| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_ARM_CODEGEN_ARM_H_ |
| #define V8_ARM_CODEGEN_ARM_H_ |
| |
| #include "ic-inl.h" |
| #include "ast.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declarations |
| class CompilationInfo; |
| class DeferredCode; |
| class JumpTarget; |
| class RegisterAllocator; |
| class RegisterFile; |
| |
| enum InitState { CONST_INIT, NOT_CONST_INIT }; |
| enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; |
| enum GenerateInlineSmi { DONT_GENERATE_INLINE_SMI, GENERATE_INLINE_SMI }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Reference support |
| |
| // A reference is a C++ stack-allocated object that puts a |
| // reference on the virtual frame. The reference may be consumed |
| // by GetValue, TakeValue, SetValue, and Codegen::UnloadReference. |
| // When the lifetime (scope) of a valid reference ends, it must have |
| // been consumed, and be in state UNLOADED. |
| class Reference BASE_EMBEDDED { |
| public: |
| // The values of the types is important, see size(). |
| enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; |
| Reference(CodeGenerator* cgen, |
| Expression* expression, |
| bool persist_after_get = false); |
| ~Reference(); |
| |
| Expression* expression() const { return expression_; } |
| Type type() const { return type_; } |
| void set_type(Type value) { |
| ASSERT_EQ(ILLEGAL, type_); |
| type_ = value; |
| } |
| |
| void set_unloaded() { |
| ASSERT_NE(ILLEGAL, type_); |
| ASSERT_NE(UNLOADED, type_); |
| type_ = UNLOADED; |
| } |
| // The size the reference takes up on the stack. |
| int size() const { |
| return (type_ < SLOT) ? 0 : type_; |
| } |
| |
| bool is_illegal() const { return type_ == ILLEGAL; } |
| bool is_slot() const { return type_ == SLOT; } |
| bool is_property() const { return type_ == NAMED || type_ == KEYED; } |
| bool is_unloaded() const { return type_ == UNLOADED; } |
| |
| // Return the name. Only valid for named property references. |
| Handle<String> GetName(); |
| |
| // Generate code to push the value of the reference on top of the |
| // expression stack. The reference is expected to be already on top of |
| // the expression stack, and it is consumed by the call unless the |
| // reference is for a compound assignment. |
| // If the reference is not consumed, it is left in place under its value. |
| void GetValue(); |
| |
| // Generate code to store the value on top of the expression stack in the |
| // reference. The reference is expected to be immediately below the value |
| // on the expression stack. The value is stored in the location specified |
| // by the reference, and is left on top of the stack, after the reference |
| // is popped from beneath it (unloaded). |
| void SetValue(InitState init_state); |
| |
| // This is in preparation for something that uses the reference on the stack. |
| // If we need this reference afterwards get then dup it now. Otherwise mark |
| // it as used. |
| inline void DupIfPersist(); |
| |
| private: |
| CodeGenerator* cgen_; |
| Expression* expression_; |
| Type type_; |
| // Keep the reference on the stack after get, so it can be used by set later. |
| bool persist_after_get_; |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Code generation state |
| |
| // The state is passed down the AST by the code generator (and back up, in |
| // the form of the state of the label pair). It is threaded through the |
| // call stack. Constructing a state implicitly pushes it on the owning code |
| // generator's stack of states, and destroying one implicitly pops it. |
| |
| class CodeGenState BASE_EMBEDDED { |
| public: |
| // Create an initial code generator state. Destroying the initial state |
| // leaves the code generator with a NULL state. |
| explicit CodeGenState(CodeGenerator* owner); |
| |
| // Destroy a code generator state and restore the owning code generator's |
| // previous state. |
| virtual ~CodeGenState(); |
| |
| virtual JumpTarget* true_target() const { return NULL; } |
| virtual JumpTarget* false_target() const { return NULL; } |
| |
| protected: |
| inline CodeGenerator* owner() { return owner_; } |
| inline CodeGenState* previous() const { return previous_; } |
| |
| private: |
| CodeGenerator* owner_; |
| CodeGenState* previous_; |
| }; |
| |
| |
| class ConditionCodeGenState : public CodeGenState { |
| public: |
| // Create a code generator state based on a code generator's current |
| // state. The new state has its own pair of branch labels. |
| ConditionCodeGenState(CodeGenerator* owner, |
| JumpTarget* true_target, |
| JumpTarget* false_target); |
| |
| virtual JumpTarget* true_target() const { return true_target_; } |
| virtual JumpTarget* false_target() const { return false_target_; } |
| |
| private: |
| JumpTarget* true_target_; |
| JumpTarget* false_target_; |
| }; |
| |
| |
| class TypeInfoCodeGenState : public CodeGenState { |
| public: |
| TypeInfoCodeGenState(CodeGenerator* owner, |
| Slot* slot_number, |
| TypeInfo info); |
| ~TypeInfoCodeGenState(); |
| |
| virtual JumpTarget* true_target() const { return previous()->true_target(); } |
| virtual JumpTarget* false_target() const { |
| return previous()->false_target(); |
| } |
| |
| private: |
| Slot* slot_; |
| TypeInfo old_type_info_; |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // Arguments allocation mode |
| |
| enum ArgumentsAllocationMode { |
| NO_ARGUMENTS_ALLOCATION, |
| EAGER_ARGUMENTS_ALLOCATION, |
| LAZY_ARGUMENTS_ALLOCATION |
| }; |
| |
| |
| // Different nop operations are used by the code generator to detect certain |
| // states of the generated code. |
| enum NopMarkerTypes { |
| NON_MARKING_NOP = 0, |
| PROPERTY_ACCESS_INLINED |
| }; |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenerator |
| |
| class CodeGenerator: public AstVisitor { |
| public: |
| // Takes a function literal, generates code for it. This function should only |
| // be called by compiler.cc. |
| static Handle<Code> MakeCode(CompilationInfo* info); |
| |
| // Printing of AST, etc. as requested by flags. |
| static void MakeCodePrologue(CompilationInfo* info); |
| |
| // Allocate and install the code. |
| static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm, |
| Code::Flags flags, |
| CompilationInfo* info); |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| static bool ShouldGenerateLog(Expression* type); |
| #endif |
| |
| static void SetFunctionInfo(Handle<JSFunction> fun, |
| FunctionLiteral* lit, |
| bool is_toplevel, |
| Handle<Script> script); |
| |
| static bool RecordPositions(MacroAssembler* masm, |
| int pos, |
| bool right_here = false); |
| |
| // Accessors |
| MacroAssembler* masm() { return masm_; } |
| VirtualFrame* frame() const { return frame_; } |
| inline Handle<Script> script(); |
| |
| bool has_valid_frame() const { return frame_ != NULL; } |
| |
| // Set the virtual frame to be new_frame, with non-frame register |
| // reference counts given by non_frame_registers. The non-frame |
| // register reference counts of the old frame are returned in |
| // non_frame_registers. |
| void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); |
| |
| void DeleteFrame(); |
| |
| RegisterAllocator* allocator() const { return allocator_; } |
| |
| CodeGenState* state() { return state_; } |
| void set_state(CodeGenState* state) { state_ = state; } |
| |
| TypeInfo type_info(Slot* slot) { |
| int index = NumberOfSlot(slot); |
| if (index == kInvalidSlotNumber) return TypeInfo::Unknown(); |
| return (*type_info_)[index]; |
| } |
| |
| TypeInfo set_type_info(Slot* slot, TypeInfo info) { |
| int index = NumberOfSlot(slot); |
| ASSERT(index >= kInvalidSlotNumber); |
| if (index != kInvalidSlotNumber) { |
| TypeInfo previous_value = (*type_info_)[index]; |
| (*type_info_)[index] = info; |
| return previous_value; |
| } |
| return TypeInfo::Unknown(); |
| } |
| |
| void AddDeferred(DeferredCode* code) { deferred_.Add(code); } |
| |
| static const int kUnknownIntValue = -1; |
| |
| // If the name is an inline runtime function call return the number of |
| // expected arguments. Otherwise return -1. |
| static int InlineRuntimeCallArgumentsCount(Handle<String> name); |
| |
| // Constants related to patching of inlined load/store. |
| static const int kInlinedKeyedLoadInstructionsAfterPatch = 17; |
| static const int kInlinedKeyedStoreInstructionsAfterPatch = 5; |
| |
| private: |
| // Construction/Destruction |
| explicit CodeGenerator(MacroAssembler* masm); |
| |
| // Accessors |
| inline bool is_eval(); |
| inline Scope* scope(); |
| |
| // Generating deferred code. |
| void ProcessDeferred(); |
| |
| static const int kInvalidSlotNumber = -1; |
| |
| int NumberOfSlot(Slot* slot); |
| |
| // State |
| bool has_cc() const { return cc_reg_ != al; } |
| JumpTarget* true_target() const { return state_->true_target(); } |
| JumpTarget* false_target() const { return state_->false_target(); } |
| |
| // Track loop nesting level. |
| int loop_nesting() const { return loop_nesting_; } |
| void IncrementLoopNesting() { loop_nesting_++; } |
| void DecrementLoopNesting() { loop_nesting_--; } |
| |
| // Node visitors. |
| void VisitStatements(ZoneList<Statement*>* statements); |
| |
| #define DEF_VISIT(type) \ |
| void Visit##type(type* node); |
| AST_NODE_LIST(DEF_VISIT) |
| #undef DEF_VISIT |
| |
| // Main code generation function |
| void Generate(CompilationInfo* info); |
| |
| // Returns the arguments allocation mode. |
| ArgumentsAllocationMode ArgumentsMode(); |
| |
| // Store the arguments object and allocate it if necessary. |
| void StoreArgumentsObject(bool initial); |
| |
| // The following are used by class Reference. |
| void LoadReference(Reference* ref); |
| void UnloadReference(Reference* ref); |
| |
| static MemOperand ContextOperand(Register context, int index) { |
| return MemOperand(context, Context::SlotOffset(index)); |
| } |
| |
| MemOperand SlotOperand(Slot* slot, Register tmp); |
| |
| MemOperand ContextSlotOperandCheckExtensions(Slot* slot, |
| Register tmp, |
| Register tmp2, |
| JumpTarget* slow); |
| |
| // Expressions |
| static MemOperand GlobalObject() { |
| return ContextOperand(cp, Context::GLOBAL_INDEX); |
| } |
| |
| void LoadCondition(Expression* x, |
| JumpTarget* true_target, |
| JumpTarget* false_target, |
| bool force_cc); |
| void Load(Expression* expr); |
| void LoadGlobal(); |
| void LoadGlobalReceiver(Register scratch); |
| |
| // Read a value from a slot and leave it on top of the expression stack. |
| void LoadFromSlot(Slot* slot, TypeofState typeof_state); |
| void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state); |
| |
| // Store the value on top of the stack to a slot. |
| void StoreToSlot(Slot* slot, InitState init_state); |
| |
| // Support for compiling assignment expressions. |
| void EmitSlotAssignment(Assignment* node); |
| void EmitNamedPropertyAssignment(Assignment* node); |
| void EmitKeyedPropertyAssignment(Assignment* node); |
| |
| // Load a named property, returning it in r0. The receiver is passed on the |
| // stack, and remains there. |
| void EmitNamedLoad(Handle<String> name, bool is_contextual); |
| |
| // Store to a named property. If the store is contextual, value is passed on |
| // the frame and consumed. Otherwise, receiver and value are passed on the |
| // frame and consumed. The result is returned in r0. |
| void EmitNamedStore(Handle<String> name, bool is_contextual); |
| |
| // Load a keyed property, leaving it in r0. The receiver and key are |
| // passed on the stack, and remain there. |
| void EmitKeyedLoad(); |
| |
| // Store a keyed property. Key and receiver are on the stack and the value is |
| // in r0. Result is returned in r0. |
| void EmitKeyedStore(StaticType* key_type); |
| |
| void LoadFromGlobalSlotCheckExtensions(Slot* slot, |
| TypeofState typeof_state, |
| JumpTarget* slow); |
| |
| // Support for loading from local/global variables and arguments |
| // whose location is known unless they are shadowed by |
| // eval-introduced bindings. Generates no code for unsupported slot |
| // types and therefore expects to fall through to the slow jump target. |
| void EmitDynamicLoadFromSlotFastCase(Slot* slot, |
| TypeofState typeof_state, |
| JumpTarget* slow, |
| JumpTarget* done); |
| |
| // Special code for typeof expressions: Unfortunately, we must |
| // be careful when loading the expression in 'typeof' |
| // expressions. We are not allowed to throw reference errors for |
| // non-existing properties of the global object, so we must make it |
| // look like an explicit property access, instead of an access |
| // through the context chain. |
| void LoadTypeofExpression(Expression* x); |
| |
| void ToBoolean(JumpTarget* true_target, JumpTarget* false_target); |
| |
| // Generate code that computes a shortcutting logical operation. |
| void GenerateLogicalBooleanOperation(BinaryOperation* node); |
| |
| void GenericBinaryOperation(Token::Value op, |
| OverwriteMode overwrite_mode, |
| GenerateInlineSmi inline_smi, |
| int known_rhs = kUnknownIntValue); |
| void Comparison(Condition cc, |
| Expression* left, |
| Expression* right, |
| bool strict = false); |
| |
| void SmiOperation(Token::Value op, |
| Handle<Object> value, |
| bool reversed, |
| OverwriteMode mode); |
| |
| void CallWithArguments(ZoneList<Expression*>* arguments, |
| CallFunctionFlags flags, |
| int position); |
| |
| // An optimized implementation of expressions of the form |
| // x.apply(y, arguments). We call x the applicand and y the receiver. |
| // The optimization avoids allocating an arguments object if possible. |
| void CallApplyLazy(Expression* applicand, |
| Expression* receiver, |
| VariableProxy* arguments, |
| int position); |
| |
| // Control flow |
| void Branch(bool if_true, JumpTarget* target); |
| void CheckStack(); |
| |
| struct InlineRuntimeLUT { |
| void (CodeGenerator::*method)(ZoneList<Expression*>*); |
| const char* name; |
| int nargs; |
| }; |
| |
| static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name); |
| bool CheckForInlineRuntimeCall(CallRuntime* node); |
| static bool PatchInlineRuntimeEntry(Handle<String> name, |
| const InlineRuntimeLUT& new_entry, |
| InlineRuntimeLUT* old_entry); |
| |
| static Handle<Code> ComputeLazyCompile(int argc); |
| void ProcessDeclarations(ZoneList<Declaration*>* declarations); |
| |
| static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop); |
| |
| static Handle<Code> ComputeKeyedCallInitialize(int argc, InLoopFlag in_loop); |
| |
| // Declare global variables and functions in the given array of |
| // name/value pairs. |
| void DeclareGlobals(Handle<FixedArray> pairs); |
| |
| // Instantiate the function based on the shared function info. |
| void InstantiateFunction(Handle<SharedFunctionInfo> function_info); |
| |
| // Support for type checks. |
| void GenerateIsSmi(ZoneList<Expression*>* args); |
| void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); |
| void GenerateIsArray(ZoneList<Expression*>* args); |
| void GenerateIsRegExp(ZoneList<Expression*>* args); |
| void GenerateIsObject(ZoneList<Expression*>* args); |
| void GenerateIsFunction(ZoneList<Expression*>* args); |
| void GenerateIsUndetectableObject(ZoneList<Expression*>* args); |
| |
| // Support for construct call checks. |
| void GenerateIsConstructCall(ZoneList<Expression*>* args); |
| |
| // Support for arguments.length and arguments[?]. |
| void GenerateArgumentsLength(ZoneList<Expression*>* args); |
| void GenerateArguments(ZoneList<Expression*>* args); |
| |
| // Support for accessing the class and value fields of an object. |
| void GenerateClassOf(ZoneList<Expression*>* args); |
| void GenerateValueOf(ZoneList<Expression*>* args); |
| void GenerateSetValueOf(ZoneList<Expression*>* args); |
| |
| // Fast support for charCodeAt(n). |
| void GenerateStringCharCodeAt(ZoneList<Expression*>* args); |
| |
| // Fast support for string.charAt(n) and string[n]. |
| void GenerateStringCharFromCode(ZoneList<Expression*>* args); |
| |
| // Fast support for string.charAt(n) and string[n]. |
| void GenerateStringCharAt(ZoneList<Expression*>* args); |
| |
| // Fast support for object equality testing. |
| void GenerateObjectEquals(ZoneList<Expression*>* args); |
| |
| void GenerateLog(ZoneList<Expression*>* args); |
| |
| // Fast support for Math.random(). |
| void GenerateRandomHeapNumber(ZoneList<Expression*>* args); |
| |
| // Fast support for StringAdd. |
| void GenerateStringAdd(ZoneList<Expression*>* args); |
| |
| // Fast support for SubString. |
| void GenerateSubString(ZoneList<Expression*>* args); |
| |
| // Fast support for StringCompare. |
| void GenerateStringCompare(ZoneList<Expression*>* args); |
| |
| // Support for direct calls from JavaScript to native RegExp code. |
| void GenerateRegExpExec(ZoneList<Expression*>* args); |
| |
| void GenerateRegExpConstructResult(ZoneList<Expression*>* args); |
| |
| // Support for fast native caches. |
| void GenerateGetFromCache(ZoneList<Expression*>* args); |
| |
| // Fast support for number to string. |
| void GenerateNumberToString(ZoneList<Expression*>* args); |
| |
| // Fast swapping of elements. |
| void GenerateSwapElements(ZoneList<Expression*>* args); |
| |
| // Fast call for custom callbacks. |
| void GenerateCallFunction(ZoneList<Expression*>* args); |
| |
| // Fast call to math functions. |
| void GenerateMathPow(ZoneList<Expression*>* args); |
| void GenerateMathSin(ZoneList<Expression*>* args); |
| void GenerateMathCos(ZoneList<Expression*>* args); |
| void GenerateMathSqrt(ZoneList<Expression*>* args); |
| |
| // Simple condition analysis. |
| enum ConditionAnalysis { |
| ALWAYS_TRUE, |
| ALWAYS_FALSE, |
| DONT_KNOW |
| }; |
| ConditionAnalysis AnalyzeCondition(Expression* cond); |
| |
| // Methods used to indicate which source code is generated for. Source |
| // positions are collected by the assembler and emitted with the relocation |
| // information. |
| void CodeForFunctionPosition(FunctionLiteral* fun); |
| void CodeForReturnPosition(FunctionLiteral* fun); |
| void CodeForStatementPosition(Statement* node); |
| void CodeForDoWhileConditionPosition(DoWhileStatement* stmt); |
| void CodeForSourcePosition(int pos); |
| |
| #ifdef DEBUG |
| // True if the registers are valid for entry to a block. |
| bool HasValidEntryRegisters(); |
| #endif |
| |
| List<DeferredCode*> deferred_; |
| |
| // Assembler |
| MacroAssembler* masm_; // to generate code |
| |
| CompilationInfo* info_; |
| |
| // Code generation state |
| VirtualFrame* frame_; |
| RegisterAllocator* allocator_; |
| Condition cc_reg_; |
| CodeGenState* state_; |
| int loop_nesting_; |
| |
| Vector<TypeInfo>* type_info_; |
| |
| // Jump targets |
| BreakTarget function_return_; |
| |
| // True if the function return is shadowed (ie, jumping to the target |
| // function_return_ does not jump to the true function return, but rather |
| // to some unlinking code). |
| bool function_return_is_shadowed_; |
| |
| static InlineRuntimeLUT kInlineRuntimeLUT[]; |
| |
| friend class VirtualFrame; |
| friend class JumpTarget; |
| friend class Reference; |
| friend class FastCodeGenerator; |
| friend class FullCodeGenerator; |
| friend class FullCodeGenSyntaxChecker; |
| |
| DISALLOW_COPY_AND_ASSIGN(CodeGenerator); |
| }; |
| |
| |
| // Compute a transcendental math function natively, or call the |
| // TranscendentalCache runtime function. |
| class TranscendentalCacheStub: public CodeStub { |
| public: |
| explicit TranscendentalCacheStub(TranscendentalCache::Type type) |
| : type_(type) {} |
| void Generate(MacroAssembler* masm); |
| private: |
| TranscendentalCache::Type type_; |
| Major MajorKey() { return TranscendentalCache; } |
| int MinorKey() { return type_; } |
| Runtime::FunctionId RuntimeFunction(); |
| }; |
| |
| |
| class GenericBinaryOpStub : public CodeStub { |
| public: |
| GenericBinaryOpStub(Token::Value op, |
| OverwriteMode mode, |
| Register lhs, |
| Register rhs, |
| int constant_rhs = CodeGenerator::kUnknownIntValue) |
| : op_(op), |
| mode_(mode), |
| lhs_(lhs), |
| rhs_(rhs), |
| constant_rhs_(constant_rhs), |
| specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)), |
| runtime_operands_type_(BinaryOpIC::DEFAULT), |
| name_(NULL) { } |
| |
| GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) |
| : op_(OpBits::decode(key)), |
| mode_(ModeBits::decode(key)), |
| lhs_(LhsRegister(RegisterBits::decode(key))), |
| rhs_(RhsRegister(RegisterBits::decode(key))), |
| constant_rhs_(KnownBitsForMinorKey(KnownIntBits::decode(key))), |
| specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op_, constant_rhs_)), |
| runtime_operands_type_(type_info), |
| name_(NULL) { } |
| |
| private: |
| Token::Value op_; |
| OverwriteMode mode_; |
| Register lhs_; |
| Register rhs_; |
| int constant_rhs_; |
| bool specialized_on_rhs_; |
| BinaryOpIC::TypeInfo runtime_operands_type_; |
| char* name_; |
| |
| static const int kMaxKnownRhs = 0x40000000; |
| static const int kKnownRhsKeyBits = 6; |
| |
| // Minor key encoding in 17 bits. |
| class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
| class OpBits: public BitField<Token::Value, 2, 6> {}; |
| class TypeInfoBits: public BitField<int, 8, 2> {}; |
| class RegisterBits: public BitField<bool, 10, 1> {}; |
| class KnownIntBits: public BitField<int, 11, kKnownRhsKeyBits> {}; |
| |
| Major MajorKey() { return GenericBinaryOp; } |
| int MinorKey() { |
| ASSERT((lhs_.is(r0) && rhs_.is(r1)) || |
| (lhs_.is(r1) && rhs_.is(r0))); |
| // Encode the parameters in a unique 18 bit value. |
| return OpBits::encode(op_) |
| | ModeBits::encode(mode_) |
| | KnownIntBits::encode(MinorKeyForKnownInt()) |
| | TypeInfoBits::encode(runtime_operands_type_) |
| | RegisterBits::encode(lhs_.is(r0)); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| void HandleNonSmiBitwiseOp(MacroAssembler* masm, Register lhs, Register rhs); |
| void HandleBinaryOpSlowCases(MacroAssembler* masm, |
| Label* not_smi, |
| Register lhs, |
| Register rhs, |
| const Builtins::JavaScript& builtin); |
| void GenerateTypeTransition(MacroAssembler* masm); |
| |
| static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) { |
| if (constant_rhs == CodeGenerator::kUnknownIntValue) return false; |
| if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3; |
| if (op == Token::MOD) { |
| if (constant_rhs <= 1) return false; |
| if (constant_rhs <= 10) return true; |
| if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true; |
| return false; |
| } |
| return false; |
| } |
| |
| int MinorKeyForKnownInt() { |
| if (!specialized_on_rhs_) return 0; |
| if (constant_rhs_ <= 10) return constant_rhs_ + 1; |
| ASSERT(IsPowerOf2(constant_rhs_)); |
| int key = 12; |
| int d = constant_rhs_; |
| while ((d & 1) == 0) { |
| key++; |
| d >>= 1; |
| } |
| ASSERT(key >= 0 && key < (1 << kKnownRhsKeyBits)); |
| return key; |
| } |
| |
| int KnownBitsForMinorKey(int key) { |
| if (!key) return 0; |
| if (key <= 11) return key - 1; |
| int d = 1; |
| while (key != 12) { |
| key--; |
| d <<= 1; |
| } |
| return d; |
| } |
| |
| Register LhsRegister(bool lhs_is_r0) { |
| return lhs_is_r0 ? r0 : r1; |
| } |
| |
| Register RhsRegister(bool lhs_is_r0) { |
| return lhs_is_r0 ? r1 : r0; |
| } |
| |
| bool ShouldGenerateSmiCode() { |
| return ((op_ != Token::DIV && op_ != Token::MOD) || specialized_on_rhs_) && |
| runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS && |
| runtime_operands_type_ != BinaryOpIC::STRINGS; |
| } |
| |
| bool ShouldGenerateFPCode() { |
| return runtime_operands_type_ != BinaryOpIC::STRINGS; |
| } |
| |
| virtual int GetCodeKind() { return Code::BINARY_OP_IC; } |
| |
| virtual InlineCacheState GetICState() { |
| return BinaryOpIC::ToState(runtime_operands_type_); |
| } |
| |
| const char* GetName(); |
| |
| #ifdef DEBUG |
| void Print() { |
| if (!specialized_on_rhs_) { |
| PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); |
| } else { |
| PrintF("GenericBinaryOpStub (%s by %d)\n", |
| Token::String(op_), |
| constant_rhs_); |
| } |
| } |
| #endif |
| }; |
| |
| |
| class StringHelper : public AllStatic { |
| public: |
| // Generate code for copying characters using a simple loop. This should only |
| // be used in places where the number of characters is small and the |
| // additional setup and checking in GenerateCopyCharactersLong adds too much |
| // overhead. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| static void GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii); |
| |
| // Generate code for copying a large number of characters. This function |
| // is allowed to spend extra time setting up conditions to make copying |
| // faster. Copying of overlapping regions is not supported. |
| // Dest register ends at the position after the last character written. |
| static void GenerateCopyCharactersLong(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| int flags); |
| |
| |
| // Probe the symbol table for a two character string. If the string is |
| // not found by probing a jump to the label not_found is performed. This jump |
| // does not guarantee that the string is not in the symbol table. If the |
| // string is found the code falls through with the string in register r0. |
| // Contents of both c1 and c2 registers are modified. At the exit c1 is |
| // guaranteed to contain halfword with low and high bytes equal to |
| // initial contents of c1 and c2 respectively. |
| static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Register scratch5, |
| Label* not_found); |
| |
| // Generate string hash. |
| static void GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character); |
| |
| static void GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character); |
| |
| static void GenerateHashGetHash(MacroAssembler* masm, |
| Register hash); |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); |
| }; |
| |
| |
| // Flag that indicates how to generate code for the stub StringAddStub. |
| enum StringAddFlags { |
| NO_STRING_ADD_FLAGS = 0, |
| NO_STRING_CHECK_IN_STUB = 1 << 0 // Omit string check in stub. |
| }; |
| |
| |
| class StringAddStub: public CodeStub { |
| public: |
| explicit StringAddStub(StringAddFlags flags) { |
| string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0); |
| } |
| |
| private: |
| Major MajorKey() { return StringAdd; } |
| int MinorKey() { return string_check_ ? 0 : 1; } |
| |
| void Generate(MacroAssembler* masm); |
| |
| // Should the stub check whether arguments are strings? |
| bool string_check_; |
| }; |
| |
| |
| class SubStringStub: public CodeStub { |
| public: |
| SubStringStub() {} |
| |
| private: |
| Major MajorKey() { return SubString; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| |
| class StringCompareStub: public CodeStub { |
| public: |
| StringCompareStub() { } |
| |
| // Compare two flat ASCII strings and returns result in r0. |
| // Does not use the stack. |
| static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4); |
| |
| private: |
| Major MajorKey() { return StringCompare; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| }; |
| |
| |
| // This stub can convert a signed int32 to a heap number (double). It does |
| // not work for int32s that are in Smi range! No GC occurs during this stub |
| // so you don't have to set up the frame. |
| class WriteInt32ToHeapNumberStub : public CodeStub { |
| public: |
| WriteInt32ToHeapNumberStub(Register the_int, |
| Register the_heap_number, |
| Register scratch) |
| : the_int_(the_int), |
| the_heap_number_(the_heap_number), |
| scratch_(scratch) { } |
| |
| private: |
| Register the_int_; |
| Register the_heap_number_; |
| Register scratch_; |
| |
| // Minor key encoding in 16 bits. |
| class IntRegisterBits: public BitField<int, 0, 4> {}; |
| class HeapNumberRegisterBits: public BitField<int, 4, 4> {}; |
| class ScratchRegisterBits: public BitField<int, 8, 4> {}; |
| |
| Major MajorKey() { return WriteInt32ToHeapNumber; } |
| int MinorKey() { |
| // Encode the parameters in a unique 16 bit value. |
| return IntRegisterBits::encode(the_int_.code()) |
| | HeapNumberRegisterBits::encode(the_heap_number_.code()) |
| | ScratchRegisterBits::encode(scratch_.code()); |
| } |
| |
| void Generate(MacroAssembler* masm); |
| |
| const char* GetName() { return "WriteInt32ToHeapNumberStub"; } |
| |
| #ifdef DEBUG |
| void Print() { PrintF("WriteInt32ToHeapNumberStub\n"); } |
| #endif |
| }; |
| |
| |
| class NumberToStringStub: public CodeStub { |
| public: |
| NumberToStringStub() { } |
| |
| // Generate code to do a lookup in the number string cache. If the number in |
| // the register object is found in the cache the generated code falls through |
| // with the result in the result register. The object and the result register |
| // can be the same. If the number is not found in the cache the code jumps to |
| // the label not_found with only the content of register object unchanged. |
| static void GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| bool object_is_smi, |
| Label* not_found); |
| |
| private: |
| Major MajorKey() { return NumberToString; } |
| int MinorKey() { return 0; } |
| |
| void Generate(MacroAssembler* masm); |
| |
| const char* GetName() { return "NumberToStringStub"; } |
| |
| #ifdef DEBUG |
| void Print() { |
| PrintF("NumberToStringStub\n"); |
| } |
| #endif |
| }; |
| |
| |
| class RecordWriteStub : public CodeStub { |
| public: |
| RecordWriteStub(Register object, Register offset, Register scratch) |
| : object_(object), offset_(offset), scratch_(scratch) { } |
| |
| void Generate(MacroAssembler* masm); |
| |
| private: |
| Register object_; |
| Register offset_; |
| Register scratch_; |
| |
| #ifdef DEBUG |
| void Print() { |
| PrintF("RecordWriteStub (object reg %d), (offset reg %d)," |
| " (scratch reg %d)\n", |
| object_.code(), offset_.code(), scratch_.code()); |
| } |
| #endif |
| |
| // Minor key encoding in 12 bits. 4 bits for each of the three |
| // registers (object, offset and scratch) OOOOAAAASSSS. |
| class ScratchBits: public BitField<uint32_t, 0, 4> {}; |
| class OffsetBits: public BitField<uint32_t, 4, 4> {}; |
| class ObjectBits: public BitField<uint32_t, 8, 4> {}; |
| |
| Major MajorKey() { return RecordWrite; } |
| |
| int MinorKey() { |
| // Encode the registers. |
| return ObjectBits::encode(object_.code()) | |
| OffsetBits::encode(offset_.code()) | |
| ScratchBits::encode(scratch_.code()); |
| } |
| }; |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_ARM_CODEGEN_ARM_H_ |