blob: 91adff0f66fc51c16ae41586c776ac5e8439e66e [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_CODEGEN_ARM_H_
#define V8_ARM_CODEGEN_ARM_H_
#include "ic-inl.h"
#include "ast.h"
namespace v8 {
namespace internal {
// Forward declarations
class CompilationInfo;
class DeferredCode;
class JumpTarget;
class RegisterAllocator;
class RegisterFile;
enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
enum GenerateInlineSmi { DONT_GENERATE_INLINE_SMI, GENERATE_INLINE_SMI };
// -------------------------------------------------------------------------
// Reference support
// A reference is a C++ stack-allocated object that puts a
// reference on the virtual frame. The reference may be consumed
// by GetValue, TakeValue, SetValue, and Codegen::UnloadReference.
// When the lifetime (scope) of a valid reference ends, it must have
// been consumed, and be in state UNLOADED.
class Reference BASE_EMBEDDED {
public:
// The values of the types is important, see size().
enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get = false);
~Reference();
Expression* expression() const { return expression_; }
Type type() const { return type_; }
void set_type(Type value) {
ASSERT_EQ(ILLEGAL, type_);
type_ = value;
}
void set_unloaded() {
ASSERT_NE(ILLEGAL, type_);
ASSERT_NE(UNLOADED, type_);
type_ = UNLOADED;
}
// The size the reference takes up on the stack.
int size() const {
return (type_ < SLOT) ? 0 : type_;
}
bool is_illegal() const { return type_ == ILLEGAL; }
bool is_slot() const { return type_ == SLOT; }
bool is_property() const { return type_ == NAMED || type_ == KEYED; }
bool is_unloaded() const { return type_ == UNLOADED; }
// Return the name. Only valid for named property references.
Handle<String> GetName();
// Generate code to push the value of the reference on top of the
// expression stack. The reference is expected to be already on top of
// the expression stack, and it is consumed by the call unless the
// reference is for a compound assignment.
// If the reference is not consumed, it is left in place under its value.
void GetValue();
// Generate code to store the value on top of the expression stack in the
// reference. The reference is expected to be immediately below the value
// on the expression stack. The value is stored in the location specified
// by the reference, and is left on top of the stack, after the reference
// is popped from beneath it (unloaded).
void SetValue(InitState init_state);
// This is in preparation for something that uses the reference on the stack.
// If we need this reference afterwards get then dup it now. Otherwise mark
// it as used.
inline void DupIfPersist();
private:
CodeGenerator* cgen_;
Expression* expression_;
Type type_;
// Keep the reference on the stack after get, so it can be used by set later.
bool persist_after_get_;
};
// -------------------------------------------------------------------------
// Code generation state
// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the label pair). It is threaded through the
// call stack. Constructing a state implicitly pushes it on the owning code
// generator's stack of states, and destroying one implicitly pops it.
class CodeGenState BASE_EMBEDDED {
public:
// Create an initial code generator state. Destroying the initial state
// leaves the code generator with a NULL state.
explicit CodeGenState(CodeGenerator* owner);
// Destroy a code generator state and restore the owning code generator's
// previous state.
virtual ~CodeGenState();
virtual JumpTarget* true_target() const { return NULL; }
virtual JumpTarget* false_target() const { return NULL; }
protected:
inline CodeGenerator* owner() { return owner_; }
inline CodeGenState* previous() const { return previous_; }
private:
CodeGenerator* owner_;
CodeGenState* previous_;
};
class ConditionCodeGenState : public CodeGenState {
public:
// Create a code generator state based on a code generator's current
// state. The new state has its own pair of branch labels.
ConditionCodeGenState(CodeGenerator* owner,
JumpTarget* true_target,
JumpTarget* false_target);
virtual JumpTarget* true_target() const { return true_target_; }
virtual JumpTarget* false_target() const { return false_target_; }
private:
JumpTarget* true_target_;
JumpTarget* false_target_;
};
class TypeInfoCodeGenState : public CodeGenState {
public:
TypeInfoCodeGenState(CodeGenerator* owner,
Slot* slot_number,
TypeInfo info);
~TypeInfoCodeGenState();
virtual JumpTarget* true_target() const { return previous()->true_target(); }
virtual JumpTarget* false_target() const {
return previous()->false_target();
}
private:
Slot* slot_;
TypeInfo old_type_info_;
};
// -------------------------------------------------------------------------
// Arguments allocation mode
enum ArgumentsAllocationMode {
NO_ARGUMENTS_ALLOCATION,
EAGER_ARGUMENTS_ALLOCATION,
LAZY_ARGUMENTS_ALLOCATION
};
// Different nop operations are used by the code generator to detect certain
// states of the generated code.
enum NopMarkerTypes {
NON_MARKING_NOP = 0,
PROPERTY_ACCESS_INLINED
};
// -------------------------------------------------------------------------
// CodeGenerator
class CodeGenerator: public AstVisitor {
public:
// Takes a function literal, generates code for it. This function should only
// be called by compiler.cc.
static Handle<Code> MakeCode(CompilationInfo* info);
// Printing of AST, etc. as requested by flags.
static void MakeCodePrologue(CompilationInfo* info);
// Allocate and install the code.
static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
Code::Flags flags,
CompilationInfo* info);
#ifdef ENABLE_LOGGING_AND_PROFILING
static bool ShouldGenerateLog(Expression* type);
#endif
static void SetFunctionInfo(Handle<JSFunction> fun,
FunctionLiteral* lit,
bool is_toplevel,
Handle<Script> script);
static bool RecordPositions(MacroAssembler* masm,
int pos,
bool right_here = false);
// Accessors
MacroAssembler* masm() { return masm_; }
VirtualFrame* frame() const { return frame_; }
inline Handle<Script> script();
bool has_valid_frame() const { return frame_ != NULL; }
// Set the virtual frame to be new_frame, with non-frame register
// reference counts given by non_frame_registers. The non-frame
// register reference counts of the old frame are returned in
// non_frame_registers.
void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
void DeleteFrame();
RegisterAllocator* allocator() const { return allocator_; }
CodeGenState* state() { return state_; }
void set_state(CodeGenState* state) { state_ = state; }
TypeInfo type_info(Slot* slot) {
int index = NumberOfSlot(slot);
if (index == kInvalidSlotNumber) return TypeInfo::Unknown();
return (*type_info_)[index];
}
TypeInfo set_type_info(Slot* slot, TypeInfo info) {
int index = NumberOfSlot(slot);
ASSERT(index >= kInvalidSlotNumber);
if (index != kInvalidSlotNumber) {
TypeInfo previous_value = (*type_info_)[index];
(*type_info_)[index] = info;
return previous_value;
}
return TypeInfo::Unknown();
}
void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
static const int kUnknownIntValue = -1;
// If the name is an inline runtime function call return the number of
// expected arguments. Otherwise return -1.
static int InlineRuntimeCallArgumentsCount(Handle<String> name);
// Constants related to patching of inlined load/store.
static const int kInlinedKeyedLoadInstructionsAfterPatch = 17;
static const int kInlinedKeyedStoreInstructionsAfterPatch = 5;
private:
// Construction/Destruction
explicit CodeGenerator(MacroAssembler* masm);
// Accessors
inline bool is_eval();
inline Scope* scope();
// Generating deferred code.
void ProcessDeferred();
static const int kInvalidSlotNumber = -1;
int NumberOfSlot(Slot* slot);
// State
bool has_cc() const { return cc_reg_ != al; }
JumpTarget* true_target() const { return state_->true_target(); }
JumpTarget* false_target() const { return state_->false_target(); }
// Track loop nesting level.
int loop_nesting() const { return loop_nesting_; }
void IncrementLoopNesting() { loop_nesting_++; }
void DecrementLoopNesting() { loop_nesting_--; }
// Node visitors.
void VisitStatements(ZoneList<Statement*>* statements);
#define DEF_VISIT(type) \
void Visit##type(type* node);
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
// Main code generation function
void Generate(CompilationInfo* info);
// Returns the arguments allocation mode.
ArgumentsAllocationMode ArgumentsMode();
// Store the arguments object and allocate it if necessary.
void StoreArgumentsObject(bool initial);
// The following are used by class Reference.
void LoadReference(Reference* ref);
void UnloadReference(Reference* ref);
static MemOperand ContextOperand(Register context, int index) {
return MemOperand(context, Context::SlotOffset(index));
}
MemOperand SlotOperand(Slot* slot, Register tmp);
MemOperand ContextSlotOperandCheckExtensions(Slot* slot,
Register tmp,
Register tmp2,
JumpTarget* slow);
// Expressions
static MemOperand GlobalObject() {
return ContextOperand(cp, Context::GLOBAL_INDEX);
}
void LoadCondition(Expression* x,
JumpTarget* true_target,
JumpTarget* false_target,
bool force_cc);
void Load(Expression* expr);
void LoadGlobal();
void LoadGlobalReceiver(Register scratch);
// Read a value from a slot and leave it on top of the expression stack.
void LoadFromSlot(Slot* slot, TypeofState typeof_state);
void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state);
// Store the value on top of the stack to a slot.
void StoreToSlot(Slot* slot, InitState init_state);
// Support for compiling assignment expressions.
void EmitSlotAssignment(Assignment* node);
void EmitNamedPropertyAssignment(Assignment* node);
void EmitKeyedPropertyAssignment(Assignment* node);
// Load a named property, returning it in r0. The receiver is passed on the
// stack, and remains there.
void EmitNamedLoad(Handle<String> name, bool is_contextual);
// Store to a named property. If the store is contextual, value is passed on
// the frame and consumed. Otherwise, receiver and value are passed on the
// frame and consumed. The result is returned in r0.
void EmitNamedStore(Handle<String> name, bool is_contextual);
// Load a keyed property, leaving it in r0. The receiver and key are
// passed on the stack, and remain there.
void EmitKeyedLoad();
// Store a keyed property. Key and receiver are on the stack and the value is
// in r0. Result is returned in r0.
void EmitKeyedStore(StaticType* key_type);
void LoadFromGlobalSlotCheckExtensions(Slot* slot,
TypeofState typeof_state,
JumpTarget* slow);
// Support for loading from local/global variables and arguments
// whose location is known unless they are shadowed by
// eval-introduced bindings. Generates no code for unsupported slot
// types and therefore expects to fall through to the slow jump target.
void EmitDynamicLoadFromSlotFastCase(Slot* slot,
TypeofState typeof_state,
JumpTarget* slow,
JumpTarget* done);
// Special code for typeof expressions: Unfortunately, we must
// be careful when loading the expression in 'typeof'
// expressions. We are not allowed to throw reference errors for
// non-existing properties of the global object, so we must make it
// look like an explicit property access, instead of an access
// through the context chain.
void LoadTypeofExpression(Expression* x);
void ToBoolean(JumpTarget* true_target, JumpTarget* false_target);
// Generate code that computes a shortcutting logical operation.
void GenerateLogicalBooleanOperation(BinaryOperation* node);
void GenericBinaryOperation(Token::Value op,
OverwriteMode overwrite_mode,
GenerateInlineSmi inline_smi,
int known_rhs = kUnknownIntValue);
void Comparison(Condition cc,
Expression* left,
Expression* right,
bool strict = false);
void SmiOperation(Token::Value op,
Handle<Object> value,
bool reversed,
OverwriteMode mode);
void CallWithArguments(ZoneList<Expression*>* arguments,
CallFunctionFlags flags,
int position);
// An optimized implementation of expressions of the form
// x.apply(y, arguments). We call x the applicand and y the receiver.
// The optimization avoids allocating an arguments object if possible.
void CallApplyLazy(Expression* applicand,
Expression* receiver,
VariableProxy* arguments,
int position);
// Control flow
void Branch(bool if_true, JumpTarget* target);
void CheckStack();
struct InlineRuntimeLUT {
void (CodeGenerator::*method)(ZoneList<Expression*>*);
const char* name;
int nargs;
};
static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
bool CheckForInlineRuntimeCall(CallRuntime* node);
static bool PatchInlineRuntimeEntry(Handle<String> name,
const InlineRuntimeLUT& new_entry,
InlineRuntimeLUT* old_entry);
static Handle<Code> ComputeLazyCompile(int argc);
void ProcessDeclarations(ZoneList<Declaration*>* declarations);
static Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
static Handle<Code> ComputeKeyedCallInitialize(int argc, InLoopFlag in_loop);
// Declare global variables and functions in the given array of
// name/value pairs.
void DeclareGlobals(Handle<FixedArray> pairs);
// Instantiate the function based on the shared function info.
void InstantiateFunction(Handle<SharedFunctionInfo> function_info);
// Support for type checks.
void GenerateIsSmi(ZoneList<Expression*>* args);
void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
void GenerateIsArray(ZoneList<Expression*>* args);
void GenerateIsRegExp(ZoneList<Expression*>* args);
void GenerateIsObject(ZoneList<Expression*>* args);
void GenerateIsFunction(ZoneList<Expression*>* args);
void GenerateIsUndetectableObject(ZoneList<Expression*>* args);
// Support for construct call checks.
void GenerateIsConstructCall(ZoneList<Expression*>* args);
// Support for arguments.length and arguments[?].
void GenerateArgumentsLength(ZoneList<Expression*>* args);
void GenerateArguments(ZoneList<Expression*>* args);
// Support for accessing the class and value fields of an object.
void GenerateClassOf(ZoneList<Expression*>* args);
void GenerateValueOf(ZoneList<Expression*>* args);
void GenerateSetValueOf(ZoneList<Expression*>* args);
// Fast support for charCodeAt(n).
void GenerateStringCharCodeAt(ZoneList<Expression*>* args);
// Fast support for string.charAt(n) and string[n].
void GenerateStringCharFromCode(ZoneList<Expression*>* args);
// Fast support for string.charAt(n) and string[n].
void GenerateStringCharAt(ZoneList<Expression*>* args);
// Fast support for object equality testing.
void GenerateObjectEquals(ZoneList<Expression*>* args);
void GenerateLog(ZoneList<Expression*>* args);
// Fast support for Math.random().
void GenerateRandomHeapNumber(ZoneList<Expression*>* args);
// Fast support for StringAdd.
void GenerateStringAdd(ZoneList<Expression*>* args);
// Fast support for SubString.
void GenerateSubString(ZoneList<Expression*>* args);
// Fast support for StringCompare.
void GenerateStringCompare(ZoneList<Expression*>* args);
// Support for direct calls from JavaScript to native RegExp code.
void GenerateRegExpExec(ZoneList<Expression*>* args);
void GenerateRegExpConstructResult(ZoneList<Expression*>* args);
// Support for fast native caches.
void GenerateGetFromCache(ZoneList<Expression*>* args);
// Fast support for number to string.
void GenerateNumberToString(ZoneList<Expression*>* args);
// Fast swapping of elements.
void GenerateSwapElements(ZoneList<Expression*>* args);
// Fast call for custom callbacks.
void GenerateCallFunction(ZoneList<Expression*>* args);
// Fast call to math functions.
void GenerateMathPow(ZoneList<Expression*>* args);
void GenerateMathSin(ZoneList<Expression*>* args);
void GenerateMathCos(ZoneList<Expression*>* args);
void GenerateMathSqrt(ZoneList<Expression*>* args);
// Simple condition analysis.
enum ConditionAnalysis {
ALWAYS_TRUE,
ALWAYS_FALSE,
DONT_KNOW
};
ConditionAnalysis AnalyzeCondition(Expression* cond);
// Methods used to indicate which source code is generated for. Source
// positions are collected by the assembler and emitted with the relocation
// information.
void CodeForFunctionPosition(FunctionLiteral* fun);
void CodeForReturnPosition(FunctionLiteral* fun);
void CodeForStatementPosition(Statement* node);
void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
void CodeForSourcePosition(int pos);
#ifdef DEBUG
// True if the registers are valid for entry to a block.
bool HasValidEntryRegisters();
#endif
List<DeferredCode*> deferred_;
// Assembler
MacroAssembler* masm_; // to generate code
CompilationInfo* info_;
// Code generation state
VirtualFrame* frame_;
RegisterAllocator* allocator_;
Condition cc_reg_;
CodeGenState* state_;
int loop_nesting_;
Vector<TypeInfo>* type_info_;
// Jump targets
BreakTarget function_return_;
// True if the function return is shadowed (ie, jumping to the target
// function_return_ does not jump to the true function return, but rather
// to some unlinking code).
bool function_return_is_shadowed_;
static InlineRuntimeLUT kInlineRuntimeLUT[];
friend class VirtualFrame;
friend class JumpTarget;
friend class Reference;
friend class FastCodeGenerator;
friend class FullCodeGenerator;
friend class FullCodeGenSyntaxChecker;
DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};
// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
public:
explicit TranscendentalCacheStub(TranscendentalCache::Type type)
: type_(type) {}
void Generate(MacroAssembler* masm);
private:
TranscendentalCache::Type type_;
Major MajorKey() { return TranscendentalCache; }
int MinorKey() { return type_; }
Runtime::FunctionId RuntimeFunction();
};
class GenericBinaryOpStub : public CodeStub {
public:
GenericBinaryOpStub(Token::Value op,
OverwriteMode mode,
Register lhs,
Register rhs,
int constant_rhs = CodeGenerator::kUnknownIntValue)
: op_(op),
mode_(mode),
lhs_(lhs),
rhs_(rhs),
constant_rhs_(constant_rhs),
specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op, constant_rhs)),
runtime_operands_type_(BinaryOpIC::DEFAULT),
name_(NULL) { }
GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info)
: op_(OpBits::decode(key)),
mode_(ModeBits::decode(key)),
lhs_(LhsRegister(RegisterBits::decode(key))),
rhs_(RhsRegister(RegisterBits::decode(key))),
constant_rhs_(KnownBitsForMinorKey(KnownIntBits::decode(key))),
specialized_on_rhs_(RhsIsOneWeWantToOptimizeFor(op_, constant_rhs_)),
runtime_operands_type_(type_info),
name_(NULL) { }
private:
Token::Value op_;
OverwriteMode mode_;
Register lhs_;
Register rhs_;
int constant_rhs_;
bool specialized_on_rhs_;
BinaryOpIC::TypeInfo runtime_operands_type_;
char* name_;
static const int kMaxKnownRhs = 0x40000000;
static const int kKnownRhsKeyBits = 6;
// Minor key encoding in 17 bits.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 6> {};
class TypeInfoBits: public BitField<int, 8, 2> {};
class RegisterBits: public BitField<bool, 10, 1> {};
class KnownIntBits: public BitField<int, 11, kKnownRhsKeyBits> {};
Major MajorKey() { return GenericBinaryOp; }
int MinorKey() {
ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
(lhs_.is(r1) && rhs_.is(r0)));
// Encode the parameters in a unique 18 bit value.
return OpBits::encode(op_)
| ModeBits::encode(mode_)
| KnownIntBits::encode(MinorKeyForKnownInt())
| TypeInfoBits::encode(runtime_operands_type_)
| RegisterBits::encode(lhs_.is(r0));
}
void Generate(MacroAssembler* masm);
void HandleNonSmiBitwiseOp(MacroAssembler* masm, Register lhs, Register rhs);
void HandleBinaryOpSlowCases(MacroAssembler* masm,
Label* not_smi,
Register lhs,
Register rhs,
const Builtins::JavaScript& builtin);
void GenerateTypeTransition(MacroAssembler* masm);
static bool RhsIsOneWeWantToOptimizeFor(Token::Value op, int constant_rhs) {
if (constant_rhs == CodeGenerator::kUnknownIntValue) return false;
if (op == Token::DIV) return constant_rhs >= 2 && constant_rhs <= 3;
if (op == Token::MOD) {
if (constant_rhs <= 1) return false;
if (constant_rhs <= 10) return true;
if (constant_rhs <= kMaxKnownRhs && IsPowerOf2(constant_rhs)) return true;
return false;
}
return false;
}
int MinorKeyForKnownInt() {
if (!specialized_on_rhs_) return 0;
if (constant_rhs_ <= 10) return constant_rhs_ + 1;
ASSERT(IsPowerOf2(constant_rhs_));
int key = 12;
int d = constant_rhs_;
while ((d & 1) == 0) {
key++;
d >>= 1;
}
ASSERT(key >= 0 && key < (1 << kKnownRhsKeyBits));
return key;
}
int KnownBitsForMinorKey(int key) {
if (!key) return 0;
if (key <= 11) return key - 1;
int d = 1;
while (key != 12) {
key--;
d <<= 1;
}
return d;
}
Register LhsRegister(bool lhs_is_r0) {
return lhs_is_r0 ? r0 : r1;
}
Register RhsRegister(bool lhs_is_r0) {
return lhs_is_r0 ? r1 : r0;
}
bool ShouldGenerateSmiCode() {
return ((op_ != Token::DIV && op_ != Token::MOD) || specialized_on_rhs_) &&
runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
runtime_operands_type_ != BinaryOpIC::STRINGS;
}
bool ShouldGenerateFPCode() {
return runtime_operands_type_ != BinaryOpIC::STRINGS;
}
virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
virtual InlineCacheState GetICState() {
return BinaryOpIC::ToState(runtime_operands_type_);
}
const char* GetName();
#ifdef DEBUG
void Print() {
if (!specialized_on_rhs_) {
PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_));
} else {
PrintF("GenericBinaryOpStub (%s by %d)\n",
Token::String(op_),
constant_rhs_);
}
}
#endif
};
class StringHelper : public AllStatic {
public:
// Generate code for copying characters using a simple loop. This should only
// be used in places where the number of characters is small and the
// additional setup and checking in GenerateCopyCharactersLong adds too much
// overhead. Copying of overlapping regions is not supported.
// Dest register ends at the position after the last character written.
static void GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii);
// Generate code for copying a large number of characters. This function
// is allowed to spend extra time setting up conditions to make copying
// faster. Copying of overlapping regions is not supported.
// Dest register ends at the position after the last character written.
static void GenerateCopyCharactersLong(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
int flags);
// Probe the symbol table for a two character string. If the string is
// not found by probing a jump to the label not_found is performed. This jump
// does not guarantee that the string is not in the symbol table. If the
// string is found the code falls through with the string in register r0.
// Contents of both c1 and c2 registers are modified. At the exit c1 is
// guaranteed to contain halfword with low and high bytes equal to
// initial contents of c1 and c2 respectively.
static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Register scratch5,
Label* not_found);
// Generate string hash.
static void GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character);
static void GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character);
static void GenerateHashGetHash(MacroAssembler* masm,
Register hash);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
NO_STRING_ADD_FLAGS = 0,
NO_STRING_CHECK_IN_STUB = 1 << 0 // Omit string check in stub.
};
class StringAddStub: public CodeStub {
public:
explicit StringAddStub(StringAddFlags flags) {
string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0);
}
private:
Major MajorKey() { return StringAdd; }
int MinorKey() { return string_check_ ? 0 : 1; }
void Generate(MacroAssembler* masm);
// Should the stub check whether arguments are strings?
bool string_check_;
};
class SubStringStub: public CodeStub {
public:
SubStringStub() {}
private:
Major MajorKey() { return SubString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class StringCompareStub: public CodeStub {
public:
StringCompareStub() { }
// Compare two flat ASCII strings and returns result in r0.
// Does not use the stack.
static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4);
private:
Major MajorKey() { return StringCompare; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
// This stub can convert a signed int32 to a heap number (double). It does
// not work for int32s that are in Smi range! No GC occurs during this stub
// so you don't have to set up the frame.
class WriteInt32ToHeapNumberStub : public CodeStub {
public:
WriteInt32ToHeapNumberStub(Register the_int,
Register the_heap_number,
Register scratch)
: the_int_(the_int),
the_heap_number_(the_heap_number),
scratch_(scratch) { }
private:
Register the_int_;
Register the_heap_number_;
Register scratch_;
// Minor key encoding in 16 bits.
class IntRegisterBits: public BitField<int, 0, 4> {};
class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
class ScratchRegisterBits: public BitField<int, 8, 4> {};
Major MajorKey() { return WriteInt32ToHeapNumber; }
int MinorKey() {
// Encode the parameters in a unique 16 bit value.
return IntRegisterBits::encode(the_int_.code())
| HeapNumberRegisterBits::encode(the_heap_number_.code())
| ScratchRegisterBits::encode(scratch_.code());
}
void Generate(MacroAssembler* masm);
const char* GetName() { return "WriteInt32ToHeapNumberStub"; }
#ifdef DEBUG
void Print() { PrintF("WriteInt32ToHeapNumberStub\n"); }
#endif
};
class NumberToStringStub: public CodeStub {
public:
NumberToStringStub() { }
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
static void GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
bool object_is_smi,
Label* not_found);
private:
Major MajorKey() { return NumberToString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
const char* GetName() { return "NumberToStringStub"; }
#ifdef DEBUG
void Print() {
PrintF("NumberToStringStub\n");
}
#endif
};
class RecordWriteStub : public CodeStub {
public:
RecordWriteStub(Register object, Register offset, Register scratch)
: object_(object), offset_(offset), scratch_(scratch) { }
void Generate(MacroAssembler* masm);
private:
Register object_;
Register offset_;
Register scratch_;
#ifdef DEBUG
void Print() {
PrintF("RecordWriteStub (object reg %d), (offset reg %d),"
" (scratch reg %d)\n",
object_.code(), offset_.code(), scratch_.code());
}
#endif
// Minor key encoding in 12 bits. 4 bits for each of the three
// registers (object, offset and scratch) OOOOAAAASSSS.
class ScratchBits: public BitField<uint32_t, 0, 4> {};
class OffsetBits: public BitField<uint32_t, 4, 4> {};
class ObjectBits: public BitField<uint32_t, 8, 4> {};
Major MajorKey() { return RecordWrite; }
int MinorKey() {
// Encode the registers.
return ObjectBits::encode(object_.code()) |
OffsetBits::encode(offset_.code()) |
ScratchBits::encode(scratch_.code());
}
};
} } // namespace v8::internal
#endif // V8_ARM_CODEGEN_ARM_H_