| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| #include "hydrogen.h" |
| |
| #include "codegen.h" |
| #include "data-flow.h" |
| #include "full-codegen.h" |
| #include "hashmap.h" |
| #include "lithium-allocator.h" |
| #include "parser.h" |
| #include "scopes.h" |
| #include "stub-cache.h" |
| |
| #if V8_TARGET_ARCH_IA32 |
| #include "ia32/lithium-codegen-ia32.h" |
| #elif V8_TARGET_ARCH_X64 |
| #include "x64/lithium-codegen-x64.h" |
| #elif V8_TARGET_ARCH_ARM |
| #include "arm/lithium-codegen-arm.h" |
| #elif V8_TARGET_ARCH_MIPS |
| #include "mips/lithium-codegen-mips.h" |
| #else |
| #error Unsupported target architecture. |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| HBasicBlock::HBasicBlock(HGraph* graph) |
| : block_id_(graph->GetNextBlockID()), |
| graph_(graph), |
| phis_(4), |
| first_(NULL), |
| last_(NULL), |
| end_(NULL), |
| loop_information_(NULL), |
| predecessors_(2), |
| dominator_(NULL), |
| dominated_blocks_(4), |
| last_environment_(NULL), |
| argument_count_(-1), |
| first_instruction_index_(-1), |
| last_instruction_index_(-1), |
| deleted_phis_(4), |
| parent_loop_header_(NULL), |
| is_inline_return_target_(false) { |
| } |
| |
| |
| void HBasicBlock::AttachLoopInformation() { |
| ASSERT(!IsLoopHeader()); |
| loop_information_ = new(zone()) HLoopInformation(this); |
| } |
| |
| |
| void HBasicBlock::DetachLoopInformation() { |
| ASSERT(IsLoopHeader()); |
| loop_information_ = NULL; |
| } |
| |
| |
| void HBasicBlock::AddPhi(HPhi* phi) { |
| ASSERT(!IsStartBlock()); |
| phis_.Add(phi); |
| phi->SetBlock(this); |
| } |
| |
| |
| void HBasicBlock::RemovePhi(HPhi* phi) { |
| ASSERT(phi->block() == this); |
| ASSERT(phis_.Contains(phi)); |
| ASSERT(phi->HasNoUses() || !phi->is_live()); |
| phi->ClearOperands(); |
| phis_.RemoveElement(phi); |
| phi->SetBlock(NULL); |
| } |
| |
| |
| void HBasicBlock::AddInstruction(HInstruction* instr) { |
| ASSERT(!IsStartBlock() || !IsFinished()); |
| ASSERT(!instr->IsLinked()); |
| ASSERT(!IsFinished()); |
| if (first_ == NULL) { |
| HBlockEntry* entry = new(zone()) HBlockEntry(); |
| entry->InitializeAsFirst(this); |
| first_ = last_ = entry; |
| } |
| instr->InsertAfter(last_); |
| last_ = instr; |
| } |
| |
| |
| HDeoptimize* HBasicBlock::CreateDeoptimize() { |
| ASSERT(HasEnvironment()); |
| HEnvironment* environment = last_environment(); |
| |
| HDeoptimize* instr = new(zone()) HDeoptimize(environment->length()); |
| |
| for (int i = 0; i < environment->length(); i++) { |
| HValue* val = environment->values()->at(i); |
| instr->AddEnvironmentValue(val); |
| } |
| |
| return instr; |
| } |
| |
| |
| HSimulate* HBasicBlock::CreateSimulate(int id) { |
| ASSERT(HasEnvironment()); |
| HEnvironment* environment = last_environment(); |
| ASSERT(id == AstNode::kNoNumber || |
| environment->closure()->shared()->VerifyBailoutId(id)); |
| |
| int push_count = environment->push_count(); |
| int pop_count = environment->pop_count(); |
| |
| HSimulate* instr = new(zone()) HSimulate(id, pop_count); |
| for (int i = push_count - 1; i >= 0; --i) { |
| instr->AddPushedValue(environment->ExpressionStackAt(i)); |
| } |
| for (int i = 0; i < environment->assigned_variables()->length(); ++i) { |
| int index = environment->assigned_variables()->at(i); |
| instr->AddAssignedValue(index, environment->Lookup(index)); |
| } |
| environment->ClearHistory(); |
| return instr; |
| } |
| |
| |
| void HBasicBlock::Finish(HControlInstruction* end) { |
| ASSERT(!IsFinished()); |
| AddInstruction(end); |
| end_ = end; |
| if (end->FirstSuccessor() != NULL) { |
| end->FirstSuccessor()->RegisterPredecessor(this); |
| if (end->SecondSuccessor() != NULL) { |
| end->SecondSuccessor()->RegisterPredecessor(this); |
| } |
| } |
| } |
| |
| |
| void HBasicBlock::Goto(HBasicBlock* block, bool include_stack_check) { |
| if (block->IsInlineReturnTarget()) { |
| AddInstruction(new(zone()) HLeaveInlined); |
| last_environment_ = last_environment()->outer(); |
| } |
| AddSimulate(AstNode::kNoNumber); |
| HGoto* instr = new(zone()) HGoto(block); |
| instr->set_include_stack_check(include_stack_check); |
| Finish(instr); |
| } |
| |
| |
| void HBasicBlock::AddLeaveInlined(HValue* return_value, HBasicBlock* target) { |
| ASSERT(target->IsInlineReturnTarget()); |
| ASSERT(return_value != NULL); |
| AddInstruction(new(zone()) HLeaveInlined); |
| last_environment_ = last_environment()->outer(); |
| last_environment()->Push(return_value); |
| AddSimulate(AstNode::kNoNumber); |
| HGoto* instr = new(zone()) HGoto(target); |
| Finish(instr); |
| } |
| |
| |
| void HBasicBlock::SetInitialEnvironment(HEnvironment* env) { |
| ASSERT(!HasEnvironment()); |
| ASSERT(first() == NULL); |
| UpdateEnvironment(env); |
| } |
| |
| |
| void HBasicBlock::SetJoinId(int id) { |
| int length = predecessors_.length(); |
| ASSERT(length > 0); |
| for (int i = 0; i < length; i++) { |
| HBasicBlock* predecessor = predecessors_[i]; |
| ASSERT(predecessor->end()->IsGoto()); |
| HSimulate* simulate = HSimulate::cast(predecessor->end()->previous()); |
| // We only need to verify the ID once. |
| ASSERT(i != 0 || |
| predecessor->last_environment()->closure()->shared() |
| ->VerifyBailoutId(id)); |
| simulate->set_ast_id(id); |
| } |
| } |
| |
| |
| bool HBasicBlock::Dominates(HBasicBlock* other) const { |
| HBasicBlock* current = other->dominator(); |
| while (current != NULL) { |
| if (current == this) return true; |
| current = current->dominator(); |
| } |
| return false; |
| } |
| |
| |
| void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) { |
| ASSERT(IsLoopHeader()); |
| |
| SetJoinId(stmt->EntryId()); |
| if (predecessors()->length() == 1) { |
| // This is a degenerated loop. |
| DetachLoopInformation(); |
| return; |
| } |
| |
| // Only the first entry into the loop is from outside the loop. All other |
| // entries must be back edges. |
| for (int i = 1; i < predecessors()->length(); ++i) { |
| loop_information()->RegisterBackEdge(predecessors()->at(i)); |
| } |
| } |
| |
| |
| void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) { |
| if (!predecessors_.is_empty()) { |
| // Only loop header blocks can have a predecessor added after |
| // instructions have been added to the block (they have phis for all |
| // values in the environment, these phis may be eliminated later). |
| ASSERT(IsLoopHeader() || first_ == NULL); |
| HEnvironment* incoming_env = pred->last_environment(); |
| if (IsLoopHeader()) { |
| ASSERT(phis()->length() == incoming_env->length()); |
| for (int i = 0; i < phis_.length(); ++i) { |
| phis_[i]->AddInput(incoming_env->values()->at(i)); |
| } |
| } else { |
| last_environment()->AddIncomingEdge(this, pred->last_environment()); |
| } |
| } else if (!HasEnvironment() && !IsFinished()) { |
| ASSERT(!IsLoopHeader()); |
| SetInitialEnvironment(pred->last_environment()->Copy()); |
| } |
| |
| predecessors_.Add(pred); |
| } |
| |
| |
| void HBasicBlock::AddDominatedBlock(HBasicBlock* block) { |
| ASSERT(!dominated_blocks_.Contains(block)); |
| // Keep the list of dominated blocks sorted such that if there is two |
| // succeeding block in this list, the predecessor is before the successor. |
| int index = 0; |
| while (index < dominated_blocks_.length() && |
| dominated_blocks_[index]->block_id() < block->block_id()) { |
| ++index; |
| } |
| dominated_blocks_.InsertAt(index, block); |
| } |
| |
| |
| void HBasicBlock::AssignCommonDominator(HBasicBlock* other) { |
| if (dominator_ == NULL) { |
| dominator_ = other; |
| other->AddDominatedBlock(this); |
| } else if (other->dominator() != NULL) { |
| HBasicBlock* first = dominator_; |
| HBasicBlock* second = other; |
| |
| while (first != second) { |
| if (first->block_id() > second->block_id()) { |
| first = first->dominator(); |
| } else { |
| second = second->dominator(); |
| } |
| ASSERT(first != NULL && second != NULL); |
| } |
| |
| if (dominator_ != first) { |
| ASSERT(dominator_->dominated_blocks_.Contains(this)); |
| dominator_->dominated_blocks_.RemoveElement(this); |
| dominator_ = first; |
| first->AddDominatedBlock(this); |
| } |
| } |
| } |
| |
| |
| int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const { |
| for (int i = 0; i < predecessors_.length(); ++i) { |
| if (predecessors_[i] == predecessor) return i; |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| |
| #ifdef DEBUG |
| void HBasicBlock::Verify() { |
| // Check that every block is finished. |
| ASSERT(IsFinished()); |
| ASSERT(block_id() >= 0); |
| |
| // Check that the incoming edges are in edge split form. |
| if (predecessors_.length() > 1) { |
| for (int i = 0; i < predecessors_.length(); ++i) { |
| ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL); |
| } |
| } |
| } |
| #endif |
| |
| |
| void HLoopInformation::RegisterBackEdge(HBasicBlock* block) { |
| this->back_edges_.Add(block); |
| AddBlock(block); |
| } |
| |
| |
| HBasicBlock* HLoopInformation::GetLastBackEdge() const { |
| int max_id = -1; |
| HBasicBlock* result = NULL; |
| for (int i = 0; i < back_edges_.length(); ++i) { |
| HBasicBlock* cur = back_edges_[i]; |
| if (cur->block_id() > max_id) { |
| max_id = cur->block_id(); |
| result = cur; |
| } |
| } |
| return result; |
| } |
| |
| |
| void HLoopInformation::AddBlock(HBasicBlock* block) { |
| if (block == loop_header()) return; |
| if (block->parent_loop_header() == loop_header()) return; |
| if (block->parent_loop_header() != NULL) { |
| AddBlock(block->parent_loop_header()); |
| } else { |
| block->set_parent_loop_header(loop_header()); |
| blocks_.Add(block); |
| for (int i = 0; i < block->predecessors()->length(); ++i) { |
| AddBlock(block->predecessors()->at(i)); |
| } |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| |
| // Checks reachability of the blocks in this graph and stores a bit in |
| // the BitVector "reachable()" for every block that can be reached |
| // from the start block of the graph. If "dont_visit" is non-null, the given |
| // block is treated as if it would not be part of the graph. "visited_count()" |
| // returns the number of reachable blocks. |
| class ReachabilityAnalyzer BASE_EMBEDDED { |
| public: |
| ReachabilityAnalyzer(HBasicBlock* entry_block, |
| int block_count, |
| HBasicBlock* dont_visit) |
| : visited_count_(0), |
| stack_(16), |
| reachable_(block_count), |
| dont_visit_(dont_visit) { |
| PushBlock(entry_block); |
| Analyze(); |
| } |
| |
| int visited_count() const { return visited_count_; } |
| const BitVector* reachable() const { return &reachable_; } |
| |
| private: |
| void PushBlock(HBasicBlock* block) { |
| if (block != NULL && block != dont_visit_ && |
| !reachable_.Contains(block->block_id())) { |
| reachable_.Add(block->block_id()); |
| stack_.Add(block); |
| visited_count_++; |
| } |
| } |
| |
| void Analyze() { |
| while (!stack_.is_empty()) { |
| HControlInstruction* end = stack_.RemoveLast()->end(); |
| PushBlock(end->FirstSuccessor()); |
| PushBlock(end->SecondSuccessor()); |
| } |
| } |
| |
| int visited_count_; |
| ZoneList<HBasicBlock*> stack_; |
| BitVector reachable_; |
| HBasicBlock* dont_visit_; |
| }; |
| |
| |
| void HGraph::Verify() const { |
| for (int i = 0; i < blocks_.length(); i++) { |
| HBasicBlock* block = blocks_.at(i); |
| |
| block->Verify(); |
| |
| // Check that every block contains at least one node and that only the last |
| // node is a control instruction. |
| HInstruction* current = block->first(); |
| ASSERT(current != NULL && current->IsBlockEntry()); |
| while (current != NULL) { |
| ASSERT((current->next() == NULL) == current->IsControlInstruction()); |
| ASSERT(current->block() == block); |
| current->Verify(); |
| current = current->next(); |
| } |
| |
| // Check that successors are correctly set. |
| HBasicBlock* first = block->end()->FirstSuccessor(); |
| HBasicBlock* second = block->end()->SecondSuccessor(); |
| ASSERT(second == NULL || first != NULL); |
| |
| // Check that the predecessor array is correct. |
| if (first != NULL) { |
| ASSERT(first->predecessors()->Contains(block)); |
| if (second != NULL) { |
| ASSERT(second->predecessors()->Contains(block)); |
| } |
| } |
| |
| // Check that phis have correct arguments. |
| for (int j = 0; j < block->phis()->length(); j++) { |
| HPhi* phi = block->phis()->at(j); |
| phi->Verify(); |
| } |
| |
| // Check that all join blocks have predecessors that end with an |
| // unconditional goto and agree on their environment node id. |
| if (block->predecessors()->length() >= 2) { |
| int id = block->predecessors()->first()->last_environment()->ast_id(); |
| for (int k = 0; k < block->predecessors()->length(); k++) { |
| HBasicBlock* predecessor = block->predecessors()->at(k); |
| ASSERT(predecessor->end()->IsGoto()); |
| ASSERT(predecessor->last_environment()->ast_id() == id); |
| } |
| } |
| } |
| |
| // Check special property of first block to have no predecessors. |
| ASSERT(blocks_.at(0)->predecessors()->is_empty()); |
| |
| // Check that the graph is fully connected. |
| ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL); |
| ASSERT(analyzer.visited_count() == blocks_.length()); |
| |
| // Check that entry block dominator is NULL. |
| ASSERT(entry_block_->dominator() == NULL); |
| |
| // Check dominators. |
| for (int i = 0; i < blocks_.length(); ++i) { |
| HBasicBlock* block = blocks_.at(i); |
| if (block->dominator() == NULL) { |
| // Only start block may have no dominator assigned to. |
| ASSERT(i == 0); |
| } else { |
| // Assert that block is unreachable if dominator must not be visited. |
| ReachabilityAnalyzer dominator_analyzer(entry_block_, |
| blocks_.length(), |
| block->dominator()); |
| ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id())); |
| } |
| } |
| } |
| |
| #endif |
| |
| |
| HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer, |
| Object* value) { |
| if (!pointer->is_set()) { |
| HConstant* constant = new(zone()) HConstant(Handle<Object>(value), |
| Representation::Tagged()); |
| constant->InsertAfter(GetConstantUndefined()); |
| pointer->set(constant); |
| } |
| return pointer->get(); |
| } |
| |
| |
| HConstant* HGraph::GetConstant1() { |
| return GetConstant(&constant_1_, Smi::FromInt(1)); |
| } |
| |
| |
| HConstant* HGraph::GetConstantMinus1() { |
| return GetConstant(&constant_minus1_, Smi::FromInt(-1)); |
| } |
| |
| |
| HConstant* HGraph::GetConstantTrue() { |
| return GetConstant(&constant_true_, isolate()->heap()->true_value()); |
| } |
| |
| |
| HConstant* HGraph::GetConstantFalse() { |
| return GetConstant(&constant_false_, isolate()->heap()->false_value()); |
| } |
| |
| |
| HBasicBlock* HGraphBuilder::CreateJoin(HBasicBlock* first, |
| HBasicBlock* second, |
| int join_id) { |
| if (first == NULL) { |
| return second; |
| } else if (second == NULL) { |
| return first; |
| } else { |
| HBasicBlock* join_block = graph_->CreateBasicBlock(); |
| first->Goto(join_block); |
| second->Goto(join_block); |
| join_block->SetJoinId(join_id); |
| return join_block; |
| } |
| } |
| |
| |
| HBasicBlock* HGraphBuilder::JoinContinue(IterationStatement* statement, |
| HBasicBlock* exit_block, |
| HBasicBlock* continue_block) { |
| if (continue_block != NULL) { |
| if (exit_block != NULL) exit_block->Goto(continue_block); |
| continue_block->SetJoinId(statement->ContinueId()); |
| return continue_block; |
| } |
| return exit_block; |
| } |
| |
| |
| HBasicBlock* HGraphBuilder::CreateLoop(IterationStatement* statement, |
| HBasicBlock* loop_entry, |
| HBasicBlock* body_exit, |
| HBasicBlock* loop_successor, |
| HBasicBlock* break_block) { |
| if (body_exit != NULL) body_exit->Goto(loop_entry, true); |
| loop_entry->PostProcessLoopHeader(statement); |
| if (break_block != NULL) { |
| if (loop_successor != NULL) loop_successor->Goto(break_block); |
| break_block->SetJoinId(statement->ExitId()); |
| return break_block; |
| } |
| return loop_successor; |
| } |
| |
| |
| void HBasicBlock::FinishExit(HControlInstruction* instruction) { |
| Finish(instruction); |
| ClearEnvironment(); |
| } |
| |
| |
| HGraph::HGraph(CompilationInfo* info) |
| : isolate_(info->isolate()), |
| next_block_id_(0), |
| entry_block_(NULL), |
| blocks_(8), |
| values_(16), |
| phi_list_(NULL) { |
| start_environment_ = |
| new(zone()) HEnvironment(NULL, info->scope(), info->closure()); |
| start_environment_->set_ast_id(AstNode::kFunctionEntryId); |
| entry_block_ = CreateBasicBlock(); |
| entry_block_->SetInitialEnvironment(start_environment_); |
| } |
| |
| |
| Handle<Code> HGraph::Compile(CompilationInfo* info) { |
| int values = GetMaximumValueID(); |
| if (values > LAllocator::max_initial_value_ids()) { |
| if (FLAG_trace_bailout) PrintF("Function is too big\n"); |
| return Handle<Code>::null(); |
| } |
| |
| LAllocator allocator(values, this); |
| LChunkBuilder builder(info, this, &allocator); |
| LChunk* chunk = builder.Build(); |
| if (chunk == NULL) return Handle<Code>::null(); |
| |
| if (!FLAG_alloc_lithium) return Handle<Code>::null(); |
| |
| allocator.Allocate(chunk); |
| |
| if (!FLAG_use_lithium) return Handle<Code>::null(); |
| |
| MacroAssembler assembler(info->isolate(), NULL, 0); |
| LCodeGen generator(chunk, &assembler, info); |
| |
| if (FLAG_eliminate_empty_blocks) { |
| chunk->MarkEmptyBlocks(); |
| } |
| |
| if (generator.GenerateCode()) { |
| if (FLAG_trace_codegen) { |
| PrintF("Crankshaft Compiler - "); |
| } |
| CodeGenerator::MakeCodePrologue(info); |
| Code::Flags flags = |
| Code::ComputeFlags(Code::OPTIMIZED_FUNCTION, NOT_IN_LOOP); |
| Handle<Code> code = |
| CodeGenerator::MakeCodeEpilogue(&assembler, flags, info); |
| generator.FinishCode(code); |
| CodeGenerator::PrintCode(code, info); |
| return code; |
| } |
| return Handle<Code>::null(); |
| } |
| |
| |
| HBasicBlock* HGraph::CreateBasicBlock() { |
| HBasicBlock* result = new(zone()) HBasicBlock(this); |
| blocks_.Add(result); |
| return result; |
| } |
| |
| |
| void HGraph::Canonicalize() { |
| if (!FLAG_use_canonicalizing) return; |
| HPhase phase("Canonicalize", this); |
| for (int i = 0; i < blocks()->length(); ++i) { |
| HInstruction* instr = blocks()->at(i)->first(); |
| while (instr != NULL) { |
| HValue* value = instr->Canonicalize(); |
| if (value != instr) instr->ReplaceAndDelete(value); |
| instr = instr->next(); |
| } |
| } |
| } |
| |
| |
| void HGraph::OrderBlocks() { |
| HPhase phase("Block ordering"); |
| BitVector visited(blocks_.length()); |
| |
| ZoneList<HBasicBlock*> reverse_result(8); |
| HBasicBlock* start = blocks_[0]; |
| Postorder(start, &visited, &reverse_result, NULL); |
| |
| blocks_.Rewind(0); |
| int index = 0; |
| for (int i = reverse_result.length() - 1; i >= 0; --i) { |
| HBasicBlock* b = reverse_result[i]; |
| blocks_.Add(b); |
| b->set_block_id(index++); |
| } |
| } |
| |
| |
| void HGraph::PostorderLoopBlocks(HLoopInformation* loop, |
| BitVector* visited, |
| ZoneList<HBasicBlock*>* order, |
| HBasicBlock* loop_header) { |
| for (int i = 0; i < loop->blocks()->length(); ++i) { |
| HBasicBlock* b = loop->blocks()->at(i); |
| Postorder(b->end()->SecondSuccessor(), visited, order, loop_header); |
| Postorder(b->end()->FirstSuccessor(), visited, order, loop_header); |
| if (b->IsLoopHeader() && b != loop->loop_header()) { |
| PostorderLoopBlocks(b->loop_information(), visited, order, loop_header); |
| } |
| } |
| } |
| |
| |
| void HGraph::Postorder(HBasicBlock* block, |
| BitVector* visited, |
| ZoneList<HBasicBlock*>* order, |
| HBasicBlock* loop_header) { |
| if (block == NULL || visited->Contains(block->block_id())) return; |
| if (block->parent_loop_header() != loop_header) return; |
| visited->Add(block->block_id()); |
| if (block->IsLoopHeader()) { |
| PostorderLoopBlocks(block->loop_information(), visited, order, loop_header); |
| Postorder(block->end()->SecondSuccessor(), visited, order, block); |
| Postorder(block->end()->FirstSuccessor(), visited, order, block); |
| } else { |
| Postorder(block->end()->SecondSuccessor(), visited, order, loop_header); |
| Postorder(block->end()->FirstSuccessor(), visited, order, loop_header); |
| } |
| ASSERT(block->end()->FirstSuccessor() == NULL || |
| order->Contains(block->end()->FirstSuccessor()) || |
| block->end()->FirstSuccessor()->IsLoopHeader()); |
| ASSERT(block->end()->SecondSuccessor() == NULL || |
| order->Contains(block->end()->SecondSuccessor()) || |
| block->end()->SecondSuccessor()->IsLoopHeader()); |
| order->Add(block); |
| } |
| |
| |
| void HGraph::AssignDominators() { |
| HPhase phase("Assign dominators", this); |
| for (int i = 0; i < blocks_.length(); ++i) { |
| if (blocks_[i]->IsLoopHeader()) { |
| blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->first()); |
| } else { |
| for (int j = 0; j < blocks_[i]->predecessors()->length(); ++j) { |
| blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j)); |
| } |
| } |
| } |
| } |
| |
| |
| void HGraph::EliminateRedundantPhis() { |
| HPhase phase("Redundant phi elimination", this); |
| |
| // Worklist of phis that can potentially be eliminated. Initialized |
| // with all phi nodes. When elimination of a phi node modifies |
| // another phi node the modified phi node is added to the worklist. |
| ZoneList<HPhi*> worklist(blocks_.length()); |
| for (int i = 0; i < blocks_.length(); ++i) { |
| worklist.AddAll(*blocks_[i]->phis()); |
| } |
| |
| while (!worklist.is_empty()) { |
| HPhi* phi = worklist.RemoveLast(); |
| HBasicBlock* block = phi->block(); |
| |
| // Skip phi node if it was already replaced. |
| if (block == NULL) continue; |
| |
| // Get replacement value if phi is redundant. |
| HValue* value = phi->GetRedundantReplacement(); |
| |
| if (value != NULL) { |
| // Iterate through uses finding the ones that should be |
| // replaced. |
| SmallPointerList<HValue>* uses = phi->uses(); |
| while (!uses->is_empty()) { |
| HValue* use = uses->RemoveLast(); |
| if (use != NULL) { |
| phi->ReplaceAtUse(use, value); |
| if (use->IsPhi()) worklist.Add(HPhi::cast(use)); |
| } |
| } |
| block->RemovePhi(phi); |
| } |
| } |
| } |
| |
| |
| void HGraph::EliminateUnreachablePhis() { |
| HPhase phase("Unreachable phi elimination", this); |
| |
| // Initialize worklist. |
| ZoneList<HPhi*> phi_list(blocks_.length()); |
| ZoneList<HPhi*> worklist(blocks_.length()); |
| for (int i = 0; i < blocks_.length(); ++i) { |
| for (int j = 0; j < blocks_[i]->phis()->length(); j++) { |
| HPhi* phi = blocks_[i]->phis()->at(j); |
| phi_list.Add(phi); |
| // We can't eliminate phis in the receiver position in the environment |
| // because in case of throwing an error we need this value to |
| // construct a stack trace. |
| if (phi->HasRealUses() || phi->IsReceiver()) { |
| phi->set_is_live(true); |
| worklist.Add(phi); |
| } |
| } |
| } |
| |
| // Iteratively mark live phis. |
| while (!worklist.is_empty()) { |
| HPhi* phi = worklist.RemoveLast(); |
| for (int i = 0; i < phi->OperandCount(); i++) { |
| HValue* operand = phi->OperandAt(i); |
| if (operand->IsPhi() && !HPhi::cast(operand)->is_live()) { |
| HPhi::cast(operand)->set_is_live(true); |
| worklist.Add(HPhi::cast(operand)); |
| } |
| } |
| } |
| |
| // Remove unreachable phis. |
| for (int i = 0; i < phi_list.length(); i++) { |
| HPhi* phi = phi_list[i]; |
| if (!phi->is_live()) { |
| HBasicBlock* block = phi->block(); |
| block->RemovePhi(phi); |
| block->RecordDeletedPhi(phi->merged_index()); |
| } |
| } |
| } |
| |
| |
| bool HGraph::CollectPhis() { |
| int block_count = blocks_.length(); |
| phi_list_ = new ZoneList<HPhi*>(block_count); |
| for (int i = 0; i < block_count; ++i) { |
| for (int j = 0; j < blocks_[i]->phis()->length(); ++j) { |
| HPhi* phi = blocks_[i]->phis()->at(j); |
| phi_list_->Add(phi); |
| // We don't support phi uses of arguments for now. |
| if (phi->CheckFlag(HValue::kIsArguments)) return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| void HGraph::InferTypes(ZoneList<HValue*>* worklist) { |
| BitVector in_worklist(GetMaximumValueID()); |
| for (int i = 0; i < worklist->length(); ++i) { |
| ASSERT(!in_worklist.Contains(worklist->at(i)->id())); |
| in_worklist.Add(worklist->at(i)->id()); |
| } |
| |
| while (!worklist->is_empty()) { |
| HValue* current = worklist->RemoveLast(); |
| in_worklist.Remove(current->id()); |
| if (current->UpdateInferredType()) { |
| for (int j = 0; j < current->uses()->length(); j++) { |
| HValue* use = current->uses()->at(j); |
| if (!in_worklist.Contains(use->id())) { |
| in_worklist.Add(use->id()); |
| worklist->Add(use); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| class HRangeAnalysis BASE_EMBEDDED { |
| public: |
| explicit HRangeAnalysis(HGraph* graph) : graph_(graph), changed_ranges_(16) {} |
| |
| void Analyze(); |
| |
| private: |
| void TraceRange(const char* msg, ...); |
| void Analyze(HBasicBlock* block); |
| void InferControlFlowRange(HTest* test, HBasicBlock* dest); |
| void InferControlFlowRange(Token::Value op, HValue* value, HValue* other); |
| void InferPhiRange(HPhi* phi); |
| void InferRange(HValue* value); |
| void RollBackTo(int index); |
| void AddRange(HValue* value, Range* range); |
| |
| HGraph* graph_; |
| ZoneList<HValue*> changed_ranges_; |
| }; |
| |
| |
| void HRangeAnalysis::TraceRange(const char* msg, ...) { |
| if (FLAG_trace_range) { |
| va_list arguments; |
| va_start(arguments, msg); |
| OS::VPrint(msg, arguments); |
| va_end(arguments); |
| } |
| } |
| |
| |
| void HRangeAnalysis::Analyze() { |
| HPhase phase("Range analysis", graph_); |
| Analyze(graph_->blocks()->at(0)); |
| } |
| |
| |
| void HRangeAnalysis::Analyze(HBasicBlock* block) { |
| TraceRange("Analyzing block B%d\n", block->block_id()); |
| |
| int last_changed_range = changed_ranges_.length() - 1; |
| |
| // Infer range based on control flow. |
| if (block->predecessors()->length() == 1) { |
| HBasicBlock* pred = block->predecessors()->first(); |
| if (pred->end()->IsTest()) { |
| InferControlFlowRange(HTest::cast(pred->end()), block); |
| } |
| } |
| |
| // Process phi instructions. |
| for (int i = 0; i < block->phis()->length(); ++i) { |
| HPhi* phi = block->phis()->at(i); |
| InferPhiRange(phi); |
| } |
| |
| // Go through all instructions of the current block. |
| HInstruction* instr = block->first(); |
| while (instr != block->end()) { |
| InferRange(instr); |
| instr = instr->next(); |
| } |
| |
| // Continue analysis in all dominated blocks. |
| for (int i = 0; i < block->dominated_blocks()->length(); ++i) { |
| Analyze(block->dominated_blocks()->at(i)); |
| } |
| |
| RollBackTo(last_changed_range); |
| } |
| |
| |
| void HRangeAnalysis::InferControlFlowRange(HTest* test, HBasicBlock* dest) { |
| ASSERT((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest)); |
| if (test->value()->IsCompare()) { |
| HCompare* compare = HCompare::cast(test->value()); |
| if (compare->GetInputRepresentation().IsInteger32()) { |
| Token::Value op = compare->token(); |
| if (test->SecondSuccessor() == dest) { |
| op = Token::NegateCompareOp(op); |
| } |
| Token::Value inverted_op = Token::InvertCompareOp(op); |
| InferControlFlowRange(op, compare->left(), compare->right()); |
| InferControlFlowRange(inverted_op, compare->right(), compare->left()); |
| } |
| } |
| } |
| |
| |
| // We know that value [op] other. Use this information to update the range on |
| // value. |
| void HRangeAnalysis::InferControlFlowRange(Token::Value op, |
| HValue* value, |
| HValue* other) { |
| Range temp_range; |
| Range* range = other->range() != NULL ? other->range() : &temp_range; |
| Range* new_range = NULL; |
| |
| TraceRange("Control flow range infer %d %s %d\n", |
| value->id(), |
| Token::Name(op), |
| other->id()); |
| |
| if (op == Token::EQ || op == Token::EQ_STRICT) { |
| // The same range has to apply for value. |
| new_range = range->Copy(); |
| } else if (op == Token::LT || op == Token::LTE) { |
| new_range = range->CopyClearLower(); |
| if (op == Token::LT) { |
| new_range->AddConstant(-1); |
| } |
| } else if (op == Token::GT || op == Token::GTE) { |
| new_range = range->CopyClearUpper(); |
| if (op == Token::GT) { |
| new_range->AddConstant(1); |
| } |
| } |
| |
| if (new_range != NULL && !new_range->IsMostGeneric()) { |
| AddRange(value, new_range); |
| } |
| } |
| |
| |
| void HRangeAnalysis::InferPhiRange(HPhi* phi) { |
| // TODO(twuerthinger): Infer loop phi ranges. |
| InferRange(phi); |
| } |
| |
| |
| void HRangeAnalysis::InferRange(HValue* value) { |
| ASSERT(!value->HasRange()); |
| if (!value->representation().IsNone()) { |
| value->ComputeInitialRange(); |
| Range* range = value->range(); |
| TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n", |
| value->id(), |
| value->Mnemonic(), |
| range->lower(), |
| range->upper()); |
| } |
| } |
| |
| |
| void HRangeAnalysis::RollBackTo(int index) { |
| for (int i = index + 1; i < changed_ranges_.length(); ++i) { |
| changed_ranges_[i]->RemoveLastAddedRange(); |
| } |
| changed_ranges_.Rewind(index + 1); |
| } |
| |
| |
| void HRangeAnalysis::AddRange(HValue* value, Range* range) { |
| Range* original_range = value->range(); |
| value->AddNewRange(range); |
| changed_ranges_.Add(value); |
| Range* new_range = value->range(); |
| TraceRange("Updated range of %d set to [%d,%d]\n", |
| value->id(), |
| new_range->lower(), |
| new_range->upper()); |
| if (original_range != NULL) { |
| TraceRange("Original range was [%d,%d]\n", |
| original_range->lower(), |
| original_range->upper()); |
| } |
| TraceRange("New information was [%d,%d]\n", |
| range->lower(), |
| range->upper()); |
| } |
| |
| |
| void TraceGVN(const char* msg, ...) { |
| if (FLAG_trace_gvn) { |
| va_list arguments; |
| va_start(arguments, msg); |
| OS::VPrint(msg, arguments); |
| va_end(arguments); |
| } |
| } |
| |
| |
| HValueMap::HValueMap(const HValueMap* other) |
| : array_size_(other->array_size_), |
| lists_size_(other->lists_size_), |
| count_(other->count_), |
| present_flags_(other->present_flags_), |
| array_(ZONE->NewArray<HValueMapListElement>(other->array_size_)), |
| lists_(ZONE->NewArray<HValueMapListElement>(other->lists_size_)), |
| free_list_head_(other->free_list_head_) { |
| memcpy(array_, other->array_, array_size_ * sizeof(HValueMapListElement)); |
| memcpy(lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement)); |
| } |
| |
| |
| void HValueMap::Kill(int flags) { |
| int depends_flags = HValue::ConvertChangesToDependsFlags(flags); |
| if ((present_flags_ & depends_flags) == 0) return; |
| present_flags_ = 0; |
| for (int i = 0; i < array_size_; ++i) { |
| HValue* value = array_[i].value; |
| if (value != NULL) { |
| // Clear list of collisions first, so we know if it becomes empty. |
| int kept = kNil; // List of kept elements. |
| int next; |
| for (int current = array_[i].next; current != kNil; current = next) { |
| next = lists_[current].next; |
| if ((lists_[current].value->flags() & depends_flags) != 0) { |
| // Drop it. |
| count_--; |
| lists_[current].next = free_list_head_; |
| free_list_head_ = current; |
| } else { |
| // Keep it. |
| lists_[current].next = kept; |
| kept = current; |
| present_flags_ |= lists_[current].value->flags(); |
| } |
| } |
| array_[i].next = kept; |
| |
| // Now possibly drop directly indexed element. |
| if ((array_[i].value->flags() & depends_flags) != 0) { // Drop it. |
| count_--; |
| int head = array_[i].next; |
| if (head == kNil) { |
| array_[i].value = NULL; |
| } else { |
| array_[i].value = lists_[head].value; |
| array_[i].next = lists_[head].next; |
| lists_[head].next = free_list_head_; |
| free_list_head_ = head; |
| } |
| } else { |
| present_flags_ |= array_[i].value->flags(); // Keep it. |
| } |
| } |
| } |
| } |
| |
| |
| HValue* HValueMap::Lookup(HValue* value) const { |
| uint32_t hash = static_cast<uint32_t>(value->Hashcode()); |
| uint32_t pos = Bound(hash); |
| if (array_[pos].value != NULL) { |
| if (array_[pos].value->Equals(value)) return array_[pos].value; |
| int next = array_[pos].next; |
| while (next != kNil) { |
| if (lists_[next].value->Equals(value)) return lists_[next].value; |
| next = lists_[next].next; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| void HValueMap::Resize(int new_size) { |
| ASSERT(new_size > count_); |
| // Hashing the values into the new array has no more collisions than in the |
| // old hash map, so we can use the existing lists_ array, if we are careful. |
| |
| // Make sure we have at least one free element. |
| if (free_list_head_ == kNil) { |
| ResizeLists(lists_size_ << 1); |
| } |
| |
| HValueMapListElement* new_array = |
| ZONE->NewArray<HValueMapListElement>(new_size); |
| memset(new_array, 0, sizeof(HValueMapListElement) * new_size); |
| |
| HValueMapListElement* old_array = array_; |
| int old_size = array_size_; |
| |
| int old_count = count_; |
| count_ = 0; |
| // Do not modify present_flags_. It is currently correct. |
| array_size_ = new_size; |
| array_ = new_array; |
| |
| if (old_array != NULL) { |
| // Iterate over all the elements in lists, rehashing them. |
| for (int i = 0; i < old_size; ++i) { |
| if (old_array[i].value != NULL) { |
| int current = old_array[i].next; |
| while (current != kNil) { |
| Insert(lists_[current].value); |
| int next = lists_[current].next; |
| lists_[current].next = free_list_head_; |
| free_list_head_ = current; |
| current = next; |
| } |
| // Rehash the directly stored value. |
| Insert(old_array[i].value); |
| } |
| } |
| } |
| USE(old_count); |
| ASSERT(count_ == old_count); |
| } |
| |
| |
| void HValueMap::ResizeLists(int new_size) { |
| ASSERT(new_size > lists_size_); |
| |
| HValueMapListElement* new_lists = |
| ZONE->NewArray<HValueMapListElement>(new_size); |
| memset(new_lists, 0, sizeof(HValueMapListElement) * new_size); |
| |
| HValueMapListElement* old_lists = lists_; |
| int old_size = lists_size_; |
| |
| lists_size_ = new_size; |
| lists_ = new_lists; |
| |
| if (old_lists != NULL) { |
| memcpy(lists_, old_lists, old_size * sizeof(HValueMapListElement)); |
| } |
| for (int i = old_size; i < lists_size_; ++i) { |
| lists_[i].next = free_list_head_; |
| free_list_head_ = i; |
| } |
| } |
| |
| |
| void HValueMap::Insert(HValue* value) { |
| ASSERT(value != NULL); |
| // Resizing when half of the hashtable is filled up. |
| if (count_ >= array_size_ >> 1) Resize(array_size_ << 1); |
| ASSERT(count_ < array_size_); |
| count_++; |
| uint32_t pos = Bound(static_cast<uint32_t>(value->Hashcode())); |
| if (array_[pos].value == NULL) { |
| array_[pos].value = value; |
| array_[pos].next = kNil; |
| } else { |
| if (free_list_head_ == kNil) { |
| ResizeLists(lists_size_ << 1); |
| } |
| int new_element_pos = free_list_head_; |
| ASSERT(new_element_pos != kNil); |
| free_list_head_ = lists_[free_list_head_].next; |
| lists_[new_element_pos].value = value; |
| lists_[new_element_pos].next = array_[pos].next; |
| ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL); |
| array_[pos].next = new_element_pos; |
| } |
| } |
| |
| |
| class HStackCheckEliminator BASE_EMBEDDED { |
| public: |
| explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { } |
| |
| void Process(); |
| |
| private: |
| void RemoveStackCheck(HBasicBlock* block); |
| |
| HGraph* graph_; |
| }; |
| |
| |
| void HStackCheckEliminator::Process() { |
| // For each loop block walk the dominator tree from the backwards branch to |
| // the loop header. If a call instruction is encountered the backwards branch |
| // is dominated by a call and the stack check in the backwards branch can be |
| // removed. |
| for (int i = 0; i < graph_->blocks()->length(); i++) { |
| HBasicBlock* block = graph_->blocks()->at(i); |
| if (block->IsLoopHeader()) { |
| HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge(); |
| HBasicBlock* dominator = back_edge; |
| bool back_edge_dominated_by_call = false; |
| while (dominator != block && !back_edge_dominated_by_call) { |
| HInstruction* instr = dominator->first(); |
| while (instr != NULL && !back_edge_dominated_by_call) { |
| if (instr->IsCall()) { |
| RemoveStackCheck(back_edge); |
| back_edge_dominated_by_call = true; |
| } |
| instr = instr->next(); |
| } |
| dominator = dominator->dominator(); |
| } |
| } |
| } |
| } |
| |
| |
| void HStackCheckEliminator::RemoveStackCheck(HBasicBlock* block) { |
| HInstruction* instr = block->first(); |
| while (instr != NULL) { |
| if (instr->IsGoto()) { |
| HGoto::cast(instr)->set_include_stack_check(false); |
| return; |
| } |
| instr = instr->next(); |
| } |
| } |
| |
| |
| class HGlobalValueNumberer BASE_EMBEDDED { |
| public: |
| explicit HGlobalValueNumberer(HGraph* graph, CompilationInfo* info) |
| : graph_(graph), |
| info_(info), |
| block_side_effects_(graph_->blocks()->length()), |
| loop_side_effects_(graph_->blocks()->length()) { |
| ASSERT(info->isolate()->heap()->allow_allocation(false)); |
| block_side_effects_.AddBlock(0, graph_->blocks()->length()); |
| loop_side_effects_.AddBlock(0, graph_->blocks()->length()); |
| } |
| ~HGlobalValueNumberer() { |
| ASSERT(!info_->isolate()->heap()->allow_allocation(true)); |
| } |
| |
| void Analyze(); |
| |
| private: |
| void AnalyzeBlock(HBasicBlock* block, HValueMap* map); |
| void ComputeBlockSideEffects(); |
| void LoopInvariantCodeMotion(); |
| void ProcessLoopBlock(HBasicBlock* block, |
| HBasicBlock* before_loop, |
| int loop_kills); |
| bool AllowCodeMotion(); |
| bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header); |
| |
| HGraph* graph() { return graph_; } |
| CompilationInfo* info() { return info_; } |
| Zone* zone() { return graph_->zone(); } |
| |
| HGraph* graph_; |
| CompilationInfo* info_; |
| |
| // A map of block IDs to their side effects. |
| ZoneList<int> block_side_effects_; |
| |
| // A map of loop header block IDs to their loop's side effects. |
| ZoneList<int> loop_side_effects_; |
| }; |
| |
| |
| void HGlobalValueNumberer::Analyze() { |
| ComputeBlockSideEffects(); |
| if (FLAG_loop_invariant_code_motion) { |
| LoopInvariantCodeMotion(); |
| } |
| HValueMap* map = new(zone()) HValueMap(); |
| AnalyzeBlock(graph_->blocks()->at(0), map); |
| } |
| |
| |
| void HGlobalValueNumberer::ComputeBlockSideEffects() { |
| for (int i = graph_->blocks()->length() - 1; i >= 0; --i) { |
| // Compute side effects for the block. |
| HBasicBlock* block = graph_->blocks()->at(i); |
| HInstruction* instr = block->first(); |
| int id = block->block_id(); |
| int side_effects = 0; |
| while (instr != NULL) { |
| side_effects |= (instr->flags() & HValue::ChangesFlagsMask()); |
| instr = instr->next(); |
| } |
| block_side_effects_[id] |= side_effects; |
| |
| // Loop headers are part of their loop. |
| if (block->IsLoopHeader()) { |
| loop_side_effects_[id] |= side_effects; |
| } |
| |
| // Propagate loop side effects upwards. |
| if (block->HasParentLoopHeader()) { |
| int header_id = block->parent_loop_header()->block_id(); |
| loop_side_effects_[header_id] |= |
| block->IsLoopHeader() ? loop_side_effects_[id] : side_effects; |
| } |
| } |
| } |
| |
| |
| void HGlobalValueNumberer::LoopInvariantCodeMotion() { |
| for (int i = graph_->blocks()->length() - 1; i >= 0; --i) { |
| HBasicBlock* block = graph_->blocks()->at(i); |
| if (block->IsLoopHeader()) { |
| int side_effects = loop_side_effects_[block->block_id()]; |
| TraceGVN("Try loop invariant motion for block B%d effects=0x%x\n", |
| block->block_id(), |
| side_effects); |
| |
| HBasicBlock* last = block->loop_information()->GetLastBackEdge(); |
| for (int j = block->block_id(); j <= last->block_id(); ++j) { |
| ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects); |
| } |
| } |
| } |
| } |
| |
| |
| void HGlobalValueNumberer::ProcessLoopBlock(HBasicBlock* block, |
| HBasicBlock* loop_header, |
| int loop_kills) { |
| HBasicBlock* pre_header = loop_header->predecessors()->at(0); |
| int depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills); |
| TraceGVN("Loop invariant motion for B%d depends_flags=0x%x\n", |
| block->block_id(), |
| depends_flags); |
| HInstruction* instr = block->first(); |
| while (instr != NULL) { |
| HInstruction* next = instr->next(); |
| if (instr->CheckFlag(HValue::kUseGVN) && |
| (instr->flags() & depends_flags) == 0) { |
| TraceGVN("Checking instruction %d (%s)\n", |
| instr->id(), |
| instr->Mnemonic()); |
| bool inputs_loop_invariant = true; |
| for (int i = 0; i < instr->OperandCount(); ++i) { |
| if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) { |
| inputs_loop_invariant = false; |
| } |
| } |
| |
| if (inputs_loop_invariant && ShouldMove(instr, loop_header)) { |
| TraceGVN("Found loop invariant instruction %d\n", instr->id()); |
| // Move the instruction out of the loop. |
| instr->Unlink(); |
| instr->InsertBefore(pre_header->end()); |
| } |
| } |
| instr = next; |
| } |
| } |
| |
| |
| bool HGlobalValueNumberer::AllowCodeMotion() { |
| return info()->shared_info()->opt_count() + 1 < Compiler::kDefaultMaxOptCount; |
| } |
| |
| |
| bool HGlobalValueNumberer::ShouldMove(HInstruction* instr, |
| HBasicBlock* loop_header) { |
| // If we've disabled code motion, don't move any instructions. |
| if (!AllowCodeMotion()) return false; |
| |
| // If --aggressive-loop-invariant-motion, move everything except change |
| // instructions. |
| if (FLAG_aggressive_loop_invariant_motion && !instr->IsChange()) { |
| return true; |
| } |
| |
| // Otherwise only move instructions that postdominate the loop header |
| // (i.e. are always executed inside the loop). This is to avoid |
| // unnecessary deoptimizations assuming the loop is executed at least |
| // once. TODO(fschneider): Better type feedback should give us |
| // information about code that was never executed. |
| HBasicBlock* block = instr->block(); |
| bool result = true; |
| if (block != loop_header) { |
| for (int i = 1; i < loop_header->predecessors()->length(); ++i) { |
| bool found = false; |
| HBasicBlock* pred = loop_header->predecessors()->at(i); |
| while (pred != loop_header) { |
| if (pred == block) found = true; |
| pred = pred->dominator(); |
| } |
| if (!found) { |
| result = false; |
| break; |
| } |
| } |
| } |
| return result; |
| } |
| |
| |
| void HGlobalValueNumberer::AnalyzeBlock(HBasicBlock* block, HValueMap* map) { |
| TraceGVN("Analyzing block B%d\n", block->block_id()); |
| |
| // If this is a loop header kill everything killed by the loop. |
| if (block->IsLoopHeader()) { |
| map->Kill(loop_side_effects_[block->block_id()]); |
| } |
| |
| // Go through all instructions of the current block. |
| HInstruction* instr = block->first(); |
| while (instr != NULL) { |
| HInstruction* next = instr->next(); |
| int flags = (instr->flags() & HValue::ChangesFlagsMask()); |
| if (flags != 0) { |
| ASSERT(!instr->CheckFlag(HValue::kUseGVN)); |
| // Clear all instructions in the map that are affected by side effects. |
| map->Kill(flags); |
| TraceGVN("Instruction %d kills\n", instr->id()); |
| } else if (instr->CheckFlag(HValue::kUseGVN)) { |
| HValue* other = map->Lookup(instr); |
| if (other != NULL) { |
| ASSERT(instr->Equals(other) && other->Equals(instr)); |
| TraceGVN("Replacing value %d (%s) with value %d (%s)\n", |
| instr->id(), |
| instr->Mnemonic(), |
| other->id(), |
| other->Mnemonic()); |
| instr->ReplaceAndDelete(other); |
| } else { |
| map->Add(instr); |
| } |
| } |
| instr = next; |
| } |
| |
| // Recursively continue analysis for all immediately dominated blocks. |
| int length = block->dominated_blocks()->length(); |
| for (int i = 0; i < length; ++i) { |
| HBasicBlock* dominated = block->dominated_blocks()->at(i); |
| // No need to copy the map for the last child in the dominator tree. |
| HValueMap* successor_map = (i == length - 1) ? map : map->Copy(zone()); |
| |
| // If the dominated block is not a successor to this block we have to |
| // kill everything killed on any path between this block and the |
| // dominated block. Note we rely on the block ordering. |
| bool is_successor = false; |
| int predecessor_count = dominated->predecessors()->length(); |
| for (int j = 0; !is_successor && j < predecessor_count; ++j) { |
| is_successor = (dominated->predecessors()->at(j) == block); |
| } |
| |
| if (!is_successor) { |
| int side_effects = 0; |
| for (int j = block->block_id() + 1; j < dominated->block_id(); ++j) { |
| side_effects |= block_side_effects_[j]; |
| } |
| successor_map->Kill(side_effects); |
| } |
| |
| AnalyzeBlock(dominated, successor_map); |
| } |
| } |
| |
| |
| class HInferRepresentation BASE_EMBEDDED { |
| public: |
| explicit HInferRepresentation(HGraph* graph) |
| : graph_(graph), worklist_(8), in_worklist_(graph->GetMaximumValueID()) {} |
| |
| void Analyze(); |
| |
| private: |
| Representation TryChange(HValue* current); |
| void AddToWorklist(HValue* current); |
| void InferBasedOnInputs(HValue* current); |
| void AddDependantsToWorklist(HValue* current); |
| void InferBasedOnUses(HValue* current); |
| |
| Zone* zone() { return graph_->zone(); } |
| |
| HGraph* graph_; |
| ZoneList<HValue*> worklist_; |
| BitVector in_worklist_; |
| }; |
| |
| |
| void HInferRepresentation::AddToWorklist(HValue* current) { |
| if (current->representation().IsSpecialization()) return; |
| if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return; |
| if (in_worklist_.Contains(current->id())) return; |
| worklist_.Add(current); |
| in_worklist_.Add(current->id()); |
| } |
| |
| |
| // This method tries to specialize the representation type of the value |
| // given as a parameter. The value is asked to infer its representation type |
| // based on its inputs. If the inferred type is more specialized, then this |
| // becomes the new representation type of the node. |
| void HInferRepresentation::InferBasedOnInputs(HValue* current) { |
| Representation r = current->representation(); |
| if (r.IsSpecialization()) return; |
| ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation)); |
| Representation inferred = current->InferredRepresentation(); |
| if (inferred.IsSpecialization()) { |
| current->ChangeRepresentation(inferred); |
| AddDependantsToWorklist(current); |
| } |
| } |
| |
| |
| void HInferRepresentation::AddDependantsToWorklist(HValue* current) { |
| for (int i = 0; i < current->uses()->length(); ++i) { |
| AddToWorklist(current->uses()->at(i)); |
| } |
| for (int i = 0; i < current->OperandCount(); ++i) { |
| AddToWorklist(current->OperandAt(i)); |
| } |
| } |
| |
| |
| // This method calculates whether specializing the representation of the value |
| // given as the parameter has a benefit in terms of less necessary type |
| // conversions. If there is a benefit, then the representation of the value is |
| // specialized. |
| void HInferRepresentation::InferBasedOnUses(HValue* current) { |
| Representation r = current->representation(); |
| if (r.IsSpecialization() || current->HasNoUses()) return; |
| ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation)); |
| Representation new_rep = TryChange(current); |
| if (!new_rep.IsNone()) { |
| if (!current->representation().Equals(new_rep)) { |
| current->ChangeRepresentation(new_rep); |
| AddDependantsToWorklist(current); |
| } |
| } |
| } |
| |
| |
| Representation HInferRepresentation::TryChange(HValue* current) { |
| // Array of use counts for each representation. |
| int use_count[Representation::kNumRepresentations]; |
| for (int i = 0; i < Representation::kNumRepresentations; i++) { |
| use_count[i] = 0; |
| } |
| |
| for (int i = 0; i < current->uses()->length(); ++i) { |
| HValue* use = current->uses()->at(i); |
| int index = use->LookupOperandIndex(0, current); |
| Representation req_rep = use->RequiredInputRepresentation(index); |
| if (req_rep.IsNone()) continue; |
| if (use->IsPhi()) { |
| HPhi* phi = HPhi::cast(use); |
| phi->AddIndirectUsesTo(&use_count[0]); |
| } |
| use_count[req_rep.kind()]++; |
| } |
| int tagged_count = use_count[Representation::kTagged]; |
| int double_count = use_count[Representation::kDouble]; |
| int int32_count = use_count[Representation::kInteger32]; |
| int non_tagged_count = double_count + int32_count; |
| |
| // If a non-loop phi has tagged uses, don't convert it to untagged. |
| if (current->IsPhi() && !current->block()->IsLoopHeader()) { |
| if (tagged_count > 0) return Representation::None(); |
| } |
| |
| if (non_tagged_count >= tagged_count) { |
| // More untagged than tagged. |
| if (double_count > 0) { |
| // There is at least one usage that is a double => guess that the |
| // correct representation is double. |
| return Representation::Double(); |
| } else if (int32_count > 0) { |
| return Representation::Integer32(); |
| } |
| } |
| return Representation::None(); |
| } |
| |
| |
| void HInferRepresentation::Analyze() { |
| HPhase phase("Infer representations", graph_); |
| |
| // (1) Initialize bit vectors and count real uses. Each phi |
| // gets a bit-vector of length <number of phis>. |
| const ZoneList<HPhi*>* phi_list = graph_->phi_list(); |
| int num_phis = phi_list->length(); |
| ScopedVector<BitVector*> connected_phis(num_phis); |
| for (int i = 0; i < num_phis; i++) { |
| phi_list->at(i)->InitRealUses(i); |
| connected_phis[i] = new(zone()) BitVector(num_phis); |
| connected_phis[i]->Add(i); |
| } |
| |
| // (2) Do a fixed point iteration to find the set of connected phis. |
| // A phi is connected to another phi if its value is used either |
| // directly or indirectly through a transitive closure of the def-use |
| // relation. |
| bool change = true; |
| while (change) { |
| change = false; |
| for (int i = 0; i < num_phis; i++) { |
| HPhi* phi = phi_list->at(i); |
| for (int j = 0; j < phi->uses()->length(); j++) { |
| HValue* use = phi->uses()->at(j); |
| if (use->IsPhi()) { |
| int phi_use = HPhi::cast(use)->phi_id(); |
| if (connected_phis[i]->UnionIsChanged(*connected_phis[phi_use])) { |
| change = true; |
| } |
| } |
| } |
| } |
| } |
| |
| // (3) Sum up the non-phi use counts of all connected phis. |
| // Don't include the non-phi uses of the phi itself. |
| for (int i = 0; i < num_phis; i++) { |
| HPhi* phi = phi_list->at(i); |
| for (BitVector::Iterator it(connected_phis.at(i)); |
| !it.Done(); |
| it.Advance()) { |
| int index = it.Current(); |
| if (index != i) { |
| HPhi* it_use = phi_list->at(it.Current()); |
| phi->AddNonPhiUsesFrom(it_use); |
| } |
| } |
| } |
| |
| for (int i = 0; i < graph_->blocks()->length(); ++i) { |
| HBasicBlock* block = graph_->blocks()->at(i); |
| const ZoneList<HPhi*>* phis = block->phis(); |
| for (int j = 0; j < phis->length(); ++j) { |
| AddToWorklist(phis->at(j)); |
| } |
| |
| HInstruction* current = block->first(); |
| while (current != NULL) { |
| AddToWorklist(current); |
| current = current->next(); |
| } |
| } |
| |
| while (!worklist_.is_empty()) { |
| HValue* current = worklist_.RemoveLast(); |
| in_worklist_.Remove(current->id()); |
| InferBasedOnInputs(current); |
| InferBasedOnUses(current); |
| } |
| } |
| |
| |
| void HGraph::InitializeInferredTypes() { |
| HPhase phase("Inferring types", this); |
| InitializeInferredTypes(0, this->blocks_.length() - 1); |
| } |
| |
| |
| void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) { |
| for (int i = from_inclusive; i <= to_inclusive; ++i) { |
| HBasicBlock* block = blocks_[i]; |
| |
| const ZoneList<HPhi*>* phis = block->phis(); |
| for (int j = 0; j < phis->length(); j++) { |
| phis->at(j)->UpdateInferredType(); |
| } |
| |
| HInstruction* current = block->first(); |
| while (current != NULL) { |
| current->UpdateInferredType(); |
| current = current->next(); |
| } |
| |
| if (block->IsLoopHeader()) { |
| HBasicBlock* last_back_edge = |
| block->loop_information()->GetLastBackEdge(); |
| InitializeInferredTypes(i + 1, last_back_edge->block_id()); |
| // Skip all blocks already processed by the recursive call. |
| i = last_back_edge->block_id(); |
| // Update phis of the loop header now after the whole loop body is |
| // guaranteed to be processed. |
| ZoneList<HValue*> worklist(block->phis()->length()); |
| for (int j = 0; j < block->phis()->length(); ++j) { |
| worklist.Add(block->phis()->at(j)); |
| } |
| InferTypes(&worklist); |
| } |
| } |
| } |
| |
| |
| void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) { |
| HValue* current = value; |
| while (current != NULL) { |
| if (visited->Contains(current->id())) return; |
| |
| // For phis, we must propagate the check to all of its inputs. |
| if (current->IsPhi()) { |
| visited->Add(current->id()); |
| HPhi* phi = HPhi::cast(current); |
| for (int i = 0; i < phi->OperandCount(); ++i) { |
| PropagateMinusZeroChecks(phi->OperandAt(i), visited); |
| } |
| break; |
| } |
| |
| // For multiplication and division, we must propagate to the left and |
| // the right side. |
| if (current->IsMul()) { |
| HMul* mul = HMul::cast(current); |
| mul->EnsureAndPropagateNotMinusZero(visited); |
| PropagateMinusZeroChecks(mul->left(), visited); |
| PropagateMinusZeroChecks(mul->right(), visited); |
| } else if (current->IsDiv()) { |
| HDiv* div = HDiv::cast(current); |
| div->EnsureAndPropagateNotMinusZero(visited); |
| PropagateMinusZeroChecks(div->left(), visited); |
| PropagateMinusZeroChecks(div->right(), visited); |
| } |
| |
| current = current->EnsureAndPropagateNotMinusZero(visited); |
| } |
| } |
| |
| |
| void HGraph::InsertRepresentationChangeForUse(HValue* value, |
| HValue* use, |
| Representation to) { |
| // Insert the representation change right before its use. For phi-uses we |
| // insert at the end of the corresponding predecessor. |
| HInstruction* next = NULL; |
| if (use->IsPhi()) { |
| int index = 0; |
| while (use->OperandAt(index) != value) ++index; |
| next = use->block()->predecessors()->at(index)->end(); |
| } else { |
| next = HInstruction::cast(use); |
| } |
| |
| // For constants we try to make the representation change at compile |
| // time. When a representation change is not possible without loss of |
| // information we treat constants like normal instructions and insert the |
| // change instructions for them. |
| HInstruction* new_value = NULL; |
| bool is_truncating = use->CheckFlag(HValue::kTruncatingToInt32); |
| bool deoptimize_on_undefined = use->CheckFlag(HValue::kDeoptimizeOnUndefined); |
| if (value->IsConstant()) { |
| HConstant* constant = HConstant::cast(value); |
| // Try to create a new copy of the constant with the new representation. |
| new_value = is_truncating |
| ? constant->CopyToTruncatedInt32() |
| : constant->CopyToRepresentation(to); |
| } |
| |
| if (new_value == NULL) { |
| new_value = new(zone()) HChange(value, value->representation(), to, |
| is_truncating, deoptimize_on_undefined); |
| } |
| |
| new_value->InsertBefore(next); |
| value->ReplaceFirstAtUse(use, new_value, to); |
| } |
| |
| |
| int CompareConversionUses(HValue* a, |
| HValue* b, |
| Representation a_rep, |
| Representation b_rep) { |
| if (a_rep.kind() > b_rep.kind()) { |
| // Make sure specializations are separated in the result array. |
| return 1; |
| } |
| // Put truncating conversions before non-truncating conversions. |
| bool a_truncate = a->CheckFlag(HValue::kTruncatingToInt32); |
| bool b_truncate = b->CheckFlag(HValue::kTruncatingToInt32); |
| if (a_truncate != b_truncate) { |
| return a_truncate ? -1 : 1; |
| } |
| // Sort by increasing block ID. |
| return a->block()->block_id() - b->block()->block_id(); |
| } |
| |
| |
| void HGraph::InsertRepresentationChangesForValue( |
| HValue* current, |
| ZoneList<HValue*>* to_convert, |
| ZoneList<Representation>* to_convert_reps) { |
| Representation r = current->representation(); |
| if (r.IsNone()) return; |
| if (current->uses()->length() == 0) return; |
| |
| // Collect the representation changes in a sorted list. This allows |
| // us to avoid duplicate changes without searching the list. |
| ASSERT(to_convert->is_empty()); |
| ASSERT(to_convert_reps->is_empty()); |
| for (int i = 0; i < current->uses()->length(); ++i) { |
| HValue* use = current->uses()->at(i); |
| // The occurrences index means the index within the operand array of "use" |
| // at which "current" is used. While iterating through the use array we |
| // also have to iterate over the different occurrence indices. |
| int occurrence_index = 0; |
| if (use->UsesMultipleTimes(current)) { |
| occurrence_index = current->uses()->CountOccurrences(use, 0, i - 1); |
| if (FLAG_trace_representation) { |
| PrintF("Instruction %d is used multiple times at %d; occurrence=%d\n", |
| current->id(), |
| use->id(), |
| occurrence_index); |
| } |
| } |
| int operand_index = use->LookupOperandIndex(occurrence_index, current); |
| Representation req = use->RequiredInputRepresentation(operand_index); |
| if (req.IsNone() || req.Equals(r)) continue; |
| int index = 0; |
| while (index < to_convert->length() && |
| CompareConversionUses(to_convert->at(index), |
| use, |
| to_convert_reps->at(index), |
| req) < 0) { |
| ++index; |
| } |
| if (FLAG_trace_representation) { |
| PrintF("Inserting a representation change to %s of %d for use at %d\n", |
| req.Mnemonic(), |
| current->id(), |
| use->id()); |
| } |
| to_convert->InsertAt(index, use); |
| to_convert_reps->InsertAt(index, req); |
| } |
| |
| for (int i = 0; i < to_convert->length(); ++i) { |
| HValue* use = to_convert->at(i); |
| Representation r_to = to_convert_reps->at(i); |
| InsertRepresentationChangeForUse(current, use, r_to); |
| } |
| |
| if (current->uses()->is_empty()) { |
| ASSERT(current->IsConstant()); |
| current->Delete(); |
| } |
| to_convert->Rewind(0); |
| to_convert_reps->Rewind(0); |
| } |
| |
| |
| void HGraph::InsertRepresentationChanges() { |
| HPhase phase("Insert representation changes", this); |
| |
| |
| // Compute truncation flag for phis: Initially assume that all |
| // int32-phis allow truncation and iteratively remove the ones that |
| // are used in an operation that does not allow a truncating |
| // conversion. |
| // TODO(fschneider): Replace this with a worklist-based iteration. |
| for (int i = 0; i < phi_list()->length(); i++) { |
| HPhi* phi = phi_list()->at(i); |
| if (phi->representation().IsInteger32()) { |
| phi->SetFlag(HValue::kTruncatingToInt32); |
| } |
| } |
| bool change = true; |
| while (change) { |
| change = false; |
| for (int i = 0; i < phi_list()->length(); i++) { |
| HPhi* phi = phi_list()->at(i); |
| if (!phi->CheckFlag(HValue::kTruncatingToInt32)) continue; |
| for (int j = 0; j < phi->uses()->length(); j++) { |
| HValue* use = phi->uses()->at(j); |
| if (!use->CheckFlag(HValue::kTruncatingToInt32)) { |
| phi->ClearFlag(HValue::kTruncatingToInt32); |
| change = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| ZoneList<HValue*> value_list(4); |
| ZoneList<Representation> rep_list(4); |
| for (int i = 0; i < blocks_.length(); ++i) { |
| // Process phi instructions first. |
| for (int j = 0; j < blocks_[i]->phis()->length(); j++) { |
| HPhi* phi = blocks_[i]->phis()->at(j); |
| InsertRepresentationChangesForValue(phi, &value_list, &rep_list); |
| } |
| |
| // Process normal instructions. |
| HInstruction* current = blocks_[i]->first(); |
| while (current != NULL) { |
| InsertRepresentationChangesForValue(current, &value_list, &rep_list); |
| current = current->next(); |
| } |
| } |
| } |
| |
| |
| void HGraph::RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi* phi) { |
| if (phi->CheckFlag(HValue::kDeoptimizeOnUndefined)) return; |
| phi->SetFlag(HValue::kDeoptimizeOnUndefined); |
| for (int i = 0; i < phi->OperandCount(); ++i) { |
| HValue* input = phi->OperandAt(i); |
| if (input->IsPhi()) { |
| RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi::cast(input)); |
| } |
| } |
| } |
| |
| |
| void HGraph::MarkDeoptimizeOnUndefined() { |
| HPhase phase("MarkDeoptimizeOnUndefined", this); |
| // Compute DeoptimizeOnUndefined flag for phis. |
| // Any phi that can reach a use with DeoptimizeOnUndefined set must |
| // have DeoptimizeOnUndefined set. Currently only HCompare, with |
| // double input representation, has this flag set. |
| // The flag is used by HChange tagged->double, which must deoptimize |
| // if one of its uses has this flag set. |
| for (int i = 0; i < phi_list()->length(); i++) { |
| HPhi* phi = phi_list()->at(i); |
| if (phi->representation().IsDouble()) { |
| for (int j = 0; j < phi->uses()->length(); j++) { |
| HValue* use = phi->uses()->at(j); |
| if (use->CheckFlag(HValue::kDeoptimizeOnUndefined)) { |
| RecursivelyMarkPhiDeoptimizeOnUndefined(phi); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void HGraph::ComputeMinusZeroChecks() { |
| BitVector visited(GetMaximumValueID()); |
| for (int i = 0; i < blocks_.length(); ++i) { |
| for (HInstruction* current = blocks_[i]->first(); |
| current != NULL; |
| current = current->next()) { |
| if (current->IsChange()) { |
| HChange* change = HChange::cast(current); |
| // Propagate flags for negative zero checks upwards from conversions |
| // int32-to-tagged and int32-to-double. |
| Representation from = change->value()->representation(); |
| ASSERT(from.Equals(change->from())); |
| if (from.IsInteger32()) { |
| ASSERT(change->to().IsTagged() || change->to().IsDouble()); |
| ASSERT(visited.IsEmpty()); |
| PropagateMinusZeroChecks(change->value(), &visited); |
| visited.Clear(); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // Implementation of utility class to encapsulate the translation state for |
| // a (possibly inlined) function. |
| FunctionState::FunctionState(HGraphBuilder* owner, |
| CompilationInfo* info, |
| TypeFeedbackOracle* oracle) |
| : owner_(owner), |
| compilation_info_(info), |
| oracle_(oracle), |
| call_context_(NULL), |
| function_return_(NULL), |
| test_context_(NULL), |
| outer_(owner->function_state()) { |
| if (outer_ != NULL) { |
| // State for an inline function. |
| if (owner->ast_context()->IsTest()) { |
| HBasicBlock* if_true = owner->graph()->CreateBasicBlock(); |
| HBasicBlock* if_false = owner->graph()->CreateBasicBlock(); |
| if_true->MarkAsInlineReturnTarget(); |
| if_false->MarkAsInlineReturnTarget(); |
| // The AstContext constructor pushed on the context stack. This newed |
| // instance is the reason that AstContext can't be BASE_EMBEDDED. |
| test_context_ = new TestContext(owner, if_true, if_false); |
| } else { |
| function_return_ = owner->graph()->CreateBasicBlock(); |
| function_return()->MarkAsInlineReturnTarget(); |
| } |
| // Set this after possibly allocating a new TestContext above. |
| call_context_ = owner->ast_context(); |
| } |
| |
| // Push on the state stack. |
| owner->set_function_state(this); |
| } |
| |
| |
| FunctionState::~FunctionState() { |
| delete test_context_; |
| owner_->set_function_state(outer_); |
| } |
| |
| |
| // Implementation of utility classes to represent an expression's context in |
| // the AST. |
| AstContext::AstContext(HGraphBuilder* owner, Expression::Context kind) |
| : owner_(owner), |
| kind_(kind), |
| outer_(owner->ast_context()), |
| for_typeof_(false) { |
| owner->set_ast_context(this); // Push. |
| #ifdef DEBUG |
| original_length_ = owner->environment()->length(); |
| #endif |
| } |
| |
| |
| AstContext::~AstContext() { |
| owner_->set_ast_context(outer_); // Pop. |
| } |
| |
| |
| EffectContext::~EffectContext() { |
| ASSERT(owner()->HasStackOverflow() || |
| owner()->current_block() == NULL || |
| owner()->environment()->length() == original_length_); |
| } |
| |
| |
| ValueContext::~ValueContext() { |
| ASSERT(owner()->HasStackOverflow() || |
| owner()->current_block() == NULL || |
| owner()->environment()->length() == original_length_ + 1); |
| } |
| |
| |
| void EffectContext::ReturnValue(HValue* value) { |
| // The value is simply ignored. |
| } |
| |
| |
| void ValueContext::ReturnValue(HValue* value) { |
| // The value is tracked in the bailout environment, and communicated |
| // through the environment as the result of the expression. |
| owner()->Push(value); |
| } |
| |
| |
| void TestContext::ReturnValue(HValue* value) { |
| BuildBranch(value); |
| } |
| |
| |
| void EffectContext::ReturnInstruction(HInstruction* instr, int ast_id) { |
| owner()->AddInstruction(instr); |
| if (instr->HasSideEffects()) owner()->AddSimulate(ast_id); |
| } |
| |
| |
| void ValueContext::ReturnInstruction(HInstruction* instr, int ast_id) { |
| owner()->AddInstruction(instr); |
| owner()->Push(instr); |
| if (instr->HasSideEffects()) owner()->AddSimulate(ast_id); |
| } |
| |
| |
| void TestContext::ReturnInstruction(HInstruction* instr, int ast_id) { |
| HGraphBuilder* builder = owner(); |
| builder->AddInstruction(instr); |
| // We expect a simulate after every expression with side effects, though |
| // this one isn't actually needed (and wouldn't work if it were targeted). |
| if (instr->HasSideEffects()) { |
| builder->Push(instr); |
| builder->AddSimulate(ast_id); |
| builder->Pop(); |
| } |
| BuildBranch(instr); |
| } |
| |
| |
| void TestContext::BuildBranch(HValue* value) { |
| // We expect the graph to be in edge-split form: there is no edge that |
| // connects a branch node to a join node. We conservatively ensure that |
| // property by always adding an empty block on the outgoing edges of this |
| // branch. |
| HGraphBuilder* builder = owner(); |
| HBasicBlock* empty_true = builder->graph()->CreateBasicBlock(); |
| HBasicBlock* empty_false = builder->graph()->CreateBasicBlock(); |
| HTest* test = new(zone()) HTest(value, empty_true, empty_false); |
| builder->current_block()->Finish(test); |
| |
| empty_true->Goto(if_true(), false); |
| empty_false->Goto(if_false(), false); |
| builder->set_current_block(NULL); |
| } |
| |
| |
| // HGraphBuilder infrastructure for bailing out and checking bailouts. |
| #define BAILOUT(reason) \ |
| do { \ |
| Bailout(reason); \ |
| return; \ |
| } while (false) |
| |
| |
| #define CHECK_BAILOUT \ |
| do { \ |
| if (HasStackOverflow()) return; \ |
| } while (false) |
| |
| |
| #define VISIT_FOR_EFFECT(expr) \ |
| do { \ |
| VisitForEffect(expr); \ |
| if (HasStackOverflow()) return; \ |
| } while (false) |
| |
| |
| #define VISIT_FOR_VALUE(expr) \ |
| do { \ |
| VisitForValue(expr); \ |
| if (HasStackOverflow()) return; \ |
| } while (false) |
| |
| |
| #define VISIT_FOR_CONTROL(expr, true_block, false_block) \ |
| do { \ |
| VisitForControl(expr, true_block, false_block); \ |
| if (HasStackOverflow()) return; \ |
| } while (false) |
| |
| |
| void HGraphBuilder::Bailout(const char* reason) { |
| if (FLAG_trace_bailout) { |
| SmartPointer<char> name(info()->shared_info()->DebugName()->ToCString()); |
| PrintF("Bailout in HGraphBuilder: @\"%s\": %s\n", *name, reason); |
| } |
| SetStackOverflow(); |
| } |
| |
| |
| void HGraphBuilder::VisitForEffect(Expression* expr) { |
| EffectContext for_effect(this); |
| Visit(expr); |
| } |
| |
| |
| void HGraphBuilder::VisitForValue(Expression* expr) { |
| ValueContext for_value(this); |
| Visit(expr); |
| } |
| |
| |
| void HGraphBuilder::VisitForTypeOf(Expression* expr) { |
| ValueContext for_value(this); |
| for_value.set_for_typeof(true); |
| Visit(expr); |
| } |
| |
| |
| |
| void HGraphBuilder::VisitForControl(Expression* expr, |
| HBasicBlock* true_block, |
| HBasicBlock* false_block) { |
| TestContext for_test(this, true_block, false_block); |
| Visit(expr); |
| } |
| |
| |
| void HGraphBuilder::VisitArgument(Expression* expr) { |
| VISIT_FOR_VALUE(expr); |
| Push(AddInstruction(new(zone()) HPushArgument(Pop()))); |
| } |
| |
| |
| void HGraphBuilder::VisitArgumentList(ZoneList<Expression*>* arguments) { |
| for (int i = 0; i < arguments->length(); i++) { |
| VisitArgument(arguments->at(i)); |
| if (HasStackOverflow() || current_block() == NULL) return; |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitExpressions(ZoneList<Expression*>* exprs) { |
| for (int i = 0; i < exprs->length(); ++i) { |
| VISIT_FOR_VALUE(exprs->at(i)); |
| } |
| } |
| |
| |
| HGraph* HGraphBuilder::CreateGraph() { |
| graph_ = new(zone()) HGraph(info()); |
| if (FLAG_hydrogen_stats) HStatistics::Instance()->Initialize(info()); |
| |
| { |
| HPhase phase("Block building"); |
| current_block_ = graph()->entry_block(); |
| |
| Scope* scope = info()->scope(); |
| if (scope->HasIllegalRedeclaration()) { |
| Bailout("function with illegal redeclaration"); |
| return NULL; |
| } |
| SetupScope(scope); |
| VisitDeclarations(scope->declarations()); |
| AddInstruction(new(zone()) HStackCheck()); |
| |
| // Add an edge to the body entry. This is warty: the graph's start |
| // environment will be used by the Lithium translation as the initial |
| // environment on graph entry, but it has now been mutated by the |
| // Hydrogen translation of the instructions in the start block. This |
| // environment uses values which have not been defined yet. These |
| // Hydrogen instructions will then be replayed by the Lithium |
| // translation, so they cannot have an environment effect. The edge to |
| // the body's entry block (along with some special logic for the start |
| // block in HInstruction::InsertAfter) seals the start block from |
| // getting unwanted instructions inserted. |
| // |
| // TODO(kmillikin): Fix this. Stop mutating the initial environment. |
| // Make the Hydrogen instructions in the initial block into Hydrogen |
| // values (but not instructions), present in the initial environment and |
| // not replayed by the Lithium translation. |
| HEnvironment* initial_env = environment()->CopyWithoutHistory(); |
| HBasicBlock* body_entry = CreateBasicBlock(initial_env); |
| current_block()->Goto(body_entry); |
| body_entry->SetJoinId(AstNode::kFunctionEntryId); |
| set_current_block(body_entry); |
| VisitStatements(info()->function()->body()); |
| if (HasStackOverflow()) return NULL; |
| |
| if (current_block() != NULL) { |
| HReturn* instr = new(zone()) HReturn(graph()->GetConstantUndefined()); |
| current_block()->FinishExit(instr); |
| set_current_block(NULL); |
| } |
| } |
| |
| graph()->OrderBlocks(); |
| graph()->AssignDominators(); |
| graph()->EliminateRedundantPhis(); |
| if (FLAG_eliminate_dead_phis) graph()->EliminateUnreachablePhis(); |
| if (!graph()->CollectPhis()) { |
| Bailout("Phi-use of arguments object"); |
| return NULL; |
| } |
| |
| HInferRepresentation rep(graph()); |
| rep.Analyze(); |
| |
| if (FLAG_use_range) { |
| HRangeAnalysis rangeAnalysis(graph()); |
| rangeAnalysis.Analyze(); |
| } |
| |
| graph()->InitializeInferredTypes(); |
| graph()->Canonicalize(); |
| graph()->MarkDeoptimizeOnUndefined(); |
| graph()->InsertRepresentationChanges(); |
| graph()->ComputeMinusZeroChecks(); |
| |
| // Eliminate redundant stack checks on backwards branches. |
| HStackCheckEliminator sce(graph()); |
| sce.Process(); |
| |
| // Perform common subexpression elimination and loop-invariant code motion. |
| if (FLAG_use_gvn) { |
| HPhase phase("Global value numbering", graph()); |
| HGlobalValueNumberer gvn(graph(), info()); |
| gvn.Analyze(); |
| } |
| |
| // Replace the results of check instructions with the original value, if the |
| // result is used. This is safe now, since we don't do code motion after this |
| // point. It enables better register allocation since the value produced by |
| // check instructions is really a copy of the original value. |
| graph()->ReplaceCheckedValues(); |
| |
| return graph(); |
| } |
| |
| |
| void HGraph::ReplaceCheckedValues() { |
| HPhase phase("Replace checked values", this); |
| for (int i = 0; i < blocks()->length(); ++i) { |
| HInstruction* instr = blocks()->at(i)->first(); |
| while (instr != NULL) { |
| if (instr->IsBoundsCheck()) { |
| // Replace all uses of the checked value with the original input. |
| ASSERT(instr->uses()->length() > 0); |
| instr->ReplaceValue(HBoundsCheck::cast(instr)->index()); |
| } |
| instr = instr->next(); |
| } |
| } |
| } |
| |
| |
| HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) { |
| ASSERT(current_block() != NULL); |
| current_block()->AddInstruction(instr); |
| return instr; |
| } |
| |
| |
| void HGraphBuilder::AddSimulate(int id) { |
| ASSERT(current_block() != NULL); |
| current_block()->AddSimulate(id); |
| } |
| |
| |
| void HGraphBuilder::AddPhi(HPhi* instr) { |
| ASSERT(current_block() != NULL); |
| current_block()->AddPhi(instr); |
| } |
| |
| |
| void HGraphBuilder::PushAndAdd(HInstruction* instr) { |
| Push(instr); |
| AddInstruction(instr); |
| } |
| |
| |
| template <int V> |
| HInstruction* HGraphBuilder::PreProcessCall(HCall<V>* call) { |
| int count = call->argument_count(); |
| ZoneList<HValue*> arguments(count); |
| for (int i = 0; i < count; ++i) { |
| arguments.Add(Pop()); |
| } |
| |
| while (!arguments.is_empty()) { |
| AddInstruction(new(zone()) HPushArgument(arguments.RemoveLast())); |
| } |
| return call; |
| } |
| |
| |
| void HGraphBuilder::SetupScope(Scope* scope) { |
| // We don't yet handle the function name for named function expressions. |
| if (scope->function() != NULL) BAILOUT("named function expression"); |
| |
| HConstant* undefined_constant = new(zone()) HConstant( |
| isolate()->factory()->undefined_value(), Representation::Tagged()); |
| AddInstruction(undefined_constant); |
| graph_->set_undefined_constant(undefined_constant); |
| |
| // Set the initial values of parameters including "this". "This" has |
| // parameter index 0. |
| int count = scope->num_parameters() + 1; |
| for (int i = 0; i < count; ++i) { |
| HInstruction* parameter = AddInstruction(new(zone()) HParameter(i)); |
| environment()->Bind(i, parameter); |
| } |
| |
| // Set the initial values of stack-allocated locals. |
| for (int i = count; i < environment()->length(); ++i) { |
| environment()->Bind(i, undefined_constant); |
| } |
| |
| // Handle the arguments and arguments shadow variables specially (they do |
| // not have declarations). |
| if (scope->arguments() != NULL) { |
| if (!scope->arguments()->IsStackAllocated() || |
| (scope->arguments_shadow() != NULL && |
| !scope->arguments_shadow()->IsStackAllocated())) { |
| BAILOUT("context-allocated arguments"); |
| } |
| HArgumentsObject* object = new(zone()) HArgumentsObject; |
| AddInstruction(object); |
| graph()->SetArgumentsObject(object); |
| environment()->Bind(scope->arguments(), object); |
| if (scope->arguments_shadow() != NULL) { |
| environment()->Bind(scope->arguments_shadow(), object); |
| } |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) { |
| for (int i = 0; i < statements->length(); i++) { |
| Visit(statements->at(i)); |
| if (HasStackOverflow() || current_block() == NULL) break; |
| } |
| } |
| |
| |
| HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) { |
| HBasicBlock* b = graph()->CreateBasicBlock(); |
| b->SetInitialEnvironment(env); |
| return b; |
| } |
| |
| |
| HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() { |
| HBasicBlock* header = graph()->CreateBasicBlock(); |
| HEnvironment* entry_env = environment()->CopyAsLoopHeader(header); |
| header->SetInitialEnvironment(entry_env); |
| header->AttachLoopInformation(); |
| return header; |
| } |
| |
| |
| void HGraphBuilder::VisitBlock(Block* stmt) { |
| BreakAndContinueInfo break_info(stmt); |
| { BreakAndContinueScope push(&break_info, this); |
| VisitStatements(stmt->statements()); |
| CHECK_BAILOUT; |
| } |
| HBasicBlock* break_block = break_info.break_block(); |
| if (break_block != NULL) { |
| if (current_block() != NULL) current_block()->Goto(break_block); |
| break_block->SetJoinId(stmt->ExitId()); |
| set_current_block(break_block); |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) { |
| VisitForEffect(stmt->expression()); |
| } |
| |
| |
| void HGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) { |
| } |
| |
| |
| void HGraphBuilder::VisitIfStatement(IfStatement* stmt) { |
| if (stmt->condition()->ToBooleanIsTrue()) { |
| AddSimulate(stmt->ThenId()); |
| Visit(stmt->then_statement()); |
| } else if (stmt->condition()->ToBooleanIsFalse()) { |
| AddSimulate(stmt->ElseId()); |
| Visit(stmt->else_statement()); |
| } else { |
| HBasicBlock* cond_true = graph()->CreateBasicBlock(); |
| HBasicBlock* cond_false = graph()->CreateBasicBlock(); |
| VISIT_FOR_CONTROL(stmt->condition(), cond_true, cond_false); |
| cond_true->SetJoinId(stmt->ThenId()); |
| cond_false->SetJoinId(stmt->ElseId()); |
| |
| set_current_block(cond_true); |
| Visit(stmt->then_statement()); |
| CHECK_BAILOUT; |
| HBasicBlock* other = current_block(); |
| |
| set_current_block(cond_false); |
| Visit(stmt->else_statement()); |
| CHECK_BAILOUT; |
| |
| HBasicBlock* join = CreateJoin(other, current_block(), stmt->id()); |
| set_current_block(join); |
| } |
| } |
| |
| |
| HBasicBlock* HGraphBuilder::BreakAndContinueScope::Get( |
| BreakableStatement* stmt, |
| BreakType type) { |
| BreakAndContinueScope* current = this; |
| while (current != NULL && current->info()->target() != stmt) { |
| current = current->next(); |
| } |
| ASSERT(current != NULL); // Always found (unless stack is malformed). |
| HBasicBlock* block = NULL; |
| switch (type) { |
| case BREAK: |
| block = current->info()->break_block(); |
| if (block == NULL) { |
| block = current->owner()->graph()->CreateBasicBlock(); |
| current->info()->set_break_block(block); |
| } |
| break; |
| |
| case CONTINUE: |
| block = current->info()->continue_block(); |
| if (block == NULL) { |
| block = current->owner()->graph()->CreateBasicBlock(); |
| current->info()->set_continue_block(block); |
| } |
| break; |
| } |
| |
| return block; |
| } |
| |
| |
| void HGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) { |
| HBasicBlock* continue_block = break_scope()->Get(stmt->target(), CONTINUE); |
| current_block()->Goto(continue_block); |
| set_current_block(NULL); |
| } |
| |
| |
| void HGraphBuilder::VisitBreakStatement(BreakStatement* stmt) { |
| HBasicBlock* break_block = break_scope()->Get(stmt->target(), BREAK); |
| current_block()->Goto(break_block); |
| set_current_block(NULL); |
| } |
| |
| |
| void HGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) { |
| AstContext* context = call_context(); |
| if (context == NULL) { |
| // Not an inlined return, so an actual one. |
| VISIT_FOR_VALUE(stmt->expression()); |
| HValue* result = environment()->Pop(); |
| current_block()->FinishExit(new(zone()) HReturn(result)); |
| set_current_block(NULL); |
| } else { |
| // Return from an inlined function, visit the subexpression in the |
| // expression context of the call. |
| if (context->IsTest()) { |
| TestContext* test = TestContext::cast(context); |
| VisitForControl(stmt->expression(), |
| test->if_true(), |
| test->if_false()); |
| } else if (context->IsEffect()) { |
| VISIT_FOR_EFFECT(stmt->expression()); |
| current_block()->Goto(function_return(), false); |
| } else { |
| ASSERT(context->IsValue()); |
| VISIT_FOR_VALUE(stmt->expression()); |
| HValue* return_value = environment()->Pop(); |
| current_block()->AddLeaveInlined(return_value, function_return()); |
| } |
| set_current_block(NULL); |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) { |
| BAILOUT("WithEnterStatement"); |
| } |
| |
| |
| void HGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) { |
| BAILOUT("WithExitStatement"); |
| } |
| |
| |
| void HGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) { |
| // We only optimize switch statements with smi-literal smi comparisons, |
| // with a bounded number of clauses. |
| const int kCaseClauseLimit = 128; |
| ZoneList<CaseClause*>* clauses = stmt->cases(); |
| int clause_count = clauses->length(); |
| if (clause_count > kCaseClauseLimit) { |
| BAILOUT("SwitchStatement: too many clauses"); |
| } |
| |
| VISIT_FOR_VALUE(stmt->tag()); |
| AddSimulate(stmt->EntryId()); |
| HValue* tag_value = Pop(); |
| HBasicBlock* first_test_block = current_block(); |
| |
| // 1. Build all the tests, with dangling true branches. Unconditionally |
| // deoptimize if we encounter a non-smi comparison. |
| for (int i = 0; i < clause_count; ++i) { |
| CaseClause* clause = clauses->at(i); |
| if (clause->is_default()) continue; |
| if (!clause->label()->IsSmiLiteral()) { |
| BAILOUT("SwitchStatement: non-literal switch label"); |
| } |
| |
| // Unconditionally deoptimize on the first non-smi compare. |
| clause->RecordTypeFeedback(oracle()); |
| if (!clause->IsSmiCompare()) { |
| current_block()->FinishExitWithDeoptimization(); |
| set_current_block(NULL); |
| break; |
| } |
| |
| // Otherwise generate a compare and branch. |
| VISIT_FOR_VALUE(clause->label()); |
| HValue* label_value = Pop(); |
| HCompare* compare = |
| new(zone()) HCompare(tag_value, label_value, Token::EQ_STRICT); |
| compare->SetInputRepresentation(Representation::Integer32()); |
| ASSERT(!compare->HasSideEffects()); |
| AddInstruction(compare); |
| HBasicBlock* body_block = graph()->CreateBasicBlock(); |
| HBasicBlock* next_test_block = graph()->CreateBasicBlock(); |
| HTest* branch = new(zone()) HTest(compare, body_block, next_test_block); |
| current_block()->Finish(branch); |
| set_current_block(next_test_block); |
| } |
| |
| // Save the current block to use for the default or to join with the |
| // exit. This block is NULL if we deoptimized. |
| HBasicBlock* last_block = current_block(); |
| |
| // 2. Loop over the clauses and the linked list of tests in lockstep, |
| // translating the clause bodies. |
| HBasicBlock* curr_test_block = first_test_block; |
| HBasicBlock* fall_through_block = NULL; |
| BreakAndContinueInfo break_info(stmt); |
| { BreakAndContinueScope push(&break_info, this); |
| for (int i = 0; i < clause_count; ++i) { |
| CaseClause* clause = clauses->at(i); |
| |
| // Identify the block where normal (non-fall-through) control flow |
| // goes to. |
| HBasicBlock* normal_block = NULL; |
| if (clause->is_default()) { |
| if (last_block != NULL) { |
| normal_block = last_block; |
| last_block = NULL; // Cleared to indicate we've handled it. |
| } |
| } else if (!curr_test_block->end()->IsDeoptimize()) { |
| normal_block = curr_test_block->end()->FirstSuccessor(); |
| curr_test_block = curr_test_block->end()->SecondSuccessor(); |
| } |
| |
| // Identify a block to emit the body into. |
| if (normal_block == NULL) { |
| if (fall_through_block == NULL) { |
| // (a) Unreachable. |
| if (clause->is_default()) { |
| continue; // Might still be reachable clause bodies. |
| } else { |
| break; |
| } |
| } else { |
| // (b) Reachable only as fall through. |
| set_current_block(fall_through_block); |
| } |
| } else if (fall_through_block == NULL) { |
| // (c) Reachable only normally. |
| set_current_block(normal_block); |
| } else { |
| // (d) Reachable both ways. |
| HBasicBlock* join = CreateJoin(fall_through_block, |
| normal_block, |
| clause->EntryId()); |
| set_current_block(join); |
| } |
| |
| VisitStatements(clause->statements()); |
| CHECK_BAILOUT; |
| fall_through_block = current_block(); |
| } |
| } |
| |
| // Create an up-to-3-way join. Use the break block if it exists since |
| // it's already a join block. |
| HBasicBlock* break_block = break_info.break_block(); |
| if (break_block == NULL) { |
| set_current_block(CreateJoin(fall_through_block, |
| last_block, |
| stmt->ExitId())); |
| } else { |
| if (fall_through_block != NULL) fall_through_block->Goto(break_block); |
| if (last_block != NULL) last_block->Goto(break_block); |
| break_block->SetJoinId(stmt->ExitId()); |
| set_current_block(break_block); |
| } |
| } |
| |
| |
| bool HGraphBuilder::HasOsrEntryAt(IterationStatement* statement) { |
| return statement->OsrEntryId() == info()->osr_ast_id(); |
| } |
| |
| |
| void HGraphBuilder::PreProcessOsrEntry(IterationStatement* statement) { |
| if (!HasOsrEntryAt(statement)) return; |
| |
| HBasicBlock* non_osr_entry = graph()->CreateBasicBlock(); |
| HBasicBlock* osr_entry = graph()->CreateBasicBlock(); |
| HValue* true_value = graph()->GetConstantTrue(); |
| HTest* test = new(zone()) HTest(true_value, non_osr_entry, osr_entry); |
| current_block()->Finish(test); |
| |
| HBasicBlock* loop_predecessor = graph()->CreateBasicBlock(); |
| non_osr_entry->Goto(loop_predecessor); |
| |
| set_current_block(osr_entry); |
| int osr_entry_id = statement->OsrEntryId(); |
| // We want the correct environment at the OsrEntry instruction. Build |
| // it explicitly. The expression stack should be empty. |
| int count = environment()->length(); |
| ASSERT(count == |
| (environment()->parameter_count() + environment()->local_count())); |
| for (int i = 0; i < count; ++i) { |
| HUnknownOSRValue* unknown = new(zone()) HUnknownOSRValue; |
| AddInstruction(unknown); |
| environment()->Bind(i, unknown); |
| } |
| |
| AddSimulate(osr_entry_id); |
| AddInstruction(new(zone()) HOsrEntry(osr_entry_id)); |
| current_block()->Goto(loop_predecessor); |
| loop_predecessor->SetJoinId(statement->EntryId()); |
| set_current_block(loop_predecessor); |
| } |
| |
| |
| void HGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) { |
| ASSERT(current_block() != NULL); |
| PreProcessOsrEntry(stmt); |
| HBasicBlock* loop_entry = CreateLoopHeaderBlock(); |
| current_block()->Goto(loop_entry, false); |
| set_current_block(loop_entry); |
| |
| BreakAndContinueInfo break_info(stmt); |
| { BreakAndContinueScope push(&break_info, this); |
| Visit(stmt->body()); |
| CHECK_BAILOUT; |
| } |
| HBasicBlock* body_exit = |
| JoinContinue(stmt, current_block(), break_info.continue_block()); |
| HBasicBlock* loop_successor = NULL; |
| if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) { |
| set_current_block(body_exit); |
| // The block for a true condition, the actual predecessor block of the |
| // back edge. |
| body_exit = graph()->CreateBasicBlock(); |
| loop_successor = graph()->CreateBasicBlock(); |
| VISIT_FOR_CONTROL(stmt->cond(), body_exit, loop_successor); |
| body_exit->SetJoinId(stmt->BackEdgeId()); |
| loop_successor->SetJoinId(stmt->ExitId()); |
| } |
| HBasicBlock* loop_exit = CreateLoop(stmt, |
| loop_entry, |
| body_exit, |
| loop_successor, |
| break_info.break_block()); |
| set_current_block(loop_exit); |
| } |
| |
| |
| void HGraphBuilder::VisitWhileStatement(WhileStatement* stmt) { |
| ASSERT(current_block() != NULL); |
| PreProcessOsrEntry(stmt); |
| HBasicBlock* loop_entry = CreateLoopHeaderBlock(); |
| current_block()->Goto(loop_entry, false); |
| set_current_block(loop_entry); |
| |
| // If the condition is constant true, do not generate a branch. |
| HBasicBlock* loop_successor = NULL; |
| if (!stmt->cond()->ToBooleanIsTrue()) { |
| HBasicBlock* body_entry = graph()->CreateBasicBlock(); |
| loop_successor = graph()->CreateBasicBlock(); |
| VISIT_FOR_CONTROL(stmt->cond(), body_entry, loop_successor); |
| body_entry->SetJoinId(stmt->BodyId()); |
| loop_successor->SetJoinId(stmt->ExitId()); |
| set_current_block(body_entry); |
| } |
| |
| BreakAndContinueInfo break_info(stmt); |
| { BreakAndContinueScope push(&break_info, this); |
| Visit(stmt->body()); |
| CHECK_BAILOUT; |
| } |
| HBasicBlock* body_exit = |
| JoinContinue(stmt, current_block(), break_info.continue_block()); |
| HBasicBlock* loop_exit = CreateLoop(stmt, |
| loop_entry, |
| body_exit, |
| loop_successor, |
| break_info.break_block()); |
| set_current_block(loop_exit); |
| } |
| |
| |
| void HGraphBuilder::VisitForStatement(ForStatement* stmt) { |
| if (stmt->init() != NULL) { |
| Visit(stmt->init()); |
| CHECK_BAILOUT; |
| } |
| ASSERT(current_block() != NULL); |
| PreProcessOsrEntry(stmt); |
| HBasicBlock* loop_entry = CreateLoopHeaderBlock(); |
| current_block()->Goto(loop_entry, false); |
| set_current_block(loop_entry); |
| |
| HBasicBlock* loop_successor = NULL; |
| if (stmt->cond() != NULL) { |
| HBasicBlock* body_entry = graph()->CreateBasicBlock(); |
| loop_successor = graph()->CreateBasicBlock(); |
| VISIT_FOR_CONTROL(stmt->cond(), body_entry, loop_successor); |
| body_entry->SetJoinId(stmt->BodyId()); |
| loop_successor->SetJoinId(stmt->ExitId()); |
| set_current_block(body_entry); |
| } |
| |
| BreakAndContinueInfo break_info(stmt); |
| { BreakAndContinueScope push(&break_info, this); |
| Visit(stmt->body()); |
| CHECK_BAILOUT; |
| } |
| HBasicBlock* body_exit = |
| JoinContinue(stmt, current_block(), break_info.continue_block()); |
| |
| if (stmt->next() != NULL && body_exit != NULL) { |
| set_current_block(body_exit); |
| Visit(stmt->next()); |
| CHECK_BAILOUT; |
| body_exit = current_block(); |
| } |
| |
| HBasicBlock* loop_exit = CreateLoop(stmt, |
| loop_entry, |
| body_exit, |
| loop_successor, |
| break_info.break_block()); |
| set_current_block(loop_exit); |
| } |
| |
| |
| void HGraphBuilder::VisitForInStatement(ForInStatement* stmt) { |
| BAILOUT("ForInStatement"); |
| } |
| |
| |
| void HGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) { |
| BAILOUT("TryCatchStatement"); |
| } |
| |
| |
| void HGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) { |
| BAILOUT("TryFinallyStatement"); |
| } |
| |
| |
| void HGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) { |
| BAILOUT("DebuggerStatement"); |
| } |
| |
| |
| static Handle<SharedFunctionInfo> SearchSharedFunctionInfo( |
| Code* unoptimized_code, FunctionLiteral* expr) { |
| int start_position = expr->start_position(); |
| RelocIterator it(unoptimized_code); |
| for (;!it.done(); it.next()) { |
| RelocInfo* rinfo = it.rinfo(); |
| if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue; |
| Object* obj = rinfo->target_object(); |
| if (obj->IsSharedFunctionInfo()) { |
| SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); |
| if (shared->start_position() == start_position) { |
| return Handle<SharedFunctionInfo>(shared); |
| } |
| } |
| } |
| |
| return Handle<SharedFunctionInfo>(); |
| } |
| |
| |
| void HGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) { |
| Handle<SharedFunctionInfo> shared_info = |
| SearchSharedFunctionInfo(info()->shared_info()->code(), |
| expr); |
| if (shared_info.is_null()) { |
| shared_info = Compiler::BuildFunctionInfo(expr, info()->script()); |
| } |
| CHECK_BAILOUT; |
| HFunctionLiteral* instr = |
| new(zone()) HFunctionLiteral(shared_info, expr->pretenure()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HGraphBuilder::VisitSharedFunctionInfoLiteral( |
| SharedFunctionInfoLiteral* expr) { |
| BAILOUT("SharedFunctionInfoLiteral"); |
| } |
| |
| |
| void HGraphBuilder::VisitConditional(Conditional* expr) { |
| HBasicBlock* cond_true = graph()->CreateBasicBlock(); |
| HBasicBlock* cond_false = graph()->CreateBasicBlock(); |
| VISIT_FOR_CONTROL(expr->condition(), cond_true, cond_false); |
| cond_true->SetJoinId(expr->ThenId()); |
| cond_false->SetJoinId(expr->ElseId()); |
| |
| // Visit the true and false subexpressions in the same AST context as the |
| // whole expression. |
| set_current_block(cond_true); |
| Visit(expr->then_expression()); |
| CHECK_BAILOUT; |
| HBasicBlock* other = current_block(); |
| |
| set_current_block(cond_false); |
| Visit(expr->else_expression()); |
| CHECK_BAILOUT; |
| |
| if (!ast_context()->IsTest()) { |
| HBasicBlock* join = CreateJoin(other, current_block(), expr->id()); |
| set_current_block(join); |
| if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop()); |
| } |
| } |
| |
| |
| HGraphBuilder::GlobalPropertyAccess HGraphBuilder::LookupGlobalProperty( |
| Variable* var, LookupResult* lookup, bool is_store) { |
| if (var->is_this() || !info()->has_global_object()) { |
| return kUseGeneric; |
| } |
| Handle<GlobalObject> global(info()->global_object()); |
| global->Lookup(*var->name(), lookup); |
| if (!lookup->IsProperty() || |
| lookup->type() != NORMAL || |
| (is_store && lookup->IsReadOnly()) || |
| lookup->holder() != *global) { |
| return kUseGeneric; |
| } |
| |
| return kUseCell; |
| } |
| |
| |
| HValue* HGraphBuilder::BuildContextChainWalk(Variable* var) { |
| ASSERT(var->IsContextSlot()); |
| HInstruction* context = new(zone()) HContext; |
| AddInstruction(context); |
| int length = info()->scope()->ContextChainLength(var->scope()); |
| while (length-- > 0) { |
| context = new(zone()) HOuterContext(context); |
| AddInstruction(context); |
| } |
| return context; |
| } |
| |
| |
| void HGraphBuilder::VisitVariableProxy(VariableProxy* expr) { |
| Variable* variable = expr->AsVariable(); |
| if (variable == NULL) { |
| BAILOUT("reference to rewritten variable"); |
| } else if (variable->IsStackAllocated()) { |
| if (environment()->Lookup(variable)->CheckFlag(HValue::kIsArguments)) { |
| BAILOUT("unsupported context for arguments object"); |
| } |
| ast_context()->ReturnValue(environment()->Lookup(variable)); |
| } else if (variable->IsContextSlot()) { |
| if (variable->mode() == Variable::CONST) { |
| BAILOUT("reference to const context slot"); |
| } |
| HValue* context = BuildContextChainWalk(variable); |
| int index = variable->AsSlot()->index(); |
| HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, index); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } else if (variable->is_global()) { |
| LookupResult lookup; |
| GlobalPropertyAccess type = LookupGlobalProperty(variable, &lookup, false); |
| |
| if (type == kUseCell && |
| info()->global_object()->IsAccessCheckNeeded()) { |
| type = kUseGeneric; |
| } |
| |
| if (type == kUseCell) { |
| Handle<GlobalObject> global(info()->global_object()); |
| Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup)); |
| bool check_hole = !lookup.IsDontDelete() || lookup.IsReadOnly(); |
| HLoadGlobalCell* instr = new(zone()) HLoadGlobalCell(cell, check_hole); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } else { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(global_object); |
| HLoadGlobalGeneric* instr = |
| new(zone()) HLoadGlobalGeneric(context, |
| global_object, |
| variable->name(), |
| ast_context()->is_for_typeof()); |
| instr->set_position(expr->position()); |
| ASSERT(instr->HasSideEffects()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| } else { |
| BAILOUT("reference to a variable which requires dynamic lookup"); |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitLiteral(Literal* expr) { |
| HConstant* instr = |
| new(zone()) HConstant(expr->handle(), Representation::Tagged()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) { |
| HRegExpLiteral* instr = new(zone()) HRegExpLiteral(expr->pattern(), |
| expr->flags(), |
| expr->literal_index()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HObjectLiteral* literal = |
| new(zone()) HObjectLiteral(context, |
| expr->constant_properties(), |
| expr->fast_elements(), |
| expr->literal_index(), |
| expr->depth(), |
| expr->has_function()); |
| // The object is expected in the bailout environment during computation |
| // of the property values and is the value of the entire expression. |
| PushAndAdd(literal); |
| |
| expr->CalculateEmitStore(); |
| |
| for (int i = 0; i < expr->properties()->length(); i++) { |
| ObjectLiteral::Property* property = expr->properties()->at(i); |
| if (property->IsCompileTimeValue()) continue; |
| |
| Literal* key = property->key(); |
| Expression* value = property->value(); |
| |
| switch (property->kind()) { |
| case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
| ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); |
| // Fall through. |
| case ObjectLiteral::Property::COMPUTED: |
| if (key->handle()->IsSymbol()) { |
| if (property->emit_store()) { |
| VISIT_FOR_VALUE(value); |
| HValue* value = Pop(); |
| Handle<String> name = Handle<String>::cast(key->handle()); |
| HStoreNamedGeneric* store = |
| new(zone()) HStoreNamedGeneric( |
| context, |
| literal, |
| name, |
| value, |
| function_strict_mode()); |
| AddInstruction(store); |
| AddSimulate(key->id()); |
| } else { |
| VISIT_FOR_EFFECT(value); |
| } |
| break; |
| } |
| // Fall through. |
| case ObjectLiteral::Property::PROTOTYPE: |
| case ObjectLiteral::Property::SETTER: |
| case ObjectLiteral::Property::GETTER: |
| BAILOUT("Object literal with complex property"); |
| default: UNREACHABLE(); |
| } |
| } |
| |
| if (expr->has_function()) { |
| // Return the result of the transformation to fast properties |
| // instead of the original since this operation changes the map |
| // of the object. This makes sure that the original object won't |
| // be used by other optimized code before it is transformed |
| // (e.g. because of code motion). |
| HToFastProperties* result = new(zone()) HToFastProperties(Pop()); |
| AddInstruction(result); |
| ast_context()->ReturnValue(result); |
| } else { |
| ast_context()->ReturnValue(Pop()); |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) { |
| ZoneList<Expression*>* subexprs = expr->values(); |
| int length = subexprs->length(); |
| |
| HArrayLiteral* literal = new(zone()) HArrayLiteral(expr->constant_elements(), |
| length, |
| expr->literal_index(), |
| expr->depth()); |
| // The array is expected in the bailout environment during computation |
| // of the property values and is the value of the entire expression. |
| PushAndAdd(literal); |
| |
| HLoadElements* elements = NULL; |
| |
| for (int i = 0; i < length; i++) { |
| Expression* subexpr = subexprs->at(i); |
| // If the subexpression is a literal or a simple materialized literal it |
| // is already set in the cloned array. |
| if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; |
| |
| VISIT_FOR_VALUE(subexpr); |
| HValue* value = Pop(); |
| if (!Smi::IsValid(i)) BAILOUT("Non-smi key in array literal"); |
| |
| // Load the elements array before the first store. |
| if (elements == NULL) { |
| elements = new(zone()) HLoadElements(literal); |
| AddInstruction(elements); |
| } |
| |
| HValue* key = AddInstruction( |
| new(zone()) HConstant(Handle<Object>(Smi::FromInt(i)), |
| Representation::Integer32())); |
| AddInstruction(new(zone()) HStoreKeyedFastElement(elements, key, value)); |
| AddSimulate(expr->GetIdForElement(i)); |
| } |
| ast_context()->ReturnValue(Pop()); |
| } |
| |
| |
| void HGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) { |
| BAILOUT("CatchExtensionObject"); |
| } |
| |
| |
| // Sets the lookup result and returns true if the store can be inlined. |
| static bool ComputeStoredField(Handle<Map> type, |
| Handle<String> name, |
| LookupResult* lookup) { |
| type->LookupInDescriptors(NULL, *name, lookup); |
| if (!lookup->IsPropertyOrTransition()) return false; |
| if (lookup->type() == FIELD) return true; |
| return (lookup->type() == MAP_TRANSITION) && |
| (type->unused_property_fields() > 0); |
| } |
| |
| |
| static int ComputeStoredFieldIndex(Handle<Map> type, |
| Handle<String> name, |
| LookupResult* lookup) { |
| ASSERT(lookup->type() == FIELD || lookup->type() == MAP_TRANSITION); |
| if (lookup->type() == FIELD) { |
| return lookup->GetLocalFieldIndexFromMap(*type); |
| } else { |
| Map* transition = lookup->GetTransitionMapFromMap(*type); |
| return transition->PropertyIndexFor(*name) - type->inobject_properties(); |
| } |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreNamedField(HValue* object, |
| Handle<String> name, |
| HValue* value, |
| Handle<Map> type, |
| LookupResult* lookup, |
| bool smi_and_map_check) { |
| if (smi_and_map_check) { |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| AddInstruction(new(zone()) HCheckMap(object, type)); |
| } |
| |
| int index = ComputeStoredFieldIndex(type, name, lookup); |
| bool is_in_object = index < 0; |
| int offset = index * kPointerSize; |
| if (index < 0) { |
| // Negative property indices are in-object properties, indexed |
| // from the end of the fixed part of the object. |
| offset += type->instance_size(); |
| } else { |
| offset += FixedArray::kHeaderSize; |
| } |
| HStoreNamedField* instr = |
| new(zone()) HStoreNamedField(object, name, value, is_in_object, offset); |
| if (lookup->type() == MAP_TRANSITION) { |
| Handle<Map> transition(lookup->GetTransitionMapFromMap(*type)); |
| instr->set_transition(transition); |
| // TODO(fschneider): Record the new map type of the object in the IR to |
| // enable elimination of redundant checks after the transition store. |
| instr->SetFlag(HValue::kChangesMaps); |
| } |
| return instr; |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreNamedGeneric(HValue* object, |
| Handle<String> name, |
| HValue* value) { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| return new(zone()) HStoreNamedGeneric( |
| context, |
| object, |
| name, |
| value, |
| function_strict_mode()); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreNamed(HValue* object, |
| HValue* value, |
| Expression* expr) { |
| Property* prop = (expr->AsProperty() != NULL) |
| ? expr->AsProperty() |
| : expr->AsAssignment()->target()->AsProperty(); |
| Literal* key = prop->key()->AsLiteral(); |
| Handle<String> name = Handle<String>::cast(key->handle()); |
| ASSERT(!name.is_null()); |
| |
| LookupResult lookup; |
| ZoneMapList* types = expr->GetReceiverTypes(); |
| bool is_monomorphic = expr->IsMonomorphic() && |
| ComputeStoredField(types->first(), name, &lookup); |
| |
| return is_monomorphic |
| ? BuildStoreNamedField(object, name, value, types->first(), &lookup, |
| true) // Needs smi and map check. |
| : BuildStoreNamedGeneric(object, name, value); |
| } |
| |
| |
| void HGraphBuilder::HandlePolymorphicStoreNamedField(Assignment* expr, |
| HValue* object, |
| HValue* value, |
| ZoneMapList* types, |
| Handle<String> name) { |
| // TODO(ager): We should recognize when the prototype chains for different |
| // maps are identical. In that case we can avoid repeatedly generating the |
| // same prototype map checks. |
| int count = 0; |
| HBasicBlock* join = NULL; |
| for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) { |
| Handle<Map> map = types->at(i); |
| LookupResult lookup; |
| if (ComputeStoredField(map, name, &lookup)) { |
| if (count == 0) { |
| AddInstruction(new(zone()) HCheckNonSmi(object)); // Only needed once. |
| join = graph()->CreateBasicBlock(); |
| } |
| ++count; |
| HBasicBlock* if_true = graph()->CreateBasicBlock(); |
| HBasicBlock* if_false = graph()->CreateBasicBlock(); |
| HCompareMap* compare = |
| new(zone()) HCompareMap(object, map, if_true, if_false); |
| current_block()->Finish(compare); |
| |
| set_current_block(if_true); |
| HInstruction* instr = |
| BuildStoreNamedField(object, name, value, map, &lookup, false); |
| instr->set_position(expr->position()); |
| // Goto will add the HSimulate for the store. |
| AddInstruction(instr); |
| if (!ast_context()->IsEffect()) Push(value); |
| current_block()->Goto(join); |
| |
| set_current_block(if_false); |
| } |
| } |
| |
| // Finish up. Unconditionally deoptimize if we've handled all the maps we |
| // know about and do not want to handle ones we've never seen. Otherwise |
| // use a generic IC. |
| if (count == types->length() && FLAG_deoptimize_uncommon_cases) { |
| current_block()->FinishExitWithDeoptimization(); |
| } else { |
| HInstruction* instr = BuildStoreNamedGeneric(object, name, value); |
| instr->set_position(expr->position()); |
| AddInstruction(instr); |
| |
| if (join != NULL) { |
| if (!ast_context()->IsEffect()) Push(value); |
| current_block()->Goto(join); |
| } else { |
| // The HSimulate for the store should not see the stored value in |
| // effect contexts (it is not materialized at expr->id() in the |
| // unoptimized code). |
| if (instr->HasSideEffects()) { |
| if (ast_context()->IsEffect()) { |
| AddSimulate(expr->id()); |
| } else { |
| Push(value); |
| AddSimulate(expr->id()); |
| Drop(1); |
| } |
| } |
| ast_context()->ReturnValue(value); |
| return; |
| } |
| } |
| |
| ASSERT(join != NULL); |
| join->SetJoinId(expr->id()); |
| set_current_block(join); |
| if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop()); |
| } |
| |
| |
| void HGraphBuilder::HandlePropertyAssignment(Assignment* expr) { |
| Property* prop = expr->target()->AsProperty(); |
| ASSERT(prop != NULL); |
| expr->RecordTypeFeedback(oracle()); |
| VISIT_FOR_VALUE(prop->obj()); |
| |
| HValue* value = NULL; |
| HInstruction* instr = NULL; |
| |
| if (prop->key()->IsPropertyName()) { |
| // Named store. |
| VISIT_FOR_VALUE(expr->value()); |
| value = Pop(); |
| HValue* object = Pop(); |
| |
| Literal* key = prop->key()->AsLiteral(); |
| Handle<String> name = Handle<String>::cast(key->handle()); |
| ASSERT(!name.is_null()); |
| |
| ZoneMapList* types = expr->GetReceiverTypes(); |
| LookupResult lookup; |
| |
| if (expr->IsMonomorphic()) { |
| instr = BuildStoreNamed(object, value, expr); |
| |
| } else if (types != NULL && types->length() > 1) { |
| HandlePolymorphicStoreNamedField(expr, object, value, types, name); |
| return; |
| |
| } else { |
| instr = BuildStoreNamedGeneric(object, name, value); |
| } |
| |
| } else { |
| // Keyed store. |
| VISIT_FOR_VALUE(prop->key()); |
| VISIT_FOR_VALUE(expr->value()); |
| value = Pop(); |
| HValue* key = Pop(); |
| HValue* object = Pop(); |
| instr = BuildStoreKeyed(object, key, value, expr); |
| } |
| Push(value); |
| instr->set_position(expr->position()); |
| AddInstruction(instr); |
| if (instr->HasSideEffects()) AddSimulate(expr->AssignmentId()); |
| ast_context()->ReturnValue(Pop()); |
| } |
| |
| |
| // Because not every expression has a position and there is not common |
| // superclass of Assignment and CountOperation, we cannot just pass the |
| // owning expression instead of position and ast_id separately. |
| void HGraphBuilder::HandleGlobalVariableAssignment(Variable* var, |
| HValue* value, |
| int position, |
| int ast_id) { |
| LookupResult lookup; |
| GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true); |
| if (type == kUseCell) { |
| bool check_hole = !lookup.IsDontDelete() || lookup.IsReadOnly(); |
| Handle<GlobalObject> global(info()->global_object()); |
| Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup)); |
| HInstruction* instr = new(zone()) HStoreGlobalCell(value, cell, check_hole); |
| instr->set_position(position); |
| AddInstruction(instr); |
| if (instr->HasSideEffects()) AddSimulate(ast_id); |
| } else { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(global_object); |
| HStoreGlobalGeneric* instr = |
| new(zone()) HStoreGlobalGeneric(context, |
| global_object, |
| var->name(), |
| value, |
| function_strict_mode()); |
| instr->set_position(position); |
| AddInstruction(instr); |
| ASSERT(instr->HasSideEffects()); |
| if (instr->HasSideEffects()) AddSimulate(ast_id); |
| } |
| } |
| |
| |
| void HGraphBuilder::HandleCompoundAssignment(Assignment* expr) { |
| Expression* target = expr->target(); |
| VariableProxy* proxy = target->AsVariableProxy(); |
| Variable* var = proxy->AsVariable(); |
| Property* prop = target->AsProperty(); |
| ASSERT(var == NULL || prop == NULL); |
| |
| // We have a second position recorded in the FullCodeGenerator to have |
| // type feedback for the binary operation. |
| BinaryOperation* operation = expr->binary_operation(); |
| |
| if (var != NULL) { |
| VISIT_FOR_VALUE(operation); |
| |
| if (var->is_global()) { |
| HandleGlobalVariableAssignment(var, |
| Top(), |
| expr->position(), |
| expr->AssignmentId()); |
| } else if (var->IsStackAllocated()) { |
| Bind(var, Top()); |
| } else if (var->IsContextSlot()) { |
| HValue* context = BuildContextChainWalk(var); |
| int index = var->AsSlot()->index(); |
| HStoreContextSlot* instr = |
| new(zone()) HStoreContextSlot(context, index, Top()); |
| AddInstruction(instr); |
| if (instr->HasSideEffects()) AddSimulate(expr->AssignmentId()); |
| } else { |
| BAILOUT("compound assignment to lookup slot"); |
| } |
| ast_context()->ReturnValue(Pop()); |
| |
| } else if (prop != NULL) { |
| prop->RecordTypeFeedback(oracle()); |
| |
| if (prop->key()->IsPropertyName()) { |
| // Named property. |
| VISIT_FOR_VALUE(prop->obj()); |
| HValue* obj = Top(); |
| |
| HInstruction* load = NULL; |
| if (prop->IsMonomorphic()) { |
| Handle<String> name = prop->key()->AsLiteral()->AsPropertyName(); |
| Handle<Map> map = prop->GetReceiverTypes()->first(); |
| load = BuildLoadNamed(obj, prop, map, name); |
| } else { |
| load = BuildLoadNamedGeneric(obj, prop); |
| } |
| PushAndAdd(load); |
| if (load->HasSideEffects()) AddSimulate(expr->CompoundLoadId()); |
| |
| VISIT_FOR_VALUE(expr->value()); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| |
| HInstruction* instr = BuildBinaryOperation(operation, left, right); |
| PushAndAdd(instr); |
| if (instr->HasSideEffects()) AddSimulate(operation->id()); |
| |
| HInstruction* store = BuildStoreNamed(obj, instr, prop); |
| AddInstruction(store); |
| // Drop the simulated receiver and value. Return the value. |
| Drop(2); |
| Push(instr); |
| if (store->HasSideEffects()) AddSimulate(expr->AssignmentId()); |
| ast_context()->ReturnValue(Pop()); |
| |
| } else { |
| // Keyed property. |
| VISIT_FOR_VALUE(prop->obj()); |
| VISIT_FOR_VALUE(prop->key()); |
| HValue* obj = environment()->ExpressionStackAt(1); |
| HValue* key = environment()->ExpressionStackAt(0); |
| |
| HInstruction* load = BuildLoadKeyed(obj, key, prop); |
| PushAndAdd(load); |
| if (load->HasSideEffects()) AddSimulate(expr->CompoundLoadId()); |
| |
| VISIT_FOR_VALUE(expr->value()); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| |
| HInstruction* instr = BuildBinaryOperation(operation, left, right); |
| PushAndAdd(instr); |
| if (instr->HasSideEffects()) AddSimulate(operation->id()); |
| |
| expr->RecordTypeFeedback(oracle()); |
| HInstruction* store = BuildStoreKeyed(obj, key, instr, expr); |
| AddInstruction(store); |
| // Drop the simulated receiver, key, and value. Return the value. |
| Drop(3); |
| Push(instr); |
| if (store->HasSideEffects()) AddSimulate(expr->AssignmentId()); |
| ast_context()->ReturnValue(Pop()); |
| } |
| |
| } else { |
| BAILOUT("invalid lhs in compound assignment"); |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitAssignment(Assignment* expr) { |
| VariableProxy* proxy = expr->target()->AsVariableProxy(); |
| Variable* var = proxy->AsVariable(); |
| Property* prop = expr->target()->AsProperty(); |
| ASSERT(var == NULL || prop == NULL); |
| |
| if (expr->is_compound()) { |
| HandleCompoundAssignment(expr); |
| return; |
| } |
| |
| if (var != NULL) { |
| if (proxy->IsArguments()) BAILOUT("assignment to arguments"); |
| |
| // Handle the assignment. |
| if (var->IsStackAllocated()) { |
| HValue* value = NULL; |
| // Handle stack-allocated variables on the right-hand side directly. |
| // We do not allow the arguments object to occur in a context where it |
| // may escape, but assignments to stack-allocated locals are |
| // permitted. Handling such assignments here bypasses the check for |
| // the arguments object in VisitVariableProxy. |
| Variable* rhs_var = expr->value()->AsVariableProxy()->AsVariable(); |
| if (rhs_var != NULL && rhs_var->IsStackAllocated()) { |
| value = environment()->Lookup(rhs_var); |
| } else { |
| VISIT_FOR_VALUE(expr->value()); |
| value = Pop(); |
| } |
| Bind(var, value); |
| ast_context()->ReturnValue(value); |
| |
| } else if (var->IsContextSlot() && var->mode() != Variable::CONST) { |
| VISIT_FOR_VALUE(expr->value()); |
| HValue* context = BuildContextChainWalk(var); |
| int index = var->AsSlot()->index(); |
| HStoreContextSlot* instr = |
| new(zone()) HStoreContextSlot(context, index, Top()); |
| AddInstruction(instr); |
| if (instr->HasSideEffects()) AddSimulate(expr->AssignmentId()); |
| ast_context()->ReturnValue(Pop()); |
| |
| } else if (var->is_global()) { |
| VISIT_FOR_VALUE(expr->value()); |
| HandleGlobalVariableAssignment(var, |
| Top(), |
| expr->position(), |
| expr->AssignmentId()); |
| ast_context()->ReturnValue(Pop()); |
| |
| } else { |
| BAILOUT("assignment to LOOKUP or const CONTEXT variable"); |
| } |
| |
| } else if (prop != NULL) { |
| HandlePropertyAssignment(expr); |
| } else { |
| BAILOUT("invalid left-hand side in assignment"); |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitThrow(Throw* expr) { |
| // We don't optimize functions with invalid left-hand sides in |
| // assignments, count operations, or for-in. Consequently throw can |
| // currently only occur in an effect context. |
| ASSERT(ast_context()->IsEffect()); |
| VISIT_FOR_VALUE(expr->exception()); |
| |
| HValue* value = environment()->Pop(); |
| HThrow* instr = new(zone()) HThrow(value); |
| instr->set_position(expr->position()); |
| AddInstruction(instr); |
| AddSimulate(expr->id()); |
| current_block()->FinishExit(new(zone()) HAbnormalExit); |
| set_current_block(NULL); |
| } |
| |
| |
| HLoadNamedField* HGraphBuilder::BuildLoadNamedField(HValue* object, |
| Property* expr, |
| Handle<Map> type, |
| LookupResult* lookup, |
| bool smi_and_map_check) { |
| if (smi_and_map_check) { |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| AddInstruction(new(zone()) HCheckMap(object, type)); |
| } |
| |
| int index = lookup->GetLocalFieldIndexFromMap(*type); |
| if (index < 0) { |
| // Negative property indices are in-object properties, indexed |
| // from the end of the fixed part of the object. |
| int offset = (index * kPointerSize) + type->instance_size(); |
| return new(zone()) HLoadNamedField(object, true, offset); |
| } else { |
| // Non-negative property indices are in the properties array. |
| int offset = (index * kPointerSize) + FixedArray::kHeaderSize; |
| return new(zone()) HLoadNamedField(object, false, offset); |
| } |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildLoadNamedGeneric(HValue* obj, |
| Property* expr) { |
| ASSERT(expr->key()->IsPropertyName()); |
| Handle<Object> name = expr->key()->AsLiteral()->handle(); |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| return new(zone()) HLoadNamedGeneric(context, obj, name); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildLoadNamed(HValue* obj, |
| Property* expr, |
| Handle<Map> map, |
| Handle<String> name) { |
| LookupResult lookup; |
| map->LookupInDescriptors(NULL, *name, &lookup); |
| if (lookup.IsProperty() && lookup.type() == FIELD) { |
| return BuildLoadNamedField(obj, |
| expr, |
| map, |
| &lookup, |
| true); |
| } else if (lookup.IsProperty() && lookup.type() == CONSTANT_FUNCTION) { |
| AddInstruction(new(zone()) HCheckNonSmi(obj)); |
| AddInstruction(new(zone()) HCheckMap(obj, map)); |
| Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*map)); |
| return new(zone()) HConstant(function, Representation::Tagged()); |
| } else { |
| return BuildLoadNamedGeneric(obj, expr); |
| } |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildLoadKeyedGeneric(HValue* object, |
| HValue* key) { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| return new(zone()) HLoadKeyedGeneric(context, object, key); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildLoadKeyedFastElement(HValue* object, |
| HValue* key, |
| Property* expr) { |
| ASSERT(!expr->key()->IsPropertyName() && expr->IsMonomorphic()); |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| Handle<Map> map = expr->GetMonomorphicReceiverType(); |
| ASSERT(map->has_fast_elements()); |
| AddInstruction(new(zone()) HCheckMap(object, map)); |
| bool is_array = (map->instance_type() == JS_ARRAY_TYPE); |
| HLoadElements* elements = new(zone()) HLoadElements(object); |
| HInstruction* length = NULL; |
| HInstruction* checked_key = NULL; |
| if (is_array) { |
| length = AddInstruction(new(zone()) HJSArrayLength(object)); |
| checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| AddInstruction(elements); |
| } else { |
| AddInstruction(elements); |
| length = AddInstruction(new(zone()) HFixedArrayLength(elements)); |
| checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| } |
| return new(zone()) HLoadKeyedFastElement(elements, checked_key); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildLoadKeyedSpecializedArrayElement( |
| HValue* object, |
| HValue* key, |
| Property* expr) { |
| ASSERT(!expr->key()->IsPropertyName() && expr->IsMonomorphic()); |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| Handle<Map> map = expr->GetMonomorphicReceiverType(); |
| ASSERT(!map->has_fast_elements()); |
| ASSERT(map->has_external_array_elements()); |
| AddInstruction(new(zone()) HCheckMap(object, map)); |
| HLoadElements* elements = new(zone()) HLoadElements(object); |
| AddInstruction(elements); |
| HInstruction* length = new(zone()) HExternalArrayLength(elements); |
| AddInstruction(length); |
| HInstruction* checked_key = |
| AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| HLoadExternalArrayPointer* external_elements = |
| new(zone()) HLoadExternalArrayPointer(elements); |
| AddInstruction(external_elements); |
| HLoadKeyedSpecializedArrayElement* pixel_array_value = |
| new(zone()) HLoadKeyedSpecializedArrayElement( |
| external_elements, checked_key, expr->external_array_type()); |
| return pixel_array_value; |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildLoadKeyed(HValue* obj, |
| HValue* key, |
| Property* prop) { |
| if (prop->IsMonomorphic()) { |
| Handle<Map> receiver_type(prop->GetMonomorphicReceiverType()); |
| // An object has either fast elements or pixel array elements, but never |
| // both. Pixel array maps that are assigned to pixel array elements are |
| // always created with the fast elements flag cleared. |
| if (receiver_type->has_external_array_elements()) { |
| return BuildLoadKeyedSpecializedArrayElement(obj, key, prop); |
| } else if (receiver_type->has_fast_elements()) { |
| return BuildLoadKeyedFastElement(obj, key, prop); |
| } |
| } |
| return BuildLoadKeyedGeneric(obj, key); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreKeyedGeneric(HValue* object, |
| HValue* key, |
| HValue* value) { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| return new(zone()) HStoreKeyedGeneric( |
| context, |
| object, |
| key, |
| value, |
| function_strict_mode()); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreKeyedFastElement(HValue* object, |
| HValue* key, |
| HValue* val, |
| Expression* expr) { |
| ASSERT(expr->IsMonomorphic()); |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| Handle<Map> map = expr->GetMonomorphicReceiverType(); |
| ASSERT(map->has_fast_elements()); |
| AddInstruction(new(zone()) HCheckMap(object, map)); |
| HInstruction* elements = AddInstruction(new(zone()) HLoadElements(object)); |
| AddInstruction(new(zone()) HCheckMap( |
| elements, isolate()->factory()->fixed_array_map())); |
| bool is_array = (map->instance_type() == JS_ARRAY_TYPE); |
| HInstruction* length = NULL; |
| if (is_array) { |
| length = AddInstruction(new(zone()) HJSArrayLength(object)); |
| } else { |
| length = AddInstruction(new(zone()) HFixedArrayLength(elements)); |
| } |
| HInstruction* checked_key = |
| AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| return new(zone()) HStoreKeyedFastElement(elements, checked_key, val); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreKeyedSpecializedArrayElement( |
| HValue* object, |
| HValue* key, |
| HValue* val, |
| Expression* expr) { |
| ASSERT(expr->IsMonomorphic()); |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| Handle<Map> map = expr->GetMonomorphicReceiverType(); |
| ASSERT(!map->has_fast_elements()); |
| ASSERT(map->has_external_array_elements()); |
| AddInstruction(new(zone()) HCheckMap(object, map)); |
| HLoadElements* elements = new(zone()) HLoadElements(object); |
| AddInstruction(elements); |
| HInstruction* length = AddInstruction( |
| new(zone()) HExternalArrayLength(elements)); |
| HInstruction* checked_key = |
| AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| HLoadExternalArrayPointer* external_elements = |
| new(zone()) HLoadExternalArrayPointer(elements); |
| AddInstruction(external_elements); |
| return new(zone()) HStoreKeyedSpecializedArrayElement( |
| external_elements, |
| checked_key, |
| val, |
| expr->external_array_type()); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreKeyed(HValue* object, |
| HValue* key, |
| HValue* value, |
| Expression* expr) { |
| if (expr->IsMonomorphic()) { |
| Handle<Map> receiver_type(expr->GetMonomorphicReceiverType()); |
| // An object has either fast elements or external array elements, but |
| // never both. Pixel array maps that are assigned to pixel array elements |
| // are always created with the fast elements flag cleared. |
| if (receiver_type->has_external_array_elements()) { |
| return BuildStoreKeyedSpecializedArrayElement(object, |
| key, |
| value, |
| expr); |
| } else if (receiver_type->has_fast_elements()) { |
| return BuildStoreKeyedFastElement(object, key, value, expr); |
| } |
| } |
| return BuildStoreKeyedGeneric(object, key, value); |
| } |
| |
| |
| bool HGraphBuilder::TryArgumentsAccess(Property* expr) { |
| VariableProxy* proxy = expr->obj()->AsVariableProxy(); |
| if (proxy == NULL) return false; |
| if (!proxy->var()->IsStackAllocated()) return false; |
| if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) { |
| return false; |
| } |
| |
| // Our implementation of arguments (based on this stack frame or an |
| // adapter below it) does not work for inlined functions. |
| if (function_state()->outer() != NULL) { |
| Bailout("arguments access in inlined function"); |
| return true; |
| } |
| |
| HInstruction* result = NULL; |
| if (expr->key()->IsPropertyName()) { |
| Handle<String> name = expr->key()->AsLiteral()->AsPropertyName(); |
| if (!name->IsEqualTo(CStrVector("length"))) return false; |
| HInstruction* elements = AddInstruction(new(zone()) HArgumentsElements); |
| result = new(zone()) HArgumentsLength(elements); |
| } else { |
| Push(graph()->GetArgumentsObject()); |
| VisitForValue(expr->key()); |
| if (HasStackOverflow()) return false; |
| HValue* key = Pop(); |
| Drop(1); // Arguments object. |
| HInstruction* elements = AddInstruction(new(zone()) HArgumentsElements); |
| HInstruction* length = AddInstruction( |
| new(zone()) HArgumentsLength(elements)); |
| HInstruction* checked_key = |
| AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| result = new(zone()) HAccessArgumentsAt(elements, length, checked_key); |
| } |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| |
| |
| void HGraphBuilder::VisitProperty(Property* expr) { |
| expr->RecordTypeFeedback(oracle()); |
| |
| if (TryArgumentsAccess(expr)) return; |
| CHECK_BAILOUT; |
| |
| VISIT_FOR_VALUE(expr->obj()); |
| |
| HInstruction* instr = NULL; |
| if (expr->IsArrayLength()) { |
| HValue* array = Pop(); |
| AddInstruction(new(zone()) HCheckNonSmi(array)); |
| AddInstruction(new(zone()) HCheckInstanceType(array, |
| JS_ARRAY_TYPE, |
| JS_ARRAY_TYPE)); |
| instr = new(zone()) HJSArrayLength(array); |
| |
| } else if (expr->IsStringLength()) { |
| HValue* string = Pop(); |
| AddInstruction(new(zone()) HCheckNonSmi(string)); |
| AddInstruction(new(zone()) HCheckInstanceType(string, |
| FIRST_STRING_TYPE, |
| LAST_STRING_TYPE)); |
| instr = new(zone()) HStringLength(string); |
| } else if (expr->IsStringAccess()) { |
| VISIT_FOR_VALUE(expr->key()); |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HStringCharCodeAt* char_code = BuildStringCharCodeAt(string, index); |
| AddInstruction(char_code); |
| instr = new(zone()) HStringCharFromCode(char_code); |
| |
| } else if (expr->IsFunctionPrototype()) { |
| HValue* function = Pop(); |
| AddInstruction(new(zone()) HCheckNonSmi(function)); |
| instr = new(zone()) HLoadFunctionPrototype(function); |
| |
| } else if (expr->key()->IsPropertyName()) { |
| Handle<String> name = expr->key()->AsLiteral()->AsPropertyName(); |
| ZoneMapList* types = expr->GetReceiverTypes(); |
| |
| HValue* obj = Pop(); |
| if (expr->IsMonomorphic()) { |
| instr = BuildLoadNamed(obj, expr, types->first(), name); |
| } else if (types != NULL && types->length() > 1) { |
| AddInstruction(new(zone()) HCheckNonSmi(obj)); |
| instr = new(zone()) HLoadNamedFieldPolymorphic(obj, types, name); |
| } else { |
| instr = BuildLoadNamedGeneric(obj, expr); |
| } |
| |
| } else { |
| VISIT_FOR_VALUE(expr->key()); |
| |
| HValue* key = Pop(); |
| HValue* obj = Pop(); |
| instr = BuildLoadKeyed(obj, key, expr); |
| } |
| instr->set_position(expr->position()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HGraphBuilder::AddCheckConstantFunction(Call* expr, |
| HValue* receiver, |
| Handle<Map> receiver_map, |
| bool smi_and_map_check) { |
| // Constant functions have the nice property that the map will change if they |
| // are overwritten. Therefore it is enough to check the map of the holder and |
| // its prototypes. |
| if (smi_and_map_check) { |
| AddInstruction(new(zone()) HCheckNonSmi(receiver)); |
| AddInstruction(new(zone()) HCheckMap(receiver, receiver_map)); |
| } |
| if (!expr->holder().is_null()) { |
| AddInstruction(new(zone()) HCheckPrototypeMaps( |
| Handle<JSObject>(JSObject::cast(receiver_map->prototype())), |
| expr->holder())); |
| } |
| } |
| |
| |
| void HGraphBuilder::HandlePolymorphicCallNamed(Call* expr, |
| HValue* receiver, |
| ZoneMapList* types, |
| Handle<String> name) { |
| // TODO(ager): We should recognize when the prototype chains for different |
| // maps are identical. In that case we can avoid repeatedly generating the |
| // same prototype map checks. |
| int argument_count = expr->arguments()->length() + 1; // Includes receiver. |
| int count = 0; |
| HBasicBlock* join = NULL; |
| for (int i = 0; i < types->length() && count < kMaxCallPolymorphism; ++i) { |
| Handle<Map> map = types->at(i); |
| if (expr->ComputeTarget(map, name)) { |
| if (count == 0) { |
| // Only needed once. |
| AddInstruction(new(zone()) HCheckNonSmi(receiver)); |
| join = graph()->CreateBasicBlock(); |
| } |
| ++count; |
| HBasicBlock* if_true = graph()->CreateBasicBlock(); |
| HBasicBlock* if_false = graph()->CreateBasicBlock(); |
| HCompareMap* compare = |
| new(zone()) HCompareMap(receiver, map, if_true, if_false); |
| current_block()->Finish(compare); |
| |
| set_current_block(if_true); |
| AddCheckConstantFunction(expr, receiver, map, false); |
| if (FLAG_trace_inlining && FLAG_polymorphic_inlining) { |
| PrintF("Trying to inline the polymorphic call to %s\n", |
| *name->ToCString()); |
| } |
| if (!FLAG_polymorphic_inlining || !TryInline(expr)) { |
| // Check for bailout, as trying to inline might fail due to bailout |
| // during hydrogen processing. |
| CHECK_BAILOUT; |
| HCallConstantFunction* call = |
| new(zone()) HCallConstantFunction(expr->target(), argument_count); |
| call->set_position(expr->position()); |
| PreProcessCall(call); |
| AddInstruction(call); |
| if (!ast_context()->IsEffect()) Push(call); |
| } |
| |
| if (current_block() != NULL) current_block()->Goto(join); |
| set_current_block(if_false); |
| } |
| } |
| |
| // Finish up. Unconditionally deoptimize if we've handled all the maps we |
| // know about and do not want to handle ones we've never seen. Otherwise |
| // use a generic IC. |
| if (count == types->length() && FLAG_deoptimize_uncommon_cases) { |
| current_block()->FinishExitWithDeoptimization(); |
| } else { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallNamed* call = new(zone()) HCallNamed(context, name, argument_count); |
| call->set_position(expr->position()); |
| PreProcessCall(call); |
| |
| if (join != NULL) { |
| AddInstruction(call); |
| if (!ast_context()->IsEffect()) Push(call); |
| current_block()->Goto(join); |
| } else { |
| ast_context()->ReturnInstruction(call, expr->id()); |
| return; |
| } |
| } |
| |
| // We assume that control flow is always live after an expression. So |
| // even without predecessors to the join block, we set it as the exit |
| // block and continue by adding instructions there. |
| ASSERT(join != NULL); |
| set_current_block(join); |
| if (join->HasPredecessor()) { |
| join->SetJoinId(expr->id()); |
| if (!ast_context()->IsEffect()) ast_context()->ReturnValue(Pop()); |
| } |
| } |
| |
| |
| void HGraphBuilder::TraceInline(Handle<JSFunction> target, const char* reason) { |
| if (FLAG_trace_inlining) { |
| if (reason == NULL) { |
| // We are currently in the context of inlined function thus we have |
| // to go to an outer FunctionState to get caller. |
| SmartPointer<char> callee = target->shared()->DebugName()->ToCString(); |
| SmartPointer<char> caller = |
| function_state()->outer()->compilation_info()->function()-> |
| debug_name()->ToCString(); |
| PrintF("Inlined %s called from %s.\n", *callee, *caller); |
| } else { |
| SmartPointer<char> callee = target->shared()->DebugName()->ToCString(); |
| SmartPointer<char> caller = |
| info()->function()->debug_name()->ToCString(); |
| PrintF("Did not inline %s called from %s (%s).\n", |
| *callee, *caller, reason); |
| } |
| } |
| } |
| |
| |
| bool HGraphBuilder::TryInline(Call* expr) { |
| if (!FLAG_use_inlining) return false; |
| |
| // Precondition: call is monomorphic and we have found a target with the |
| // appropriate arity. |
| Handle<JSFunction> target = expr->target(); |
| |
| // Do a quick check on source code length to avoid parsing large |
| // inlining candidates. |
| if (FLAG_limit_inlining && target->shared()->SourceSize() > kMaxSourceSize) { |
| TraceInline(target, "target text too big"); |
| return false; |
| } |
| |
| // Target must be inlineable. |
| if (!target->IsInlineable()) { |
| TraceInline(target, "target not inlineable"); |
| return false; |
| } |
| |
| // No context change required. |
| CompilationInfo* outer_info = info(); |
| if (target->context() != outer_info->closure()->context() || |
| outer_info->scope()->contains_with() || |
| outer_info->scope()->num_heap_slots() > 0) { |
| TraceInline(target, "target requires context change"); |
| return false; |
| } |
| |
| // Don't inline deeper than kMaxInliningLevels calls. |
| HEnvironment* env = environment(); |
| int current_level = 1; |
| while (env->outer() != NULL) { |
| if (current_level == Compiler::kMaxInliningLevels) { |
| TraceInline(target, "inline depth limit reached"); |
| return false; |
| } |
| current_level++; |
| env = env->outer(); |
| } |
| |
| // Don't inline recursive functions. |
| if (target->shared() == outer_info->closure()->shared()) { |
| TraceInline(target, "target is recursive"); |
| return false; |
| } |
| |
| // We don't want to add more than a certain number of nodes from inlining. |
| if (FLAG_limit_inlining && inlined_count_ > kMaxInlinedNodes) { |
| TraceInline(target, "cumulative AST node limit reached"); |
| return false; |
| } |
| |
| int count_before = AstNode::Count(); |
| |
| // Parse and allocate variables. |
| CompilationInfo target_info(target); |
| if (!ParserApi::Parse(&target_info) || |
| !Scope::Analyze(&target_info)) { |
| if (target_info.isolate()->has_pending_exception()) { |
| // Parse or scope error, never optimize this function. |
| SetStackOverflow(); |
| target->shared()->set_optimization_disabled(true); |
| } |
| TraceInline(target, "parse failure"); |
| return false; |
| } |
| |
| if (target_info.scope()->num_heap_slots() > 0) { |
| TraceInline(target, "target has context-allocated variables"); |
| return false; |
| } |
| FunctionLiteral* function = target_info.function(); |
| |
| // Count the number of AST nodes added by inlining this call. |
| int nodes_added = AstNode::Count() - count_before; |
| if (FLAG_limit_inlining && nodes_added > kMaxInlinedSize) { |
| TraceInline(target, "target AST is too large"); |
| return false; |
| } |
| |
| // Check if we can handle all declarations in the inlined functions. |
| VisitDeclarations(target_info.scope()->declarations()); |
| if (HasStackOverflow()) { |
| TraceInline(target, "target has non-trivial declaration"); |
| ClearStackOverflow(); |
| return false; |
| } |
| |
| // Don't inline functions that uses the arguments object or that |
| // have a mismatching number of parameters. |
| Handle<SharedFunctionInfo> target_shared(target->shared()); |
| int arity = expr->arguments()->length(); |
| if (function->scope()->arguments() != NULL || |
| arity != target_shared->formal_parameter_count()) { |
| TraceInline(target, "target requires special argument handling"); |
| return false; |
| } |
| |
| // All statements in the body must be inlineable. |
| for (int i = 0, count = function->body()->length(); i < count; ++i) { |
| if (!function->body()->at(i)->IsInlineable()) { |
| TraceInline(target, "target contains unsupported syntax"); |
| return false; |
| } |
| } |
| |
| // Generate the deoptimization data for the unoptimized version of |
| // the target function if we don't already have it. |
| if (!target_shared->has_deoptimization_support()) { |
| // Note that we compile here using the same AST that we will use for |
| // generating the optimized inline code. |
| target_info.EnableDeoptimizationSupport(); |
| if (!FullCodeGenerator::MakeCode(&target_info)) { |
| TraceInline(target, "could not generate deoptimization info"); |
| return false; |
| } |
| target_shared->EnableDeoptimizationSupport(*target_info.code()); |
| Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG, |
| &target_info, |
| target_shared); |
| } |
| |
| // ---------------------------------------------------------------- |
| // Save the pending call context and type feedback oracle. Set up new ones |
| // for the inlined function. |
| ASSERT(target_shared->has_deoptimization_support()); |
| TypeFeedbackOracle target_oracle( |
| Handle<Code>(target_shared->code()), |
| Handle<Context>(target->context()->global_context())); |
| FunctionState target_state(this, &target_info, &target_oracle); |
| |
| HConstant* undefined = graph()->GetConstantUndefined(); |
| HEnvironment* inner_env = |
| environment()->CopyForInlining(target, function, true, undefined); |
| HBasicBlock* body_entry = CreateBasicBlock(inner_env); |
| current_block()->Goto(body_entry); |
| |
| body_entry->SetJoinId(expr->ReturnId()); |
| set_current_block(body_entry); |
| AddInstruction(new(zone()) HEnterInlined(target, function)); |
| VisitStatements(function->body()); |
| if (HasStackOverflow()) { |
| // Bail out if the inline function did, as we cannot residualize a call |
| // instead. |
| TraceInline(target, "inline graph construction failed"); |
| return false; |
| } |
| |
| // Update inlined nodes count. |
| inlined_count_ += nodes_added; |
| |
| TraceInline(target, NULL); |
| |
| if (current_block() != NULL) { |
| // Add a return of undefined if control can fall off the body. In a |
| // test context, undefined is false. |
| if (inlined_test_context() == NULL) { |
| ASSERT(function_return() != NULL); |
| ASSERT(call_context()->IsEffect() || call_context()->IsValue()); |
| if (call_context()->IsEffect()) { |
| current_block()->Goto(function_return(), false); |
| } else { |
| current_block()->AddLeaveInlined(undefined, function_return()); |
| } |
| } else { |
| // The graph builder assumes control can reach both branches of a |
| // test, so we materialize the undefined value and test it rather than |
| // simply jumping to the false target. |
| // |
| // TODO(3168478): refactor to avoid this. |
| HBasicBlock* empty_true = graph()->CreateBasicBlock(); |
| HBasicBlock* empty_false = graph()->CreateBasicBlock(); |
| HTest* test = new(zone()) HTest(undefined, empty_true, empty_false); |
| current_block()->Finish(test); |
| |
| empty_true->Goto(inlined_test_context()->if_true(), false); |
| empty_false->Goto(inlined_test_context()->if_false(), false); |
| } |
| } |
| |
| // Fix up the function exits. |
| if (inlined_test_context() != NULL) { |
| HBasicBlock* if_true = inlined_test_context()->if_true(); |
| HBasicBlock* if_false = inlined_test_context()->if_false(); |
| if_true->SetJoinId(expr->id()); |
| if_false->SetJoinId(expr->id()); |
| ASSERT(ast_context() == inlined_test_context()); |
| // Pop the return test context from the expression context stack. |
| ClearInlinedTestContext(); |
| |
| // Forward to the real test context. |
| HBasicBlock* true_target = TestContext::cast(ast_context())->if_true(); |
| HBasicBlock* false_target = TestContext::cast(ast_context())->if_false(); |
| if_true->Goto(true_target, false); |
| if_false->Goto(false_target, false); |
| |
| // TODO(kmillikin): Come up with a better way to handle this. It is too |
| // subtle. NULL here indicates that the enclosing context has no control |
| // flow to handle. |
| set_current_block(NULL); |
| |
| } else { |
| function_return()->SetJoinId(expr->id()); |
| set_current_block(function_return()); |
| } |
| |
| return true; |
| } |
| |
| |
| bool HGraphBuilder::TryInlineBuiltinFunction(Call* expr, |
| HValue* receiver, |
| Handle<Map> receiver_map, |
| CheckType check_type) { |
| ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null()); |
| // Try to inline calls like Math.* as operations in the calling function. |
| if (!expr->target()->shared()->HasBuiltinFunctionId()) return false; |
| BuiltinFunctionId id = expr->target()->shared()->builtin_function_id(); |
| int argument_count = expr->arguments()->length() + 1; // Plus receiver. |
| switch (id) { |
| case kStringCharCodeAt: |
| case kStringCharAt: |
| if (argument_count == 2 && check_type == STRING_CHECK) { |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| ASSERT(!expr->holder().is_null()); |
| AddInstruction(new(zone()) HCheckPrototypeMaps( |
| oracle()->GetPrototypeForPrimitiveCheck(STRING_CHECK), |
| expr->holder())); |
| HStringCharCodeAt* char_code = BuildStringCharCodeAt(string, index); |
| if (id == kStringCharCodeAt) { |
| ast_context()->ReturnInstruction(char_code, expr->id()); |
| return true; |
| } |
| AddInstruction(char_code); |
| HStringCharFromCode* result = |
| new(zone()) HStringCharFromCode(char_code); |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| break; |
| case kMathRound: |
| case kMathFloor: |
| case kMathAbs: |
| case kMathSqrt: |
| case kMathLog: |
| case kMathSin: |
| case kMathCos: |
| if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) { |
| AddCheckConstantFunction(expr, receiver, receiver_map, true); |
| HValue* argument = Pop(); |
| Drop(1); // Receiver. |
| HUnaryMathOperation* op = new(zone()) HUnaryMathOperation(argument, id); |
| op->set_position(expr->position()); |
| ast_context()->ReturnInstruction(op, expr->id()); |
| return true; |
| } |
| break; |
| case kMathPow: |
| if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) { |
| AddCheckConstantFunction(expr, receiver, receiver_map, true); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| Pop(); // Pop receiver. |
| HInstruction* result = NULL; |
| // Use sqrt() if exponent is 0.5 or -0.5. |
| if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) { |
| double exponent = HConstant::cast(right)->DoubleValue(); |
| if (exponent == 0.5) { |
| result = new(zone()) HUnaryMathOperation(left, kMathPowHalf); |
| } else if (exponent == -0.5) { |
| HConstant* double_one = |
| new(zone()) HConstant(Handle<Object>(Smi::FromInt(1)), |
| Representation::Double()); |
| AddInstruction(double_one); |
| HUnaryMathOperation* square_root = |
| new(zone()) HUnaryMathOperation(left, kMathPowHalf); |
| AddInstruction(square_root); |
| // MathPowHalf doesn't have side effects so there's no need for |
| // an environment simulation here. |
| ASSERT(!square_root->HasSideEffects()); |
| result = new(zone()) HDiv(double_one, square_root); |
| } else if (exponent == 2.0) { |
| result = new(zone()) HMul(left, left); |
| } |
| } else if (right->IsConstant() && |
| HConstant::cast(right)->HasInteger32Value() && |
| HConstant::cast(right)->Integer32Value() == 2) { |
| result = new(zone()) HMul(left, left); |
| } |
| |
| if (result == NULL) { |
| result = new(zone()) HPower(left, right); |
| } |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| break; |
| default: |
| // Not yet supported for inlining. |
| break; |
| } |
| return false; |
| } |
| |
| |
| bool HGraphBuilder::TryCallApply(Call* expr) { |
| Expression* callee = expr->expression(); |
| Property* prop = callee->AsProperty(); |
| ASSERT(prop != NULL); |
| |
| if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) { |
| return false; |
| } |
| Handle<Map> function_map = expr->GetReceiverTypes()->first(); |
| if (function_map->instance_type() != JS_FUNCTION_TYPE || |
| !expr->target()->shared()->HasBuiltinFunctionId() || |
| expr->target()->shared()->builtin_function_id() != kFunctionApply) { |
| return false; |
| } |
| |
| if (info()->scope()->arguments() == NULL) return false; |
| |
| ZoneList<Expression*>* args = expr->arguments(); |
| if (args->length() != 2) return false; |
| |
| VariableProxy* arg_two = args->at(1)->AsVariableProxy(); |
| if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false; |
| HValue* arg_two_value = environment()->Lookup(arg_two->var()); |
| if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false; |
| |
| // Our implementation of arguments (based on this stack frame or an |
| // adapter below it) does not work for inlined functions. |
| if (function_state()->outer() != NULL) { |
| Bailout("Function.prototype.apply optimization in inlined function"); |
| return true; |
| } |
| |
| // Found pattern f.apply(receiver, arguments). |
| VisitForValue(prop->obj()); |
| if (HasStackOverflow()) return false; |
| HValue* function = Pop(); |
| VisitForValue(args->at(0)); |
| if (HasStackOverflow()) return false; |
| HValue* receiver = Pop(); |
| HInstruction* elements = AddInstruction(new(zone()) HArgumentsElements); |
| HInstruction* length = AddInstruction(new(zone()) HArgumentsLength(elements)); |
| AddCheckConstantFunction(expr, function, function_map, true); |
| HInstruction* result = |
| new(zone()) HApplyArguments(function, receiver, length, elements); |
| result->set_position(expr->position()); |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| |
| |
| void HGraphBuilder::VisitCall(Call* expr) { |
| Expression* callee = expr->expression(); |
| int argument_count = expr->arguments()->length() + 1; // Plus receiver. |
| HInstruction* call = NULL; |
| |
| Property* prop = callee->AsProperty(); |
| if (prop != NULL) { |
| if (!prop->key()->IsPropertyName()) { |
| // Keyed function call. |
| VISIT_FOR_VALUE(prop->obj()); |
| |
| VISIT_FOR_VALUE(prop->key()); |
| // Push receiver and key like the non-optimized code generator expects it. |
| HValue* key = Pop(); |
| HValue* receiver = Pop(); |
| Push(key); |
| Push(receiver); |
| |
| VisitExpressions(expr->arguments()); |
| CHECK_BAILOUT; |
| |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| call = PreProcessCall( |
| new(zone()) HCallKeyed(context, key, argument_count)); |
| call->set_position(expr->position()); |
| Drop(1); // Key. |
| ast_context()->ReturnInstruction(call, expr->id()); |
| return; |
| } |
| |
| // Named function call. |
| expr->RecordTypeFeedback(oracle()); |
| |
| if (TryCallApply(expr)) return; |
| CHECK_BAILOUT; |
| |
| VISIT_FOR_VALUE(prop->obj()); |
| VisitExpressions(expr->arguments()); |
| CHECK_BAILOUT; |
| |
| Handle<String> name = prop->key()->AsLiteral()->AsPropertyName(); |
| |
| expr->RecordTypeFeedback(oracle()); |
| ZoneMapList* types = expr->GetReceiverTypes(); |
| |
| HValue* receiver = |
| environment()->ExpressionStackAt(expr->arguments()->length()); |
| if (expr->IsMonomorphic()) { |
| Handle<Map> receiver_map = |
| (types == NULL) ? Handle<Map>::null() : types->first(); |
| if (TryInlineBuiltinFunction(expr, |
| receiver, |
| receiver_map, |
| expr->check_type())) { |
| return; |
| } |
| |
| if (CallStubCompiler::HasCustomCallGenerator(*expr->target()) || |
| expr->check_type() != RECEIVER_MAP_CHECK) { |
| // When the target has a custom call IC generator, use the IC, |
| // because it is likely to generate better code. Also use the IC |
| // when a primitive receiver check is required. |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| call = PreProcessCall( |
| new(zone()) HCallNamed(context, name, argument_count)); |
| } else { |
| AddCheckConstantFunction(expr, receiver, receiver_map, true); |
| |
| if (TryInline(expr)) { |
| return; |
| } else { |
| // Check for bailout, as the TryInline call in the if condition above |
| // might return false due to bailout during hydrogen processing. |
| CHECK_BAILOUT; |
| call = PreProcessCall( |
| new(zone()) HCallConstantFunction(expr->target(), |
| argument_count)); |
| } |
| } |
| } else if (types != NULL && types->length() > 1) { |
| ASSERT(expr->check_type() == RECEIVER_MAP_CHECK); |
| HandlePolymorphicCallNamed(expr, receiver, types, name); |
| return; |
| |
| } else { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| call = PreProcessCall( |
| new(zone()) HCallNamed(context, name, argument_count)); |
| } |
| |
| } else { |
| Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); |
| bool global_call = (var != NULL) && var->is_global() && !var->is_this(); |
| |
| if (!global_call) { |
| ++argument_count; |
| VISIT_FOR_VALUE(expr->expression()); |
| } |
| |
| if (global_call) { |
| bool known_global_function = false; |
| // If there is a global property cell for the name at compile time and |
| // access check is not enabled we assume that the function will not change |
| // and generate optimized code for calling the function. |
| LookupResult lookup; |
| GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false); |
| if (type == kUseCell && |
| !info()->global_object()->IsAccessCheckNeeded()) { |
| Handle<GlobalObject> global(info()->global_object()); |
| known_global_function = expr->ComputeGlobalTarget(global, &lookup); |
| } |
| if (known_global_function) { |
| // Push the global object instead of the global receiver because |
| // code generated by the full code generator expects it. |
| HContext* context = new(zone()) HContext; |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(context); |
| PushAndAdd(global_object); |
| VisitExpressions(expr->arguments()); |
| CHECK_BAILOUT; |
| |
| VISIT_FOR_VALUE(expr->expression()); |
| HValue* function = Pop(); |
| AddInstruction(new(zone()) HCheckFunction(function, expr->target())); |
| |
| // Replace the global object with the global receiver. |
| HGlobalReceiver* global_receiver = |
| new(zone()) HGlobalReceiver(global_object); |
| // Index of the receiver from the top of the expression stack. |
| const int receiver_index = argument_count - 1; |
| AddInstruction(global_receiver); |
| ASSERT(environment()->ExpressionStackAt(receiver_index)-> |
| IsGlobalObject()); |
| environment()->SetExpressionStackAt(receiver_index, global_receiver); |
| |
| if (TryInline(expr)) { |
| return; |
| } |
| // Check for bailout, as trying to inline might fail due to bailout |
| // during hydrogen processing. |
| CHECK_BAILOUT; |
| |
| call = PreProcessCall(new(zone()) HCallKnownGlobal(expr->target(), |
| argument_count)); |
| } else { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| PushAndAdd(new(zone()) HGlobalObject(context)); |
| VisitExpressions(expr->arguments()); |
| CHECK_BAILOUT; |
| |
| call = PreProcessCall(new(zone()) HCallGlobal(context, |
| var->name(), |
| argument_count)); |
| } |
| |
| } else { |
| HContext* context = new(zone()) HContext; |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(context); |
| AddInstruction(global_object); |
| PushAndAdd(new(zone()) HGlobalReceiver(global_object)); |
| VisitExpressions(expr->arguments()); |
| CHECK_BAILOUT; |
| |
| call = PreProcessCall(new(zone()) HCallFunction(context, argument_count)); |
| } |
| } |
| |
| call->set_position(expr->position()); |
| ast_context()->ReturnInstruction(call, expr->id()); |
| } |
| |
| |
| void HGraphBuilder::VisitCallNew(CallNew* expr) { |
| // The constructor function is also used as the receiver argument to the |
| // JS construct call builtin. |
| VISIT_FOR_VALUE(expr->expression()); |
| VisitExpressions(expr->arguments()); |
| CHECK_BAILOUT; |
| |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| |
| // The constructor is both an operand to the instruction and an argument |
| // to the construct call. |
| int arg_count = expr->arguments()->length() + 1; // Plus constructor. |
| HValue* constructor = environment()->ExpressionStackAt(arg_count - 1); |
| HCallNew* call = new(zone()) HCallNew(context, constructor, arg_count); |
| call->set_position(expr->position()); |
| PreProcessCall(call); |
| ast_context()->ReturnInstruction(call, expr->id()); |
| } |
| |
| |
| // Support for generating inlined runtime functions. |
| |
| // Lookup table for generators for runtime calls that are generated inline. |
| // Elements of the table are member pointers to functions of HGraphBuilder. |
| #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \ |
| &HGraphBuilder::Generate##Name, |
| |
| const HGraphBuilder::InlineFunctionGenerator |
| HGraphBuilder::kInlineFunctionGenerators[] = { |
| INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) |
| INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) |
| }; |
| #undef INLINE_FUNCTION_GENERATOR_ADDRESS |
| |
| |
| void HGraphBuilder::VisitCallRuntime(CallRuntime* expr) { |
| if (expr->is_jsruntime()) { |
| BAILOUT("call to a JavaScript runtime function"); |
| } |
| |
| const Runtime::Function* function = expr->function(); |
| ASSERT(function != NULL); |
| if (function->intrinsic_type == Runtime::INLINE) { |
| ASSERT(expr->name()->length() > 0); |
| ASSERT(expr->name()->Get(0) == '_'); |
| // Call to an inline function. |
| int lookup_index = static_cast<int>(function->function_id) - |
| static_cast<int>(Runtime::kFirstInlineFunction); |
| ASSERT(lookup_index >= 0); |
| ASSERT(static_cast<size_t>(lookup_index) < |
| ARRAY_SIZE(kInlineFunctionGenerators)); |
| InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index]; |
| |
| // Call the inline code generator using the pointer-to-member. |
| (this->*generator)(expr); |
| } else { |
| ASSERT(function->intrinsic_type == Runtime::RUNTIME); |
| VisitArgumentList(expr->arguments()); |
| CHECK_BAILOUT; |
| |
| Handle<String> name = expr->name(); |
| int argument_count = expr->arguments()->length(); |
| HCallRuntime* call = |
| new(zone()) HCallRuntime(name, function, argument_count); |
| call->set_position(RelocInfo::kNoPosition); |
| Drop(argument_count); |
| ast_context()->ReturnInstruction(call, expr->id()); |
| } |
| } |
| |
| |
| void HGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) { |
| Token::Value op = expr->op(); |
| if (op == Token::VOID) { |
| VISIT_FOR_EFFECT(expr->expression()); |
| ast_context()->ReturnValue(graph()->GetConstantUndefined()); |
| } else if (op == Token::DELETE) { |
| Property* prop = expr->expression()->AsProperty(); |
| Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); |
| if (prop == NULL && var == NULL) { |
| // Result of deleting non-property, non-variable reference is true. |
| // Evaluate the subexpression for side effects. |
| VISIT_FOR_EFFECT(expr->expression()); |
| ast_context()->ReturnValue(graph()->GetConstantTrue()); |
| } else if (var != NULL && |
| !var->is_global() && |
| var->AsSlot() != NULL && |
| var->AsSlot()->type() != Slot::LOOKUP) { |
| // Result of deleting non-global, non-dynamic variables is false. |
| // The subexpression does not have side effects. |
| ast_context()->ReturnValue(graph()->GetConstantFalse()); |
| } else if (prop != NULL) { |
| if (prop->is_synthetic()) { |
| // Result of deleting parameters is false, even when they rewrite |
| // to accesses on the arguments object. |
| ast_context()->ReturnValue(graph()->GetConstantFalse()); |
| } else { |
| VISIT_FOR_VALUE(prop->obj()); |
| VISIT_FOR_VALUE(prop->key()); |
| HValue* key = Pop(); |
| HValue* obj = Pop(); |
| HDeleteProperty* instr = new(zone()) HDeleteProperty(obj, key); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| } else if (var->is_global()) { |
| BAILOUT("delete with global variable"); |
| } else { |
| BAILOUT("delete with non-global variable"); |
| } |
| } else if (op == Token::NOT) { |
| if (ast_context()->IsTest()) { |
| TestContext* context = TestContext::cast(ast_context()); |
| VisitForControl(expr->expression(), |
| context->if_false(), |
| context->if_true()); |
| } else if (ast_context()->IsValue()) { |
| HBasicBlock* materialize_false = graph()->CreateBasicBlock(); |
| HBasicBlock* materialize_true = graph()->CreateBasicBlock(); |
| VISIT_FOR_CONTROL(expr->expression(), |
| materialize_false, |
| materialize_true); |
| materialize_false->SetJoinId(expr->expression()->id()); |
| materialize_true->SetJoinId(expr->expression()->id()); |
| |
| set_current_block(materialize_false); |
| Push(graph()->GetConstantFalse()); |
| set_current_block(materialize_true); |
| Push(graph()->GetConstantTrue()); |
| |
| HBasicBlock* join = |
| CreateJoin(materialize_false, materialize_true, expr->id()); |
| set_current_block(join); |
| ast_context()->ReturnValue(Pop()); |
| } else { |
| ASSERT(ast_context()->IsEffect()); |
| VisitForEffect(expr->expression()); |
| } |
| |
| } else if (op == Token::TYPEOF) { |
| VisitForTypeOf(expr->expression()); |
| if (HasStackOverflow()) return; |
| HValue* value = Pop(); |
| ast_context()->ReturnInstruction(new(zone()) HTypeof(value), expr->id()); |
| |
| } else { |
| VISIT_FOR_VALUE(expr->expression()); |
| HValue* value = Pop(); |
| HInstruction* instr = NULL; |
| switch (op) { |
| case Token::BIT_NOT: |
| instr = new(zone()) HBitNot(value); |
| break; |
| case Token::SUB: |
| instr = new(zone()) HMul(value, graph_->GetConstantMinus1()); |
| break; |
| case Token::ADD: |
| instr = new(zone()) HMul(value, graph_->GetConstant1()); |
| break; |
| default: |
| BAILOUT("Value: unsupported unary operation"); |
| break; |
| } |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildIncrement(HValue* value, bool increment) { |
| HConstant* delta = increment |
| ? graph_->GetConstant1() |
| : graph_->GetConstantMinus1(); |
| HInstruction* instr = new(zone()) HAdd(value, delta); |
| AssumeRepresentation(instr, Representation::Integer32()); |
| return instr; |
| } |
| |
| |
| void HGraphBuilder::VisitCountOperation(CountOperation* expr) { |
| Expression* target = expr->expression(); |
| VariableProxy* proxy = target->AsVariableProxy(); |
| Variable* var = proxy->AsVariable(); |
| Property* prop = target->AsProperty(); |
| ASSERT(var == NULL || prop == NULL); |
| bool inc = expr->op() == Token::INC; |
| |
| if (var != NULL) { |
| VISIT_FOR_VALUE(target); |
| |
| // Match the full code generator stack by simulating an extra stack |
| // element for postfix operations in a non-effect context. |
| bool has_extra = expr->is_postfix() && !ast_context()->IsEffect(); |
| HValue* before = has_extra ? Top() : Pop(); |
| HInstruction* after = BuildIncrement(before, inc); |
| AddInstruction(after); |
| Push(after); |
| |
| if (var->is_global()) { |
| HandleGlobalVariableAssignment(var, |
| after, |
| expr->position(), |
| expr->AssignmentId()); |
| } else if (var->IsStackAllocated()) { |
| Bind(var, after); |
| } else if (var->IsContextSlot()) { |
| HValue* context = BuildContextChainWalk(var); |
| int index = var->AsSlot()->index(); |
| HStoreContextSlot* instr = |
| new(zone()) HStoreContextSlot(context, index, after); |
| AddInstruction(instr); |
| if (instr->HasSideEffects()) AddSimulate(expr->AssignmentId()); |
| } else { |
| BAILOUT("lookup variable in count operation"); |
| } |
| Drop(has_extra ? 2 : 1); |
| ast_context()->ReturnValue(expr->is_postfix() ? before : after); |
| |
| } else if (prop != NULL) { |
| prop->RecordTypeFeedback(oracle()); |
| |
| if (prop->key()->IsPropertyName()) { |
| // Named property. |
| |
| // Match the full code generator stack by simulating an extra stack |
| // element for postfix operations in a non-effect context. |
| bool has_extra = expr->is_postfix() && !ast_context()->IsEffect(); |
| if (has_extra) Push(graph_->GetConstantUndefined()); |
| |
| VISIT_FOR_VALUE(prop->obj()); |
| HValue* obj = Top(); |
| |
| HInstruction* load = NULL; |
| if (prop->IsMonomorphic()) { |
| Handle<String> name = prop->key()->AsLiteral()->AsPropertyName(); |
| Handle<Map> map = prop->GetReceiverTypes()->first(); |
| load = BuildLoadNamed(obj, prop, map, name); |
| } else { |
| load = BuildLoadNamedGeneric(obj, prop); |
| } |
| PushAndAdd(load); |
| if (load->HasSideEffects()) AddSimulate(expr->CountId()); |
| |
| HValue* before = Pop(); |
| // There is no deoptimization to after the increment, so we don't need |
| // to simulate the expression stack after this instruction. |
| HInstruction* after = BuildIncrement(before, inc); |
| AddInstruction(after); |
| |
| HInstruction* store = BuildStoreNamed(obj, after, prop); |
| AddInstruction(store); |
| |
| // Overwrite the receiver in the bailout environment with the result |
| // of the operation, and the placeholder with the original value if |
| // necessary. |
| environment()->SetExpressionStackAt(0, after); |
| if (has_extra) environment()->SetExpressionStackAt(1, before); |
| if (store->HasSideEffects()) AddSimulate(expr->AssignmentId()); |
| Drop(has_extra ? 2 : 1); |
| |
| ast_context()->ReturnValue(expr->is_postfix() ? before : after); |
| |
| } else { |
| // Keyed property. |
| |
| // Match the full code generator stack by simulate an extra stack element |
| // for postfix operations in a non-effect context. |
| bool has_extra = expr->is_postfix() && !ast_context()->IsEffect(); |
| if (has_extra) Push(graph_->GetConstantUndefined()); |
| |
| VISIT_FOR_VALUE(prop->obj()); |
| VISIT_FOR_VALUE(prop->key()); |
| HValue* obj = environment()->ExpressionStackAt(1); |
| HValue* key = environment()->ExpressionStackAt(0); |
| |
| HInstruction* load = BuildLoadKeyed(obj, key, prop); |
| PushAndAdd(load); |
| if (load->HasSideEffects()) AddSimulate(expr->CountId()); |
| |
| HValue* before = Pop(); |
| // There is no deoptimization to after the increment, so we don't need |
| // to simulate the expression stack after this instruction. |
| HInstruction* after = BuildIncrement(before, inc); |
| AddInstruction(after); |
| |
| expr->RecordTypeFeedback(oracle()); |
| HInstruction* store = BuildStoreKeyed(obj, key, after, expr); |
| AddInstruction(store); |
| |
| // Drop the key from the bailout environment. Overwrite the receiver |
| // with the result of the operation, and the placeholder with the |
| // original value if necessary. |
| Drop(1); |
| environment()->SetExpressionStackAt(0, after); |
| if (has_extra) environment()->SetExpressionStackAt(1, before); |
| if (store->HasSideEffects()) AddSimulate(expr->AssignmentId()); |
| Drop(has_extra ? 2 : 1); |
| |
| ast_context()->ReturnValue(expr->is_postfix() ? before : after); |
| } |
| |
| } else { |
| BAILOUT("invalid lhs in count operation"); |
| } |
| } |
| |
| |
| HStringCharCodeAt* HGraphBuilder::BuildStringCharCodeAt(HValue* string, |
| HValue* index) { |
| AddInstruction(new(zone()) HCheckNonSmi(string)); |
| AddInstruction(new(zone()) HCheckInstanceType( |
| string, FIRST_STRING_TYPE, LAST_STRING_TYPE)); |
| HStringLength* length = new(zone()) HStringLength(string); |
| AddInstruction(length); |
| HInstruction* checked_index = |
| AddInstruction(new(zone()) HBoundsCheck(index, length)); |
| return new(zone()) HStringCharCodeAt(string, checked_index); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildBinaryOperation(BinaryOperation* expr, |
| HValue* left, |
| HValue* right) { |
| HInstruction* instr = NULL; |
| switch (expr->op()) { |
| case Token::ADD: |
| instr = new(zone()) HAdd(left, right); |
| break; |
| case Token::SUB: |
| instr = new(zone()) HSub(left, right); |
| break; |
| case Token::MUL: |
| instr = new(zone()) HMul(left, right); |
| break; |
| case Token::MOD: |
| instr = new(zone()) HMod(left, right); |
| break; |
| case Token::DIV: |
| instr = new(zone()) HDiv(left, right); |
| break; |
| case Token::BIT_XOR: |
| instr = new(zone()) HBitXor(left, right); |
| break; |
| case Token::BIT_AND: |
| instr = new(zone()) HBitAnd(left, right); |
| break; |
| case Token::BIT_OR: |
| instr = new(zone()) HBitOr(left, right); |
| break; |
| case Token::SAR: |
| instr = new(zone()) HSar(left, right); |
| break; |
| case Token::SHR: |
| instr = new(zone()) HShr(left, right); |
| break; |
| case Token::SHL: |
| instr = new(zone()) HShl(left, right); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| TypeInfo info = oracle()->BinaryType(expr); |
| // If we hit an uninitialized binary op stub we will get type info |
| // for a smi operation. If one of the operands is a constant string |
| // do not generate code assuming it is a smi operation. |
| if (info.IsSmi() && |
| ((left->IsConstant() && HConstant::cast(left)->HasStringValue()) || |
| (right->IsConstant() && HConstant::cast(right)->HasStringValue()))) { |
| return instr; |
| } |
| if (FLAG_trace_representation) { |
| PrintF("Info: %s/%s\n", info.ToString(), ToRepresentation(info).Mnemonic()); |
| } |
| Representation rep = ToRepresentation(info); |
| // We only generate either int32 or generic tagged bitwise operations. |
| if (instr->IsBitwiseBinaryOperation() && rep.IsDouble()) { |
| rep = Representation::Integer32(); |
| } |
| AssumeRepresentation(instr, rep); |
| return instr; |
| } |
| |
| |
| // Check for the form (%_ClassOf(foo) === 'BarClass'). |
| static bool IsClassOfTest(CompareOperation* expr) { |
| if (expr->op() != Token::EQ_STRICT) return false; |
| CallRuntime* call = expr->left()->AsCallRuntime(); |
| if (call == NULL) return false; |
| Literal* literal = expr->right()->AsLiteral(); |
| if (literal == NULL) return false; |
| if (!literal->handle()->IsString()) return false; |
| if (!call->name()->IsEqualTo(CStrVector("_ClassOf"))) return false; |
| ASSERT(call->arguments()->length() == 1); |
| return true; |
| } |
| |
| |
| void HGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) { |
| if (expr->op() == Token::COMMA) { |
| VISIT_FOR_EFFECT(expr->left()); |
| // Visit the right subexpression in the same AST context as the entire |
| // expression. |
| Visit(expr->right()); |
| |
| } else if (expr->op() == Token::AND || expr->op() == Token::OR) { |
| bool is_logical_and = (expr->op() == Token::AND); |
| if (ast_context()->IsTest()) { |
| TestContext* context = TestContext::cast(ast_context()); |
| // Translate left subexpression. |
| HBasicBlock* eval_right = graph()->CreateBasicBlock(); |
| if (is_logical_and) { |
| VISIT_FOR_CONTROL(expr->left(), eval_right, context->if_false()); |
| } else { |
| VISIT_FOR_CONTROL(expr->left(), context->if_true(), eval_right); |
| } |
| eval_right->SetJoinId(expr->RightId()); |
| |
| // Translate right subexpression by visiting it in the same AST |
| // context as the entire expression. |
| set_current_block(eval_right); |
| Visit(expr->right()); |
| |
| } else if (ast_context()->IsValue()) { |
| VISIT_FOR_VALUE(expr->left()); |
| ASSERT(current_block() != NULL); |
| |
| // We need an extra block to maintain edge-split form. |
| HBasicBlock* empty_block = graph()->CreateBasicBlock(); |
| HBasicBlock* eval_right = graph()->CreateBasicBlock(); |
| HTest* test = is_logical_and |
| ? new(zone()) HTest(Top(), eval_right, empty_block) |
| : new(zone()) HTest(Top(), empty_block, eval_right); |
| current_block()->Finish(test); |
| |
| set_current_block(eval_right); |
| Drop(1); // Value of the left subexpression. |
| VISIT_FOR_VALUE(expr->right()); |
| |
| HBasicBlock* join_block = |
| CreateJoin(empty_block, current_block(), expr->id()); |
| set_current_block(join_block); |
| ast_context()->ReturnValue(Pop()); |
| |
| } else { |
| ASSERT(ast_context()->IsEffect()); |
| // In an effect context, we don't need the value of the left |
| // subexpression, only its control flow and side effects. We need an |
| // extra block to maintain edge-split form. |
| HBasicBlock* empty_block = graph()->CreateBasicBlock(); |
| HBasicBlock* right_block = graph()->CreateBasicBlock(); |
| HBasicBlock* join_block = graph()->CreateBasicBlock(); |
| if (is_logical_and) { |
| VISIT_FOR_CONTROL(expr->left(), right_block, empty_block); |
| } else { |
| VISIT_FOR_CONTROL(expr->left(), empty_block, right_block); |
| } |
| // TODO(kmillikin): Find a way to fix this. It's ugly that there are |
| // actually two empty blocks (one here and one inserted by |
| // TestContext::BuildBranch, and that they both have an HSimulate |
| // though the second one is not a merge node, and that we really have |
| // no good AST ID to put on that first HSimulate. |
| empty_block->SetJoinId(expr->id()); |
| right_block->SetJoinId(expr->RightId()); |
| set_current_block(right_block); |
| VISIT_FOR_EFFECT(expr->right()); |
| |
| empty_block->Goto(join_block); |
| current_block()->Goto(join_block); |
| join_block->SetJoinId(expr->id()); |
| set_current_block(join_block); |
| // We did not materialize any value in the predecessor environments, |
| // so there is no need to handle it here. |
| } |
| |
| } else { |
| VISIT_FOR_VALUE(expr->left()); |
| VISIT_FOR_VALUE(expr->right()); |
| |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| HInstruction* instr = BuildBinaryOperation(expr, left, right); |
| instr->set_position(expr->position()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| } |
| |
| |
| void HGraphBuilder::AssumeRepresentation(HValue* value, Representation r) { |
| if (value->CheckFlag(HValue::kFlexibleRepresentation)) { |
| if (FLAG_trace_representation) { |
| PrintF("Assume representation for %s to be %s (%d)\n", |
| value->Mnemonic(), |
| r.Mnemonic(), |
| graph_->GetMaximumValueID()); |
| } |
| value->ChangeRepresentation(r); |
| // The representation of the value is dictated by type feedback and |
| // will not be changed later. |
| value->ClearFlag(HValue::kFlexibleRepresentation); |
| } else if (FLAG_trace_representation) { |
| PrintF("No representation assumed\n"); |
| } |
| } |
| |
| |
| Representation HGraphBuilder::ToRepresentation(TypeInfo info) { |
| if (info.IsSmi()) return Representation::Integer32(); |
| if (info.IsInteger32()) return Representation::Integer32(); |
| if (info.IsDouble()) return Representation::Double(); |
| if (info.IsNumber()) return Representation::Double(); |
| return Representation::Tagged(); |
| } |
| |
| |
| void HGraphBuilder::VisitCompareOperation(CompareOperation* expr) { |
| if (IsClassOfTest(expr)) { |
| CallRuntime* call = expr->left()->AsCallRuntime(); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| Literal* literal = expr->right()->AsLiteral(); |
| Handle<String> rhs = Handle<String>::cast(literal->handle()); |
| HInstruction* instr = new(zone()) HClassOfTest(value, rhs); |
| instr->set_position(expr->position()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| return; |
| } |
| |
| // Check for the pattern: typeof <expression> == <string literal>. |
| UnaryOperation* left_unary = expr->left()->AsUnaryOperation(); |
| Literal* right_literal = expr->right()->AsLiteral(); |
| if ((expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT) && |
| left_unary != NULL && left_unary->op() == Token::TYPEOF && |
| right_literal != NULL && right_literal->handle()->IsString()) { |
| VisitForTypeOf(left_unary->expression()); |
| if (HasStackOverflow()) return; |
| HValue* left = Pop(); |
| HInstruction* instr = new(zone()) HTypeofIs(left, |
| Handle<String>::cast(right_literal->handle())); |
| instr->set_position(expr->position()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| return; |
| } |
| |
| VISIT_FOR_VALUE(expr->left()); |
| VISIT_FOR_VALUE(expr->right()); |
| |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| Token::Value op = expr->op(); |
| |
| TypeInfo type_info = oracle()->CompareType(expr); |
| HInstruction* instr = NULL; |
| if (op == Token::INSTANCEOF) { |
| // Check to see if the rhs of the instanceof is a global function not |
| // residing in new space. If it is we assume that the function will stay the |
| // same. |
| Handle<JSFunction> target = Handle<JSFunction>::null(); |
| Variable* var = expr->right()->AsVariableProxy()->AsVariable(); |
| bool global_function = (var != NULL) && var->is_global() && !var->is_this(); |
| if (global_function && |
| info()->has_global_object() && |
| !info()->global_object()->IsAccessCheckNeeded()) { |
| Handle<String> name = var->name(); |
| Handle<GlobalObject> global(info()->global_object()); |
| LookupResult lookup; |
| global->Lookup(*name, &lookup); |
| if (lookup.IsProperty() && |
| lookup.type() == NORMAL && |
| lookup.GetValue()->IsJSFunction()) { |
| Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue())); |
| // If the function is in new space we assume it's more likely to |
| // change and thus prefer the general IC code. |
| if (!isolate()->heap()->InNewSpace(*candidate)) { |
| target = candidate; |
| } |
| } |
| } |
| |
| // If the target is not null we have found a known global function that is |
| // assumed to stay the same for this instanceof. |
| if (target.is_null()) { |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| instr = new(zone()) HInstanceOf(context, left, right); |
| } else { |
| AddInstruction(new(zone()) HCheckFunction(right, target)); |
| instr = new(zone()) HInstanceOfKnownGlobal(left, target); |
| } |
| } else if (op == Token::IN) { |
| BAILOUT("Unsupported comparison: in"); |
| } else if (type_info.IsNonPrimitive()) { |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: { |
| AddInstruction(new(zone()) HCheckNonSmi(left)); |
| AddInstruction(HCheckInstanceType::NewIsJSObjectOrJSFunction(left)); |
| AddInstruction(new(zone()) HCheckNonSmi(right)); |
| AddInstruction(HCheckInstanceType::NewIsJSObjectOrJSFunction(right)); |
| instr = new(zone()) HCompareJSObjectEq(left, right); |
| break; |
| } |
| default: |
| BAILOUT("Unsupported non-primitive compare"); |
| break; |
| } |
| } else { |
| HCompare* compare = new(zone()) HCompare(left, right, op); |
| Representation r = ToRepresentation(type_info); |
| compare->SetInputRepresentation(r); |
| instr = compare; |
| } |
| instr->set_position(expr->position()); |
| ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HGraphBuilder::VisitCompareToNull(CompareToNull* expr) { |
| VISIT_FOR_VALUE(expr->expression()); |
| |
| HValue* value = Pop(); |
| HIsNull* compare = new(zone()) HIsNull(value, expr->is_strict()); |
| ast_context()->ReturnInstruction(compare, expr->id()); |
| } |
| |
| |
| void HGraphBuilder::VisitThisFunction(ThisFunction* expr) { |
| BAILOUT("ThisFunction"); |
| } |
| |
| |
| void HGraphBuilder::VisitDeclaration(Declaration* decl) { |
| // We allow only declarations that do not require code generation. |
| // The following all require code generation: global variables and |
| // functions, variables with slot type LOOKUP, declarations with |
| // mode CONST, and functions. |
| Variable* var = decl->proxy()->var(); |
| Slot* slot = var->AsSlot(); |
| if (var->is_global() || |
| (slot != NULL && slot->type() == Slot::LOOKUP) || |
| decl->mode() == Variable::CONST || |
| decl->fun() != NULL) { |
| BAILOUT("unsupported declaration"); |
| } |
| } |
| |
| |
| // Generators for inline runtime functions. |
| // Support for types. |
| void HGraphBuilder::GenerateIsSmi(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HIsSmi* result = new(zone()) HIsSmi(value); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateIsSpecObject(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HHasInstanceType* result = |
| new(zone()) HHasInstanceType(value, FIRST_JS_OBJECT_TYPE, LAST_TYPE); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateIsFunction(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HHasInstanceType* result = |
| new(zone()) HHasInstanceType(value, JS_FUNCTION_TYPE); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HHasCachedArrayIndex* result = new(zone()) HHasCachedArrayIndex(value); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateIsArray(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HHasInstanceType* result = new(zone()) HHasInstanceType(value, JS_ARRAY_TYPE); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateIsRegExp(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HHasInstanceType* result = |
| new(zone()) HHasInstanceType(value, JS_REGEXP_TYPE); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateIsObject(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HIsObject* test = new(zone()) HIsObject(value); |
| ast_context()->ReturnInstruction(test, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) { |
| BAILOUT("inlined runtime function: IsNonNegativeSmi"); |
| } |
| |
| |
| void HGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) { |
| BAILOUT("inlined runtime function: IsUndetectableObject"); |
| } |
| |
| |
| void HGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf( |
| CallRuntime* call) { |
| BAILOUT("inlined runtime function: IsStringWrapperSafeForDefaultValueOf"); |
| } |
| |
| |
| // Support for construct call checks. |
| void HGraphBuilder::GenerateIsConstructCall(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 0); |
| if (function_state()->outer() != NULL) { |
| // We are generating graph for inlined function. Currently |
| // constructor inlining is not supported and we can just return |
| // false from %_IsConstructCall(). |
| ast_context()->ReturnValue(graph()->GetConstantFalse()); |
| } else { |
| ast_context()->ReturnInstruction(new(zone()) HIsConstructCall, call->id()); |
| } |
| } |
| |
| |
| // Support for arguments.length and arguments[?]. |
| void HGraphBuilder::GenerateArgumentsLength(CallRuntime* call) { |
| // Our implementation of arguments (based on this stack frame or an |
| // adapter below it) does not work for inlined functions. This runtime |
| // function is blacklisted by AstNode::IsInlineable. |
| ASSERT(function_state()->outer() == NULL); |
| ASSERT(call->arguments()->length() == 0); |
| HInstruction* elements = AddInstruction(new(zone()) HArgumentsElements); |
| HArgumentsLength* result = new(zone()) HArgumentsLength(elements); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateArguments(CallRuntime* call) { |
| // Our implementation of arguments (based on this stack frame or an |
| // adapter below it) does not work for inlined functions. This runtime |
| // function is blacklisted by AstNode::IsInlineable. |
| ASSERT(function_state()->outer() == NULL); |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* index = Pop(); |
| HInstruction* elements = AddInstruction(new(zone()) HArgumentsElements); |
| HInstruction* length = AddInstruction(new(zone()) HArgumentsLength(elements)); |
| HAccessArgumentsAt* result = |
| new(zone()) HAccessArgumentsAt(elements, length, index); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Support for accessing the class and value fields of an object. |
| void HGraphBuilder::GenerateClassOf(CallRuntime* call) { |
| // The special form detected by IsClassOfTest is detected before we get here |
| // and does not cause a bailout. |
| BAILOUT("inlined runtime function: ClassOf"); |
| } |
| |
| |
| void HGraphBuilder::GenerateValueOf(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HValueOf* result = new(zone()) HValueOf(value); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateSetValueOf(CallRuntime* call) { |
| BAILOUT("inlined runtime function: SetValueOf"); |
| } |
| |
| |
| // Fast support for charCodeAt(n). |
| void HGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 2); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| VISIT_FOR_VALUE(call->arguments()->at(1)); |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HStringCharCodeAt* result = BuildStringCharCodeAt(string, index); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for string.charAt(n) and string[n]. |
| void HGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* char_code = Pop(); |
| HStringCharFromCode* result = new(zone()) HStringCharFromCode(char_code); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for string.charAt(n) and string[n]. |
| void HGraphBuilder::GenerateStringCharAt(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 2); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| VISIT_FOR_VALUE(call->arguments()->at(1)); |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HStringCharCodeAt* char_code = BuildStringCharCodeAt(string, index); |
| AddInstruction(char_code); |
| HStringCharFromCode* result = new(zone()) HStringCharFromCode(char_code); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for object equality testing. |
| void HGraphBuilder::GenerateObjectEquals(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 2); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| VISIT_FOR_VALUE(call->arguments()->at(1)); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| HCompareJSObjectEq* result = new(zone()) HCompareJSObjectEq(left, right); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateLog(CallRuntime* call) { |
| // %_Log is ignored in optimized code. |
| ast_context()->ReturnValue(graph()->GetConstantUndefined()); |
| } |
| |
| |
| // Fast support for Math.random(). |
| void HGraphBuilder::GenerateRandomHeapNumber(CallRuntime* call) { |
| BAILOUT("inlined runtime function: RandomHeapNumber"); |
| } |
| |
| |
| // Fast support for StringAdd. |
| void HGraphBuilder::GenerateStringAdd(CallRuntime* call) { |
| ASSERT_EQ(2, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = new(zone()) HCallStub(context, CodeStub::StringAdd, 2); |
| Drop(2); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for SubString. |
| void HGraphBuilder::GenerateSubString(CallRuntime* call) { |
| ASSERT_EQ(3, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = new(zone()) HCallStub(context, CodeStub::SubString, 3); |
| Drop(3); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for StringCompare. |
| void HGraphBuilder::GenerateStringCompare(CallRuntime* call) { |
| ASSERT_EQ(2, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::StringCompare, 2); |
| Drop(2); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Support for direct calls from JavaScript to native RegExp code. |
| void HGraphBuilder::GenerateRegExpExec(CallRuntime* call) { |
| ASSERT_EQ(4, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = new(zone()) HCallStub(context, CodeStub::RegExpExec, 4); |
| Drop(4); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Construct a RegExp exec result with two in-object properties. |
| void HGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) { |
| ASSERT_EQ(3, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::RegExpConstructResult, 3); |
| Drop(3); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Support for fast native caches. |
| void HGraphBuilder::GenerateGetFromCache(CallRuntime* call) { |
| BAILOUT("inlined runtime function: GetFromCache"); |
| } |
| |
| |
| // Fast support for number to string. |
| void HGraphBuilder::GenerateNumberToString(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::NumberToString, 1); |
| Drop(1); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast swapping of elements. Takes three expressions, the object and two |
| // indices. This should only be used if the indices are known to be |
| // non-negative and within bounds of the elements array at the call site. |
| void HGraphBuilder::GenerateSwapElements(CallRuntime* call) { |
| BAILOUT("inlined runtime function: SwapElements"); |
| } |
| |
| |
| // Fast call for custom callbacks. |
| void HGraphBuilder::GenerateCallFunction(CallRuntime* call) { |
| BAILOUT("inlined runtime function: CallFunction"); |
| } |
| |
| |
| // Fast call to math functions. |
| void HGraphBuilder::GenerateMathPow(CallRuntime* call) { |
| ASSERT_EQ(2, call->arguments()->length()); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| VISIT_FOR_VALUE(call->arguments()->at(1)); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| HPower* result = new(zone()) HPower(left, right); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateMathSin(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); |
| result->set_transcendental_type(TranscendentalCache::SIN); |
| Drop(1); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateMathCos(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); |
| result->set_transcendental_type(TranscendentalCache::COS); |
| Drop(1); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateMathLog(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| VisitArgumentList(call->arguments()); |
| CHECK_BAILOUT; |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); |
| result->set_transcendental_type(TranscendentalCache::LOG); |
| Drop(1); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateMathSqrt(CallRuntime* call) { |
| BAILOUT("inlined runtime function: MathSqrt"); |
| } |
| |
| |
| // Check whether two RegExps are equivalent |
| void HGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) { |
| BAILOUT("inlined runtime function: IsRegExpEquivalent"); |
| } |
| |
| |
| void HGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| VISIT_FOR_VALUE(call->arguments()->at(0)); |
| HValue* value = Pop(); |
| HGetCachedArrayIndex* result = new(zone()) HGetCachedArrayIndex(value); |
| ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) { |
| BAILOUT("inlined runtime function: FastAsciiArrayJoin"); |
| } |
| |
| |
| #undef BAILOUT |
| #undef CHECK_BAILOUT |
| #undef VISIT_FOR_EFFECT |
| #undef VISIT_FOR_VALUE |
| #undef ADD_TO_SUBGRAPH |
| |
| |
| HEnvironment::HEnvironment(HEnvironment* outer, |
| Scope* scope, |
| Handle<JSFunction> closure) |
| : closure_(closure), |
| values_(0), |
| assigned_variables_(4), |
| parameter_count_(0), |
| local_count_(0), |
| outer_(outer), |
| pop_count_(0), |
| push_count_(0), |
| ast_id_(AstNode::kNoNumber) { |
| Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0); |
| } |
| |
| |
| HEnvironment::HEnvironment(const HEnvironment* other) |
| : values_(0), |
| assigned_variables_(0), |
| parameter_count_(0), |
| local_count_(0), |
| outer_(NULL), |
| pop_count_(0), |
| push_count_(0), |
| ast_id_(other->ast_id()) { |
| Initialize(other); |
| } |
| |
| |
| void HEnvironment::Initialize(int parameter_count, |
| int local_count, |
| int stack_height) { |
| parameter_count_ = parameter_count; |
| local_count_ = local_count; |
| |
| // Avoid reallocating the temporaries' backing store on the first Push. |
| int total = parameter_count + local_count + stack_height; |
| values_.Initialize(total + 4); |
| for (int i = 0; i < total; ++i) values_.Add(NULL); |
| } |
| |
| |
| void HEnvironment::Initialize(const HEnvironment* other) { |
| closure_ = other->closure(); |
| values_.AddAll(other->values_); |
| assigned_variables_.AddAll(other->assigned_variables_); |
| parameter_count_ = other->parameter_count_; |
| local_count_ = other->local_count_; |
| if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy. |
| pop_count_ = other->pop_count_; |
| push_count_ = other->push_count_; |
| ast_id_ = other->ast_id_; |
| } |
| |
| |
| void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) { |
| ASSERT(!block->IsLoopHeader()); |
| ASSERT(values_.length() == other->values_.length()); |
| |
| int length = values_.length(); |
| for (int i = 0; i < length; ++i) { |
| HValue* value = values_[i]; |
| if (value != NULL && value->IsPhi() && value->block() == block) { |
| // There is already a phi for the i'th value. |
| HPhi* phi = HPhi::cast(value); |
| // Assert index is correct and that we haven't missed an incoming edge. |
| ASSERT(phi->merged_index() == i); |
| ASSERT(phi->OperandCount() == block->predecessors()->length()); |
| phi->AddInput(other->values_[i]); |
| } else if (values_[i] != other->values_[i]) { |
| // There is a fresh value on the incoming edge, a phi is needed. |
| ASSERT(values_[i] != NULL && other->values_[i] != NULL); |
| HPhi* phi = new(block->zone()) HPhi(i); |
| HValue* old_value = values_[i]; |
| for (int j = 0; j < block->predecessors()->length(); j++) { |
| phi->AddInput(old_value); |
| } |
| phi->AddInput(other->values_[i]); |
| this->values_[i] = phi; |
| block->AddPhi(phi); |
| } |
| } |
| } |
| |
| |
| void HEnvironment::Bind(int index, HValue* value) { |
| ASSERT(value != NULL); |
| if (!assigned_variables_.Contains(index)) { |
| assigned_variables_.Add(index); |
| } |
| values_[index] = value; |
| } |
| |
| |
| bool HEnvironment::HasExpressionAt(int index) const { |
| return index >= parameter_count_ + local_count_; |
| } |
| |
| |
| bool HEnvironment::ExpressionStackIsEmpty() const { |
| int first_expression = parameter_count() + local_count(); |
| ASSERT(length() >= first_expression); |
| return length() == first_expression; |
| } |
| |
| |
| void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) { |
| int count = index_from_top + 1; |
| int index = values_.length() - count; |
| ASSERT(HasExpressionAt(index)); |
| // The push count must include at least the element in question or else |
| // the new value will not be included in this environment's history. |
| if (push_count_ < count) { |
| // This is the same effect as popping then re-pushing 'count' elements. |
| pop_count_ += (count - push_count_); |
| push_count_ = count; |
| } |
| values_[index] = value; |
| } |
| |
| |
| void HEnvironment::Drop(int count) { |
| for (int i = 0; i < count; ++i) { |
| Pop(); |
| } |
| } |
| |
| |
| HEnvironment* HEnvironment::Copy() const { |
| return new(closure()->GetIsolate()->zone()) HEnvironment(this); |
| } |
| |
| |
| HEnvironment* HEnvironment::CopyWithoutHistory() const { |
| HEnvironment* result = Copy(); |
| result->ClearHistory(); |
| return result; |
| } |
| |
| |
| HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const { |
| HEnvironment* new_env = Copy(); |
| for (int i = 0; i < values_.length(); ++i) { |
| HPhi* phi = new(loop_header->zone()) HPhi(i); |
| phi->AddInput(values_[i]); |
| new_env->values_[i] = phi; |
| loop_header->AddPhi(phi); |
| } |
| new_env->ClearHistory(); |
| return new_env; |
| } |
| |
| |
| HEnvironment* HEnvironment::CopyForInlining(Handle<JSFunction> target, |
| FunctionLiteral* function, |
| bool is_speculative, |
| HConstant* undefined) const { |
| // Outer environment is a copy of this one without the arguments. |
| int arity = function->scope()->num_parameters(); |
| HEnvironment* outer = Copy(); |
| outer->Drop(arity + 1); // Including receiver. |
| outer->ClearHistory(); |
| Zone* zone = closure()->GetIsolate()->zone(); |
| HEnvironment* inner = |
| new(zone) HEnvironment(outer, function->scope(), target); |
| // Get the argument values from the original environment. |
| if (is_speculative) { |
| for (int i = 0; i <= arity; ++i) { // Include receiver. |
| HValue* push = ExpressionStackAt(arity - i); |
| inner->SetValueAt(i, push); |
| } |
| } else { |
| for (int i = 0; i <= arity; ++i) { // Include receiver. |
| inner->SetValueAt(i, ExpressionStackAt(arity - i)); |
| } |
| } |
| |
| // Initialize the stack-allocated locals to undefined. |
| int local_base = arity + 1; |
| int local_count = function->scope()->num_stack_slots(); |
| for (int i = 0; i < local_count; ++i) { |
| inner->SetValueAt(local_base + i, undefined); |
| } |
| |
| inner->set_ast_id(AstNode::kFunctionEntryId); |
| return inner; |
| } |
| |
| |
| void HEnvironment::PrintTo(StringStream* stream) { |
| for (int i = 0; i < length(); i++) { |
| if (i == 0) stream->Add("parameters\n"); |
| if (i == parameter_count()) stream->Add("locals\n"); |
| if (i == parameter_count() + local_count()) stream->Add("expressions"); |
| HValue* val = values_.at(i); |
| stream->Add("%d: ", i); |
| if (val != NULL) { |
| val->PrintNameTo(stream); |
| } else { |
| stream->Add("NULL"); |
| } |
| stream->Add("\n"); |
| } |
| } |
| |
| |
| void HEnvironment::PrintToStd() { |
| HeapStringAllocator string_allocator; |
| StringStream trace(&string_allocator); |
| PrintTo(&trace); |
| PrintF("%s", *trace.ToCString()); |
| } |
| |
| |
| void HTracer::TraceCompilation(FunctionLiteral* function) { |
| Tag tag(this, "compilation"); |
| Handle<String> name = function->debug_name(); |
| PrintStringProperty("name", *name->ToCString()); |
| PrintStringProperty("method", *name->ToCString()); |
| PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis())); |
| } |
| |
| |
| void HTracer::TraceLithium(const char* name, LChunk* chunk) { |
| Trace(name, chunk->graph(), chunk); |
| } |
| |
| |
| void HTracer::TraceHydrogen(const char* name, HGraph* graph) { |
| Trace(name, graph, NULL); |
| } |
| |
| |
| void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) { |
| Tag tag(this, "cfg"); |
| PrintStringProperty("name", name); |
| const ZoneList<HBasicBlock*>* blocks = graph->blocks(); |
| for (int i = 0; i < blocks->length(); i++) { |
| HBasicBlock* current = blocks->at(i); |
| Tag block_tag(this, "block"); |
| PrintBlockProperty("name", current->block_id()); |
| PrintIntProperty("from_bci", -1); |
| PrintIntProperty("to_bci", -1); |
| |
| if (!current->predecessors()->is_empty()) { |
| PrintIndent(); |
| trace_.Add("predecessors"); |
| for (int j = 0; j < current->predecessors()->length(); ++j) { |
| trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id()); |
| } |
| trace_.Add("\n"); |
| } else { |
| PrintEmptyProperty("predecessors"); |
| } |
| |
| if (current->end() == NULL || current->end()->FirstSuccessor() == NULL) { |
| PrintEmptyProperty("successors"); |
| } else if (current->end()->SecondSuccessor() == NULL) { |
| PrintBlockProperty("successors", |
| current->end()->FirstSuccessor()->block_id()); |
| } else { |
| PrintBlockProperty("successors", |
| current->end()->FirstSuccessor()->block_id(), |
| current->end()->SecondSuccessor()->block_id()); |
| } |
| |
| PrintEmptyProperty("xhandlers"); |
| PrintEmptyProperty("flags"); |
| |
| if (current->dominator() != NULL) { |
| PrintBlockProperty("dominator", current->dominator()->block_id()); |
| } |
| |
| if (chunk != NULL) { |
| int first_index = current->first_instruction_index(); |
| int last_index = current->last_instruction_index(); |
| PrintIntProperty( |
| "first_lir_id", |
| LifetimePosition::FromInstructionIndex(first_index).Value()); |
| PrintIntProperty( |
| "last_lir_id", |
| LifetimePosition::FromInstructionIndex(last_index).Value()); |
| } |
| |
| { |
| Tag states_tag(this, "states"); |
| Tag locals_tag(this, "locals"); |
| int total = current->phis()->length(); |
| trace_.Add("size %d\n", total); |
| trace_.Add("method \"None\""); |
| for (int j = 0; j < total; ++j) { |
| HPhi* phi = current->phis()->at(j); |
| trace_.Add("%d ", phi->merged_index()); |
| phi->PrintNameTo(&trace_); |
| trace_.Add(" "); |
| phi->PrintTo(&trace_); |
| trace_.Add("\n"); |
| } |
| } |
| |
| { |
| Tag HIR_tag(this, "HIR"); |
| HInstruction* instruction = current->first(); |
| while (instruction != NULL) { |
| int bci = 0; |
| int uses = instruction->uses()->length(); |
| trace_.Add("%d %d ", bci, uses); |
| instruction->PrintNameTo(&trace_); |
| trace_.Add(" "); |
| instruction->PrintTo(&trace_); |
| trace_.Add(" <|@\n"); |
| instruction = instruction->next(); |
| } |
| } |
| |
| |
| if (chunk != NULL) { |
| Tag LIR_tag(this, "LIR"); |
| int first_index = current->first_instruction_index(); |
| int last_index = current->last_instruction_index(); |
| if (first_index != -1 && last_index != -1) { |
| const ZoneList<LInstruction*>* instructions = chunk->instructions(); |
| for (int i = first_index; i <= last_index; ++i) { |
| LInstruction* linstr = instructions->at(i); |
| if (linstr != NULL) { |
| trace_.Add("%d ", |
| LifetimePosition::FromInstructionIndex(i).Value()); |
| linstr->PrintTo(&trace_); |
| trace_.Add(" <|@\n"); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) { |
| Tag tag(this, "intervals"); |
| PrintStringProperty("name", name); |
| |
| const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges(); |
| for (int i = 0; i < fixed_d->length(); ++i) { |
| TraceLiveRange(fixed_d->at(i), "fixed"); |
| } |
| |
| const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges(); |
| for (int i = 0; i < fixed->length(); ++i) { |
| TraceLiveRange(fixed->at(i), "fixed"); |
| } |
| |
| const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges(); |
| for (int i = 0; i < live_ranges->length(); ++i) { |
| TraceLiveRange(live_ranges->at(i), "object"); |
| } |
| } |
| |
| |
| void HTracer::TraceLiveRange(LiveRange* range, const char* type) { |
| if (range != NULL && !range->IsEmpty()) { |
| trace_.Add("%d %s", range->id(), type); |
| if (range->HasRegisterAssigned()) { |
| LOperand* op = range->CreateAssignedOperand(); |
| int assigned_reg = op->index(); |
| if (op->IsDoubleRegister()) { |
| trace_.Add(" \"%s\"", |
| DoubleRegister::AllocationIndexToString(assigned_reg)); |
| } else { |
| ASSERT(op->IsRegister()); |
| trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg)); |
| } |
| } else if (range->IsSpilled()) { |
| LOperand* op = range->TopLevel()->GetSpillOperand(); |
| if (op->IsDoubleStackSlot()) { |
| trace_.Add(" \"double_stack:%d\"", op->index()); |
| } else { |
| ASSERT(op->IsStackSlot()); |
| trace_.Add(" \"stack:%d\"", op->index()); |
| } |
| } |
| int parent_index = -1; |
| if (range->IsChild()) { |
| parent_index = range->parent()->id(); |
| } else { |
| parent_index = range->id(); |
| } |
| LOperand* op = range->FirstHint(); |
| int hint_index = -1; |
| if (op != NULL && op->IsUnallocated()) hint_index = op->VirtualRegister(); |
| trace_.Add(" %d %d", parent_index, hint_index); |
| UseInterval* cur_interval = range->first_interval(); |
| while (cur_interval != NULL && range->Covers(cur_interval->start())) { |
| trace_.Add(" [%d, %d[", |
| cur_interval->start().Value(), |
| cur_interval->end().Value()); |
| cur_interval = cur_interval->next(); |
| } |
| |
| UsePosition* current_pos = range->first_pos(); |
| while (current_pos != NULL) { |
| if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) { |
| trace_.Add(" %d M", current_pos->pos().Value()); |
| } |
| current_pos = current_pos->next(); |
| } |
| |
| trace_.Add(" \"\"\n"); |
| } |
| } |
| |
| |
| void HTracer::FlushToFile() { |
| AppendChars(filename_, *trace_.ToCString(), trace_.length(), false); |
| trace_.Reset(); |
| } |
| |
| |
| void HStatistics::Initialize(CompilationInfo* info) { |
| source_size_ += info->shared_info()->SourceSize(); |
| } |
| |
| |
| void HStatistics::Print() { |
| PrintF("Timing results:\n"); |
| int64_t sum = 0; |
| for (int i = 0; i < timing_.length(); ++i) { |
| sum += timing_[i]; |
| } |
| |
| for (int i = 0; i < names_.length(); ++i) { |
| PrintF("%30s", names_[i]); |
| double ms = static_cast<double>(timing_[i]) / 1000; |
| double percent = static_cast<double>(timing_[i]) * 100 / sum; |
| PrintF(" - %7.3f ms / %4.1f %% ", ms, percent); |
| |
| unsigned size = sizes_[i]; |
| double size_percent = static_cast<double>(size) * 100 / total_size_; |
| PrintF(" %8u bytes / %4.1f %%\n", size, size_percent); |
| } |
| double source_size_in_kb = static_cast<double>(source_size_) / 1024; |
| double normalized_time = source_size_in_kb > 0 |
| ? (static_cast<double>(sum) / 1000) / source_size_in_kb |
| : 0; |
| double normalized_bytes = source_size_in_kb > 0 |
| ? total_size_ / source_size_in_kb |
| : 0; |
| PrintF("%30s - %7.3f ms %7.3f bytes\n", "Sum", |
| normalized_time, normalized_bytes); |
| PrintF("---------------------------------------------------------------\n"); |
| PrintF("%30s - %7.3f ms (%.1f times slower than full code gen)\n", |
| "Total", |
| static_cast<double>(total_) / 1000, |
| static_cast<double>(total_) / full_code_gen_); |
| } |
| |
| |
| void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) { |
| if (name == HPhase::kFullCodeGen) { |
| full_code_gen_ += ticks; |
| } else if (name == HPhase::kTotal) { |
| total_ += ticks; |
| } else { |
| total_size_ += size; |
| for (int i = 0; i < names_.length(); ++i) { |
| if (names_[i] == name) { |
| timing_[i] += ticks; |
| sizes_[i] += size; |
| return; |
| } |
| } |
| names_.Add(name); |
| timing_.Add(ticks); |
| sizes_.Add(size); |
| } |
| } |
| |
| |
| const char* const HPhase::kFullCodeGen = "Full code generator"; |
| const char* const HPhase::kTotal = "Total"; |
| |
| |
| void HPhase::Begin(const char* name, |
| HGraph* graph, |
| LChunk* chunk, |
| LAllocator* allocator) { |
| name_ = name; |
| graph_ = graph; |
| chunk_ = chunk; |
| allocator_ = allocator; |
| if (allocator != NULL && chunk_ == NULL) { |
| chunk_ = allocator->chunk(); |
| } |
| if (FLAG_hydrogen_stats) start_ = OS::Ticks(); |
| start_allocation_size_ = Zone::allocation_size_; |
| } |
| |
| |
| void HPhase::End() const { |
| if (FLAG_hydrogen_stats) { |
| int64_t end = OS::Ticks(); |
| unsigned size = Zone::allocation_size_ - start_allocation_size_; |
| HStatistics::Instance()->SaveTiming(name_, end - start_, size); |
| } |
| |
| if (FLAG_trace_hydrogen) { |
| if (graph_ != NULL) HTracer::Instance()->TraceHydrogen(name_, graph_); |
| if (chunk_ != NULL) HTracer::Instance()->TraceLithium(name_, chunk_); |
| if (allocator_ != NULL) { |
| HTracer::Instance()->TraceLiveRanges(name_, allocator_); |
| } |
| } |
| |
| #ifdef DEBUG |
| if (graph_ != NULL) graph_->Verify(); |
| if (allocator_ != NULL) allocator_->Verify(); |
| #endif |
| } |
| |
| } } // namespace v8::internal |