| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "factory.h" |
| #include "hydrogen.h" |
| |
| #if V8_TARGET_ARCH_IA32 |
| #include "ia32/lithium-ia32.h" |
| #elif V8_TARGET_ARCH_X64 |
| #include "x64/lithium-x64.h" |
| #elif V8_TARGET_ARCH_ARM |
| #include "arm/lithium-arm.h" |
| #elif V8_TARGET_ARCH_MIPS |
| #include "mips/lithium-mips.h" |
| #else |
| #error Unsupported target architecture. |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define DEFINE_COMPILE(type) \ |
| LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \ |
| return builder->Do##type(this); \ |
| } |
| HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE) |
| #undef DEFINE_COMPILE |
| |
| |
| const char* Representation::Mnemonic() const { |
| switch (kind_) { |
| case kNone: return "v"; |
| case kTagged: return "t"; |
| case kDouble: return "d"; |
| case kInteger32: return "i"; |
| case kExternal: return "x"; |
| case kNumRepresentations: |
| UNREACHABLE(); |
| return NULL; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| static int32_t ConvertAndSetOverflow(int64_t result, bool* overflow) { |
| if (result > kMaxInt) { |
| *overflow = true; |
| return kMaxInt; |
| } |
| if (result < kMinInt) { |
| *overflow = true; |
| return kMinInt; |
| } |
| return static_cast<int32_t>(result); |
| } |
| |
| |
| static int32_t AddWithoutOverflow(int32_t a, int32_t b, bool* overflow) { |
| int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b); |
| return ConvertAndSetOverflow(result, overflow); |
| } |
| |
| |
| static int32_t SubWithoutOverflow(int32_t a, int32_t b, bool* overflow) { |
| int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b); |
| return ConvertAndSetOverflow(result, overflow); |
| } |
| |
| |
| static int32_t MulWithoutOverflow(int32_t a, int32_t b, bool* overflow) { |
| int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b); |
| return ConvertAndSetOverflow(result, overflow); |
| } |
| |
| |
| int32_t Range::Mask() const { |
| if (lower_ == upper_) return lower_; |
| if (lower_ >= 0) { |
| int32_t res = 1; |
| while (res < upper_) { |
| res = (res << 1) | 1; |
| } |
| return res; |
| } |
| return 0xffffffff; |
| } |
| |
| |
| void Range::AddConstant(int32_t value) { |
| if (value == 0) return; |
| bool may_overflow = false; // Overflow is ignored here. |
| lower_ = AddWithoutOverflow(lower_, value, &may_overflow); |
| upper_ = AddWithoutOverflow(upper_, value, &may_overflow); |
| Verify(); |
| } |
| |
| |
| void Range::Intersect(Range* other) { |
| upper_ = Min(upper_, other->upper_); |
| lower_ = Max(lower_, other->lower_); |
| bool b = CanBeMinusZero() && other->CanBeMinusZero(); |
| set_can_be_minus_zero(b); |
| } |
| |
| |
| void Range::Union(Range* other) { |
| upper_ = Max(upper_, other->upper_); |
| lower_ = Min(lower_, other->lower_); |
| bool b = CanBeMinusZero() || other->CanBeMinusZero(); |
| set_can_be_minus_zero(b); |
| } |
| |
| |
| void Range::Sar(int32_t value) { |
| int32_t bits = value & 0x1F; |
| lower_ = lower_ >> bits; |
| upper_ = upper_ >> bits; |
| set_can_be_minus_zero(false); |
| } |
| |
| |
| void Range::Shl(int32_t value) { |
| int32_t bits = value & 0x1F; |
| int old_lower = lower_; |
| int old_upper = upper_; |
| lower_ = lower_ << bits; |
| upper_ = upper_ << bits; |
| if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) { |
| upper_ = kMaxInt; |
| lower_ = kMinInt; |
| } |
| set_can_be_minus_zero(false); |
| } |
| |
| |
| bool Range::AddAndCheckOverflow(Range* other) { |
| bool may_overflow = false; |
| lower_ = AddWithoutOverflow(lower_, other->lower(), &may_overflow); |
| upper_ = AddWithoutOverflow(upper_, other->upper(), &may_overflow); |
| KeepOrder(); |
| Verify(); |
| return may_overflow; |
| } |
| |
| |
| bool Range::SubAndCheckOverflow(Range* other) { |
| bool may_overflow = false; |
| lower_ = SubWithoutOverflow(lower_, other->upper(), &may_overflow); |
| upper_ = SubWithoutOverflow(upper_, other->lower(), &may_overflow); |
| KeepOrder(); |
| Verify(); |
| return may_overflow; |
| } |
| |
| |
| void Range::KeepOrder() { |
| if (lower_ > upper_) { |
| int32_t tmp = lower_; |
| lower_ = upper_; |
| upper_ = tmp; |
| } |
| } |
| |
| |
| void Range::Verify() const { |
| ASSERT(lower_ <= upper_); |
| } |
| |
| |
| bool Range::MulAndCheckOverflow(Range* other) { |
| bool may_overflow = false; |
| int v1 = MulWithoutOverflow(lower_, other->lower(), &may_overflow); |
| int v2 = MulWithoutOverflow(lower_, other->upper(), &may_overflow); |
| int v3 = MulWithoutOverflow(upper_, other->lower(), &may_overflow); |
| int v4 = MulWithoutOverflow(upper_, other->upper(), &may_overflow); |
| lower_ = Min(Min(v1, v2), Min(v3, v4)); |
| upper_ = Max(Max(v1, v2), Max(v3, v4)); |
| Verify(); |
| return may_overflow; |
| } |
| |
| |
| const char* HType::ToString() { |
| switch (type_) { |
| case kTagged: return "tagged"; |
| case kTaggedPrimitive: return "primitive"; |
| case kTaggedNumber: return "number"; |
| case kSmi: return "smi"; |
| case kHeapNumber: return "heap-number"; |
| case kString: return "string"; |
| case kBoolean: return "boolean"; |
| case kNonPrimitive: return "non-primitive"; |
| case kJSArray: return "array"; |
| case kJSObject: return "object"; |
| case kUninitialized: return "uninitialized"; |
| } |
| UNREACHABLE(); |
| return "Unreachable code"; |
| } |
| |
| |
| const char* HType::ToShortString() { |
| switch (type_) { |
| case kTagged: return "t"; |
| case kTaggedPrimitive: return "p"; |
| case kTaggedNumber: return "n"; |
| case kSmi: return "m"; |
| case kHeapNumber: return "h"; |
| case kString: return "s"; |
| case kBoolean: return "b"; |
| case kNonPrimitive: return "r"; |
| case kJSArray: return "a"; |
| case kJSObject: return "o"; |
| case kUninitialized: return "z"; |
| } |
| UNREACHABLE(); |
| return "Unreachable code"; |
| } |
| |
| |
| HType HType::TypeFromValue(Handle<Object> value) { |
| HType result = HType::Tagged(); |
| if (value->IsSmi()) { |
| result = HType::Smi(); |
| } else if (value->IsHeapNumber()) { |
| result = HType::HeapNumber(); |
| } else if (value->IsString()) { |
| result = HType::String(); |
| } else if (value->IsBoolean()) { |
| result = HType::Boolean(); |
| } else if (value->IsJSObject()) { |
| result = HType::JSObject(); |
| } else if (value->IsJSArray()) { |
| result = HType::JSArray(); |
| } |
| return result; |
| } |
| |
| |
| int HValue::LookupOperandIndex(int occurrence_index, HValue* op) { |
| for (int i = 0; i < OperandCount(); ++i) { |
| if (OperandAt(i) == op) { |
| if (occurrence_index == 0) return i; |
| --occurrence_index; |
| } |
| } |
| return -1; |
| } |
| |
| |
| bool HValue::IsDefinedAfter(HBasicBlock* other) const { |
| return block()->block_id() > other->block_id(); |
| } |
| |
| |
| bool HValue::UsesMultipleTimes(HValue* op) { |
| bool seen = false; |
| for (int i = 0; i < OperandCount(); ++i) { |
| if (OperandAt(i) == op) { |
| if (seen) return true; |
| seen = true; |
| } |
| } |
| return false; |
| } |
| |
| |
| bool HValue::Equals(HValue* other) { |
| if (other->opcode() != opcode()) return false; |
| if (!other->representation().Equals(representation())) return false; |
| if (!other->type_.Equals(type_)) return false; |
| if (other->flags() != flags()) return false; |
| if (OperandCount() != other->OperandCount()) return false; |
| for (int i = 0; i < OperandCount(); ++i) { |
| if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false; |
| } |
| bool result = DataEquals(other); |
| ASSERT(!result || Hashcode() == other->Hashcode()); |
| return result; |
| } |
| |
| |
| intptr_t HValue::Hashcode() { |
| intptr_t result = opcode(); |
| int count = OperandCount(); |
| for (int i = 0; i < count; ++i) { |
| result = result * 19 + OperandAt(i)->id() + (result >> 7); |
| } |
| return result; |
| } |
| |
| |
| void HValue::SetOperandAt(int index, HValue* value) { |
| ASSERT(value == NULL || !value->representation().IsNone()); |
| RegisterUse(index, value); |
| InternalSetOperandAt(index, value); |
| } |
| |
| |
| void HValue::ReplaceAndDelete(HValue* other) { |
| if (other != NULL) ReplaceValue(other); |
| Delete(); |
| } |
| |
| |
| void HValue::ReplaceValue(HValue* other) { |
| for (int i = 0; i < uses_.length(); ++i) { |
| HValue* use = uses_[i]; |
| ASSERT(!use->block()->IsStartBlock()); |
| InternalReplaceAtUse(use, other); |
| other->uses_.Add(use); |
| } |
| uses_.Rewind(0); |
| } |
| |
| |
| void HValue::ClearOperands() { |
| for (int i = 0; i < OperandCount(); ++i) { |
| SetOperandAt(i, NULL); |
| } |
| } |
| |
| |
| void HValue::Delete() { |
| ASSERT(HasNoUses()); |
| ClearOperands(); |
| DeleteFromGraph(); |
| } |
| |
| |
| void HValue::ReplaceAtUse(HValue* use, HValue* other) { |
| for (int i = 0; i < use->OperandCount(); ++i) { |
| if (use->OperandAt(i) == this) { |
| use->SetOperandAt(i, other); |
| } |
| } |
| } |
| |
| |
| void HValue::ReplaceFirstAtUse(HValue* use, HValue* other, Representation r) { |
| for (int i = 0; i < use->OperandCount(); ++i) { |
| if (use->RequiredInputRepresentation(i).Equals(r) && |
| use->OperandAt(i) == this) { |
| use->SetOperandAt(i, other); |
| return; |
| } |
| } |
| } |
| |
| |
| void HValue::InternalReplaceAtUse(HValue* use, HValue* other) { |
| for (int i = 0; i < use->OperandCount(); ++i) { |
| if (use->OperandAt(i) == this) { |
| // Call internal method that does not update use lists. The caller is |
| // responsible for doing so. |
| use->InternalSetOperandAt(i, other); |
| } |
| } |
| } |
| |
| |
| void HValue::SetBlock(HBasicBlock* block) { |
| ASSERT(block_ == NULL || block == NULL); |
| block_ = block; |
| if (id_ == kNoNumber && block != NULL) { |
| id_ = block->graph()->GetNextValueID(this); |
| } |
| } |
| |
| |
| void HValue::PrintTypeTo(HType type, StringStream* stream) { |
| stream->Add(type.ToShortString()); |
| } |
| |
| |
| void HValue::PrintNameTo(StringStream* stream) { |
| stream->Add("%s%d", representation_.Mnemonic(), id()); |
| } |
| |
| |
| bool HValue::UpdateInferredType() { |
| HType type = CalculateInferredType(); |
| bool result = (!type.Equals(type_)); |
| type_ = type; |
| return result; |
| } |
| |
| |
| void HValue::RegisterUse(int index, HValue* new_value) { |
| HValue* old_value = OperandAt(index); |
| if (old_value == new_value) return; |
| if (old_value != NULL) old_value->uses_.RemoveElement(this); |
| if (new_value != NULL) { |
| new_value->uses_.Add(this); |
| } |
| } |
| |
| |
| void HValue::AddNewRange(Range* r) { |
| if (!HasRange()) ComputeInitialRange(); |
| if (!HasRange()) range_ = new Range(); |
| ASSERT(HasRange()); |
| r->StackUpon(range_); |
| range_ = r; |
| } |
| |
| |
| void HValue::RemoveLastAddedRange() { |
| ASSERT(HasRange()); |
| ASSERT(range_->next() != NULL); |
| range_ = range_->next(); |
| } |
| |
| |
| void HValue::ComputeInitialRange() { |
| ASSERT(!HasRange()); |
| range_ = InferRange(); |
| ASSERT(HasRange()); |
| } |
| |
| |
| void HInstruction::PrintTo(StringStream* stream) { |
| stream->Add("%s", Mnemonic()); |
| if (HasSideEffects()) stream->Add("*"); |
| stream->Add(" "); |
| PrintDataTo(stream); |
| |
| if (range() != NULL && |
| !range()->IsMostGeneric() && |
| !range()->CanBeMinusZero()) { |
| stream->Add(" range[%d,%d,m0=%d]", |
| range()->lower(), |
| range()->upper(), |
| static_cast<int>(range()->CanBeMinusZero())); |
| } |
| |
| int changes_flags = (flags() & HValue::ChangesFlagsMask()); |
| if (changes_flags != 0) { |
| stream->Add(" changes[0x%x]", changes_flags); |
| } |
| |
| if (representation().IsTagged() && !type().Equals(HType::Tagged())) { |
| stream->Add(" type[%s]", type().ToString()); |
| } |
| } |
| |
| |
| void HInstruction::Unlink() { |
| ASSERT(IsLinked()); |
| ASSERT(!IsControlInstruction()); // Must never move control instructions. |
| ASSERT(!IsBlockEntry()); // Doesn't make sense to delete these. |
| ASSERT(previous_ != NULL); |
| previous_->next_ = next_; |
| if (next_ == NULL) { |
| ASSERT(block()->last() == this); |
| block()->set_last(previous_); |
| } else { |
| next_->previous_ = previous_; |
| } |
| clear_block(); |
| } |
| |
| |
| void HInstruction::InsertBefore(HInstruction* next) { |
| ASSERT(!IsLinked()); |
| ASSERT(!next->IsBlockEntry()); |
| ASSERT(!IsControlInstruction()); |
| ASSERT(!next->block()->IsStartBlock()); |
| ASSERT(next->previous_ != NULL); |
| HInstruction* prev = next->previous(); |
| prev->next_ = this; |
| next->previous_ = this; |
| next_ = next; |
| previous_ = prev; |
| SetBlock(next->block()); |
| } |
| |
| |
| void HInstruction::InsertAfter(HInstruction* previous) { |
| ASSERT(!IsLinked()); |
| ASSERT(!previous->IsControlInstruction()); |
| ASSERT(!IsControlInstruction() || previous->next_ == NULL); |
| HBasicBlock* block = previous->block(); |
| // Never insert anything except constants into the start block after finishing |
| // it. |
| if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) { |
| ASSERT(block->end()->SecondSuccessor() == NULL); |
| InsertAfter(block->end()->FirstSuccessor()->first()); |
| return; |
| } |
| |
| // If we're inserting after an instruction with side-effects that is |
| // followed by a simulate instruction, we need to insert after the |
| // simulate instruction instead. |
| HInstruction* next = previous->next_; |
| if (previous->HasSideEffects() && next != NULL) { |
| ASSERT(next->IsSimulate()); |
| previous = next; |
| next = previous->next_; |
| } |
| |
| previous_ = previous; |
| next_ = next; |
| SetBlock(block); |
| previous->next_ = this; |
| if (next != NULL) next->previous_ = this; |
| } |
| |
| |
| #ifdef DEBUG |
| void HInstruction::Verify() { |
| // Verify that input operands are defined before use. |
| HBasicBlock* cur_block = block(); |
| for (int i = 0; i < OperandCount(); ++i) { |
| HValue* other_operand = OperandAt(i); |
| HBasicBlock* other_block = other_operand->block(); |
| if (cur_block == other_block) { |
| if (!other_operand->IsPhi()) { |
| HInstruction* cur = cur_block->first(); |
| while (cur != NULL) { |
| ASSERT(cur != this); // We should reach other_operand before! |
| if (cur == other_operand) break; |
| cur = cur->next(); |
| } |
| // Must reach other operand in the same block! |
| ASSERT(cur == other_operand); |
| } |
| } else { |
| ASSERT(other_block->Dominates(cur_block)); |
| } |
| } |
| |
| // Verify that instructions that may have side-effects are followed |
| // by a simulate instruction. |
| if (HasSideEffects() && !IsOsrEntry()) { |
| ASSERT(next()->IsSimulate()); |
| } |
| |
| // Verify that instructions that can be eliminated by GVN have overridden |
| // HValue::DataEquals. The default implementation is UNREACHABLE. We |
| // don't actually care whether DataEquals returns true or false here. |
| if (CheckFlag(kUseGVN)) DataEquals(this); |
| } |
| #endif |
| |
| |
| void HUnaryCall::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| stream->Add(" "); |
| stream->Add("#%d", argument_count()); |
| } |
| |
| |
| void HBinaryCall::PrintDataTo(StringStream* stream) { |
| first()->PrintNameTo(stream); |
| stream->Add(" "); |
| second()->PrintNameTo(stream); |
| stream->Add(" "); |
| stream->Add("#%d", argument_count()); |
| } |
| |
| |
| void HCallConstantFunction::PrintDataTo(StringStream* stream) { |
| if (IsApplyFunction()) { |
| stream->Add("optimized apply "); |
| } else { |
| stream->Add("%o ", function()->shared()->DebugName()); |
| } |
| stream->Add("#%d", argument_count()); |
| } |
| |
| |
| void HCallNamed::PrintDataTo(StringStream* stream) { |
| stream->Add("%o ", *name()); |
| HUnaryCall::PrintDataTo(stream); |
| } |
| |
| |
| void HCallGlobal::PrintDataTo(StringStream* stream) { |
| stream->Add("%o ", *name()); |
| HUnaryCall::PrintDataTo(stream); |
| } |
| |
| |
| void HCallKnownGlobal::PrintDataTo(StringStream* stream) { |
| stream->Add("o ", target()->shared()->DebugName()); |
| stream->Add("#%d", argument_count()); |
| } |
| |
| |
| void HCallRuntime::PrintDataTo(StringStream* stream) { |
| stream->Add("%o ", *name()); |
| stream->Add("#%d", argument_count()); |
| } |
| |
| |
| void HClassOfTest::PrintDataTo(StringStream* stream) { |
| stream->Add("class_of_test("); |
| value()->PrintNameTo(stream); |
| stream->Add(", \"%o\")", *class_name()); |
| } |
| |
| |
| void HAccessArgumentsAt::PrintDataTo(StringStream* stream) { |
| arguments()->PrintNameTo(stream); |
| stream->Add("["); |
| index()->PrintNameTo(stream); |
| stream->Add("], length "); |
| length()->PrintNameTo(stream); |
| } |
| |
| |
| void HControlInstruction::PrintDataTo(StringStream* stream) { |
| if (FirstSuccessor() != NULL) { |
| int first_id = FirstSuccessor()->block_id(); |
| if (SecondSuccessor() == NULL) { |
| stream->Add(" B%d", first_id); |
| } else { |
| int second_id = SecondSuccessor()->block_id(); |
| stream->Add(" goto (B%d, B%d)", first_id, second_id); |
| } |
| } |
| } |
| |
| |
| void HUnaryControlInstruction::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| HControlInstruction::PrintDataTo(stream); |
| } |
| |
| |
| void HCompareMap::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| stream->Add(" (%p)", *map()); |
| HControlInstruction::PrintDataTo(stream); |
| } |
| |
| |
| const char* HUnaryMathOperation::OpName() const { |
| switch (op()) { |
| case kMathFloor: return "floor"; |
| case kMathRound: return "round"; |
| case kMathCeil: return "ceil"; |
| case kMathAbs: return "abs"; |
| case kMathLog: return "log"; |
| case kMathSin: return "sin"; |
| case kMathCos: return "cos"; |
| case kMathTan: return "tan"; |
| case kMathASin: return "asin"; |
| case kMathACos: return "acos"; |
| case kMathATan: return "atan"; |
| case kMathExp: return "exp"; |
| case kMathSqrt: return "sqrt"; |
| default: break; |
| } |
| return "(unknown operation)"; |
| } |
| |
| |
| void HUnaryMathOperation::PrintDataTo(StringStream* stream) { |
| const char* name = OpName(); |
| stream->Add("%s ", name); |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| void HUnaryOperation::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| void HHasInstanceType::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| switch (from_) { |
| case FIRST_JS_OBJECT_TYPE: |
| if (to_ == LAST_TYPE) stream->Add(" spec_object"); |
| break; |
| case JS_REGEXP_TYPE: |
| if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp"); |
| break; |
| case JS_ARRAY_TYPE: |
| if (to_ == JS_ARRAY_TYPE) stream->Add(" array"); |
| break; |
| case JS_FUNCTION_TYPE: |
| if (to_ == JS_FUNCTION_TYPE) stream->Add(" function"); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| |
| void HTypeofIs::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| stream->Add(" == "); |
| stream->Add(type_literal_->ToAsciiVector()); |
| } |
| |
| |
| void HChange::PrintDataTo(StringStream* stream) { |
| HUnaryOperation::PrintDataTo(stream); |
| stream->Add(" %s to %s", from_.Mnemonic(), to().Mnemonic()); |
| |
| if (CanTruncateToInt32()) stream->Add(" truncating-int32"); |
| if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?"); |
| } |
| |
| |
| HCheckInstanceType* HCheckInstanceType::NewIsJSObjectOrJSFunction( |
| HValue* value) { |
| STATIC_ASSERT((LAST_JS_OBJECT_TYPE + 1) == JS_FUNCTION_TYPE); |
| return new HCheckInstanceType(value, FIRST_JS_OBJECT_TYPE, JS_FUNCTION_TYPE); |
| } |
| |
| |
| void HCheckMap::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| stream->Add(" %p", *map()); |
| } |
| |
| |
| void HCheckFunction::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| stream->Add(" %p", *target()); |
| } |
| |
| |
| void HCallStub::PrintDataTo(StringStream* stream) { |
| stream->Add("%s ", |
| CodeStub::MajorName(major_key_, false)); |
| HUnaryCall::PrintDataTo(stream); |
| } |
| |
| |
| void HInstanceOf::PrintDataTo(StringStream* stream) { |
| left()->PrintNameTo(stream); |
| stream->Add(" "); |
| right()->PrintNameTo(stream); |
| stream->Add(" "); |
| context()->PrintNameTo(stream); |
| } |
| |
| |
| Range* HValue::InferRange() { |
| if (representation().IsTagged()) { |
| // Tagged values are always in int32 range when converted to integer, |
| // but they can contain -0. |
| Range* result = new Range(); |
| result->set_can_be_minus_zero(true); |
| return result; |
| } else if (representation().IsNone()) { |
| return NULL; |
| } else { |
| // Untagged integer32 cannot be -0 and we don't compute ranges for |
| // untagged doubles. |
| return new Range(); |
| } |
| } |
| |
| |
| Range* HConstant::InferRange() { |
| if (has_int32_value_) { |
| Range* result = new Range(int32_value_, int32_value_); |
| result->set_can_be_minus_zero(false); |
| return result; |
| } |
| return HValue::InferRange(); |
| } |
| |
| |
| Range* HPhi::InferRange() { |
| if (representation().IsInteger32()) { |
| if (block()->IsLoopHeader()) { |
| Range* range = new Range(kMinInt, kMaxInt); |
| return range; |
| } else { |
| Range* range = OperandAt(0)->range()->Copy(); |
| for (int i = 1; i < OperandCount(); ++i) { |
| range->Union(OperandAt(i)->range()); |
| } |
| return range; |
| } |
| } else { |
| return HValue::InferRange(); |
| } |
| } |
| |
| |
| Range* HAdd::InferRange() { |
| if (representation().IsInteger32()) { |
| Range* a = left()->range(); |
| Range* b = right()->range(); |
| Range* res = a->Copy(); |
| if (!res->AddAndCheckOverflow(b)) { |
| ClearFlag(kCanOverflow); |
| } |
| bool m0 = a->CanBeMinusZero() && b->CanBeMinusZero(); |
| res->set_can_be_minus_zero(m0); |
| return res; |
| } else { |
| return HValue::InferRange(); |
| } |
| } |
| |
| |
| Range* HSub::InferRange() { |
| if (representation().IsInteger32()) { |
| Range* a = left()->range(); |
| Range* b = right()->range(); |
| Range* res = a->Copy(); |
| if (!res->SubAndCheckOverflow(b)) { |
| ClearFlag(kCanOverflow); |
| } |
| res->set_can_be_minus_zero(a->CanBeMinusZero() && b->CanBeZero()); |
| return res; |
| } else { |
| return HValue::InferRange(); |
| } |
| } |
| |
| |
| Range* HMul::InferRange() { |
| if (representation().IsInteger32()) { |
| Range* a = left()->range(); |
| Range* b = right()->range(); |
| Range* res = a->Copy(); |
| if (!res->MulAndCheckOverflow(b)) { |
| ClearFlag(kCanOverflow); |
| } |
| bool m0 = (a->CanBeZero() && b->CanBeNegative()) || |
| (a->CanBeNegative() && b->CanBeZero()); |
| res->set_can_be_minus_zero(m0); |
| return res; |
| } else { |
| return HValue::InferRange(); |
| } |
| } |
| |
| |
| Range* HDiv::InferRange() { |
| if (representation().IsInteger32()) { |
| Range* result = new Range(); |
| if (left()->range()->CanBeMinusZero()) { |
| result->set_can_be_minus_zero(true); |
| } |
| |
| if (left()->range()->CanBeZero() && right()->range()->CanBeNegative()) { |
| result->set_can_be_minus_zero(true); |
| } |
| |
| if (right()->range()->Includes(-1) && left()->range()->Includes(kMinInt)) { |
| SetFlag(HValue::kCanOverflow); |
| } |
| |
| if (!right()->range()->CanBeZero()) { |
| ClearFlag(HValue::kCanBeDivByZero); |
| } |
| return result; |
| } else { |
| return HValue::InferRange(); |
| } |
| } |
| |
| |
| Range* HMod::InferRange() { |
| if (representation().IsInteger32()) { |
| Range* a = left()->range(); |
| Range* result = new Range(); |
| if (a->CanBeMinusZero() || a->CanBeNegative()) { |
| result->set_can_be_minus_zero(true); |
| } |
| if (!right()->range()->CanBeZero()) { |
| ClearFlag(HValue::kCanBeDivByZero); |
| } |
| return result; |
| } else { |
| return HValue::InferRange(); |
| } |
| } |
| |
| |
| void HPhi::PrintTo(StringStream* stream) { |
| stream->Add("["); |
| for (int i = 0; i < OperandCount(); ++i) { |
| HValue* value = OperandAt(i); |
| stream->Add(" "); |
| value->PrintNameTo(stream); |
| stream->Add(" "); |
| } |
| stream->Add(" uses%d_%di_%dd_%dt]", |
| uses()->length(), |
| int32_non_phi_uses() + int32_indirect_uses(), |
| double_non_phi_uses() + double_indirect_uses(), |
| tagged_non_phi_uses() + tagged_indirect_uses()); |
| } |
| |
| |
| void HPhi::AddInput(HValue* value) { |
| inputs_.Add(NULL); |
| SetOperandAt(OperandCount() - 1, value); |
| // Mark phis that may have 'arguments' directly or indirectly as an operand. |
| if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) { |
| SetFlag(kIsArguments); |
| } |
| } |
| |
| |
| bool HPhi::HasRealUses() { |
| for (int i = 0; i < uses()->length(); i++) { |
| if (!uses()->at(i)->IsPhi()) return true; |
| } |
| return false; |
| } |
| |
| |
| HValue* HPhi::GetRedundantReplacement() { |
| HValue* candidate = NULL; |
| int count = OperandCount(); |
| int position = 0; |
| while (position < count && candidate == NULL) { |
| HValue* current = OperandAt(position++); |
| if (current != this) candidate = current; |
| } |
| while (position < count) { |
| HValue* current = OperandAt(position++); |
| if (current != this && current != candidate) return NULL; |
| } |
| ASSERT(candidate != this); |
| return candidate; |
| } |
| |
| |
| void HPhi::DeleteFromGraph() { |
| ASSERT(block() != NULL); |
| block()->RemovePhi(this); |
| ASSERT(block() == NULL); |
| } |
| |
| |
| void HPhi::InitRealUses(int phi_id) { |
| // Initialize real uses. |
| phi_id_ = phi_id; |
| for (int j = 0; j < uses()->length(); j++) { |
| HValue* use = uses()->at(j); |
| if (!use->IsPhi()) { |
| int index = use->LookupOperandIndex(0, this); |
| Representation req_rep = use->RequiredInputRepresentation(index); |
| non_phi_uses_[req_rep.kind()]++; |
| } |
| } |
| } |
| |
| |
| void HPhi::AddNonPhiUsesFrom(HPhi* other) { |
| for (int i = 0; i < Representation::kNumRepresentations; i++) { |
| indirect_uses_[i] += other->non_phi_uses_[i]; |
| } |
| } |
| |
| |
| void HPhi::AddIndirectUsesTo(int* dest) { |
| for (int i = 0; i < Representation::kNumRepresentations; i++) { |
| dest[i] += indirect_uses_[i]; |
| } |
| } |
| |
| |
| void HSimulate::PrintDataTo(StringStream* stream) { |
| stream->Add("id=%d ", ast_id()); |
| if (pop_count_ > 0) stream->Add("pop %d", pop_count_); |
| if (values_.length() > 0) { |
| if (pop_count_ > 0) stream->Add(" /"); |
| for (int i = 0; i < values_.length(); ++i) { |
| if (!HasAssignedIndexAt(i)) { |
| stream->Add(" push "); |
| } else { |
| stream->Add(" var[%d] = ", GetAssignedIndexAt(i)); |
| } |
| values_[i]->PrintNameTo(stream); |
| } |
| } |
| } |
| |
| |
| void HEnterInlined::PrintDataTo(StringStream* stream) { |
| SmartPointer<char> name = function()->debug_name()->ToCString(); |
| stream->Add("%s, id=%d", *name, function()->id()); |
| } |
| |
| |
| HConstant::HConstant(Handle<Object> handle, Representation r) |
| : handle_(handle), |
| constant_type_(HType::TypeFromValue(handle)), |
| has_int32_value_(false), |
| int32_value_(0), |
| has_double_value_(false), |
| double_value_(0) { |
| set_representation(r); |
| SetFlag(kUseGVN); |
| if (handle_->IsNumber()) { |
| double n = handle_->Number(); |
| double roundtrip_value = static_cast<double>(static_cast<int32_t>(n)); |
| has_int32_value_ = BitCast<int64_t>(roundtrip_value) == BitCast<int64_t>(n); |
| if (has_int32_value_) int32_value_ = static_cast<int32_t>(n); |
| double_value_ = n; |
| has_double_value_ = true; |
| } |
| } |
| |
| |
| HConstant* HConstant::CopyToRepresentation(Representation r) const { |
| if (r.IsInteger32() && !has_int32_value_) return NULL; |
| if (r.IsDouble() && !has_double_value_) return NULL; |
| return new HConstant(handle_, r); |
| } |
| |
| |
| HConstant* HConstant::CopyToTruncatedInt32() const { |
| if (!has_double_value_) return NULL; |
| int32_t truncated = NumberToInt32(*handle_); |
| return new HConstant(FACTORY->NewNumberFromInt(truncated), |
| Representation::Integer32()); |
| } |
| |
| |
| bool HConstant::ToBoolean() const { |
| // Converts the constant's boolean value according to |
| // ECMAScript section 9.2 ToBoolean conversion. |
| if (HasInteger32Value()) return Integer32Value() != 0; |
| if (HasDoubleValue()) { |
| double v = DoubleValue(); |
| return v != 0 && !isnan(v); |
| } |
| if (handle()->IsTrue()) return true; |
| if (handle()->IsFalse()) return false; |
| if (handle()->IsUndefined()) return false; |
| if (handle()->IsNull()) return false; |
| if (handle()->IsString() && |
| String::cast(*handle())->length() == 0) return false; |
| return true; |
| } |
| |
| void HConstant::PrintDataTo(StringStream* stream) { |
| handle()->ShortPrint(stream); |
| } |
| |
| |
| bool HArrayLiteral::IsCopyOnWrite() const { |
| return constant_elements()->map() == HEAP->fixed_cow_array_map(); |
| } |
| |
| |
| void HBinaryOperation::PrintDataTo(StringStream* stream) { |
| left()->PrintNameTo(stream); |
| stream->Add(" "); |
| right()->PrintNameTo(stream); |
| if (CheckFlag(kCanOverflow)) stream->Add(" !"); |
| if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?"); |
| } |
| |
| |
| Range* HBitAnd::InferRange() { |
| int32_t left_mask = (left()->range() != NULL) |
| ? left()->range()->Mask() |
| : 0xffffffff; |
| int32_t right_mask = (right()->range() != NULL) |
| ? right()->range()->Mask() |
| : 0xffffffff; |
| int32_t result_mask = left_mask & right_mask; |
| return (result_mask >= 0) |
| ? new Range(0, result_mask) |
| : HValue::InferRange(); |
| } |
| |
| |
| Range* HBitOr::InferRange() { |
| int32_t left_mask = (left()->range() != NULL) |
| ? left()->range()->Mask() |
| : 0xffffffff; |
| int32_t right_mask = (right()->range() != NULL) |
| ? right()->range()->Mask() |
| : 0xffffffff; |
| int32_t result_mask = left_mask | right_mask; |
| return (result_mask >= 0) |
| ? new Range(0, result_mask) |
| : HValue::InferRange(); |
| } |
| |
| |
| Range* HSar::InferRange() { |
| if (right()->IsConstant()) { |
| HConstant* c = HConstant::cast(right()); |
| if (c->HasInteger32Value()) { |
| Range* result = (left()->range() != NULL) |
| ? left()->range()->Copy() |
| : new Range(); |
| result->Sar(c->Integer32Value()); |
| return result; |
| } |
| } |
| return HValue::InferRange(); |
| } |
| |
| |
| Range* HShl::InferRange() { |
| if (right()->IsConstant()) { |
| HConstant* c = HConstant::cast(right()); |
| if (c->HasInteger32Value()) { |
| Range* result = (left()->range() != NULL) |
| ? left()->range()->Copy() |
| : new Range(); |
| result->Shl(c->Integer32Value()); |
| return result; |
| } |
| } |
| return HValue::InferRange(); |
| } |
| |
| |
| |
| void HCompare::PrintDataTo(StringStream* stream) { |
| stream->Add(Token::Name(token())); |
| stream->Add(" "); |
| HBinaryOperation::PrintDataTo(stream); |
| } |
| |
| |
| void HCompare::SetInputRepresentation(Representation r) { |
| input_representation_ = r; |
| if (r.IsTagged()) { |
| SetAllSideEffects(); |
| ClearFlag(kUseGVN); |
| } else if (r.IsDouble()) { |
| SetFlag(kDeoptimizeOnUndefined); |
| ClearAllSideEffects(); |
| SetFlag(kUseGVN); |
| } else { |
| ClearAllSideEffects(); |
| SetFlag(kUseGVN); |
| } |
| } |
| |
| |
| void HParameter::PrintDataTo(StringStream* stream) { |
| stream->Add("%u", index()); |
| } |
| |
| |
| void HLoadNamedField::PrintDataTo(StringStream* stream) { |
| object()->PrintNameTo(stream); |
| stream->Add(" @%d%s", offset(), is_in_object() ? "[in-object]" : ""); |
| } |
| |
| |
| HLoadNamedFieldPolymorphic::HLoadNamedFieldPolymorphic(HValue* object, |
| ZoneMapList* types, |
| Handle<String> name) |
| : HUnaryOperation(object), |
| types_(Min(types->length(), kMaxLoadPolymorphism)), |
| name_(name), |
| need_generic_(false) { |
| set_representation(Representation::Tagged()); |
| SetFlag(kDependsOnMaps); |
| for (int i = 0; |
| i < types->length() && types_.length() < kMaxLoadPolymorphism; |
| ++i) { |
| Handle<Map> map = types->at(i); |
| LookupResult lookup; |
| map->LookupInDescriptors(NULL, *name, &lookup); |
| if (lookup.IsProperty() && lookup.type() == FIELD) { |
| types_.Add(types->at(i)); |
| int index = lookup.GetLocalFieldIndexFromMap(*map); |
| if (index < 0) { |
| SetFlag(kDependsOnInobjectFields); |
| } else { |
| SetFlag(kDependsOnBackingStoreFields); |
| } |
| } |
| } |
| |
| if (types_.length() == types->length() && FLAG_deoptimize_uncommon_cases) { |
| SetFlag(kUseGVN); |
| } else { |
| SetAllSideEffects(); |
| need_generic_ = true; |
| } |
| } |
| |
| |
| bool HLoadNamedFieldPolymorphic::DataEquals(HValue* value) { |
| HLoadNamedFieldPolymorphic* other = HLoadNamedFieldPolymorphic::cast(value); |
| if (types_.length() != other->types()->length()) return false; |
| if (!name_.is_identical_to(other->name())) return false; |
| if (need_generic_ != other->need_generic_) return false; |
| for (int i = 0; i < types_.length(); i++) { |
| bool found = false; |
| for (int j = 0; j < types_.length(); j++) { |
| if (types_.at(j).is_identical_to(other->types()->at(i))) { |
| found = true; |
| break; |
| } |
| } |
| if (!found) return false; |
| } |
| return true; |
| } |
| |
| |
| void HLoadKeyedFastElement::PrintDataTo(StringStream* stream) { |
| object()->PrintNameTo(stream); |
| stream->Add("["); |
| key()->PrintNameTo(stream); |
| stream->Add("]"); |
| } |
| |
| |
| void HLoadKeyedGeneric::PrintDataTo(StringStream* stream) { |
| object()->PrintNameTo(stream); |
| stream->Add("["); |
| key()->PrintNameTo(stream); |
| stream->Add("]"); |
| } |
| |
| |
| void HLoadKeyedSpecializedArrayElement::PrintDataTo( |
| StringStream* stream) { |
| external_pointer()->PrintNameTo(stream); |
| stream->Add("."); |
| switch (array_type()) { |
| case kExternalByteArray: |
| stream->Add("byte"); |
| break; |
| case kExternalUnsignedByteArray: |
| stream->Add("u_byte"); |
| break; |
| case kExternalShortArray: |
| stream->Add("short"); |
| break; |
| case kExternalUnsignedShortArray: |
| stream->Add("u_short"); |
| break; |
| case kExternalIntArray: |
| stream->Add("int"); |
| break; |
| case kExternalUnsignedIntArray: |
| stream->Add("u_int"); |
| break; |
| case kExternalFloatArray: |
| stream->Add("float"); |
| break; |
| case kExternalPixelArray: |
| stream->Add("pixel"); |
| break; |
| } |
| stream->Add("["); |
| key()->PrintNameTo(stream); |
| stream->Add("]"); |
| } |
| |
| |
| void HStoreNamedGeneric::PrintDataTo(StringStream* stream) { |
| object()->PrintNameTo(stream); |
| stream->Add("."); |
| ASSERT(name()->IsString()); |
| stream->Add(*String::cast(*name())->ToCString()); |
| stream->Add(" = "); |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| void HStoreNamedField::PrintDataTo(StringStream* stream) { |
| object()->PrintNameTo(stream); |
| stream->Add("."); |
| ASSERT(name()->IsString()); |
| stream->Add(*String::cast(*name())->ToCString()); |
| stream->Add(" = "); |
| value()->PrintNameTo(stream); |
| if (!transition().is_null()) { |
| stream->Add(" (transition map %p)", *transition()); |
| } |
| } |
| |
| |
| void HStoreKeyedFastElement::PrintDataTo(StringStream* stream) { |
| object()->PrintNameTo(stream); |
| stream->Add("["); |
| key()->PrintNameTo(stream); |
| stream->Add("] = "); |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| void HStoreKeyedGeneric::PrintDataTo(StringStream* stream) { |
| object()->PrintNameTo(stream); |
| stream->Add("["); |
| key()->PrintNameTo(stream); |
| stream->Add("] = "); |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| void HStoreKeyedSpecializedArrayElement::PrintDataTo( |
| StringStream* stream) { |
| external_pointer()->PrintNameTo(stream); |
| stream->Add("."); |
| switch (array_type()) { |
| case kExternalByteArray: |
| stream->Add("byte"); |
| break; |
| case kExternalUnsignedByteArray: |
| stream->Add("u_byte"); |
| break; |
| case kExternalShortArray: |
| stream->Add("short"); |
| break; |
| case kExternalUnsignedShortArray: |
| stream->Add("u_short"); |
| break; |
| case kExternalIntArray: |
| stream->Add("int"); |
| break; |
| case kExternalUnsignedIntArray: |
| stream->Add("u_int"); |
| break; |
| case kExternalFloatArray: |
| stream->Add("float"); |
| break; |
| case kExternalPixelArray: |
| stream->Add("pixel"); |
| break; |
| } |
| stream->Add("["); |
| key()->PrintNameTo(stream); |
| stream->Add("] = "); |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| void HLoadGlobalCell::PrintDataTo(StringStream* stream) { |
| stream->Add("[%p]", *cell()); |
| if (check_hole_value()) stream->Add(" (deleteable/read-only)"); |
| } |
| |
| |
| void HLoadGlobalGeneric::PrintDataTo(StringStream* stream) { |
| stream->Add("%o ", *name()); |
| } |
| |
| |
| void HStoreGlobalCell::PrintDataTo(StringStream* stream) { |
| stream->Add("[%p] = ", *cell()); |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| void HStoreGlobalGeneric::PrintDataTo(StringStream* stream) { |
| stream->Add("%o = ", *name()); |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| void HLoadContextSlot::PrintDataTo(StringStream* stream) { |
| value()->PrintNameTo(stream); |
| stream->Add("[%d]", slot_index()); |
| } |
| |
| |
| void HStoreContextSlot::PrintDataTo(StringStream* stream) { |
| context()->PrintNameTo(stream); |
| stream->Add("[%d] = ", slot_index()); |
| value()->PrintNameTo(stream); |
| } |
| |
| |
| // Implementation of type inference and type conversions. Calculates |
| // the inferred type of this instruction based on the input operands. |
| |
| HType HValue::CalculateInferredType() { |
| return type_; |
| } |
| |
| |
| HType HCheckMap::CalculateInferredType() { |
| return value()->type(); |
| } |
| |
| |
| HType HCheckFunction::CalculateInferredType() { |
| return value()->type(); |
| } |
| |
| |
| HType HCheckNonSmi::CalculateInferredType() { |
| // TODO(kasperl): Is there any way to signal that this isn't a smi? |
| return HType::Tagged(); |
| } |
| |
| |
| HType HCheckSmi::CalculateInferredType() { |
| return HType::Smi(); |
| } |
| |
| |
| HType HPhi::CalculateInferredType() { |
| HType result = HType::Uninitialized(); |
| for (int i = 0; i < OperandCount(); ++i) { |
| HType current = OperandAt(i)->type(); |
| result = result.Combine(current); |
| } |
| return result; |
| } |
| |
| |
| HType HConstant::CalculateInferredType() { |
| return constant_type_; |
| } |
| |
| |
| HType HCompare::CalculateInferredType() { |
| return HType::Boolean(); |
| } |
| |
| |
| HType HCompareJSObjectEq::CalculateInferredType() { |
| return HType::Boolean(); |
| } |
| |
| |
| HType HUnaryPredicate::CalculateInferredType() { |
| return HType::Boolean(); |
| } |
| |
| |
| HType HBitwiseBinaryOperation::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HArithmeticBinaryOperation::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HAdd::CalculateInferredType() { |
| return HType::Tagged(); |
| } |
| |
| |
| HType HBitAnd::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HBitXor::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HBitOr::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HBitNot::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HUnaryMathOperation::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HShl::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HShr::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HType HSar::CalculateInferredType() { |
| return HType::TaggedNumber(); |
| } |
| |
| |
| HValue* HUnaryMathOperation::EnsureAndPropagateNotMinusZero( |
| BitVector* visited) { |
| visited->Add(id()); |
| if (representation().IsInteger32() && |
| !value()->representation().IsInteger32()) { |
| if (value()->range() == NULL || value()->range()->CanBeMinusZero()) { |
| SetFlag(kBailoutOnMinusZero); |
| } |
| } |
| if (RequiredInputRepresentation(0).IsInteger32() && |
| representation().IsInteger32()) { |
| return value(); |
| } |
| return NULL; |
| } |
| |
| |
| |
| HValue* HChange::EnsureAndPropagateNotMinusZero(BitVector* visited) { |
| visited->Add(id()); |
| if (from().IsInteger32()) return NULL; |
| if (CanTruncateToInt32()) return NULL; |
| if (value()->range() == NULL || value()->range()->CanBeMinusZero()) { |
| SetFlag(kBailoutOnMinusZero); |
| } |
| ASSERT(!from().IsInteger32() || !to().IsInteger32()); |
| return NULL; |
| } |
| |
| |
| HValue* HMod::EnsureAndPropagateNotMinusZero(BitVector* visited) { |
| visited->Add(id()); |
| if (range() == NULL || range()->CanBeMinusZero()) { |
| SetFlag(kBailoutOnMinusZero); |
| return left(); |
| } |
| return NULL; |
| } |
| |
| |
| HValue* HDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) { |
| visited->Add(id()); |
| if (range() == NULL || range()->CanBeMinusZero()) { |
| SetFlag(kBailoutOnMinusZero); |
| } |
| return NULL; |
| } |
| |
| |
| HValue* HMul::EnsureAndPropagateNotMinusZero(BitVector* visited) { |
| visited->Add(id()); |
| if (range() == NULL || range()->CanBeMinusZero()) { |
| SetFlag(kBailoutOnMinusZero); |
| } |
| return NULL; |
| } |
| |
| |
| HValue* HSub::EnsureAndPropagateNotMinusZero(BitVector* visited) { |
| visited->Add(id()); |
| // Propagate to the left argument. If the left argument cannot be -0, then |
| // the result of the add operation cannot be either. |
| if (range() == NULL || range()->CanBeMinusZero()) { |
| return left(); |
| } |
| return NULL; |
| } |
| |
| |
| HValue* HAdd::EnsureAndPropagateNotMinusZero(BitVector* visited) { |
| visited->Add(id()); |
| // Propagate to the left argument. If the left argument cannot be -0, then |
| // the result of the sub operation cannot be either. |
| if (range() == NULL || range()->CanBeMinusZero()) { |
| return left(); |
| } |
| return NULL; |
| } |
| |
| |
| // Node-specific verification code is only included in debug mode. |
| #ifdef DEBUG |
| |
| void HPhi::Verify() { |
| ASSERT(OperandCount() == block()->predecessors()->length()); |
| for (int i = 0; i < OperandCount(); ++i) { |
| HValue* value = OperandAt(i); |
| HBasicBlock* defining_block = value->block(); |
| HBasicBlock* predecessor_block = block()->predecessors()->at(i); |
| ASSERT(defining_block == predecessor_block || |
| defining_block->Dominates(predecessor_block)); |
| } |
| } |
| |
| |
| void HSimulate::Verify() { |
| HInstruction::Verify(); |
| ASSERT(HasAstId()); |
| } |
| |
| |
| void HBoundsCheck::Verify() { |
| HInstruction::Verify(); |
| } |
| |
| |
| void HCheckSmi::Verify() { |
| HInstruction::Verify(); |
| ASSERT(HasNoUses()); |
| } |
| |
| |
| void HCheckNonSmi::Verify() { |
| HInstruction::Verify(); |
| ASSERT(HasNoUses()); |
| } |
| |
| |
| void HCheckInstanceType::Verify() { |
| HInstruction::Verify(); |
| ASSERT(HasNoUses()); |
| } |
| |
| |
| void HCheckMap::Verify() { |
| HInstruction::Verify(); |
| ASSERT(HasNoUses()); |
| } |
| |
| |
| void HCheckFunction::Verify() { |
| HInstruction::Verify(); |
| ASSERT(HasNoUses()); |
| } |
| |
| |
| void HCheckPrototypeMaps::Verify() { |
| HInstruction::Verify(); |
| ASSERT(HasNoUses()); |
| } |
| |
| #endif |
| |
| } } // namespace v8::internal |