| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2006-2009 the V8 project authors. All rights reserved. |
| |
| // A lightweight X64 Assembler. |
| |
| #ifndef V8_X64_ASSEMBLER_X64_H_ |
| #define V8_X64_ASSEMBLER_X64_H_ |
| |
| #include "serialize.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Utility functions |
| |
| // Test whether a 64-bit value is in a specific range. |
| static inline bool is_uint32(int64_t x) { |
| static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff); |
| return x == (x & kUInt32Mask); |
| } |
| |
| static inline bool is_int32(int64_t x) { |
| static const int64_t kMinIntValue = V8_INT64_C(-0x80000000); |
| return is_uint32(x - kMinIntValue); |
| } |
| |
| static inline bool uint_is_int32(uint64_t x) { |
| static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000); |
| return x < kMaxIntValue; |
| } |
| |
| static inline bool is_uint32(uint64_t x) { |
| static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000); |
| return x < kMaxUIntValue; |
| } |
| |
| // CPU Registers. |
| // |
| // 1) We would prefer to use an enum, but enum values are assignment- |
| // compatible with int, which has caused code-generation bugs. |
| // |
| // 2) We would prefer to use a class instead of a struct but we don't like |
| // the register initialization to depend on the particular initialization |
| // order (which appears to be different on OS X, Linux, and Windows for the |
| // installed versions of C++ we tried). Using a struct permits C-style |
| // "initialization". Also, the Register objects cannot be const as this |
| // forces initialization stubs in MSVC, making us dependent on initialization |
| // order. |
| // |
| // 3) By not using an enum, we are possibly preventing the compiler from |
| // doing certain constant folds, which may significantly reduce the |
| // code generated for some assembly instructions (because they boil down |
| // to a few constants). If this is a problem, we could change the code |
| // such that we use an enum in optimized mode, and the struct in debug |
| // mode. This way we get the compile-time error checking in debug mode |
| // and best performance in optimized code. |
| // |
| |
| struct Register { |
| static Register toRegister(int code) { |
| Register r = { code }; |
| return r; |
| } |
| bool is_valid() const { return 0 <= code_ && code_ < 16; } |
| bool is(Register reg) const { return code_ == reg.code_; } |
| int code() const { |
| ASSERT(is_valid()); |
| return code_; |
| } |
| int bit() const { |
| return 1 << code_; |
| } |
| |
| // Return the high bit of the register code as a 0 or 1. Used often |
| // when constructing the REX prefix byte. |
| int high_bit() const { |
| return code_ >> 3; |
| } |
| // Return the 3 low bits of the register code. Used when encoding registers |
| // in modR/M, SIB, and opcode bytes. |
| int low_bits() const { |
| return code_ & 0x7; |
| } |
| |
| // Unfortunately we can't make this private in a struct when initializing |
| // by assignment. |
| int code_; |
| }; |
| |
| const Register rax = { 0 }; |
| const Register rcx = { 1 }; |
| const Register rdx = { 2 }; |
| const Register rbx = { 3 }; |
| const Register rsp = { 4 }; |
| const Register rbp = { 5 }; |
| const Register rsi = { 6 }; |
| const Register rdi = { 7 }; |
| const Register r8 = { 8 }; |
| const Register r9 = { 9 }; |
| const Register r10 = { 10 }; |
| const Register r11 = { 11 }; |
| const Register r12 = { 12 }; |
| const Register r13 = { 13 }; |
| const Register r14 = { 14 }; |
| const Register r15 = { 15 }; |
| const Register no_reg = { -1 }; |
| |
| |
| struct XMMRegister { |
| bool is_valid() const { return 0 <= code_ && code_ < 16; } |
| int code() const { |
| ASSERT(is_valid()); |
| return code_; |
| } |
| |
| // Return the high bit of the register code as a 0 or 1. Used often |
| // when constructing the REX prefix byte. |
| int high_bit() const { |
| return code_ >> 3; |
| } |
| // Return the 3 low bits of the register code. Used when encoding registers |
| // in modR/M, SIB, and opcode bytes. |
| int low_bits() const { |
| return code_ & 0x7; |
| } |
| |
| int code_; |
| }; |
| |
| const XMMRegister xmm0 = { 0 }; |
| const XMMRegister xmm1 = { 1 }; |
| const XMMRegister xmm2 = { 2 }; |
| const XMMRegister xmm3 = { 3 }; |
| const XMMRegister xmm4 = { 4 }; |
| const XMMRegister xmm5 = { 5 }; |
| const XMMRegister xmm6 = { 6 }; |
| const XMMRegister xmm7 = { 7 }; |
| const XMMRegister xmm8 = { 8 }; |
| const XMMRegister xmm9 = { 9 }; |
| const XMMRegister xmm10 = { 10 }; |
| const XMMRegister xmm11 = { 11 }; |
| const XMMRegister xmm12 = { 12 }; |
| const XMMRegister xmm13 = { 13 }; |
| const XMMRegister xmm14 = { 14 }; |
| const XMMRegister xmm15 = { 15 }; |
| |
| enum Condition { |
| // any value < 0 is considered no_condition |
| no_condition = -1, |
| |
| overflow = 0, |
| no_overflow = 1, |
| below = 2, |
| above_equal = 3, |
| equal = 4, |
| not_equal = 5, |
| below_equal = 6, |
| above = 7, |
| negative = 8, |
| positive = 9, |
| parity_even = 10, |
| parity_odd = 11, |
| less = 12, |
| greater_equal = 13, |
| less_equal = 14, |
| greater = 15, |
| |
| // Fake conditions that are handled by the |
| // opcodes using them. |
| always = 16, |
| never = 17, |
| // aliases |
| carry = below, |
| not_carry = above_equal, |
| zero = equal, |
| not_zero = not_equal, |
| sign = negative, |
| not_sign = positive, |
| last_condition = greater |
| }; |
| |
| |
| // Returns the equivalent of !cc. |
| // Negation of the default no_condition (-1) results in a non-default |
| // no_condition value (-2). As long as tests for no_condition check |
| // for condition < 0, this will work as expected. |
| inline Condition NegateCondition(Condition cc); |
| |
| // Corresponds to transposing the operands of a comparison. |
| inline Condition ReverseCondition(Condition cc) { |
| switch (cc) { |
| case below: |
| return above; |
| case above: |
| return below; |
| case above_equal: |
| return below_equal; |
| case below_equal: |
| return above_equal; |
| case less: |
| return greater; |
| case greater: |
| return less; |
| case greater_equal: |
| return less_equal; |
| case less_equal: |
| return greater_equal; |
| default: |
| return cc; |
| }; |
| } |
| |
| enum Hint { |
| no_hint = 0, |
| not_taken = 0x2e, |
| taken = 0x3e |
| }; |
| |
| // The result of negating a hint is as if the corresponding condition |
| // were negated by NegateCondition. That is, no_hint is mapped to |
| // itself and not_taken and taken are mapped to each other. |
| inline Hint NegateHint(Hint hint) { |
| return (hint == no_hint) |
| ? no_hint |
| : ((hint == not_taken) ? taken : not_taken); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Machine instruction Immediates |
| |
| class Immediate BASE_EMBEDDED { |
| public: |
| explicit Immediate(int32_t value) : value_(value) {} |
| |
| private: |
| int32_t value_; |
| |
| friend class Assembler; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Machine instruction Operands |
| |
| enum ScaleFactor { |
| times_1 = 0, |
| times_2 = 1, |
| times_4 = 2, |
| times_8 = 3, |
| times_int_size = times_4, |
| times_pointer_size = times_8 |
| }; |
| |
| |
| class Operand BASE_EMBEDDED { |
| public: |
| // [base + disp/r] |
| Operand(Register base, int32_t disp); |
| |
| // [base + index*scale + disp/r] |
| Operand(Register base, |
| Register index, |
| ScaleFactor scale, |
| int32_t disp); |
| |
| // [index*scale + disp/r] |
| Operand(Register index, |
| ScaleFactor scale, |
| int32_t disp); |
| |
| // Offset from existing memory operand. |
| // Offset is added to existing displacement as 32-bit signed values and |
| // this must not overflow. |
| Operand(const Operand& base, int32_t offset); |
| |
| private: |
| byte rex_; |
| byte buf_[6]; |
| // The number of bytes in buf_. |
| unsigned int len_; |
| |
| // Set the ModR/M byte without an encoded 'reg' register. The |
| // register is encoded later as part of the emit_operand operation. |
| // set_modrm can be called before or after set_sib and set_disp*. |
| inline void set_modrm(int mod, Register rm); |
| |
| // Set the SIB byte if one is needed. Sets the length to 2 rather than 1. |
| inline void set_sib(ScaleFactor scale, Register index, Register base); |
| |
| // Adds operand displacement fields (offsets added to the memory address). |
| // Needs to be called after set_sib, not before it. |
| inline void set_disp8(int disp); |
| inline void set_disp32(int disp); |
| |
| friend class Assembler; |
| }; |
| |
| |
| // CpuFeatures keeps track of which features are supported by the target CPU. |
| // Supported features must be enabled by a Scope before use. |
| // Example: |
| // if (CpuFeatures::IsSupported(SSE3)) { |
| // CpuFeatures::Scope fscope(SSE3); |
| // // Generate SSE3 floating point code. |
| // } else { |
| // // Generate standard x87 or SSE2 floating point code. |
| // } |
| class CpuFeatures : public AllStatic { |
| public: |
| // Detect features of the target CPU. Set safe defaults if the serializer |
| // is enabled (snapshots must be portable). |
| static void Probe(); |
| // Check whether a feature is supported by the target CPU. |
| static bool IsSupported(CpuFeature f) { |
| if (f == SSE2 && !FLAG_enable_sse2) return false; |
| if (f == SSE3 && !FLAG_enable_sse3) return false; |
| if (f == CMOV && !FLAG_enable_cmov) return false; |
| if (f == RDTSC && !FLAG_enable_rdtsc) return false; |
| if (f == SAHF && !FLAG_enable_sahf) return false; |
| return (supported_ & (V8_UINT64_C(1) << f)) != 0; |
| } |
| // Check whether a feature is currently enabled. |
| static bool IsEnabled(CpuFeature f) { |
| return (enabled_ & (V8_UINT64_C(1) << f)) != 0; |
| } |
| // Enable a specified feature within a scope. |
| class Scope BASE_EMBEDDED { |
| #ifdef DEBUG |
| public: |
| explicit Scope(CpuFeature f) { |
| uint64_t mask = (V8_UINT64_C(1) << f); |
| ASSERT(CpuFeatures::IsSupported(f)); |
| ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0); |
| old_enabled_ = CpuFeatures::enabled_; |
| CpuFeatures::enabled_ |= mask; |
| } |
| ~Scope() { CpuFeatures::enabled_ = old_enabled_; } |
| private: |
| uint64_t old_enabled_; |
| #else |
| public: |
| explicit Scope(CpuFeature f) {} |
| #endif |
| }; |
| private: |
| // Safe defaults include SSE2 and CMOV for X64. It is always available, if |
| // anyone checks, but they shouldn't need to check. |
| static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV); |
| static uint64_t supported_; |
| static uint64_t enabled_; |
| static uint64_t found_by_runtime_probing_; |
| }; |
| |
| |
| class Assembler : public Malloced { |
| private: |
| // We check before assembling an instruction that there is sufficient |
| // space to write an instruction and its relocation information. |
| // The relocation writer's position must be kGap bytes above the end of |
| // the generated instructions. This leaves enough space for the |
| // longest possible x64 instruction, 15 bytes, and the longest possible |
| // relocation information encoding, RelocInfoWriter::kMaxLength == 16. |
| // (There is a 15 byte limit on x64 instruction length that rules out some |
| // otherwise valid instructions.) |
| // This allows for a single, fast space check per instruction. |
| static const int kGap = 32; |
| |
| public: |
| // Create an assembler. Instructions and relocation information are emitted |
| // into a buffer, with the instructions starting from the beginning and the |
| // relocation information starting from the end of the buffer. See CodeDesc |
| // for a detailed comment on the layout (globals.h). |
| // |
| // If the provided buffer is NULL, the assembler allocates and grows its own |
| // buffer, and buffer_size determines the initial buffer size. The buffer is |
| // owned by the assembler and deallocated upon destruction of the assembler. |
| // |
| // If the provided buffer is not NULL, the assembler uses the provided buffer |
| // for code generation and assumes its size to be buffer_size. If the buffer |
| // is too small, a fatal error occurs. No deallocation of the buffer is done |
| // upon destruction of the assembler. |
| Assembler(void* buffer, int buffer_size); |
| ~Assembler(); |
| |
| // GetCode emits any pending (non-emitted) code and fills the descriptor |
| // desc. GetCode() is idempotent; it returns the same result if no other |
| // Assembler functions are invoked in between GetCode() calls. |
| void GetCode(CodeDesc* desc); |
| |
| // Read/Modify the code target in the relative branch/call instruction at pc. |
| // On the x64 architecture, we use relative jumps with a 32-bit displacement |
| // to jump to other Code objects in the Code space in the heap. |
| // Jumps to C functions are done indirectly through a 64-bit register holding |
| // the absolute address of the target. |
| // These functions convert between absolute Addresses of Code objects and |
| // the relative displacements stored in the code. |
| static inline Address target_address_at(Address pc); |
| static inline void set_target_address_at(Address pc, Address target); |
| |
| // This sets the branch destination (which is in the instruction on x64). |
| // This is for calls and branches within generated code. |
| inline static void set_target_at(Address instruction_payload, |
| Address target) { |
| set_target_address_at(instruction_payload, target); |
| } |
| |
| // This sets the branch destination (which is a load instruction on x64). |
| // This is for calls and branches to runtime code. |
| inline static void set_external_target_at(Address instruction_payload, |
| Address target) { |
| *reinterpret_cast<Address*>(instruction_payload) = target; |
| } |
| |
| inline Handle<Object> code_target_object_handle_at(Address pc); |
| // Number of bytes taken up by the branch target in the code. |
| static const int kCallTargetSize = 4; // Use 32-bit displacement. |
| static const int kExternalTargetSize = 8; // Use 64-bit absolute. |
| // Distance between the address of the code target in the call instruction |
| // and the return address pushed on the stack. |
| static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement. |
| // Distance between the start of the JS return sequence and where the |
| // 32-bit displacement of a near call would be, relative to the pushed |
| // return address. TODO: Use return sequence length instead. |
| // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset; |
| static const int kPatchReturnSequenceAddressOffset = 13 - 4; |
| // Distance between start of patched debug break slot and where the |
| // 32-bit displacement of a near call would be, relative to the pushed |
| // return address. TODO: Use return sequence length instead. |
| // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset; |
| static const int kPatchDebugBreakSlotAddressOffset = 13 - 4; |
| // TODO(X64): Rename this, removing the "Real", after changing the above. |
| static const int kRealPatchReturnSequenceAddressOffset = 2; |
| |
| // The x64 JS return sequence is padded with int3 to make it large |
| // enough to hold a call instruction when the debugger patches it. |
| static const int kCallInstructionLength = 13; |
| static const int kJSReturnSequenceLength = 13; |
| |
| // The debug break slot must be able to contain a call instruction. |
| static const int kDebugBreakSlotLength = kCallInstructionLength; |
| |
| |
| // --------------------------------------------------------------------------- |
| // Code generation |
| // |
| // Function names correspond one-to-one to x64 instruction mnemonics. |
| // Unless specified otherwise, instructions operate on 64-bit operands. |
| // |
| // If we need versions of an assembly instruction that operate on different |
| // width arguments, we add a single-letter suffix specifying the width. |
| // This is done for the following instructions: mov, cmp, inc, dec, |
| // add, sub, and test. |
| // There are no versions of these instructions without the suffix. |
| // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'. |
| // - Instructions on 16-bit (word) operands/registers have a trailing 'w'. |
| // - Instructions on 32-bit (doubleword) operands/registers use 'l'. |
| // - Instructions on 64-bit (quadword) operands/registers use 'q'. |
| // |
| // Some mnemonics, such as "and", are the same as C++ keywords. |
| // Naming conflicts with C++ keywords are resolved by adding a trailing '_'. |
| |
| // Insert the smallest number of nop instructions |
| // possible to align the pc offset to a multiple |
| // of m. m must be a power of 2. |
| void Align(int m); |
| |
| // Stack |
| void pushfq(); |
| void popfq(); |
| |
| void push(Immediate value); |
| void push(Register src); |
| void push(const Operand& src); |
| void push(Label* label, RelocInfo::Mode relocation_mode); |
| |
| void pop(Register dst); |
| void pop(const Operand& dst); |
| |
| void enter(Immediate size); |
| void leave(); |
| |
| // Moves |
| void movb(Register dst, const Operand& src); |
| void movb(Register dst, Immediate imm); |
| void movb(const Operand& dst, Register src); |
| |
| // Move the low 16 bits of a 64-bit register value to a 16-bit |
| // memory location. |
| void movw(const Operand& dst, Register src); |
| |
| void movl(Register dst, Register src); |
| void movl(Register dst, const Operand& src); |
| void movl(const Operand& dst, Register src); |
| void movl(const Operand& dst, Immediate imm); |
| // Load a 32-bit immediate value, zero-extended to 64 bits. |
| void movl(Register dst, Immediate imm32); |
| |
| // Move 64 bit register value to 64-bit memory location. |
| void movq(const Operand& dst, Register src); |
| // Move 64 bit memory location to 64-bit register value. |
| void movq(Register dst, const Operand& src); |
| void movq(Register dst, Register src); |
| // Sign extends immediate 32-bit value to 64 bits. |
| void movq(Register dst, Immediate x); |
| // Move the offset of the label location relative to the current |
| // position (after the move) to the destination. |
| void movl(const Operand& dst, Label* src); |
| |
| // Move sign extended immediate to memory location. |
| void movq(const Operand& dst, Immediate value); |
| // New x64 instructions to load a 64-bit immediate into a register. |
| // All 64-bit immediates must have a relocation mode. |
| void movq(Register dst, void* ptr, RelocInfo::Mode rmode); |
| void movq(Register dst, int64_t value, RelocInfo::Mode rmode); |
| void movq(Register dst, const char* s, RelocInfo::Mode rmode); |
| // Moves the address of the external reference into the register. |
| void movq(Register dst, ExternalReference ext); |
| void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode); |
| |
| void movsxbq(Register dst, const Operand& src); |
| void movsxwq(Register dst, const Operand& src); |
| void movsxlq(Register dst, Register src); |
| void movsxlq(Register dst, const Operand& src); |
| void movzxbq(Register dst, const Operand& src); |
| void movzxbl(Register dst, const Operand& src); |
| void movzxwq(Register dst, const Operand& src); |
| void movzxwl(Register dst, const Operand& src); |
| |
| // Repeated moves. |
| |
| void repmovsb(); |
| void repmovsw(); |
| void repmovsl(); |
| void repmovsq(); |
| |
| // New x64 instruction to load from an immediate 64-bit pointer into RAX. |
| void load_rax(void* ptr, RelocInfo::Mode rmode); |
| void load_rax(ExternalReference ext); |
| |
| // Conditional moves. |
| void cmovq(Condition cc, Register dst, Register src); |
| void cmovq(Condition cc, Register dst, const Operand& src); |
| void cmovl(Condition cc, Register dst, Register src); |
| void cmovl(Condition cc, Register dst, const Operand& src); |
| |
| // Exchange two registers |
| void xchg(Register dst, Register src); |
| |
| // Arithmetics |
| void addl(Register dst, Register src) { |
| arithmetic_op_32(0x03, dst, src); |
| } |
| |
| void addl(Register dst, Immediate src) { |
| immediate_arithmetic_op_32(0x0, dst, src); |
| } |
| |
| void addl(Register dst, const Operand& src) { |
| arithmetic_op_32(0x03, dst, src); |
| } |
| |
| void addl(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op_32(0x0, dst, src); |
| } |
| |
| void addq(Register dst, Register src) { |
| arithmetic_op(0x03, dst, src); |
| } |
| |
| void addq(Register dst, const Operand& src) { |
| arithmetic_op(0x03, dst, src); |
| } |
| |
| void addq(const Operand& dst, Register src) { |
| arithmetic_op(0x01, src, dst); |
| } |
| |
| void addq(Register dst, Immediate src) { |
| immediate_arithmetic_op(0x0, dst, src); |
| } |
| |
| void addq(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op(0x0, dst, src); |
| } |
| |
| void sbbl(Register dst, Register src) { |
| arithmetic_op_32(0x1b, dst, src); |
| } |
| |
| void cmpb(Register dst, Immediate src) { |
| immediate_arithmetic_op_8(0x7, dst, src); |
| } |
| |
| void cmpb_al(Immediate src); |
| |
| void cmpb(Register dst, Register src) { |
| arithmetic_op(0x3A, dst, src); |
| } |
| |
| void cmpb(Register dst, const Operand& src) { |
| arithmetic_op(0x3A, dst, src); |
| } |
| |
| void cmpb(const Operand& dst, Register src) { |
| arithmetic_op(0x38, src, dst); |
| } |
| |
| void cmpb(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op_8(0x7, dst, src); |
| } |
| |
| void cmpw(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op_16(0x7, dst, src); |
| } |
| |
| void cmpw(Register dst, Immediate src) { |
| immediate_arithmetic_op_16(0x7, dst, src); |
| } |
| |
| void cmpw(Register dst, const Operand& src) { |
| arithmetic_op_16(0x3B, dst, src); |
| } |
| |
| void cmpw(Register dst, Register src) { |
| arithmetic_op_16(0x3B, dst, src); |
| } |
| |
| void cmpw(const Operand& dst, Register src) { |
| arithmetic_op_16(0x39, src, dst); |
| } |
| |
| void cmpl(Register dst, Register src) { |
| arithmetic_op_32(0x3B, dst, src); |
| } |
| |
| void cmpl(Register dst, const Operand& src) { |
| arithmetic_op_32(0x3B, dst, src); |
| } |
| |
| void cmpl(const Operand& dst, Register src) { |
| arithmetic_op_32(0x39, src, dst); |
| } |
| |
| void cmpl(Register dst, Immediate src) { |
| immediate_arithmetic_op_32(0x7, dst, src); |
| } |
| |
| void cmpl(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op_32(0x7, dst, src); |
| } |
| |
| void cmpq(Register dst, Register src) { |
| arithmetic_op(0x3B, dst, src); |
| } |
| |
| void cmpq(Register dst, const Operand& src) { |
| arithmetic_op(0x3B, dst, src); |
| } |
| |
| void cmpq(const Operand& dst, Register src) { |
| arithmetic_op(0x39, src, dst); |
| } |
| |
| void cmpq(Register dst, Immediate src) { |
| immediate_arithmetic_op(0x7, dst, src); |
| } |
| |
| void cmpq(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op(0x7, dst, src); |
| } |
| |
| void and_(Register dst, Register src) { |
| arithmetic_op(0x23, dst, src); |
| } |
| |
| void and_(Register dst, const Operand& src) { |
| arithmetic_op(0x23, dst, src); |
| } |
| |
| void and_(const Operand& dst, Register src) { |
| arithmetic_op(0x21, src, dst); |
| } |
| |
| void and_(Register dst, Immediate src) { |
| immediate_arithmetic_op(0x4, dst, src); |
| } |
| |
| void and_(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op(0x4, dst, src); |
| } |
| |
| void andl(Register dst, Immediate src) { |
| immediate_arithmetic_op_32(0x4, dst, src); |
| } |
| |
| void andl(Register dst, Register src) { |
| arithmetic_op_32(0x23, dst, src); |
| } |
| |
| void andb(Register dst, Immediate src) { |
| immediate_arithmetic_op_8(0x4, dst, src); |
| } |
| |
| void decq(Register dst); |
| void decq(const Operand& dst); |
| void decl(Register dst); |
| void decl(const Operand& dst); |
| void decb(Register dst); |
| void decb(const Operand& dst); |
| |
| // Sign-extends rax into rdx:rax. |
| void cqo(); |
| // Sign-extends eax into edx:eax. |
| void cdq(); |
| |
| // Divide rdx:rax by src. Quotient in rax, remainder in rdx. |
| void idivq(Register src); |
| // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx. |
| void idivl(Register src); |
| |
| // Signed multiply instructions. |
| void imul(Register src); // rdx:rax = rax * src. |
| void imul(Register dst, Register src); // dst = dst * src. |
| void imul(Register dst, const Operand& src); // dst = dst * src. |
| void imul(Register dst, Register src, Immediate imm); // dst = src * imm. |
| // Signed 32-bit multiply instructions. |
| void imull(Register dst, Register src); // dst = dst * src. |
| void imull(Register dst, Register src, Immediate imm); // dst = src * imm. |
| |
| void incq(Register dst); |
| void incq(const Operand& dst); |
| void incl(const Operand& dst); |
| |
| void lea(Register dst, const Operand& src); |
| void leal(Register dst, const Operand& src); |
| |
| // Multiply rax by src, put the result in rdx:rax. |
| void mul(Register src); |
| |
| void neg(Register dst); |
| void neg(const Operand& dst); |
| void negl(Register dst); |
| |
| void not_(Register dst); |
| void not_(const Operand& dst); |
| void notl(Register dst); |
| |
| void or_(Register dst, Register src) { |
| arithmetic_op(0x0B, dst, src); |
| } |
| |
| void orl(Register dst, Register src) { |
| arithmetic_op_32(0x0B, dst, src); |
| } |
| |
| void or_(Register dst, const Operand& src) { |
| arithmetic_op(0x0B, dst, src); |
| } |
| |
| void or_(const Operand& dst, Register src) { |
| arithmetic_op(0x09, src, dst); |
| } |
| |
| void or_(Register dst, Immediate src) { |
| immediate_arithmetic_op(0x1, dst, src); |
| } |
| |
| void orl(Register dst, Immediate src) { |
| immediate_arithmetic_op_32(0x1, dst, src); |
| } |
| |
| void or_(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op(0x1, dst, src); |
| } |
| |
| void orl(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op_32(0x1, dst, src); |
| } |
| |
| |
| void rcl(Register dst, Immediate imm8) { |
| shift(dst, imm8, 0x2); |
| } |
| |
| void rol(Register dst, Immediate imm8) { |
| shift(dst, imm8, 0x0); |
| } |
| |
| void rcr(Register dst, Immediate imm8) { |
| shift(dst, imm8, 0x3); |
| } |
| |
| void ror(Register dst, Immediate imm8) { |
| shift(dst, imm8, 0x1); |
| } |
| |
| // Shifts dst:src left by cl bits, affecting only dst. |
| void shld(Register dst, Register src); |
| |
| // Shifts src:dst right by cl bits, affecting only dst. |
| void shrd(Register dst, Register src); |
| |
| // Shifts dst right, duplicating sign bit, by shift_amount bits. |
| // Shifting by 1 is handled efficiently. |
| void sar(Register dst, Immediate shift_amount) { |
| shift(dst, shift_amount, 0x7); |
| } |
| |
| // Shifts dst right, duplicating sign bit, by shift_amount bits. |
| // Shifting by 1 is handled efficiently. |
| void sarl(Register dst, Immediate shift_amount) { |
| shift_32(dst, shift_amount, 0x7); |
| } |
| |
| // Shifts dst right, duplicating sign bit, by cl % 64 bits. |
| void sar_cl(Register dst) { |
| shift(dst, 0x7); |
| } |
| |
| // Shifts dst right, duplicating sign bit, by cl % 64 bits. |
| void sarl_cl(Register dst) { |
| shift_32(dst, 0x7); |
| } |
| |
| void shl(Register dst, Immediate shift_amount) { |
| shift(dst, shift_amount, 0x4); |
| } |
| |
| void shl_cl(Register dst) { |
| shift(dst, 0x4); |
| } |
| |
| void shll_cl(Register dst) { |
| shift_32(dst, 0x4); |
| } |
| |
| void shll(Register dst, Immediate shift_amount) { |
| shift_32(dst, shift_amount, 0x4); |
| } |
| |
| void shr(Register dst, Immediate shift_amount) { |
| shift(dst, shift_amount, 0x5); |
| } |
| |
| void shr_cl(Register dst) { |
| shift(dst, 0x5); |
| } |
| |
| void shrl_cl(Register dst) { |
| shift_32(dst, 0x5); |
| } |
| |
| void shrl(Register dst, Immediate shift_amount) { |
| shift_32(dst, shift_amount, 0x5); |
| } |
| |
| void store_rax(void* dst, RelocInfo::Mode mode); |
| void store_rax(ExternalReference ref); |
| |
| void subq(Register dst, Register src) { |
| arithmetic_op(0x2B, dst, src); |
| } |
| |
| void subq(Register dst, const Operand& src) { |
| arithmetic_op(0x2B, dst, src); |
| } |
| |
| void subq(const Operand& dst, Register src) { |
| arithmetic_op(0x29, src, dst); |
| } |
| |
| void subq(Register dst, Immediate src) { |
| immediate_arithmetic_op(0x5, dst, src); |
| } |
| |
| void subq(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op(0x5, dst, src); |
| } |
| |
| void subl(Register dst, Register src) { |
| arithmetic_op_32(0x2B, dst, src); |
| } |
| |
| void subl(Register dst, const Operand& src) { |
| arithmetic_op_32(0x2B, dst, src); |
| } |
| |
| void subl(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op_32(0x5, dst, src); |
| } |
| |
| void subl(Register dst, Immediate src) { |
| immediate_arithmetic_op_32(0x5, dst, src); |
| } |
| |
| void subb(Register dst, Immediate src) { |
| immediate_arithmetic_op_8(0x5, dst, src); |
| } |
| |
| void testb(Register dst, Register src); |
| void testb(Register reg, Immediate mask); |
| void testb(const Operand& op, Immediate mask); |
| void testb(const Operand& op, Register reg); |
| void testl(Register dst, Register src); |
| void testl(Register reg, Immediate mask); |
| void testl(const Operand& op, Immediate mask); |
| void testq(const Operand& op, Register reg); |
| void testq(Register dst, Register src); |
| void testq(Register dst, Immediate mask); |
| |
| void xor_(Register dst, Register src) { |
| if (dst.code() == src.code()) { |
| arithmetic_op_32(0x33, dst, src); |
| } else { |
| arithmetic_op(0x33, dst, src); |
| } |
| } |
| |
| void xorl(Register dst, Register src) { |
| arithmetic_op_32(0x33, dst, src); |
| } |
| |
| void xor_(Register dst, const Operand& src) { |
| arithmetic_op(0x33, dst, src); |
| } |
| |
| void xor_(const Operand& dst, Register src) { |
| arithmetic_op(0x31, src, dst); |
| } |
| |
| void xor_(Register dst, Immediate src) { |
| immediate_arithmetic_op(0x6, dst, src); |
| } |
| |
| void xor_(const Operand& dst, Immediate src) { |
| immediate_arithmetic_op(0x6, dst, src); |
| } |
| |
| // Bit operations. |
| void bt(const Operand& dst, Register src); |
| void bts(const Operand& dst, Register src); |
| |
| // Miscellaneous |
| void clc(); |
| void cpuid(); |
| void hlt(); |
| void int3(); |
| void nop(); |
| void nop(int n); |
| void rdtsc(); |
| void ret(int imm16); |
| void setcc(Condition cc, Register reg); |
| |
| // Label operations & relative jumps (PPUM Appendix D) |
| // |
| // Takes a branch opcode (cc) and a label (L) and generates |
| // either a backward branch or a forward branch and links it |
| // to the label fixup chain. Usage: |
| // |
| // Label L; // unbound label |
| // j(cc, &L); // forward branch to unbound label |
| // bind(&L); // bind label to the current pc |
| // j(cc, &L); // backward branch to bound label |
| // bind(&L); // illegal: a label may be bound only once |
| // |
| // Note: The same Label can be used for forward and backward branches |
| // but it may be bound only once. |
| |
| void bind(Label* L); // binds an unbound label L to the current code position |
| |
| // Calls |
| // Call near relative 32-bit displacement, relative to next instruction. |
| void call(Label* L); |
| void call(Handle<Code> target, RelocInfo::Mode rmode); |
| |
| // Call near absolute indirect, address in register |
| void call(Register adr); |
| |
| // Call near indirect |
| void call(const Operand& operand); |
| |
| // Jumps |
| // Jump short or near relative. |
| // Use a 32-bit signed displacement. |
| void jmp(Label* L); // unconditional jump to L |
| void jmp(Handle<Code> target, RelocInfo::Mode rmode); |
| |
| // Jump near absolute indirect (r64) |
| void jmp(Register adr); |
| |
| // Jump near absolute indirect (m64) |
| void jmp(const Operand& src); |
| |
| // Conditional jumps |
| void j(Condition cc, Label* L); |
| void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode); |
| |
| // Floating-point operations |
| void fld(int i); |
| |
| void fld1(); |
| void fldz(); |
| void fldpi(); |
| |
| void fld_s(const Operand& adr); |
| void fld_d(const Operand& adr); |
| |
| void fstp_s(const Operand& adr); |
| void fstp_d(const Operand& adr); |
| void fstp(int index); |
| |
| void fild_s(const Operand& adr); |
| void fild_d(const Operand& adr); |
| |
| void fist_s(const Operand& adr); |
| |
| void fistp_s(const Operand& adr); |
| void fistp_d(const Operand& adr); |
| |
| void fisttp_s(const Operand& adr); |
| void fisttp_d(const Operand& adr); |
| |
| void fabs(); |
| void fchs(); |
| |
| void fadd(int i); |
| void fsub(int i); |
| void fmul(int i); |
| void fdiv(int i); |
| |
| void fisub_s(const Operand& adr); |
| |
| void faddp(int i = 1); |
| void fsubp(int i = 1); |
| void fsubrp(int i = 1); |
| void fmulp(int i = 1); |
| void fdivp(int i = 1); |
| void fprem(); |
| void fprem1(); |
| |
| void fxch(int i = 1); |
| void fincstp(); |
| void ffree(int i = 0); |
| |
| void ftst(); |
| void fucomp(int i); |
| void fucompp(); |
| void fucomi(int i); |
| void fucomip(); |
| |
| void fcompp(); |
| void fnstsw_ax(); |
| void fwait(); |
| void fnclex(); |
| |
| void fsin(); |
| void fcos(); |
| |
| void frndint(); |
| |
| void sahf(); |
| |
| // SSE2 instructions |
| void movd(XMMRegister dst, Register src); |
| void movd(Register dst, XMMRegister src); |
| void movq(XMMRegister dst, Register src); |
| void movq(Register dst, XMMRegister src); |
| void extractps(Register dst, XMMRegister src, byte imm8); |
| |
| void movsd(const Operand& dst, XMMRegister src); |
| void movsd(XMMRegister dst, XMMRegister src); |
| void movsd(XMMRegister dst, const Operand& src); |
| |
| void cvttss2si(Register dst, const Operand& src); |
| void cvttsd2si(Register dst, const Operand& src); |
| void cvttsd2siq(Register dst, XMMRegister src); |
| |
| void cvtlsi2sd(XMMRegister dst, const Operand& src); |
| void cvtlsi2sd(XMMRegister dst, Register src); |
| void cvtqsi2sd(XMMRegister dst, const Operand& src); |
| void cvtqsi2sd(XMMRegister dst, Register src); |
| |
| void cvtss2sd(XMMRegister dst, XMMRegister src); |
| |
| void addsd(XMMRegister dst, XMMRegister src); |
| void subsd(XMMRegister dst, XMMRegister src); |
| void mulsd(XMMRegister dst, XMMRegister src); |
| void divsd(XMMRegister dst, XMMRegister src); |
| |
| void xorpd(XMMRegister dst, XMMRegister src); |
| void sqrtsd(XMMRegister dst, XMMRegister src); |
| |
| void comisd(XMMRegister dst, XMMRegister src); |
| void ucomisd(XMMRegister dst, XMMRegister src); |
| |
| // The first argument is the reg field, the second argument is the r/m field. |
| void emit_sse_operand(XMMRegister dst, XMMRegister src); |
| void emit_sse_operand(XMMRegister reg, const Operand& adr); |
| void emit_sse_operand(XMMRegister dst, Register src); |
| void emit_sse_operand(Register dst, XMMRegister src); |
| |
| // Use either movsd or movlpd. |
| // void movdbl(XMMRegister dst, const Operand& src); |
| // void movdbl(const Operand& dst, XMMRegister src); |
| |
| // Debugging |
| void Print(); |
| |
| // Check the code size generated from label to here. |
| int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); } |
| |
| // Mark address of the ExitJSFrame code. |
| void RecordJSReturn(); |
| |
| // Mark address of a debug break slot. |
| void RecordDebugBreakSlot(); |
| |
| // Record a comment relocation entry that can be used by a disassembler. |
| // Use --debug_code to enable. |
| void RecordComment(const char* msg); |
| |
| void RecordPosition(int pos); |
| void RecordStatementPosition(int pos); |
| bool WriteRecordedPositions(); |
| |
| int pc_offset() const { return static_cast<int>(pc_ - buffer_); } |
| int current_statement_position() const { return current_statement_position_; } |
| int current_position() const { return current_position_; } |
| |
| // Check if there is less than kGap bytes available in the buffer. |
| // If this is the case, we need to grow the buffer before emitting |
| // an instruction or relocation information. |
| inline bool buffer_overflow() const { |
| return pc_ >= reloc_info_writer.pos() - kGap; |
| } |
| |
| // Get the number of bytes available in the buffer. |
| inline int available_space() const { |
| return static_cast<int>(reloc_info_writer.pos() - pc_); |
| } |
| |
| static bool IsNop(Address addr) { return *addr == 0x90; } |
| |
| // Avoid overflows for displacements etc. |
| static const int kMaximalBufferSize = 512*MB; |
| static const int kMinimalBufferSize = 4*KB; |
| |
| private: |
| byte* addr_at(int pos) { return buffer_ + pos; } |
| byte byte_at(int pos) { return buffer_[pos]; } |
| uint32_t long_at(int pos) { |
| return *reinterpret_cast<uint32_t*>(addr_at(pos)); |
| } |
| void long_at_put(int pos, uint32_t x) { |
| *reinterpret_cast<uint32_t*>(addr_at(pos)) = x; |
| } |
| |
| // code emission |
| void GrowBuffer(); |
| |
| void emit(byte x) { *pc_++ = x; } |
| inline void emitl(uint32_t x); |
| inline void emitq(uint64_t x, RelocInfo::Mode rmode); |
| inline void emitw(uint16_t x); |
| inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode); |
| void emit(Immediate x) { emitl(x.value_); } |
| |
| // Emits a REX prefix that encodes a 64-bit operand size and |
| // the top bit of both register codes. |
| // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. |
| // REX.W is set. |
| inline void emit_rex_64(XMMRegister reg, Register rm_reg); |
| inline void emit_rex_64(Register reg, XMMRegister rm_reg); |
| inline void emit_rex_64(Register reg, Register rm_reg); |
| |
| // Emits a REX prefix that encodes a 64-bit operand size and |
| // the top bit of the destination, index, and base register codes. |
| // The high bit of reg is used for REX.R, the high bit of op's base |
| // register is used for REX.B, and the high bit of op's index register |
| // is used for REX.X. REX.W is set. |
| inline void emit_rex_64(Register reg, const Operand& op); |
| inline void emit_rex_64(XMMRegister reg, const Operand& op); |
| |
| // Emits a REX prefix that encodes a 64-bit operand size and |
| // the top bit of the register code. |
| // The high bit of register is used for REX.B. |
| // REX.W is set and REX.R and REX.X are clear. |
| inline void emit_rex_64(Register rm_reg); |
| |
| // Emits a REX prefix that encodes a 64-bit operand size and |
| // the top bit of the index and base register codes. |
| // The high bit of op's base register is used for REX.B, and the high |
| // bit of op's index register is used for REX.X. |
| // REX.W is set and REX.R clear. |
| inline void emit_rex_64(const Operand& op); |
| |
| // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size. |
| void emit_rex_64() { emit(0x48); } |
| |
| // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. |
| // REX.W is clear. |
| inline void emit_rex_32(Register reg, Register rm_reg); |
| |
| // The high bit of reg is used for REX.R, the high bit of op's base |
| // register is used for REX.B, and the high bit of op's index register |
| // is used for REX.X. REX.W is cleared. |
| inline void emit_rex_32(Register reg, const Operand& op); |
| |
| // High bit of rm_reg goes to REX.B. |
| // REX.W, REX.R and REX.X are clear. |
| inline void emit_rex_32(Register rm_reg); |
| |
| // High bit of base goes to REX.B and high bit of index to REX.X. |
| // REX.W and REX.R are clear. |
| inline void emit_rex_32(const Operand& op); |
| |
| // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B. |
| // REX.W is cleared. If no REX bits are set, no byte is emitted. |
| inline void emit_optional_rex_32(Register reg, Register rm_reg); |
| |
| // The high bit of reg is used for REX.R, the high bit of op's base |
| // register is used for REX.B, and the high bit of op's index register |
| // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing |
| // is emitted. |
| inline void emit_optional_rex_32(Register reg, const Operand& op); |
| |
| // As for emit_optional_rex_32(Register, Register), except that |
| // the registers are XMM registers. |
| inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base); |
| |
| // As for emit_optional_rex_32(Register, Register), except that |
| // one of the registers is an XMM registers. |
| inline void emit_optional_rex_32(XMMRegister reg, Register base); |
| |
| // As for emit_optional_rex_32(Register, Register), except that |
| // one of the registers is an XMM registers. |
| inline void emit_optional_rex_32(Register reg, XMMRegister base); |
| |
| // As for emit_optional_rex_32(Register, const Operand&), except that |
| // the register is an XMM register. |
| inline void emit_optional_rex_32(XMMRegister reg, const Operand& op); |
| |
| // Optionally do as emit_rex_32(Register) if the register number has |
| // the high bit set. |
| inline void emit_optional_rex_32(Register rm_reg); |
| |
| // Optionally do as emit_rex_32(const Operand&) if the operand register |
| // numbers have a high bit set. |
| inline void emit_optional_rex_32(const Operand& op); |
| |
| |
| // Emit the ModR/M byte, and optionally the SIB byte and |
| // 1- or 4-byte offset for a memory operand. Also encodes |
| // the second operand of the operation, a register or operation |
| // subcode, into the reg field of the ModR/M byte. |
| void emit_operand(Register reg, const Operand& adr) { |
| emit_operand(reg.low_bits(), adr); |
| } |
| |
| // Emit the ModR/M byte, and optionally the SIB byte and |
| // 1- or 4-byte offset for a memory operand. Also used to encode |
| // a three-bit opcode extension into the ModR/M byte. |
| void emit_operand(int rm, const Operand& adr); |
| |
| // Emit a ModR/M byte with registers coded in the reg and rm_reg fields. |
| void emit_modrm(Register reg, Register rm_reg) { |
| emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits()); |
| } |
| |
| // Emit a ModR/M byte with an operation subcode in the reg field and |
| // a register in the rm_reg field. |
| void emit_modrm(int code, Register rm_reg) { |
| ASSERT(is_uint3(code)); |
| emit(0xC0 | code << 3 | rm_reg.low_bits()); |
| } |
| |
| // Emit the code-object-relative offset of the label's position |
| inline void emit_code_relative_offset(Label* label); |
| |
| // Emit machine code for one of the operations ADD, ADC, SUB, SBC, |
| // AND, OR, XOR, or CMP. The encodings of these operations are all |
| // similar, differing just in the opcode or in the reg field of the |
| // ModR/M byte. |
| void arithmetic_op_16(byte opcode, Register reg, Register rm_reg); |
| void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg); |
| void arithmetic_op_32(byte opcode, Register reg, Register rm_reg); |
| void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg); |
| void arithmetic_op(byte opcode, Register reg, Register rm_reg); |
| void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg); |
| void immediate_arithmetic_op(byte subcode, Register dst, Immediate src); |
| void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src); |
| // Operate on a byte in memory or register. |
| void immediate_arithmetic_op_8(byte subcode, |
| Register dst, |
| Immediate src); |
| void immediate_arithmetic_op_8(byte subcode, |
| const Operand& dst, |
| Immediate src); |
| // Operate on a word in memory or register. |
| void immediate_arithmetic_op_16(byte subcode, |
| Register dst, |
| Immediate src); |
| void immediate_arithmetic_op_16(byte subcode, |
| const Operand& dst, |
| Immediate src); |
| // Operate on a 32-bit word in memory or register. |
| void immediate_arithmetic_op_32(byte subcode, |
| Register dst, |
| Immediate src); |
| void immediate_arithmetic_op_32(byte subcode, |
| const Operand& dst, |
| Immediate src); |
| |
| // Emit machine code for a shift operation. |
| void shift(Register dst, Immediate shift_amount, int subcode); |
| void shift_32(Register dst, Immediate shift_amount, int subcode); |
| // Shift dst by cl % 64 bits. |
| void shift(Register dst, int subcode); |
| void shift_32(Register dst, int subcode); |
| |
| void emit_farith(int b1, int b2, int i); |
| |
| // labels |
| // void print(Label* L); |
| void bind_to(Label* L, int pos); |
| void link_to(Label* L, Label* appendix); |
| |
| // record reloc info for current pc_ |
| void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); |
| |
| friend class CodePatcher; |
| friend class EnsureSpace; |
| friend class RegExpMacroAssemblerX64; |
| |
| // Code buffer: |
| // The buffer into which code and relocation info are generated. |
| byte* buffer_; |
| int buffer_size_; |
| // True if the assembler owns the buffer, false if buffer is external. |
| bool own_buffer_; |
| // A previously allocated buffer of kMinimalBufferSize bytes, or NULL. |
| static byte* spare_buffer_; |
| |
| // code generation |
| byte* pc_; // the program counter; moves forward |
| RelocInfoWriter reloc_info_writer; |
| |
| List< Handle<Code> > code_targets_; |
| // push-pop elimination |
| byte* last_pc_; |
| |
| // source position information |
| int current_statement_position_; |
| int current_position_; |
| int written_statement_position_; |
| int written_position_; |
| }; |
| |
| |
| // Helper class that ensures that there is enough space for generating |
| // instructions and relocation information. The constructor makes |
| // sure that there is enough space and (in debug mode) the destructor |
| // checks that we did not generate too much. |
| class EnsureSpace BASE_EMBEDDED { |
| public: |
| explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) { |
| if (assembler_->buffer_overflow()) assembler_->GrowBuffer(); |
| #ifdef DEBUG |
| space_before_ = assembler_->available_space(); |
| #endif |
| } |
| |
| #ifdef DEBUG |
| ~EnsureSpace() { |
| int bytes_generated = space_before_ - assembler_->available_space(); |
| ASSERT(bytes_generated < assembler_->kGap); |
| } |
| #endif |
| |
| private: |
| Assembler* assembler_; |
| #ifdef DEBUG |
| int space_before_; |
| #endif |
| }; |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_X64_ASSEMBLER_X64_H_ |