blob: 89c21cba2c90fb872eb90a3b3192de6db4f221be [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "codegen-inl.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
#include "utils.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
// Helper function used to load a property from a dictionary backing storage.
// This function may return false negatives, so miss_label
// must always call a backup property load that is complete.
// This function is safe to call if the receiver has fast properties,
// or if name is not a symbol, and will jump to the miss_label in that case.
static void GenerateDictionaryLoad(MacroAssembler* masm,
Label* miss_label,
Register r0,
Register r1,
Register r2,
Register name,
Register r4,
DictionaryCheck check_dictionary) {
// Register use:
//
// r0 - used to hold the property dictionary.
//
// r1 - initially the receiver.
// - unchanged on any jump to miss_label.
// - holds the result on exit.
//
// r2 - used to hold the capacity of the property dictionary.
//
// name - holds the name of the property and is unchanged.
// r4 - used to hold the index into the property dictionary.
Label done;
// Check for the absence of an interceptor.
// Load the map into r0.
__ movq(r0, FieldOperand(r1, JSObject::kMapOffset));
// Bail out if the receiver has a named interceptor.
__ testl(FieldOperand(r0, Map::kBitFieldOffset),
Immediate(1 << Map::kHasNamedInterceptor));
__ j(not_zero, miss_label);
// Bail out if we have a JS global proxy object.
__ movzxbq(r0, FieldOperand(r0, Map::kInstanceTypeOffset));
__ cmpb(r0, Immediate(JS_GLOBAL_PROXY_TYPE));
__ j(equal, miss_label);
// Possible work-around for http://crbug.com/16276.
__ cmpb(r0, Immediate(JS_GLOBAL_OBJECT_TYPE));
__ j(equal, miss_label);
__ cmpb(r0, Immediate(JS_BUILTINS_OBJECT_TYPE));
__ j(equal, miss_label);
// Load properties array.
__ movq(r0, FieldOperand(r1, JSObject::kPropertiesOffset));
if (check_dictionary == CHECK_DICTIONARY) {
// Check that the properties array is a dictionary.
__ Cmp(FieldOperand(r0, HeapObject::kMapOffset), Factory::hash_table_map());
__ j(not_equal, miss_label);
}
// Compute the capacity mask.
const int kCapacityOffset =
StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
__ SmiToInteger32(r2, FieldOperand(r0, kCapacityOffset));
__ decl(r2);
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
static const int kProbes = 4;
const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
for (int i = 0; i < kProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ movl(r4, FieldOperand(name, String::kHashFieldOffset));
__ shrl(r4, Immediate(String::kHashShift));
if (i > 0) {
__ addl(r4, Immediate(StringDictionary::GetProbeOffset(i)));
}
__ and_(r4, r2);
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(r4, Operand(r4, r4, times_2, 0)); // r4 = r4 * 3
// Check if the key is identical to the name.
__ cmpq(name, Operand(r0, r4, times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
if (i != kProbes - 1) {
__ j(equal, &done);
} else {
__ j(not_equal, miss_label);
}
}
// Check that the value is a normal property.
__ bind(&done);
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ Test(Operand(r0, r4, times_pointer_size, kDetailsOffset - kHeapObjectTag),
Smi::FromInt(PropertyDetails::TypeField::mask()));
__ j(not_zero, miss_label);
// Get the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ movq(r1,
Operand(r0, r4, times_pointer_size, kValueOffset - kHeapObjectTag));
}
static void GenerateNumberDictionaryLoad(MacroAssembler* masm,
Label* miss,
Register elements,
Register key,
Register r0,
Register r1,
Register r2) {
// Register use:
//
// elements - holds the slow-case elements of the receiver and is unchanged.
//
// key - holds the smi key on entry and is unchanged if a branch is
// performed to the miss label.
// Holds the result on exit if the load succeeded.
//
// Scratch registers:
//
// r0 - holds the untagged key on entry and holds the hash once computed.
//
// r1 - used to hold the capacity mask of the dictionary
//
// r2 - used for the index into the dictionary.
Label done;
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
__ movl(r1, r0);
__ notl(r0);
__ shll(r1, Immediate(15));
__ addl(r0, r1);
// hash = hash ^ (hash >> 12);
__ movl(r1, r0);
__ shrl(r1, Immediate(12));
__ xorl(r0, r1);
// hash = hash + (hash << 2);
__ leal(r0, Operand(r0, r0, times_4, 0));
// hash = hash ^ (hash >> 4);
__ movl(r1, r0);
__ shrl(r1, Immediate(4));
__ xorl(r0, r1);
// hash = hash * 2057;
__ imull(r0, r0, Immediate(2057));
// hash = hash ^ (hash >> 16);
__ movl(r1, r0);
__ shrl(r1, Immediate(16));
__ xorl(r0, r1);
// Compute capacity mask.
__ SmiToInteger32(r1,
FieldOperand(elements, NumberDictionary::kCapacityOffset));
__ decl(r1);
// Generate an unrolled loop that performs a few probes before giving up.
const int kProbes = 4;
for (int i = 0; i < kProbes; i++) {
// Use r2 for index calculations and keep the hash intact in r0.
__ movq(r2, r0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
__ addl(r2, Immediate(NumberDictionary::GetProbeOffset(i)));
}
__ and_(r2, r1);
// Scale the index by multiplying by the entry size.
ASSERT(NumberDictionary::kEntrySize == 3);
__ lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
// Check if the key matches.
__ cmpq(key, FieldOperand(elements,
r2,
times_pointer_size,
NumberDictionary::kElementsStartOffset));
if (i != (kProbes - 1)) {
__ j(equal, &done);
} else {
__ j(not_equal, miss);
}
}
__ bind(&done);
// Check that the value is a normal propety.
const int kDetailsOffset =
NumberDictionary::kElementsStartOffset + 2 * kPointerSize;
ASSERT_EQ(NORMAL, 0);
__ Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
Smi::FromInt(PropertyDetails::TypeField::mask()));
__ j(not_zero, miss);
// Get the value at the masked, scaled index.
const int kValueOffset =
NumberDictionary::kElementsStartOffset + kPointerSize;
__ movq(key, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
}
// One byte opcode for test eax,0xXXXXXXXX.
static const byte kTestEaxByte = 0xA9;
static bool PatchInlinedMapCheck(Address address, Object* map) {
// Arguments are address of start of call sequence that called
// the IC,
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// The keyed load has a fast inlined case if the IC call instruction
// is immediately followed by a test instruction.
if (*test_instruction_address != kTestEaxByte) return false;
// Fetch the offset from the test instruction to the map compare
// instructions (starting with the 64-bit immediate mov of the map
// address). This offset is stored in the last 4 bytes of the 5
// byte test instruction.
Address delta_address = test_instruction_address + 1;
int delta = *reinterpret_cast<int*>(delta_address);
// Compute the map address. The map address is in the last 8 bytes
// of the 10-byte immediate mov instruction (incl. REX prefix), so we add 2
// to the offset to get the map address.
Address map_address = test_instruction_address + delta + 2;
// Patch the map check.
*(reinterpret_cast<Object**>(map_address)) = map;
return true;
}
bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) {
return PatchInlinedMapCheck(address, map);
}
bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) {
return PatchInlinedMapCheck(address, map);
}
void KeyedLoadIC::ClearInlinedVersion(Address address) {
// Insert null as the map to check for to make sure the map check fails
// sending control flow to the IC instead of the inlined version.
PatchInlinedLoad(address, Heap::null_value());
}
void KeyedStoreIC::ClearInlinedVersion(Address address) {
// Insert null as the elements map to check for. This will make
// sure that the elements fast-case map check fails so that control
// flows to the IC instead of the inlined version.
PatchInlinedStore(address, Heap::null_value());
}
void KeyedStoreIC::RestoreInlinedVersion(Address address) {
// Restore the fast-case elements map check so that the inlined
// version can be used again.
PatchInlinedStore(address, Heap::fixed_array_map());
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ pop(rbx);
__ push(rdx); // receiver
__ push(rax); // name
__ push(rbx); // return address
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss));
__ TailCallExternalReference(ref, 2, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ pop(rbx);
__ push(rdx); // receiver
__ push(rax); // name
__ push(rbx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, check_string, index_smi, index_string;
Label check_pixel_array, probe_dictionary, check_number_dictionary;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing
// into string objects work as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
__ j(below, &slow);
// Check bit field.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(kSlowCaseBitFieldMask));
__ j(not_zero, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &check_string);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
__ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset));
// Check that the object is in fast mode (not dictionary).
__ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &check_pixel_array);
// Check that the key (index) is within bounds.
__ SmiCompare(rax, FieldOperand(rcx, FixedArray::kLengthOffset));
__ j(above_equal, &slow); // Unsigned comparison rejects negative indices.
// Fast case: Do the load.
SmiIndex index = masm->SmiToIndex(rbx, rax, kPointerSizeLog2);
__ movq(rbx, FieldOperand(rcx,
index.reg,
index.scale,
FixedArray::kHeaderSize));
__ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ j(equal, &slow);
__ movq(rax, rbx);
__ IncrementCounter(&Counters::keyed_load_generic_smi, 1);
__ ret(0);
__ bind(&check_pixel_array);
// Check whether the elements object is a pixel array.
// rdx: receiver
// rax: key
// rcx: elements array
__ SmiToInteger32(rbx, rax); // Used on both directions of next branch.
__ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
Heap::kPixelArrayMapRootIndex);
__ j(not_equal, &check_number_dictionary);
__ cmpl(rbx, FieldOperand(rcx, PixelArray::kLengthOffset));
__ j(above_equal, &slow);
__ movq(rax, FieldOperand(rcx, PixelArray::kExternalPointerOffset));
__ movzxbq(rax, Operand(rax, rbx, times_1, 0));
__ Integer32ToSmi(rax, rax);
__ ret(0);
__ bind(&check_number_dictionary);
// Check whether the elements is a number dictionary.
// rdx: receiver
// rax: key
// rbx: key as untagged int32
// rcx: elements
__ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, &slow);
GenerateNumberDictionaryLoad(masm, &slow, rcx, rax, rbx, r9, rdi);
__ ret(0);
__ bind(&slow);
// Slow case: Jump to runtime.
// rdx: receiver
// rax: key
__ IncrementCounter(&Counters::keyed_load_generic_slow, 1);
GenerateRuntimeGetProperty(masm);
__ bind(&check_string);
// The key is not a smi.
// Is it a string?
// rdx: receiver
// rax: key
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rcx);
__ j(above_equal, &slow);
// Is the string an array index, with cached numeric value?
__ movl(rbx, FieldOperand(rax, String::kHashFieldOffset));
__ testl(rbx, Immediate(String::kContainsCachedArrayIndexMask));
__ j(zero, &index_string); // The value in rbx is used at jump target.
// Is the string a symbol?
ASSERT(kSymbolTag != 0);
__ testb(FieldOperand(rcx, Map::kInstanceTypeOffset),
Immediate(kIsSymbolMask));
__ j(zero, &slow);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary leaving result in rcx.
__ movq(rbx, FieldOperand(rdx, JSObject::kPropertiesOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(equal, &probe_dictionary);
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the string hash.
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
__ movl(rcx, rbx);
__ shr(rcx, Immediate(KeyedLookupCache::kMapHashShift));
__ movl(rdi, FieldOperand(rax, String::kHashFieldOffset));
__ shr(rdi, Immediate(String::kHashShift));
__ xor_(rcx, rdi);
__ and_(rcx, Immediate(KeyedLookupCache::kCapacityMask));
// Load the key (consisting of map and symbol) from the cache and
// check for match.
ExternalReference cache_keys
= ExternalReference::keyed_lookup_cache_keys();
__ movq(rdi, rcx);
__ shl(rdi, Immediate(kPointerSizeLog2 + 1));
__ movq(kScratchRegister, cache_keys);
__ cmpq(rbx, Operand(kScratchRegister, rdi, times_1, 0));
__ j(not_equal, &slow);
__ cmpq(rax, Operand(kScratchRegister, rdi, times_1, kPointerSize));
__ j(not_equal, &slow);
// Get field offset which is a 32-bit integer and check that it is
// an in-object property.
ExternalReference cache_field_offsets
= ExternalReference::keyed_lookup_cache_field_offsets();
__ movq(kScratchRegister, cache_field_offsets);
__ movl(rdi, Operand(kScratchRegister, rcx, times_4, 0));
__ movzxbq(rcx, FieldOperand(rbx, Map::kInObjectPropertiesOffset));
__ subq(rdi, rcx);
__ j(above_equal, &slow);
// Load in-object property.
__ movzxbq(rcx, FieldOperand(rbx, Map::kInstanceSizeOffset));
__ addq(rcx, rdi);
__ movq(rax, FieldOperand(rdx, rcx, times_pointer_size, 0));
__ IncrementCounter(&Counters::keyed_load_generic_lookup_cache, 1);
__ ret(0);
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
// rdx: receiver
// rax: key
GenerateDictionaryLoad(masm,
&slow,
rbx,
rdx,
rcx,
rax,
rdi,
DICTIONARY_CHECK_DONE);
__ movq(rax, rdx);
__ IncrementCounter(&Counters::keyed_load_generic_symbol, 1);
__ ret(0);
// If the hash field contains an array index pick it out. The assert checks
// that the constants for the maximum number of digits for an array index
// cached in the hash field and the number of bits reserved for it does not
// conflict.
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
__ bind(&index_string);
// We want the smi-tagged index in rax. Even if we subsequently go to
// the slow case, converting the key to a smi is always valid.
// rdx: receiver
// rax: key (a string)
// rbx: key's hash field, including its array index value.
__ and_(rbx, Immediate(String::kArrayIndexValueMask));
__ shr(rbx, Immediate(String::kHashShift));
// Here we actually clobber the key (rax) which will be used if calling into
// runtime later. However as the new key is the numeric value of a string key
// there is no difference in using either key.
__ Integer32ToSmi(rax, rbx);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Label index_out_of_range;
Register receiver = rdx;
Register index = rax;
Register scratch1 = rbx;
Register scratch2 = rcx;
Register result = rax;
StringCharAtGenerator char_at_generator(receiver,
index,
scratch1,
scratch2,
result,
&miss, // When not a string.
&miss, // When not a number.
&index_out_of_range,
STRING_INDEX_IS_ARRAY_INDEX);
char_at_generator.GenerateFast(masm);
__ ret(0);
ICRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, call_helper);
__ bind(&index_out_of_range);
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, failed_allocation;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &slow);
// Check that the object is a JS object.
__ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
__ j(not_equal, &slow);
// Check that the receiver does not require access checks. We need
// to check this explicitly since this generic stub does not perform
// map checks. The map is already in rdx.
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
// rax: index (as a smi)
// rdx: JSObject
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::RootIndexForExternalArrayType(array_type));
__ j(not_equal, &slow);
// Check that the index is in range.
__ SmiToInteger32(rcx, rax);
__ cmpl(rcx, FieldOperand(rbx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// rax: index (as a smi)
// rdx: receiver (JSObject)
// rcx: untagged index
// rbx: elements array
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
__ movsxbq(rcx, Operand(rbx, rcx, times_1, 0));
break;
case kExternalUnsignedByteArray:
__ movzxbq(rcx, Operand(rbx, rcx, times_1, 0));
break;
case kExternalShortArray:
__ movsxwq(rcx, Operand(rbx, rcx, times_2, 0));
break;
case kExternalUnsignedShortArray:
__ movzxwq(rcx, Operand(rbx, rcx, times_2, 0));
break;
case kExternalIntArray:
__ movsxlq(rcx, Operand(rbx, rcx, times_4, 0));
break;
case kExternalUnsignedIntArray:
__ movl(rcx, Operand(rbx, rcx, times_4, 0));
break;
case kExternalFloatArray:
__ fld_s(Operand(rbx, rcx, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
// rax: index
// rdx: receiver
// For integer array types:
// rcx: value
// For floating-point array type:
// FP(0): value
if (array_type == kExternalIntArray ||
array_type == kExternalUnsignedIntArray) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
if (array_type == kExternalIntArray) {
__ JumpIfNotValidSmiValue(rcx, &box_int);
} else {
ASSERT_EQ(array_type, kExternalUnsignedIntArray);
__ JumpIfUIntNotValidSmiValue(rcx, &box_int);
}
__ Integer32ToSmi(rax, rcx);
__ ret(0);
__ bind(&box_int);
// Allocate a HeapNumber for the int and perform int-to-double
// conversion.
__ push(rcx);
if (array_type == kExternalIntArray) {
__ fild_s(Operand(rsp, 0));
} else {
ASSERT(array_type == kExternalUnsignedIntArray);
// The value is zero-extended on the stack, because all pushes are
// 64-bit and we loaded the value from memory with movl.
__ fild_d(Operand(rsp, 0));
}
__ pop(rcx);
// FP(0): value
__ AllocateHeapNumber(rcx, rbx, &failed_allocation);
// Set the value.
__ movq(rax, rcx);
__ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ ret(0);
} else if (array_type == kExternalFloatArray) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
__ AllocateHeapNumber(rcx, rbx, &failed_allocation);
// Set the value.
__ movq(rax, rcx);
__ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ ret(0);
} else {
__ Integer32ToSmi(rax, rcx);
__ ret(0);
}
// If we fail allocation of the HeapNumber, we still have a value on
// top of the FPU stack. Remove it.
__ bind(&failed_allocation);
__ ffree();
__ fincstp();
// Fall through to slow case.
// Slow case: Jump to runtime.
__ bind(&slow);
__ IncrementCounter(&Counters::keyed_load_external_array_slow, 1);
GenerateRuntimeGetProperty(masm);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow;
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &slow);
// Get the map of the receiver.
__ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
// Check that it has indexed interceptor and access checks
// are not enabled for this object.
__ movb(rcx, FieldOperand(rcx, Map::kBitFieldOffset));
__ andb(rcx, Immediate(kSlowCaseBitFieldMask));
__ cmpb(rcx, Immediate(1 << Map::kHasIndexedInterceptor));
__ j(not_zero, &slow);
// Everything is fine, call runtime.
__ pop(rcx);
__ push(rdx); // receiver
__ push(rax); // key
__ push(rcx); // return address
// Perform tail call to the entry.
__ TailCallExternalReference(ExternalReference(
IC_Utility(kKeyedLoadPropertyWithInterceptor)), 2, 1);
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ pop(rbx);
__ push(rdx); // receiver
__ push(rcx); // key
__ push(rax); // value
__ push(rbx); // return address
// Do tail-call to runtime routine.
ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss));
__ TailCallExternalReference(ref, 3, 1);
}
void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ pop(rbx);
__ push(rdx); // receiver
__ push(rcx); // key
__ push(rax); // value
__ push(rbx); // return address
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 3, 1);
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, fast, array, extra, check_pixel_array;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Get the map from the receiver.
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &slow);
__ CmpInstanceType(rbx, JS_ARRAY_TYPE);
__ j(equal, &array);
// Check that the object is some kind of JS object.
__ CmpInstanceType(rbx, FIRST_JS_OBJECT_TYPE);
__ j(below, &slow);
// Object case: Check key against length in the elements array.
// rax: value
// rdx: JSObject
// rcx: index (as a smi)
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
// Check that the object is in fast mode (not dictionary).
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &check_pixel_array);
__ SmiCompare(rcx, FieldOperand(rbx, FixedArray::kLengthOffset));
// rax: value
// rbx: FixedArray
// rcx: index (as a smi)
__ j(below, &fast);
// Slow case: call runtime.
__ bind(&slow);
GenerateRuntimeSetProperty(masm);
// Check whether the elements is a pixel array.
// rax: value
// rdx: receiver
// rbx: receiver's elements array
// rcx: index (as a smi), zero-extended.
__ bind(&check_pixel_array);
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kPixelArrayMapRootIndex);
__ j(not_equal, &slow);
// Check that the value is a smi. If a conversion is needed call into the
// runtime to convert and clamp.
__ JumpIfNotSmi(rax, &slow);
__ SmiToInteger32(rdi, rcx);
__ cmpl(rdi, FieldOperand(rbx, PixelArray::kLengthOffset));
__ j(above_equal, &slow);
// No more bailouts to slow case on this path, so key not needed.
__ SmiToInteger32(rcx, rax);
{ // Clamp the value to [0..255].
Label done;
__ testl(rcx, Immediate(0xFFFFFF00));
__ j(zero, &done);
__ setcc(negative, rcx); // 1 if negative, 0 if positive.
__ decb(rcx); // 0 if negative, 255 if positive.
__ bind(&done);
}
__ movq(rbx, FieldOperand(rbx, PixelArray::kExternalPointerOffset));
__ movb(Operand(rbx, rdi, times_1, 0), rcx);
__ ret(0);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// rax: value
// rdx: receiver (a JSArray)
// rbx: receiver's elements array (a FixedArray)
// rcx: index (as a smi)
// flags: smicompare (rdx.length(), rbx)
__ j(not_equal, &slow); // do not leave holes in the array
__ SmiCompare(rcx, FieldOperand(rbx, FixedArray::kLengthOffset));
__ j(above_equal, &slow);
// Increment index to get new length.
__ SmiAddConstant(rdi, rcx, Smi::FromInt(1));
__ movq(FieldOperand(rdx, JSArray::kLengthOffset), rdi);
__ jmp(&fast);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode; if it is the
// length is always a smi.
__ bind(&array);
// rax: value
// rdx: receiver (a JSArray)
// rcx: index (as a smi)
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &slow);
// Check the key against the length in the array, compute the
// address to store into and fall through to fast case.
__ SmiCompare(FieldOperand(rdx, JSArray::kLengthOffset), rcx);
__ j(below_equal, &extra);
// Fast case: Do the store.
__ bind(&fast);
// rax: value
// rbx: receiver's elements array (a FixedArray)
// rcx: index (as a smi)
Label non_smi_value;
__ JumpIfNotSmi(rax, &non_smi_value);
SmiIndex index = masm->SmiToIndex(rcx, rcx, kPointerSizeLog2);
__ movq(FieldOperand(rbx, index.reg, index.scale, FixedArray::kHeaderSize),
rax);
__ ret(0);
__ bind(&non_smi_value);
// Slow case that needs to retain rcx for use by RecordWrite.
// Update write barrier for the elements array address.
SmiIndex index2 = masm->SmiToIndex(kScratchRegister, rcx, kPointerSizeLog2);
__ movq(FieldOperand(rbx, index2.reg, index2.scale, FixedArray::kHeaderSize),
rax);
__ movq(rdx, rax);
__ RecordWriteNonSmi(rbx, 0, rdx, rcx);
__ ret(0);
}
void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, check_heap_number;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Get the map from the receiver.
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &slow);
// Check that the object is a JS object.
__ CmpInstanceType(rbx, JS_OBJECT_TYPE);
__ j(not_equal, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::RootIndexForExternalArrayType(array_type));
__ j(not_equal, &slow);
// Check that the index is in range.
__ SmiToInteger32(rdi, rcx); // Untag the index.
__ cmpl(rdi, FieldOperand(rbx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
// rbx: elements array
// rdi: untagged key
__ JumpIfNotSmi(rax, &check_heap_number);
// No more branches to slow case on this path. Key and receiver not needed.
__ SmiToInteger32(rdx, rax);
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
case kExternalFloatArray:
// Need to perform int-to-float conversion.
__ push(rdx);
__ fild_s(Operand(rsp, 0));
__ pop(rdx);
__ fstp_s(Operand(rbx, rdi, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
__ ret(0);
__ bind(&check_heap_number);
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
// rbx: elements array
// rdi: untagged key
__ CmpObjectType(rax, HEAP_NUMBER_TYPE, kScratchRegister);
__ j(not_equal, &slow);
// No more branches to slow case on this path.
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rdi: untagged index
// rbx: base pointer of external storage
// top of FPU stack: value
if (array_type == kExternalFloatArray) {
__ fstp_s(Operand(rbx, rdi, times_4, 0));
__ ret(0);
} else {
// Need to perform float-to-int conversion.
// Test the top of the FP stack for NaN.
Label is_nan;
__ fucomi(0);
__ j(parity_even, &is_nan);
__ push(rdx); // Make room on the stack. Receiver is no longer needed.
__ fistp_d(Operand(rsp, 0));
__ pop(rdx);
// rdx: value (converted to an untagged integer)
// rdi: untagged index
// rbx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray: {
// We also need to explicitly check for +/-Infinity. These are
// converted to MIN_INT, but we need to be careful not to
// confuse with legal uses of MIN_INT. Since MIN_INT truncated
// to 8 or 16 bits is zero, we only perform this test when storing
// 32-bit ints.
Label not_infinity;
// This test would apparently detect both NaN and Infinity,
// but we've already checked for NaN using the FPU hardware
// above.
__ movzxwq(rcx, FieldOperand(rax, HeapNumber::kValueOffset + 6));
__ and_(rcx, Immediate(0x7FF0));
__ cmpw(rcx, Immediate(0x7FF0));
__ j(not_equal, &not_infinity);
__ movq(rdx, Immediate(0));
__ bind(&not_infinity);
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
}
default:
UNREACHABLE();
break;
}
__ ret(0);
__ bind(&is_nan);
// rdi: untagged index
// rbx: base pointer of external storage
__ ffree();
__ fincstp();
__ movq(rdx, Immediate(0));
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
default:
UNREACHABLE();
break;
}
__ ret(0);
}
// Slow case: call runtime.
__ bind(&slow);
GenerateRuntimeSetProperty(masm);
}
void CallIC::GenerateMiss(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
// Get the receiver of the function from the stack; 1 ~ return address.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Enter an internal frame.
__ EnterInternalFrame();
// Push the receiver and the name of the function.
__ push(rdx);
__ push(rcx);
// Call the entry.
CEntryStub stub(1);
__ movq(rax, Immediate(2));
__ movq(rbx, ExternalReference(IC_Utility(kCallIC_Miss)));
__ CallStub(&stub);
// Move result to rdi and exit the internal frame.
__ movq(rdi, rax);
__ LeaveInternalFrame();
// Check if the receiver is a global object of some sort.
Label invoke, global;
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize)); // receiver
__ JumpIfSmi(rdx, &invoke);
__ CmpObjectType(rdx, JS_GLOBAL_OBJECT_TYPE, rcx);
__ j(equal, &global);
__ CmpInstanceType(rcx, JS_BUILTINS_OBJECT_TYPE);
__ j(not_equal, &invoke);
// Patch the receiver on the stack.
__ bind(&global);
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
// Invoke the function.
ParameterCount actual(argc);
__ bind(&invoke);
__ InvokeFunction(rdi, actual, JUMP_FUNCTION);
}
// Defined in ic.cc.
Object* CallIC_Miss(Arguments args);
void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Label number, non_number, non_string, boolean, probe, miss;
// Get the receiver of the function from the stack; 1 ~ return address.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Probe the stub cache.
Code::Flags flags =
Code::ComputeFlags(Code::CALL_IC, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc);
StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, rax);
// If the stub cache probing failed, the receiver might be a value.
// For value objects, we use the map of the prototype objects for
// the corresponding JSValue for the cache and that is what we need
// to probe.
//
// Check for number.
__ JumpIfSmi(rdx, &number);
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rbx);
__ j(not_equal, &non_number);
__ bind(&number);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::NUMBER_FUNCTION_INDEX, rdx);
__ jmp(&probe);
// Check for string.
__ bind(&non_number);
__ CmpInstanceType(rbx, FIRST_NONSTRING_TYPE);
__ j(above_equal, &non_string);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::STRING_FUNCTION_INDEX, rdx);
__ jmp(&probe);
// Check for boolean.
__ bind(&non_string);
__ CompareRoot(rdx, Heap::kTrueValueRootIndex);
__ j(equal, &boolean);
__ CompareRoot(rdx, Heap::kFalseValueRootIndex);
__ j(not_equal, &miss);
__ bind(&boolean);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::BOOLEAN_FUNCTION_INDEX, rdx);
// Probe the stub cache for the value object.
__ bind(&probe);
StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, no_reg);
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm, argc);
}
static void GenerateNormalHelper(MacroAssembler* masm,
int argc,
bool is_global_object,
Label* miss) {
// ----------- S t a t e -------------
// rcx : function name
// rdx : receiver
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
// Search dictionary - put result in register rdx.
GenerateDictionaryLoad(masm, miss, rax, rdx, rbx, rcx, rdi, CHECK_DICTIONARY);
// Move the result to register rdi and check that it isn't a smi.
__ movq(rdi, rdx);
__ JumpIfSmi(rdx, miss);
// Check that the value is a JavaScript function.
__ CmpObjectType(rdx, JS_FUNCTION_TYPE, rdx);
__ j(not_equal, miss);
// Patch the receiver with the global proxy if necessary.
if (is_global_object) {
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(rdi, actual, JUMP_FUNCTION);
}
void CallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Label miss, global_object, non_global_object;
// Get the receiver of the function from the stack.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss);
// Check that the receiver is a valid JS object.
// Because there are so many map checks and type checks, do not
// use CmpObjectType, but load map and type into registers.
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
__ movb(rax, FieldOperand(rbx, Map::kInstanceTypeOffset));
__ cmpb(rax, Immediate(FIRST_JS_OBJECT_TYPE));
__ j(below, &miss);
// If this assert fails, we have to check upper bound too.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
// Check for access to global object.
__ cmpb(rax, Immediate(JS_GLOBAL_OBJECT_TYPE));
__ j(equal, &global_object);
__ cmpb(rax, Immediate(JS_BUILTINS_OBJECT_TYPE));
__ j(not_equal, &non_global_object);
// Accessing global object: Load and invoke.
__ bind(&global_object);
// Check that the global object does not require access checks.
__ movb(rbx, FieldOperand(rbx, Map::kBitFieldOffset));
__ testb(rbx, Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_equal, &miss);
GenerateNormalHelper(masm, argc, true, &miss);
// Accessing non-global object: Check for access to global proxy.
Label global_proxy, invoke;
__ bind(&non_global_object);
__ cmpb(rax, Immediate(JS_GLOBAL_PROXY_TYPE));
__ j(equal, &global_proxy);
// Check that the non-global, non-global-proxy object does not
// require access checks.
__ movb(rbx, FieldOperand(rbx, Map::kBitFieldOffset));
__ testb(rbx, Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_equal, &miss);
__ bind(&invoke);
GenerateNormalHelper(masm, argc, false, &miss);
// Global object proxy access: Check access rights.
__ bind(&global_proxy);
__ CheckAccessGlobalProxy(rdx, rax, &miss);
__ jmp(&invoke);
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm, argc);
}
void KeyedCallIC::GenerateMiss(MacroAssembler* masm, int argc) {
UNREACHABLE();
}
void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
UNREACHABLE();
}
void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
UNREACHABLE();
}
// The offset from the inlined patch site to the start of the
// inlined load instruction.
const int LoadIC::kOffsetToLoadInstruction = 20;
void LoadIC::ClearInlinedVersion(Address address) {
// Reset the map check of the inlined inobject property load (if
// present) to guarantee failure by holding an invalid map (the null
// value). The offset can be patched to anything.
PatchInlinedLoad(address, Heap::null_value(), kMaxInt);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
__ pop(rbx);
__ push(rax); // receiver
__ push(rcx); // name
__ push(rbx); // return address
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss));
__ TailCallExternalReference(ref, 2, 1);
}
void LoadIC::GenerateArrayLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadArrayLength(masm, rax, rdx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadFunctionPrototype(masm, rax, rdx, rbx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC,
NOT_IN_LOOP,
MONOMORPHIC);
StubCache::GenerateProbe(masm, flags, rax, rcx, rbx, rdx);
// Cache miss: Jump to runtime.
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss, probe, global;
// Check that the receiver isn't a smi.
__ JumpIfSmi(rax, &miss);
// Check that the receiver is a valid JS object.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx);
__ j(below, &miss);
// If this assert fails, we have to check upper bound too.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
// Check for access to global object (unlikely).
__ CmpInstanceType(rbx, JS_GLOBAL_PROXY_TYPE);
__ j(equal, &global);
// Check for non-global object that requires access check.
__ testl(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &miss);
// Search the dictionary placing the result in rax.
__ bind(&probe);
GenerateDictionaryLoad(masm, &miss, rdx, rax, rbx,
rcx, rdi, CHECK_DICTIONARY);
__ ret(0);
// Global object access: Check access rights.
__ bind(&global);
__ CheckAccessGlobalProxy(rax, rdx, &miss);
__ jmp(&probe);
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateStringLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadStringLength(masm, rax, rdx, rbx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test eax, nothing
// was inlined.
if (*test_instruction_address != kTestEaxByte) return false;
Address delta_address = test_instruction_address + 1;
// The delta to the start of the map check instruction.
int delta = *reinterpret_cast<int*>(delta_address);
// The map address is the last 8 bytes of the 10-byte
// immediate move instruction, so we add 2 to get the
// offset to the last 8 bytes.
Address map_address = test_instruction_address + delta + 2;
*(reinterpret_cast<Object**>(map_address)) = map;
// The offset is in the 32-bit displacement of a seven byte
// memory-to-register move instruction (REX.W 0x88 ModR/M disp32),
// so we add 3 to get the offset of the displacement.
Address offset_address =
test_instruction_address + delta + kOffsetToLoadInstruction + 3;
*reinterpret_cast<int*>(offset_address) = offset - kHeapObjectTag;
return true;
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ pop(rbx);
__ push(rdx); // receiver
__ push(rcx); // name
__ push(rax); // value
__ push(rbx); // return address
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss));
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
// Get the receiver from the stack and probe the stub cache.
Code::Flags flags = Code::ComputeFlags(Code::STORE_IC,
NOT_IN_LOOP,
MONOMORPHIC);
StubCache::GenerateProbe(masm, flags, rdx, rcx, rbx, no_reg);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateArrayLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
//
// This accepts as a receiver anything JSObject::SetElementsLength accepts
// (currently anything except for external and pixel arrays which means
// anything with elements of FixedArray type.), but currently is restricted
// to JSArray.
// Value must be a number, but only smis are accepted as the most common case.
Label miss;
Register receiver = rdx;
Register value = rax;
Register scratch = rbx;
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, &miss);
// Check that elements are FixedArray.
__ movq(scratch, FieldOperand(receiver, JSArray::kElementsOffset));
__ CmpObjectType(scratch, FIXED_ARRAY_TYPE, scratch);
__ j(not_equal, &miss);
// Check that value is a smi.
__ JumpIfNotSmi(value, &miss);
// Prepare tail call to StoreIC_ArrayLength.
__ pop(scratch);
__ push(receiver);
__ push(value);
__ push(scratch); // return address
ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength));
__ TailCallExternalReference(ref, 2, 1);
__ bind(&miss);
GenerateMiss(masm);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64