_OBJECT); |
| |
| // Copy the JS array part. |
| for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| __ ldr(r1, FieldMemOperand(r3, i)); |
| __ str(r1, FieldMemOperand(r0, i)); |
| } |
| } |
| |
| if (length_ > 0) { |
| // Get hold of the elements array of the boilerplate and setup the |
| // elements pointer in the resulting object. |
| __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset)); |
| __ add(r2, r0, Operand(JSArray::kSize)); |
| __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset)); |
| |
| // Copy the elements array. |
| for (int i = 0; i < elements_size; i += kPointerSize) { |
| __ ldr(r1, FieldMemOperand(r3, i)); |
| __ str(r1, FieldMemOperand(r2, i)); |
| } |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&slow_case); |
| __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| } |
| |
| |
| // Takes a Smi and converts to an IEEE 64 bit floating point value in two |
| // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and |
| // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a |
| // scratch register. Destroys the source register. No GC occurs during this |
| // stub so you don't have to set up the frame. |
| class ConvertToDoubleStub : public CodeStub { |
| public: |
| ConvertToDoubleStub(Register result_reg_1, |
| Register result_reg_2, |
| Register source_reg, |
| Register scratch_reg) |
| : result1_(result_reg_1), |
| result2_(result_reg_2), |
| source_(source_reg), |
| zeros_(scratch_reg) { } |
| |
| private: |
| Register result1_; |
| Register result2_; |
| Register source_; |
| Register zeros_; |
| |
| // Minor key encoding in 16 bits. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 14> {}; |
| |
| Major MajorKey() { return ConvertToDouble; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return result1_.code() + |
| (result2_.code() << 4) + |
| (source_.code() << 8) + |
| (zeros_.code() << 12); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| |
| const char* GetName() { return "ConvertToDoubleStub"; } |
| |
| #ifdef DEBUG |
| void Print() { PrintF("ConvertToDoubleStub\n"); } |
| #endif |
| }; |
| |
| |
| void ConvertToDoubleStub::Generate(MacroAssembler* masm) { |
| #ifndef BIG_ENDIAN_FLOATING_POINT |
| Register exponent = result1_; |
| Register mantissa = result2_; |
| #else |
| Register exponent = result2_; |
| Register mantissa = result1_; |
| #endif |
| Label not_special; |
| // Convert from Smi to integer. |
| __ mov(source_, Operand(source_, ASR, kSmiTagSize)); |
| // Move sign bit from source to destination. This works because the sign bit |
| // in the exponent word of the double has the same position and polarity as |
| // the 2's complement sign bit in a Smi. |
| ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); |
| // Subtract from 0 if source was negative. |
| __ rsb(source_, source_, Operand(0), LeaveCC, ne); |
| |
| // We have -1, 0 or 1, which we treat specially. Register source_ contains |
| // absolute value: it is either equal to 1 (special case of -1 and 1), |
| // greater than 1 (not a special case) or less than 1 (special case of 0). |
| __ cmp(source_, Operand(1)); |
| __ b(gt, ¬_special); |
| |
| // For 1 or -1 we need to or in the 0 exponent (biased to 1023). |
| static const uint32_t exponent_word_for_1 = |
| HeapNumber::kExponentBias << HeapNumber::kExponentShift; |
| __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq); |
| // 1, 0 and -1 all have 0 for the second word. |
| __ mov(mantissa, Operand(0)); |
| __ Ret(); |
| |
| __ bind(¬_special); |
| // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5. |
| // Gets the wrong answer for 0, but we already checked for that case above. |
| __ CountLeadingZeros(source_, mantissa, zeros_); |
| // Compute exponent and or it into the exponent register. |
| // We use mantissa as a scratch register here. |
| __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias)); |
| __ orr(exponent, |
| exponent, |
| Operand(mantissa, LSL, HeapNumber::kExponentShift)); |
| // Shift up the source chopping the top bit off. |
| __ add(zeros_, zeros_, Operand(1)); |
| // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. |
| __ mov(source_, Operand(source_, LSL, zeros_)); |
| // Compute lower part of fraction (last 12 bits). |
| __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); |
| // And the top (top 20 bits). |
| __ orr(exponent, |
| exponent, |
| Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); |
| __ Ret(); |
| } |
| |
| |
| // See comment for class. |
| void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
| Label max_negative_int; |
| // the_int_ has the answer which is a signed int32 but not a Smi. |
| // We test for the special value that has a different exponent. This test |
| // has the neat side effect of setting the flags according to the sign. |
| ASSERT(HeapNumber::kSignMask == 0x80000000u); |
| __ cmp(the_int_, Operand(0x80000000u)); |
| __ b(eq, &max_negative_int); |
| // Set up the correct exponent in scratch_. All non-Smi int32s have the same. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). |
| uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ mov(scratch_, Operand(non_smi_exponent)); |
| // Set the sign bit in scratch_ if the value was negative. |
| __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); |
| // Subtract from 0 if the value was negative. |
| __ rsb(the_int_, the_int_, Operand(0), LeaveCC, cs); |
| // We should be masking the implict first digit of the mantissa away here, |
| // but it just ends up combining harmlessly with the last digit of the |
| // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get |
| // the most significant 1 to hit the last bit of the 12 bit sign and exponent. |
| ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); |
| __ str(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kExponentOffset)); |
| __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); |
| __ str(scratch_, FieldMemOperand(the_heap_number_, |
| HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| |
| __ bind(&max_negative_int); |
| // The max negative int32 is stored as a positive number in the mantissa of |
| // a double because it uses a sign bit instead of using two's complement. |
| // The actual mantissa bits stored are all 0 because the implicit most |
| // significant 1 bit is not stored. |
| non_smi_exponent += 1 << HeapNumber::kExponentShift; |
| __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
| __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); |
| __ mov(ip, Operand(0)); |
| __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); |
| __ Ret(); |
| } |
| |
| |
| // Handle the case where the lhs and rhs are the same object. |
| // Equality is almost reflexive (everything but NaN), so this is a test |
| // for "identity and not NaN". |
| static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
| Label* slow, |
| Condition cc, |
| bool never_nan_nan) { |
| Label not_identical; |
| Label heap_number, return_equal; |
| Register exp_mask_reg = r5; |
| __ cmp(r0, r1); |
| __ b(ne, ¬_identical); |
| |
| // The two objects are identical. If we know that one of them isn't NaN then |
| // we now know they test equal. |
| if (cc != eq || !never_nan_nan) { |
| __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| |
| // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
| // so we do the second best thing - test it ourselves. |
| // They are both equal and they are not both Smis so both of them are not |
| // Smis. If it's not a heap number, then return equal. |
| if (cc == lt || cc == gt) { |
| __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, slow); |
| } else { |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(eq, &heap_number); |
| // Comparing JS objects with <=, >= is complicated. |
| if (cc != eq) { |
| __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); |
| __ b(ge, slow); |
| // Normally here we fall through to return_equal, but undefined is |
| // special: (undefined == undefined) == true, but |
| // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
| if (cc == le || cc == ge) { |
| __ cmp(r4, Operand(ODDBALL_TYPE)); |
| __ b(ne, &return_equal); |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, r2); |
| __ b(ne, &return_equal); |
| if (cc == le) { |
| // undefined <= undefined should fail. |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| // undefined >= undefined should fail. |
| __ mov(r0, Operand(LESS)); |
| } |
| __ mov(pc, Operand(lr)); // Return. |
| } |
| } |
| } |
| } |
| |
| __ bind(&return_equal); |
| if (cc == lt) { |
| __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. |
| } else if (cc == gt) { |
| __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. |
| } else { |
| __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. |
| } |
| __ mov(pc, Operand(lr)); // Return. |
| |
| if (cc != eq || !never_nan_nan) { |
| // For less and greater we don't have to check for NaN since the result of |
| // x < x is false regardless. For the others here is some code to check |
| // for NaN. |
| if (cc != lt && cc != gt) { |
| __ bind(&heap_number); |
| // It is a heap number, so return non-equal if it's NaN and equal if it's |
| // not NaN. |
| |
| // The representation of NaN values has all exponent bits (52..62) set, |
| // and not all mantissa bits (0..51) clear. |
| // Read top bits of double representation (second word of value). |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| // Test that exponent bits are all set. |
| __ and_(r3, r2, Operand(exp_mask_reg)); |
| __ cmp(r3, Operand(exp_mask_reg)); |
| __ b(ne, &return_equal); |
| |
| // Shift out flag and all exponent bits, retaining only mantissa. |
| __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); |
| // Or with all low-bits of mantissa. |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| __ orr(r0, r3, Operand(r2), SetCC); |
| // For equal we already have the right value in r0: Return zero (equal) |
| // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
| // not (it's a NaN). For <= and >= we need to load r0 with the failing |
| // value if it's a NaN. |
| if (cc != eq) { |
| // All-zero means Infinity means equal. |
| __ mov(pc, Operand(lr), LeaveCC, eq); // Return equal |
| if (cc == le) { |
| __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. |
| } else { |
| __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. |
| } |
| } |
| __ mov(pc, Operand(lr)); // Return. |
| } |
| // No fall through here. |
| } |
| |
| __ bind(¬_identical); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
| Label* lhs_not_nan, |
| Label* slow, |
| bool strict) { |
| Label rhs_is_smi; |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &rhs_is_smi); |
| |
| // Lhs is a Smi. Check whether the rhs is a heap number. |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| if (strict) { |
| // If rhs is not a number and lhs is a Smi then strict equality cannot |
| // succeed. Return non-equal (r0 is already not zero) |
| __ mov(pc, Operand(lr), LeaveCC, ne); // Return. |
| } else { |
| // Smi compared non-strictly with a non-Smi non-heap-number. Call |
| // the runtime. |
| __ b(ne, slow); |
| } |
| |
| // Lhs (r1) is a smi, rhs (r0) is a number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert lhs to a double in d7 . |
| CpuFeatures::Scope scope(VFP3); |
| __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
| __ vmov(s15, r7); |
| __ vcvt_f64_s32(d7, s15); |
| // Load the double from rhs, tagged HeapNumber r0, to d6. |
| __ sub(r7, r0, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| } else { |
| __ push(lr); |
| // Convert lhs to a double in r2, r3. |
| __ mov(r7, Operand(r1)); |
| ConvertToDoubleStub stub1(r3, r2, r7, r6); |
| __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| // Load rhs to a double in r0, r1. |
| __ Ldrd(r0, r1, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| __ pop(lr); |
| } |
| |
| // We now have both loaded as doubles but we can skip the lhs nan check |
| // since it's a smi. |
| __ jmp(lhs_not_nan); |
| |
| __ bind(&rhs_is_smi); |
| // Rhs is a smi. Check whether the non-smi lhs is a heap number. |
| __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); |
| if (strict) { |
| // If lhs is not a number and rhs is a smi then strict equality cannot |
| // succeed. Return non-equal. |
| __ mov(r0, Operand(1), LeaveCC, ne); // Non-zero indicates not equal. |
| __ mov(pc, Operand(lr), LeaveCC, ne); // Return. |
| } else { |
| // Smi compared non-strictly with a non-smi non-heap-number. Call |
| // the runtime. |
| __ b(ne, slow); |
| } |
| |
| // Rhs (r0) is a smi, lhs (r1) is a heap number. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Convert rhs to a double in d6 . |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from lhs, tagged HeapNumber r1, to d7. |
| __ sub(r7, r1, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
| __ vmov(s13, r7); |
| __ vcvt_f64_s32(d6, s13); |
| } else { |
| __ push(lr); |
| // Load lhs to a double in r2, r3. |
| __ Ldrd(r2, r3, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
| // Convert rhs to a double in r0, r1. |
| __ mov(r7, Operand(r0)); |
| ConvertToDoubleStub stub2(r1, r0, r7, r6); |
| __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| // Fall through to both_loaded_as_doubles. |
| } |
| |
| |
| void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cc) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| Register rhs_exponent = exp_first ? r0 : r1; |
| Register lhs_exponent = exp_first ? r2 : r3; |
| Register rhs_mantissa = exp_first ? r1 : r0; |
| Register lhs_mantissa = exp_first ? r3 : r2; |
| Label one_is_nan, neither_is_nan; |
| Label lhs_not_nan_exp_mask_is_loaded; |
| |
| Register exp_mask_reg = r5; |
| |
| __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| __ and_(r4, lhs_exponent, Operand(exp_mask_reg)); |
| __ cmp(r4, Operand(exp_mask_reg)); |
| __ b(ne, &lhs_not_nan_exp_mask_is_loaded); |
| __ mov(r4, |
| Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| SetCC); |
| __ b(ne, &one_is_nan); |
| __ cmp(lhs_mantissa, Operand(0)); |
| __ b(ne, &one_is_nan); |
| |
| __ bind(lhs_not_nan); |
| __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
| __ bind(&lhs_not_nan_exp_mask_is_loaded); |
| __ and_(r4, rhs_exponent, Operand(exp_mask_reg)); |
| __ cmp(r4, Operand(exp_mask_reg)); |
| __ b(ne, &neither_is_nan); |
| __ mov(r4, |
| Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord), |
| SetCC); |
| __ b(ne, &one_is_nan); |
| __ cmp(rhs_mantissa, Operand(0)); |
| __ b(eq, &neither_is_nan); |
| |
| __ bind(&one_is_nan); |
| // NaN comparisons always fail. |
| // Load whatever we need in r0 to make the comparison fail. |
| if (cc == lt || cc == le) { |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| __ mov(r0, Operand(LESS)); |
| } |
| __ mov(pc, Operand(lr)); // Return. |
| |
| __ bind(&neither_is_nan); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { |
| bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
| Register rhs_exponent = exp_first ? r0 : r1; |
| Register lhs_exponent = exp_first ? r2 : r3; |
| Register rhs_mantissa = exp_first ? r1 : r0; |
| Register lhs_mantissa = exp_first ? r3 : r2; |
| |
| // r0, r1, r2, r3 have the two doubles. Neither is a NaN. |
| if (cc == eq) { |
| // Doubles are not equal unless they have the same bit pattern. |
| // Exception: 0 and -0. |
| __ cmp(rhs_mantissa, Operand(lhs_mantissa)); |
| __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne); |
| // Return non-zero if the numbers are unequal. |
| __ mov(pc, Operand(lr), LeaveCC, ne); |
| |
| __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC); |
| // If exponents are equal then return 0. |
| __ mov(pc, Operand(lr), LeaveCC, eq); |
| |
| // Exponents are unequal. The only way we can return that the numbers |
| // are equal is if one is -0 and the other is 0. We already dealt |
| // with the case where both are -0 or both are 0. |
| // We start by seeing if the mantissas (that are equal) or the bottom |
| // 31 bits of the rhs exponent are non-zero. If so we return not |
| // equal. |
| __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC); |
| __ mov(r0, Operand(r4), LeaveCC, ne); |
| __ mov(pc, Operand(lr), LeaveCC, ne); // Return conditionally. |
| // Now they are equal if and only if the lhs exponent is zero in its |
| // low 31 bits. |
| __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize)); |
| __ mov(pc, Operand(lr)); |
| } else { |
| // Call a native function to do a comparison between two non-NaNs. |
| // Call C routine that may not cause GC or other trouble. |
| __ push(lr); |
| __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments. |
| __ CallCFunction(ExternalReference::compare_doubles(), 4); |
| __ pop(pc); // Return. |
| } |
| } |
| |
| |
| // See comment at call site. |
| static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm) { |
| // If either operand is a JSObject or an oddball value, then they are |
| // not equal since their pointers are different. |
| // There is no test for undetectability in strict equality. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| Label first_non_object; |
| // Get the type of the first operand into r2 and compare it with |
| // FIRST_JS_OBJECT_TYPE. |
| __ CompareObjectType(r0, r2, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &first_non_object); |
| |
| // Return non-zero (r0 is not zero) |
| Label return_not_equal; |
| __ bind(&return_not_equal); |
| __ mov(pc, Operand(lr)); // Return. |
| |
| __ bind(&first_non_object); |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(r2, Operand(ODDBALL_TYPE)); |
| __ b(eq, &return_not_equal); |
| |
| __ CompareObjectType(r1, r3, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &return_not_equal); |
| |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(r3, Operand(ODDBALL_TYPE)); |
| __ b(eq, &return_not_equal); |
| |
| // Now that we have the types we might as well check for symbol-symbol. |
| // Ensure that no non-strings have the symbol bit set. |
| ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); |
| ASSERT(kSymbolTag != 0); |
| __ and_(r2, r2, Operand(r3)); |
| __ tst(r2, Operand(kIsSymbolMask)); |
| __ b(ne, &return_not_equal); |
| } |
| |
| |
| // See comment at call site. |
| static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
| Label* both_loaded_as_doubles, |
| Label* not_heap_numbers, |
| Label* slow) { |
| __ CompareObjectType(r0, r3, r2, HEAP_NUMBER_TYPE); |
| __ b(ne, not_heap_numbers); |
| __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ cmp(r2, r3); |
| __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. |
| |
| // Both are heap numbers. Load them up then jump to the code we have |
| // for that. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ sub(r7, r0, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| __ sub(r7, r1, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| } else { |
| __ Ldrd(r2, r3, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
| __ Ldrd(r0, r1, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| } |
| __ jmp(both_loaded_as_doubles); |
| } |
| |
| |
| // Fast negative check for symbol-to-symbol equality. |
| static void EmitCheckForSymbols(MacroAssembler* masm, Label* slow) { |
| // r2 is object type of r0. |
| // Ensure that no non-strings have the symbol bit set. |
| ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); |
| ASSERT(kSymbolTag != 0); |
| __ tst(r2, Operand(kIsSymbolMask)); |
| __ b(eq, slow); |
| __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); |
| __ tst(r3, Operand(kIsSymbolMask)); |
| __ b(eq, slow); |
| |
| // Both are symbols. We already checked they weren't the same pointer |
| // so they are not equal. |
| __ mov(r0, Operand(1)); // Non-zero indicates not equal. |
| __ mov(pc, Operand(lr)); // Return. |
| } |
| |
| |
| void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| bool object_is_smi, |
| Label* not_found) { |
| // Use of registers. Register result is used as a temporary. |
| Register number_string_cache = result; |
| Register mask = scratch3; |
| |
| // Load the number string cache. |
| __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
| |
| // Make the hash mask from the length of the number string cache. It |
| // contains two elements (number and string) for each cache entry. |
| __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); |
| // Divide length by two (length is a smi). |
| __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1)); |
| __ sub(mask, mask, Operand(1)); // Make mask. |
| |
| // Calculate the entry in the number string cache. The hash value in the |
| // number string cache for smis is just the smi value, and the hash for |
| // doubles is the xor of the upper and lower words. See |
| // Heap::GetNumberStringCache. |
| Label is_smi; |
| Label load_result_from_cache; |
| if (!object_is_smi) { |
| __ BranchOnSmi(object, &is_smi); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ CheckMap(object, |
| scratch1, |
| Heap::kHeapNumberMapRootIndex, |
| not_found, |
| true); |
| |
| ASSERT_EQ(8, kDoubleSize); |
| __ add(scratch1, |
| object, |
| Operand(HeapNumber::kValueOffset - kHeapObjectTag)); |
| __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit()); |
| __ eor(scratch1, scratch1, Operand(scratch2)); |
| __ and_(scratch1, scratch1, Operand(mask)); |
| |
| // Calculate address of entry in string cache: each entry consists |
| // of two pointer sized fields. |
| __ add(scratch1, |
| number_string_cache, |
| Operand(scratch1, LSL, kPointerSizeLog2 + 1)); |
| |
| Register probe = mask; |
| __ ldr(probe, |
| FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
| __ BranchOnSmi(probe, not_found); |
| __ sub(scratch2, object, Operand(kHeapObjectTag)); |
| __ vldr(d0, scratch2, HeapNumber::kValueOffset); |
| __ sub(probe, probe, Operand(kHeapObjectTag)); |
| __ vldr(d1, probe, HeapNumber::kValueOffset); |
| __ vcmp(d0, d1); |
| __ vmrs(pc); |
| __ b(ne, not_found); // The cache did not contain this value. |
| __ b(&load_result_from_cache); |
| } else { |
| __ b(not_found); |
| } |
| } |
| |
| __ bind(&is_smi); |
| Register scratch = scratch1; |
| __ and_(scratch, mask, Operand(object, ASR, 1)); |
| // Calculate address of entry in string cache: each entry consists |
| // of two pointer sized fields. |
| __ add(scratch, |
| number_string_cache, |
| Operand(scratch, LSL, kPointerSizeLog2 + 1)); |
| |
| // Check if the entry is the smi we are looking for. |
| Register probe = mask; |
| __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| __ cmp(object, probe); |
| __ b(ne, not_found); |
| |
| // Get the result from the cache. |
| __ bind(&load_result_from_cache); |
| __ ldr(result, |
| FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
| __ IncrementCounter(&Counters::number_to_string_native, |
| 1, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void NumberToStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| __ ldr(r1, MemOperand(sp, 0)); |
| |
| // Generate code to lookup number in the number string cache. |
| GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime); |
| __ add(sp, sp, Operand(1 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&runtime); |
| // Handle number to string in the runtime system if not found in the cache. |
| __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
| } |
| |
| |
| void RecordWriteStub::Generate(MacroAssembler* masm) { |
| __ RecordWriteHelper(object_, offset_, scratch_); |
| __ Ret(); |
| } |
| |
| |
| // On entry r0 (rhs) and r1 (lhs) are the values to be compared. |
| // On exit r0 is 0, positive or negative to indicate the result of |
| // the comparison. |
| void CompareStub::Generate(MacroAssembler* masm) { |
| Label slow; // Call builtin. |
| Label not_smis, both_loaded_as_doubles, lhs_not_nan; |
| |
| // NOTICE! This code is only reached after a smi-fast-case check, so |
| // it is certain that at least one operand isn't a smi. |
| |
| // Handle the case where the objects are identical. Either returns the answer |
| // or goes to slow. Only falls through if the objects were not identical. |
| EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
| |
| // If either is a Smi (we know that not both are), then they can only |
| // be strictly equal if the other is a HeapNumber. |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ and_(r2, r0, Operand(r1)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smis); |
| // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
| // 1) Return the answer. |
| // 2) Go to slow. |
| // 3) Fall through to both_loaded_as_doubles. |
| // 4) Jump to lhs_not_nan. |
| // In cases 3 and 4 we have found out we were dealing with a number-number |
| // comparison. If VFP3 is supported the double values of the numbers have |
| // been loaded into d7 and d6. Otherwise, the double values have been loaded |
| // into r0, r1, r2, and r3. |
| EmitSmiNonsmiComparison(masm, &lhs_not_nan, &slow, strict_); |
| |
| __ bind(&both_loaded_as_doubles); |
| // The arguments have been converted to doubles and stored in d6 and d7, if |
| // VFP3 is supported, or in r0, r1, r2, and r3. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ bind(&lhs_not_nan); |
| CpuFeatures::Scope scope(VFP3); |
| Label no_nan; |
| // ARMv7 VFP3 instructions to implement double precision comparison. |
| __ vcmp(d7, d6); |
| __ vmrs(pc); // Move vector status bits to normal status bits. |
| Label nan; |
| __ b(vs, &nan); |
| __ mov(r0, Operand(EQUAL), LeaveCC, eq); |
| __ mov(r0, Operand(LESS), LeaveCC, lt); |
| __ mov(r0, Operand(GREATER), LeaveCC, gt); |
| __ mov(pc, Operand(lr)); |
| |
| __ bind(&nan); |
| // If one of the sides was a NaN then the v flag is set. Load r0 with |
| // whatever it takes to make the comparison fail, since comparisons with NaN |
| // always fail. |
| if (cc_ == lt || cc_ == le) { |
| __ mov(r0, Operand(GREATER)); |
| } else { |
| __ mov(r0, Operand(LESS)); |
| } |
| __ mov(pc, Operand(lr)); |
| } else { |
| // Checks for NaN in the doubles we have loaded. Can return the answer or |
| // fall through if neither is a NaN. Also binds lhs_not_nan. |
| EmitNanCheck(masm, &lhs_not_nan, cc_); |
| // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the |
| // answer. Never falls through. |
| EmitTwoNonNanDoubleComparison(masm, cc_); |
| } |
| |
| __ bind(¬_smis); |
| // At this point we know we are dealing with two different objects, |
| // and neither of them is a Smi. The objects are in r0 and r1. |
| if (strict_) { |
| // This returns non-equal for some object types, or falls through if it |
| // was not lucky. |
| EmitStrictTwoHeapObjectCompare(masm); |
| } |
| |
| Label check_for_symbols; |
| Label flat_string_check; |
| // Check for heap-number-heap-number comparison. Can jump to slow case, |
| // or load both doubles into r0, r1, r2, r3 and jump to the code that handles |
| // that case. If the inputs are not doubles then jumps to check_for_symbols. |
| // In this case r2 will contain the type of r0. Never falls through. |
| EmitCheckForTwoHeapNumbers(masm, |
| &both_loaded_as_doubles, |
| &check_for_symbols, |
| &flat_string_check); |
| |
| __ bind(&check_for_symbols); |
| // In the strict case the EmitStrictTwoHeapObjectCompare already took care of |
| // symbols. |
| if (cc_ == eq && !strict_) { |
| // Either jumps to slow or returns the answer. Assumes that r2 is the type |
| // of r0 on entry. |
| EmitCheckForSymbols(masm, &flat_string_check); |
| } |
| |
| // Check for both being sequential ASCII strings, and inline if that is the |
| // case. |
| __ bind(&flat_string_check); |
| |
| __ JumpIfNonSmisNotBothSequentialAsciiStrings(r0, r1, r2, r3, &slow); |
| |
| __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3); |
| StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| r1, |
| r0, |
| r2, |
| r3, |
| r4, |
| r5); |
| // Never falls through to here. |
| |
| __ bind(&slow); |
| |
| __ Push(r1, r0); |
| // Figure out which native to call and setup the arguments. |
| Builtins::JavaScript native; |
| if (cc_ == eq) { |
| native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| } else { |
| native = Builtins::COMPARE; |
| int ncr; // NaN compare result |
| if (cc_ == lt || cc_ == le) { |
| ncr = GREATER; |
| } else { |
| ASSERT(cc_ == gt || cc_ == ge); // remaining cases |
| ncr = LESS; |
| } |
| __ mov(r0, Operand(Smi::FromInt(ncr))); |
| __ push(r0); |
| } |
| |
| // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ InvokeBuiltin(native, JUMP_JS); |
| } |
| |
| |
| // We fall into this code if the operands were Smis, but the result was |
| // not (eg. overflow). We branch into this code (to the not_smi label) if |
| // the operands were not both Smi. The operands are in r0 and r1. In order |
| // to call the C-implemented binary fp operation routines we need to end up |
| // with the double precision floating point operands in r0 and r1 (for the |
| // value in r1) and r2 and r3 (for the value in r0). |
| void GenericBinaryOpStub::HandleBinaryOpSlowCases( |
| MacroAssembler* masm, |
| Label* not_smi, |
| Register lhs, |
| Register rhs, |
| const Builtins::JavaScript& builtin) { |
| Label slow, slow_reverse, do_the_call; |
| bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && Token::MOD != op_; |
| |
| ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); |
| |
| if (ShouldGenerateSmiCode()) { |
| // Smi-smi case (overflow). |
| // Since both are Smis there is no heap number to overwrite, so allocate. |
| // The new heap number is in r5. r6 and r7 are scratch. |
| __ AllocateHeapNumber(r5, r6, r7, lhs.is(r0) ? &slow_reverse : &slow); |
| |
| // If we have floating point hardware, inline ADD, SUB, MUL, and DIV, |
| // using registers d7 and d6 for the double values. |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| __ mov(r7, Operand(rhs, ASR, kSmiTagSize)); |
| __ vmov(s15, r7); |
| __ vcvt_f64_s32(d7, s15); |
| __ mov(r7, Operand(lhs, ASR, kSmiTagSize)); |
| __ vmov(s13, r7); |
| __ vcvt_f64_s32(d6, s13); |
| } else { |
| // Write Smi from rhs to r3 and r2 in double format. r6 is scratch. |
| __ mov(r7, Operand(rhs)); |
| ConvertToDoubleStub stub1(r3, r2, r7, r6); |
| __ push(lr); |
| __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
| // Write Smi from lhs to r1 and r0 in double format. r6 is scratch. |
| __ mov(r7, Operand(lhs)); |
| ConvertToDoubleStub stub2(r1, r0, r7, r6); |
| __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| __ jmp(&do_the_call); // Tail call. No return. |
| } |
| |
| // We branch here if at least one of r0 and r1 is not a Smi. |
| __ bind(not_smi); |
| |
| // After this point we have the left hand side in r1 and the right hand side |
| // in r0. |
| if (lhs.is(r0)) { |
| __ Swap(r0, r1, ip); |
| } |
| |
| if (ShouldGenerateFPCode()) { |
| Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1; |
| |
| if (runtime_operands_type_ == BinaryOpIC::DEFAULT) { |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| GenerateTypeTransition(masm); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (mode_ == NO_OVERWRITE) { |
| // In the case where there is no chance of an overwritable float we may as |
| // well do the allocation immediately while r0 and r1 are untouched. |
| __ AllocateHeapNumber(r5, r6, r7, &slow); |
| } |
| |
| // Move r0 to a double in r2-r3. |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. |
| __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| if (mode_ == OVERWRITE_RIGHT) { |
| __ mov(r5, Operand(r0)); // Overwrite this heap number. |
| } |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from tagged HeapNumber r0 to d7. |
| __ sub(r7, r0, Operand(kHeapObjectTag)); |
| __ vldr(d7, r7, HeapNumber::kValueOffset); |
| } else { |
| // Calling convention says that second double is in r2 and r3. |
| __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| } |
| __ jmp(&finished_loading_r0); |
| __ bind(&r0_is_smi); |
| if (mode_ == OVERWRITE_RIGHT) { |
| // We can't overwrite a Smi so get address of new heap number into r5. |
| __ AllocateHeapNumber(r5, r6, r7, &slow); |
| } |
| |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Convert smi in r0 to double in d7. |
| __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
| __ vmov(s15, r7); |
| __ vcvt_f64_s32(d7, s15); |
| } else { |
| // Write Smi from r0 to r3 and r2 in double format. |
| __ mov(r7, Operand(r0)); |
| ConvertToDoubleStub stub3(r3, r2, r7, r6); |
| __ push(lr); |
| __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| |
| // HEAP_NUMBERS stub is slower than GENERIC on a pair of smis. |
| // r0 is known to be a smi. If r1 is also a smi then switch to GENERIC. |
| Label r1_is_not_smi; |
| if (runtime_operands_type_ == BinaryOpIC::HEAP_NUMBERS) { |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(ne, &r1_is_not_smi); |
| GenerateTypeTransition(masm); |
| __ jmp(&r1_is_smi); |
| } |
| |
| __ bind(&finished_loading_r0); |
| |
| // Move r1 to a double in r0-r1. |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. |
| __ bind(&r1_is_not_smi); |
| __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| if (mode_ == OVERWRITE_LEFT) { |
| __ mov(r5, Operand(r1)); // Overwrite this heap number. |
| } |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Load the double from tagged HeapNumber r1 to d6. |
| __ sub(r7, r1, Operand(kHeapObjectTag)); |
| __ vldr(d6, r7, HeapNumber::kValueOffset); |
| } else { |
| // Calling convention says that first double is in r0 and r1. |
| __ Ldrd(r0, r1, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
| } |
| __ jmp(&finished_loading_r1); |
| __ bind(&r1_is_smi); |
| if (mode_ == OVERWRITE_LEFT) { |
| // We can't overwrite a Smi so get address of new heap number into r5. |
| __ AllocateHeapNumber(r5, r6, r7, &slow); |
| } |
| |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // Convert smi in r1 to double in d6. |
| __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
| __ vmov(s13, r7); |
| __ vcvt_f64_s32(d6, s13); |
| } else { |
| // Write Smi from r1 to r1 and r0 in double format. |
| __ mov(r7, Operand(r1)); |
| ConvertToDoubleStub stub4(r1, r0, r7, r6); |
| __ push(lr); |
| __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } |
| |
| __ bind(&finished_loading_r1); |
| |
| __ bind(&do_the_call); |
| // If we are inlining the operation using VFP3 instructions for |
| // add, subtract, multiply, or divide, the arguments are in d6 and d7. |
| if (use_fp_registers) { |
| CpuFeatures::Scope scope(VFP3); |
| // ARMv7 VFP3 instructions to implement |
| // double precision, add, subtract, multiply, divide. |
| |
| if (Token::MUL == op_) { |
| __ vmul(d5, d6, d7); |
| } else if (Token::DIV == op_) { |
| __ vdiv(d5, d6, d7); |
| } else if (Token::ADD == op_) { |
| __ vadd(d5, d6, d7); |
| } else if (Token::SUB == op_) { |
| __ vsub(d5, d6, d7); |
| } else { |
| UNREACHABLE(); |
| } |
| __ sub(r0, r5, Operand(kHeapObjectTag)); |
| __ vstr(d5, r0, HeapNumber::kValueOffset); |
| __ add(r0, r0, Operand(kHeapObjectTag)); |
| __ mov(pc, lr); |
| } else { |
| // If we did not inline the operation, then the arguments are in: |
| // r0: Left value (least significant part of mantissa). |
| // r1: Left value (sign, exponent, top of mantissa). |
| // r2: Right value (least significant part of mantissa). |
| // r3: Right value (sign, exponent, top of mantissa). |
| // r5: Address of heap number for result. |
| |
| __ push(lr); // For later. |
| __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments. |
| // Call C routine that may not cause GC or other trouble. r5 is callee |
| // save. |
| __ CallCFunction(ExternalReference::double_fp_operation(op_), 4); |
| // Store answer in the overwritable heap number. |
| #if !defined(USE_ARM_EABI) |
| // Double returned in fp coprocessor register 0 and 1, encoded as register |
| // cr8. Offsets must be divisible by 4 for coprocessor so we need to |
| // substract the tag from r5. |
| __ sub(r4, r5, Operand(kHeapObjectTag)); |
| __ stc(p1, cr8, MemOperand(r4, HeapNumber::kValueOffset)); |
| #else |
| // Double returned in registers 0 and 1. |
| __ Strd(r0, r1, FieldMemOperand(r5, HeapNumber::kValueOffset)); |
| #endif |
| __ mov(r0, Operand(r5)); |
| // And we are done. |
| __ pop(pc); |
| } |
| } |
| |
| |
| if (lhs.is(r0)) { |
| __ b(&slow); |
| __ bind(&slow_reverse); |
| __ Swap(r0, r1, ip); |
| } |
| |
| // We jump to here if something goes wrong (one param is not a number of any |
| // sort or new-space allocation fails). |
| __ bind(&slow); |
| |
| // Push arguments to the stack |
| __ Push(r1, r0); |
| |
| if (Token::ADD == op_) { |
| // Test for string arguments before calling runtime. |
| // r1 : first argument |
| // r0 : second argument |
| // sp[0] : second argument |
| // sp[4] : first argument |
| |
| Label not_strings, not_string1, string1, string1_smi2; |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, ¬_string1); |
| __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, ¬_string1); |
| |
| // First argument is a a string, test second. |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &string1_smi2); |
| __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, &string1); |
| |
| // First and second argument are strings. |
| StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
| __ TailCallStub(&string_add_stub); |
| |
| __ bind(&string1_smi2); |
| // First argument is a string, second is a smi. Try to lookup the number |
| // string for the smi in the number string cache. |
| NumberToStringStub::GenerateLookupNumberStringCache( |
| masm, r0, r2, r4, r5, r6, true, &string1); |
| |
| // Replace second argument on stack and tailcall string add stub to make |
| // the result. |
| __ str(r2, MemOperand(sp, 0)); |
| __ TailCallStub(&string_add_stub); |
| |
| // Only first argument is a string. |
| __ bind(&string1); |
| __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS); |
| |
| // First argument was not a string, test second. |
| __ bind(¬_string1); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, ¬_strings); |
| __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| __ b(ge, ¬_strings); |
| |
| // Only second argument is a string. |
| __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS); |
| |
| __ bind(¬_strings); |
| } |
| |
| __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return. |
| } |
| |
| |
| // Tries to get a signed int32 out of a double precision floating point heap |
| // number. Rounds towards 0. Fastest for doubles that are in the ranges |
| // -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds |
| // almost to the range of signed int32 values that are not Smis. Jumps to the |
| // label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0 |
| // (excluding the endpoints). |
| static void GetInt32(MacroAssembler* masm, |
| Register source, |
| Register dest, |
| Register scratch, |
| Register scratch2, |
| Label* slow) { |
| Label right_exponent, done; |
| // Get exponent word. |
| __ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); |
| // Get exponent alone in scratch2. |
| __ and_(scratch2, scratch, Operand(HeapNumber::kExponentMask)); |
| // Load dest with zero. We use this either for the final shift or |
| // for the answer. |
| __ mov(dest, Operand(0)); |
| // Check whether the exponent matches a 32 bit signed int that is not a Smi. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is |
| // the exponent that we are fastest at and also the highest exponent we can |
| // handle here. |
| const uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ cmp(scratch2, Operand(non_smi_exponent)); |
| // If we have a match of the int32-but-not-Smi exponent then skip some logic. |
| __ b(eq, &right_exponent); |
| // If the exponent is higher than that then go to slow case. This catches |
| // numbers that don't fit in a signed int32, infinities and NaNs. |
| __ b(gt, slow); |
| |
| // We know the exponent is smaller than 30 (biased). If it is less than |
| // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
| // it rounds to zero. |
| const uint32_t zero_exponent = |
| (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
| __ sub(scratch2, scratch2, Operand(zero_exponent), SetCC); |
| // Dest already has a Smi zero. |
| __ b(lt, &done); |
| if (!CpuFeatures::IsSupported(VFP3)) { |
| // We have a shifted exponent between 0 and 30 in scratch2. |
| __ mov(dest, Operand(scratch2, LSR, HeapNumber::kExponentShift)); |
| // We now have the exponent in dest. Subtract from 30 to get |
| // how much to shift down. |
| __ rsb(dest, dest, Operand(30)); |
| } |
| __ bind(&right_exponent); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // ARMv7 VFP3 instructions implementing double precision to integer |
| // conversion using round to zero. |
| __ ldr(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| __ vmov(d7, scratch2, scratch); |
| __ vcvt_s32_f64(s15, d7); |
| __ vmov(dest, s15); |
| } else { |
| // Get the top bits of the mantissa. |
| __ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask)); |
| // Put back the implicit 1. |
| __ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift)); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We just orred in the implicit bit so that took care of one and |
| // we want to leave the sign bit 0 so we subtract 2 bits from the shift |
| // distance. |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ mov(scratch2, Operand(scratch2, LSL, shift_distance)); |
| // Put sign in zero flag. |
| __ tst(scratch, Operand(HeapNumber::kSignMask)); |
| // Get the second half of the double. For some exponents we don't |
| // actually need this because the bits get shifted out again, but |
| // it's probably slower to test than just to do it. |
| __ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 22 bits to get the last 10 bits. |
| __ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance)); |
| // Move down according to the exponent. |
| __ mov(dest, Operand(scratch, LSR, dest)); |
| // Fix sign if sign bit was set. |
| __ rsb(dest, dest, Operand(0), LeaveCC, ne); |
| } |
| __ bind(&done); |
| } |
| |
| // For bitwise ops where the inputs are not both Smis we here try to determine |
| // whether both inputs are either Smis or at least heap numbers that can be |
| // represented by a 32 bit signed value. We truncate towards zero as required |
| // by the ES spec. If this is the case we do the bitwise op and see if the |
| // result is a Smi. If so, great, otherwise we try to find a heap number to |
| // write the answer into (either by allocating or by overwriting). |
| // On entry the operands are in lhs and rhs. On exit the answer is in r0. |
| void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm, |
| Register lhs, |
| Register rhs) { |
| Label slow, result_not_a_smi; |
| Label rhs_is_smi, lhs_is_smi; |
| Label done_checking_rhs, done_checking_lhs; |
| |
| __ tst(lhs, Operand(kSmiTagMask)); |
| __ b(eq, &lhs_is_smi); // It's a Smi so don't check it's a heap number. |
| __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| GetInt32(masm, lhs, r3, r5, r4, &slow); |
| __ jmp(&done_checking_lhs); |
| __ bind(&lhs_is_smi); |
| __ mov(r3, Operand(lhs, ASR, 1)); |
| __ bind(&done_checking_lhs); |
| |
| __ tst(rhs, Operand(kSmiTagMask)); |
| __ b(eq, &rhs_is_smi); // It's a Smi so don't check it's a heap number. |
| __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| GetInt32(masm, rhs, r2, r5, r4, &slow); |
| __ jmp(&done_checking_rhs); |
| __ bind(&rhs_is_smi); |
| __ mov(r2, Operand(rhs, ASR, 1)); |
| __ bind(&done_checking_rhs); |
| |
| ASSERT(((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0)))); |
| |
| // r0 and r1: Original operands (Smi or heap numbers). |
| // r2 and r3: Signed int32 operands. |
| switch (op_) { |
| case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break; |
| case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break; |
| case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break; |
| case Token::SAR: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, ASR, r2)); |
| break; |
| case Token::SHR: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, LSR, r2), SetCC); |
| // SHR is special because it is required to produce a positive answer. |
| // The code below for writing into heap numbers isn't capable of writing |
| // the register as an unsigned int so we go to slow case if we hit this |
| // case. |
| __ b(mi, &slow); |
| break; |
| case Token::SHL: |
| // Use only the 5 least significant bits of the shift count. |
| __ and_(r2, r2, Operand(0x1f)); |
| __ mov(r2, Operand(r3, LSL, r2)); |
| break; |
| default: UNREACHABLE(); |
| } |
| // check that the *signed* result fits in a smi |
| __ add(r3, r2, Operand(0x40000000), SetCC); |
| __ b(mi, &result_not_a_smi); |
| __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
| __ Ret(); |
| |
| Label have_to_allocate, got_a_heap_number; |
| __ bind(&result_not_a_smi); |
| switch (mode_) { |
| case OVERWRITE_RIGHT: { |
| __ tst(rhs, Operand(kSmiTagMask)); |
| __ b(eq, &have_to_allocate); |
| __ mov(r5, Operand(rhs)); |
| break; |
| } |
| case OVERWRITE_LEFT: { |
| __ tst(lhs, Operand(kSmiTagMask)); |
| __ b(eq, &have_to_allocate); |
| __ mov(r5, Operand(lhs)); |
| break; |
| } |
| case NO_OVERWRITE: { |
| // Get a new heap number in r5. r6 and r7 are scratch. |
| __ AllocateHeapNumber(r5, r6, r7, &slow); |
| } |
| default: break; |
| } |
| __ bind(&got_a_heap_number); |
| // r2: Answer as signed int32. |
| // r5: Heap number to write answer into. |
| |
| // Nothing can go wrong now, so move the heap number to r0, which is the |
| // result. |
| __ mov(r0, Operand(r5)); |
| |
| // Tail call that writes the int32 in r2 to the heap number in r0, using |
| // r3 as scratch. r0 is preserved and returned. |
| WriteInt32ToHeapNumberStub stub(r2, r0, r3); |
| __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| |
| if (mode_ != NO_OVERWRITE) { |
| __ bind(&have_to_allocate); |
| // Get a new heap number in r5. r6 and r7 are scratch. |
| __ AllocateHeapNumber(r5, r6, r7, &slow); |
| __ jmp(&got_a_heap_number); |
| } |
| |
| // If all else failed then we go to the runtime system. |
| __ bind(&slow); |
| __ Push(lhs, rhs); // Restore stack. |
| switch (op_) { |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_JS); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_JS); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_JS); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| // Can we multiply by x with max two shifts and an add. |
| // This answers yes to all integers from 2 to 10. |
| static bool IsEasyToMultiplyBy(int x) { |
| if (x < 2) return false; // Avoid special cases. |
| if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows. |
| if (IsPowerOf2(x)) return true; // Simple shift. |
| if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift. |
| if (IsPowerOf2(x + 1)) return true; // Patterns like 11111. |
| return false; |
| } |
| |
| |
| // Can multiply by anything that IsEasyToMultiplyBy returns true for. |
| // Source and destination may be the same register. This routine does |
| // not set carry and overflow the way a mul instruction would. |
| static void MultiplyByKnownInt(MacroAssembler* masm, |
| Register source, |
| Register destination, |
| int known_int) { |
| if (IsPowerOf2(known_int)) { |
| __ mov(destination, Operand(source, LSL, BitPosition(known_int))); |
| } else if (PopCountLessThanEqual2(known_int)) { |
| int first_bit = BitPosition(known_int); |
| int second_bit = BitPosition(known_int ^ (1 << first_bit)); |
| __ add(destination, source, Operand(source, LSL, second_bit - first_bit)); |
| if (first_bit != 0) { |
| __ mov(destination, Operand(destination, LSL, first_bit)); |
| } |
| } else { |
| ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111. |
| int the_bit = BitPosition(known_int + 1); |
| __ rsb(destination, source, Operand(source, LSL, the_bit)); |
| } |
| } |
| |
| |
| // This function (as opposed to MultiplyByKnownInt) takes the known int in a |
| // a register for the cases where it doesn't know a good trick, and may deliver |
| // a result that needs shifting. |
| static void MultiplyByKnownInt2( |
| MacroAssembler* masm, |
| Register result, |
| Register source, |
| Register known_int_register, // Smi tagged. |
| int known_int, |
| int* required_shift) { // Including Smi tag shift |
| switch (known_int) { |
| case 3: |
| __ add(result, source, Operand(source, LSL, 1)); |
| *required_shift = 1; |
| break; |
| case 5: |
| __ add(result, source, Operand(source, LSL, 2)); |
| *required_shift = 1; |
| break; |
| case 6: |
| __ add(result, source, Operand(source, LSL, 1)); |
| *required_shift = 2; |
| break; |
| case 7: |
| __ rsb(result, source, Operand(source, LSL, 3)); |
| *required_shift = 1; |
| break; |
| case 9: |
| __ add(result, source, Operand(source, LSL, 3)); |
| *required_shift = 1; |
| break; |
| case 10: |
| __ add(result, source, Operand(source, LSL, 2)); |
| *required_shift = 2; |
| break; |
| default: |
| ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient. |
| __ mul(result, source, known_int_register); |
| *required_shift = 0; |
| } |
| } |
| |
| |
| const char* GenericBinaryOpStub::GetName() { |
| if (name_ != NULL) return name_; |
| const int len = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(len); |
| if (name_ == NULL) return "OOM"; |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, len), |
| "GenericBinaryOpStub_%s_%s%s", |
| op_name, |
| overwrite_name, |
| specialized_on_rhs_ ? "_ConstantRhs" : 0); |
| return name_; |
| } |
| |
| |
| |
| void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| // lhs_ : x |
| // rhs_ : y |
| // r0 : result |
| |
| Register result = r0; |
| Register lhs = lhs_; |
| Register rhs = rhs_; |
| |
| // This code can't cope with other register allocations yet. |
| ASSERT(result.is(r0) && |
| ((lhs.is(r0) && rhs.is(r1)) || |
| (lhs.is(r1) && rhs.is(r0)))); |
| |
| Register smi_test_reg = VirtualFrame::scratch0(); |
| Register scratch = VirtualFrame::scratch1(); |
| |
| // All ops need to know whether we are dealing with two Smis. Set up |
| // smi_test_reg to tell us that. |
| if (ShouldGenerateSmiCode()) { |
| __ orr(smi_test_reg, lhs, Operand(rhs)); |
| } |
| |
| switch (op_) { |
| case Token::ADD: { |
| Label not_smi; |
| // Fast path. |
| if (ShouldGenerateSmiCode()) { |
| ASSERT(kSmiTag == 0); // Adjust code below. |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smi); |
| __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. |
| // Return if no overflow. |
| __ Ret(vc); |
| __ sub(r0, r0, Operand(r1)); // Revert optimistic add. |
| } |
| HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::ADD); |
| break; |
| } |
| |
| case Token::SUB: { |
| Label not_smi; |
| // Fast path. |
| if (ShouldGenerateSmiCode()) { |
| ASSERT(kSmiTag == 0); // Adjust code below. |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| __ b(ne, ¬_smi); |
| if (lhs.is(r1)) { |
| __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. |
| // Return if no overflow. |
| __ Ret(vc); |
| __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. |
| } else { |
| __ sub(r0, r0, Operand(r1), SetCC); // Subtract y optimistically. |
| // Return if no overflow. |
| __ Ret(vc); |
| __ add(r0, r0, Operand(r1)); // Revert optimistic subtract. |
| } |
| } |
| HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::SUB); |
| break; |
| } |
| |
| case Token::MUL: { |
| Label not_smi, slow; |
| if (ShouldGenerateSmiCode()) { |
| ASSERT(kSmiTag == 0); // adjust code below |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| Register scratch2 = smi_test_reg; |
| smi_test_reg = no_reg; |
| __ b(ne, ¬_smi); |
| // Remove tag from one operand (but keep sign), so that result is Smi. |
| __ mov(ip, Operand(rhs, ASR, kSmiTagSize)); |
| // Do multiplication |
| // scratch = lower 32 bits of ip * lhs. |
| __ smull(scratch, scratch2, lhs, ip); |
| // Go slow on overflows (overflow bit is not set). |
| __ mov(ip, Operand(scratch, ASR, 31)); |
| // No overflow if higher 33 bits are identical. |
| __ cmp(ip, Operand(scratch2)); |
| __ b(ne, &slow); |
| // Go slow on zero result to handle -0. |
| __ tst(scratch, Operand(scratch)); |
| __ mov(result, Operand(scratch), LeaveCC, ne); |
| __ Ret(ne); |
| // We need -0 if we were multiplying a negative number with 0 to get 0. |
| // We know one of them was zero. |
| __ add(scratch2, rhs, Operand(lhs), SetCC); |
| __ mov(result, Operand(Smi::FromInt(0)), LeaveCC, pl); |
| __ Ret(pl); // Return Smi 0 if the non-zero one was positive. |
| // Slow case. We fall through here if we multiplied a negative number |
| // with 0, because that would mean we should produce -0. |
| __ bind(&slow); |
| } |
| HandleBinaryOpSlowCases(masm, ¬_smi, lhs, rhs, Builtins::MUL); |
| break; |
| } |
| |
| case Token::DIV: |
| case Token::MOD: { |
| Label not_smi; |
| if (ShouldGenerateSmiCode() && specialized_on_rhs_) { |
| Label smi_is_unsuitable; |
| __ BranchOnNotSmi(lhs, ¬_smi); |
| if (IsPowerOf2(constant_rhs_)) { |
| if (op_ == Token::MOD) { |
| __ and_(rhs, |
| lhs, |
| Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)), |
| SetCC); |
| // We now have the answer, but if the input was negative we also |
| // have the sign bit. Our work is done if the result is |
| // positive or zero: |
| if (!rhs.is(r0)) { |
| __ mov(r0, rhs, LeaveCC, pl); |
| } |
| __ Ret(pl); |
| // A mod of a negative left hand side must return a negative number. |
| // Unfortunately if the answer is 0 then we must return -0. And we |
| // already optimistically trashed rhs so we may need to restore it. |
| __ eor(rhs, rhs, Operand(0x80000000u), SetCC); |
| // Next two instructions are conditional on the answer being -0. |
| __ mov(rhs, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq); |
| __ b(eq, &smi_is_unsuitable); |
| // We need to subtract the dividend. Eg. -3 % 4 == -3. |
| __ sub(result, rhs, Operand(Smi::FromInt(constant_rhs_))); |
| } else { |
| ASSERT(op_ == Token::DIV); |
| __ tst(lhs, |
| Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1))); |
| __ b(ne, &smi_is_unsuitable); // Go slow on negative or remainder. |
| int shift = 0; |
| int d = constant_rhs_; |
| while ((d & 1) == 0) { |
| d >>= 1; |
| shift++; |
| } |
| __ mov(r0, Operand(lhs, LSR, shift)); |
| __ bic(r0, r0, Operand(kSmiTagMask)); |
| } |
| } else { |
| // Not a power of 2. |
| __ tst(lhs, Operand(0x80000000u)); |
| __ b(ne, &smi_is_unsuitable); |
| // Find a fixed point reciprocal of the divisor so we can divide by |
| // multiplying. |
| double divisor = 1.0 / constant_rhs_; |
| int shift = 32; |
| double scale = 4294967296.0; // 1 << 32. |
| uint32_t mul; |
| // Maximise the precision of the fixed point reciprocal. |
| while (true) { |
| mul = static_cast<uint32_t>(scale * divisor); |
| if (mul >= 0x7fffffff) break; |
| scale *= 2.0; |
| shift++; |
| } |
| mul++; |
| Register scratch2 = smi_test_reg; |
| smi_test_reg = no_reg; |
| __ mov(scratch2, Operand(mul)); |
| __ umull(scratch, scratch2, scratch2, lhs); |
| __ mov(scratch2, Operand(scratch2, LSR, shift - 31)); |
| // scratch2 is lhs / rhs. scratch2 is not Smi tagged. |
| // rhs is still the known rhs. rhs is Smi tagged. |
| // lhs is still the unkown lhs. lhs is Smi tagged. |
| int required_scratch_shift = 0; // Including the Smi tag shift of 1. |
| // scratch = scratch2 * rhs. |
| MultiplyByKnownInt2(masm, |
| scratch, |
| scratch2, |
| rhs, |
| constant_rhs_, |
| &required_scratch_shift); |
| // scratch << required_scratch_shift is now the Smi tagged rhs * |
| // (lhs / rhs) where / indicates integer division. |
| if (op_ == Token::DIV) { |
| __ cmp(lhs, Operand(scratch, LSL, required_scratch_shift)); |
| __ b(ne, &smi_is_unsuitable); // There was a remainder. |
| __ mov(result, Operand(scratch2, LSL, kSmiTagSize)); |
| } else { |
| ASSERT(op_ == Token::MOD); |
| __ sub(result, lhs, Operand(scratch, LSL, required_scratch_shift)); |
| } |
| } |
| __ Ret(); |
| __ bind(&smi_is_unsuitable); |
| } |
| HandleBinaryOpSlowCases( |
| masm, |
| ¬_smi, |
| lhs, |
| rhs, |
| op_ == Token::MOD ? Builtins::MOD : Builtins::DIV); |
| break; |
| } |
| |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHR: |
| case Token::SHL: { |
| Label slow; |
| ASSERT(kSmiTag == 0); // adjust code below |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| __ b(ne, &slow); |
| Register scratch2 = smi_test_reg; |
| smi_test_reg = no_reg; |
| switch (op_) { |
| case Token::BIT_OR: __ orr(result, rhs, Operand(lhs)); break; |
| case Token::BIT_AND: __ and_(result, rhs, Operand(lhs)); break; |
| case Token::BIT_XOR: __ eor(result, rhs, Operand(lhs)); break; |
| case Token::SAR: |
| // Remove tags from right operand. |
| __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| __ mov(result, Operand(lhs, ASR, scratch2)); |
| // Smi tag result. |
| __ bic(result, result, Operand(kSmiTagMask)); |
| break; |
| case Token::SHR: |
| // Remove tags from operands. We can't do this on a 31 bit number |
| // because then the 0s get shifted into bit 30 instead of bit 31. |
| __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x |
| __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| __ mov(scratch, Operand(scratch, LSR, scratch2)); |
| // Unsigned shift is not allowed to produce a negative number, so |
| // check the sign bit and the sign bit after Smi tagging. |
| __ tst(scratch, Operand(0xc0000000)); |
| __ b(ne, &slow); |
| // Smi tag result. |
| __ mov(result, Operand(scratch, LSL, kSmiTagSize)); |
| break; |
| case Token::SHL: |
| // Remove tags from operands. |
| __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x |
| __ GetLeastBitsFromSmi(scratch2, rhs, 5); |
| __ mov(scratch, Operand(scratch, LSL, scratch2)); |
| // Check that the signed result fits in a Smi. |
| __ add(scratch2, scratch, Operand(0x40000000), SetCC); |
| __ b(mi, &slow); |
| __ mov(result, Operand(scratch, LSL, kSmiTagSize)); |
| break; |
| default: UNREACHABLE(); |
| } |
| __ Ret(); |
| __ bind(&slow); |
| HandleNonSmiBitwiseOp(masm, lhs, rhs); |
| break; |
| } |
| |
| default: UNREACHABLE(); |
| } |
| // This code should be unreachable. |
| __ stop("Unreachable"); |
| |
| // Generate an unreachable reference to the DEFAULT stub so that it can be |
| // found at the end of this stub when clearing ICs at GC. |
| // TODO(kaznacheev): Check performance impact and get rid of this. |
| if (runtime_operands_type_ != BinaryOpIC::DEFAULT) { |
| GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT); |
| __ CallStub(&uninit); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| Label get_result; |
| |
| __ Push(r1, r0); |
| |
| // Internal frame is necessary to handle exceptions properly. |
| __ EnterInternalFrame(); |
| // Call the stub proper to get the result in r0. |
| __ Call(&get_result); |
| __ LeaveInternalFrame(); |
| |
| __ push(r0); |
| |
| __ mov(r0, Operand(Smi::FromInt(MinorKey()))); |
| __ push(r0); |
| __ mov(r0, Operand(Smi::FromInt(op_))); |
| __ push(r0); |
| __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_))); |
| __ push(r0); |
| |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
| 6, |
| 1); |
| |
| // The entry point for the result calculation is assumed to be immediately |
| // after this sequence. |
| __ bind(&get_result); |
| } |
| |
| |
| Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
| GenericBinaryOpStub stub(key, type_info); |
| return stub.GetCode(); |
| } |
| |
| |
| void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| // Argument is a number and is on stack and in r0. |
| Label runtime_call; |
| Label input_not_smi; |
| Label loaded; |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| // Load argument and check if it is a smi. |
| __ BranchOnNotSmi(r0, &input_not_smi); |
| |
| CpuFeatures::Scope scope(VFP3); |
| // Input is a smi. Convert to double and load the low and high words |
| // of the double into r2, r3. |
| __ IntegerToDoubleConversionWithVFP3(r0, r3, r2); |
| __ b(&loaded); |
| |
| __ bind(&input_not_smi); |
| // Check if input is a HeapNumber. |
| __ CheckMap(r0, |
| r1, |
| Heap::kHeapNumberMapRootIndex, |
| &runtime_call, |
| true); |
| // Input is a HeapNumber. Load it to a double register and store the |
| // low and high words into r2, r3. |
| __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
| |
| __ bind(&loaded); |
| // r2 = low 32 bits of double value |
| // r3 = high 32 bits of double value |
| // Compute hash: |
| // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| __ eor(r1, r2, Operand(r3)); |
| __ eor(r1, r1, Operand(r1, LSR, 16)); |
| __ eor(r1, r1, Operand(r1, LSR, 8)); |
| ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| const int kTranscendentalCacheSizeBits = 9; |
| ASSERT_EQ(1 << kTranscendentalCacheSizeBits, |
| TranscendentalCache::kCacheSize); |
| __ ubfx(r1, r1, 0, kTranscendentalCacheSizeBits); |
| } else { |
| __ and_(r1, r1, Operand(TranscendentalCache::kCacheSize - 1)); |
| } |
| |
| // r2 = low 32 bits of double value. |
| // r3 = high 32 bits of double value. |
| // r1 = TranscendentalCache::hash(double value). |
| __ mov(r0, |
| Operand(ExternalReference::transcendental_cache_array_address())); |
| // r0 points to cache array. |
| __ ldr(r0, MemOperand(r0, type_ * sizeof(TranscendentalCache::caches_[0]))); |
| // r0 points to the cache for the type type_. |
| // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| __ cmp(r0, Operand(0)); |
| __ b(eq, &runtime_call); |
| |
| #ifdef DEBUG |
| // Check that the layout of cache elements match expectations. |
| { TranscendentalCache::Element test_elem[2]; |
| char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| CHECK_EQ(0, elem_in0 - elem_start); |
| CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| } |
| #endif |
| |
| // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12]. |
| __ add(r1, r1, Operand(r1, LSL, 1)); |
| __ add(r0, r0, Operand(r1, LSL, 2)); |
| // Check if cache matches: Double value is stored in uint32_t[2] array. |
| __ ldm(ia, r0, r4.bit()| r5.bit() | r6.bit()); |
| __ cmp(r2, r4); |
| __ b(ne, &runtime_call); |
| __ cmp(r3, r5); |
| __ b(ne, &runtime_call); |
| // Cache hit. Load result, pop argument and return. |
| __ mov(r0, Operand(r6)); |
| __ pop(); |
| __ Ret(); |
| } |
| |
| __ bind(&runtime_call); |
| __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
| } |
| |
| |
| Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| switch (type_) { |
| // Add more cases when necessary. |
| case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| case TranscendentalCache::COS: return Runtime::kMath_cos; |
| default: |
| UNIMPLEMENTED(); |
| return Runtime::kAbort; |
| } |
| } |
| |
| |
| void StackCheckStub::Generate(MacroAssembler* masm) { |
| // Do tail-call to runtime routine. Runtime routines expect at least one |
| // argument, so give it a Smi. |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| __ push(r0); |
| __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
| |
| __ StubReturn(1); |
| } |
| |
| |
| void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| Label slow, done; |
| |
| if (op_ == Token::SUB) { |
| // Check whether the value is a smi. |
| Label try_float; |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(ne, &try_float); |
| |
| // Go slow case if the value of the expression is zero |
| // to make sure that we switch between 0 and -0. |
| __ cmp(r0, Operand(0)); |
| __ b(eq, &slow); |
| |
| // The value of the expression is a smi that is not zero. Try |
| // optimistic subtraction '0 - value'. |
| __ rsb(r1, r0, Operand(0), SetCC); |
| __ b(vs, &slow); |
| |
| __ mov(r0, Operand(r1)); // Set r0 to result. |
| __ b(&done); |
| |
| __ bind(&try_float); |
| __ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| // r0 is a heap number. Get a new heap number in r1. |
| if (overwrite_) { |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| } else { |
| __ AllocateHeapNumber(r1, r2, r3, &slow); |
| __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); |
| __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); |
| __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset)); |
| __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign. |
| __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset)); |
| __ mov(r0, Operand(r1)); |
| } |
| } else if (op_ == Token::BIT_NOT) { |
| // Check if the operand is a heap number. |
| __ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| |
| // Convert the heap number is r0 to an untagged integer in r1. |
| GetInt32(masm, r0, r1, r2, r3, &slow); |
| |
| // Do the bitwise operation (move negated) and check if the result |
| // fits in a smi. |
| Label try_float; |
| __ mvn(r1, Operand(r1)); |
| __ add(r2, r1, Operand(0x40000000), SetCC); |
| __ b(mi, &try_float); |
| __ mov(r0, Operand(r1, LSL, kSmiTagSize)); |
| __ b(&done); |
| |
| __ bind(&try_float); |
| if (!overwrite_) { |
| // Allocate a fresh heap number, but don't overwrite r0 until |
| // we're sure we can do it without going through the slow case |
| // that needs the value in r0. |
| __ AllocateHeapNumber(r2, r3, r4, &slow); |
| __ mov(r0, Operand(r2)); |
| } |
| |
| // WriteInt32ToHeapNumberStub does not trigger GC, so we do not |
| // have to set up a frame. |
| WriteInt32ToHeapNumberStub stub(r1, r0, r2); |
| __ push(lr); |
| __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); |
| __ pop(lr); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| |
| __ bind(&done); |
| __ StubReturn(1); |
| |
| // Handle the slow case by jumping to the JavaScript builtin. |
| __ bind(&slow); |
| __ push(r0); |
| switch (op_) { |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS); |
| break; |
| case Token::BIT_NOT: |
| __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| // r0 holds the exception. |
| |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // Drop the sp to the top of the handler. |
| __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| __ ldr(sp, MemOperand(r3)); |
| |
| // Restore the next handler and frame pointer, discard handler state. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| __ pop(r2); |
| __ str(r2, MemOperand(r3)); |
| ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); |
| __ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state. |
| |
| // Before returning we restore the context from the frame pointer if |
| // not NULL. The frame pointer is NULL in the exception handler of a |
| // JS entry frame. |
| __ cmp(fp, Operand(0)); |
| // Set cp to NULL if fp is NULL. |
| __ mov(cp, Operand(0), LeaveCC, eq); |
| // Restore cp otherwise. |
| __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| __ pop(pc); |
| } |
| |
| |
| void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| UncatchableExceptionType type) { |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // Drop sp to the top stack handler. |
| __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| __ ldr(sp, MemOperand(r3)); |
| |
| // Unwind the handlers until the ENTRY handler is found. |
| Label loop, done; |
| __ bind(&loop); |
| // Load the type of the current stack handler. |
| const int kStateOffset = StackHandlerConstants::kStateOffset; |
| __ ldr(r2, MemOperand(sp, kStateOffset)); |
| __ cmp(r2, Operand(StackHandler::ENTRY)); |
| __ b(eq, &done); |
| // Fetch the next handler in the list. |
| const int kNextOffset = StackHandlerConstants::kNextOffset; |
| __ ldr(sp, MemOperand(sp, kNextOffset)); |
| __ jmp(&loop); |
| __ bind(&done); |
| |
| // Set the top handler address to next handler past the current ENTRY handler. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| __ pop(r2); |
| __ str(r2, MemOperand(r3)); |
| |
| if (type == OUT_OF_MEMORY) { |
| // Set external caught exception to false. |
| ExternalReference external_caught(Top::k_external_caught_exception_address); |
| __ mov(r0, Operand(false)); |
| __ mov(r2, Operand(external_caught)); |
| __ str(r0, MemOperand(r2)); |
| |
| // Set pending exception and r0 to out of memory exception. |
| Failure* out_of_memory = Failure::OutOfMemoryException(); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r0, MemOperand(r2)); |
| } |
| |
| // Stack layout at this point. See also StackHandlerConstants. |
| // sp -> state (ENTRY) |
| // fp |
| // lr |
| |
| // Discard handler state (r2 is not used) and restore frame pointer. |
| ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); |
| __ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state. |
| // Before returning we restore the context from the frame pointer if |
| // not NULL. The frame pointer is NULL in the exception handler of a |
| // JS entry frame. |
| __ cmp(fp, Operand(0)); |
| // Set cp to NULL if fp is NULL. |
| __ mov(cp, Operand(0), LeaveCC, eq); |
| // Restore cp otherwise. |
| __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| __ pop(pc); |
| } |
| |
| |
| void CEntryStub::GenerateCore(MacroAssembler* masm, |
| Label* throw_normal_exception, |
| Label* throw_termination_exception, |
| Label* throw_out_of_memory_exception, |
| bool do_gc, |
| bool always_allocate, |
| int frame_alignment_skew) { |
| // r0: result parameter for PerformGC, if any |
| // r4: number of arguments including receiver (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| // r6: pointer to the first argument (C callee-saved) |
| |
| if (do_gc) { |
| // Passing r0. |
| __ PrepareCallCFunction(1, r1); |
| __ CallCFunction(ExternalReference::perform_gc_function(), 1); |
| } |
| |
| ExternalReference scope_depth = |
| ExternalReference::heap_always_allocate_scope_depth(); |
| if (always_allocate) { |
| __ mov(r0, Operand(scope_depth)); |
| __ ldr(r1, MemOperand(r0)); |
| __ add(r1, r1, Operand(1)); |
| __ str(r1, MemOperand(r0)); |
| } |
| |
| // Call C built-in. |
| // r0 = argc, r1 = argv |
| __ mov(r0, Operand(r4)); |
| __ mov(r1, Operand(r6)); |
| |
| int frame_alignment = MacroAssembler::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| #if defined(V8_HOST_ARCH_ARM) |
| if (FLAG_debug_code) { |
| if (frame_alignment > kPointerSize) { |
| Label alignment_as_expected; |
| ASSERT(IsPowerOf2(frame_alignment)); |
| __ sub(r2, sp, Operand(frame_alignment_skew)); |
| __ tst(r2, Operand(frame_alignment_mask)); |
| __ b(eq, &alignment_as_expected); |
| // Don't use Check here, as it will call Runtime_Abort re-entering here. |
| __ stop("Unexpected alignment"); |
| __ bind(&alignment_as_expected); |
| } |
| } |
| #endif |
| |
| // Just before the call (jump) below lr is pushed, so the actual alignment is |
| // adding one to the current skew. |
| int alignment_before_call = |
| (frame_alignment_skew + kPointerSize) & frame_alignment_mask; |
| if (alignment_before_call > 0) { |
| // Push until the alignment before the call is met. |
| __ mov(r2, Operand(0)); |
| for (int i = alignment_before_call; |
| (i & frame_alignment_mask) != 0; |
| i += kPointerSize) { |
| __ push(r2); |
| } |
| } |
| |
| // TODO(1242173): To let the GC traverse the return address of the exit |
| // frames, we need to know where the return address is. Right now, |
| // we push it on the stack to be able to find it again, but we never |
| // restore from it in case of changes, which makes it impossible to |
| // support moving the C entry code stub. This should be fixed, but currently |
| // this is OK because the CEntryStub gets generated so early in the V8 boot |
| // sequence that it is not moving ever. |
| masm->add(lr, pc, Operand(4)); // Compute return address: (pc + 8) + 4 |
| masm->push(lr); |
| masm->Jump(r5); |
| |
| // Restore sp back to before aligning the stack. |
| if (alignment_before_call > 0) { |
| __ add(sp, sp, Operand(alignment_before_call)); |
| } |
| |
| if (always_allocate) { |
| // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 |
| // though (contain the result). |
| __ mov(r2, Operand(scope_depth)); |
| __ ldr(r3, MemOperand(r2)); |
| __ sub(r3, r3, Operand(1)); |
| __ str(r3, MemOperand(r2)); |
| } |
| |
| // check for failure result |
| Label failure_returned; |
| ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| // Lower 2 bits of r2 are 0 iff r0 has failure tag. |
| __ add(r2, r0, Operand(1)); |
| __ tst(r2, Operand(kFailureTagMask)); |
| __ b(eq, &failure_returned); |
| |
| // Exit C frame and return. |
| // r0:r1: result |
| // sp: stack pointer |
| // fp: frame pointer |
| __ LeaveExitFrame(mode_); |
| |
| // check if we should retry or throw exception |
| Label retry; |
| __ bind(&failure_returned); |
| ASSERT(Failure::RETRY_AFTER_GC == 0); |
| __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| __ b(eq, &retry); |
| |
| // Special handling of out of memory exceptions. |
| Failure* out_of_memory = Failure::OutOfMemoryException(); |
| __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
| __ b(eq, throw_out_of_memory_exception); |
| |
| // Retrieve the pending exception and clear the variable. |
| __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
| __ ldr(r3, MemOperand(ip)); |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ ldr(r0, MemOperand(ip)); |
| __ str(r3, MemOperand(ip)); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(r0, Operand(Factory::termination_exception())); |
| __ b(eq, throw_termination_exception); |
| |
| // Handle normal exception. |
| __ jmp(throw_normal_exception); |
| |
| __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // Called from JavaScript; parameters are on stack as if calling JS function |
| // r0: number of arguments including receiver |
| // r1: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| |
| // Result returned in r0 or r0+r1 by default. |
| |
| // NOTE: Invocations of builtins may return failure objects |
| // instead of a proper result. The builtin entry handles |
| // this by performing a garbage collection and retrying the |
| // builtin once. |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| __ EnterExitFrame(mode_); |
| |
| // r4: number of arguments (C callee-saved) |
| // r5: pointer to builtin function (C callee-saved) |
| // r6: pointer to first argument (C callee-saved) |
| |
| Label throw_normal_exception; |
| Label throw_termination_exception; |
| Label throw_out_of_memory_exception; |
| |
| // Call into the runtime system. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| false, |
| false, |
| -kPointerSize); |
| |
| // Do space-specific GC and retry runtime call. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| false, |
| 0); |
| |
| // Do full GC and retry runtime call one final time. |
| Failure* failure = Failure::InternalError(); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(failure))); |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| true, |
| kPointerSize); |
| |
| __ bind(&throw_out_of_memory_exception); |
| GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| |
| __ bind(&throw_termination_exception); |
| GenerateThrowUncatchable(masm, TERMINATION); |
| |
| __ bind(&throw_normal_exception); |
| GenerateThrowTOS(masm); |
| } |
| |
| |
| void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // [sp+0]: argv |
| |
| Label invoke, exit; |
| |
| // Called from C, so do not pop argc and args on exit (preserve sp) |
| // No need to save register-passed args |
| // Save callee-saved registers (incl. cp and fp), sp, and lr |
| __ stm(db_w, sp, kCalleeSaved | lr.bit()); |
| |
| // Get address of argv, see stm above. |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv |
| |
| // Push a frame with special values setup to mark it as an entry frame. |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| __ mov(r7, Operand(Smi::FromInt(marker))); |
| __ mov(r6, Operand(Smi::FromInt(marker))); |
| __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| __ ldr(r5, MemOperand(r5)); |
| __ Push(r8, r7, r6, r5); |
| |
| // Setup frame pointer for the frame to be pushed. |
| __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Call a faked try-block that does the invoke. |
| __ bl(&invoke); |
| |
| // Caught exception: Store result (exception) in the pending |
| // exception field in the JSEnv and return a failure sentinel. |
| // Coming in here the fp will be invalid because the PushTryHandler below |
| // sets it to 0 to signal the existence of the JSEntry frame. |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r0, MemOperand(ip)); |
| __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
| __ b(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| // Must preserve r0-r4, r5-r7 are available. |
| __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the bl(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| |
| // Clear any pending exceptions. |
| __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
| __ ldr(r5, MemOperand(ip)); |
| __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ str(r5, MemOperand(ip)); |
| |
| // Invoke the function by calling through JS entry trampoline builtin. |
| // Notice that we cannot store a reference to the trampoline code directly in |
| // this stub, because runtime stubs are not traversed when doing GC. |
| |
| // Expected registers by Builtins::JSEntryTrampoline |
| // r0: code entry |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| if (is_construct) { |
| ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
| __ mov(ip, Operand(construct_entry)); |
| } else { |
| ExternalReference entry(Builtins::JSEntryTrampoline); |
| __ mov(ip, Operand(entry)); |
| } |
| __ ldr(ip, MemOperand(ip)); // deref address |
| |
| // Branch and link to JSEntryTrampoline. We don't use the double underscore |
| // macro for the add instruction because we don't want the coverage tool |
| // inserting instructions here after we read the pc. |
| __ mov(lr, Operand(pc)); |
| masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Unlink this frame from the handler chain. When reading the |
| // address of the next handler, there is no need to use the address |
| // displacement since the current stack pointer (sp) points directly |
| // to the stack handler. |
| __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset)); |
| __ mov(ip, Operand(ExternalReference(Top::k_handler_address))); |
| __ str(r3, MemOperand(ip)); |
| // No need to restore registers |
| __ add(sp, sp, Operand(StackHandlerConstants::kSize)); |
| |
| |
| __ bind(&exit); // r0 holds result |
| // Restore the top frame descriptors from the stack. |
| __ pop(r3); |
| __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| __ str(r3, MemOperand(ip)); |
| |
| // Reset the stack to the callee saved registers. |
| __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
| |
| // Restore callee-saved registers and return. |
| #ifdef DEBUG |
| if (FLAG_debug_code) { |
| __ mov(lr, Operand(pc)); |
| } |
| #endif |
| __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); |
| } |
| |
| |
| // This stub performs an instanceof, calling the builtin function if |
| // necessary. Uses r1 for the object, r0 for the function that it may |
| // be an instance of (these are fetched from the stack). |
| void InstanceofStub::Generate(MacroAssembler* masm) { |
| // Get the object - slow case for smis (we may need to throw an exception |
| // depending on the rhs). |
| Label slow, loop, is_instance, is_not_instance; |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); |
| __ BranchOnSmi(r0, &slow); |
| |
| // Check that the left hand is a JS object and put map in r3. |
| __ CompareObjectType(r0, r3, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &slow); |
| __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE)); |
| __ b(gt, &slow); |
| |
| // Get the prototype of the function (r4 is result, r2 is scratch). |
| __ ldr(r1, MemOperand(sp, 0)); |
| // r1 is function, r3 is map. |
| |
| // Look up the function and the map in the instanceof cache. |
| Label miss; |
| __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex); |
| __ cmp(r1, ip); |
| __ b(ne, &miss); |
| __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex); |
| __ cmp(r3, ip); |
| __ b(ne, &miss); |
| __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| __ pop(); |
| __ pop(); |
| __ mov(pc, Operand(lr)); |
| |
| __ bind(&miss); |
| __ TryGetFunctionPrototype(r1, r4, r2, &slow); |
| |
| // Check that the function prototype is a JS object. |
| __ BranchOnSmi(r4, &slow); |
| __ CompareObjectType(r4, r5, r5, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &slow); |
| __ cmp(r5, Operand(LAST_JS_OBJECT_TYPE)); |
| __ b(gt, &slow); |
| |
| __ StoreRoot(r1, Heap::kInstanceofCacheFunctionRootIndex); |
| __ StoreRoot(r3, Heap::kInstanceofCacheMapRootIndex); |
| |
| // Register mapping: r3 is object map and r4 is function prototype. |
| // Get prototype of object into r2. |
| __ ldr(r2, FieldMemOperand(r3, Map::kPrototypeOffset)); |
| |
| // Loop through the prototype chain looking for the function prototype. |
| __ bind(&loop); |
| __ cmp(r2, Operand(r4)); |
| __ b(eq, &is_instance); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r2, ip); |
| __ b(eq, &is_not_instance); |
| __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| __ ldr(r2, FieldMemOperand(r2, Map::kPrototypeOffset)); |
| __ jmp(&loop); |
| |
| __ bind(&is_instance); |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| __ pop(); |
| __ pop(); |
| __ mov(pc, Operand(lr)); // Return. |
| |
| __ bind(&is_not_instance); |
| __ mov(r0, Operand(Smi::FromInt(1))); |
| __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); |
| __ pop(); |
| __ pop(); |
| __ mov(pc, Operand(lr)); // Return. |
| |
| // Slow-case. Tail call builtin. |
| __ bind(&slow); |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| // The displacement is the offset of the last parameter (if any) |
| // relative to the frame pointer. |
| static const int kDisplacement = |
| StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| |
| // Check that the key is a smi. |
| Label slow; |
| __ BranchOnNotSmi(r1, &slow); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor); |
| |
| // Check index against formal parameters count limit passed in |
| // through register r0. Use unsigned comparison to get negative |
| // check for free. |
| __ cmp(r1, r0); |
| __ b(cs, &slow); |
| |
| // Read the argument from the stack and return it. |
| __ sub(r3, r0, r1); |
| __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(r0, MemOperand(r3, kDisplacement)); |
| __ Jump(lr); |
| |
| // Arguments adaptor case: Check index against actual arguments |
| // limit found in the arguments adaptor frame. Use unsigned |
| // comparison to get negative check for free. |
| __ bind(&adaptor); |
| __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ cmp(r1, r0); |
| __ b(cs, &slow); |
| |
| // Read the argument from the adaptor frame and return it. |
| __ sub(r3, r0, r1); |
| __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(r0, MemOperand(r3, kDisplacement)); |
| __ Jump(lr); |
| |
| // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| // by calling the runtime system. |
| __ bind(&slow); |
| __ push(r1); |
| __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| // sp[0] : number of parameters |
| // sp[4] : receiver displacement |
| // sp[8] : function |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor_frame, try_allocate, runtime; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adaptor_frame); |
| |
| // Get the length from the frame. |
| __ ldr(r1, MemOperand(sp, 0)); |
| __ b(&try_allocate); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ str(r1, MemOperand(sp, 0)); |
| __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); |
| __ str(r3, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Try the new space allocation. Start out with computing the size |
| // of the arguments object and the elements array in words. |
| Label add_arguments_object; |
| __ bind(&try_allocate); |
| __ cmp(r1, Operand(0)); |
| __ b(eq, &add_arguments_object); |
| __ mov(r1, Operand(r1, LSR, kSmiTagSize)); |
| __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); |
| __ bind(&add_arguments_object); |
| __ add(r1, r1, Operand(Heap::kArgumentsObjectSize / kPointerSize)); |
| |
| // Do the allocation of both objects in one go. |
| __ AllocateInNewSpace( |
| r1, |
| r0, |
| r2, |
| r3, |
| &runtime, |
| static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
| |
| // Get the arguments boilerplate from the current (global) context. |
| int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset)); |
| __ ldr(r4, MemOperand(r4, offset)); |
| |
| // Copy the JS object part. |
| for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
| __ ldr(r3, FieldMemOperand(r4, i)); |
| __ str(r3, FieldMemOperand(r0, i)); |
| } |
| |
| // Setup the callee in-object property. |
| ASSERT(Heap::arguments_callee_index == 0); |
| __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); |
| __ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize)); |
| |
| // Get the length (smi tagged) and set that as an in-object property too. |
| ASSERT(Heap::arguments_length_index == 1); |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); |
| __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize)); |
| |
| // If there are no actual arguments, we're done. |
| Label done; |
| __ cmp(r1, Operand(0)); |
| __ b(eq, &done); |
| |
| // Get the parameters pointer from the stack. |
| __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Setup the elements pointer in the allocated arguments object and |
| // initialize the header in the elements fixed array. |
| __ add(r4, r0, Operand(Heap::kArgumentsObjectSize)); |
| __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); |
| __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); |
| __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); |
| __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); |
| __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop. |
| |
| // Copy the fixed array slots. |
| Label loop; |
| // Setup r4 to point to the first array slot. |
| __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| // Pre-decrement r2 with kPointerSize on each iteration. |
| // Pre-decrement in order to skip receiver. |
| __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); |
| // Post-increment r4 with kPointerSize on each iteration. |
| __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); |
| __ sub(r1, r1, Operand(1)); |
| __ cmp(r1, Operand(0)); |
| __ b(ne, &loop); |
| |
| // Return and remove the on-stack parameters. |
| __ bind(&done); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| } |
| |
| |
| void RegExpExecStub::Generate(MacroAssembler* masm) { |
| // Just jump directly to runtime if native RegExp is not selected at compile |
| // time or if regexp entry in generated code is turned off runtime switch or |
| // at compilation. |
| #ifdef V8_INTERPRETED_REGEXP |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #else // V8_INTERPRETED_REGEXP |
| if (!FLAG_regexp_entry_native) { |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| return; |
| } |
| |
| // Stack frame on entry. |
| // sp[0]: last_match_info (expected JSArray) |
| // sp[4]: previous index |
| // sp[8]: subject string |
| // sp[12]: JSRegExp object |
| |
| static const int kLastMatchInfoOffset = 0 * kPointerSize; |
| static const int kPreviousIndexOffset = 1 * kPointerSize; |
| static const int kSubjectOffset = 2 * kPointerSize; |
| static const int kJSRegExpOffset = 3 * kPointerSize; |
| |
| Label runtime, invoke_regexp; |
| |
| // Allocation of registers for this function. These are in callee save |
| // registers and will be preserved by the call to the native RegExp code, as |
| // this code is called using the normal C calling convention. When calling |
| // directly from generated code the native RegExp code will not do a GC and |
| // therefore the content of these registers are safe to use after the call. |
| Register subject = r4; |
| Register regexp_data = r5; |
| Register last_match_info_elements = r6; |
| |
| // Ensure that a RegExp stack is allocated. |
| ExternalReference address_of_regexp_stack_memory_address = |
| ExternalReference::address_of_regexp_stack_memory_address(); |
| ExternalReference address_of_regexp_stack_memory_size = |
| ExternalReference::address_of_regexp_stack_memory_size(); |
| __ mov(r0, Operand(address_of_regexp_stack_memory_size)); |
| __ ldr(r0, MemOperand(r0, 0)); |
| __ tst(r0, Operand(r0)); |
| __ b(eq, &runtime); |
| |
| // Check that the first argument is a JSRegExp object. |
| __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); |
| ASSERT_EQ(0, kSmiTag); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); |
| __ b(ne, &runtime); |
| |
| // Check that the RegExp has been compiled (data contains a fixed array). |
| __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); |
| if (FLAG_debug_code) { |
| __ tst(regexp_data, Operand(kSmiTagMask)); |
| __ Check(nz, "Unexpected type for RegExp data, FixedArray expected"); |
| __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); |
| __ Check(eq, "Unexpected type for RegExp data, FixedArray expected"); |
| } |
| |
| // regexp_data: RegExp data (FixedArray) |
| // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
| __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); |
| __ b(ne, &runtime); |
| |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the number of captures fit in the static offsets vector buffer. |
| __ ldr(r2, |
| FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| // uses the asumption that smis are 2 * their untagged value. |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| __ add(r2, r2, Operand(2)); // r2 was a smi. |
| // Check that the static offsets vector buffer is large enough. |
| __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); |
| __ b(hi, &runtime); |
| |
| // r2: Number of capture registers |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the second argument is a string. |
| __ ldr(subject, MemOperand(sp, kSubjectOffset)); |
| __ tst(subject, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| Condition is_string = masm->IsObjectStringType(subject, r0); |
| __ b(NegateCondition(is_string), &runtime); |
| // Get the length of the string to r3. |
| __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset)); |
| |
| // r2: Number of capture registers |
| // r3: Length of subject string as a smi |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the third argument is a positive smi less than the subject |
| // string length. A negative value will be greater (unsigned comparison). |
| __ ldr(r0, MemOperand(sp, kPreviousIndexOffset)); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(ne, &runtime); |
| __ cmp(r3, Operand(r0)); |
| __ b(ls, &runtime); |
| |
| // r2: Number of capture registers |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the fourth object is a JSArray object. |
| __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); |
| __ tst(r0, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); |
| __ b(ne, &runtime); |
| // Check that the JSArray is in fast case. |
| __ ldr(last_match_info_elements, |
| FieldMemOperand(r0, JSArray::kElementsOffset)); |
| __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(r0, ip); |
| __ b(ne, &runtime); |
| // Check that the last match info has space for the capture registers and the |
| // additional information. |
| __ ldr(r0, |
| FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); |
| __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead)); |
| __ cmp(r2, Operand(r0, ASR, kSmiTagSize)); |
| __ b(gt, &runtime); |
| |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check the representation and encoding of the subject string. |
| Label seq_string; |
| const int kStringRepresentationEncodingMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); |
| __ and_(r1, r0, Operand(kStringRepresentationEncodingMask)); |
| // First check for sequential string. |
| ASSERT_EQ(0, kStringTag); |
| ASSERT_EQ(0, kSeqStringTag); |
| __ tst(r1, Operand(kIsNotStringMask | kStringRepresentationMask)); |
| __ b(eq, &seq_string); |
| |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check for flat cons string. |
| // A flat cons string is a cons string where the second part is the empty |
| // string. In that case the subject string is just the first part of the cons |
| // string. Also in this case the first part of the cons string is known to be |
| // a sequential string or an external string. |
| __ and_(r0, r0, Operand(kStringRepresentationMask)); |
| __ cmp(r0, Operand(kConsStringTag)); |
| __ b(ne, &runtime); |
| __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); |
| __ LoadRoot(r1, Heap::kEmptyStringRootIndex); |
| __ cmp(r0, r1); |
| __ b(ne, &runtime); |
| __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
| __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
| __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); |
| ASSERT_EQ(0, kSeqStringTag); |
| __ tst(r0, Operand(kStringRepresentationMask)); |
| __ b(nz, &runtime); |
| __ and_(r1, r0, Operand(kStringRepresentationEncodingMask)); |
| |
| __ bind(&seq_string); |
| // r1: suject string type & kStringRepresentationEncodingMask |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Check that the irregexp code has been generated for an ascii string. If |
| // it has, the field contains a code object otherwise it contains the hole. |
| #ifdef DEBUG |
| const int kSeqAsciiString = kStringTag | kSeqStringTag | kAsciiStringTag; |
| const int kSeqTwoByteString = kStringTag | kSeqStringTag | kTwoByteStringTag; |
| CHECK_EQ(4, kSeqAsciiString); |
| CHECK_EQ(0, kSeqTwoByteString); |
| #endif |
| // Find the code object based on the assumptions above. |
| __ mov(r3, Operand(r1, ASR, 2), SetCC); |
| __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); |
| __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); |
| |
| // Check that the irregexp code has been generated for the actual string |
| // encoding. If it has, the field contains a code object otherwise it contains |
| // the hole. |
| __ CompareObjectType(r7, r0, r0, CODE_TYPE); |
| __ b(ne, &runtime); |
| |
| // r3: encoding of subject string (1 if ascii, 0 if two_byte); |
| // r7: code |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // Load used arguments before starting to push arguments for call to native |
| // RegExp code to avoid handling changing stack height. |
| __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); |
| __ mov(r1, Operand(r1, ASR, kSmiTagSize)); |
| |
| // r1: previous index |
| // r3: encoding of subject string (1 if ascii, 0 if two_byte); |
| // r7: code |
| // subject: Subject string |
| // regexp_data: RegExp data (FixedArray) |
| // All checks done. Now push arguments for native regexp code. |
| __ IncrementCounter(&Counters::regexp_entry_native, 1, r0, r2); |
| |
| static const int kRegExpExecuteArguments = 7; |
| __ push(lr); |
| __ PrepareCallCFunction(kRegExpExecuteArguments, r0); |
| |
| // Argument 7 (sp[8]): Indicate that this is a direct call from JavaScript. |
| __ mov(r0, Operand(1)); |
| __ str(r0, MemOperand(sp, 2 * kPointerSize)); |
| |
| // Argument 6 (sp[4]): Start (high end) of backtracking stack memory area. |
| __ mov(r0, Operand(address_of_regexp_stack_memory_address)); |
| __ ldr(r0, MemOperand(r0, 0)); |
| __ mov(r2, Operand(address_of_regexp_stack_memory_size)); |
| __ ldr(r2, MemOperand(r2, 0)); |
| __ add(r0, r0, Operand(r2)); |
| __ str(r0, MemOperand(sp, 1 * kPointerSize)); |
| |
| // Argument 5 (sp[0]): static offsets vector buffer. |
| __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector())); |
| __ str(r0, MemOperand(sp, 0 * kPointerSize)); |
| |
| // For arguments 4 and 3 get string length, calculate start of string data and |
| // calculate the shift of the index (0 for ASCII and 1 for two byte). |
| __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset)); |
| __ mov(r0, Operand(r0, ASR, kSmiTagSize)); |
| ASSERT_EQ(SeqAsciiString::kHeaderSize, SeqTwoByteString::kHeaderSize); |
| __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ eor(r3, r3, Operand(1)); |
| // Argument 4 (r3): End of string data |
| // Argument 3 (r2): Start of string data |
| __ add(r2, r9, Operand(r1, LSL, r3)); |
| __ add(r3, r9, Operand(r0, LSL, r3)); |
| |
| // Argument 2 (r1): Previous index. |
| // Already there |
| |
| // Argument 1 (r0): Subject string. |
| __ mov(r0, subject); |
| |
| // Locate the code entry and call it. |
| __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ CallCFunction(r7, kRegExpExecuteArguments); |
| __ pop(lr); |
| |
| // r0: result |
| // subject: subject string (callee saved) |
| // regexp_data: RegExp data (callee saved) |
| // last_match_info_elements: Last match info elements (callee saved) |
| |
| // Check the result. |
| Label success; |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS)); |
| __ b(eq, &success); |
| Label failure; |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); |
| __ b(eq, &failure); |
| __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); |
| // If not exception it can only be retry. Handle that in the runtime system. |
| __ b(ne, &runtime); |
| // Result must now be exception. If there is no pending exception already a |
| // stack overflow (on the backtrack stack) was detected in RegExp code but |
| // haven't created the exception yet. Handle that in the runtime system. |
| // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| __ mov(r0, Operand(ExternalReference::the_hole_value_location())); |
| __ ldr(r0, MemOperand(r0, 0)); |
| __ mov(r1, Operand(ExternalReference(Top::k_pending_exception_address))); |
| __ ldr(r1, MemOperand(r1, 0)); |
| __ cmp(r0, r1); |
| __ b(eq, &runtime); |
| __ bind(&failure); |
| // For failure and exception return null. |
| __ mov(r0, Operand(Factory::null_value())); |
| __ add(sp, sp, Operand(4 * kPointerSize)); |
| __ Ret(); |
| |
| // Process the result from the native regexp code. |
| __ bind(&success); |
| __ ldr(r1, |
| FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| __ add(r1, r1, Operand(2)); // r1 was a smi. |
| |
| // r1: number of capture registers |
| // r4: subject string |
| // Store the capture count. |
| __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi. |
| __ str(r2, FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastCaptureCountOffset)); |
| // Store last subject and last input. |
| __ mov(r3, last_match_info_elements); // Moved up to reduce latency. |
| __ mov(r2, Operand(RegExpImpl::kLastSubjectOffset)); // Ditto. |
| __ str(subject, |
| FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastSubjectOffset)); |
| __ RecordWrite(r3, r2, r7); |
| __ str(subject, |
| FieldMemOperand(last_match_info_elements, |
| RegExpImpl::kLastInputOffset)); |
| __ mov(r3, last_match_info_elements); |
| __ mov(r2, Operand(RegExpImpl::kLastInputOffset)); |
| __ RecordWrite(r3, r2, r7); |
| |
| // Get the static offsets vector filled by the native regexp code. |
| ExternalReference address_of_static_offsets_vector = |
| ExternalReference::address_of_static_offsets_vector(); |
| __ mov(r2, Operand(address_of_static_offsets_vector)); |
| |
| // r1: number of capture registers |
| // r2: offsets vector |
| Label next_capture, done; |
| // Capture register counter starts from number of capture registers and |
| // counts down until wraping after zero. |
| __ add(r0, |
| last_match_info_elements, |
| Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); |
| __ bind(&next_capture); |
| __ sub(r1, r1, Operand(1), SetCC); |
| __ b(mi, &done); |
| // Read the value from the static offsets vector buffer. |
| __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); |
| // Store the smi value in the last match info. |
| __ mov(r3, Operand(r3, LSL, kSmiTagSize)); |
| __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); |
| __ jmp(&next_capture); |
| __ bind(&done); |
| |
| // Return last match info. |
| __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); |
| __ add(sp, sp, Operand(4 * kPointerSize)); |
| __ Ret(); |
| |
| // Do the runtime call to execute the regexp. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #endif // V8_INTERPRETED_REGEXP |
| } |
| |
| |
| void CallFunctionStub::Generate(MacroAssembler* masm) { |
| Label slow; |
| |
| // If the receiver might be a value (string, number or boolean) check for this |
| // and box it if it is. |
| if (ReceiverMightBeValue()) { |
| // Get the receiver from the stack. |
| // function, receiver [, arguments] |
| Label receiver_is_value, receiver_is_js_object; |
| __ ldr(r1, MemOperand(sp, argc_ * kPointerSize)); |
| |
| // Check if receiver is a smi (which is a number value). |
| __ BranchOnSmi(r1, &receiver_is_value); |
| |
| // Check if the receiver is a valid JS object. |
| __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE); |
| __ b(ge, &receiver_is_js_object); |
| |
| // Call the runtime to box the value. |
| __ bind(&receiver_is_value); |
| __ EnterInternalFrame(); |
| __ push(r1); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS); |
| __ LeaveInternalFrame(); |
| __ str(r0, MemOperand(sp, argc_ * kPointerSize)); |
| |
| __ bind(&receiver_is_js_object); |
| } |
| |
| // Get the function to call from the stack. |
| // function, receiver [, arguments] |
| __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize)); |
| |
| // Check that the function is really a JavaScript function. |
| // r1: pushed function (to be verified) |
| __ BranchOnSmi(r1, &slow); |
| // Get the map of the function object. |
| __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE); |
| __ b(ne, &slow); |
| |
| // Fast-case: Invoke the function now. |
| // r1: pushed function |
| ParameterCount actual(argc_); |
| __ InvokeFunction(r1, actual, JUMP_FUNCTION); |
| |
| // Slow-case: Non-function called. |
| __ bind(&slow); |
| // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| // of the original receiver from the call site). |
| __ str(r1, MemOperand(sp, argc_ * kPointerSize)); |
| __ mov(r0, Operand(argc_)); // Setup the number of arguments. |
| __ mov(r2, Operand(0)); |
| __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); |
| __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| |
| // Unfortunately you have to run without snapshots to see most of these |
| // names in the profile since most compare stubs end up in the snapshot. |
| const char* CompareStub::GetName() { |
| if (name_ != NULL) return name_; |
| const int kMaxNameLength = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| if (name_ == NULL) return "OOM"; |
| |
| const char* cc_name; |
| switch (cc_) { |
| case lt: cc_name = "LT"; break; |
| case gt: cc_name = "GT"; break; |
| case le: cc_name = "LE"; break; |
| case ge: cc_name = "GE"; break; |
| case eq: cc_name = "EQ"; break; |
| case ne: cc_name = "NE"; break; |
| default: cc_name = "UnknownCondition"; break; |
| } |
| |
| const char* strict_name = ""; |
| if (strict_ && (cc_ == eq || cc_ == ne)) { |
| strict_name = "_STRICT"; |
| } |
| |
| const char* never_nan_nan_name = ""; |
| if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) { |
| never_nan_nan_name = "_NO_NAN"; |
| } |
| |
| const char* include_number_compare_name = ""; |
| if (!include_number_compare_) { |
| include_number_compare_name = "_NO_NUMBER"; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| "CompareStub_%s%s%s%s", |
| cc_name, |
| strict_name, |
| never_nan_nan_name, |
| include_number_compare_name); |
| return name_; |
| } |
| |
| |
| int CompareStub::MinorKey() { |
| // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
| // stubs the never NaN NaN condition is only taken into account if the |
| // condition is equals. |
| ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 13)); |
| return ConditionField::encode(static_cast<unsigned>(cc_) >> 28) |
| | StrictField::encode(strict_) |
| | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) |
| | IncludeNumberCompareField::encode(include_number_compare_); |
| } |
| |
| |
| // StringCharCodeAtGenerator |
| |
| void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| Label flat_string; |
| Label ascii_string; |
| Label got_char_code; |
| |
| // If the receiver is a smi trigger the non-string case. |
| __ BranchOnSmi(object_, receiver_not_string_); |
| |
| // Fetch the instance type of the receiver into result register. |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| // If the receiver is not a string trigger the non-string case. |
| __ tst(result_, Operand(kIsNotStringMask)); |
| __ b(ne, receiver_not_string_); |
| |
| // If the index is non-smi trigger the non-smi case. |
| __ BranchOnNotSmi(index_, &index_not_smi_); |
| |
| // Put smi-tagged index into scratch register. |
| __ mov(scratch_, index_); |
| __ bind(&got_smi_index_); |
| |
| // Check for index out of range. |
| __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); |
| __ cmp(ip, Operand(scratch_)); |
| __ b(ls, index_out_of_range_); |
| |
| // We need special handling for non-flat strings. |
| ASSERT(kSeqStringTag == 0); |
| __ tst(result_, Operand(kStringRepresentationMask)); |
| __ b(eq, &flat_string); |
| |
| // Handle non-flat strings. |
| __ tst(result_, Operand(kIsConsStringMask)); |
| __ b(eq, &call_runtime_); |
| |
| // ConsString. |
| // Check whether the right hand side is the empty string (i.e. if |
| // this is really a flat string in a cons string). If that is not |
| // the case we would rather go to the runtime system now to flatten |
| // the string. |
| __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset)); |
| __ LoadRoot(ip, Heap::kEmptyStringRootIndex); |
| __ cmp(result_, Operand(ip)); |
| __ b(ne, &call_runtime_); |
| // Get the first of the two strings and load its instance type. |
| __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset)); |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| // If the first cons component is also non-flat, then go to runtime. |
| ASSERT(kSeqStringTag == 0); |
| __ tst(result_, Operand(kStringRepresentationMask)); |
| __ b(nz, &call_runtime_); |
| |
| // Check for 1-byte or 2-byte string. |
| __ bind(&flat_string); |
| ASSERT(kAsciiStringTag != 0); |
| __ tst(result_, Operand(kStringEncodingMask)); |
| __ b(nz, &ascii_string); |
| |
| // 2-byte string. |
| // Load the 2-byte character code into the result register. We can |
| // add without shifting since the smi tag size is the log2 of the |
| // number of bytes in a two-byte character. |
| ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); |
| __ add(scratch_, object_, Operand(scratch_)); |
| __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); |
| __ jmp(&got_char_code); |
| |
| // ASCII string. |
| // Load the byte into the result register. |
| __ bind(&ascii_string); |
| __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize)); |
| __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize)); |
| |
| __ bind(&got_char_code); |
| __ mov(result_, Operand(result_, LSL, kSmiTagSize)); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharCodeAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| |
| // Index is not a smi. |
| __ bind(&index_not_smi_); |
| // If index is a heap number, try converting it to an integer. |
| __ CheckMap(index_, |
| scratch_, |
| Heap::kHeapNumberMapRootIndex, |
| index_not_number_, |
| true); |
| call_helper.BeforeCall(masm); |
| __ Push(object_, index_); |
| __ push(index_); // Consumed by runtime conversion function. |
| if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| } else { |
| ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| // NumberToSmi discards numbers that are not exact integers. |
| __ CallRuntime(Runtime::kNumberToSmi, 1); |
| } |
| if (!scratch_.is(r0)) { |
| // Save the conversion result before the pop instructions below |
| // have a chance to overwrite it. |
| __ mov(scratch_, r0); |
| } |
| __ pop(index_); |
| __ pop(object_); |
| // Reload the instance type. |
| __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
| call_helper.AfterCall(masm); |
| // If index is still not a smi, it must be out of range. |
| __ BranchOnNotSmi(scratch_, index_out_of_range_); |
| // Otherwise, return to the fast path. |
| __ jmp(&got_smi_index_); |
| |
| // Call runtime. We get here when the receiver is a string and the |
| // index is a number, but the code of getting the actual character |
| // is too complex (e.g., when the string needs to be flattened). |
| __ bind(&call_runtime_); |
| call_helper.BeforeCall(masm); |
| __ Push(object_, index_); |
| __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| if (!result_.is(r0)) { |
| __ mov(result_, r0); |
| } |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharFromCodeGenerator |
| |
| void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| ASSERT(kSmiTag == 0); |
| ASSERT(kSmiShiftSize == 0); |
| ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
| __ tst(code_, |
| Operand(kSmiTagMask | |
| ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
| __ b(nz, &slow_case_); |
| |
| __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
| // At this point code register contains smi tagged ascii char code. |
| ASSERT(kSmiTag == 0); |
| __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(result_, Operand(ip)); |
| __ b(eq, &slow_case_); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharFromCodeGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| |
| __ bind(&slow_case_); |
| call_helper.BeforeCall(masm); |
| __ push(code_); |
| __ CallRuntime(Runtime::kCharFromCode, 1); |
| if (!result_.is(r0)) { |
| __ mov(result_, r0); |
| } |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharAtGenerator |
| |
| void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| char_code_at_generator_.GenerateFast(masm); |
| char_from_code_generator_.GenerateFast(masm); |
| } |
| |
| |
| void StringCharAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| char_code_at_generator_.GenerateSlow(masm, call_helper); |
| char_from_code_generator_.GenerateSlow(masm, call_helper); |
| } |
| |
| |
| void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| Label loop; |
| Label done; |
| // This loop just copies one character at a time, as it is only used for very |
| // short strings. |
| if (!ascii) { |
| __ add(count, count, Operand(count), SetCC); |
| } else { |
| __ cmp(count, Operand(0)); |
| } |
| __ b(eq, &done); |
| |
| __ bind(&loop); |
| __ ldrb(scratch, MemOperand(src, 1, PostIndex)); |
| // Perform sub between load and dependent store to get the load time to |
| // complete. |
| __ sub(count, count, Operand(1), SetCC); |
| __ strb(scratch, MemOperand(dest, 1, PostIndex)); |
| // last iteration. |
| __ b(gt, &loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| enum CopyCharactersFlags { |
| COPY_ASCII = 1, |
| DEST_ALWAYS_ALIGNED = 2 |
| }; |
| |
| |
| void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags) { |
| bool ascii = (flags & COPY_ASCII) != 0; |
| bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; |
| |
| if (dest_always_aligned && FLAG_debug_code) { |
| // Check that destination is actually word aligned if the flag says |
| // that it is. |
| __ tst(dest, Operand(kPointerAlignmentMask)); |
| __ Check(eq, "Destination of copy not aligned."); |
| } |
| |
| const int kReadAlignment = 4; |
| const int kReadAlignmentMask = kReadAlignment - 1; |
| // Ensure that reading an entire aligned word containing the last character |
| // of a string will not read outside the allocated area (because we pad up |
| // to kObjectAlignment). |
| ASSERT(kObjectAlignment >= kReadAlignment); |
| // Assumes word reads and writes are little endian. |
| // Nothing to do for zero characters. |
| Label done; |
| if (!ascii) { |
| __ add(count, count, Operand(count), SetCC); |
| } else { |
| __ cmp(count, Operand(0)); |
| } |
| __ b(eq, &done); |
| |
| // Assume that you cannot read (or write) unaligned. |
| Label byte_loop; |
| // Must copy at least eight bytes, otherwise just do it one byte at a time. |
| __ cmp(count, Operand(8)); |
| __ add(count, dest, Operand(count)); |
| Register limit = count; // Read until src equals this. |
| __ b(lt, &byte_loop); |
| |
| if (!dest_always_aligned) { |
| // Align dest by byte copying. Copies between zero and three bytes. |
| __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC); |
| Label dest_aligned; |
| __ b(eq, &dest_aligned); |
| __ cmp(scratch4, Operand(2)); |
| __ ldrb(scratch1, MemOperand(src, 1, PostIndex)); |
| __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le); |
| __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ strb(scratch2, MemOperand(dest, 1, PostIndex), le); |
| __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt); |
| __ bind(&dest_aligned); |
| } |
| |
| Label simple_loop; |
| |
| __ sub(scratch4, dest, Operand(src)); |
| __ and_(scratch4, scratch4, Operand(0x03), SetCC); |
| __ b(eq, &simple_loop); |
| // Shift register is number of bits in a source word that |
| // must be combined with bits in the next source word in order |
| // to create a destination word. |
| |
| // Complex loop for src/dst that are not aligned the same way. |
| { |
| Label loop; |
| __ mov(scratch4, Operand(scratch4, LSL, 3)); |
| Register left_shift = scratch4; |
| __ and_(src, src, Operand(~3)); // Round down to load previous word. |
| __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| // Store the "shift" most significant bits of scratch in the least |
| // signficant bits (i.e., shift down by (32-shift)). |
| __ rsb(scratch2, left_shift, Operand(32)); |
| Register right_shift = scratch2; |
| __ mov(scratch1, Operand(scratch1, LSR, right_shift)); |
| |
| __ bind(&loop); |
| __ ldr(scratch3, MemOperand(src, 4, PostIndex)); |
| __ sub(scratch5, limit, Operand(dest)); |
| __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); |
| __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| __ mov(scratch1, Operand(scratch3, LSR, right_shift)); |
| // Loop if four or more bytes left to copy. |
| // Compare to eight, because we did the subtract before increasing dst. |
| __ sub(scratch5, scratch5, Operand(8), SetCC); |
| __ b(ge, &loop); |
| } |
| // There is now between zero and three bytes left to copy (negative that |
| // number is in scratch5), and between one and three bytes already read into |
| // scratch1 (eight times that number in scratch4). We may have read past |
| // the end of the string, but because objects are aligned, we have not read |
| // past the end of the object. |
| // Find the minimum of remaining characters to move and preloaded characters |
| // and write those as bytes. |
| __ add(scratch5, scratch5, Operand(4), SetCC); |
| __ b(eq, &done); |
| __ cmp(scratch4, Operand(scratch5, LSL, 3), ne); |
| // Move minimum of bytes read and bytes left to copy to scratch4. |
| __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); |
| // Between one and three (value in scratch5) characters already read into |
| // scratch ready to write. |
| __ cmp(scratch5, Operand(2)); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); |
| __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt); |
| // Copy any remaining bytes. |
| __ b(&byte_loop); |
| |
| // Simple loop. |
| // Copy words from src to dst, until less than four bytes left. |
| // Both src and dest are word aligned. |
| __ bind(&simple_loop); |
| { |
| Label loop; |
| __ bind(&loop); |
| __ ldr(scratch1, MemOperand(src, 4, PostIndex)); |
| __ sub(scratch3, limit, Operand(dest)); |
| __ str(scratch1, MemOperand(dest, 4, PostIndex)); |
| // Compare to 8, not 4, because we do the substraction before increasing |
| // dest. |
| __ cmp(scratch3, Operand(8)); |
| __ b(ge, &loop); |
| } |
| |
| // Copy bytes from src to dst until dst hits limit. |
| __ bind(&byte_loop); |
| __ cmp(dest, Operand(limit)); |
| __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt); |
| __ b(ge, &done); |
| __ strb(scratch1, MemOperand(dest, 1, PostIndex)); |
| __ b(&byte_loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| Label* not_found) { |
| // Register scratch3 is the general scratch register in this function. |
| Register scratch = scratch3; |
| |
| // Make sure that both characters are not digits as such strings has a |
| // different hash algorithm. Don't try to look for these in the symbol table. |
| Label not_array_index; |
| __ sub(scratch, c1, Operand(static_cast<int>('0'))); |
| __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); |
| __ b(hi, ¬_array_index); |
| __ sub(scratch, c2, Operand(static_cast<int>('0'))); |
| __ cmp(scratch, Operand(static_cast<int>('9' - '0'))); |
| |
| // If check failed combine both characters into single halfword. |
| // This is required by the contract of the method: code at the |
| // not_found branch expects this combination in c1 register |
| __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls); |
| __ b(ls, not_found); |
| |
| __ bind(¬_array_index); |
| // Calculate the two character string hash. |
| Register hash = scratch1; |
| StringHelper::GenerateHashInit(masm, hash, c1); |
| StringHelper::GenerateHashAddCharacter(masm, hash, c2); |
| StringHelper::GenerateHashGetHash(masm, hash); |
| |
| // Collect the two characters in a register. |
| Register chars = c1; |
| __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte)); |
| |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string. |
| |
| // Load symbol table |
| // Load address of first element of the symbol table. |
| Register symbol_table = c2; |
| __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
| |
| // Load undefined value |
| Register undefined = scratch4; |
| __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
| |
| // Calculate capacity mask from the symbol table capacity. |
| Register mask = scratch2; |
| __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| __ mov(mask, Operand(mask, ASR, 1)); |
| __ sub(mask, mask, Operand(1)); |
| |
| // Calculate untagged address of the first element of the symbol table. |
| Register first_symbol_table_element = symbol_table; |
| __ add(first_symbol_table_element, symbol_table, |
| Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); |
| |
| // Registers |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string |
| // mask: capacity mask |
| // first_symbol_table_element: address of the first element of |
| // the symbol table |
| // scratch: - |
| |
| // Perform a number of probes in the symbol table. |
| static const int kProbes = 4; |
| Label found_in_symbol_table; |
| Label next_probe[kProbes]; |
| for (int i = 0; i < kProbes; i++) { |
| Register candidate = scratch5; // Scratch register contains candidate. |
| |
| // Calculate entry in symbol table. |
| if (i > 0) { |
| __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); |
| } else { |
| __ mov(candidate, hash); |
| } |
| |
| __ and_(candidate, candidate, Operand(mask)); |
| |
| // Load the entry from the symble table. |
| ASSERT_EQ(1, SymbolTable::kEntrySize); |
| __ ldr(candidate, |
| MemOperand(first_symbol_table_element, |
| candidate, |
| LSL, |
| kPointerSizeLog2)); |
| |
| // If entry is undefined no string with this hash can be found. |
| __ cmp(candidate, undefined); |
| __ b(eq, not_found); |
| |
| // If length is not 2 the string is not a candidate. |
| __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset)); |
| __ cmp(scratch, Operand(Smi::FromInt(2))); |
| __ b(ne, &next_probe[i]); |
| |
| // Check that the candidate is a non-external ascii string. |
| __ ldr(scratch, FieldMemOperand(candidate, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, |
| &next_probe[i]); |
| |
| // Check if the two characters match. |
| // Assumes that word load is little endian. |
| __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); |
| __ cmp(chars, scratch); |
| __ b(eq, &found_in_symbol_table); |
| __ bind(&next_probe[i]); |
| } |
| |
| // No matching 2 character string found by probing. |
| __ jmp(not_found); |
| |
| // Scratch register contains result when we fall through to here. |
| Register result = scratch; |
| __ bind(&found_in_symbol_table); |
| __ Move(r0, result); |
| } |
| |
| |
| void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character) { |
| // hash = character + (character << 10); |
| __ add(hash, character, Operand(character, LSL, 10)); |
| // hash ^= hash >> 6; |
| __ eor(hash, hash, Operand(hash, ASR, 6)); |
| } |
| |
| |
| void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character) { |
| // hash += character; |
| __ add(hash, hash, Operand(character)); |
| // hash += hash << 10; |
| __ add(hash, hash, Operand(hash, LSL, 10)); |
| // hash ^= hash >> 6; |
| __ eor(hash, hash, Operand(hash, ASR, 6)); |
| } |
| |
| |
| void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| Register hash) { |
| // hash += hash << 3; |
| __ add(hash, hash, Operand(hash, LSL, 3)); |
| // hash ^= hash >> 11; |
| __ eor(hash, hash, Operand(hash, ASR, 11)); |
| // hash += hash << 15; |
| __ add(hash, hash, Operand(hash, LSL, 15), SetCC); |
| |
| // if (hash == 0) hash = 27; |
| __ mov(hash, Operand(27), LeaveCC, nz); |
| } |
| |
| |
| void SubStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // lr: return address |
| // sp[0]: to |
| // sp[4]: from |
| // sp[8]: string |
| |
| // This stub is called from the native-call %_SubString(...), so |
| // nothing can be assumed about the arguments. It is tested that: |
| // "string" is a sequential string, |
| // both "from" and "to" are smis, and |
| // 0 <= from <= to <= string.length. |
| // If any of these assumptions fail, we call the runtime system. |
| |
| static const int kToOffset = 0 * kPointerSize; |
| static const int kFromOffset = 1 * kPointerSize; |
| static const int kStringOffset = 2 * kPointerSize; |
| |
| |
| // Check bounds and smi-ness. |
| __ ldr(r7, MemOperand(sp, kToOffset)); |
| __ ldr(r6, MemOperand(sp, kFromOffset)); |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| // I.e., arithmetic shift right by one un-smi-tags. |
| __ mov(r2, Operand(r7, ASR, 1), SetCC); |
| __ mov(r3, Operand(r6, ASR, 1), SetCC, cc); |
| // If either r2 or r6 had the smi tag bit set, then carry is set now. |
| __ b(cs, &runtime); // Either "from" or "to" is not a smi. |
| __ b(mi, &runtime); // From is negative. |
| |
| __ sub(r2, r2, Operand(r3), SetCC); |
| __ b(mi, &runtime); // Fail if from > to. |
| // Special handling of sub-strings of length 1 and 2. One character strings |
| // are handled in the runtime system (looked up in the single character |
| // cache). Two character strings are looked for in the symbol cache. |
| __ cmp(r2, Operand(2)); |
| __ b(lt, &runtime); |
| |
| // r2: length |
| // r3: from index (untaged smi) |
| // r6: from (smi) |
| // r7: to (smi) |
| |
| // Make sure first argument is a sequential (or flat) string. |
| __ ldr(r5, MemOperand(sp, kStringOffset)); |
| ASSERT_EQ(0, kSmiTag); |
| __ tst(r5, Operand(kSmiTagMask)); |
| __ b(eq, &runtime); |
| Condition is_string = masm->IsObjectStringType(r5, r1); |
| __ b(NegateCondition(is_string), &runtime); |
| |
| // r1: instance type |
| // r2: length |
| // r3: from index (untaged smi) |
| // r5: string |
| // r6: from (smi) |
| // r7: to (smi) |
| Label seq_string; |
| __ and_(r4, r1, Operand(kStringRepresentationMask)); |
| ASSERT(kSeqStringTag < kConsStringTag); |
| ASSERT(kExternalStringTag > kConsStringTag); |
| __ cmp(r4, Operand(kConsStringTag)); |
| __ b(gt, &runtime); // External strings go to runtime. |
| __ b(lt, &seq_string); // Sequential strings are handled directly. |
| |
| // Cons string. Try to recurse (once) on the first substring. |
| // (This adds a little more generality than necessary to handle flattened |
| // cons strings, but not much). |
| __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset)); |
| __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); |
| __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ tst(r1, Operand(kStringRepresentationMask)); |
| ASSERT_EQ(0, kSeqStringTag); |
| __ b(ne, &runtime); // Cons and External strings go to runtime. |
| |
| // Definitly a sequential string. |
| __ bind(&seq_string); |
| |
| // r1: instance type. |
| // r2: length |
| // r3: from index (untaged smi) |
| // r5: string |
| // r6: from (smi) |
| // r7: to (smi) |
| __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset)); |
| __ cmp(r4, Operand(r7)); |
| __ b(lt, &runtime); // Fail if to > length. |
| |
| // r1: instance type. |
| // r2: result string length. |
| // r3: from index (untaged smi) |
| // r5: string. |
| // r6: from offset (smi) |
| // Check for flat ascii string. |
| Label non_ascii_flat; |
| __ tst(r1, Operand(kStringEncodingMask)); |
| ASSERT_EQ(0, kTwoByteStringTag); |
| __ b(eq, &non_ascii_flat); |
| |
| Label result_longer_than_two; |
| __ cmp(r2, Operand(2)); |
| __ b(gt, &result_longer_than_two); |
| |
| // Sub string of length 2 requested. |
| // Get the two characters forming the sub string. |
| __ add(r5, r5, Operand(r3)); |
| __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize)); |
| __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1)); |
| |
| // Try to lookup two character string in symbol table. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // r2: result string length. |
| // r3: two characters combined into halfword in little endian byte order. |
| __ bind(&make_two_character_string); |
| __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime); |
| __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&result_longer_than_two); |
| |
| // Allocate the result. |
| __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime); |
| |
| // r0: result string. |
| // r2: result string length. |
| // r5: string. |
| // r6: from offset (smi) |
| // Locate first character of result. |
| __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate 'from' character of string. |
| __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ add(r5, r5, Operand(r6, ASR, 1)); |
| |
| // r0: result string. |
| // r1: first character of result string. |
| // r2: result string length. |
| // r5: first character of sub string to copy. |
| ASSERT_EQ(0, SeqAsciiString::kHeaderSize & kObjectAlignmentMask); |
| StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, |
| COPY_ASCII | DEST_ALWAYS_ALIGNED); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_flat); |
| // r2: result string length. |
| // r5: string. |
| // r6: from offset (smi) |
| // Check for flat two byte string. |
| |
| // Allocate the result. |
| __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime); |
| |
| // r0: result string. |
| // r2: result string length. |
| // r5: string. |
| // Locate first character of result. |
| __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate 'from' character of string. |
| __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // As "from" is a smi it is 2 times the value which matches the size of a two |
| // byte character. |
| __ add(r5, r5, Operand(r6)); |
| |
| // r0: result string. |
| // r1: first character of result. |
| // r2: result length. |
| // r5: first character of string to copy. |
| ASSERT_EQ(0, SeqTwoByteString::kHeaderSize & kObjectAlignmentMask); |
| StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, |
| DEST_ALWAYS_ALIGNED); |
| __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); |
| __ add(sp, sp, Operand(3 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to create the sub string. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| } |
| |
| |
| void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4) { |
| Label compare_lengths; |
| // Find minimum length and length difference. |
| __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
| __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
| __ sub(scratch3, scratch1, Operand(scratch2), SetCC); |
| Register length_delta = scratch3; |
| __ mov(scratch1, scratch2, LeaveCC, gt); |
| Register min_length = scratch1; |
| ASSERT(kSmiTag == 0); |
| __ tst(min_length, Operand(min_length)); |
| __ b(eq, &compare_lengths); |
| |
| // Untag smi. |
| __ mov(min_length, Operand(min_length, ASR, kSmiTagSize)); |
| |
| // Setup registers so that we only need to increment one register |
| // in the loop. |
| __ add(scratch2, min_length, |
| Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ add(left, left, Operand(scratch2)); |
| __ add(right, right, Operand(scratch2)); |
| // Registers left and right points to the min_length character of strings. |
| __ rsb(min_length, min_length, Operand(-1)); |
| Register index = min_length; |
| // Index starts at -min_length. |
| |
| { |
| // Compare loop. |
| Label loop; |
| __ bind(&loop); |
| // Compare characters. |
| __ add(index, index, Operand(1), SetCC); |
| __ ldrb(scratch2, MemOperand(left, index), ne); |
| __ ldrb(scratch4, MemOperand(right, index), ne); |
| // Skip to compare lengths with eq condition true. |
| __ b(eq, &compare_lengths); |
| __ cmp(scratch2, scratch4); |
| __ b(eq, &loop); |
| // Fallthrough with eq condition false. |
| } |
| // Compare lengths - strings up to min-length are equal. |
| __ bind(&compare_lengths); |
| ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
| // Use zero length_delta as result. |
| __ mov(r0, Operand(length_delta), SetCC, eq); |
| // Fall through to here if characters compare not-equal. |
| __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); |
| __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); |
| __ Ret(); |
| } |
| |
| |
| void StringCompareStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // sp[0]: right string |
| // sp[4]: left string |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // left |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // right |
| |
| Label not_same; |
| __ cmp(r0, r1); |
| __ b(ne, ¬_same); |
| ASSERT_EQ(0, EQUAL); |
| ASSERT_EQ(0, kSmiTag); |
| __ mov(r0, Operand(Smi::FromInt(EQUAL))); |
| __ IncrementCounter(&Counters::string_compare_native, 1, r1, r2); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(¬_same); |
| |
| // Check that both objects are sequential ascii strings. |
| __ JumpIfNotBothSequentialAsciiStrings(r0, r1, r2, r3, &runtime); |
| |
| // Compare flat ascii strings natively. Remove arguments from stack first. |
| __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| GenerateCompareFlatAsciiStrings(masm, r0, r1, r2, r3, r4, r5); |
| |
| // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| } |
| |
| |
| void StringAddStub::Generate(MacroAssembler* masm) { |
| Label string_add_runtime; |
| // Stack on entry: |
| // sp[0]: second argument. |
| // sp[4]: first argument. |
| |
| // Load the two arguments. |
| __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument. |
| __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument. |
| |
| // Make sure that both arguments are strings if not known in advance. |
| if (string_check_) { |
| ASSERT_EQ(0, kSmiTag); |
| __ JumpIfEitherSmi(r0, r1, &string_add_runtime); |
| // Load instance types. |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| ASSERT_EQ(0, kStringTag); |
| // If either is not a string, go to runtime. |
| __ tst(r4, Operand(kIsNotStringMask)); |
| __ tst(r5, Operand(kIsNotStringMask), eq); |
| __ b(ne, &string_add_runtime); |
| } |
| |
| // Both arguments are strings. |
| // r0: first string |
| // r1: second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| { |
| Label strings_not_empty; |
| // Check if either of the strings are empty. In that case return the other. |
| __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); |
| __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); |
| ASSERT(kSmiTag == 0); |
| __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty. |
| __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. |
| ASSERT(kSmiTag == 0); |
| // Else test if second string is empty. |
| __ cmp(r3, Operand(Smi::FromInt(0)), ne); |
| __ b(ne, &strings_not_empty); // If either string was empty, return r0. |
| |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&strings_not_empty); |
| } |
| |
| __ mov(r2, Operand(r2, ASR, kSmiTagSize)); |
| __ mov(r3, Operand(r3, ASR, kSmiTagSize)); |
| // Both strings are non-empty. |
| // r0: first string |
| // r1: second string |
| // r2: length of first string |
| // r3: length of second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| // Look at the length of the result of adding the two strings. |
| Label string_add_flat_result, longer_than_two; |
| // Adding two lengths can't overflow. |
| ASSERT(String::kMaxLength * 2 > String::kMaxLength); |
| __ add(r6, r2, Operand(r3)); |
| // Use the runtime system when adding two one character strings, as it |
| // contains optimizations for this specific case using the symbol table. |
| __ cmp(r6, Operand(2)); |
| __ b(ne, &longer_than_two); |
| |
| // Check that both strings are non-external ascii strings. |
| if (!string_check_) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7, |
| &string_add_runtime); |
| |
| // Get the two characters forming the sub string. |
| __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize)); |
| |
| // Try to lookup two character string in symbol table. If it is not found |
| // just allocate a new one. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&make_two_character_string); |
| // Resulting string has length 2 and first chars of two strings |
| // are combined into single halfword in r2 register. |
| // So we can fill resulting string without two loops by a single |
| // halfword store instruction (which assumes that processor is |
| // in a little endian mode) |
| __ mov(r6, Operand(2)); |
| __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime); |
| __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&longer_than_two); |
| // Check if resulting string will be flat. |
| __ cmp(r6, Operand(String::kMinNonFlatLength)); |
| __ b(lt, &string_add_flat_result); |
| // Handle exceptionally long strings in the runtime system. |
| ASSERT((String::kMaxLength & 0x80000000) == 0); |
| ASSERT(IsPowerOf2(String::kMaxLength + 1)); |
| // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. |
| __ cmp(r6, Operand(String::kMaxLength + 1)); |
| __ b(hs, &string_add_runtime); |
| |
| // If result is not supposed to be flat, allocate a cons string object. |
| // If both strings are ascii the result is an ascii cons string. |
| if (!string_check_) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| Label non_ascii, allocated; |
| ASSERT_EQ(0, kTwoByteStringTag); |
| __ tst(r4, Operand(kStringEncodingMask)); |
| __ tst(r5, Operand(kStringEncodingMask), ne); |
| __ b(eq, &non_ascii); |
| |
| // Allocate an ASCII cons string. |
| __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime); |
| __ bind(&allocated); |
| // Fill the fields of the cons string. |
| __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); |
| __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii); |
| // Allocate a two byte cons string. |
| __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime); |
| __ jmp(&allocated); |
| |
| // Handle creating a flat result. First check that both strings are |
| // sequential and that they have the same encoding. |
| // r0: first string |
| // r1: second string |
| // r2: length of first string |
| // r3: length of second string |
| // r4: first string instance type (if string_check_) |
| // r5: second string instance type (if string_check_) |
| // r6: sum of lengths. |
| __ bind(&string_add_flat_result); |
| if (!string_check_) { |
| __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); |
| } |
| // Check that both strings are sequential. |
| ASSERT_EQ(0, kSeqStringTag); |
| __ tst(r4, Operand(kStringRepresentationMask)); |
| __ tst(r5, Operand(kStringRepresentationMask), eq); |
| __ b(ne, &string_add_runtime); |
| // Now check if both strings have the same encoding (ASCII/Two-byte). |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: sum of lengths.. |
| Label non_ascii_string_add_flat_result; |
| ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. |
| __ eor(r7, r4, Operand(r5)); |
| __ tst(r7, Operand(kStringEncodingMask)); |
| __ b(ne, &string_add_runtime); |
| // And see if it's ASCII or two-byte. |
| __ tst(r4, Operand(kStringEncodingMask)); |
| __ b(eq, &non_ascii_string_add_flat_result); |
| |
| // Both strings are sequential ASCII strings. We also know that they are |
| // short (since the sum of the lengths is less than kMinNonFlatLength). |
| // r6: length of resulting flat string |
| __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime); |
| // Locate first character of result. |
| __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // r0: first character of first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: first character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true); |
| |
| // Load second argument and locate first character. |
| __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // r1: first character of second string. |
| // r3: length of second string. |
| // r6: next character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true); |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| __ bind(&non_ascii_string_add_flat_result); |
| // Both strings are sequential two byte strings. |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: sum of length of strings. |
| __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime); |
| // r0: first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r7: result string. |
| |
| // Locate first character of result. |
| __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Locate first character of first argument. |
| __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // r0: first character of first string. |
| // r1: second string. |
| // r2: length of first string. |
| // r3: length of second string. |
| // r6: first character of result. |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false); |
| |
| // Locate first character of second argument. |
| __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| |
| // r1: first character of second string. |
| // r3: length of second string. |
| // r6: next character of result (after copy of first string). |
| // r7: result string. |
| StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false); |
| |
| __ mov(r0, Operand(r7)); |
| __ IncrementCounter(&Counters::string_add_native, 1, r2, r3); |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ Ret(); |
| |
| // Just jump to runtime to add the two strings. |
| __ bind(&string_add_runtime); |
| __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |