| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_HEAP_INL_H_ |
| #define V8_HEAP_INL_H_ |
| |
| #include "log.h" |
| #include "v8-counters.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| int Heap::MaxObjectSizeInPagedSpace() { |
| return Page::kMaxHeapObjectSize; |
| } |
| |
| |
| Object* Heap::AllocateSymbol(Vector<const char> str, |
| int chars, |
| uint32_t hash_field) { |
| unibrow::Utf8InputBuffer<> buffer(str.start(), |
| static_cast<unsigned>(str.length())); |
| return AllocateInternalSymbol(&buffer, chars, hash_field); |
| } |
| |
| |
| Object* Heap::AllocateRaw(int size_in_bytes, |
| AllocationSpace space, |
| AllocationSpace retry_space) { |
| ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); |
| ASSERT(space != NEW_SPACE || |
| retry_space == OLD_POINTER_SPACE || |
| retry_space == OLD_DATA_SPACE || |
| retry_space == LO_SPACE); |
| #ifdef DEBUG |
| if (FLAG_gc_interval >= 0 && |
| !disallow_allocation_failure_ && |
| Heap::allocation_timeout_-- <= 0) { |
| return Failure::RetryAfterGC(size_in_bytes, space); |
| } |
| Counters::objs_since_last_full.Increment(); |
| Counters::objs_since_last_young.Increment(); |
| #endif |
| Object* result; |
| if (NEW_SPACE == space) { |
| result = new_space_.AllocateRaw(size_in_bytes); |
| if (always_allocate() && result->IsFailure()) { |
| space = retry_space; |
| } else { |
| return result; |
| } |
| } |
| |
| if (OLD_POINTER_SPACE == space) { |
| result = old_pointer_space_->AllocateRaw(size_in_bytes); |
| } else if (OLD_DATA_SPACE == space) { |
| result = old_data_space_->AllocateRaw(size_in_bytes); |
| } else if (CODE_SPACE == space) { |
| result = code_space_->AllocateRaw(size_in_bytes); |
| } else if (LO_SPACE == space) { |
| result = lo_space_->AllocateRaw(size_in_bytes); |
| } else if (CELL_SPACE == space) { |
| result = cell_space_->AllocateRaw(size_in_bytes); |
| } else { |
| ASSERT(MAP_SPACE == space); |
| result = map_space_->AllocateRaw(size_in_bytes); |
| } |
| if (result->IsFailure()) old_gen_exhausted_ = true; |
| return result; |
| } |
| |
| |
| Object* Heap::NumberFromInt32(int32_t value) { |
| if (Smi::IsValid(value)) return Smi::FromInt(value); |
| // Bypass NumberFromDouble to avoid various redundant checks. |
| return AllocateHeapNumber(FastI2D(value)); |
| } |
| |
| |
| Object* Heap::NumberFromUint32(uint32_t value) { |
| if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) { |
| return Smi::FromInt((int32_t)value); |
| } |
| // Bypass NumberFromDouble to avoid various redundant checks. |
| return AllocateHeapNumber(FastUI2D(value)); |
| } |
| |
| |
| void Heap::FinalizeExternalString(String* string) { |
| ASSERT(string->IsExternalString()); |
| v8::String::ExternalStringResourceBase** resource_addr = |
| reinterpret_cast<v8::String::ExternalStringResourceBase**>( |
| reinterpret_cast<byte*>(string) + |
| ExternalString::kResourceOffset - |
| kHeapObjectTag); |
| delete *resource_addr; |
| // Clear the resource pointer in the string. |
| *resource_addr = NULL; |
| } |
| |
| |
| Object* Heap::AllocateRawMap() { |
| #ifdef DEBUG |
| Counters::objs_since_last_full.Increment(); |
| Counters::objs_since_last_young.Increment(); |
| #endif |
| Object* result = map_space_->AllocateRaw(Map::kSize); |
| if (result->IsFailure()) old_gen_exhausted_ = true; |
| #ifdef DEBUG |
| if (!result->IsFailure()) { |
| // Maps have their own alignment. |
| CHECK((OffsetFrom(result) & kMapAlignmentMask) == kHeapObjectTag); |
| } |
| #endif |
| return result; |
| } |
| |
| |
| Object* Heap::AllocateRawCell() { |
| #ifdef DEBUG |
| Counters::objs_since_last_full.Increment(); |
| Counters::objs_since_last_young.Increment(); |
| #endif |
| Object* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize); |
| if (result->IsFailure()) old_gen_exhausted_ = true; |
| return result; |
| } |
| |
| |
| bool Heap::InNewSpace(Object* object) { |
| bool result = new_space_.Contains(object); |
| ASSERT(!result || // Either not in new space |
| gc_state_ != NOT_IN_GC || // ... or in the middle of GC |
| InToSpace(object)); // ... or in to-space (where we allocate). |
| return result; |
| } |
| |
| |
| bool Heap::InFromSpace(Object* object) { |
| return new_space_.FromSpaceContains(object); |
| } |
| |
| |
| bool Heap::InToSpace(Object* object) { |
| return new_space_.ToSpaceContains(object); |
| } |
| |
| |
| bool Heap::ShouldBePromoted(Address old_address, int object_size) { |
| // An object should be promoted if: |
| // - the object has survived a scavenge operation or |
| // - to space is already 25% full. |
| return old_address < new_space_.age_mark() |
| || (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2); |
| } |
| |
| |
| void Heap::RecordWrite(Address address, int offset) { |
| if (new_space_.Contains(address)) return; |
| ASSERT(!new_space_.FromSpaceContains(address)); |
| SLOW_ASSERT(Contains(address + offset)); |
| Page::SetRSet(address, offset); |
| } |
| |
| |
| OldSpace* Heap::TargetSpace(HeapObject* object) { |
| InstanceType type = object->map()->instance_type(); |
| AllocationSpace space = TargetSpaceId(type); |
| return (space == OLD_POINTER_SPACE) |
| ? old_pointer_space_ |
| : old_data_space_; |
| } |
| |
| |
| AllocationSpace Heap::TargetSpaceId(InstanceType type) { |
| // Heap numbers and sequential strings are promoted to old data space, all |
| // other object types are promoted to old pointer space. We do not use |
| // object->IsHeapNumber() and object->IsSeqString() because we already |
| // know that object has the heap object tag. |
| |
| // These objects are never allocated in new space. |
| ASSERT(type != MAP_TYPE); |
| ASSERT(type != CODE_TYPE); |
| ASSERT(type != ODDBALL_TYPE); |
| ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE); |
| |
| if (type < FIRST_NONSTRING_TYPE) { |
| // There are three string representations: sequential strings, cons |
| // strings, and external strings. Only cons strings contain |
| // non-map-word pointers to heap objects. |
| return ((type & kStringRepresentationMask) == kConsStringTag) |
| ? OLD_POINTER_SPACE |
| : OLD_DATA_SPACE; |
| } else { |
| return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE; |
| } |
| } |
| |
| |
| void Heap::CopyBlock(Object** dst, Object** src, int byte_size) { |
| ASSERT(IsAligned(byte_size, kPointerSize)); |
| |
| // Use block copying memcpy if the segment we're copying is |
| // enough to justify the extra call/setup overhead. |
| static const int kBlockCopyLimit = 16 * kPointerSize; |
| |
| if (byte_size >= kBlockCopyLimit) { |
| memcpy(dst, src, byte_size); |
| } else { |
| int remaining = byte_size / kPointerSize; |
| do { |
| remaining--; |
| *dst++ = *src++; |
| } while (remaining > 0); |
| } |
| } |
| |
| |
| void Heap::ScavengeObject(HeapObject** p, HeapObject* object) { |
| ASSERT(InFromSpace(object)); |
| |
| // We use the first word (where the map pointer usually is) of a heap |
| // object to record the forwarding pointer. A forwarding pointer can |
| // point to an old space, the code space, or the to space of the new |
| // generation. |
| MapWord first_word = object->map_word(); |
| |
| // If the first word is a forwarding address, the object has already been |
| // copied. |
| if (first_word.IsForwardingAddress()) { |
| *p = first_word.ToForwardingAddress(); |
| return; |
| } |
| |
| // Call the slow part of scavenge object. |
| return ScavengeObjectSlow(p, object); |
| } |
| |
| |
| int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) { |
| ASSERT(HasBeenSetup()); |
| int amount = amount_of_external_allocated_memory_ + change_in_bytes; |
| if (change_in_bytes >= 0) { |
| // Avoid overflow. |
| if (amount > amount_of_external_allocated_memory_) { |
| amount_of_external_allocated_memory_ = amount; |
| } |
| int amount_since_last_global_gc = |
| amount_of_external_allocated_memory_ - |
| amount_of_external_allocated_memory_at_last_global_gc_; |
| if (amount_since_last_global_gc > external_allocation_limit_) { |
| CollectAllGarbage(false); |
| } |
| } else { |
| // Avoid underflow. |
| if (amount >= 0) { |
| amount_of_external_allocated_memory_ = amount; |
| } |
| } |
| ASSERT(amount_of_external_allocated_memory_ >= 0); |
| return amount_of_external_allocated_memory_; |
| } |
| |
| |
| void Heap::SetLastScriptId(Object* last_script_id) { |
| roots_[kLastScriptIdRootIndex] = last_script_id; |
| } |
| |
| |
| #define GC_GREEDY_CHECK() \ |
| ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck()) |
| |
| |
| // Calls the FUNCTION_CALL function and retries it up to three times |
| // to guarantee that any allocations performed during the call will |
| // succeed if there's enough memory. |
| |
| // Warning: Do not use the identifiers __object__ or __scope__ in a |
| // call to this macro. |
| |
| #define CALL_AND_RETRY(FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \ |
| do { \ |
| GC_GREEDY_CHECK(); \ |
| Object* __object__ = FUNCTION_CALL; \ |
| if (!__object__->IsFailure()) RETURN_VALUE; \ |
| if (__object__->IsOutOfMemoryFailure()) { \ |
| v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0"); \ |
| } \ |
| if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \ |
| Heap::CollectGarbage(Failure::cast(__object__)->requested(), \ |
| Failure::cast(__object__)->allocation_space()); \ |
| __object__ = FUNCTION_CALL; \ |
| if (!__object__->IsFailure()) RETURN_VALUE; \ |
| if (__object__->IsOutOfMemoryFailure()) { \ |
| v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1"); \ |
| } \ |
| if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \ |
| Counters::gc_last_resort_from_handles.Increment(); \ |
| Heap::CollectAllGarbage(false); \ |
| { \ |
| AlwaysAllocateScope __scope__; \ |
| __object__ = FUNCTION_CALL; \ |
| } \ |
| if (!__object__->IsFailure()) RETURN_VALUE; \ |
| if (__object__->IsOutOfMemoryFailure() || \ |
| __object__->IsRetryAfterGC()) { \ |
| /* TODO(1181417): Fix this. */ \ |
| v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2"); \ |
| } \ |
| RETURN_EMPTY; \ |
| } while (false) |
| |
| |
| #define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \ |
| CALL_AND_RETRY(FUNCTION_CALL, \ |
| return Handle<TYPE>(TYPE::cast(__object__)), \ |
| return Handle<TYPE>()) |
| |
| |
| #define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \ |
| CALL_AND_RETRY(FUNCTION_CALL, return, return) |
| |
| |
| #ifdef DEBUG |
| |
| inline bool Heap::allow_allocation(bool new_state) { |
| bool old = allocation_allowed_; |
| allocation_allowed_ = new_state; |
| return old; |
| } |
| |
| #endif |
| |
| |
| void ExternalStringTable::AddString(String* string) { |
| ASSERT(string->IsExternalString()); |
| if (Heap::InNewSpace(string)) { |
| new_space_strings_.Add(string); |
| } else { |
| old_space_strings_.Add(string); |
| } |
| } |
| |
| |
| void ExternalStringTable::Iterate(ObjectVisitor* v) { |
| if (!new_space_strings_.is_empty()) { |
| Object** start = &new_space_strings_[0]; |
| v->VisitPointers(start, start + new_space_strings_.length()); |
| } |
| if (!old_space_strings_.is_empty()) { |
| Object** start = &old_space_strings_[0]; |
| v->VisitPointers(start, start + old_space_strings_.length()); |
| } |
| } |
| |
| |
| // Verify() is inline to avoid ifdef-s around its calls in release |
| // mode. |
| void ExternalStringTable::Verify() { |
| #ifdef DEBUG |
| for (int i = 0; i < new_space_strings_.length(); ++i) { |
| ASSERT(Heap::InNewSpace(new_space_strings_[i])); |
| ASSERT(new_space_strings_[i] != Heap::raw_unchecked_null_value()); |
| } |
| for (int i = 0; i < old_space_strings_.length(); ++i) { |
| ASSERT(!Heap::InNewSpace(old_space_strings_[i])); |
| ASSERT(old_space_strings_[i] != Heap::raw_unchecked_null_value()); |
| } |
| #endif |
| } |
| |
| |
| void ExternalStringTable::AddOldString(String* string) { |
| ASSERT(string->IsExternalString()); |
| ASSERT(!Heap::InNewSpace(string)); |
| old_space_strings_.Add(string); |
| } |
| |
| |
| void ExternalStringTable::ShrinkNewStrings(int position) { |
| new_space_strings_.Rewind(position); |
| Verify(); |
| } |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_HEAP_INL_H_ |