| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "bootstrapper.h" |
| #include "codegen-inl.h" |
| #include "compiler.h" |
| #include "debug.h" |
| #include "ic-inl.h" |
| #include "jsregexp.h" |
| #include "parser.h" |
| #include "regexp-macro-assembler.h" |
| #include "regexp-stack.h" |
| #include "register-allocator-inl.h" |
| #include "runtime.h" |
| #include "scopes.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| // ------------------------------------------------------------------------- |
| // Platform-specific DeferredCode functions. |
| |
| void DeferredCode::SaveRegisters() { |
| for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { |
| int action = registers_[i]; |
| if (action == kPush) { |
| __ push(RegisterAllocator::ToRegister(i)); |
| } else if (action != kIgnore && (action & kSyncedFlag) == 0) { |
| __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i)); |
| } |
| } |
| } |
| |
| |
| void DeferredCode::RestoreRegisters() { |
| // Restore registers in reverse order due to the stack. |
| for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { |
| int action = registers_[i]; |
| if (action == kPush) { |
| __ pop(RegisterAllocator::ToRegister(i)); |
| } else if (action != kIgnore) { |
| action &= ~kSyncedFlag; |
| __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action)); |
| } |
| } |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenState implementation. |
| |
| CodeGenState::CodeGenState(CodeGenerator* owner) |
| : owner_(owner), |
| destination_(NULL), |
| previous_(NULL) { |
| owner_->set_state(this); |
| } |
| |
| |
| CodeGenState::CodeGenState(CodeGenerator* owner, |
| ControlDestination* destination) |
| : owner_(owner), |
| destination_(destination), |
| previous_(owner->state()) { |
| owner_->set_state(this); |
| } |
| |
| |
| CodeGenState::~CodeGenState() { |
| ASSERT(owner_->state() == this); |
| owner_->set_state(previous_); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenerator implementation |
| |
| CodeGenerator::CodeGenerator(MacroAssembler* masm) |
| : deferred_(8), |
| masm_(masm), |
| info_(NULL), |
| frame_(NULL), |
| allocator_(NULL), |
| state_(NULL), |
| loop_nesting_(0), |
| function_return_is_shadowed_(false), |
| in_spilled_code_(false) { |
| } |
| |
| |
| Scope* CodeGenerator::scope() { return info_->function()->scope(); } |
| |
| |
| // Calling conventions: |
| // ebp: caller's frame pointer |
| // esp: stack pointer |
| // edi: called JS function |
| // esi: callee's context |
| |
| void CodeGenerator::Generate(CompilationInfo* info) { |
| // Record the position for debugging purposes. |
| CodeForFunctionPosition(info->function()); |
| |
| // Initialize state. |
| info_ = info; |
| ASSERT(allocator_ == NULL); |
| RegisterAllocator register_allocator(this); |
| allocator_ = ®ister_allocator; |
| ASSERT(frame_ == NULL); |
| frame_ = new VirtualFrame(); |
| set_in_spilled_code(false); |
| |
| // Adjust for function-level loop nesting. |
| loop_nesting_ += info->loop_nesting(); |
| |
| JumpTarget::set_compiling_deferred_code(false); |
| |
| #ifdef DEBUG |
| if (strlen(FLAG_stop_at) > 0 && |
| info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
| frame_->SpillAll(); |
| __ int3(); |
| } |
| #endif |
| |
| // New scope to get automatic timing calculation. |
| { // NOLINT |
| HistogramTimerScope codegen_timer(&Counters::code_generation); |
| CodeGenState state(this); |
| |
| // Entry: |
| // Stack: receiver, arguments, return address. |
| // ebp: caller's frame pointer |
| // esp: stack pointer |
| // edi: called JS function |
| // esi: callee's context |
| allocator_->Initialize(); |
| |
| if (info->mode() == CompilationInfo::PRIMARY) { |
| frame_->Enter(); |
| |
| // Allocate space for locals and initialize them. |
| frame_->AllocateStackSlots(); |
| |
| // Allocate the local context if needed. |
| int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| if (heap_slots > 0) { |
| Comment cmnt(masm_, "[ allocate local context"); |
| // Allocate local context. |
| // Get outer context and create a new context based on it. |
| frame_->PushFunction(); |
| Result context; |
| if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
| FastNewContextStub stub(heap_slots); |
| context = frame_->CallStub(&stub, 1); |
| } else { |
| context = frame_->CallRuntime(Runtime::kNewContext, 1); |
| } |
| |
| // Update context local. |
| frame_->SaveContextRegister(); |
| |
| // Verify that the runtime call result and esi agree. |
| if (FLAG_debug_code) { |
| __ cmp(context.reg(), Operand(esi)); |
| __ Assert(equal, "Runtime::NewContext should end up in esi"); |
| } |
| } |
| |
| // TODO(1241774): Improve this code: |
| // 1) only needed if we have a context |
| // 2) no need to recompute context ptr every single time |
| // 3) don't copy parameter operand code from SlotOperand! |
| { |
| Comment cmnt2(masm_, "[ copy context parameters into .context"); |
| // Note that iteration order is relevant here! If we have the same |
| // parameter twice (e.g., function (x, y, x)), and that parameter |
| // needs to be copied into the context, it must be the last argument |
| // passed to the parameter that needs to be copied. This is a rare |
| // case so we don't check for it, instead we rely on the copying |
| // order: such a parameter is copied repeatedly into the same |
| // context location and thus the last value is what is seen inside |
| // the function. |
| for (int i = 0; i < scope()->num_parameters(); i++) { |
| Variable* par = scope()->parameter(i); |
| Slot* slot = par->slot(); |
| if (slot != NULL && slot->type() == Slot::CONTEXT) { |
| // The use of SlotOperand below is safe in unspilled code |
| // because the slot is guaranteed to be a context slot. |
| // |
| // There are no parameters in the global scope. |
| ASSERT(!scope()->is_global_scope()); |
| frame_->PushParameterAt(i); |
| Result value = frame_->Pop(); |
| value.ToRegister(); |
| |
| // SlotOperand loads context.reg() with the context object |
| // stored to, used below in RecordWrite. |
| Result context = allocator_->Allocate(); |
| ASSERT(context.is_valid()); |
| __ mov(SlotOperand(slot, context.reg()), value.reg()); |
| int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
| Result scratch = allocator_->Allocate(); |
| ASSERT(scratch.is_valid()); |
| frame_->Spill(context.reg()); |
| frame_->Spill(value.reg()); |
| __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg()); |
| } |
| } |
| } |
| |
| // Store the arguments object. This must happen after context |
| // initialization because the arguments object may be stored in |
| // the context. |
| if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { |
| StoreArgumentsObject(true); |
| } |
| |
| // Initialize ThisFunction reference if present. |
| if (scope()->is_function_scope() && scope()->function() != NULL) { |
| frame_->Push(Factory::the_hole_value()); |
| StoreToSlot(scope()->function()->slot(), NOT_CONST_INIT); |
| } |
| } else { |
| // When used as the secondary compiler for splitting, ebp, esi, |
| // and edi have been pushed on the stack. Adjust the virtual |
| // frame to match this state. |
| frame_->Adjust(3); |
| allocator_->Unuse(edi); |
| |
| // Bind all the bailout labels to the beginning of the function. |
| List<CompilationInfo::Bailout*>* bailouts = info->bailouts(); |
| for (int i = 0; i < bailouts->length(); i++) { |
| __ bind(bailouts->at(i)->label()); |
| } |
| } |
| |
| // Initialize the function return target after the locals are set |
| // up, because it needs the expected frame height from the frame. |
| function_return_.set_direction(JumpTarget::BIDIRECTIONAL); |
| function_return_is_shadowed_ = false; |
| |
| // Generate code to 'execute' declarations and initialize functions |
| // (source elements). In case of an illegal redeclaration we need to |
| // handle that instead of processing the declarations. |
| if (scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ illegal redeclarations"); |
| scope()->VisitIllegalRedeclaration(this); |
| } else { |
| Comment cmnt(masm_, "[ declarations"); |
| ProcessDeclarations(scope()->declarations()); |
| // Bail out if a stack-overflow exception occurred when processing |
| // declarations. |
| if (HasStackOverflow()) return; |
| } |
| |
| if (FLAG_trace) { |
| frame_->CallRuntime(Runtime::kTraceEnter, 0); |
| // Ignore the return value. |
| } |
| CheckStack(); |
| |
| // Compile the body of the function in a vanilla state. Don't |
| // bother compiling all the code if the scope has an illegal |
| // redeclaration. |
| if (!scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ function body"); |
| #ifdef DEBUG |
| bool is_builtin = Bootstrapper::IsActive(); |
| bool should_trace = |
| is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; |
| if (should_trace) { |
| frame_->CallRuntime(Runtime::kDebugTrace, 0); |
| // Ignore the return value. |
| } |
| #endif |
| VisitStatements(info->function()->body()); |
| |
| // Handle the return from the function. |
| if (has_valid_frame()) { |
| // If there is a valid frame, control flow can fall off the end of |
| // the body. In that case there is an implicit return statement. |
| ASSERT(!function_return_is_shadowed_); |
| CodeForReturnPosition(info->function()); |
| frame_->PrepareForReturn(); |
| Result undefined(Factory::undefined_value()); |
| if (function_return_.is_bound()) { |
| function_return_.Jump(&undefined); |
| } else { |
| function_return_.Bind(&undefined); |
| GenerateReturnSequence(&undefined); |
| } |
| } else if (function_return_.is_linked()) { |
| // If the return target has dangling jumps to it, then we have not |
| // yet generated the return sequence. This can happen when (a) |
| // control does not flow off the end of the body so we did not |
| // compile an artificial return statement just above, and (b) there |
| // are return statements in the body but (c) they are all shadowed. |
| Result return_value; |
| function_return_.Bind(&return_value); |
| GenerateReturnSequence(&return_value); |
| } |
| } |
| } |
| |
| // Adjust for function-level loop nesting. |
| loop_nesting_ -= info->loop_nesting(); |
| |
| // Code generation state must be reset. |
| ASSERT(state_ == NULL); |
| ASSERT(loop_nesting() == 0); |
| ASSERT(!function_return_is_shadowed_); |
| function_return_.Unuse(); |
| DeleteFrame(); |
| |
| // Process any deferred code using the register allocator. |
| if (!HasStackOverflow()) { |
| HistogramTimerScope deferred_timer(&Counters::deferred_code_generation); |
| JumpTarget::set_compiling_deferred_code(true); |
| ProcessDeferred(); |
| JumpTarget::set_compiling_deferred_code(false); |
| } |
| |
| // There is no need to delete the register allocator, it is a |
| // stack-allocated local. |
| allocator_ = NULL; |
| } |
| |
| |
| Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
| // Currently, this assertion will fail if we try to assign to |
| // a constant variable that is constant because it is read-only |
| // (such as the variable referring to a named function expression). |
| // We need to implement assignments to read-only variables. |
| // Ideally, we should do this during AST generation (by converting |
| // such assignments into expression statements); however, in general |
| // we may not be able to make the decision until past AST generation, |
| // that is when the entire program is known. |
| ASSERT(slot != NULL); |
| int index = slot->index(); |
| switch (slot->type()) { |
| case Slot::PARAMETER: |
| return frame_->ParameterAt(index); |
| |
| case Slot::LOCAL: |
| return frame_->LocalAt(index); |
| |
| case Slot::CONTEXT: { |
| // Follow the context chain if necessary. |
| ASSERT(!tmp.is(esi)); // do not overwrite context register |
| Register context = esi; |
| int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
| for (int i = 0; i < chain_length; i++) { |
| // Load the closure. |
| // (All contexts, even 'with' contexts, have a closure, |
| // and it is the same for all contexts inside a function. |
| // There is no need to go to the function context first.) |
| __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| // Load the function context (which is the incoming, outer context). |
| __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| // We may have a 'with' context now. Get the function context. |
| // (In fact this mov may never be the needed, since the scope analysis |
| // may not permit a direct context access in this case and thus we are |
| // always at a function context. However it is safe to dereference be- |
| // cause the function context of a function context is itself. Before |
| // deleting this mov we should try to create a counter-example first, |
| // though...) |
| __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
| return ContextOperand(tmp, index); |
| } |
| |
| default: |
| UNREACHABLE(); |
| return Operand(eax); |
| } |
| } |
| |
| |
| Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, |
| Result tmp, |
| JumpTarget* slow) { |
| ASSERT(slot->type() == Slot::CONTEXT); |
| ASSERT(tmp.is_register()); |
| Register context = esi; |
| |
| for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| // Check that extension is NULL. |
| __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), |
| Immediate(0)); |
| slow->Branch(not_equal, not_taken); |
| } |
| __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); |
| __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
| context = tmp.reg(); |
| } |
| } |
| // Check that last extension is NULL. |
| __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); |
| slow->Branch(not_equal, not_taken); |
| __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); |
| return ContextOperand(tmp.reg(), slot->index()); |
| } |
| |
| |
| // Emit code to load the value of an expression to the top of the |
| // frame. If the expression is boolean-valued it may be compiled (or |
| // partially compiled) into control flow to the control destination. |
| // If force_control is true, control flow is forced. |
| void CodeGenerator::LoadCondition(Expression* x, |
| ControlDestination* dest, |
| bool force_control) { |
| ASSERT(!in_spilled_code()); |
| int original_height = frame_->height(); |
| |
| { CodeGenState new_state(this, dest); |
| Visit(x); |
| |
| // If we hit a stack overflow, we may not have actually visited |
| // the expression. In that case, we ensure that we have a |
| // valid-looking frame state because we will continue to generate |
| // code as we unwind the C++ stack. |
| // |
| // It's possible to have both a stack overflow and a valid frame |
| // state (eg, a subexpression overflowed, visiting it returned |
| // with a dummied frame state, and visiting this expression |
| // returned with a normal-looking state). |
| if (HasStackOverflow() && |
| !dest->is_used() && |
| frame_->height() == original_height) { |
| dest->Goto(true); |
| } |
| } |
| |
| if (force_control && !dest->is_used()) { |
| // Convert the TOS value into flow to the control destination. |
| ToBoolean(dest); |
| } |
| |
| ASSERT(!(force_control && !dest->is_used())); |
| ASSERT(dest->is_used() || frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::LoadAndSpill(Expression* expression) { |
| ASSERT(in_spilled_code()); |
| set_in_spilled_code(false); |
| Load(expression); |
| frame_->SpillAll(); |
| set_in_spilled_code(true); |
| } |
| |
| |
| void CodeGenerator::Load(Expression* expr) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| ASSERT(!in_spilled_code()); |
| JumpTarget true_target; |
| JumpTarget false_target; |
| ControlDestination dest(&true_target, &false_target, true); |
| LoadCondition(expr, &dest, false); |
| |
| if (dest.false_was_fall_through()) { |
| // The false target was just bound. |
| JumpTarget loaded; |
| frame_->Push(Factory::false_value()); |
| // There may be dangling jumps to the true target. |
| if (true_target.is_linked()) { |
| loaded.Jump(); |
| true_target.Bind(); |
| frame_->Push(Factory::true_value()); |
| loaded.Bind(); |
| } |
| |
| } else if (dest.is_used()) { |
| // There is true, and possibly false, control flow (with true as |
| // the fall through). |
| JumpTarget loaded; |
| frame_->Push(Factory::true_value()); |
| if (false_target.is_linked()) { |
| loaded.Jump(); |
| false_target.Bind(); |
| frame_->Push(Factory::false_value()); |
| loaded.Bind(); |
| } |
| |
| } else { |
| // We have a valid value on top of the frame, but we still may |
| // have dangling jumps to the true and false targets from nested |
| // subexpressions (eg, the left subexpressions of the |
| // short-circuited boolean operators). |
| ASSERT(has_valid_frame()); |
| if (true_target.is_linked() || false_target.is_linked()) { |
| JumpTarget loaded; |
| loaded.Jump(); // Don't lose the current TOS. |
| if (true_target.is_linked()) { |
| true_target.Bind(); |
| frame_->Push(Factory::true_value()); |
| if (false_target.is_linked()) { |
| loaded.Jump(); |
| } |
| } |
| if (false_target.is_linked()) { |
| false_target.Bind(); |
| frame_->Push(Factory::false_value()); |
| } |
| loaded.Bind(); |
| } |
| } |
| |
| ASSERT(has_valid_frame()); |
| ASSERT(frame_->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::LoadGlobal() { |
| if (in_spilled_code()) { |
| frame_->EmitPush(GlobalObject()); |
| } else { |
| Result temp = allocator_->Allocate(); |
| __ mov(temp.reg(), GlobalObject()); |
| frame_->Push(&temp); |
| } |
| } |
| |
| |
| void CodeGenerator::LoadGlobalReceiver() { |
| Result temp = allocator_->Allocate(); |
| Register reg = temp.reg(); |
| __ mov(reg, GlobalObject()); |
| __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); |
| frame_->Push(&temp); |
| } |
| |
| |
| void CodeGenerator::LoadTypeofExpression(Expression* expr) { |
| // Special handling of identifiers as subexpressions of typeof. |
| Variable* variable = expr->AsVariableProxy()->AsVariable(); |
| if (variable != NULL && !variable->is_this() && variable->is_global()) { |
| // For a global variable we build the property reference |
| // <global>.<variable> and perform a (regular non-contextual) property |
| // load to make sure we do not get reference errors. |
| Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
| Literal key(variable->name()); |
| Property property(&global, &key, RelocInfo::kNoPosition); |
| Reference ref(this, &property); |
| ref.GetValue(); |
| } else if (variable != NULL && variable->slot() != NULL) { |
| // For a variable that rewrites to a slot, we signal it is the immediate |
| // subexpression of a typeof. |
| Result result = |
| LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF); |
| frame()->Push(&result); |
| } else { |
| // Anything else can be handled normally. |
| Load(expr); |
| } |
| } |
| |
| |
| ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { |
| if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; |
| ASSERT(scope()->arguments_shadow() != NULL); |
| // We don't want to do lazy arguments allocation for functions that |
| // have heap-allocated contexts, because it interfers with the |
| // uninitialized const tracking in the context objects. |
| return (scope()->num_heap_slots() > 0) |
| ? EAGER_ARGUMENTS_ALLOCATION |
| : LAZY_ARGUMENTS_ALLOCATION; |
| } |
| |
| |
| Result CodeGenerator::StoreArgumentsObject(bool initial) { |
| ArgumentsAllocationMode mode = ArgumentsMode(); |
| ASSERT(mode != NO_ARGUMENTS_ALLOCATION); |
| |
| Comment cmnt(masm_, "[ store arguments object"); |
| if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { |
| // When using lazy arguments allocation, we store the hole value |
| // as a sentinel indicating that the arguments object hasn't been |
| // allocated yet. |
| frame_->Push(Factory::the_hole_value()); |
| } else { |
| ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); |
| frame_->PushFunction(); |
| frame_->PushReceiverSlotAddress(); |
| frame_->Push(Smi::FromInt(scope()->num_parameters())); |
| Result result = frame_->CallStub(&stub, 3); |
| frame_->Push(&result); |
| } |
| |
| Variable* arguments = scope()->arguments()->var(); |
| Variable* shadow = scope()->arguments_shadow()->var(); |
| ASSERT(arguments != NULL && arguments->slot() != NULL); |
| ASSERT(shadow != NULL && shadow->slot() != NULL); |
| JumpTarget done; |
| bool skip_arguments = false; |
| if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { |
| // We have to skip storing into the arguments slot if it has already |
| // been written to. This can happen if the a function has a local |
| // variable named 'arguments'. |
| Result probe = LoadFromSlot(arguments->slot(), NOT_INSIDE_TYPEOF); |
| if (probe.is_constant()) { |
| // We have to skip updating the arguments object if it has |
| // been assigned a proper value. |
| skip_arguments = !probe.handle()->IsTheHole(); |
| } else { |
| __ cmp(Operand(probe.reg()), Immediate(Factory::the_hole_value())); |
| probe.Unuse(); |
| done.Branch(not_equal); |
| } |
| } |
| if (!skip_arguments) { |
| StoreToSlot(arguments->slot(), NOT_CONST_INIT); |
| if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); |
| } |
| StoreToSlot(shadow->slot(), NOT_CONST_INIT); |
| return frame_->Pop(); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // CodeGenerator implementation of variables, lookups, and stores. |
| |
| Reference::Reference(CodeGenerator* cgen, |
| Expression* expression, |
| bool persist_after_get) |
| : cgen_(cgen), |
| expression_(expression), |
| type_(ILLEGAL), |
| persist_after_get_(persist_after_get) { |
| cgen->LoadReference(this); |
| } |
| |
| |
| Reference::~Reference() { |
| ASSERT(is_unloaded() || is_illegal()); |
| } |
| |
| |
| void CodeGenerator::LoadReference(Reference* ref) { |
| // References are loaded from both spilled and unspilled code. Set the |
| // state to unspilled to allow that (and explicitly spill after |
| // construction at the construction sites). |
| bool was_in_spilled_code = in_spilled_code_; |
| in_spilled_code_ = false; |
| |
| Comment cmnt(masm_, "[ LoadReference"); |
| Expression* e = ref->expression(); |
| Property* property = e->AsProperty(); |
| Variable* var = e->AsVariableProxy()->AsVariable(); |
| |
| if (property != NULL) { |
| // The expression is either a property or a variable proxy that rewrites |
| // to a property. |
| Load(property->obj()); |
| if (property->key()->IsPropertyName()) { |
| ref->set_type(Reference::NAMED); |
| } else { |
| Load(property->key()); |
| ref->set_type(Reference::KEYED); |
| } |
| } else if (var != NULL) { |
| // The expression is a variable proxy that does not rewrite to a |
| // property. Global variables are treated as named property references. |
| if (var->is_global()) { |
| // If eax is free, the register allocator prefers it. Thus the code |
| // generator will load the global object into eax, which is where |
| // LoadIC wants it. Most uses of Reference call LoadIC directly |
| // after the reference is created. |
| frame_->Spill(eax); |
| LoadGlobal(); |
| ref->set_type(Reference::NAMED); |
| } else { |
| ASSERT(var->slot() != NULL); |
| ref->set_type(Reference::SLOT); |
| } |
| } else { |
| // Anything else is a runtime error. |
| Load(e); |
| frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
| } |
| |
| in_spilled_code_ = was_in_spilled_code; |
| } |
| |
| |
| void CodeGenerator::UnloadReference(Reference* ref) { |
| // Pop a reference from the stack while preserving TOS. |
| Comment cmnt(masm_, "[ UnloadReference"); |
| frame_->Nip(ref->size()); |
| ref->set_unloaded(); |
| } |
| |
| |
| // ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and |
| // convert it to a boolean in the condition code register or jump to |
| // 'false_target'/'true_target' as appropriate. |
| void CodeGenerator::ToBoolean(ControlDestination* dest) { |
| Comment cmnt(masm_, "[ ToBoolean"); |
| |
| // The value to convert should be popped from the frame. |
| Result value = frame_->Pop(); |
| value.ToRegister(); |
| |
| if (value.is_number()) { |
| Comment cmnt(masm_, "ONLY_NUMBER"); |
| // Fast case if NumberInfo indicates only numbers. |
| if (FLAG_debug_code) { |
| __ AbortIfNotNumber(value.reg(), "ToBoolean operand is not a number."); |
| } |
| // Smi => false iff zero. |
| ASSERT(kSmiTag == 0); |
| __ test(value.reg(), Operand(value.reg())); |
| dest->false_target()->Branch(zero); |
| __ test(value.reg(), Immediate(kSmiTagMask)); |
| dest->true_target()->Branch(zero); |
| __ fldz(); |
| __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); |
| __ FCmp(); |
| value.Unuse(); |
| dest->Split(not_zero); |
| } else { |
| // Fast case checks. |
| // 'false' => false. |
| __ cmp(value.reg(), Factory::false_value()); |
| dest->false_target()->Branch(equal); |
| |
| // 'true' => true. |
| __ cmp(value.reg(), Factory::true_value()); |
| dest->true_target()->Branch(equal); |
| |
| // 'undefined' => false. |
| __ cmp(value.reg(), Factory::undefined_value()); |
| dest->false_target()->Branch(equal); |
| |
| // Smi => false iff zero. |
| ASSERT(kSmiTag == 0); |
| __ test(value.reg(), Operand(value.reg())); |
| dest->false_target()->Branch(zero); |
| __ test(value.reg(), Immediate(kSmiTagMask)); |
| dest->true_target()->Branch(zero); |
| |
| // Call the stub for all other cases. |
| frame_->Push(&value); // Undo the Pop() from above. |
| ToBooleanStub stub; |
| Result temp = frame_->CallStub(&stub, 1); |
| // Convert the result to a condition code. |
| __ test(temp.reg(), Operand(temp.reg())); |
| temp.Unuse(); |
| dest->Split(not_equal); |
| } |
| } |
| |
| |
| class FloatingPointHelper : public AllStatic { |
| public: |
| |
| enum ArgLocation { |
| ARGS_ON_STACK, |
| ARGS_IN_REGISTERS |
| }; |
| |
| // Code pattern for loading a floating point value. Input value must |
| // be either a smi or a heap number object (fp value). Requirements: |
| // operand in register number. Returns operand as floating point number |
| // on FPU stack. |
| static void LoadFloatOperand(MacroAssembler* masm, Register number); |
| // Code pattern for loading floating point values. Input values must |
| // be either smi or heap number objects (fp values). Requirements: |
| // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax. |
| // Returns operands as floating point numbers on FPU stack. |
| static void LoadFloatOperands(MacroAssembler* masm, |
| Register scratch, |
| ArgLocation arg_location = ARGS_ON_STACK); |
| |
| // Similar to LoadFloatOperand but assumes that both operands are smis. |
| // Expects operands in edx, eax. |
| static void LoadFloatSmis(MacroAssembler* masm, Register scratch); |
| |
| // Test if operands are smi or number objects (fp). Requirements: |
| // operand_1 in eax, operand_2 in edx; falls through on float |
| // operands, jumps to the non_float label otherwise. |
| static void CheckFloatOperands(MacroAssembler* masm, |
| Label* non_float, |
| Register scratch); |
| // Takes the operands in edx and eax and loads them as integers in eax |
| // and ecx. |
| static void LoadAsIntegers(MacroAssembler* masm, |
| bool use_sse3, |
| Label* operand_conversion_failure); |
| // Test if operands are smis or heap numbers and load them |
| // into xmm0 and xmm1 if they are. Operands are in edx and eax. |
| // Leaves operands unchanged. |
| static void LoadSSE2Operands(MacroAssembler* masm); |
| // Test if operands are numbers (smi or HeapNumber objects), and load |
| // them into xmm0 and xmm1 if they are. Jump to label not_numbers if |
| // either operand is not a number. Operands are in edx and eax. |
| // Leaves operands unchanged. |
| static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); |
| |
| // Similar to LoadSSE2Operands but assumes that both operands are smis. |
| // Expects operands in edx, eax. |
| static void LoadSSE2Smis(MacroAssembler* masm, Register scratch); |
| }; |
| |
| |
| const char* GenericBinaryOpStub::GetName() { |
| if (name_ != NULL) return name_; |
| const int kMaxNameLength = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| if (name_ == NULL) return "OOM"; |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| "GenericBinaryOpStub_%s_%s%s_%s%s_%s", |
| op_name, |
| overwrite_name, |
| (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
| args_in_registers_ ? "RegArgs" : "StackArgs", |
| args_reversed_ ? "_R" : "", |
| NumberInfo::ToString(operands_type_)); |
| return name_; |
| } |
| |
| |
| // Call the specialized stub for a binary operation. |
| class DeferredInlineBinaryOperation: public DeferredCode { |
| public: |
| DeferredInlineBinaryOperation(Token::Value op, |
| Register dst, |
| Register left, |
| Register right, |
| OverwriteMode mode) |
| : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) { |
| set_comment("[ DeferredInlineBinaryOperation"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Token::Value op_; |
| Register dst_; |
| Register left_; |
| Register right_; |
| OverwriteMode mode_; |
| }; |
| |
| |
| void DeferredInlineBinaryOperation::Generate() { |
| Label done; |
| if (CpuFeatures::IsSupported(SSE2) && ((op_ == Token::ADD) || |
| (op_ ==Token::SUB) || |
| (op_ == Token::MUL) || |
| (op_ == Token::DIV))) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| Label call_runtime, after_alloc_failure; |
| Label left_smi, right_smi, load_right, do_op; |
| __ test(left_, Immediate(kSmiTagMask)); |
| __ j(zero, &left_smi); |
| __ cmp(FieldOperand(left_, HeapObject::kMapOffset), |
| Factory::heap_number_map()); |
| __ j(not_equal, &call_runtime); |
| __ movdbl(xmm0, FieldOperand(left_, HeapNumber::kValueOffset)); |
| if (mode_ == OVERWRITE_LEFT) { |
| __ mov(dst_, left_); |
| } |
| __ jmp(&load_right); |
| |
| __ bind(&left_smi); |
| __ SmiUntag(left_); |
| __ cvtsi2sd(xmm0, Operand(left_)); |
| __ SmiTag(left_); |
| if (mode_ == OVERWRITE_LEFT) { |
| Label alloc_failure; |
| __ push(left_); |
| __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); |
| __ pop(left_); |
| } |
| |
| __ bind(&load_right); |
| __ test(right_, Immediate(kSmiTagMask)); |
| __ j(zero, &right_smi); |
| __ cmp(FieldOperand(right_, HeapObject::kMapOffset), |
| Factory::heap_number_map()); |
| __ j(not_equal, &call_runtime); |
| __ movdbl(xmm1, FieldOperand(right_, HeapNumber::kValueOffset)); |
| if (mode_ == OVERWRITE_RIGHT) { |
| __ mov(dst_, right_); |
| } else if (mode_ == NO_OVERWRITE) { |
| Label alloc_failure; |
| __ push(left_); |
| __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); |
| __ pop(left_); |
| } |
| __ jmp(&do_op); |
| |
| __ bind(&right_smi); |
| __ SmiUntag(right_); |
| __ cvtsi2sd(xmm1, Operand(right_)); |
| __ SmiTag(right_); |
| if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) { |
| Label alloc_failure; |
| __ push(left_); |
| __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); |
| __ pop(left_); |
| } |
| |
| __ bind(&do_op); |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| __ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0); |
| __ jmp(&done); |
| |
| __ bind(&after_alloc_failure); |
| __ pop(left_); |
| __ bind(&call_runtime); |
| } |
| GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB); |
| stub.GenerateCall(masm_, left_, right_); |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| __ bind(&done); |
| } |
| |
| |
| void CodeGenerator::GenericBinaryOperation(Token::Value op, |
| StaticType* type, |
| OverwriteMode overwrite_mode) { |
| Comment cmnt(masm_, "[ BinaryOperation"); |
| Comment cmnt_token(masm_, Token::String(op)); |
| |
| if (op == Token::COMMA) { |
| // Simply discard left value. |
| frame_->Nip(1); |
| return; |
| } |
| |
| Result right = frame_->Pop(); |
| Result left = frame_->Pop(); |
| |
| if (op == Token::ADD) { |
| bool left_is_string = left.is_constant() && left.handle()->IsString(); |
| bool right_is_string = right.is_constant() && right.handle()->IsString(); |
| if (left_is_string || right_is_string) { |
| frame_->Push(&left); |
| frame_->Push(&right); |
| Result answer; |
| if (left_is_string) { |
| if (right_is_string) { |
| // TODO(lrn): if both are constant strings |
| // -- do a compile time cons, if allocation during codegen is allowed. |
| answer = frame_->CallRuntime(Runtime::kStringAdd, 2); |
| } else { |
| answer = |
| frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2); |
| } |
| } else if (right_is_string) { |
| answer = |
| frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2); |
| } |
| frame_->Push(&answer); |
| return; |
| } |
| // Neither operand is known to be a string. |
| } |
| |
| bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); |
| bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); |
| bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); |
| bool right_is_non_smi_constant = |
| right.is_constant() && !right.handle()->IsSmi(); |
| |
| if (left_is_smi_constant && right_is_smi_constant) { |
| // Compute the constant result at compile time, and leave it on the frame. |
| int left_int = Smi::cast(*left.handle())->value(); |
| int right_int = Smi::cast(*right.handle())->value(); |
| if (FoldConstantSmis(op, left_int, right_int)) return; |
| } |
| |
| // Get number type of left and right sub-expressions. |
| NumberInfo::Type operands_type = |
| NumberInfo::Combine(left.number_info(), right.number_info()); |
| |
| Result answer; |
| if (left_is_non_smi_constant || right_is_non_smi_constant) { |
| // Go straight to the slow case, with no smi code. |
| GenericBinaryOpStub stub(op, |
| overwrite_mode, |
| NO_SMI_CODE_IN_STUB, |
| operands_type); |
| answer = stub.GenerateCall(masm_, frame_, &left, &right); |
| } else if (right_is_smi_constant) { |
| answer = ConstantSmiBinaryOperation(op, &left, right.handle(), |
| type, false, overwrite_mode); |
| } else if (left_is_smi_constant) { |
| answer = ConstantSmiBinaryOperation(op, &right, left.handle(), |
| type, true, overwrite_mode); |
| } else { |
| // Set the flags based on the operation, type and loop nesting level. |
| // Bit operations always assume they likely operate on Smis. Still only |
| // generate the inline Smi check code if this operation is part of a loop. |
| // For all other operations only inline the Smi check code for likely smis |
| // if the operation is part of a loop. |
| if (loop_nesting() > 0 && (Token::IsBitOp(op) || type->IsLikelySmi())) { |
| answer = LikelySmiBinaryOperation(op, &left, &right, overwrite_mode); |
| } else { |
| GenericBinaryOpStub stub(op, |
| overwrite_mode, |
| NO_GENERIC_BINARY_FLAGS, |
| operands_type); |
| answer = stub.GenerateCall(masm_, frame_, &left, &right); |
| } |
| } |
| |
| // Set NumberInfo of result according to the operation performed. |
| // Rely on the fact that smis have a 31 bit payload on ia32. |
| ASSERT(kSmiValueSize == 31); |
| NumberInfo::Type result_type = NumberInfo::kUnknown; |
| switch (op) { |
| case Token::COMMA: |
| result_type = right.number_info(); |
| break; |
| case Token::OR: |
| case Token::AND: |
| // Result type can be either of the two input types. |
| result_type = operands_type; |
| break; |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| // Result is always a number. Smi property of inputs is preserved. |
| result_type = (operands_type == NumberInfo::kSmi) |
| ? NumberInfo::kSmi |
| : NumberInfo::kNumber; |
| break; |
| case Token::SAR: |
| // Result is a smi if we shift by a constant >= 1, otherwise a number. |
| result_type = (right.is_constant() && right.handle()->IsSmi() |
| && Smi::cast(*right.handle())->value() >= 1) |
| ? NumberInfo::kSmi |
| : NumberInfo::kNumber; |
| break; |
| case Token::SHR: |
| // Result is a smi if we shift by a constant >= 2, otherwise a number. |
| result_type = (right.is_constant() && right.handle()->IsSmi() |
| && Smi::cast(*right.handle())->value() >= 2) |
| ? NumberInfo::kSmi |
| : NumberInfo::kNumber; |
| break; |
| case Token::ADD: |
| // Result could be a string or a number. Check types of inputs. |
| result_type = NumberInfo::IsNumber(operands_type) |
| ? NumberInfo::kNumber |
| : NumberInfo::kUnknown; |
| break; |
| case Token::SHL: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| // Result is always a number. |
| result_type = NumberInfo::kNumber; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| answer.set_number_info(result_type); |
| frame_->Push(&answer); |
| } |
| |
| |
| bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { |
| Object* answer_object = Heap::undefined_value(); |
| switch (op) { |
| case Token::ADD: |
| if (Smi::IsValid(left + right)) { |
| answer_object = Smi::FromInt(left + right); |
| } |
| break; |
| case Token::SUB: |
| if (Smi::IsValid(left - right)) { |
| answer_object = Smi::FromInt(left - right); |
| } |
| break; |
| case Token::MUL: { |
| double answer = static_cast<double>(left) * right; |
| if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { |
| // If the product is zero and the non-zero factor is negative, |
| // the spec requires us to return floating point negative zero. |
| if (answer != 0 || (left >= 0 && right >= 0)) { |
| answer_object = Smi::FromInt(static_cast<int>(answer)); |
| } |
| } |
| } |
| break; |
| case Token::DIV: |
| case Token::MOD: |
| break; |
| case Token::BIT_OR: |
| answer_object = Smi::FromInt(left | right); |
| break; |
| case Token::BIT_AND: |
| answer_object = Smi::FromInt(left & right); |
| break; |
| case Token::BIT_XOR: |
| answer_object = Smi::FromInt(left ^ right); |
| break; |
| |
| case Token::SHL: { |
| int shift_amount = right & 0x1F; |
| if (Smi::IsValid(left << shift_amount)) { |
| answer_object = Smi::FromInt(left << shift_amount); |
| } |
| break; |
| } |
| case Token::SHR: { |
| int shift_amount = right & 0x1F; |
| unsigned int unsigned_left = left; |
| unsigned_left >>= shift_amount; |
| if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) { |
| answer_object = Smi::FromInt(unsigned_left); |
| } |
| break; |
| } |
| case Token::SAR: { |
| int shift_amount = right & 0x1F; |
| unsigned int unsigned_left = left; |
| if (left < 0) { |
| // Perform arithmetic shift of a negative number by |
| // complementing number, logical shifting, complementing again. |
| unsigned_left = ~unsigned_left; |
| unsigned_left >>= shift_amount; |
| unsigned_left = ~unsigned_left; |
| } else { |
| unsigned_left >>= shift_amount; |
| } |
| ASSERT(Smi::IsValid(unsigned_left)); // Converted to signed. |
| answer_object = Smi::FromInt(unsigned_left); // Converted to signed. |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (answer_object == Heap::undefined_value()) { |
| return false; |
| } |
| frame_->Push(Handle<Object>(answer_object)); |
| return true; |
| } |
| |
| |
| // Implements a binary operation using a deferred code object and some |
| // inline code to operate on smis quickly. |
| Result CodeGenerator::LikelySmiBinaryOperation(Token::Value op, |
| Result* left, |
| Result* right, |
| OverwriteMode overwrite_mode) { |
| Result answer; |
| // Special handling of div and mod because they use fixed registers. |
| if (op == Token::DIV || op == Token::MOD) { |
| // We need eax as the quotient register, edx as the remainder |
| // register, neither left nor right in eax or edx, and left copied |
| // to eax. |
| Result quotient; |
| Result remainder; |
| bool left_is_in_eax = false; |
| // Step 1: get eax for quotient. |
| if ((left->is_register() && left->reg().is(eax)) || |
| (right->is_register() && right->reg().is(eax))) { |
| // One or both is in eax. Use a fresh non-edx register for |
| // them. |
| Result fresh = allocator_->Allocate(); |
| ASSERT(fresh.is_valid()); |
| if (fresh.reg().is(edx)) { |
| remainder = fresh; |
| fresh = allocator_->Allocate(); |
| ASSERT(fresh.is_valid()); |
| } |
| if (left->is_register() && left->reg().is(eax)) { |
| quotient = *left; |
| *left = fresh; |
| left_is_in_eax = true; |
| } |
| if (right->is_register() && right->reg().is(eax)) { |
| quotient = *right; |
| *right = fresh; |
| } |
| __ mov(fresh.reg(), eax); |
| } else { |
| // Neither left nor right is in eax. |
| quotient = allocator_->Allocate(eax); |
| } |
| ASSERT(quotient.is_register() && quotient.reg().is(eax)); |
| ASSERT(!(left->is_register() && left->reg().is(eax))); |
| ASSERT(!(right->is_register() && right->reg().is(eax))); |
| |
| // Step 2: get edx for remainder if necessary. |
| if (!remainder.is_valid()) { |
| if ((left->is_register() && left->reg().is(edx)) || |
| (right->is_register() && right->reg().is(edx))) { |
| Result fresh = allocator_->Allocate(); |
| ASSERT(fresh.is_valid()); |
| if (left->is_register() && left->reg().is(edx)) { |
| remainder = *left; |
| *left = fresh; |
| } |
| if (right->is_register() && right->reg().is(edx)) { |
| remainder = *right; |
| *right = fresh; |
| } |
| __ mov(fresh.reg(), edx); |
| } else { |
| // Neither left nor right is in edx. |
| remainder = allocator_->Allocate(edx); |
| } |
| } |
| ASSERT(remainder.is_register() && remainder.reg().is(edx)); |
| ASSERT(!(left->is_register() && left->reg().is(edx))); |
| ASSERT(!(right->is_register() && right->reg().is(edx))); |
| |
| left->ToRegister(); |
| right->ToRegister(); |
| frame_->Spill(eax); |
| frame_->Spill(edx); |
| |
| // Check that left and right are smi tagged. |
| DeferredInlineBinaryOperation* deferred = |
| new DeferredInlineBinaryOperation(op, |
| (op == Token::DIV) ? eax : edx, |
| left->reg(), |
| right->reg(), |
| overwrite_mode); |
| if (left->reg().is(right->reg())) { |
| __ test(left->reg(), Immediate(kSmiTagMask)); |
| } else { |
| // Use the quotient register as a scratch for the tag check. |
| if (!left_is_in_eax) __ mov(eax, left->reg()); |
| left_is_in_eax = false; // About to destroy the value in eax. |
| __ or_(eax, Operand(right->reg())); |
| ASSERT(kSmiTag == 0); // Adjust test if not the case. |
| __ test(eax, Immediate(kSmiTagMask)); |
| } |
| deferred->Branch(not_zero); |
| |
| if (!left_is_in_eax) __ mov(eax, left->reg()); |
| // Sign extend eax into edx:eax. |
| __ cdq(); |
| // Check for 0 divisor. |
| __ test(right->reg(), Operand(right->reg())); |
| deferred->Branch(zero); |
| // Divide edx:eax by the right operand. |
| __ idiv(right->reg()); |
| |
| // Complete the operation. |
| if (op == Token::DIV) { |
| // Check for negative zero result. If result is zero, and divisor |
| // is negative, return a floating point negative zero. The |
| // virtual frame is unchanged in this block, so local control flow |
| // can use a Label rather than a JumpTarget. |
| Label non_zero_result; |
| __ test(left->reg(), Operand(left->reg())); |
| __ j(not_zero, &non_zero_result); |
| __ test(right->reg(), Operand(right->reg())); |
| deferred->Branch(negative); |
| __ bind(&non_zero_result); |
| // Check for the corner case of dividing the most negative smi by |
| // -1. We cannot use the overflow flag, since it is not set by |
| // idiv instruction. |
| ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ cmp(eax, 0x40000000); |
| deferred->Branch(equal); |
| // Check that the remainder is zero. |
| __ test(edx, Operand(edx)); |
| deferred->Branch(not_zero); |
| // Tag the result and store it in the quotient register. |
| __ SmiTag(eax); |
| deferred->BindExit(); |
| left->Unuse(); |
| right->Unuse(); |
| answer = quotient; |
| } else { |
| ASSERT(op == Token::MOD); |
| // Check for a negative zero result. If the result is zero, and |
| // the dividend is negative, return a floating point negative |
| // zero. The frame is unchanged in this block, so local control |
| // flow can use a Label rather than a JumpTarget. |
| Label non_zero_result; |
| __ test(edx, Operand(edx)); |
| __ j(not_zero, &non_zero_result, taken); |
| __ test(left->reg(), Operand(left->reg())); |
| deferred->Branch(negative); |
| __ bind(&non_zero_result); |
| deferred->BindExit(); |
| left->Unuse(); |
| right->Unuse(); |
| answer = remainder; |
| } |
| ASSERT(answer.is_valid()); |
| return answer; |
| } |
| |
| // Special handling of shift operations because they use fixed |
| // registers. |
| if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { |
| // Move left out of ecx if necessary. |
| if (left->is_register() && left->reg().is(ecx)) { |
| *left = allocator_->Allocate(); |
| ASSERT(left->is_valid()); |
| __ mov(left->reg(), ecx); |
| } |
| right->ToRegister(ecx); |
| left->ToRegister(); |
| ASSERT(left->is_register() && !left->reg().is(ecx)); |
| ASSERT(right->is_register() && right->reg().is(ecx)); |
| |
| // We will modify right, it must be spilled. |
| frame_->Spill(ecx); |
| |
| // Use a fresh answer register to avoid spilling the left operand. |
| answer = allocator_->Allocate(); |
| ASSERT(answer.is_valid()); |
| // Check that both operands are smis using the answer register as a |
| // temporary. |
| DeferredInlineBinaryOperation* deferred = |
| new DeferredInlineBinaryOperation(op, |
| answer.reg(), |
| left->reg(), |
| ecx, |
| overwrite_mode); |
| __ mov(answer.reg(), left->reg()); |
| __ or_(answer.reg(), Operand(ecx)); |
| __ test(answer.reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| |
| // Untag both operands. |
| __ mov(answer.reg(), left->reg()); |
| __ SmiUntag(answer.reg()); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| switch (op) { |
| case Token::SAR: |
| __ sar_cl(answer.reg()); |
| // No checks of result necessary |
| break; |
| case Token::SHR: { |
| Label result_ok; |
| __ shr_cl(answer.reg()); |
| // Check that the *unsigned* result fits in a smi. Neither of |
| // the two high-order bits can be set: |
| // * 0x80000000: high bit would be lost when smi tagging. |
| // * 0x40000000: this number would convert to negative when smi |
| // tagging. |
| // These two cases can only happen with shifts by 0 or 1 when |
| // handed a valid smi. If the answer cannot be represented by a |
| // smi, restore the left and right arguments, and jump to slow |
| // case. The low bit of the left argument may be lost, but only |
| // in a case where it is dropped anyway. |
| __ test(answer.reg(), Immediate(0xc0000000)); |
| __ j(zero, &result_ok); |
| __ SmiTag(ecx); |
| deferred->Jump(); |
| __ bind(&result_ok); |
| break; |
| } |
| case Token::SHL: { |
| Label result_ok; |
| __ shl_cl(answer.reg()); |
| // Check that the *signed* result fits in a smi. |
| __ cmp(answer.reg(), 0xc0000000); |
| __ j(positive, &result_ok); |
| __ SmiTag(ecx); |
| deferred->Jump(); |
| __ bind(&result_ok); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| // Smi-tag the result in answer. |
| __ SmiTag(answer.reg()); |
| deferred->BindExit(); |
| left->Unuse(); |
| right->Unuse(); |
| ASSERT(answer.is_valid()); |
| return answer; |
| } |
| |
| // Handle the other binary operations. |
| left->ToRegister(); |
| right->ToRegister(); |
| // A newly allocated register answer is used to hold the answer. The |
| // registers containing left and right are not modified so they don't |
| // need to be spilled in the fast case. |
| answer = allocator_->Allocate(); |
| ASSERT(answer.is_valid()); |
| |
| // Perform the smi tag check. |
| DeferredInlineBinaryOperation* deferred = |
| new DeferredInlineBinaryOperation(op, |
| answer.reg(), |
| left->reg(), |
| right->reg(), |
| overwrite_mode); |
| if (left->reg().is(right->reg())) { |
| __ test(left->reg(), Immediate(kSmiTagMask)); |
| } else { |
| __ mov(answer.reg(), left->reg()); |
| __ or_(answer.reg(), Operand(right->reg())); |
| ASSERT(kSmiTag == 0); // Adjust test if not the case. |
| __ test(answer.reg(), Immediate(kSmiTagMask)); |
| } |
| deferred->Branch(not_zero); |
| __ mov(answer.reg(), left->reg()); |
| switch (op) { |
| case Token::ADD: |
| __ add(answer.reg(), Operand(right->reg())); |
| deferred->Branch(overflow); |
| break; |
| |
| case Token::SUB: |
| __ sub(answer.reg(), Operand(right->reg())); |
| deferred->Branch(overflow); |
| break; |
| |
| case Token::MUL: { |
| // If the smi tag is 0 we can just leave the tag on one operand. |
| ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| // Remove smi tag from the left operand (but keep sign). |
| // Left-hand operand has been copied into answer. |
| __ SmiUntag(answer.reg()); |
| // Do multiplication of smis, leaving result in answer. |
| __ imul(answer.reg(), Operand(right->reg())); |
| // Go slow on overflows. |
| deferred->Branch(overflow); |
| // Check for negative zero result. If product is zero, and one |
| // argument is negative, go to slow case. The frame is unchanged |
| // in this block, so local control flow can use a Label rather |
| // than a JumpTarget. |
| Label non_zero_result; |
| __ test(answer.reg(), Operand(answer.reg())); |
| __ j(not_zero, &non_zero_result, taken); |
| __ mov(answer.reg(), left->reg()); |
| __ or_(answer.reg(), Operand(right->reg())); |
| deferred->Branch(negative); |
| __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct. |
| __ bind(&non_zero_result); |
| break; |
| } |
| |
| case Token::BIT_OR: |
| __ or_(answer.reg(), Operand(right->reg())); |
| break; |
| |
| case Token::BIT_AND: |
| __ and_(answer.reg(), Operand(right->reg())); |
| break; |
| |
| case Token::BIT_XOR: |
| __ xor_(answer.reg(), Operand(right->reg())); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| deferred->BindExit(); |
| left->Unuse(); |
| right->Unuse(); |
| ASSERT(answer.is_valid()); |
| return answer; |
| } |
| |
| |
| // Call the appropriate binary operation stub to compute src op value |
| // and leave the result in dst. |
| class DeferredInlineSmiOperation: public DeferredCode { |
| public: |
| DeferredInlineSmiOperation(Token::Value op, |
| Register dst, |
| Register src, |
| Smi* value, |
| OverwriteMode overwrite_mode) |
| : op_(op), |
| dst_(dst), |
| src_(src), |
| value_(value), |
| overwrite_mode_(overwrite_mode) { |
| set_comment("[ DeferredInlineSmiOperation"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Token::Value op_; |
| Register dst_; |
| Register src_; |
| Smi* value_; |
| OverwriteMode overwrite_mode_; |
| }; |
| |
| |
| void DeferredInlineSmiOperation::Generate() { |
| // For mod we don't generate all the Smi code inline. |
| GenericBinaryOpStub stub( |
| op_, |
| overwrite_mode_, |
| (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB); |
| stub.GenerateCall(masm_, src_, value_); |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| } |
| |
| |
| // Call the appropriate binary operation stub to compute value op src |
| // and leave the result in dst. |
| class DeferredInlineSmiOperationReversed: public DeferredCode { |
| public: |
| DeferredInlineSmiOperationReversed(Token::Value op, |
| Register dst, |
| Smi* value, |
| Register src, |
| OverwriteMode overwrite_mode) |
| : op_(op), |
| dst_(dst), |
| value_(value), |
| src_(src), |
| overwrite_mode_(overwrite_mode) { |
| set_comment("[ DeferredInlineSmiOperationReversed"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Token::Value op_; |
| Register dst_; |
| Smi* value_; |
| Register src_; |
| OverwriteMode overwrite_mode_; |
| }; |
| |
| |
| void DeferredInlineSmiOperationReversed::Generate() { |
| GenericBinaryOpStub igostub(op_, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
| igostub.GenerateCall(masm_, value_, src_); |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| } |
| |
| |
| // The result of src + value is in dst. It either overflowed or was not |
| // smi tagged. Undo the speculative addition and call the appropriate |
| // specialized stub for add. The result is left in dst. |
| class DeferredInlineSmiAdd: public DeferredCode { |
| public: |
| DeferredInlineSmiAdd(Register dst, |
| Smi* value, |
| OverwriteMode overwrite_mode) |
| : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
| set_comment("[ DeferredInlineSmiAdd"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register dst_; |
| Smi* value_; |
| OverwriteMode overwrite_mode_; |
| }; |
| |
| |
| void DeferredInlineSmiAdd::Generate() { |
| // Undo the optimistic add operation and call the shared stub. |
| __ sub(Operand(dst_), Immediate(value_)); |
| GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
| igostub.GenerateCall(masm_, dst_, value_); |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| } |
| |
| |
| // The result of value + src is in dst. It either overflowed or was not |
| // smi tagged. Undo the speculative addition and call the appropriate |
| // specialized stub for add. The result is left in dst. |
| class DeferredInlineSmiAddReversed: public DeferredCode { |
| public: |
| DeferredInlineSmiAddReversed(Register dst, |
| Smi* value, |
| OverwriteMode overwrite_mode) |
| : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
| set_comment("[ DeferredInlineSmiAddReversed"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register dst_; |
| Smi* value_; |
| OverwriteMode overwrite_mode_; |
| }; |
| |
| |
| void DeferredInlineSmiAddReversed::Generate() { |
| // Undo the optimistic add operation and call the shared stub. |
| __ sub(Operand(dst_), Immediate(value_)); |
| GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
| igostub.GenerateCall(masm_, value_, dst_); |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| } |
| |
| |
| // The result of src - value is in dst. It either overflowed or was not |
| // smi tagged. Undo the speculative subtraction and call the |
| // appropriate specialized stub for subtract. The result is left in |
| // dst. |
| class DeferredInlineSmiSub: public DeferredCode { |
| public: |
| DeferredInlineSmiSub(Register dst, |
| Smi* value, |
| OverwriteMode overwrite_mode) |
| : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
| set_comment("[ DeferredInlineSmiSub"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register dst_; |
| Smi* value_; |
| OverwriteMode overwrite_mode_; |
| }; |
| |
| |
| void DeferredInlineSmiSub::Generate() { |
| // Undo the optimistic sub operation and call the shared stub. |
| __ add(Operand(dst_), Immediate(value_)); |
| GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
| igostub.GenerateCall(masm_, dst_, value_); |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| } |
| |
| |
| Result CodeGenerator::ConstantSmiBinaryOperation(Token::Value op, |
| Result* operand, |
| Handle<Object> value, |
| StaticType* type, |
| bool reversed, |
| OverwriteMode overwrite_mode) { |
| // NOTE: This is an attempt to inline (a bit) more of the code for |
| // some possible smi operations (like + and -) when (at least) one |
| // of the operands is a constant smi. |
| // Consumes the argument "operand". |
| // TODO(199): Optimize some special cases of operations involving a |
| // smi literal (multiply by 2, shift by 0, etc.). |
| if (IsUnsafeSmi(value)) { |
| Result unsafe_operand(value); |
| if (reversed) { |
| return LikelySmiBinaryOperation(op, &unsafe_operand, operand, |
| overwrite_mode); |
| } else { |
| return LikelySmiBinaryOperation(op, operand, &unsafe_operand, |
| overwrite_mode); |
| } |
| } |
| |
| // Get the literal value. |
| Smi* smi_value = Smi::cast(*value); |
| int int_value = smi_value->value(); |
| |
| Result answer; |
| switch (op) { |
| case Token::ADD: { |
| operand->ToRegister(); |
| frame_->Spill(operand->reg()); |
| |
| // Optimistically add. Call the specialized add stub if the |
| // result is not a smi or overflows. |
| DeferredCode* deferred = NULL; |
| if (reversed) { |
| deferred = new DeferredInlineSmiAddReversed(operand->reg(), |
| smi_value, |
| overwrite_mode); |
| } else { |
| deferred = new DeferredInlineSmiAdd(operand->reg(), |
| smi_value, |
| overwrite_mode); |
| } |
| __ add(Operand(operand->reg()), Immediate(value)); |
| deferred->Branch(overflow); |
| __ test(operand->reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| deferred->BindExit(); |
| answer = *operand; |
| break; |
| } |
| |
| case Token::SUB: { |
| DeferredCode* deferred = NULL; |
| if (reversed) { |
| // The reversed case is only hit when the right operand is not a |
| // constant. |
| ASSERT(operand->is_register()); |
| answer = allocator()->Allocate(); |
| ASSERT(answer.is_valid()); |
| __ Set(answer.reg(), Immediate(value)); |
| deferred = new DeferredInlineSmiOperationReversed(op, |
| answer.reg(), |
| smi_value, |
| operand->reg(), |
| overwrite_mode); |
| __ sub(answer.reg(), Operand(operand->reg())); |
| } else { |
| operand->ToRegister(); |
| frame_->Spill(operand->reg()); |
| answer = *operand; |
| deferred = new DeferredInlineSmiSub(operand->reg(), |
| smi_value, |
| overwrite_mode); |
| __ sub(Operand(operand->reg()), Immediate(value)); |
| } |
| deferred->Branch(overflow); |
| __ test(answer.reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| deferred->BindExit(); |
| operand->Unuse(); |
| break; |
| } |
| |
| case Token::SAR: |
| if (reversed) { |
| Result constant_operand(value); |
| answer = LikelySmiBinaryOperation(op, &constant_operand, operand, |
| overwrite_mode); |
| } else { |
| // Only the least significant 5 bits of the shift value are used. |
| // In the slow case, this masking is done inside the runtime call. |
| int shift_value = int_value & 0x1f; |
| operand->ToRegister(); |
| frame_->Spill(operand->reg()); |
| DeferredInlineSmiOperation* deferred = |
| new DeferredInlineSmiOperation(op, |
| operand->reg(), |
| operand->reg(), |
| smi_value, |
| overwrite_mode); |
| __ test(operand->reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| if (shift_value > 0) { |
| __ sar(operand->reg(), shift_value); |
| __ and_(operand->reg(), ~kSmiTagMask); |
| } |
| deferred->BindExit(); |
| answer = *operand; |
| } |
| break; |
| |
| case Token::SHR: |
| if (reversed) { |
| Result constant_operand(value); |
| answer = LikelySmiBinaryOperation(op, &constant_operand, operand, |
| overwrite_mode); |
| } else { |
| // Only the least significant 5 bits of the shift value are used. |
| // In the slow case, this masking is done inside the runtime call. |
| int shift_value = int_value & 0x1f; |
| operand->ToRegister(); |
| answer = allocator()->Allocate(); |
| ASSERT(answer.is_valid()); |
| DeferredInlineSmiOperation* deferred = |
| new DeferredInlineSmiOperation(op, |
| answer.reg(), |
| operand->reg(), |
| smi_value, |
| overwrite_mode); |
| __ test(operand->reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| __ mov(answer.reg(), operand->reg()); |
| __ SmiUntag(answer.reg()); |
| __ shr(answer.reg(), shift_value); |
| // A negative Smi shifted right two is in the positive Smi range. |
| if (shift_value < 2) { |
| __ test(answer.reg(), Immediate(0xc0000000)); |
| deferred->Branch(not_zero); |
| } |
| operand->Unuse(); |
| __ SmiTag(answer.reg()); |
| deferred->BindExit(); |
| } |
| break; |
| |
| case Token::SHL: |
| if (reversed) { |
| Result right; |
| Result right_copy_in_ecx; |
| |
| // Make sure to get a copy of the right operand into ecx. This |
| // allows us to modify it without having to restore it in the |
| // deferred code. |
| operand->ToRegister(); |
| if (operand->reg().is(ecx)) { |
| right = allocator()->Allocate(); |
| __ mov(right.reg(), ecx); |
| frame_->Spill(ecx); |
| right_copy_in_ecx = *operand; |
| } else { |
| right_copy_in_ecx = allocator()->Allocate(ecx); |
| __ mov(ecx, operand->reg()); |
| right = *operand; |
| } |
| operand->Unuse(); |
| |
| answer = allocator()->Allocate(); |
| DeferredInlineSmiOperationReversed* deferred = |
| new DeferredInlineSmiOperationReversed(op, |
| answer.reg(), |
| smi_value, |
| right.reg(), |
| overwrite_mode); |
| __ mov(answer.reg(), Immediate(int_value)); |
| __ sar(ecx, kSmiTagSize); |
| deferred->Branch(carry); |
| __ shl_cl(answer.reg()); |
| __ cmp(answer.reg(), 0xc0000000); |
| deferred->Branch(sign); |
| __ SmiTag(answer.reg()); |
| |
| deferred->BindExit(); |
| } else { |
| // Only the least significant 5 bits of the shift value are used. |
| // In the slow case, this masking is done inside the runtime call. |
| int shift_value = int_value & 0x1f; |
| operand->ToRegister(); |
| if (shift_value == 0) { |
| // Spill operand so it can be overwritten in the slow case. |
| frame_->Spill(operand->reg()); |
| DeferredInlineSmiOperation* deferred = |
| new DeferredInlineSmiOperation(op, |
| operand->reg(), |
| operand->reg(), |
| smi_value, |
| overwrite_mode); |
| __ test(operand->reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| deferred->BindExit(); |
| answer = *operand; |
| } else { |
| // Use a fresh temporary for nonzero shift values. |
| answer = allocator()->Allocate(); |
| ASSERT(answer.is_valid()); |
| DeferredInlineSmiOperation* deferred = |
| new DeferredInlineSmiOperation(op, |
| answer.reg(), |
| operand->reg(), |
| smi_value, |
| overwrite_mode); |
| __ test(operand->reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| __ mov(answer.reg(), operand->reg()); |
| ASSERT(kSmiTag == 0); // adjust code if not the case |
| // We do no shifts, only the Smi conversion, if shift_value is 1. |
| if (shift_value > 1) { |
| __ shl(answer.reg(), shift_value - 1); |
| } |
| // Convert int result to Smi, checking that it is in int range. |
| ASSERT(kSmiTagSize == 1); // adjust code if not the case |
| __ add(answer.reg(), Operand(answer.reg())); |
| deferred->Branch(overflow); |
| deferred->BindExit(); |
| operand->Unuse(); |
| } |
| } |
| break; |
| |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: { |
| operand->ToRegister(); |
| frame_->Spill(operand->reg()); |
| DeferredCode* deferred = NULL; |
| if (reversed) { |
| deferred = new DeferredInlineSmiOperationReversed(op, |
| operand->reg(), |
| smi_value, |
| operand->reg(), |
| overwrite_mode); |
| } else { |
| deferred = new DeferredInlineSmiOperation(op, |
| operand->reg(), |
| operand->reg(), |
| smi_value, |
| overwrite_mode); |
| } |
| __ test(operand->reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| if (op == Token::BIT_AND) { |
| __ and_(Operand(operand->reg()), Immediate(value)); |
| } else if (op == Token::BIT_XOR) { |
| if (int_value != 0) { |
| __ xor_(Operand(operand->reg()), Immediate(value)); |
| } |
| } else { |
| ASSERT(op == Token::BIT_OR); |
| if (int_value != 0) { |
| __ or_(Operand(operand->reg()), Immediate(value)); |
| } |
| } |
| deferred->BindExit(); |
| answer = *operand; |
| break; |
| } |
| |
| case Token::DIV: |
| if (!reversed && int_value == 2) { |
| operand->ToRegister(); |
| frame_->Spill(operand->reg()); |
| |
| DeferredInlineSmiOperation* deferred = |
| new DeferredInlineSmiOperation(op, |
| operand->reg(), |
| operand->reg(), |
| smi_value, |
| overwrite_mode); |
| // Check that lowest log2(value) bits of operand are zero, and test |
| // smi tag at the same time. |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(1, kSmiTagSize); |
| __ test(operand->reg(), Immediate(3)); |
| deferred->Branch(not_zero); // Branch if non-smi or odd smi. |
| __ sar(operand->reg(), 1); |
| deferred->BindExit(); |
| answer = *operand; |
| } else { |
| // Cannot fall through MOD to default case, so we duplicate the |
| // default case here. |
| Result constant_operand(value); |
| if (reversed) { |
| answer = LikelySmiBinaryOperation(op, &constant_operand, operand, |
| overwrite_mode); |
| } else { |
| answer = LikelySmiBinaryOperation(op, operand, &constant_operand, |
| overwrite_mode); |
| } |
| } |
| break; |
| // Generate inline code for mod of powers of 2 and negative powers of 2. |
| case Token::MOD: |
| if (!reversed && |
| int_value != 0 && |
| (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { |
| operand->ToRegister(); |
| frame_->Spill(operand->reg()); |
| DeferredCode* deferred = new DeferredInlineSmiOperation(op, |
| operand->reg(), |
| operand->reg(), |
| smi_value, |
| overwrite_mode); |
| // Check for negative or non-Smi left hand side. |
| __ test(operand->reg(), Immediate(kSmiTagMask | 0x80000000)); |
| deferred->Branch(not_zero); |
| if (int_value < 0) int_value = -int_value; |
| if (int_value == 1) { |
| __ mov(operand->reg(), Immediate(Smi::FromInt(0))); |
| } else { |
| __ and_(operand->reg(), (int_value << kSmiTagSize) - 1); |
| } |
| deferred->BindExit(); |
| answer = *operand; |
| break; |
| } |
| // Fall through if we did not find a power of 2 on the right hand side! |
| |
| default: { |
| Result constant_operand(value); |
| if (reversed) { |
| answer = LikelySmiBinaryOperation(op, &constant_operand, operand, |
| overwrite_mode); |
| } else { |
| answer = LikelySmiBinaryOperation(op, operand, &constant_operand, |
| overwrite_mode); |
| } |
| break; |
| } |
| } |
| ASSERT(answer.is_valid()); |
| return answer; |
| } |
| |
| |
| static bool CouldBeNaN(const Result& result) { |
| if (!result.is_constant()) return true; |
| if (!result.handle()->IsHeapNumber()) return false; |
| return isnan(HeapNumber::cast(*result.handle())->value()); |
| } |
| |
| |
| void CodeGenerator::Comparison(AstNode* node, |
| Condition cc, |
| bool strict, |
| ControlDestination* dest) { |
| // Strict only makes sense for equality comparisons. |
| ASSERT(!strict || cc == equal); |
| |
| Result left_side; |
| Result right_side; |
| // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
| if (cc == greater || cc == less_equal) { |
| cc = ReverseCondition(cc); |
| left_side = frame_->Pop(); |
| right_side = frame_->Pop(); |
| } else { |
| right_side = frame_->Pop(); |
| left_side = frame_->Pop(); |
| } |
| ASSERT(cc == less || cc == equal || cc == greater_equal); |
| |
| // If either side is a constant of some sort, we can probably optimize the |
| // comparison. |
| bool left_side_constant_smi = false; |
| bool left_side_constant_null = false; |
| bool left_side_constant_1_char_string = false; |
| if (left_side.is_constant()) { |
| left_side_constant_smi = left_side.handle()->IsSmi(); |
| left_side_constant_null = left_side.handle()->IsNull(); |
| left_side_constant_1_char_string = |
| (left_side.handle()->IsString() && |
| (String::cast(*left_side.handle())->length() == 1)); |
| } |
| bool right_side_constant_smi = false; |
| bool right_side_constant_null = false; |
| bool right_side_constant_1_char_string = false; |
| if (right_side.is_constant()) { |
| right_side_constant_smi = right_side.handle()->IsSmi(); |
| right_side_constant_null = right_side.handle()->IsNull(); |
| right_side_constant_1_char_string = |
| (right_side.handle()->IsString() && |
| (String::cast(*right_side.handle())->length() == 1)); |
| } |
| |
| if (left_side_constant_smi || right_side_constant_smi) { |
| if (left_side_constant_smi && right_side_constant_smi) { |
| // Trivial case, comparing two constants. |
| int left_value = Smi::cast(*left_side.handle())->value(); |
| int right_value = Smi::cast(*right_side.handle())->value(); |
| switch (cc) { |
| case less: |
| dest->Goto(left_value < right_value); |
| break; |
| case equal: |
| dest->Goto(left_value == right_value); |
| break; |
| case greater_equal: |
| dest->Goto(left_value >= right_value); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| // Only one side is a constant Smi. |
| // If left side is a constant Smi, reverse the operands. |
| // Since one side is a constant Smi, conversion order does not matter. |
| if (left_side_constant_smi) { |
| Result temp = left_side; |
| left_side = right_side; |
| right_side = temp; |
| cc = ReverseCondition(cc); |
| // This may reintroduce greater or less_equal as the value of cc. |
| // CompareStub and the inline code both support all values of cc. |
| } |
| // Implement comparison against a constant Smi, inlining the case |
| // where both sides are Smis. |
| left_side.ToRegister(); |
| Register left_reg = left_side.reg(); |
| Handle<Object> right_val = right_side.handle(); |
| |
| // Here we split control flow to the stub call and inlined cases |
| // before finally splitting it to the control destination. We use |
| // a jump target and branching to duplicate the virtual frame at |
| // the first split. We manually handle the off-frame references |
| // by reconstituting them on the non-fall-through path. |
| JumpTarget is_smi; |
| __ test(left_side.reg(), Immediate(kSmiTagMask)); |
| is_smi.Branch(zero, taken); |
| |
| bool is_for_loop_compare = (node->AsCompareOperation() != NULL) |
| && node->AsCompareOperation()->is_for_loop_condition(); |
| if (!is_for_loop_compare |
| && CpuFeatures::IsSupported(SSE2) |
| && right_val->IsSmi()) { |
| // Right side is a constant smi and left side has been checked |
| // not to be a smi. |
| CpuFeatures::Scope use_sse2(SSE2); |
| JumpTarget not_number; |
| __ cmp(FieldOperand(left_reg, HeapObject::kMapOffset), |
| Immediate(Factory::heap_number_map())); |
| not_number.Branch(not_equal, &left_side); |
| __ movdbl(xmm1, |
| FieldOperand(left_reg, HeapNumber::kValueOffset)); |
| int value = Smi::cast(*right_val)->value(); |
| if (value == 0) { |
| __ xorpd(xmm0, xmm0); |
| } else { |
| Result temp = allocator()->Allocate(); |
| __ mov(temp.reg(), Immediate(value)); |
| __ cvtsi2sd(xmm0, Operand(temp.reg())); |
| temp.Unuse(); |
| } |
| __ comisd(xmm1, xmm0); |
| // Jump to builtin for NaN. |
| not_number.Branch(parity_even, &left_side); |
| left_side.Unuse(); |
| Condition double_cc = cc; |
| switch (cc) { |
| case less: double_cc = below; break; |
| case equal: double_cc = equal; break; |
| case less_equal: double_cc = below_equal; break; |
| case greater: double_cc = above; break; |
| case greater_equal: double_cc = above_equal; break; |
| default: UNREACHABLE(); |
| } |
| dest->true_target()->Branch(double_cc); |
| dest->false_target()->Jump(); |
| not_number.Bind(&left_side); |
| } |
| |
| // Setup and call the compare stub. |
| CompareStub stub(cc, strict, kCantBothBeNaN); |
| Result result = frame_->CallStub(&stub, &left_side, &right_side); |
| result.ToRegister(); |
| __ cmp(result.reg(), 0); |
| result.Unuse(); |
| dest->true_target()->Branch(cc); |
| dest->false_target()->Jump(); |
| |
| is_smi.Bind(); |
| left_side = Result(left_reg); |
| right_side = Result(right_val); |
| // Test smi equality and comparison by signed int comparison. |
| if (IsUnsafeSmi(right_side.handle())) { |
| right_side.ToRegister(); |
| __ cmp(left_side.reg(), Operand(right_side.reg())); |
| } else { |
| __ cmp(Operand(left_side.reg()), Immediate(right_side.handle())); |
| } |
| left_side.Unuse(); |
| right_side.Unuse(); |
| dest->Split(cc); |
| } |
| |
| } else if (cc == equal && |
| (left_side_constant_null || right_side_constant_null)) { |
| // To make null checks efficient, we check if either the left side or |
| // the right side is the constant 'null'. |
| // If so, we optimize the code by inlining a null check instead of |
| // calling the (very) general runtime routine for checking equality. |
| Result operand = left_side_constant_null ? right_side : left_side; |
| right_side.Unuse(); |
| left_side.Unuse(); |
| operand.ToRegister(); |
| __ cmp(operand.reg(), Factory::null_value()); |
| if (strict) { |
| operand.Unuse(); |
| dest->Split(equal); |
| } else { |
| // The 'null' value is only equal to 'undefined' if using non-strict |
| // comparisons. |
| dest->true_target()->Branch(equal); |
| __ cmp(operand.reg(), Factory::undefined_value()); |
| dest->true_target()->Branch(equal); |
| __ test(operand.reg(), Immediate(kSmiTagMask)); |
| dest->false_target()->Branch(equal); |
| |
| // It can be an undetectable object. |
| // Use a scratch register in preference to spilling operand.reg(). |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| __ mov(temp.reg(), |
| FieldOperand(operand.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(temp.reg(), |
| FieldOperand(temp.reg(), Map::kBitFieldOffset)); |
| __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable)); |
| temp.Unuse(); |
| operand.Unuse(); |
| dest->Split(not_zero); |
| } |
| } else if (left_side_constant_1_char_string || |
| right_side_constant_1_char_string) { |
| if (left_side_constant_1_char_string && right_side_constant_1_char_string) { |
| // Trivial case, comparing two constants. |
| int left_value = String::cast(*left_side.handle())->Get(0); |
| int right_value = String::cast(*right_side.handle())->Get(0); |
| switch (cc) { |
| case less: |
| dest->Goto(left_value < right_value); |
| break; |
| case equal: |
| dest->Goto(left_value == right_value); |
| break; |
| case greater_equal: |
| dest->Goto(left_value >= right_value); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| // Only one side is a constant 1 character string. |
| // If left side is a constant 1-character string, reverse the operands. |
| // Since one side is a constant string, conversion order does not matter. |
| if (left_side_constant_1_char_string) { |
| Result temp = left_side; |
| left_side = right_side; |
| right_side = temp; |
| cc = ReverseCondition(cc); |
| // This may reintroduce greater or less_equal as the value of cc. |
| // CompareStub and the inline code both support all values of cc. |
| } |
| // Implement comparison against a constant string, inlining the case |
| // where both sides are strings. |
| left_side.ToRegister(); |
| |
| // Here we split control flow to the stub call and inlined cases |
| // before finally splitting it to the control destination. We use |
| // a jump target and branching to duplicate the virtual frame at |
| // the first split. We manually handle the off-frame references |
| // by reconstituting them on the non-fall-through path. |
| JumpTarget is_not_string, is_string; |
| Register left_reg = left_side.reg(); |
| Handle<Object> right_val = right_side.handle(); |
| __ test(left_side.reg(), Immediate(kSmiTagMask)); |
| is_not_string.Branch(zero, &left_side); |
| Result temp = allocator_->Allocate(); |
| ASSERT(temp.is_valid()); |
| __ mov(temp.reg(), |
| FieldOperand(left_side.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(temp.reg(), |
| FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); |
| // If we are testing for equality then make use of the symbol shortcut. |
| // Check if the right left hand side has the same type as the left hand |
| // side (which is always a symbol). |
| if (cc == equal) { |
| Label not_a_symbol; |
| ASSERT(kSymbolTag != 0); |
| // Ensure that no non-strings have the symbol bit set. |
| ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); |
| __ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. |
| __ j(zero, ¬_a_symbol); |
| // They are symbols, so do identity compare. |
| __ cmp(left_side.reg(), right_side.handle()); |
| dest->true_target()->Branch(equal); |
| dest->false_target()->Branch(not_equal); |
| __ bind(¬_a_symbol); |
| } |
| // If the receiver is not a string of the type we handle call the stub. |
| __ and_(temp.reg(), |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); |
| __ cmp(temp.reg(), kStringTag | kSeqStringTag | kAsciiStringTag); |
| temp.Unuse(); |
| is_string.Branch(equal, &left_side); |
| |
| // Setup and call the compare stub. |
| is_not_string.Bind(&left_side); |
| CompareStub stub(cc, strict, kCantBothBeNaN); |
| Result result = frame_->CallStub(&stub, &left_side, &right_side); |
| result.ToRegister(); |
| __ cmp(result.reg(), 0); |
| result.Unuse(); |
| dest->true_target()->Branch(cc); |
| dest->false_target()->Jump(); |
| |
| is_string.Bind(&left_side); |
| // Here we know we have a sequential ASCII string. |
| left_side = Result(left_reg); |
| right_side = Result(right_val); |
| Result temp2 = allocator_->Allocate(); |
| ASSERT(temp2.is_valid()); |
| // Test string equality and comparison. |
| if (cc == equal) { |
| Label comparison_done; |
| __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), |
| Immediate(1)); |
| __ j(not_equal, &comparison_done); |
| uint8_t char_value = |
| static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0)); |
| __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), |
| char_value); |
| __ bind(&comparison_done); |
| } else { |
| __ mov(temp2.reg(), |
| FieldOperand(left_side.reg(), String::kLengthOffset)); |
| __ sub(Operand(temp2.reg()), Immediate(1)); |
| Label comparison; |
| // If the length is 0 then our subtraction gave -1 which compares less |
| // than any character. |
| __ j(negative, &comparison); |
| // Otherwise load the first character. |
| __ movzx_b(temp2.reg(), |
| FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize)); |
| __ bind(&comparison); |
| // Compare the first character of the string with out constant |
| // 1-character string. |
| uint8_t char_value = |
| static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0)); |
| __ cmp(Operand(temp2.reg()), Immediate(char_value)); |
| Label characters_were_different; |
| __ j(not_equal, &characters_were_different); |
| // If the first character is the same then the long string sorts after |
| // the short one. |
| __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), |
| Immediate(1)); |
| __ bind(&characters_were_different); |
| } |
| temp2.Unuse(); |
| left_side.Unuse(); |
| right_side.Unuse(); |
| dest->Split(cc); |
| } |
| } else { |
| // Neither side is a constant Smi or null. |
| // If either side is a non-smi constant, skip the smi check. |
| bool known_non_smi = |
| (left_side.is_constant() && !left_side.handle()->IsSmi()) || |
| (right_side.is_constant() && !right_side.handle()->IsSmi()); |
| NaNInformation nan_info = |
| (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ? |
| kBothCouldBeNaN : |
| kCantBothBeNaN; |
| left_side.ToRegister(); |
| right_side.ToRegister(); |
| |
| if (known_non_smi) { |
| // When non-smi, call out to the compare stub. |
| CompareStub stub(cc, strict, nan_info); |
| Result answer = frame_->CallStub(&stub, &left_side, &right_side); |
| if (cc == equal) { |
| __ test(answer.reg(), Operand(answer.reg())); |
| } else { |
| __ cmp(answer.reg(), 0); |
| } |
| answer.Unuse(); |
| dest->Split(cc); |
| } else { |
| // Here we split control flow to the stub call and inlined cases |
| // before finally splitting it to the control destination. We use |
| // a jump target and branching to duplicate the virtual frame at |
| // the first split. We manually handle the off-frame references |
| // by reconstituting them on the non-fall-through path. |
| JumpTarget is_smi; |
| Register left_reg = left_side.reg(); |
| Register right_reg = right_side.reg(); |
| |
| Result temp = allocator_->Allocate(); |
| ASSERT(temp.is_valid()); |
| __ mov(temp.reg(), left_side.reg()); |
| __ or_(temp.reg(), Operand(right_side.reg())); |
| __ test(temp.reg(), Immediate(kSmiTagMask)); |
| temp.Unuse(); |
| is_smi.Branch(zero, taken); |
| // When non-smi, call out to the compare stub. |
| CompareStub stub(cc, strict, nan_info); |
| Result answer = frame_->CallStub(&stub, &left_side, &right_side); |
| if (cc == equal) { |
| __ test(answer.reg(), Operand(answer.reg())); |
| } else { |
| __ cmp(answer.reg(), 0); |
| } |
| answer.Unuse(); |
| dest->true_target()->Branch(cc); |
| dest->false_target()->Jump(); |
| |
| is_smi.Bind(); |
| left_side = Result(left_reg); |
| right_side = Result(right_reg); |
| __ cmp(left_side.reg(), Operand(right_side.reg())); |
| right_side.Unuse(); |
| left_side.Unuse(); |
| dest->Split(cc); |
| } |
| } |
| } |
| |
| |
| // Call the function just below TOS on the stack with the given |
| // arguments. The receiver is the TOS. |
| void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
| CallFunctionFlags flags, |
| int position) { |
| // Push the arguments ("left-to-right") on the stack. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Record the position for debugging purposes. |
| CodeForSourcePosition(position); |
| |
| // Use the shared code stub to call the function. |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| CallFunctionStub call_function(arg_count, in_loop, flags); |
| Result answer = frame_->CallStub(&call_function, arg_count + 1); |
| // Restore context and replace function on the stack with the |
| // result of the stub invocation. |
| frame_->RestoreContextRegister(); |
| frame_->SetElementAt(0, &answer); |
| } |
| |
| |
| void CodeGenerator::CallApplyLazy(Expression* applicand, |
| Expression* receiver, |
| VariableProxy* arguments, |
| int position) { |
| // An optimized implementation of expressions of the form |
| // x.apply(y, arguments). |
| // If the arguments object of the scope has not been allocated, |
| // and x.apply is Function.prototype.apply, this optimization |
| // just copies y and the arguments of the current function on the |
| // stack, as receiver and arguments, and calls x. |
| // In the implementation comments, we call x the applicand |
| // and y the receiver. |
| ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); |
| ASSERT(arguments->IsArguments()); |
| |
| // Load applicand.apply onto the stack. This will usually |
| // give us a megamorphic load site. Not super, but it works. |
| Load(applicand); |
| frame()->Dup(); |
| Handle<String> name = Factory::LookupAsciiSymbol("apply"); |
| frame()->Push(name); |
| Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET); |
| __ nop(); |
| frame()->Push(&answer); |
| |
| // Load the receiver and the existing arguments object onto the |
| // expression stack. Avoid allocating the arguments object here. |
| Load(receiver); |
| Result existing_args = |
| LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); |
| frame()->Push(&existing_args); |
| |
| // Emit the source position information after having loaded the |
| // receiver and the arguments. |
| CodeForSourcePosition(position); |
| // Contents of frame at this point: |
| // Frame[0]: arguments object of the current function or the hole. |
| // Frame[1]: receiver |
| // Frame[2]: applicand.apply |
| // Frame[3]: applicand. |
| |
| // Check if the arguments object has been lazily allocated |
| // already. If so, just use that instead of copying the arguments |
| // from the stack. This also deals with cases where a local variable |
| // named 'arguments' has been introduced. |
| frame_->Dup(); |
| Result probe = frame_->Pop(); |
| { VirtualFrame::SpilledScope spilled_scope; |
| Label slow, done; |
| bool try_lazy = true; |
| if (probe.is_constant()) { |
| try_lazy = probe.handle()->IsTheHole(); |
| } else { |
| __ cmp(Operand(probe.reg()), Immediate(Factory::the_hole_value())); |
| probe.Unuse(); |
| __ j(not_equal, &slow); |
| } |
| |
| if (try_lazy) { |
| Label build_args; |
| // Get rid of the arguments object probe. |
| frame_->Drop(); // Can be called on a spilled frame. |
| // Stack now has 3 elements on it. |
| // Contents of stack at this point: |
| // esp[0]: receiver |
| // esp[1]: applicand.apply |
| // esp[2]: applicand. |
| |
| // Check that the receiver really is a JavaScript object. |
| __ mov(eax, Operand(esp, 0)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &build_args); |
| // We allow all JSObjects including JSFunctions. As long as |
| // JS_FUNCTION_TYPE is the last instance type and it is right |
| // after LAST_JS_OBJECT_TYPE, we do not have to check the upper |
| // bound. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
| __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
| __ j(below, &build_args); |
| |
| // Check that applicand.apply is Function.prototype.apply. |
| __ mov(eax, Operand(esp, kPointerSize)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &build_args); |
| __ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &build_args); |
| __ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset)); |
| Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply)); |
| __ cmp(FieldOperand(ecx, SharedFunctionInfo::kCodeOffset), |
| Immediate(apply_code)); |
| __ j(not_equal, &build_args); |
| |
| // Check that applicand is a function. |
| __ mov(edi, Operand(esp, 2 * kPointerSize)); |
| __ test(edi, Immediate(kSmiTagMask)); |
| __ j(zero, &build_args); |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &build_args); |
| |
| // Copy the arguments to this function possibly from the |
| // adaptor frame below it. |
| Label invoke, adapted; |
| __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
| __ cmp(Operand(ecx), |
| Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adapted); |
| |
| // No arguments adaptor frame. Copy fixed number of arguments. |
| __ mov(eax, Immediate(scope()->num_parameters())); |
| for (int i = 0; i < scope()->num_parameters(); i++) { |
| __ push(frame_->ParameterAt(i)); |
| } |
| __ jmp(&invoke); |
| |
| // Arguments adaptor frame present. Copy arguments from there, but |
| // avoid copying too many arguments to avoid stack overflows. |
| __ bind(&adapted); |
| static const uint32_t kArgumentsLimit = 1 * KB; |
| __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(eax); |
| __ mov(ecx, Operand(eax)); |
| __ cmp(eax, kArgumentsLimit); |
| __ j(above, &build_args); |
| |
| // Loop through the arguments pushing them onto the execution |
| // stack. We don't inform the virtual frame of the push, so we don't |
| // have to worry about getting rid of the elements from the virtual |
| // frame. |
| Label loop; |
| // ecx is a small non-negative integer, due to the test above. |
| __ test(ecx, Operand(ecx)); |
| __ j(zero, &invoke); |
| __ bind(&loop); |
| __ push(Operand(edx, ecx, times_pointer_size, 1 * kPointerSize)); |
| __ dec(ecx); |
| __ j(not_zero, &loop); |
| |
| // Invoke the function. |
| __ bind(&invoke); |
| ParameterCount actual(eax); |
| __ InvokeFunction(edi, actual, CALL_FUNCTION); |
| // Drop applicand.apply and applicand from the stack, and push |
| // the result of the function call, but leave the spilled frame |
| // unchanged, with 3 elements, so it is correct when we compile the |
| // slow-case code. |
| __ add(Operand(esp), Immediate(2 * kPointerSize)); |
| __ push(eax); |
| // Stack now has 1 element: |
| // esp[0]: result |
| __ jmp(&done); |
| |
| // Slow-case: Allocate the arguments object since we know it isn't |
| // there, and fall-through to the slow-case where we call |
| // applicand.apply. |
| __ bind(&build_args); |
| // Stack now has 3 elements, because we have jumped from where: |
| // esp[0]: receiver |
| // esp[1]: applicand.apply |
| // esp[2]: applicand. |
| |
| // StoreArgumentsObject requires a correct frame, and may modify it. |
| Result arguments_object = StoreArgumentsObject(false); |
| frame_->SpillAll(); |
| arguments_object.ToRegister(); |
| frame_->EmitPush(arguments_object.reg()); |
| arguments_object.Unuse(); |
| // Stack and frame now have 4 elements. |
| __ bind(&slow); |
| } |
| |
| // Generic computation of x.apply(y, args) with no special optimization. |
| // Flip applicand.apply and applicand on the stack, so |
| // applicand looks like the receiver of the applicand.apply call. |
| // Then process it as a normal function call. |
| __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| __ mov(ebx, Operand(esp, 2 * kPointerSize)); |
| __ mov(Operand(esp, 2 * kPointerSize), eax); |
| __ mov(Operand(esp, 3 * kPointerSize), ebx); |
| |
| CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); |
| Result res = frame_->CallStub(&call_function, 3); |
| // The function and its two arguments have been dropped. |
| frame_->Drop(1); // Drop the receiver as well. |
| res.ToRegister(); |
| frame_->EmitPush(res.reg()); |
| // Stack now has 1 element: |
| // esp[0]: result |
| if (try_lazy) __ bind(&done); |
| } // End of spilled scope. |
| // Restore the context register after a call. |
| frame_->RestoreContextRegister(); |
| } |
| |
| |
| class DeferredStackCheck: public DeferredCode { |
| public: |
| DeferredStackCheck() { |
| set_comment("[ DeferredStackCheck"); |
| } |
| |
| virtual void Generate(); |
| }; |
| |
| |
| void DeferredStackCheck::Generate() { |
| StackCheckStub stub; |
| __ CallStub(&stub); |
| } |
| |
| |
| void CodeGenerator::CheckStack() { |
| DeferredStackCheck* deferred = new DeferredStackCheck; |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(); |
| __ cmp(esp, Operand::StaticVariable(stack_limit)); |
| deferred->Branch(below); |
| deferred->BindExit(); |
| } |
| |
| |
| void CodeGenerator::VisitAndSpill(Statement* statement) { |
| ASSERT(in_spilled_code()); |
| set_in_spilled_code(false); |
| Visit(statement); |
| if (frame_ != NULL) { |
| frame_->SpillAll(); |
| } |
| set_in_spilled_code(true); |
| } |
| |
| |
| void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) { |
| ASSERT(in_spilled_code()); |
| set_in_spilled_code(false); |
| VisitStatements(statements); |
| if (frame_ != NULL) { |
| frame_->SpillAll(); |
| } |
| set_in_spilled_code(true); |
| } |
| |
| |
| void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { |
| ASSERT(!in_spilled_code()); |
| for (int i = 0; has_valid_frame() && i < statements->length(); i++) { |
| Visit(statements->at(i)); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitBlock(Block* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ Block"); |
| CodeForStatementPosition(node); |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| VisitStatements(node->statements()); |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| node->break_target()->Unuse(); |
| } |
| |
| |
| void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
| // Call the runtime to declare the globals. The inevitable call |
| // will sync frame elements to memory anyway, so we do it eagerly to |
| // allow us to push the arguments directly into place. |
| frame_->SyncRange(0, frame_->element_count() - 1); |
| |
| frame_->EmitPush(esi); // The context is the first argument. |
| frame_->EmitPush(Immediate(pairs)); |
| frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0))); |
| Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3); |
| // Return value is ignored. |
| } |
| |
| |
| void CodeGenerator::VisitDeclaration(Declaration* node) { |
| Comment cmnt(masm_, "[ Declaration"); |
| Variable* var = node->proxy()->var(); |
| ASSERT(var != NULL); // must have been resolved |
| Slot* slot = var->slot(); |
| |
| // If it was not possible to allocate the variable at compile time, |
| // we need to "declare" it at runtime to make sure it actually |
| // exists in the local context. |
| if (slot != NULL && slot->type() == Slot::LOOKUP) { |
| // Variables with a "LOOKUP" slot were introduced as non-locals |
| // during variable resolution and must have mode DYNAMIC. |
| ASSERT(var->is_dynamic()); |
| // For now, just do a runtime call. Sync the virtual frame eagerly |
| // so we can simply push the arguments into place. |
| frame_->SyncRange(0, frame_->element_count() - 1); |
| frame_->EmitPush(esi); |
| frame_->EmitPush(Immediate(var->name())); |
| // Declaration nodes are always introduced in one of two modes. |
| ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); |
| PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; |
| frame_->EmitPush(Immediate(Smi::FromInt(attr))); |
| // Push initial value, if any. |
| // Note: For variables we must not push an initial value (such as |
| // 'undefined') because we may have a (legal) redeclaration and we |
| // must not destroy the current value. |
| if (node->mode() == Variable::CONST) { |
| frame_->EmitPush(Immediate(Factory::the_hole_value())); |
| } else if (node->fun() != NULL) { |
| Load(node->fun()); |
| } else { |
| frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value! |
| } |
| Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); |
| // Ignore the return value (declarations are statements). |
| return; |
| } |
| |
| ASSERT(!var->is_global()); |
| |
| // If we have a function or a constant, we need to initialize the variable. |
| Expression* val = NULL; |
| if (node->mode() == Variable::CONST) { |
| val = new Literal(Factory::the_hole_value()); |
| } else { |
| val = node->fun(); // NULL if we don't have a function |
| } |
| |
| if (val != NULL) { |
| { |
| // Set the initial value. |
| Reference target(this, node->proxy()); |
| Load(val); |
| target.SetValue(NOT_CONST_INIT); |
| // The reference is removed from the stack (preserving TOS) when |
| // it goes out of scope. |
| } |
| // Get rid of the assigned value (declarations are statements). |
| frame_->Drop(); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ ExpressionStatement"); |
| CodeForStatementPosition(node); |
| Expression* expression = node->expression(); |
| expression->MarkAsStatement(); |
| Load(expression); |
| // Remove the lingering expression result from the top of stack. |
| frame_->Drop(); |
| } |
| |
| |
| void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "// EmptyStatement"); |
| CodeForStatementPosition(node); |
| // nothing to do |
| } |
| |
| |
| void CodeGenerator::VisitIfStatement(IfStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ IfStatement"); |
| // Generate different code depending on which parts of the if statement |
| // are present or not. |
| bool has_then_stm = node->HasThenStatement(); |
| bool has_else_stm = node->HasElseStatement(); |
| |
| CodeForStatementPosition(node); |
| JumpTarget exit; |
| if (has_then_stm && has_else_stm) { |
| JumpTarget then; |
| JumpTarget else_; |
| ControlDestination dest(&then, &else_, true); |
| LoadCondition(node->condition(), &dest, true); |
| |
| if (dest.false_was_fall_through()) { |
| // The else target was bound, so we compile the else part first. |
| Visit(node->else_statement()); |
| |
| // We may have dangling jumps to the then part. |
| if (then.is_linked()) { |
| if (has_valid_frame()) exit.Jump(); |
| then.Bind(); |
| Visit(node->then_statement()); |
| } |
| } else { |
| // The then target was bound, so we compile the then part first. |
| Visit(node->then_statement()); |
| |
| if (else_.is_linked()) { |
| if (has_valid_frame()) exit.Jump(); |
| else_.Bind(); |
| Visit(node->else_statement()); |
| } |
| } |
| |
| } else if (has_then_stm) { |
| ASSERT(!has_else_stm); |
| JumpTarget then; |
| ControlDestination dest(&then, &exit, true); |
| LoadCondition(node->condition(), &dest, true); |
| |
| if (dest.false_was_fall_through()) { |
| // The exit label was bound. We may have dangling jumps to the |
| // then part. |
| if (then.is_linked()) { |
| exit.Unuse(); |
| exit.Jump(); |
| then.Bind(); |
| Visit(node->then_statement()); |
| } |
| } else { |
| // The then label was bound. |
| Visit(node->then_statement()); |
| } |
| |
| } else if (has_else_stm) { |
| ASSERT(!has_then_stm); |
| JumpTarget else_; |
| ControlDestination dest(&exit, &else_, false); |
| LoadCondition(node->condition(), &dest, true); |
| |
| if (dest.true_was_fall_through()) { |
| // The exit label was bound. We may have dangling jumps to the |
| // else part. |
| if (else_.is_linked()) { |
| exit.Unuse(); |
| exit.Jump(); |
| else_.Bind(); |
| Visit(node->else_statement()); |
| } |
| } else { |
| // The else label was bound. |
| Visit(node->else_statement()); |
| } |
| |
| } else { |
| ASSERT(!has_then_stm && !has_else_stm); |
| // We only care about the condition's side effects (not its value |
| // or control flow effect). LoadCondition is called without |
| // forcing control flow. |
| ControlDestination dest(&exit, &exit, true); |
| LoadCondition(node->condition(), &dest, false); |
| if (!dest.is_used()) { |
| // We got a value on the frame rather than (or in addition to) |
| // control flow. |
| frame_->Drop(); |
| } |
| } |
| |
| if (exit.is_linked()) { |
| exit.Bind(); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ ContinueStatement"); |
| CodeForStatementPosition(node); |
| node->target()->continue_target()->Jump(); |
| } |
| |
| |
| void CodeGenerator::VisitBreakStatement(BreakStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ BreakStatement"); |
| CodeForStatementPosition(node); |
| node->target()->break_target()->Jump(); |
| } |
| |
| |
| void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ ReturnStatement"); |
| |
| CodeForStatementPosition(node); |
| Load(node->expression()); |
| Result return_value = frame_->Pop(); |
| masm()->WriteRecordedPositions(); |
| if (function_return_is_shadowed_) { |
| function_return_.Jump(&return_value); |
| } else { |
| frame_->PrepareForReturn(); |
| if (function_return_.is_bound()) { |
| // If the function return label is already bound we reuse the |
| // code by jumping to the return site. |
| function_return_.Jump(&return_value); |
| } else { |
| function_return_.Bind(&return_value); |
| GenerateReturnSequence(&return_value); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::GenerateReturnSequence(Result* return_value) { |
| // The return value is a live (but not currently reference counted) |
| // reference to eax. This is safe because the current frame does not |
| // contain a reference to eax (it is prepared for the return by spilling |
| // all registers). |
| if (FLAG_trace) { |
| frame_->Push(return_value); |
| *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); |
| } |
| return_value->ToRegister(eax); |
| |
| // Add a label for checking the size of the code used for returning. |
| Label check_exit_codesize; |
| masm_->bind(&check_exit_codesize); |
| |
| // Leave the frame and return popping the arguments and the |
| // receiver. |
| frame_->Exit(); |
| masm_->ret((scope()->num_parameters() + 1) * kPointerSize); |
| DeleteFrame(); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Check that the size of the code used for returning matches what is |
| // expected by the debugger. |
| ASSERT_EQ(Assembler::kJSReturnSequenceLength, |
| masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); |
| #endif |
| } |
| |
| |
| void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ WithEnterStatement"); |
| CodeForStatementPosition(node); |
| Load(node->expression()); |
| Result context; |
| if (node->is_catch_block()) { |
| context = frame_->CallRuntime(Runtime::kPushCatchContext, 1); |
| } else { |
| context = frame_->CallRuntime(Runtime::kPushContext, 1); |
| } |
| |
| // Update context local. |
| frame_->SaveContextRegister(); |
| |
| // Verify that the runtime call result and esi agree. |
| if (FLAG_debug_code) { |
| __ cmp(context.reg(), Operand(esi)); |
| __ Assert(equal, "Runtime::NewContext should end up in esi"); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ WithExitStatement"); |
| CodeForStatementPosition(node); |
| // Pop context. |
| __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX)); |
| // Update context local. |
| frame_->SaveContextRegister(); |
| } |
| |
| |
| void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ SwitchStatement"); |
| CodeForStatementPosition(node); |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| |
| // Compile the switch value. |
| Load(node->tag()); |
| |
| ZoneList<CaseClause*>* cases = node->cases(); |
| int length = cases->length(); |
| CaseClause* default_clause = NULL; |
| |
| JumpTarget next_test; |
| // Compile the case label expressions and comparisons. Exit early |
| // if a comparison is unconditionally true. The target next_test is |
| // bound before the loop in order to indicate control flow to the |
| // first comparison. |
| next_test.Bind(); |
| for (int i = 0; i < length && !next_test.is_unused(); i++) { |
| CaseClause* clause = cases->at(i); |
| // The default is not a test, but remember it for later. |
| if (clause->is_default()) { |
| default_clause = clause; |
| continue; |
| } |
| |
| Comment cmnt(masm_, "[ Case comparison"); |
| // We recycle the same target next_test for each test. Bind it if |
| // the previous test has not done so and then unuse it for the |
| // loop. |
| if (next_test.is_linked()) { |
| next_test.Bind(); |
| } |
| next_test.Unuse(); |
| |
| // Duplicate the switch value. |
| frame_->Dup(); |
| |
| // Compile the label expression. |
| Load(clause->label()); |
| |
| // Compare and branch to the body if true or the next test if |
| // false. Prefer the next test as a fall through. |
| ControlDestination dest(clause->body_target(), &next_test, false); |
| Comparison(node, equal, true, &dest); |
| |
| // If the comparison fell through to the true target, jump to the |
| // actual body. |
| if (dest.true_was_fall_through()) { |
| clause->body_target()->Unuse(); |
| clause->body_target()->Jump(); |
| } |
| } |
| |
| // If there was control flow to a next test from the last one |
| // compiled, compile a jump to the default or break target. |
| if (!next_test.is_unused()) { |
| if (next_test.is_linked()) { |
| next_test.Bind(); |
| } |
| // Drop the switch value. |
| frame_->Drop(); |
| if (default_clause != NULL) { |
| default_clause->body_target()->Jump(); |
| } else { |
| node->break_target()->Jump(); |
| } |
| } |
| |
| |
| // The last instruction emitted was a jump, either to the default |
| // clause or the break target, or else to a case body from the loop |
| // that compiles the tests. |
| ASSERT(!has_valid_frame()); |
| // Compile case bodies as needed. |
| for (int i = 0; i < length; i++) { |
| CaseClause* clause = cases->at(i); |
| |
| // There are two ways to reach the body: from the corresponding |
| // test or as the fall through of the previous body. |
| if (clause->body_target()->is_linked() || has_valid_frame()) { |
| if (clause->body_target()->is_linked()) { |
| if (has_valid_frame()) { |
| // If we have both a jump to the test and a fall through, put |
| // a jump on the fall through path to avoid the dropping of |
| // the switch value on the test path. The exception is the |
| // default which has already had the switch value dropped. |
| if (clause->is_default()) { |
| clause->body_target()->Bind(); |
| } else { |
| JumpTarget body; |
| body.Jump(); |
| clause->body_target()->Bind(); |
| frame_->Drop(); |
| body.Bind(); |
| } |
| } else { |
| // No fall through to worry about. |
| clause->body_target()->Bind(); |
| if (!clause->is_default()) { |
| frame_->Drop(); |
| } |
| } |
| } else { |
| // Otherwise, we have only fall through. |
| ASSERT(has_valid_frame()); |
| } |
| |
| // We are now prepared to compile the body. |
| Comment cmnt(masm_, "[ Case body"); |
| VisitStatements(clause->statements()); |
| } |
| clause->body_target()->Unuse(); |
| } |
| |
| // We may not have a valid frame here so bind the break target only |
| // if needed. |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| node->break_target()->Unuse(); |
| } |
| |
| |
| void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ DoWhileStatement"); |
| CodeForStatementPosition(node); |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| JumpTarget body(JumpTarget::BIDIRECTIONAL); |
| IncrementLoopNesting(); |
| |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| // Label the top of the loop for the backward jump if necessary. |
| switch (info) { |
| case ALWAYS_TRUE: |
| // Use the continue target. |
| node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
| node->continue_target()->Bind(); |
| break; |
| case ALWAYS_FALSE: |
| // No need to label it. |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| break; |
| case DONT_KNOW: |
| // Continue is the test, so use the backward body target. |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| body.Bind(); |
| break; |
| } |
| |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| // Compile the test. |
| switch (info) { |
| case ALWAYS_TRUE: |
| // If control flow can fall off the end of the body, jump back to |
| // the top and bind the break target at the exit. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| break; |
| case ALWAYS_FALSE: |
| // We may have had continues or breaks in the body. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| break; |
| case DONT_KNOW: |
| // We have to compile the test expression if it can be reached by |
| // control flow falling out of the body or via continue. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (has_valid_frame()) { |
| Comment cmnt(masm_, "[ DoWhileCondition"); |
| CodeForDoWhileConditionPosition(node); |
| ControlDestination dest(&body, node->break_target(), false); |
| LoadCondition(node->cond(), &dest, true); |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| break; |
| } |
| |
| DecrementLoopNesting(); |
| } |
| |
| |
| void CodeGenerator::VisitWhileStatement(WhileStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ WhileStatement"); |
| CodeForStatementPosition(node); |
| |
| // If the condition is always false and has no side effects, we do not |
| // need to compile anything. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| if (info == ALWAYS_FALSE) return; |
| |
| // Do not duplicate conditions that may have function literal |
| // subexpressions. This can cause us to compile the function literal |
| // twice. |
| bool test_at_bottom = !node->may_have_function_literal(); |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| IncrementLoopNesting(); |
| JumpTarget body; |
| if (test_at_bottom) { |
| body.set_direction(JumpTarget::BIDIRECTIONAL); |
| } |
| |
| // Based on the condition analysis, compile the test as necessary. |
| switch (info) { |
| case ALWAYS_TRUE: |
| // We will not compile the test expression. Label the top of the |
| // loop with the continue target. |
| node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
| node->continue_target()->Bind(); |
| break; |
| case DONT_KNOW: { |
| if (test_at_bottom) { |
| // Continue is the test at the bottom, no need to label the test |
| // at the top. The body is a backward target. |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| } else { |
| // Label the test at the top as the continue target. The body |
| // is a forward-only target. |
| node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
| node->continue_target()->Bind(); |
| } |
| // Compile the test with the body as the true target and preferred |
| // fall-through and with the break target as the false target. |
| ControlDestination dest(&body, node->break_target(), true); |
| LoadCondition(node->cond(), &dest, true); |
| |
| if (dest.false_was_fall_through()) { |
| // If we got the break target as fall-through, the test may have |
| // been unconditionally false (if there are no jumps to the |
| // body). |
| if (!body.is_linked()) { |
| DecrementLoopNesting(); |
| return; |
| } |
| |
| // Otherwise, jump around the body on the fall through and then |
| // bind the body target. |
| node->break_target()->Unuse(); |
| node->break_target()->Jump(); |
| body.Bind(); |
| } |
| break; |
| } |
| case ALWAYS_FALSE: |
| UNREACHABLE(); |
| break; |
| } |
| |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| // Based on the condition analysis, compile the backward jump as |
| // necessary. |
| switch (info) { |
| case ALWAYS_TRUE: |
| // The loop body has been labeled with the continue target. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| break; |
| case DONT_KNOW: |
| if (test_at_bottom) { |
| // If we have chosen to recompile the test at the bottom, then |
| // it is the continue target. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (has_valid_frame()) { |
| // The break target is the fall-through (body is a backward |
| // jump from here and thus an invalid fall-through). |
| ControlDestination dest(&body, node->break_target(), false); |
| LoadCondition(node->cond(), &dest, true); |
| } |
| } else { |
| // If we have chosen not to recompile the test at the bottom, |
| // jump back to the one at the top. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| } |
| break; |
| case ALWAYS_FALSE: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // The break target may be already bound (by the condition), or there |
| // may not be a valid frame. Bind it only if needed. |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| DecrementLoopNesting(); |
| } |
| |
| |
| void CodeGenerator::VisitForStatement(ForStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ ForStatement"); |
| CodeForStatementPosition(node); |
| |
| // Compile the init expression if present. |
| if (node->init() != NULL) { |
| Visit(node->init()); |
| } |
| |
| // If the condition is always false and has no side effects, we do not |
| // need to compile anything else. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| if (info == ALWAYS_FALSE) return; |
| |
| // Do not duplicate conditions that may have function literal |
| // subexpressions. This can cause us to compile the function literal |
| // twice. |
| bool test_at_bottom = !node->may_have_function_literal(); |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| IncrementLoopNesting(); |
| |
| // Target for backward edge if no test at the bottom, otherwise |
| // unused. |
| JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
| |
| // Target for backward edge if there is a test at the bottom, |
| // otherwise used as target for test at the top. |
| JumpTarget body; |
| if (test_at_bottom) { |
| body.set_direction(JumpTarget::BIDIRECTIONAL); |
| } |
| |
| // Based on the condition analysis, compile the test as necessary. |
| switch (info) { |
| case ALWAYS_TRUE: |
| // We will not compile the test expression. Label the top of the |
| // loop. |
| if (node->next() == NULL) { |
| // Use the continue target if there is no update expression. |
| node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
| node->continue_target()->Bind(); |
| } else { |
| // Otherwise use the backward loop target. |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| loop.Bind(); |
| } |
| break; |
| case DONT_KNOW: { |
| if (test_at_bottom) { |
| // Continue is either the update expression or the test at the |
| // bottom, no need to label the test at the top. |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| } else if (node->next() == NULL) { |
| // We are not recompiling the test at the bottom and there is no |
| // update expression. |
| node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
| node->continue_target()->Bind(); |
| } else { |
| // We are not recompiling the test at the bottom and there is an |
| // update expression. |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| loop.Bind(); |
| } |
| // Compile the test with the body as the true target and preferred |
| // fall-through and with the break target as the false target. |
| ControlDestination dest(&body, node->break_target(), true); |
| LoadCondition(node->cond(), &dest, true); |
| |
| if (dest.false_was_fall_through()) { |
| // If we got the break target as fall-through, the test may have |
| // been unconditionally false (if there are no jumps to the |
| // body). |
| if (!body.is_linked()) { |
| DecrementLoopNesting(); |
| return; |
| } |
| |
| // Otherwise, jump around the body on the fall through and then |
| // bind the body target. |
| node->break_target()->Unuse(); |
| node->break_target()->Jump(); |
| body.Bind(); |
| } |
| break; |
| } |
| case ALWAYS_FALSE: |
| UNREACHABLE(); |
| break; |
| } |
| |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| // If there is an update expression, compile it if necessary. |
| if (node->next() != NULL) { |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| |
| // Control can reach the update by falling out of the body or by a |
| // continue. |
| if (has_valid_frame()) { |
| // Record the source position of the statement as this code which |
| // is after the code for the body actually belongs to the loop |
| // statement and not the body. |
| CodeForStatementPosition(node); |
| Visit(node->next()); |
| } |
| } |
| |
| // Based on the condition analysis, compile the backward jump as |
| // necessary. |
| switch (info) { |
| case ALWAYS_TRUE: |
| if (has_valid_frame()) { |
| if (node->next() == NULL) { |
| node->continue_target()->Jump(); |
| } else { |
| loop.Jump(); |
| } |
| } |
| break; |
| case DONT_KNOW: |
| if (test_at_bottom) { |
| if (node->continue_target()->is_linked()) { |
| // We can have dangling jumps to the continue target if there |
| // was no update expression. |
| node->continue_target()->Bind(); |
| } |
| // Control can reach the test at the bottom by falling out of |
| // the body, by a continue in the body, or from the update |
| // expression. |
| if (has_valid_frame()) { |
| // The break target is the fall-through (body is a backward |
| // jump from here). |
| ControlDestination dest(&body, node->break_target(), false); |
| LoadCondition(node->cond(), &dest, true); |
| } |
| } else { |
| // Otherwise, jump back to the test at the top. |
| if (has_valid_frame()) { |
| if (node->next() == NULL) { |
| node->continue_target()->Jump(); |
| } else { |
| loop.Jump(); |
| } |
| } |
| } |
| break; |
| case ALWAYS_FALSE: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // The break target may be already bound (by the condition), or |
| // there may not be a valid frame. Bind it only if needed. |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| DecrementLoopNesting(); |
| } |
| |
| |
| void CodeGenerator::VisitForInStatement(ForInStatement* node) { |
| ASSERT(!in_spilled_code()); |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ ForInStatement"); |
| CodeForStatementPosition(node); |
| |
| JumpTarget primitive; |
| JumpTarget jsobject; |
| JumpTarget fixed_array; |
| JumpTarget entry(JumpTarget::BIDIRECTIONAL); |
| JumpTarget end_del_check; |
| JumpTarget exit; |
| |
| // Get the object to enumerate over (converted to JSObject). |
| LoadAndSpill(node->enumerable()); |
| |
| // Both SpiderMonkey and kjs ignore null and undefined in contrast |
| // to the specification. 12.6.4 mandates a call to ToObject. |
| frame_->EmitPop(eax); |
| |
| // eax: value to be iterated over |
| __ cmp(eax, Factory::undefined_value()); |
| exit.Branch(equal); |
| __ cmp(eax, Factory::null_value()); |
| exit.Branch(equal); |
| |
| // Stack layout in body: |
| // [iteration counter (smi)] <- slot 0 |
| // [length of array] <- slot 1 |
| // [FixedArray] <- slot 2 |
| // [Map or 0] <- slot 3 |
| // [Object] <- slot 4 |
| |
| // Check if enumerable is already a JSObject |
| // eax: value to be iterated over |
| __ test(eax, Immediate(kSmiTagMask)); |
| primitive.Branch(zero); |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ cmp(ecx, FIRST_JS_OBJECT_TYPE); |
| jsobject.Branch(above_equal); |
| |
| primitive.Bind(); |
| frame_->EmitPush(eax); |
| frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1); |
| // function call returns the value in eax, which is where we want it below |
| |
| jsobject.Bind(); |
| // Get the set of properties (as a FixedArray or Map). |
| // eax: value to be iterated over |
| frame_->EmitPush(eax); // Push the object being iterated over. |
| |
| // Check cache validity in generated code. This is a fast case for |
| // the JSObject::IsSimpleEnum cache validity checks. If we cannot |
| // guarantee cache validity, call the runtime system to check cache |
| // validity or get the property names in a fixed array. |
| JumpTarget call_runtime; |
| JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
| JumpTarget check_prototype; |
| JumpTarget use_cache; |
| __ mov(ecx, eax); |
| loop.Bind(); |
| // Check that there are no elements. |
| __ mov(edx, FieldOperand(ecx, JSObject::kElementsOffset)); |
| __ cmp(Operand(edx), Immediate(Factory::empty_fixed_array())); |
| call_runtime.Branch(not_equal); |
| // Check that instance descriptors are not empty so that we can |
| // check for an enum cache. Leave the map in ebx for the subsequent |
| // prototype load. |
| __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); |
| __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset)); |
| __ cmp(Operand(edx), Immediate(Factory::empty_descriptor_array())); |
| call_runtime.Branch(equal); |
| // Check that there in an enum cache in the non-empty instance |
| // descriptors. This is the case if the next enumeration index |
| // field does not contain a smi. |
| __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset)); |
| __ test(edx, Immediate(kSmiTagMask)); |
| call_runtime.Branch(zero); |
| // For all objects but the receiver, check that the cache is empty. |
| __ cmp(ecx, Operand(eax)); |
| check_prototype.Branch(equal); |
| __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| __ cmp(Operand(edx), Immediate(Factory::empty_fixed_array())); |
| call_runtime.Branch(not_equal); |
| check_prototype.Bind(); |
| // Load the prototype from the map and loop if non-null. |
| __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); |
| __ cmp(Operand(ecx), Immediate(Factory::null_value())); |
| loop.Branch(not_equal); |
| // The enum cache is valid. Load the map of the object being |
| // iterated over and use the cache for the iteration. |
| __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); |
| use_cache.Jump(); |
| |
| call_runtime.Bind(); |
| // Call the runtime to get the property names for the object. |
| frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call |
| frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); |
| |
| // If we got a map from the runtime call, we can do a fast |
| // modification check. Otherwise, we got a fixed array, and we have |
| // to do a slow check. |
| // eax: map or fixed array (result from call to |
| // Runtime::kGetPropertyNamesFast) |
| __ mov(edx, Operand(eax)); |
| __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ cmp(ecx, Factory::meta_map()); |
| fixed_array.Branch(not_equal); |
| |
| use_cache.Bind(); |
| // Get enum cache |
| // eax: map (either the result from a call to |
| // Runtime::kGetPropertyNamesFast or has been fetched directly from |
| // the object) |
| __ mov(ecx, Operand(eax)); |
| |
| __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset)); |
| // Get the bridge array held in the enumeration index field. |
| __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset)); |
| // Get the cache from the bridge array. |
| __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| |
| frame_->EmitPush(eax); // <- slot 3 |
| frame_->EmitPush(edx); // <- slot 2 |
| __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset)); |
| __ SmiTag(eax); |
| frame_->EmitPush(eax); // <- slot 1 |
| frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 |
| entry.Jump(); |
| |
| fixed_array.Bind(); |
| // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast) |
| frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3 |
| frame_->EmitPush(eax); // <- slot 2 |
| |
| // Push the length of the array and the initial index onto the stack. |
| __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset)); |
| __ SmiTag(eax); |
| frame_->EmitPush(eax); // <- slot 1 |
| frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 |
| |
| // Condition. |
| entry.Bind(); |
| // Grab the current frame's height for the break and continue |
| // targets only after all the state is pushed on the frame. |
| node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
| |
| __ mov(eax, frame_->ElementAt(0)); // load the current count |
| __ cmp(eax, frame_->ElementAt(1)); // compare to the array length |
| node->break_target()->Branch(above_equal); |
| |
| // Get the i'th entry of the array. |
| __ mov(edx, frame_->ElementAt(2)); |
| __ mov(ebx, Operand(edx, eax, times_2, |
| FixedArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Get the expected map from the stack or a zero map in the |
| // permanent slow case eax: current iteration count ebx: i'th entry |
| // of the enum cache |
| __ mov(edx, frame_->ElementAt(3)); |
| // Check if the expected map still matches that of the enumerable. |
| // If not, we have to filter the key. |
| // eax: current iteration count |
| // ebx: i'th entry of the enum cache |
| // edx: expected map value |
| __ mov(ecx, frame_->ElementAt(4)); |
| __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); |
| __ cmp(ecx, Operand(edx)); |
| end_del_check.Branch(equal); |
| |
| // Convert the entry to a string (or null if it isn't a property anymore). |
| frame_->EmitPush(frame_->ElementAt(4)); // push enumerable |
| frame_->EmitPush(ebx); // push entry |
| frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2); |
| __ mov(ebx, Operand(eax)); |
| |
| // If the property has been removed while iterating, we just skip it. |
| __ cmp(ebx, Factory::null_value()); |
| node->continue_target()->Branch(equal); |
| |
| end_del_check.Bind(); |
| // Store the entry in the 'each' expression and take another spin in the |
| // loop. edx: i'th entry of the enum cache (or string there of) |
| frame_->EmitPush(ebx); |
| { Reference each(this, node->each()); |
| // Loading a reference may leave the frame in an unspilled state. |
| frame_->SpillAll(); |
| if (!each.is_illegal()) { |
| if (each.size() > 0) { |
| frame_->EmitPush(frame_->ElementAt(each.size())); |
| each.SetValue(NOT_CONST_INIT); |
| frame_->Drop(2); |
| } else { |
| // If the reference was to a slot we rely on the convenient property |
| // that it doesn't matter whether a value (eg, ebx pushed above) is |
| // right on top of or right underneath a zero-sized reference. |
| each.SetValue(NOT_CONST_INIT); |
| frame_->Drop(); |
| } |
| } |
| } |
| // Unloading a reference may leave the frame in an unspilled state. |
| frame_->SpillAll(); |
| |
| // Body. |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| VisitAndSpill(node->body()); |
| |
| // Next. Reestablish a spilled frame in case we are coming here via |
| // a continue in the body. |
| node->continue_target()->Bind(); |
| frame_->SpillAll(); |
| frame_->EmitPop(eax); |
| __ add(Operand(eax), Immediate(Smi::FromInt(1))); |
| frame_->EmitPush(eax); |
| entry.Jump(); |
| |
| // Cleanup. No need to spill because VirtualFrame::Drop is safe for |
| // any frame. |
| node->break_target()->Bind(); |
| frame_->Drop(5); |
| |
| // Exit. |
| exit.Bind(); |
| |
| node->continue_target()->Unuse(); |
| node->break_target()->Unuse(); |
| } |
| |
| |
| void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { |
| ASSERT(!in_spilled_code()); |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ TryCatchStatement"); |
| CodeForStatementPosition(node); |
| |
| JumpTarget try_block; |
| JumpTarget exit; |
| |
| try_block.Call(); |
| // --- Catch block --- |
| frame_->EmitPush(eax); |
| |
| // Store the caught exception in the catch variable. |
| Variable* catch_var = node->catch_var()->var(); |
| ASSERT(catch_var != NULL && catch_var->slot() != NULL); |
| StoreToSlot(catch_var->slot(), NOT_CONST_INIT); |
| |
| // Remove the exception from the stack. |
| frame_->Drop(); |
| |
| VisitStatementsAndSpill(node->catch_block()->statements()); |
| if (has_valid_frame()) { |
| exit.Jump(); |
| } |
| |
| |
| // --- Try block --- |
| try_block.Bind(); |
| |
| frame_->PushTryHandler(TRY_CATCH_HANDLER); |
| int handler_height = frame_->height(); |
| |
| // Shadow the jump targets for all escapes from the try block, including |
| // returns. During shadowing, the original target is hidden as the |
| // ShadowTarget and operations on the original actually affect the |
| // shadowing target. |
| // |
| // We should probably try to unify the escaping targets and the return |
| // target. |
| int nof_escapes = node->escaping_targets()->length(); |
| List<ShadowTarget*> shadows(1 + nof_escapes); |
| |
| // Add the shadow target for the function return. |
| static const int kReturnShadowIndex = 0; |
| shadows.Add(new ShadowTarget(&function_return_)); |
| bool function_return_was_shadowed = function_return_is_shadowed_; |
| function_return_is_shadowed_ = true; |
| ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
| |
| // Add the remaining shadow targets. |
| for (int i = 0; i < nof_escapes; i++) { |
| shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
| } |
| |
| // Generate code for the statements in the try block. |
| VisitStatementsAndSpill(node->try_block()->statements()); |
| |
| // Stop the introduced shadowing and count the number of required unlinks. |
| // After shadowing stops, the original targets are unshadowed and the |
| // ShadowTargets represent the formerly shadowing targets. |
| bool has_unlinks = false; |
| for (int i = 0; i < shadows.length(); i++) { |
| shadows[i]->StopShadowing(); |
| has_unlinks = has_unlinks || shadows[i]->is_linked(); |
| } |
| function_return_is_shadowed_ = function_return_was_shadowed; |
| |
| // Get an external reference to the handler address. |
| ExternalReference handler_address(Top::k_handler_address); |
| |
| // Make sure that there's nothing left on the stack above the |
| // handler structure. |
| if (FLAG_debug_code) { |
| __ mov(eax, Operand::StaticVariable(handler_address)); |
| __ cmp(esp, Operand(eax)); |
| __ Assert(equal, "stack pointer should point to top handler"); |
| } |
| |
| // If we can fall off the end of the try block, unlink from try chain. |
| if (has_valid_frame()) { |
| // The next handler address is on top of the frame. Unlink from |
| // the handler list and drop the rest of this handler from the |
| // frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(Operand::StaticVariable(handler_address)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| if (has_unlinks) { |
| exit.Jump(); |
| } |
| } |
| |
| // Generate unlink code for the (formerly) shadowing targets that |
| // have been jumped to. Deallocate each shadow target. |
| Result return_value; |
| for (int i = 0; i < shadows.length(); i++) { |
| if (shadows[i]->is_linked()) { |
| // Unlink from try chain; be careful not to destroy the TOS if |
| // there is one. |
| if (i == kReturnShadowIndex) { |
| shadows[i]->Bind(&return_value); |
| return_value.ToRegister(eax); |
| } else { |
| shadows[i]->Bind(); |
| } |
| // Because we can be jumping here (to spilled code) from |
| // unspilled code, we need to reestablish a spilled frame at |
| // this block. |
| frame_->SpillAll(); |
| |
| // Reload sp from the top handler, because some statements that we |
| // break from (eg, for...in) may have left stuff on the stack. |
| __ mov(esp, Operand::StaticVariable(handler_address)); |
| frame_->Forget(frame_->height() - handler_height); |
| |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(Operand::StaticVariable(handler_address)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| if (i == kReturnShadowIndex) { |
| if (!function_return_is_shadowed_) frame_->PrepareForReturn(); |
| shadows[i]->other_target()->Jump(&return_value); |
| } else { |
| shadows[i]->other_target()->Jump(); |
| } |
| } |
| } |
| |
| exit.Bind(); |
| } |
| |
| |
| void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { |
| ASSERT(!in_spilled_code()); |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ TryFinallyStatement"); |
| CodeForStatementPosition(node); |
| |
| // State: Used to keep track of reason for entering the finally |
| // block. Should probably be extended to hold information for |
| // break/continue from within the try block. |
| enum { FALLING, THROWING, JUMPING }; |
| |
| JumpTarget try_block; |
| JumpTarget finally_block; |
| |
| try_block.Call(); |
| |
| frame_->EmitPush(eax); |
| // In case of thrown exceptions, this is where we continue. |
| __ Set(ecx, Immediate(Smi::FromInt(THROWING))); |
| finally_block.Jump(); |
| |
| // --- Try block --- |
| try_block.Bind(); |
| |
| frame_->PushTryHandler(TRY_FINALLY_HANDLER); |
| int handler_height = frame_->height(); |
| |
| // Shadow the jump targets for all escapes from the try block, including |
| // returns. During shadowing, the original target is hidden as the |
| // ShadowTarget and operations on the original actually affect the |
| // shadowing target. |
| // |
| // We should probably try to unify the escaping targets and the return |
| // target. |
| int nof_escapes = node->escaping_targets()->length(); |
| List<ShadowTarget*> shadows(1 + nof_escapes); |
| |
| // Add the shadow target for the function return. |
| static const int kReturnShadowIndex = 0; |
| shadows.Add(new ShadowTarget(&function_return_)); |
| bool function_return_was_shadowed = function_return_is_shadowed_; |
| function_return_is_shadowed_ = true; |
| ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
| |
| // Add the remaining shadow targets. |
| for (int i = 0; i < nof_escapes; i++) { |
| shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
| } |
| |
| // Generate code for the statements in the try block. |
| VisitStatementsAndSpill(node->try_block()->statements()); |
| |
| // Stop the introduced shadowing and count the number of required unlinks. |
| // After shadowing stops, the original targets are unshadowed and the |
| // ShadowTargets represent the formerly shadowing targets. |
| int nof_unlinks = 0; |
| for (int i = 0; i < shadows.length(); i++) { |
| shadows[i]->StopShadowing(); |
| if (shadows[i]->is_linked()) nof_unlinks++; |
| } |
| function_return_is_shadowed_ = function_return_was_shadowed; |
| |
| // Get an external reference to the handler address. |
| ExternalReference handler_address(Top::k_handler_address); |
| |
| // If we can fall off the end of the try block, unlink from the try |
| // chain and set the state on the frame to FALLING. |
| if (has_valid_frame()) { |
| // The next handler address is on top of the frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(Operand::StaticVariable(handler_address)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| // Fake a top of stack value (unneeded when FALLING) and set the |
| // state in ecx, then jump around the unlink blocks if any. |
| frame_->EmitPush(Immediate(Factory::undefined_value())); |
| __ Set(ecx, Immediate(Smi::FromInt(FALLING))); |
| if (nof_unlinks > 0) { |
| finally_block.Jump(); |
| } |
| } |
| |
| // Generate code to unlink and set the state for the (formerly) |
| // shadowing targets that have been jumped to. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (shadows[i]->is_linked()) { |
| // If we have come from the shadowed return, the return value is |
| // on the virtual frame. We must preserve it until it is |
| // pushed. |
| if (i == kReturnShadowIndex) { |
| Result return_value; |
| shadows[i]->Bind(&return_value); |
| return_value.ToRegister(eax); |
| } else { |
| shadows[i]->Bind(); |
| } |
| // Because we can be jumping here (to spilled code) from |
| // unspilled code, we need to reestablish a spilled frame at |
| // this block. |
| frame_->SpillAll(); |
| |
| // Reload sp from the top handler, because some statements that |
| // we break from (eg, for...in) may have left stuff on the |
| // stack. |
| __ mov(esp, Operand::StaticVariable(handler_address)); |
| frame_->Forget(frame_->height() - handler_height); |
| |
| // Unlink this handler and drop it from the frame. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(Operand::StaticVariable(handler_address)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| if (i == kReturnShadowIndex) { |
| // If this target shadowed the function return, materialize |
| // the return value on the stack. |
| frame_->EmitPush(eax); |
| } else { |
| // Fake TOS for targets that shadowed breaks and continues. |
| frame_->EmitPush(Immediate(Factory::undefined_value())); |
| } |
| __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i))); |
| if (--nof_unlinks > 0) { |
| // If this is not the last unlink block, jump around the next. |
| finally_block.Jump(); |
| } |
| } |
| } |
| |
| // --- Finally block --- |
| finally_block.Bind(); |
| |
| // Push the state on the stack. |
| frame_->EmitPush(ecx); |
| |
| // We keep two elements on the stack - the (possibly faked) result |
| // and the state - while evaluating the finally block. |
| // |
| // Generate code for the statements in the finally block. |
| VisitStatementsAndSpill(node->finally_block()->statements()); |
| |
| if (has_valid_frame()) { |
| // Restore state and return value or faked TOS. |
| frame_->EmitPop(ecx); |
| frame_->EmitPop(eax); |
| } |
| |
| // Generate code to jump to the right destination for all used |
| // formerly shadowing targets. Deallocate each shadow target. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (has_valid_frame() && shadows[i]->is_bound()) { |
| BreakTarget* original = shadows[i]->other_target(); |
| __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i))); |
| if (i == kReturnShadowIndex) { |
| // The return value is (already) in eax. |
| Result return_value = allocator_->Allocate(eax); |
| ASSERT(return_value.is_valid()); |
| if (function_return_is_shadowed_) { |
| original->Branch(equal, &return_value); |
| } else { |
| // Branch around the preparation for return which may emit |
| // code. |
| JumpTarget skip; |
| skip.Branch(not_equal); |
| frame_->PrepareForReturn(); |
| original->Jump(&return_value); |
| skip.Bind(); |
| } |
| } else { |
| original->Branch(equal); |
| } |
| } |
| } |
| |
| if (has_valid_frame()) { |
| // Check if we need to rethrow the exception. |
| JumpTarget exit; |
| __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING))); |
| exit.Branch(not_equal); |
| |
| // Rethrow exception. |
| frame_->EmitPush(eax); // undo pop from above |
| frame_->CallRuntime(Runtime::kReThrow, 1); |
| |
| // Done. |
| exit.Bind(); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { |
| ASSERT(!in_spilled_code()); |
| Comment cmnt(masm_, "[ DebuggerStatement"); |
| CodeForStatementPosition(node); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Spill everything, even constants, to the frame. |
| frame_->SpillAll(); |
| |
| frame_->DebugBreak(); |
| // Ignore the return value. |
| #endif |
| } |
| |
| |
| Result CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) { |
| ASSERT(boilerplate->IsBoilerplate()); |
| |
| // The inevitable call will sync frame elements to memory anyway, so |
| // we do it eagerly to allow us to push the arguments directly into |
| // place. |
| frame()->SyncRange(0, frame()->element_count() - 1); |
| |
| // Use the fast case closure allocation code that allocates in new |
| // space for nested functions that don't need literals cloning. |
| if (scope()->is_function_scope() && boilerplate->NumberOfLiterals() == 0) { |
| FastNewClosureStub stub; |
| frame()->EmitPush(Immediate(boilerplate)); |
| return frame()->CallStub(&stub, 1); |
| } else { |
| // Call the runtime to instantiate the function boilerplate |
| // object. |
| frame()->EmitPush(esi); |
| frame()->EmitPush(Immediate(boilerplate)); |
| return frame()->CallRuntime(Runtime::kNewClosure, 2); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { |
| Comment cmnt(masm_, "[ FunctionLiteral"); |
| |
| // Build the function boilerplate and instantiate it. |
| Handle<JSFunction> boilerplate = |
| Compiler::BuildBoilerplate(node, script(), this); |
| // Check for stack-overflow exception. |
| if (HasStackOverflow()) return; |
| Result result = InstantiateBoilerplate(boilerplate); |
| frame()->Push(&result); |
| } |
| |
| |
| void CodeGenerator::VisitFunctionBoilerplateLiteral( |
| FunctionBoilerplateLiteral* node) { |
| Comment cmnt(masm_, "[ FunctionBoilerplateLiteral"); |
| Result result = InstantiateBoilerplate(node->boilerplate()); |
| frame()->Push(&result); |
| } |
| |
| |
| void CodeGenerator::VisitConditional(Conditional* node) { |
| Comment cmnt(masm_, "[ Conditional"); |
| JumpTarget then; |
| JumpTarget else_; |
| JumpTarget exit; |
| ControlDestination dest(&then, &else_, true); |
| LoadCondition(node->condition(), &dest, true); |
| |
| if (dest.false_was_fall_through()) { |
| // The else target was bound, so we compile the else part first. |
| Load(node->else_expression()); |
| |
| if (then.is_linked()) { |
| exit.Jump(); |
| then.Bind(); |
| Load(node->then_expression()); |
| } |
| } else { |
| // The then target was bound, so we compile the then part first. |
| Load(node->then_expression()); |
| |
| if (else_.is_linked()) { |
| exit.Jump(); |
| else_.Bind(); |
| Load(node->else_expression()); |
| } |
| } |
| |
| exit.Bind(); |
| } |
| |
| |
| Result CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
| Result result; |
| if (slot->type() == Slot::LOOKUP) { |
| ASSERT(slot->var()->is_dynamic()); |
| JumpTarget slow; |
| JumpTarget done; |
| |
| // Generate fast-case code for variables that might be shadowed by |
| // eval-introduced variables. Eval is used a lot without |
| // introducing variables. In those cases, we do not want to |
| // perform a runtime call for all variables in the scope |
| // containing the eval. |
| if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
| result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow); |
| // If there was no control flow to slow, we can exit early. |
| if (!slow.is_linked()) return result; |
| done.Jump(&result); |
| |
| } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
| Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); |
| // Only generate the fast case for locals that rewrite to slots. |
| // This rules out argument loads. |
| if (potential_slot != NULL) { |
| // Allocate a fresh register to use as a temp in |
| // ContextSlotOperandCheckExtensions and to hold the result |
| // value. |
| result = allocator()->Allocate(); |
| ASSERT(result.is_valid()); |
| __ mov(result.reg(), |
| ContextSlotOperandCheckExtensions(potential_slot, |
| result, |
| &slow)); |
| if (potential_slot->var()->mode() == Variable::CONST) { |
| __ cmp(result.reg(), Factory::the_hole_value()); |
| done.Branch(not_equal, &result); |
| __ mov(result.reg(), Factory::undefined_value()); |
| } |
| // There is always control flow to slow from |
| // ContextSlotOperandCheckExtensions so we have to jump around |
| // it. |
| done.Jump(&result); |
| } |
| } |
| |
| slow.Bind(); |
| // A runtime call is inevitable. We eagerly sync frame elements |
| // to memory so that we can push the arguments directly into place |
| // on top of the frame. |
| frame()->SyncRange(0, frame()->element_count() - 1); |
| frame()->EmitPush(esi); |
| frame()->EmitPush(Immediate(slot->var()->name())); |
| if (typeof_state == INSIDE_TYPEOF) { |
| result = |
| frame()->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
| } else { |
| result = frame()->CallRuntime(Runtime::kLoadContextSlot, 2); |
| } |
| |
| done.Bind(&result); |
| return result; |
| |
| } else if (slot->var()->mode() == Variable::CONST) { |
| // Const slots may contain 'the hole' value (the constant hasn't been |
| // initialized yet) which needs to be converted into the 'undefined' |
| // value. |
| // |
| // We currently spill the virtual frame because constants use the |
| // potentially unsafe direct-frame access of SlotOperand. |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Load const"); |
| Label exit; |
| __ mov(ecx, SlotOperand(slot, ecx)); |
| __ cmp(ecx, Factory::the_hole_value()); |
| __ j(not_equal, &exit); |
| __ mov(ecx, Factory::undefined_value()); |
| __ bind(&exit); |
| return Result(ecx); |
| |
| } else if (slot->type() == Slot::PARAMETER) { |
| frame()->PushParameterAt(slot->index()); |
| return frame()->Pop(); |
| |
| } else if (slot->type() == Slot::LOCAL) { |
| frame()->PushLocalAt(slot->index()); |
| return frame()->Pop(); |
| |
| } else { |
| // The other remaining slot types (LOOKUP and GLOBAL) cannot reach |
| // here. |
| // |
| // The use of SlotOperand below is safe for an unspilled frame |
| // because it will always be a context slot. |
| ASSERT(slot->type() == Slot::CONTEXT); |
| result = allocator()->Allocate(); |
| ASSERT(result.is_valid()); |
| __ mov(result.reg(), SlotOperand(slot, result.reg())); |
| return result; |
| } |
| } |
| |
| |
| Result CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, |
| TypeofState state) { |
| Result result = LoadFromSlot(slot, state); |
| |
| // Bail out quickly if we're not using lazy arguments allocation. |
| if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return result; |
| |
| // ... or if the slot isn't a non-parameter arguments slot. |
| if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return result; |
| |
| // If the loaded value is a constant, we know if the arguments |
| // object has been lazily loaded yet. |
| if (result.is_constant()) { |
| if (result.handle()->IsTheHole()) { |
| result.Unuse(); |
| return StoreArgumentsObject(false); |
| } else { |
| return result; |
| } |
| } |
| |
| // The loaded value is in a register. If it is the sentinel that |
| // indicates that we haven't loaded the arguments object yet, we |
| // need to do it now. |
| JumpTarget exit; |
| __ cmp(Operand(result.reg()), Immediate(Factory::the_hole_value())); |
| exit.Branch(not_equal, &result); |
| |
| result.Unuse(); |
| result = StoreArgumentsObject(false); |
| exit.Bind(&result); |
| return result; |
| } |
| |
| |
| Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( |
| Slot* slot, |
| TypeofState typeof_state, |
| JumpTarget* slow) { |
| // Check that no extension objects have been created by calls to |
| // eval from the current scope to the global scope. |
| Register context = esi; |
| Result tmp = allocator_->Allocate(); |
| ASSERT(tmp.is_valid()); // All non-reserved registers were available. |
| |
| Scope* s = scope(); |
| while (s != NULL) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| // Check that extension is NULL. |
| __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), |
| Immediate(0)); |
| slow->Branch(not_equal, not_taken); |
| } |
| // Load next context in chain. |
| __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); |
| __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
| context = tmp.reg(); |
| } |
| // If no outer scope calls eval, we do not need to check more |
| // context extensions. If we have reached an eval scope, we check |
| // all extensions from this point. |
| if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
| s = s->outer_scope(); |
| } |
| |
| if (s != NULL && s->is_eval_scope()) { |
| // Loop up the context chain. There is no frame effect so it is |
| // safe to use raw labels here. |
| Label next, fast; |
| if (!context.is(tmp.reg())) { |
| __ mov(tmp.reg(), context); |
| } |
| __ bind(&next); |
| // Terminate at global context. |
| __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), |
| Immediate(Factory::global_context_map())); |
| __ j(equal, &fast); |
| // Check that extension is NULL. |
| __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); |
| slow->Branch(not_equal, not_taken); |
| // Load next context in chain. |
| __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); |
| __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
| __ jmp(&next); |
| __ bind(&fast); |
| } |
| tmp.Unuse(); |
| |
| // All extension objects were empty and it is safe to use a global |
| // load IC call. |
| // The register allocator prefers eax if it is free, so the code generator |
| // will load the global object directly into eax, which is where the LoadIC |
| // expects it. |
| frame_->Spill(eax); |
| LoadGlobal(); |
| frame_->Push(slot->var()->name()); |
| RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) |
| ? RelocInfo::CODE_TARGET |
| : RelocInfo::CODE_TARGET_CONTEXT; |
| Result answer = frame_->CallLoadIC(mode); |
| // A test eax instruction following the call signals that the inobject |
| // property case was inlined. Ensure that there is not a test eax |
| // instruction here. |
| __ nop(); |
| return answer; |
| } |
| |
| |
| void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { |
| if (slot->type() == Slot::LOOKUP) { |
| ASSERT(slot->var()->is_dynamic()); |
| |
| // For now, just do a runtime call. Since the call is inevitable, |
| // we eagerly sync the virtual frame so we can directly push the |
| // arguments into place. |
| frame_->SyncRange(0, frame_->element_count() - 1); |
| |
| frame_->EmitPush(esi); |
| frame_->EmitPush(Immediate(slot->var()->name())); |
| |
| Result value; |
| if (init_state == CONST_INIT) { |
| // Same as the case for a normal store, but ignores attribute |
| // (e.g. READ_ONLY) of context slot so that we can initialize const |
| // properties (introduced via eval("const foo = (some expr);")). Also, |
| // uses the current function context instead of the top context. |
| // |
| // Note that we must declare the foo upon entry of eval(), via a |
| // context slot declaration, but we cannot initialize it at the same |
| // time, because the const declaration may be at the end of the eval |
| // code (sigh...) and the const variable may have been used before |
| // (where its value is 'undefined'). Thus, we can only do the |
| // initialization when we actually encounter the expression and when |
| // the expression operands are defined and valid, and thus we need the |
| // split into 2 operations: declaration of the context slot followed |
| // by initialization. |
| value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
| } else { |
| value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3); |
| } |
| // Storing a variable must keep the (new) value on the expression |
| // stack. This is necessary for compiling chained assignment |
| // expressions. |
| frame_->Push(&value); |
| |
| } else { |
| ASSERT(!slot->var()->is_dynamic()); |
| |
| JumpTarget exit; |
| if (init_state == CONST_INIT) { |
| ASSERT(slot->var()->mode() == Variable::CONST); |
| // Only the first const initialization must be executed (the slot |
| // still contains 'the hole' value). When the assignment is executed, |
| // the code is identical to a normal store (see below). |
| // |
| // We spill the frame in the code below because the direct-frame |
| // access of SlotOperand is potentially unsafe with an unspilled |
| // frame. |
| VirtualFrame::SpilledScope spilled_scope; |
| Comment cmnt(masm_, "[ Init const"); |
| __ mov(ecx, SlotOperand(slot, ecx)); |
| __ cmp(ecx, Factory::the_hole_value()); |
| exit.Branch(not_equal); |
| } |
| |
| // We must execute the store. Storing a variable must keep the (new) |
| // value on the stack. This is necessary for compiling assignment |
| // expressions. |
| // |
| // Note: We will reach here even with slot->var()->mode() == |
| // Variable::CONST because of const declarations which will initialize |
| // consts to 'the hole' value and by doing so, end up calling this code. |
| if (slot->type() == Slot::PARAMETER) { |
| frame_->StoreToParameterAt(slot->index()); |
| } else if (slot->type() == Slot::LOCAL) { |
| frame_->StoreToLocalAt(slot->index()); |
| } else { |
| // The other slot types (LOOKUP and GLOBAL) cannot reach here. |
| // |
| // The use of SlotOperand below is safe for an unspilled frame |
| // because the slot is a context slot. |
| ASSERT(slot->type() == Slot::CONTEXT); |
| frame_->Dup(); |
| Result value = frame_->Pop(); |
| value.ToRegister(); |
| Result start = allocator_->Allocate(); |
| ASSERT(start.is_valid()); |
| __ mov(SlotOperand(slot, start.reg()), value.reg()); |
| // RecordWrite may destroy the value registers. |
| // |
| // TODO(204): Avoid actually spilling when the value is not |
| // needed (probably the common case). |
| frame_->Spill(value.reg()); |
| int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
| Result temp = allocator_->Allocate(); |
| ASSERT(temp.is_valid()); |
| __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); |
| // The results start, value, and temp are unused by going out of |
| // scope. |
| } |
| |
| exit.Bind(); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitSlot(Slot* node) { |
| Comment cmnt(masm_, "[ Slot"); |
| Result result = LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); |
| frame()->Push(&result); |
| } |
| |
| |
| void CodeGenerator::VisitVariableProxy(VariableProxy* node) { |
| Comment cmnt(masm_, "[ VariableProxy"); |
| Variable* var = node->var(); |
| Expression* expr = var->rewrite(); |
| if (expr != NULL) { |
| Visit(expr); |
| } else { |
| ASSERT(var->is_global()); |
| Reference ref(this, node); |
| ref.GetValue(); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitLiteral(Literal* node) { |
| Comment cmnt(masm_, "[ Literal"); |
| frame_->Push(node->handle()); |
| } |
| |
| |
| void CodeGenerator::PushUnsafeSmi(Handle<Object> value) { |
| ASSERT(value->IsSmi()); |
| int bits = reinterpret_cast<int>(*value); |
| __ push(Immediate(bits & 0x0000FFFF)); |
| __ or_(Operand(esp, 0), Immediate(bits & 0xFFFF0000)); |
| } |
| |
| |
| void CodeGenerator::StoreUnsafeSmiToLocal(int offset, Handle<Object> value) { |
| ASSERT(value->IsSmi()); |
| int bits = reinterpret_cast<int>(*value); |
| __ mov(Operand(ebp, offset), Immediate(bits & 0x0000FFFF)); |
| __ or_(Operand(ebp, offset), Immediate(bits & 0xFFFF0000)); |
| } |
| |
| |
| void CodeGenerator::MoveUnsafeSmi(Register target, Handle<Object> value) { |
| ASSERT(target.is_valid()); |
| ASSERT(value->IsSmi()); |
| int bits = reinterpret_cast<int>(*value); |
| __ Set(target, Immediate(bits & 0x0000FFFF)); |
| __ or_(target, bits & 0xFFFF0000); |
| } |
| |
| |
| bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) { |
| if (!value->IsSmi()) return false; |
| int int_value = Smi::cast(*value)->value(); |
| return !is_intn(int_value, kMaxSmiInlinedBits); |
| } |
| |
| |
| // Materialize the regexp literal 'node' in the literals array |
| // 'literals' of the function. Leave the regexp boilerplate in |
| // 'boilerplate'. |
| class DeferredRegExpLiteral: public DeferredCode { |
| public: |
| DeferredRegExpLiteral(Register boilerplate, |
| Register literals, |
| RegExpLiteral* node) |
| : boilerplate_(boilerplate), literals_(literals), node_(node) { |
| set_comment("[ DeferredRegExpLiteral"); |
| } |
| |
| void Generate(); |
| |
| private: |
| Register boilerplate_; |
| Register literals_; |
| RegExpLiteral* node_; |
| }; |
| |
| |
| void DeferredRegExpLiteral::Generate() { |
| // Since the entry is undefined we call the runtime system to |
| // compute the literal. |
| // Literal array (0). |
| __ push(literals_); |
| // Literal index (1). |
| __ push(Immediate(Smi::FromInt(node_->literal_index()))); |
| // RegExp pattern (2). |
| __ push(Immediate(node_->pattern())); |
| // RegExp flags (3). |
| __ push(Immediate(node_->flags())); |
| __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); |
| if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax); |
| } |
| |
| |
| void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { |
| Comment cmnt(masm_, "[ RegExp Literal"); |
| |
| // Retrieve the literals array and check the allocated entry. Begin |
| // with a writable copy of the function of this activation in a |
| // register. |
| frame_->PushFunction(); |
| Result literals = frame_->Pop(); |
| literals.ToRegister(); |
| frame_->Spill(literals.reg()); |
| |
| // Load the literals array of the function. |
| __ mov(literals.reg(), |
| FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); |
| |
| // Load the literal at the ast saved index. |
| Result boilerplate = allocator_->Allocate(); |
| ASSERT(boilerplate.is_valid()); |
| int literal_offset = |
| FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
| __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); |
| |
| // Check whether we need to materialize the RegExp object. If so, |
| // jump to the deferred code passing the literals array. |
| DeferredRegExpLiteral* deferred = |
| new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node); |
| __ cmp(boilerplate.reg(), Factory::undefined_value()); |
| deferred->Branch(equal); |
| deferred->BindExit(); |
| literals.Unuse(); |
| |
| // Push the boilerplate object. |
| frame_->Push(&boilerplate); |
| } |
| |
| |
| void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { |
| Comment cmnt(masm_, "[ ObjectLiteral"); |
| |
| // Load a writable copy of the function of this activation in a |
| // register. |
| frame_->PushFunction(); |
| Result literals = frame_->Pop(); |
| literals.ToRegister(); |
| frame_->Spill(literals.reg()); |
| |
| // Load the literals array of the function. |
| __ mov(literals.reg(), |
| FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); |
| // Literal array. |
| frame_->Push(&literals); |
| // Literal index. |
| frame_->Push(Smi::FromInt(node->literal_index())); |
| // Constant properties. |
| frame_->Push(node->constant_properties()); |
| Result clone; |
| if (node->depth() > 1) { |
| clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 3); |
| } else { |
| clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 3); |
| } |
| frame_->Push(&clone); |
| |
| for (int i = 0; i < node->properties()->length(); i++) { |
| ObjectLiteral::Property* property = node->properties()->at(i); |
| switch (property->kind()) { |
| case ObjectLiteral::Property::CONSTANT: |
| break; |
| case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
| if (CompileTimeValue::IsCompileTimeValue(property->value())) break; |
| // else fall through. |
| case ObjectLiteral::Property::COMPUTED: { |
| Handle<Object> key(property->key()->handle()); |
| if (key->IsSymbol()) { |
| // Duplicate the object as the IC receiver. |
| frame_->Dup(); |
| Load(property->value()); |
| Result dummy = frame_->CallStoreIC(Handle<String>::cast(key), false); |
| dummy.Unuse(); |
| break; |
| } |
| // Fall through |
| } |
| case ObjectLiteral::Property::PROTOTYPE: { |
| // Duplicate the object as an argument to the runtime call. |
| frame_->Dup(); |
| Load(property->key()); |
| Load(property->value()); |
| Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3); |
| // Ignore the result. |
| break; |
| } |
| case ObjectLiteral::Property::SETTER: { |
| // Duplicate the object as an argument to the runtime call. |
| frame_->Dup(); |
| Load(property->key()); |
| frame_->Push(Smi::FromInt(1)); |
| Load(property->value()); |
| Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
| // Ignore the result. |
| break; |
| } |
| case ObjectLiteral::Property::GETTER: { |
| // Duplicate the object as an argument to the runtime call. |
| frame_->Dup(); |
| Load(property->key()); |
| frame_->Push(Smi::FromInt(0)); |
| Load(property->value()); |
| Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
| // Ignore the result. |
| break; |
| } |
| default: UNREACHABLE(); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { |
| Comment cmnt(masm_, "[ ArrayLiteral"); |
| |
| // Load a writable copy of the function of this activation in a |
| // register. |
| frame_->PushFunction(); |
| Result literals = frame_->Pop(); |
| literals.ToRegister(); |
| frame_->Spill(literals.reg()); |
| |
| // Load the literals array of the function. |
| __ mov(literals.reg(), |
| FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); |
| |
| frame_->Push(&literals); |
| frame_->Push(Smi::FromInt(node->literal_index())); |
| frame_->Push(node->constant_elements()); |
| int length = node->values()->length(); |
| Result clone; |
| if (node->depth() > 1) { |
| clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); |
| } else if (length > FastCloneShallowArrayStub::kMaximumLength) { |
| clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); |
| } else { |
| FastCloneShallowArrayStub stub(length); |
| clone = frame_->CallStub(&stub, 3); |
| } |
| frame_->Push(&clone); |
| |
| // Generate code to set the elements in the array that are not |
| // literals. |
| for (int i = 0; i < length; i++) { |
| Expression* value = node->values()->at(i); |
| |
| // If value is a literal the property value is already set in the |
| // boilerplate object. |
| if (value->AsLiteral() != NULL) continue; |
| // If value is a materialized literal the property value is already set |
| // in the boilerplate object if it is simple. |
| if (CompileTimeValue::IsCompileTimeValue(value)) continue; |
| |
| // The property must be set by generated code. |
| Load(value); |
| |
| // Get the property value off the stack. |
| Result prop_value = frame_->Pop(); |
| prop_value.ToRegister(); |
| |
| // Fetch the array literal while leaving a copy on the stack and |
| // use it to get the elements array. |
| frame_->Dup(); |
| Result elements = frame_->Pop(); |
| elements.ToRegister(); |
| frame_->Spill(elements.reg()); |
| // Get the elements array. |
| __ mov(elements.reg(), |
| FieldOperand(elements.reg(), JSObject::kElementsOffset)); |
| |
| // Write to the indexed properties array. |
| int offset = i * kPointerSize + FixedArray::kHeaderSize; |
| __ mov(FieldOperand(elements.reg(), offset), prop_value.reg()); |
| |
| // Update the write barrier for the array address. |
| frame_->Spill(prop_value.reg()); // Overwritten by the write barrier. |
| Result scratch = allocator_->Allocate(); |
| ASSERT(scratch.is_valid()); |
| __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg()); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { |
| ASSERT(!in_spilled_code()); |
| // Call runtime routine to allocate the catch extension object and |
| // assign the exception value to the catch variable. |
| Comment cmnt(masm_, "[ CatchExtensionObject"); |
| Load(node->key()); |
| Load(node->value()); |
| Result result = |
| frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::EmitSlotAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame()->height(); |
| #endif |
| Comment cmnt(masm(), "[ Variable Assignment"); |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| ASSERT(var != NULL); |
| Slot* slot = var->slot(); |
| ASSERT(slot != NULL); |
| |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| Result result = LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
| frame()->Push(&result); |
| Load(node->value()); |
| |
| bool overwrite_value = |
| (node->value()->AsBinaryOperation() != NULL && |
| node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| GenericBinaryOperation(node->binary_op(), |
| node->type(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| Load(node->value()); |
| } |
| |
| // Perform the assignment. |
| if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { |
| CodeForSourcePosition(node->position()); |
| StoreToSlot(slot, |
| node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); |
| } |
| ASSERT(frame()->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame()->height(); |
| #endif |
| Comment cmnt(masm(), "[ Named Property Assignment"); |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| Property* prop = node->target()->AsProperty(); |
| ASSERT(var == NULL || (prop == NULL && var->is_global())); |
| |
| // Initialize name and evaluate the receiver subexpression if necessary. |
| Handle<String> name; |
| bool is_trivial_receiver = false; |
| if (var != NULL) { |
| name = var->name(); |
| } else { |
| Literal* lit = prop->key()->AsLiteral(); |
| ASSERT_NOT_NULL(lit); |
| name = Handle<String>::cast(lit->handle()); |
| // Do not materialize the receiver on the frame if it is trivial. |
| is_trivial_receiver = prop->obj()->IsTrivial(); |
| if (!is_trivial_receiver) Load(prop->obj()); |
| } |
| |
| if (node->starts_initialization_block()) { |
| ASSERT_EQ(NULL, var); |
| // Change to slow case in the beginning of an initialization block to |
| // avoid the quadratic behavior of repeatedly adding fast properties. |
| if (is_trivial_receiver) { |
| frame()->Push(prop->obj()); |
| } else { |
| frame()->Dup(); |
| } |
| Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1); |
| } |
| |
| if (node->ends_initialization_block() && !is_trivial_receiver) { |
| // Add an extra copy of the receiver to the frame, so that it can be |
| // converted back to fast case after the assignment. |
| frame()->Dup(); |
| } |
| |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| if (is_trivial_receiver) { |
| frame()->Push(prop->obj()); |
| } else if (var != NULL) { |
| // The LoadIC stub expects the object in eax. |
| // Freeing eax causes the code generator to load the global into it. |
| frame_->Spill(eax); |
| LoadGlobal(); |
| } else { |
| frame()->Dup(); |
| } |
| Result value = EmitNamedLoad(name, var != NULL); |
| frame()->Push(&value); |
| Load(node->value()); |
| |
| bool overwrite_value = |
| (node->value()->AsBinaryOperation() != NULL && |
| node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| GenericBinaryOperation(node->binary_op(), |
| node->type(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| Load(node->value()); |
| } |
| |
| // Perform the assignment. It is safe to ignore constants here. |
| ASSERT(var == NULL || var->mode() != Variable::CONST); |
| ASSERT_NE(Token::INIT_CONST, node->op()); |
| if (is_trivial_receiver) { |
| Result value = frame()->Pop(); |
| frame()->Push(prop->obj()); |
| frame()->Push(&value); |
| } |
| CodeForSourcePosition(node->position()); |
| bool is_contextual = (var != NULL); |
| Result answer = EmitNamedStore(name, is_contextual); |
| frame()->Push(&answer); |
| |
| if (node->ends_initialization_block()) { |
| ASSERT_EQ(NULL, var); |
| // The argument to the runtime call is the receiver. |
| if (is_trivial_receiver) { |
| frame()->Push(prop->obj()); |
| } else { |
| // A copy of the receiver is below the value of the assignment. Swap |
| // the receiver and the value of the assignment expression. |
| Result result = frame()->Pop(); |
| Result receiver = frame()->Pop(); |
| frame()->Push(&result); |
| frame()->Push(&receiver); |
| } |
| Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); |
| } |
| |
| ASSERT_EQ(frame()->height(), original_height + 1); |
| } |
| |
| |
| void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame()->height(); |
| #endif |
| Comment cmnt(masm_, "[ Named Property Assignment"); |
| Property* prop = node->target()->AsProperty(); |
| ASSERT_NOT_NULL(prop); |
| |
| // Evaluate the receiver subexpression. |
| Load(prop->obj()); |
| |
| if (node->starts_initialization_block()) { |
| // Change to slow case in the beginning of an initialization block to |
| // avoid the quadratic behavior of repeatedly adding fast properties. |
| frame_->Dup(); |
| Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1); |
| } |
| |
| if (node->ends_initialization_block()) { |
| // Add an extra copy of the receiver to the frame, so that it can be |
| // converted back to fast case after the assignment. |
| frame_->Dup(); |
| } |
| |
| // Evaluate the key subexpression. |
| Load(prop->key()); |
| |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| // Duplicate receiver and key. |
| frame()->PushElementAt(1); |
| frame()->PushElementAt(1); |
| Result value = EmitKeyedLoad(); |
| frame()->Push(&value); |
| Load(node->value()); |
| |
| bool overwrite_value = |
| (node->value()->AsBinaryOperation() != NULL && |
| node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| GenericBinaryOperation(node->binary_op(), |
| node->type(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| Load(node->value()); |
| } |
| |
| // Perform the assignment. It is safe to ignore constants here. |
| ASSERT(node->op() != Token::INIT_CONST); |
| CodeForSourcePosition(node->position()); |
| Result answer = EmitKeyedStore(prop->key()->type()); |
| frame()->Push(&answer); |
| |
| if (node->ends_initialization_block()) { |
| // The argument to the runtime call is the extra copy of the receiver, |
| // which is below the value of the assignment. Swap the receiver and |
| // the value of the assignment expression. |
| Result result = frame()->Pop(); |
| Result receiver = frame()->Pop(); |
| frame()->Push(&result); |
| frame()->Push(&receiver); |
| Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); |
| } |
| |
| ASSERT(frame()->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame()->height(); |
| #endif |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| Property* prop = node->target()->AsProperty(); |
| |
| if (var != NULL && !var->is_global()) { |
| EmitSlotAssignment(node); |
| |
| } else if ((prop != NULL && prop->key()->IsPropertyName()) || |
| (var != NULL && var->is_global())) { |
| // Properties whose keys are property names and global variables are |
| // treated as named property references. We do not need to consider |
| // global 'this' because it is not a valid left-hand side. |
| EmitNamedPropertyAssignment(node); |
| |
| } else if (prop != NULL) { |
| // Other properties (including rewritten parameters for a function that |
| // uses arguments) are keyed property assignments. |
| EmitKeyedPropertyAssignment(node); |
| |
| } else { |
| // Invalid left-hand side. |
| Load(node->target()); |
| Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1); |
| // The runtime call doesn't actually return but the code generator will |
| // still generate code and expects a certain frame height. |
| frame()->Push(&result); |
| } |
| |
| ASSERT(frame()->height() == original_height + 1); |
| } |
| |
| |
| void CodeGenerator::VisitThrow(Throw* node) { |
| Comment cmnt(masm_, "[ Throw"); |
| Load(node->exception()); |
| Result result = frame_->CallRuntime(Runtime::kThrow, 1); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::VisitProperty(Property* node) { |
| Comment cmnt(masm_, "[ Property"); |
| Reference property(this, node); |
| property.GetValue(); |
| } |
| |
| |
| void CodeGenerator::VisitCall(Call* node) { |
| Comment cmnt(masm_, "[ Call"); |
| |
| Expression* function = node->expression(); |
| ZoneList<Expression*>* args = node->arguments(); |
| |
| // Check if the function is a variable or a property. |
| Variable* var = function->AsVariableProxy()->AsVariable(); |
| Property* property = function->AsProperty(); |
| |
| // ------------------------------------------------------------------------ |
| // Fast-case: Use inline caching. |
| // --- |
| // According to ECMA-262, section 11.2.3, page 44, the function to call |
| // must be resolved after the arguments have been evaluated. The IC code |
| // automatically handles this by loading the arguments before the function |
| // is resolved in cache misses (this also holds for megamorphic calls). |
| // ------------------------------------------------------------------------ |
| |
| if (var != NULL && var->is_possibly_eval()) { |
| // ---------------------------------- |
| // JavaScript example: 'eval(arg)' // eval is not known to be shadowed |
| // ---------------------------------- |
| |
| // In a call to eval, we first call %ResolvePossiblyDirectEval to |
| // resolve the function we need to call and the receiver of the |
| // call. Then we call the resolved function using the given |
| // arguments. |
| |
| // Prepare the stack for the call to the resolved function. |
| Load(function); |
| |
| // Allocate a frame slot for the receiver. |
| frame_->Push(Factory::undefined_value()); |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Prepare the stack for the call to ResolvePossiblyDirectEval. |
| frame_->PushElementAt(arg_count + 1); |
| if (arg_count > 0) { |
| frame_->PushElementAt(arg_count); |
| } else { |
| frame_->Push(Factory::undefined_value()); |
| } |
| |
| // Push the receiver. |
| frame_->PushParameterAt(-1); |
| |
| // Resolve the call. |
| Result result = |
| frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); |
| |
| // The runtime call returns a pair of values in eax (function) and |
| // edx (receiver). Touch up the stack with the right values. |
| Result receiver = allocator_->Allocate(edx); |
| frame_->SetElementAt(arg_count + 1, &result); |
| frame_->SetElementAt(arg_count, &receiver); |
| receiver.Unuse(); |
| |
| // Call the function. |
| CodeForSourcePosition(node->position()); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); |
| result = frame_->CallStub(&call_function, arg_count + 1); |
| |
| // Restore the context and overwrite the function on the stack with |
| // the result. |
| frame_->RestoreContextRegister(); |
| frame_->SetElementAt(0, &result); |
| |
| } else if (var != NULL && !var->is_this() && var->is_global()) { |
| // ---------------------------------- |
| // JavaScript example: 'foo(1, 2, 3)' // foo is global |
| // ---------------------------------- |
| |
| // Pass the global object as the receiver and let the IC stub |
| // patch the stack to use the global proxy as 'this' in the |
| // invoked function. |
| LoadGlobal(); |
| |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Push the name of the function onto the frame. |
| frame_->Push(var->name()); |
| |
| // Call the IC initialization code. |
| CodeForSourcePosition(node->position()); |
| Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT, |
| arg_count, |
| loop_nesting()); |
| frame_->RestoreContextRegister(); |
| frame_->Push(&result); |
| |
| } else if (var != NULL && var->slot() != NULL && |
| var->slot()->type() == Slot::LOOKUP) { |
| // ---------------------------------- |
| // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj |
| // ---------------------------------- |
| |
| // Load the function from the context. Sync the frame so we can |
| // push the arguments directly into place. |
| frame_->SyncRange(0, frame_->element_count() - 1); |
| frame_->EmitPush(esi); |
| frame_->EmitPush(Immediate(var->name())); |
| frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
| // The runtime call returns a pair of values in eax and edx. The |
| // looked-up function is in eax and the receiver is in edx. These |
| // register references are not ref counted here. We spill them |
| // eagerly since they are arguments to an inevitable call (and are |
| // not sharable by the arguments). |
| ASSERT(!allocator()->is_used(eax)); |
| frame_->EmitPush(eax); |
| |
| // Load the receiver. |
| ASSERT(!allocator()->is_used(edx)); |
| frame_->EmitPush(edx); |
| |
| // Call the function. |
| CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
| |
| } else if (property != NULL) { |
| // Check if the key is a literal string. |
| Literal* literal = property->key()->AsLiteral(); |
| |
| if (literal != NULL && literal->handle()->IsSymbol()) { |
| // ------------------------------------------------------------------ |
| // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' |
| // ------------------------------------------------------------------ |
| |
| Handle<String> name = Handle<String>::cast(literal->handle()); |
| |
| if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && |
| name->IsEqualTo(CStrVector("apply")) && |
| args->length() == 2 && |
| args->at(1)->AsVariableProxy() != NULL && |
| args->at(1)->AsVariableProxy()->IsArguments()) { |
| // Use the optimized Function.prototype.apply that avoids |
| // allocating lazily allocated arguments objects. |
| CallApplyLazy(property->obj(), |
| args->at(0), |
| args->at(1)->AsVariableProxy(), |
| node->position()); |
| |
| } else { |
| // Push the receiver onto the frame. |
| Load(property->obj()); |
| |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Push the name of the function onto the frame. |
| frame_->Push(name); |
| |
| // Call the IC initialization code. |
| CodeForSourcePosition(node->position()); |
| Result result = |
| frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, |
| loop_nesting()); |
| frame_->RestoreContextRegister(); |
| frame_->Push(&result); |
| } |
| |
| } else { |
| // ------------------------------------------- |
| // JavaScript example: 'array[index](1, 2, 3)' |
| // ------------------------------------------- |
| |
| // Load the function to call from the property through a reference. |
| |
| // Pass receiver to called function. |
| if (property->is_synthetic()) { |
| Reference ref(this, property); |
| ref.GetValue(); |
| // Use global object as receiver. |
| LoadGlobalReceiver(); |
| } else { |
| Load(property->obj()); |
| frame()->Dup(); |
| Load(property->key()); |
| Result function = EmitKeyedLoad(); |
| Result receiver = frame_->Pop(); |
| frame_->Push(&function); |
| frame_->Push(&receiver); |
| } |
| |
| // Call the function. |
| CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); |
| } |
| |
| } else { |
| // ---------------------------------- |
| // JavaScript example: 'foo(1, 2, 3)' // foo is not global |
| // ---------------------------------- |
| |
| // Load the function. |
| Load(function); |
| |
| // Pass the global proxy as the receiver. |
| LoadGlobalReceiver(); |
| |
| // Call the function. |
| CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitCallNew(CallNew* node) { |
| Comment cmnt(masm_, "[ CallNew"); |
| |
| // According to ECMA-262, section 11.2.2, page 44, the function |
| // expression in new calls must be evaluated before the |
| // arguments. This is different from ordinary calls, where the |
| // actual function to call is resolved after the arguments have been |
| // evaluated. |
| |
| // Compute function to call and use the global object as the |
| // receiver. There is no need to use the global proxy here because |
| // it will always be replaced with a newly allocated object. |
| Load(node->expression()); |
| LoadGlobal(); |
| |
| // Push the arguments ("left-to-right") on the stack. |
| ZoneList<Expression*>* args = node->arguments(); |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Call the construct call builtin that handles allocation and |
| // constructor invocation. |
| CodeForSourcePosition(node->position()); |
| Result result = frame_->CallConstructor(arg_count); |
| // Replace the function on the stack with the result. |
| frame_->SetElementAt(0, &result); |
| } |
| |
| |
| void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Result value = frame_->Pop(); |
| value.ToRegister(); |
| ASSERT(value.is_valid()); |
| __ test(value.reg(), Immediate(kSmiTagMask)); |
| value.Unuse(); |
| destination()->Split(zero); |
| } |
| |
| |
| void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
| // Conditionally generate a log call. |
| // Args: |
| // 0 (literal string): The type of logging (corresponds to the flags). |
| // This is used to determine whether or not to generate the log call. |
| // 1 (string): Format string. Access the string at argument index 2 |
| // with '%2s' (see Logger::LogRuntime for all the formats). |
| // 2 (array): Arguments to the format string. |
| ASSERT_EQ(args->length(), 3); |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| if (ShouldGenerateLog(args->at(0))) { |
| Load(args->at(1)); |
| Load(args->at(2)); |
| frame_->CallRuntime(Runtime::kLog, 2); |
| } |
| #endif |
| // Finally, we're expected to leave a value on the top of the stack. |
| frame_->Push(Factory::undefined_value()); |
| } |
| |
| |
| void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Result value = frame_->Pop(); |
| value.ToRegister(); |
| ASSERT(value.is_valid()); |
| __ test(value.reg(), Immediate(kSmiTagMask | 0x80000000)); |
| value.Unuse(); |
| destination()->Split(zero); |
| } |
| |
| |
| // This generates code that performs a charCodeAt() call or returns |
| // undefined in order to trigger the slow case, Runtime_StringCharCodeAt. |
| // It can handle flat, 8 and 16 bit characters and cons strings where the |
| // answer is found in the left hand branch of the cons. The slow case will |
| // flatten the string, which will ensure that the answer is in the left hand |
| // side the next time around. |
| void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) { |
| Comment(masm_, "[ GenerateFastCharCodeAt"); |
| ASSERT(args->length() == 2); |
| |
| Label slow_case; |
| Label end; |
| Label not_a_flat_string; |
| Label try_again_with_new_string; |
| Label ascii_string; |
| Label got_char_code; |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Result index = frame_->Pop(); |
| Result object = frame_->Pop(); |
| |
| // Get register ecx to use as shift amount later. |
| Result shift_amount; |
| if (object.is_register() && object.reg().is(ecx)) { |
| Result fresh = allocator_->Allocate(); |
| shift_amount = object; |
| object = fresh; |
| __ mov(object.reg(), ecx); |
| } |
| if (index.is_register() && index.reg().is(ecx)) { |
| Result fresh = allocator_->Allocate(); |
| shift_amount = index; |
| index = fresh; |
| __ mov(index.reg(), ecx); |
| } |
| // There could be references to ecx in the frame. Allocating will |
| // spill them, otherwise spill explicitly. |
| if (shift_amount.is_valid()) { |
| frame_->Spill(ecx); |
| } else { |
| shift_amount = allocator()->Allocate(ecx); |
| } |
| ASSERT(shift_amount.is_register()); |
| ASSERT(shift_amount.reg().is(ecx)); |
| ASSERT(allocator_->count(ecx) == 1); |
| |
| // We will mutate the index register and possibly the object register. |
| // The case where they are somehow the same register is handled |
| // because we only mutate them in the case where the receiver is a |
| // heap object and the index is not. |
| object.ToRegister(); |
| index.ToRegister(); |
| frame_->Spill(object.reg()); |
| frame_->Spill(index.reg()); |
| |
| // We need a single extra temporary register. |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| |
| // There is no virtual frame effect from here up to the final result |
| // push. |
| |
| // If the receiver is a smi trigger the slow case. |
| ASSERT(kSmiTag == 0); |
| __ test(object.reg(), Immediate(kSmiTagMask)); |
| __ j(zero, &slow_case); |
| |
| // If the index is negative or non-smi trigger the slow case. |
| ASSERT(kSmiTag == 0); |
| __ test(index.reg(), Immediate(kSmiTagMask | 0x80000000)); |
| __ j(not_zero, &slow_case); |
| // Untag the index. |
| __ SmiUntag(index.reg()); |
| |
| __ bind(&try_again_with_new_string); |
| // Fetch the instance type of the receiver into ecx. |
| __ mov(ecx, FieldOperand(object.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| // If the receiver is not a string trigger the slow case. |
| __ test(ecx, Immediate(kIsNotStringMask)); |
| __ j(not_zero, &slow_case); |
| |
| // Fetch the length field into the temporary register. |
| __ mov(temp.reg(), FieldOperand(object.reg(), String::kLengthOffset)); |
| // Check for index out of range. |
| __ cmp(index.reg(), Operand(temp.reg())); |
| __ j(greater_equal, &slow_case); |
| // Reload the instance type (into the temp register this time).. |
| __ mov(temp.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); |
| |
| // We need special handling for non-flat strings. |
| ASSERT(kSeqStringTag == 0); |
| __ test(temp.reg(), Immediate(kStringRepresentationMask)); |
| __ j(not_zero, ¬_a_flat_string); |
| // Check for 1-byte or 2-byte string. |
| __ test(temp.reg(), Immediate(kStringEncodingMask)); |
| __ j(not_zero, &ascii_string); |
| |
| // 2-byte string. |
| // Load the 2-byte character code into the temp register. |
| __ movzx_w(temp.reg(), FieldOperand(object.reg(), |
| index.reg(), |
| times_2, |
| SeqTwoByteString::kHeaderSize)); |
| __ jmp(&got_char_code); |
| |
| // ASCII string. |
| __ bind(&ascii_string); |
| // Load the byte into the temp register. |
| __ movzx_b(temp.reg(), FieldOperand(object.reg(), |
| index.reg(), |
| times_1, |
| SeqAsciiString::kHeaderSize)); |
| __ bind(&got_char_code); |
| __ SmiTag(temp.reg()); |
| __ jmp(&end); |
| |
| // Handle non-flat strings. |
| __ bind(¬_a_flat_string); |
| __ and_(temp.reg(), kStringRepresentationMask); |
| __ cmp(temp.reg(), kConsStringTag); |
| __ j(not_equal, &slow_case); |
| |
| // ConsString. |
| // Check that the right hand side is the empty string (ie if this is really a |
| // flat string in a cons string). If that is not the case we would rather go |
| // to the runtime system now, to flatten the string. |
| __ mov(temp.reg(), FieldOperand(object.reg(), ConsString::kSecondOffset)); |
| __ cmp(Operand(temp.reg()), Factory::empty_string()); |
| __ j(not_equal, &slow_case); |
| // Get the first of the two strings. |
| __ mov(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset)); |
| __ jmp(&try_again_with_new_string); |
| |
| __ bind(&slow_case); |
| // Move the undefined value into the result register, which will |
| // trigger the slow case. |
| __ Set(temp.reg(), Immediate(Factory::undefined_value())); |
| |
| __ bind(&end); |
| frame_->Push(&temp); |
| } |
| |
| |
| void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Result value = frame_->Pop(); |
| value.ToRegister(); |
| ASSERT(value.is_valid()); |
| __ test(value.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(equal); |
| // It is a heap object - get map. |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| // Check if the object is a JS array or not. |
| __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg()); |
| value.Unuse(); |
| temp.Unuse(); |
| destination()->Split(equal); |
| } |
| |
| |
| void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Result value = frame_->Pop(); |
| value.ToRegister(); |
| ASSERT(value.is_valid()); |
| __ test(value.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(equal); |
| // It is a heap object - get map. |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| // Check if the object is a regexp. |
| __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, temp.reg()); |
| value.Unuse(); |
| temp.Unuse(); |
| destination()->Split(equal); |
| } |
| |
| |
| void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Result obj = frame_->Pop(); |
| obj.ToRegister(); |
| |
| __ test(obj.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(zero); |
| __ cmp(obj.reg(), Factory::null_value()); |
| destination()->true_target()->Branch(equal); |
| |
| Result map = allocator()->Allocate(); |
| ASSERT(map.is_valid()); |
| __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
| // Undetectable objects behave like undefined when tested with typeof. |
| __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kBitFieldOffset)); |
| __ test(map.reg(), Immediate(1 << Map::kIsUndetectable)); |
| destination()->false_target()->Branch(not_zero); |
| __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); |
| __ cmp(map.reg(), FIRST_JS_OBJECT_TYPE); |
| destination()->false_target()->Branch(less); |
| __ cmp(map.reg(), LAST_JS_OBJECT_TYPE); |
| obj.Unuse(); |
| map.Unuse(); |
| destination()->Split(less_equal); |
| } |
| |
| |
| void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (%_ClassOf(arg) === 'Function') |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Result obj = frame_->Pop(); |
| obj.ToRegister(); |
| __ test(obj.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(zero); |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, temp.reg()); |
| obj.Unuse(); |
| temp.Unuse(); |
| destination()->Split(equal); |
| } |
| |
| |
| void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Result obj = frame_->Pop(); |
| obj.ToRegister(); |
| __ test(obj.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(zero); |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| __ mov(temp.reg(), |
| FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(temp.reg(), |
| FieldOperand(temp.reg(), Map::kBitFieldOffset)); |
| __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable)); |
| obj.Unuse(); |
| temp.Unuse(); |
| destination()->Split(not_zero); |
| } |
| |
| |
| void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| |
| // Get the frame pointer for the calling frame. |
| Result fp = allocator()->Allocate(); |
| __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Skip the arguments adaptor frame if it exists. |
| Label check_frame_marker; |
| __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), |
| Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(not_equal, &check_frame_marker); |
| __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); |
| |
| // Check the marker in the calling frame. |
| __ bind(&check_frame_marker); |
| __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), |
| Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); |
| fp.Unuse(); |
| destination()->Split(equal); |
| } |
| |
| |
| void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| // ArgumentsAccessStub takes the parameter count as an input argument |
| // in register eax. Create a constant result for it. |
| Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); |
| // Call the shared stub to get to the arguments.length. |
| ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH); |
| Result result = frame_->CallStub(&stub, &count); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| JumpTarget leave, null, function, non_function_constructor; |
| Load(args->at(0)); // Load the object. |
| Result obj = frame_->Pop(); |
| obj.ToRegister(); |
| frame_->Spill(obj.reg()); |
| |
| // If the object is a smi, we return null. |
| __ test(obj.reg(), Immediate(kSmiTagMask)); |
| null.Branch(zero); |
| |
| // Check that the object is a JS object but take special care of JS |
| // functions to make sure they have 'Function' as their class. |
| { Result tmp = allocator()->Allocate(); |
| __ mov(obj.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(tmp.reg(), FieldOperand(obj.reg(), Map::kInstanceTypeOffset)); |
| __ cmp(tmp.reg(), FIRST_JS_OBJECT_TYPE); |
| null.Branch(less); |
| |
| // As long as JS_FUNCTION_TYPE is the last instance type and it is |
| // right after LAST_JS_OBJECT_TYPE, we can avoid checking for |
| // LAST_JS_OBJECT_TYPE. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
| __ cmp(tmp.reg(), JS_FUNCTION_TYPE); |
| function.Branch(equal); |
| } |
| |
| // Check if the constructor in the map is a function. |
| { Result tmp = allocator()->Allocate(); |
| __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); |
| __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg()); |
| non_function_constructor.Branch(not_equal); |
| } |
| |
| // The map register now contains the constructor function. Grab the |
| // instance class name from there. |
| __ mov(obj.reg(), |
| FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(obj.reg(), |
| FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset)); |
| frame_->Push(&obj); |
| leave.Jump(); |
| |
| // Functions have class 'Function'. |
| function.Bind(); |
| frame_->Push(Factory::function_class_symbol()); |
| leave.Jump(); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| non_function_constructor.Bind(); |
| frame_->Push(Factory::Object_symbol()); |
| leave.Jump(); |
| |
| // Non-JS objects have class null. |
| null.Bind(); |
| frame_->Push(Factory::null_value()); |
| |
| // All done. |
| leave.Bind(); |
| } |
| |
| |
| void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| JumpTarget leave; |
| Load(args->at(0)); // Load the object. |
| frame_->Dup(); |
| Result object = frame_->Pop(); |
| object.ToRegister(); |
| ASSERT(object.is_valid()); |
| // if (object->IsSmi()) return object. |
| __ test(object.reg(), Immediate(kSmiTagMask)); |
| leave.Branch(zero, taken); |
| // It is a heap object - get map. |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| // if (!object->IsJSValue()) return object. |
| __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); |
| leave.Branch(not_equal, not_taken); |
| __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); |
| object.Unuse(); |
| frame_->SetElementAt(0, &temp); |
| leave.Bind(); |
| } |
| |
| |
| void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| JumpTarget leave; |
| Load(args->at(0)); // Load the object. |
| Load(args->at(1)); // Load the value. |
| Result value = frame_->Pop(); |
| Result object = frame_->Pop(); |
| value.ToRegister(); |
| object.ToRegister(); |
| |
| // if (object->IsSmi()) return value. |
| __ test(object.reg(), Immediate(kSmiTagMask)); |
| leave.Branch(zero, &value, taken); |
| |
| // It is a heap object - get its map. |
| Result scratch = allocator_->Allocate(); |
| ASSERT(scratch.is_valid()); |
| // if (!object->IsJSValue()) return value. |
| __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); |
| leave.Branch(not_equal, &value, not_taken); |
| |
| // Store the value. |
| __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); |
| // Update the write barrier. Save the value as it will be |
| // overwritten by the write barrier code and is needed afterward. |
| Result duplicate_value = allocator_->Allocate(); |
| ASSERT(duplicate_value.is_valid()); |
| __ mov(duplicate_value.reg(), value.reg()); |
| // The object register is also overwritten by the write barrier and |
| // possibly aliased in the frame. |
| frame_->Spill(object.reg()); |
| __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), |
| scratch.reg()); |
| object.Unuse(); |
| scratch.Unuse(); |
| duplicate_value.Unuse(); |
| |
| // Leave. |
| leave.Bind(&value); |
| frame_->Push(&value); |
| } |
| |
| |
| void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| // ArgumentsAccessStub expects the key in edx and the formal |
| // parameter count in eax. |
| Load(args->at(0)); |
| Result key = frame_->Pop(); |
| // Explicitly create a constant result. |
| Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); |
| // Call the shared stub to get to arguments[key]. |
| ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
| Result result = frame_->CallStub(&stub, &key, &count); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| |
| // Load the two objects into registers and perform the comparison. |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Result right = frame_->Pop(); |
| Result left = frame_->Pop(); |
| right.ToRegister(); |
| left.ToRegister(); |
| __ cmp(right.reg(), Operand(left.reg())); |
| right.Unuse(); |
| left.Unuse(); |
| destination()->Split(equal); |
| } |
| |
| |
| void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| ASSERT(kSmiTag == 0); // EBP value is aligned, so it should look like Smi. |
| Result ebp_as_smi = allocator_->Allocate(); |
| ASSERT(ebp_as_smi.is_valid()); |
| __ mov(ebp_as_smi.reg(), Operand(ebp)); |
| frame_->Push(&ebp_as_smi); |
| } |
| |
| |
| void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| frame_->SpillAll(); |
| |
| // Make sure the frame is aligned like the OS expects. |
| static const int kFrameAlignment = OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| ASSERT(IsPowerOf2(kFrameAlignment)); |
| __ mov(edi, Operand(esp)); // Save in callee-saved register. |
| __ and_(esp, -kFrameAlignment); |
| } |
| |
| // Call V8::RandomPositiveSmi(). |
| __ call(FUNCTION_ADDR(V8::RandomPositiveSmi), RelocInfo::RUNTIME_ENTRY); |
| |
| // Restore stack pointer from callee-saved register edi. |
| if (kFrameAlignment > 0) { |
| __ mov(esp, Operand(edi)); |
| } |
| |
| Result result = allocator_->Allocate(eax); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| StringAddStub stub(NO_STRING_ADD_FLAGS); |
| Result answer = frame_->CallStub(&stub, 2); |
| frame_->Push(&answer); |
| } |
| |
| |
| void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(3, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| |
| SubStringStub stub; |
| Result answer = frame_->CallStub(&stub, 3); |
| frame_->Push(&answer); |
| } |
| |
| |
| void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| StringCompareStub stub; |
| Result answer = frame_->CallStub(&stub, 2); |
| frame_->Push(&answer); |
| } |
| |
| |
| void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 4); |
| |
| // Load the arguments on the stack and call the stub. |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| Load(args->at(3)); |
| RegExpExecStub stub; |
| Result result = frame_->CallStub(&stub, 4); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| |
| // Load the argument on the stack and call the stub. |
| Load(args->at(0)); |
| NumberToStringStub stub; |
| Result result = frame_->CallStub(&stub, 1); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| Load(args->at(0)); |
| TranscendentalCacheStub stub(TranscendentalCache::SIN); |
| Result result = frame_->CallStub(&stub, 1); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| Load(args->at(0)); |
| TranscendentalCacheStub stub(TranscendentalCache::COS); |
| Result result = frame_->CallStub(&stub, 1); |
| frame_->Push(&result); |
| } |
| |
| |
| void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
| if (CheckForInlineRuntimeCall(node)) { |
| return; |
| } |
| |
| ZoneList<Expression*>* args = node->arguments(); |
| Comment cmnt(masm_, "[ CallRuntime"); |
| Runtime::Function* function = node->function(); |
| |
| if (function == NULL) { |
| // Push the builtins object found in the current global object. |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| __ mov(temp.reg(), GlobalObject()); |
| __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); |
| frame_->Push(&temp); |
| } |
| |
| // Push the arguments ("left-to-right"). |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| if (function == NULL) { |
| // Call the JS runtime function. |
| frame_->Push(node->name()); |
| Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, |
| arg_count, |
| loop_nesting_); |
| frame_->RestoreContextRegister(); |
| frame_->Push(&answer); |
| } else { |
| // Call the C runtime function. |
| Result answer = frame_->CallRuntime(function, arg_count); |
| frame_->Push(&answer); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
| Comment cmnt(masm_, "[ UnaryOperation"); |
| |
| Token::Value op = node->op(); |
| |
| if (op == Token::NOT) { |
| // Swap the true and false targets but keep the same actual label |
| // as the fall through. |
| destination()->Invert(); |
| LoadCondition(node->expression(), destination(), true); |
| // Swap the labels back. |
| destination()->Invert(); |
| |
| } else if (op == Token::DELETE) { |
| Property* property = node->expression()->AsProperty(); |
| if (property != NULL) { |
| Load(property->obj()); |
| Load(property->key()); |
| Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); |
| frame_->Push(&answer); |
| return; |
| } |
| |
| Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
| if (variable != NULL) { |
| Slot* slot = variable->slot(); |
| if (variable->is_global()) { |
| LoadGlobal(); |
| frame_->Push(variable->name()); |
| Result answer = frame_->InvokeBuiltin(Builtins::DELETE, |
| CALL_FUNCTION, 2); |
| frame_->Push(&answer); |
| return; |
| |
| } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
| // Call the runtime to look up the context holding the named |
| // variable. Sync the virtual frame eagerly so we can push the |
| // arguments directly into place. |
| frame_->SyncRange(0, frame_->element_count() - 1); |
| frame_->EmitPush(esi); |
| frame_->EmitPush(Immediate(variable->name())); |
| Result context = frame_->CallRuntime(Runtime::kLookupContext, 2); |
| ASSERT(context.is_register()); |
| frame_->EmitPush(context.reg()); |
| context.Unuse(); |
| frame_->EmitPush(Immediate(variable->name())); |
| Result answer = frame_->InvokeBuiltin(Builtins::DELETE, |
| CALL_FUNCTION, 2); |
| frame_->Push(&answer); |
| return; |
| } |
| |
| // Default: Result of deleting non-global, not dynamically |
| // introduced variables is false. |
| frame_->Push(Factory::false_value()); |
| |
| } else { |
| // Default: Result of deleting expressions is true. |
| Load(node->expression()); // may have side-effects |
| frame_->SetElementAt(0, Factory::true_value()); |
| } |
| |
| } else if (op == Token::TYPEOF) { |
| // Special case for loading the typeof expression; see comment on |
| // LoadTypeofExpression(). |
| LoadTypeofExpression(node->expression()); |
| Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); |
| frame_->Push(&answer); |
| |
| } else if (op == Token::VOID) { |
| Expression* expression = node->expression(); |
| if (expression && expression->AsLiteral() && ( |
| expression->AsLiteral()->IsTrue() || |
| expression->AsLiteral()->IsFalse() || |
| expression->AsLiteral()->handle()->IsNumber() || |
| expression->AsLiteral()->handle()->IsString() || |
| expression->AsLiteral()->handle()->IsJSRegExp() || |
| expression->AsLiteral()->IsNull())) { |
| // Omit evaluating the value of the primitive literal. |
| // It will be discarded anyway, and can have no side effect. |
| frame_->Push(Factory::undefined_value()); |
| } else { |
| Load(node->expression()); |
| frame_->SetElementAt(0, Factory::undefined_value()); |
| } |
| |
| } else { |
| Load(node->expression()); |
| bool overwrite = |
| (node->expression()->AsBinaryOperation() != NULL && |
| node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); |
| switch (op) { |
| case Token::SUB: { |
| GenericUnaryOpStub stub(Token::SUB, overwrite); |
| Result operand = frame_->Pop(); |
| Result answer = frame_->CallStub(&stub, &operand); |
| frame_->Push(&answer); |
| break; |
| } |
| |
| case Token::BIT_NOT: { |
| // Smi check. |
| JumpTarget smi_label; |
| JumpTarget continue_label; |
| Result operand = frame_->Pop(); |
| operand.ToRegister(); |
| __ test(operand.reg(), Immediate(kSmiTagMask)); |
| smi_label.Branch(zero, &operand, taken); |
| |
| GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); |
| Result answer = frame_->CallStub(&stub, &operand); |
| continue_label.Jump(&answer); |
| |
| smi_label.Bind(&answer); |
| answer.ToRegister(); |
| frame_->Spill(answer.reg()); |
| __ not_(answer.reg()); |
| __ and_(answer.reg(), ~kSmiTagMask); // Remove inverted smi-tag. |
| |
| continue_label.Bind(&answer); |
| frame_->Push(&answer); |
| break; |
| } |
| |
| case Token::ADD: { |
| // Smi check. |
| JumpTarget continue_label; |
| Result operand = frame_->Pop(); |
| operand.ToRegister(); |
| __ test(operand.reg(), Immediate(kSmiTagMask)); |
| continue_label.Branch(zero, &operand, taken); |
| |
| frame_->Push(&operand); |
| Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, |
| CALL_FUNCTION, 1); |
| |
| continue_label.Bind(&answer); |
| frame_->Push(&answer); |
| break; |
| } |
| |
| default: |
| // NOT, DELETE, TYPEOF, and VOID are handled outside the |
| // switch. |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| |
| // The value in dst was optimistically incremented or decremented. The |
| // result overflowed or was not smi tagged. Undo the operation, call |
| // into the runtime to convert the argument to a number, and call the |
| // specialized add or subtract stub. The result is left in dst. |
| class DeferredPrefixCountOperation: public DeferredCode { |
| public: |
| DeferredPrefixCountOperation(Register dst, bool is_increment) |
| : dst_(dst), is_increment_(is_increment) { |
| set_comment("[ DeferredCountOperation"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register dst_; |
| bool is_increment_; |
| }; |
| |
| |
| void DeferredPrefixCountOperation::Generate() { |
| // Undo the optimistic smi operation. |
| if (is_increment_) { |
| __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); |
| } else { |
| __ add(Operand(dst_), Immediate(Smi::FromInt(1))); |
| } |
| __ push(dst_); |
| __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); |
| __ push(eax); |
| __ push(Immediate(Smi::FromInt(1))); |
| if (is_increment_) { |
| __ CallRuntime(Runtime::kNumberAdd, 2); |
| } else { |
| __ CallRuntime(Runtime::kNumberSub, 2); |
| } |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| } |
| |
| |
| // The value in dst was optimistically incremented or decremented. The |
| // result overflowed or was not smi tagged. Undo the operation and call |
| // into the runtime to convert the argument to a number. Update the |
| // original value in old. Call the specialized add or subtract stub. |
| // The result is left in dst. |
| class DeferredPostfixCountOperation: public DeferredCode { |
| public: |
| DeferredPostfixCountOperation(Register dst, Register old, bool is_increment) |
| : dst_(dst), old_(old), is_increment_(is_increment) { |
| set_comment("[ DeferredCountOperation"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register dst_; |
| Register old_; |
| bool is_increment_; |
| }; |
| |
| |
| void DeferredPostfixCountOperation::Generate() { |
| // Undo the optimistic smi operation. |
| if (is_increment_) { |
| __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); |
| } else { |
| __ add(Operand(dst_), Immediate(Smi::FromInt(1))); |
| } |
| __ push(dst_); |
| __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); |
| |
| // Save the result of ToNumber to use as the old value. |
| __ push(eax); |
| |
| // Call the runtime for the addition or subtraction. |
| __ push(eax); |
| __ push(Immediate(Smi::FromInt(1))); |
| if (is_increment_) { |
| __ CallRuntime(Runtime::kNumberAdd, 2); |
| } else { |
| __ CallRuntime(Runtime::kNumberSub, 2); |
| } |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| __ pop(old_); |
| } |
| |
| |
| void CodeGenerator::VisitCountOperation(CountOperation* node) { |
| Comment cmnt(masm_, "[ CountOperation"); |
| |
| bool is_postfix = node->is_postfix(); |
| bool is_increment = node->op() == Token::INC; |
| |
| Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
| bool is_const = (var != NULL && var->mode() == Variable::CONST); |
| |
| // Postfix operations need a stack slot under the reference to hold |
| // the old value while the new value is being stored. This is so that |
| // in the case that storing the new value requires a call, the old |
| // value will be in the frame to be spilled. |
| if (is_postfix) frame_->Push(Smi::FromInt(0)); |
| |
| // A constant reference is not saved to, so a constant reference is not a |
| // compound assignment reference. |
| { Reference target(this, node->expression(), !is_const); |
| if (target.is_illegal()) { |
| // Spoof the virtual frame to have the expected height (one higher |
| // than on entry). |
| if (!is_postfix) frame_->Push(Smi::FromInt(0)); |
| return; |
| } |
| target.TakeValue(); |
| |
| Result new_value = frame_->Pop(); |
| new_value.ToRegister(); |
| |
| Result old_value; // Only allocated in the postfix case. |
| if (is_postfix) { |
| // Allocate a temporary to preserve the old value. |
| old_value = allocator_->Allocate(); |
| ASSERT(old_value.is_valid()); |
| __ mov(old_value.reg(), new_value.reg()); |
| } |
| // Ensure the new value is writable. |
| frame_->Spill(new_value.reg()); |
| |
| // In order to combine the overflow and the smi tag check, we need |
| // to be able to allocate a byte register. We attempt to do so |
| // without spilling. If we fail, we will generate separate overflow |
| // and smi tag checks. |
| // |
| // We allocate and clear the temporary byte register before |
| // performing the count operation since clearing the register using |
| // xor will clear the overflow flag. |
| Result tmp = allocator_->AllocateByteRegisterWithoutSpilling(); |
| if (tmp.is_valid()) { |
| __ Set(tmp.reg(), Immediate(0)); |
| } |
| |
| DeferredCode* deferred = NULL; |
| if (is_postfix) { |
| deferred = new DeferredPostfixCountOperation(new_value.reg(), |
| old_value.reg(), |
| is_increment); |
| } else { |
| deferred = new DeferredPrefixCountOperation(new_value.reg(), |
| is_increment); |
| } |
| |
| if (is_increment) { |
| __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); |
| } else { |
| __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); |
| } |
| |
| // If the count operation didn't overflow and the result is a valid |
| // smi, we're done. Otherwise, we jump to the deferred slow-case |
| // code. |
| if (tmp.is_valid()) { |
| // We combine the overflow and the smi tag check if we could |
| // successfully allocate a temporary byte register. |
| __ setcc(overflow, tmp.reg()); |
| __ or_(Operand(tmp.reg()), new_value.reg()); |
| __ test(tmp.reg(), Immediate(kSmiTagMask)); |
| tmp.Unuse(); |
| deferred->Branch(not_zero); |
| } else { |
| // Otherwise we test separately for overflow and smi tag. |
| deferred->Branch(overflow); |
| __ test(new_value.reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| } |
| deferred->BindExit(); |
| |
| // Postfix: store the old value in the allocated slot under the |
| // reference. |
| if (is_postfix) frame_->SetElementAt(target.size(), &old_value); |
| |
| frame_->Push(&new_value); |
| // Non-constant: update the reference. |
| if (!is_const) target.SetValue(NOT_CONST_INIT); |
| } |
| |
| // Postfix: drop the new value and use the old. |
| if (is_postfix) frame_->Drop(); |
| } |
| |
| |
| void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
| Comment cmnt(masm_, "[ BinaryOperation"); |
| Token::Value op = node->op(); |
| |
| // According to ECMA-262 section 11.11, page 58, the binary logical |
| // operators must yield the result of one of the two expressions |
| // before any ToBoolean() conversions. This means that the value |
| // produced by a && or || operator is not necessarily a boolean. |
| |
| // NOTE: If the left hand side produces a materialized value (not |
| // control flow), we force the right hand side to do the same. This |
| // is necessary because we assume that if we get control flow on the |
| // last path out of an expression we got it on all paths. |
| if (op == Token::AND) { |
| JumpTarget is_true; |
| ControlDestination dest(&is_true, destination()->false_target(), true); |
| LoadCondition(node->left(), &dest, false); |
| |
| if (dest.false_was_fall_through()) { |
| // The current false target was used as the fall-through. If |
| // there are no dangling jumps to is_true then the left |
| // subexpression was unconditionally false. Otherwise we have |
| // paths where we do have to evaluate the right subexpression. |
| if (is_true.is_linked()) { |
| // We need to compile the right subexpression. If the jump to |
| // the current false target was a forward jump then we have a |
| // valid frame, we have just bound the false target, and we |
| // have to jump around the code for the right subexpression. |
| if (has_valid_frame()) { |
| destination()->false_target()->Unuse(); |
| destination()->false_target()->Jump(); |
| } |
| is_true.Bind(); |
| // The left subexpression compiled to control flow, so the |
| // right one is free to do so as well. |
| LoadCondition(node->right(), destination(), false); |
| } else { |
| // We have actually just jumped to or bound the current false |
| // target but the current control destination is not marked as |
| // used. |
| destination()->Use(false); |
| } |
| |
| } else if (dest.is_used()) { |
| // The left subexpression compiled to control flow (and is_true |
| // was just bound), so the right is free to do so as well. |
| LoadCondition(node->right(), destination(), false); |
| |
| } else { |
| // We have a materialized value on the frame, so we exit with |
| // one on all paths. There are possibly also jumps to is_true |
| // from nested subexpressions. |
| JumpTarget pop_and_continue; |
| JumpTarget exit; |
| |
| // Avoid popping the result if it converts to 'false' using the |
| // standard ToBoolean() conversion as described in ECMA-262, |
| // section 9.2, page 30. |
| // |
| // Duplicate the TOS value. The duplicate will be popped by |
| // ToBoolean. |
| frame_->Dup(); |
| ControlDestination dest(&pop_and_continue, &exit, true); |
| ToBoolean(&dest); |
| |
| // Pop the result of evaluating the first part. |
| frame_->Drop(); |
| |
| // Compile right side expression. |
| is_true.Bind(); |
| Load(node->right()); |
| |
| // Exit (always with a materialized value). |
| exit.Bind(); |
| } |
| |
| } else if (op == Token::OR) { |
| JumpTarget is_false; |
| ControlDestination dest(destination()->true_target(), &is_false, false); |
| LoadCondition(node->left(), &dest, false); |
| |
| if (dest.true_was_fall_through()) { |
| // The current true target was used as the fall-through. If |
| // there are no dangling jumps to is_false then the left |
| // subexpression was unconditionally true. Otherwise we have |
| // paths where we do have to evaluate the right subexpression. |
| if (is_false.is_linked()) { |
| // We need to compile the right subexpression. If the jump to |
| // the current true target was a forward jump then we have a |
| // valid frame, we have just bound the true target, and we |
| // have to jump around the code for the right subexpression. |
| if (has_valid_frame()) { |
| destination()->true_target()->Unuse(); |
| destination()->true_target()->Jump(); |
| } |
| is_false.Bind(); |
| // The left subexpression compiled to control flow, so the |
| // right one is free to do so as well. |
| LoadCondition(node->right(), destination(), false); |
| } else { |
| // We have just jumped to or bound the current true target but |
| // the current control destination is not marked as used. |
| destination()->Use(true); |
| } |
| |
| } else if (dest.is_used()) { |
| // The left subexpression compiled to control flow (and is_false |
| // was just bound), so the right is free to do so as well. |
| LoadCondition(node->right(), destination(), false); |
| |
| } else { |
| // We have a materialized value on the frame, so we exit with |
| // one on all paths. There are possibly also jumps to is_false |
| // from nested subexpressions. |
| JumpTarget pop_and_continue; |
| JumpTarget exit; |
| |
| // Avoid popping the result if it converts to 'true' using the |
| // standard ToBoolean() conversion as described in ECMA-262, |
| // section 9.2, page 30. |
| // |
| // Duplicate the TOS value. The duplicate will be popped by |
| // ToBoolean. |
| frame_->Dup(); |
| ControlDestination dest(&exit, &pop_and_continue, false); |
| ToBoolean(&dest); |
| |
| // Pop the result of evaluating the first part. |
| frame_->Drop(); |
| |
| // Compile right side expression. |
| is_false.Bind(); |
| Load(node->right()); |
| |
| // Exit (always with a materialized value). |
| exit.Bind(); |
| } |
| |
| } else { |
| // NOTE: The code below assumes that the slow cases (calls to runtime) |
| // never return a constant/immutable object. |
| OverwriteMode overwrite_mode = NO_OVERWRITE; |
| if (node->left()->AsBinaryOperation() != NULL && |
| node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) { |
| overwrite_mode = OVERWRITE_LEFT; |
| } else if (node->right()->AsBinaryOperation() != NULL && |
| node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) { |
| overwrite_mode = OVERWRITE_RIGHT; |
| } |
| |
| Load(node->left()); |
| Load(node->right()); |
| GenericBinaryOperation(node->op(), node->type(), overwrite_mode); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
| frame_->PushFunction(); |
| } |
| |
| |
| void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
| Comment cmnt(masm_, "[ CompareOperation"); |
| |
| bool left_already_loaded = false; |
| |
| // Get the expressions from the node. |
| Expression* left = node->left(); |
| Expression* right = node->right(); |
| Token::Value op = node->op(); |
| // To make typeof testing for natives implemented in JavaScript really |
| // efficient, we generate special code for expressions of the form: |
| // 'typeof <expression> == <string>'. |
| UnaryOperation* operation = left->AsUnaryOperation(); |
| if ((op == Token::EQ || op == Token::EQ_STRICT) && |
| (operation != NULL && operation->op() == Token::TYPEOF) && |
| (right->AsLiteral() != NULL && |
| right->AsLiteral()->handle()->IsString())) { |
| Handle<String> check(String::cast(*right->AsLiteral()->handle())); |
| |
| // Load the operand and move it to a register. |
| LoadTypeofExpression(operation->expression()); |
| Result answer = frame_->Pop(); |
| answer.ToRegister(); |
| |
| if (check->Equals(Heap::number_symbol())) { |
| __ test(answer.reg(), Immediate(kSmiTagMask)); |
| destination()->true_target()->Branch(zero); |
| frame_->Spill(answer.reg()); |
| __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
| __ cmp(answer.reg(), Factory::heap_number_map()); |
| answer.Unuse(); |
| destination()->Split(equal); |
| |
| } else if (check->Equals(Heap::string_symbol())) { |
| __ test(answer.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(zero); |
| |
| // It can be an undetectable string object. |
| Result temp = allocator()->Allocate(); |
| ASSERT(temp.is_valid()); |
| __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kBitFieldOffset)); |
| __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable)); |
| destination()->false_target()->Branch(not_zero); |
| __ CmpObjectType(answer.reg(), FIRST_NONSTRING_TYPE, temp.reg()); |
| temp.Unuse(); |
| answer.Unuse(); |
| destination()->Split(below); |
| |
| } else if (check->Equals(Heap::boolean_symbol())) { |
| __ cmp(answer.reg(), Factory::true_value()); |
| destination()->true_target()->Branch(equal); |
| __ cmp(answer.reg(), Factory::false_value()); |
| answer.Unuse(); |
| destination()->Split(equal); |
| |
| } else if (check->Equals(Heap::undefined_symbol())) { |
| __ cmp(answer.reg(), Factory::undefined_value()); |
| destination()->true_target()->Branch(equal); |
| |
| __ test(answer.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(zero); |
| |
| // It can be an undetectable object. |
| frame_->Spill(answer.reg()); |
| __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(answer.reg(), |
| FieldOperand(answer.reg(), Map::kBitFieldOffset)); |
| __ test(answer.reg(), Immediate(1 << Map::kIsUndetectable)); |
| answer.Unuse(); |
| destination()->Split(not_zero); |
| |
| } else if (check->Equals(Heap::function_symbol())) { |
| __ test(answer.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(zero); |
| frame_->Spill(answer.reg()); |
| __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); |
| destination()->true_target()->Branch(equal); |
| // Regular expressions are callable so typeof == 'function'. |
| __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); |
| answer.Unuse(); |
| destination()->Split(equal); |
| } else if (check->Equals(Heap::object_symbol())) { |
| __ test(answer.reg(), Immediate(kSmiTagMask)); |
| destination()->false_target()->Branch(zero); |
| __ cmp(answer.reg(), Factory::null_value()); |
| destination()->true_target()->Branch(equal); |
| |
| Result map = allocator()->Allocate(); |
| ASSERT(map.is_valid()); |
| // Regular expressions are typeof == 'function', not 'object'. |
| __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, map.reg()); |
| destination()->false_target()->Branch(equal); |
| |
| // It can be an undetectable object. |
| __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kBitFieldOffset)); |
| __ test(map.reg(), Immediate(1 << Map::kIsUndetectable)); |
| destination()->false_target()->Branch(not_zero); |
| __ mov(map.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); |
| __ cmp(map.reg(), FIRST_JS_OBJECT_TYPE); |
| destination()->false_target()->Branch(less); |
| __ cmp(map.reg(), LAST_JS_OBJECT_TYPE); |
| answer.Unuse(); |
| map.Unuse(); |
| destination()->Split(less_equal); |
| } else { |
| // Uncommon case: typeof testing against a string literal that is |
| // never returned from the typeof operator. |
| answer.Unuse(); |
| destination()->Goto(false); |
| } |
| return; |
| } else if (op == Token::LT && |
| right->AsLiteral() != NULL && |
| right->AsLiteral()->handle()->IsHeapNumber()) { |
| Handle<HeapNumber> check(HeapNumber::cast(*right->AsLiteral()->handle())); |
| if (check->value() == 2147483648.0) { // 0x80000000. |
| Load(left); |
| left_already_loaded = true; |
| Result lhs = frame_->Pop(); |
| lhs.ToRegister(); |
| __ test(lhs.reg(), Immediate(kSmiTagMask)); |
| destination()->true_target()->Branch(zero); // All Smis are less. |
| Result scratch = allocator()->Allocate(); |
| ASSERT(scratch.is_valid()); |
| __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapObject::kMapOffset)); |
| __ cmp(scratch.reg(), Factory::heap_number_map()); |
| JumpTarget not_a_number; |
| not_a_number.Branch(not_equal, &lhs); |
| __ mov(scratch.reg(), |
| FieldOperand(lhs.reg(), HeapNumber::kExponentOffset)); |
| __ cmp(Operand(scratch.reg()), Immediate(0xfff00000)); |
| not_a_number.Branch(above_equal, &lhs); // It's a negative NaN or -Inf. |
| const uint32_t borderline_exponent = |
| (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; |
| __ cmp(Operand(scratch.reg()), Immediate(borderline_exponent)); |
| scratch.Unuse(); |
| lhs.Unuse(); |
| destination()->true_target()->Branch(less); |
| destination()->false_target()->Jump(); |
| |
| not_a_number.Bind(&lhs); |
| frame_->Push(&lhs); |
| } |
| } |
| |
| Condition cc = no_condition; |
| bool strict = false; |
| switch (op) { |
| case Token::EQ_STRICT: |
| strict = true; |
| // Fall through |
| case Token::EQ: |
| cc = equal; |
| break; |
| case Token::LT: |
| cc = less; |
| break; |
| case Token::GT: |
| cc = greater; |
| break; |
| case Token::LTE: |
| cc = less_equal; |
| break; |
| case Token::GTE: |
| cc = greater_equal; |
| break; |
| case Token::IN: { |
| if (!left_already_loaded) Load(left); |
| Load(right); |
| Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); |
| frame_->Push(&answer); // push the result |
| return; |
| } |
| case Token::INSTANCEOF: { |
| if (!left_already_loaded) Load(left); |
| Load(right); |
| InstanceofStub stub; |
| Result answer = frame_->CallStub(&stub, 2); |
| answer.ToRegister(); |
| __ test(answer.reg(), Operand(answer.reg())); |
| answer.Unuse(); |
| destination()->Split(zero); |
| return; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| if (!left_already_loaded) Load(left); |
| Load(right); |
| Comparison(node, cc, strict, destination()); |
| } |
| |
| |
| #ifdef DEBUG |
| bool CodeGenerator::HasValidEntryRegisters() { |
| return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0)) |
| && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0)) |
| && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0)) |
| && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0)) |
| && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0)); |
| } |
| #endif |
| |
| |
| // Emit a LoadIC call to get the value from receiver and leave it in |
| // dst. |
| class DeferredReferenceGetNamedValue: public DeferredCode { |
| public: |
| DeferredReferenceGetNamedValue(Register dst, |
| Register receiver, |
| Handle<String> name) |
| : dst_(dst), receiver_(receiver), name_(name) { |
| set_comment("[ DeferredReferenceGetNamedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| Label* patch_site() { return &patch_site_; } |
| |
| private: |
| Label patch_site_; |
| Register dst_; |
| Register receiver_; |
| Handle<String> name_; |
| }; |
| |
| |
| void DeferredReferenceGetNamedValue::Generate() { |
| if (!receiver_.is(eax)) { |
| __ mov(eax, receiver_); |
| } |
| __ Set(ecx, Immediate(name_)); |
| Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); |
| __ call(ic, RelocInfo::CODE_TARGET); |
| // The call must be followed by a test eax instruction to indicate |
| // that the inobject property case was inlined. |
| // |
| // Store the delta to the map check instruction here in the test |
| // instruction. Use masm_-> instead of the __ macro since the |
| // latter can't return a value. |
| int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
| // Here we use masm_-> instead of the __ macro because this is the |
| // instruction that gets patched and coverage code gets in the way. |
| masm_->test(eax, Immediate(-delta_to_patch_site)); |
| __ IncrementCounter(&Counters::named_load_inline_miss, 1); |
| |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| } |
| |
| |
| class DeferredReferenceGetKeyedValue: public DeferredCode { |
| public: |
| explicit DeferredReferenceGetKeyedValue(Register dst, |
| Register receiver, |
| Register key) |
| : dst_(dst), receiver_(receiver), key_(key) { |
| set_comment("[ DeferredReferenceGetKeyedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| Label* patch_site() { return &patch_site_; } |
| |
| private: |
| Label patch_site_; |
| Register dst_; |
| Register receiver_; |
| Register key_; |
| }; |
| |
| |
| void DeferredReferenceGetKeyedValue::Generate() { |
| if (!receiver_.is(eax)) { |
| // Register eax is available for key. |
| if (!key_.is(eax)) { |
| __ mov(eax, key_); |
| } |
| if (!receiver_.is(edx)) { |
| __ mov(edx, receiver_); |
| } |
| } else if (!key_.is(edx)) { |
| // Register edx is available for receiver. |
| if (!receiver_.is(edx)) { |
| __ mov(edx, receiver_); |
| } |
| if (!key_.is(eax)) { |
| __ mov(eax, key_); |
| } |
| } else { |
| __ xchg(edx, eax); |
| } |
| // Calculate the delta from the IC call instruction to the map check |
| // cmp instruction in the inlined version. This delta is stored in |
| // a test(eax, delta) instruction after the call so that we can find |
| // it in the IC initialization code and patch the cmp instruction. |
| // This means that we cannot allow test instructions after calls to |
| // KeyedLoadIC stubs in other places. |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); |
| __ call(ic, RelocInfo::CODE_TARGET); |
| // The delta from the start of the map-compare instruction to the |
| // test instruction. We use masm_-> directly here instead of the __ |
| // macro because the macro sometimes uses macro expansion to turn |
| // into something that can't return a value. This is encountered |
| // when doing generated code coverage tests. |
| int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
| // Here we use masm_-> instead of the __ macro because this is the |
| // instruction that gets patched and coverage code gets in the way. |
| masm_->test(eax, Immediate(-delta_to_patch_site)); |
| __ IncrementCounter(&Counters::keyed_load_inline_miss, 1); |
| |
| if (!dst_.is(eax)) __ mov(dst_, eax); |
| } |
| |
| |
| class DeferredReferenceSetKeyedValue: public DeferredCode { |
| public: |
| DeferredReferenceSetKeyedValue(Register value, |
| Register key, |
| Register receiver) |
| : value_(value), key_(key), receiver_(receiver) { |
| set_comment("[ DeferredReferenceSetKeyedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| Label* patch_site() { return &patch_site_; } |
| |
| private: |
| Register value_; |
| Register key_; |
| Register receiver_; |
| Label patch_site_; |
| }; |
| |
| |
| void DeferredReferenceSetKeyedValue::Generate() { |
| __ IncrementCounter(&Counters::keyed_store_inline_miss, 1); |
| // Push receiver and key arguments on the stack. |
| __ push(receiver_); |
| __ push(key_); |
| // Move value argument to eax as expected by the IC stub. |
| if (!value_.is(eax)) __ mov(eax, value_); |
| // Call the IC stub. |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); |
| __ call(ic, RelocInfo::CODE_TARGET); |
| // The delta from the start of the map-compare instruction to the |
| // test instruction. We use masm_-> directly here instead of the |
| // __ macro because the macro sometimes uses macro expansion to turn |
| // into something that can't return a value. This is encountered |
| // when doing generated code coverage tests. |
| int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
| // Here we use masm_-> instead of the __ macro because this is the |
| // instruction that gets patched and coverage code gets in the way. |
| masm_->test(eax, Immediate(-delta_to_patch_site)); |
| // Restore value (returned from store IC), key and receiver |
| // registers. |
| if (!value_.is(eax)) __ mov(value_, eax); |
| __ pop(key_); |
| __ pop(receiver_); |
| } |
| |
| |
| Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { |
| #ifdef DEBUG |
| int original_height = frame()->height(); |
| #endif |
| Result result; |
| // Do not inline the inobject property case for loads from the global |
| // object. Also do not inline for unoptimized code. This saves time in |
| // the code generator. Unoptimized code is toplevel code or code that is |
| // not in a loop. |
| if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { |
| Comment cmnt(masm(), "[ Load from named Property"); |
| frame()->Push(name); |
| |
| RelocInfo::Mode mode = is_contextual |
| ? RelocInfo::CODE_TARGET_CONTEXT |
| : RelocInfo::CODE_TARGET; |
| result = frame()->CallLoadIC(mode); |
| // A test eax instruction following the call signals that the inobject |
| // property case was inlined. Ensure that there is not a test eax |
| // instruction here. |
| __ nop(); |
| } else { |
| // Inline the inobject property case. |
| Comment cmnt(masm(), "[ Inlined named property load"); |
| Result receiver = frame()->Pop(); |
| receiver.ToRegister(); |
| |
| result = allocator()->Allocate(); |
| ASSERT(result.is_valid()); |
| DeferredReferenceGetNamedValue* deferred = |
| new DeferredReferenceGetNamedValue(result.reg(), receiver.reg(), name); |
| |
| // Check that the receiver is a heap object. |
| __ test(receiver.reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(zero); |
| |
| __ bind(deferred->patch_site()); |
| // This is the map check instruction that will be patched (so we can't |
| // use the double underscore macro that may insert instructions). |
| // Initially use an invalid map to force a failure. |
| masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), |
| Immediate(Factory::null_value())); |
| // This branch is always a forwards branch so it's always a fixed size |
| // which allows the assert below to succeed and patching to work. |
| deferred->Branch(not_equal); |
| |
| // The delta from the patch label to the load offset must be statically |
| // known. |
| ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) == |
| LoadIC::kOffsetToLoadInstruction); |
| // The initial (invalid) offset has to be large enough to force a 32-bit |
| // instruction encoding to allow patching with an arbitrary offset. Use |
| // kMaxInt (minus kHeapObjectTag). |
| int offset = kMaxInt; |
| masm()->mov(result.reg(), FieldOperand(receiver.reg(), offset)); |
| |
| __ IncrementCounter(&Counters::named_load_inline, 1); |
| deferred->BindExit(); |
| } |
| ASSERT(frame()->height() == original_height - 1); |
| return result; |
| } |
| |
| |
| Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { |
| #ifdef DEBUG |
| int expected_height = frame()->height() - (is_contextual ? 1 : 2); |
| #endif |
| Result result = frame()->CallStoreIC(name, is_contextual); |
| |
| ASSERT_EQ(expected_height, frame()->height()); |
| return result; |
| } |
| |
| |
| Result CodeGenerator::EmitKeyedLoad() { |
| #ifdef DEBUG |
| int original_height = frame()->height(); |
| #endif |
| Result result; |
| // Inline array load code if inside of a loop. We do not know the |
| // receiver map yet, so we initially generate the code with a check |
| // against an invalid map. In the inline cache code, we patch the map |
| // check if appropriate. |
| if (loop_nesting() > 0) { |
| Comment cmnt(masm_, "[ Inlined load from keyed Property"); |
| |
| Result key = frame_->Pop(); |
| Result receiver = frame_->Pop(); |
| key.ToRegister(); |
| receiver.ToRegister(); |
| |
| // Use a fresh temporary to load the elements without destroying |
| // the receiver which is needed for the deferred slow case. |
| Result elements = allocator()->Allocate(); |
| ASSERT(elements.is_valid()); |
| |
| // Use a fresh temporary for the index and later the loaded |
| // value. |
| result = allocator()->Allocate(); |
| ASSERT(result.is_valid()); |
| |
| DeferredReferenceGetKeyedValue* deferred = |
| new DeferredReferenceGetKeyedValue(result.reg(), |
| receiver.reg(), |
| key.reg()); |
| |
| __ test(receiver.reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(zero); |
| |
| // Initially, use an invalid map. The map is patched in the IC |
| // initialization code. |
| __ bind(deferred->patch_site()); |
| // Use masm-> here instead of the double underscore macro since extra |
| // coverage code can interfere with the patching. |
| masm_->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), |
| Immediate(Factory::null_value())); |
| deferred->Branch(not_equal); |
| |
| // Check that the key is a smi. |
| __ test(key.reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| |
| // Get the elements array from the receiver and check that it |
| // is not a dictionary. |
| __ mov(elements.reg(), |
| FieldOperand(receiver.reg(), JSObject::kElementsOffset)); |
| __ cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset), |
| Immediate(Factory::fixed_array_map())); |
| deferred->Branch(not_equal); |
| |
| // Shift the key to get the actual index value and check that |
| // it is within bounds. |
| __ mov(result.reg(), key.reg()); |
| __ SmiUntag(result.reg()); |
| __ cmp(result.reg(), |
| FieldOperand(elements.reg(), FixedArray::kLengthOffset)); |
| deferred->Branch(above_equal); |
| |
| // Load and check that the result is not the hole. |
| __ mov(result.reg(), Operand(elements.reg(), |
| result.reg(), |
| times_4, |
| FixedArray::kHeaderSize - kHeapObjectTag)); |
| elements.Unuse(); |
| __ cmp(Operand(result.reg()), Immediate(Factory::the_hole_value())); |
| deferred->Branch(equal); |
| __ IncrementCounter(&Counters::keyed_load_inline, 1); |
| |
| deferred->BindExit(); |
| } else { |
| Comment cmnt(masm_, "[ Load from keyed Property"); |
| result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET); |
| // Make sure that we do not have a test instruction after the |
| // call. A test instruction after the call is used to |
| // indicate that we have generated an inline version of the |
| // keyed load. The explicit nop instruction is here because |
| // the push that follows might be peep-hole optimized away. |
| __ nop(); |
| } |
| ASSERT(frame()->height() == original_height - 2); |
| return result; |
| } |
| |
| |
| Result CodeGenerator::EmitKeyedStore(StaticType* key_type) { |
| #ifdef DEBUG |
| int original_height = frame()->height(); |
| #endif |
| Result result; |
| // Generate inlined version of the keyed store if the code is in a loop |
| // and the key is likely to be a smi. |
| if (loop_nesting() > 0 && key_type->IsLikelySmi()) { |
| Comment cmnt(masm(), "[ Inlined store to keyed Property"); |
| |
| // Get the receiver, key and value into registers. |
| result = frame()->Pop(); |
| Result key = frame()->Pop(); |
| Result receiver = frame()->Pop(); |
| |
| Result tmp = allocator_->Allocate(); |
| ASSERT(tmp.is_valid()); |
| |
| // Determine whether the value is a constant before putting it in a |
| // register. |
| bool value_is_constant = result.is_constant(); |
| |
| // Make sure that value, key and receiver are in registers. |
| result.ToRegister(); |
| key.ToRegister(); |
| receiver.ToRegister(); |
| |
| DeferredReferenceSetKeyedValue* deferred = |
| new DeferredReferenceSetKeyedValue(result.reg(), |
| key.reg(), |
| receiver.reg()); |
| |
| // Check that the value is a smi if it is not a constant. We can skip |
| // the write barrier for smis and constants. |
| if (!value_is_constant) { |
| __ test(result.reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(not_zero); |
| } |
| |
| // Check that the key is a non-negative smi. |
| __ test(key.reg(), Immediate(kSmiTagMask | 0x80000000)); |
| deferred->Branch(not_zero); |
| |
| // Check that the receiver is not a smi. |
| __ test(receiver.reg(), Immediate(kSmiTagMask)); |
| deferred->Branch(zero); |
| |
| // Check that the receiver is a JSArray. |
| __ mov(tmp.reg(), |
| FieldOperand(receiver.reg(), HeapObject::kMapOffset)); |
| __ movzx_b(tmp.reg(), |
| FieldOperand(tmp.reg(), Map::kInstanceTypeOffset)); |
| __ cmp(tmp.reg(), JS_ARRAY_TYPE); |
| deferred->Branch(not_equal); |
| |
| // Check that the key is within bounds. Both the key and the length of |
| // the JSArray are smis. |
| __ cmp(key.reg(), |
| FieldOperand(receiver.reg(), JSArray::kLengthOffset)); |
| deferred->Branch(greater_equal); |
| |
| // Get the elements array from the receiver and check that it is not a |
| // dictionary. |
| __ mov(tmp.reg(), |
| FieldOperand(receiver.reg(), JSObject::kElementsOffset)); |
| // Bind the deferred code patch site to be able to locate the fixed |
| // array map comparison. When debugging, we patch this comparison to |
| // always fail so that we will hit the IC call in the deferred code |
| // which will allow the debugger to break for fast case stores. |
| __ bind(deferred->patch_site()); |
| __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), |
| Immediate(Factory::fixed_array_map())); |
| deferred->Branch(not_equal); |
| |
| // Store the value. |
| __ mov(Operand(tmp.reg(), |
| key.reg(), |
| times_2, |
| FixedArray::kHeaderSize - kHeapObjectTag), |
| result.reg()); |
| __ IncrementCounter(&Counters::keyed_store_inline, 1); |
| |
| deferred->BindExit(); |
| } else { |
| result = frame()->CallKeyedStoreIC(); |
| // Make sure that we do not have a test instruction after the |
| // call. A test instruction after the call is used to |
| // indicate that we have generated an inline version of the |
| // keyed store. |
| __ nop(); |
| frame()->Drop(2); |
| } |
| ASSERT(frame()->height() == original_height - 3); |
| return result; |
| } |
| |
| |
| #undef __ |
| #define __ ACCESS_MASM(masm) |
| |
| |
| Handle<String> Reference::GetName() { |
| ASSERT(type_ == NAMED); |
| Property* property = expression_->AsProperty(); |
| if (property == NULL) { |
| // Global variable reference treated as a named property reference. |
| VariableProxy* proxy = expression_->AsVariableProxy(); |
| ASSERT(proxy->AsVariable() != NULL); |
| ASSERT(proxy->AsVariable()->is_global()); |
| return proxy->name(); |
| } else { |
| Literal* raw_name = property->key()->AsLiteral(); |
| ASSERT(raw_name != NULL); |
| return Handle<String>::cast(raw_name->handle()); |
| } |
| } |
| |
| |
| void Reference::GetValue() { |
| ASSERT(!cgen_->in_spilled_code()); |
| ASSERT(cgen_->HasValidEntryRegisters()); |
| ASSERT(!is_illegal()); |
| MacroAssembler* masm = cgen_->masm(); |
| |
| // Record the source position for the property load. |
| Property* property = expression_->AsProperty(); |
| if (property != NULL) { |
| cgen_->CodeForSourcePosition(property->position()); |
| } |
| |
| switch (type_) { |
| case SLOT: { |
| Comment cmnt(masm, "[ Load from Slot"); |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
| ASSERT(slot != NULL); |
| Result result = |
| cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
| if (!persist_after_get_) set_unloaded(); |
| cgen_->frame()->Push(&result); |
| break; |
| } |
| |
| case NAMED: { |
| Variable* var = expression_->AsVariableProxy()->AsVariable(); |
| bool is_global = var != NULL; |
| ASSERT(!is_global || var->is_global()); |
| if (persist_after_get_) cgen_->frame()->Dup(); |
| Result result = cgen_->EmitNamedLoad(GetName(), is_global); |
| if (!persist_after_get_) set_unloaded(); |
| cgen_->frame()->Push(&result); |
| break; |
| } |
| |
| case KEYED: { |
| if (persist_after_get_) { |
| cgen_->frame()->PushElementAt(1); |
| cgen_->frame()->PushElementAt(1); |
| } |
| Result value = cgen_->EmitKeyedLoad(); |
| cgen_->frame()->Push(&value); |
| if (!persist_after_get_) set_unloaded(); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void Reference::TakeValue() { |
| // For non-constant frame-allocated slots, we invalidate the value in the |
| // slot. For all others, we fall back on GetValue. |
| ASSERT(!cgen_->in_spilled_code()); |
| ASSERT(!is_illegal()); |
| if (type_ != SLOT) { |
| GetValue(); |
| return; |
| } |
| |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
| ASSERT(slot != NULL); |
| if (slot->type() == Slot::LOOKUP || |
| slot->type() == Slot::CONTEXT || |
| slot->var()->mode() == Variable::CONST || |
| slot->is_arguments()) { |
| GetValue(); |
| return; |
| } |
| |
| // Only non-constant, frame-allocated parameters and locals can |
| // reach here. Be careful not to use the optimizations for arguments |
| // object access since it may not have been initialized yet. |
| ASSERT(!slot->is_arguments()); |
| if (slot->type() == Slot::PARAMETER) { |
| cgen_->frame()->TakeParameterAt(slot->index()); |
| } else { |
| ASSERT(slot->type() == Slot::LOCAL); |
| cgen_->frame()->TakeLocalAt(slot->index()); |
| } |
| |
| ASSERT(persist_after_get_); |
| // Do not unload the reference, because it is used in SetValue. |
| } |
| |
| |
| void Reference::SetValue(InitState init_state) { |
| ASSERT(cgen_->HasValidEntryRegisters()); |
| ASSERT(!is_illegal()); |
| MacroAssembler* masm = cgen_->masm(); |
| switch (type_) { |
| case SLOT: { |
| Comment cmnt(masm, "[ Store to Slot"); |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
| ASSERT(slot != NULL); |
| cgen_->StoreToSlot(slot, init_state); |
| set_unloaded(); |
| break; |
| } |
| |
| case NAMED: { |
| Comment cmnt(masm, "[ Store to named Property"); |
| Result answer = cgen_->EmitNamedStore(GetName(), false); |
| cgen_->frame()->Push(&answer); |
| set_unloaded(); |
| break; |
| } |
| |
| case KEYED: { |
| Comment cmnt(masm, "[ Store to keyed Property"); |
| Property* property = expression()->AsProperty(); |
| ASSERT(property != NULL); |
| Result answer = cgen_->EmitKeyedStore(property->key()->type()); |
| cgen_->frame()->Push(&answer); |
| set_unloaded(); |
| break; |
| } |
| |
| case UNLOADED: |
| case ILLEGAL: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| // Clone the boilerplate in new space. Set the context to the |
| // current context in esi. |
| Label gc; |
| __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT); |
| |
| // Get the boilerplate function from the stack. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| |
| // Compute the function map in the current global context and set that |
| // as the map of the allocated object. |
| __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); |
| __ mov(ecx, Operand(ecx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
| __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx); |
| |
| // Clone the rest of the boilerplate fields. We don't have to update |
| // the write barrier because the allocated object is in new space. |
| for (int offset = kPointerSize; |
| offset < JSFunction::kSize; |
| offset += kPointerSize) { |
| if (offset == JSFunction::kContextOffset) { |
| __ mov(FieldOperand(eax, offset), esi); |
| } else { |
| __ mov(ebx, FieldOperand(edx, offset)); |
| __ mov(FieldOperand(eax, offset), ebx); |
| } |
| } |
| |
| // Return and remove the on-stack parameter. |
| __ ret(1 * kPointerSize); |
| |
| // Create a new closure through the slower runtime call. |
| __ bind(&gc); |
| __ pop(ecx); // Temporarily remove return address. |
| __ pop(edx); |
| __ push(esi); |
| __ push(edx); |
| __ push(ecx); // Restore return address. |
| __ TailCallRuntime(ExternalReference(Runtime::kNewClosure), 2, 1); |
| } |
| |
| |
| void FastNewContextStub::Generate(MacroAssembler* masm) { |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, |
| eax, ebx, ecx, &gc, TAG_OBJECT); |
| |
| // Get the function from the stack. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| |
| // Setup the object header. |
| __ mov(FieldOperand(eax, HeapObject::kMapOffset), Factory::context_map()); |
| __ mov(FieldOperand(eax, Array::kLengthOffset), Immediate(length)); |
| |
| // Setup the fixed slots. |
| __ xor_(ebx, Operand(ebx)); // Set to NULL. |
| __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx); |
| __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax); |
| __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx); |
| __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx); |
| |
| // Copy the global object from the surrounding context. We go through the |
| // context in the function (ecx) to match the allocation behavior we have |
| // in the runtime system (see Heap::AllocateFunctionContext). |
| __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset)); |
| __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx); |
| |
| // Initialize the rest of the slots to undefined. |
| __ mov(ebx, Factory::undefined_value()); |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| __ mov(Operand(eax, Context::SlotOffset(i)), ebx); |
| } |
| |
| // Return and remove the on-stack parameter. |
| __ mov(esi, Operand(eax)); |
| __ ret(1 * kPointerSize); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(ExternalReference(Runtime::kNewContext), 1, 1); |
| } |
| |
| |
| void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [esp + kPointerSize]: constant elements. |
| // [esp + (2 * kPointerSize)]: literal index. |
| // [esp + (3 * kPointerSize)]: literals array. |
| |
| // All sizes here are multiples of kPointerSize. |
| int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| int size = JSArray::kSize + elements_size; |
| |
| // Load boilerplate object into ecx and check if we need to create a |
| // boilerplate. |
| Label slow_case; |
| __ mov(ecx, Operand(esp, 3 * kPointerSize)); |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); |
| ASSERT((kPointerSize == 4) && (kSmiTagSize == 1) && (kSmiTag == 0)); |
| __ mov(ecx, FieldOperand(ecx, eax, times_2, FixedArray::kHeaderSize)); |
| __ cmp(ecx, Factory::undefined_value()); |
| __ j(equal, &slow_case); |
| |
| // Allocate both the JS array and the elements array in one big |
| // allocation. This avoids multiple limit checks. |
| __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT); |
| |
| // Copy the JS array part. |
| for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| __ mov(ebx, FieldOperand(ecx, i)); |
| __ mov(FieldOperand(eax, i), ebx); |
| } |
| } |
| |
| if (length_ > 0) { |
| // Get hold of the elements array of the boilerplate and setup the |
| // elements pointer in the resulting object. |
| __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
| __ lea(edx, Operand(eax, JSArray::kSize)); |
| __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx); |
| |
| // Copy the elements array. |
| for (int i = 0; i < elements_size; i += kPointerSize) { |
| __ mov(ebx, FieldOperand(ecx, i)); |
| __ mov(FieldOperand(edx, i), ebx); |
| } |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&slow_case); |
| ExternalReference runtime(Runtime::kCreateArrayLiteralShallow); |
| __ TailCallRuntime(runtime, 3, 1); |
| } |
| |
| |
| // NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined). |
| void ToBooleanStub::Generate(MacroAssembler* masm) { |
| Label false_result, true_result, not_string; |
| __ mov(eax, Operand(esp, 1 * kPointerSize)); |
| |
| // 'null' => false. |
| __ cmp(eax, Factory::null_value()); |
| __ j(equal, &false_result); |
| |
| // Get the map and type of the heap object. |
| __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset)); |
| |
| // Undetectable => false. |
| __ movzx_b(ebx, FieldOperand(edx, Map::kBitFieldOffset)); |
| __ and_(ebx, 1 << Map::kIsUndetectable); |
| __ j(not_zero, &false_result); |
| |
| // JavaScript object => true. |
| __ cmp(ecx, FIRST_JS_OBJECT_TYPE); |
| __ j(above_equal, &true_result); |
| |
| // String value => false iff empty. |
| __ cmp(ecx, FIRST_NONSTRING_TYPE); |
| __ j(above_equal, ¬_string); |
| __ mov(edx, FieldOperand(eax, String::kLengthOffset)); |
| __ test(edx, Operand(edx)); |
| __ j(zero, &false_result); |
| __ jmp(&true_result); |
| |
| __ bind(¬_string); |
| // HeapNumber => false iff +0, -0, or NaN. |
| __ cmp(edx, Factory::heap_number_map()); |
| __ j(not_equal, &true_result); |
| __ fldz(); |
| __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ FCmp(); |
| __ j(zero, &false_result); |
| // Fall through to |true_result|. |
| |
| // Return 1/0 for true/false in eax. |
| __ bind(&true_result); |
| __ mov(eax, 1); |
| __ ret(1 * kPointerSize); |
| __ bind(&false_result); |
| __ mov(eax, 0); |
| __ ret(1 * kPointerSize); |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateCall( |
| MacroAssembler* masm, |
| Register left, |
| Register right) { |
| if (!ArgsInRegistersSupported()) { |
| // Pass arguments on the stack. |
| __ push(left); |
| __ push(right); |
| } else { |
| // The calling convention with registers is left in edx and right in eax. |
| Register left_arg = edx; |
| Register right_arg = eax; |
| if (!(left.is(left_arg) && right.is(right_arg))) { |
| if (left.is(right_arg) && right.is(left_arg)) { |
| if (IsOperationCommutative()) { |
| SetArgsReversed(); |
| } else { |
| __ xchg(left, right); |
| } |
| } else if (left.is(left_arg)) { |
| __ mov(right_arg, right); |
| } else if (right.is(right_arg)) { |
| __ mov(left_arg, left); |
| } else if (left.is(right_arg)) { |
| if (IsOperationCommutative()) { |
| __ mov(left_arg, right); |
| SetArgsReversed(); |
| } else { |
| // Order of moves important to avoid destroying left argument. |
| __ mov(left_arg, left); |
| __ mov(right_arg, right); |
| } |
| } else if (right.is(left_arg)) { |
| if (IsOperationCommutative()) { |
| __ mov(right_arg, left); |
| SetArgsReversed(); |
| } else { |
| // Order of moves important to avoid destroying right argument. |
| __ mov(right_arg, right); |
| __ mov(left_arg, left); |
| } |
| } else { |
| // Order of moves is not important. |
| __ mov(left_arg, left); |
| __ mov(right_arg, right); |
| } |
| } |
| |
| // Update flags to indicate that arguments are in registers. |
| SetArgsInRegisters(); |
| __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| } |
| |
| // Call the stub. |
| __ CallStub(this); |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateCall( |
| MacroAssembler* masm, |
| Register left, |
| Smi* right) { |
| if (!ArgsInRegistersSupported()) { |
| // Pass arguments on the stack. |
| __ push(left); |
| __ push(Immediate(right)); |
| } else { |
| // The calling convention with registers is left in edx and right in eax. |
| Register left_arg = edx; |
| Register right_arg = eax; |
| if (left.is(left_arg)) { |
| __ mov(right_arg, Immediate(right)); |
| } else if (left.is(right_arg) && IsOperationCommutative()) { |
| __ mov(left_arg, Immediate(right)); |
| SetArgsReversed(); |
| } else { |
| // For non-commutative operations, left and right_arg might be |
| // the same register. Therefore, the order of the moves is |
| // important here in order to not overwrite left before moving |
| // it to left_arg. |
| __ mov(left_arg, left); |
| __ mov(right_arg, Immediate(right)); |
| } |
| |
| // Update flags to indicate that arguments are in registers. |
| SetArgsInRegisters(); |
| __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| } |
| |
| // Call the stub. |
| __ CallStub(this); |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateCall( |
| MacroAssembler* masm, |
| Smi* left, |
| Register right) { |
| if (!ArgsInRegistersSupported()) { |
| // Pass arguments on the stack. |
| __ push(Immediate(left)); |
| __ push(right); |
| } else { |
| // The calling convention with registers is left in edx and right in eax. |
| Register left_arg = edx; |
| Register right_arg = eax; |
| if (right.is(right_arg)) { |
| __ mov(left_arg, Immediate(left)); |
| } else if (right.is(left_arg) && IsOperationCommutative()) { |
| __ mov(right_arg, Immediate(left)); |
| SetArgsReversed(); |
| } else { |
| // For non-commutative operations, right and left_arg might be |
| // the same register. Therefore, the order of the moves is |
| // important here in order to not overwrite right before moving |
| // it to right_arg. |
| __ mov(right_arg, right); |
| __ mov(left_arg, Immediate(left)); |
| } |
| // Update flags to indicate that arguments are in registers. |
| SetArgsInRegisters(); |
| __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| } |
| |
| // Call the stub. |
| __ CallStub(this); |
| } |
| |
| |
| Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm, |
| VirtualFrame* frame, |
| Result* left, |
| Result* right) { |
| if (ArgsInRegistersSupported()) { |
| SetArgsInRegisters(); |
| return frame->CallStub(this, left, right); |
| } else { |
| frame->Push(left); |
| frame->Push(right); |
| return frame->CallStub(this, 2); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
| // 1. Move arguments into edx, eax except for DIV and MOD, which need the |
| // dividend in eax and edx free for the division. Use eax, ebx for those. |
| Comment load_comment(masm, "-- Load arguments"); |
| Register left = edx; |
| Register right = eax; |
| if (op_ == Token::DIV || op_ == Token::MOD) { |
| left = eax; |
| right = ebx; |
| if (HasArgsInRegisters()) { |
| __ mov(ebx, eax); |
| __ mov(eax, edx); |
| } |
| } |
| if (!HasArgsInRegisters()) { |
| __ mov(right, Operand(esp, 1 * kPointerSize)); |
| __ mov(left, Operand(esp, 2 * kPointerSize)); |
| } |
| |
| // 2. Prepare the smi check of both operands by oring them together. |
| Comment smi_check_comment(masm, "-- Smi check arguments"); |
| Label not_smis; |
| Register combined = ecx; |
| ASSERT(!left.is(combined) && !right.is(combined)); |
| switch (op_) { |
| case Token::BIT_OR: |
| // Perform the operation into eax and smi check the result. Preserve |
| // eax in case the result is not a smi. |
| ASSERT(!left.is(ecx) && !right.is(ecx)); |
| __ mov(ecx, right); |
| __ or_(right, Operand(left)); // Bitwise or is commutative. |
| combined = right; |
| break; |
| |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| __ mov(combined, right); |
| __ or_(combined, Operand(left)); |
| break; |
| |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| // Move the right operand into ecx for the shift operation, use eax |
| // for the smi check register. |
| ASSERT(!left.is(ecx) && !right.is(ecx)); |
| __ mov(ecx, right); |
| __ or_(right, Operand(left)); |
| combined = right; |
| break; |
| |
| default: |
| break; |
| } |
| |
| // 3. Perform the smi check of the operands. |
| ASSERT(kSmiTag == 0); // Adjust zero check if not the case. |
| __ test(combined, Immediate(kSmiTagMask)); |
| __ j(not_zero, ¬_smis, not_taken); |
| |
| // 4. Operands are both smis, perform the operation leaving the result in |
| // eax and check the result if necessary. |
| Comment perform_smi(masm, "-- Perform smi operation"); |
| Label use_fp_on_smis; |
| switch (op_) { |
| case Token::BIT_OR: |
| // Nothing to do. |
| break; |
| |
| case Token::BIT_XOR: |
| ASSERT(right.is(eax)); |
| __ xor_(right, Operand(left)); // Bitwise xor is commutative. |
| break; |
| |
| case Token::BIT_AND: |
| ASSERT(right.is(eax)); |
| __ and_(right, Operand(left)); // Bitwise and is commutative. |
| break; |
| |
| case Token::SHL: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ shl_cl(left); |
| // Check that the *signed* result fits in a smi. |
| __ cmp(left, 0xc0000000); |
| __ j(sign, &use_fp_on_smis, not_taken); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::SAR: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ sar_cl(left); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::SHR: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ shr_cl(left); |
| // Check that the *unsigned* result fits in a smi. |
| // Neither of the two high-order bits can be set: |
| // - 0x80000000: high bit would be lost when smi tagging. |
| // - 0x40000000: this number would convert to negative when |
| // Smi tagging these two cases can only happen with shifts |
| // by 0 or 1 when handed a valid smi. |
| __ test(left, Immediate(0xc0000000)); |
| __ j(not_zero, slow, not_taken); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::ADD: |
| ASSERT(right.is(eax)); |
| __ add(right, Operand(left)); // Addition is commutative. |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| break; |
| |
| case Token::SUB: |
| __ sub(left, Operand(right)); |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| __ mov(eax, left); |
| break; |
| |
| case Token::MUL: |
| // If the smi tag is 0 we can just leave the tag on one operand. |
| ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| // We can't revert the multiplication if the result is not a smi |
| // so save the right operand. |
| __ mov(ebx, right); |
| // Remove tag from one of the operands (but keep sign). |
| __ SmiUntag(right); |
| // Do multiplication. |
| __ imul(right, Operand(left)); // Multiplication is commutative. |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(right, combined, &use_fp_on_smis); |
| break; |
| |
| case Token::DIV: |
| // We can't revert the division if the result is not a smi so |
| // save the left operand. |
| __ mov(edi, left); |
| // Check for 0 divisor. |
| __ test(right, Operand(right)); |
| __ j(zero, &use_fp_on_smis, not_taken); |
| // Sign extend left into edx:eax. |
| ASSERT(left.is(eax)); |
| __ cdq(); |
| // Divide edx:eax by right. |
| __ idiv(right); |
| // Check for the corner case of dividing the most negative smi by |
| // -1. We cannot use the overflow flag, since it is not set by idiv |
| // instruction. |
| ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ cmp(eax, 0x40000000); |
| __ j(equal, &use_fp_on_smis); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(eax, combined, &use_fp_on_smis); |
| // Check that the remainder is zero. |
| __ test(edx, Operand(edx)); |
| __ j(not_zero, &use_fp_on_smis); |
| // Tag the result and store it in register eax. |
| __ SmiTag(eax); |
| break; |
| |
| case Token::MOD: |
| // Check for 0 divisor. |
| __ test(right, Operand(right)); |
| __ j(zero, ¬_smis, not_taken); |
| |
| // Sign extend left into edx:eax. |
| ASSERT(left.is(eax)); |
| __ cdq(); |
| // Divide edx:eax by right. |
| __ idiv(right); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(edx, combined, slow); |
| // Move remainder to register eax. |
| __ mov(eax, edx); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| // 5. Emit return of result in eax. |
| GenerateReturn(masm); |
| |
| // 6. For some operations emit inline code to perform floating point |
| // operations on known smis (e.g., if the result of the operation |
| // overflowed the smi range). |
| switch (op_) { |
| case Token::SHL: { |
| Comment perform_float(masm, "-- Perform float operation on smis"); |
| __ bind(&use_fp_on_smis); |
| // Result we want is in left == edx, so we can put the allocated heap |
| // number in eax. |
| __ AllocateHeapNumber(eax, ecx, ebx, slow); |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(left)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| // It's OK to overwrite the right argument on the stack because we |
| // are about to return. |
| __ mov(Operand(esp, 1 * kPointerSize), left); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| GenerateReturn(masm); |
| break; |
| } |
| |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Comment perform_float(masm, "-- Perform float operation on smis"); |
| __ bind(&use_fp_on_smis); |
| // Restore arguments to edx, eax. |
| switch (op_) { |
| case Token::ADD: |
| // Revert right = right + left. |
| __ sub(right, Operand(left)); |
| break; |
| case Token::SUB: |
| // Revert left = left - right. |
| __ add(left, Operand(right)); |
| break; |
| case Token::MUL: |
| // Right was clobbered but a copy is in ebx. |
| __ mov(right, ebx); |
| break; |
| case Token::DIV: |
| // Left was clobbered but a copy is in edi. Right is in ebx for |
| // division. |
| __ mov(edx, edi); |
| __ mov(eax, right); |
| break; |
| default: UNREACHABLE(); |
| break; |
| } |
| __ AllocateHeapNumber(ecx, ebx, no_reg, slow); |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Smis(masm, ebx); |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::LoadFloatSmis(masm, ebx); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); |
| } |
| __ mov(eax, ecx); |
| GenerateReturn(masm); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| // 7. Non-smi operands, fall out to the non-smi code with the operands in |
| // edx and eax. |
| Comment done_comment(masm, "-- Enter non-smi code"); |
| __ bind(¬_smis); |
| switch (op_) { |
| case Token::BIT_OR: |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| // Right operand is saved in ecx and eax was destroyed by the smi |
| // check. |
| __ mov(eax, ecx); |
| break; |
| |
| case Token::DIV: |
| case Token::MOD: |
| // Operands are in eax, ebx at this point. |
| __ mov(edx, eax); |
| __ mov(eax, ebx); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| __ IncrementCounter(&Counters::generic_binary_stub_calls, 1); |
| |
| // Generate fast case smi code if requested. This flag is set when the fast |
| // case smi code is not generated by the caller. Generating it here will speed |
| // up common operations. |
| if (HasSmiCodeInStub()) { |
| GenerateSmiCode(masm, &call_runtime); |
| } else if (op_ != Token::MOD) { // MOD goes straight to runtime. |
| GenerateLoadArguments(masm); |
| } |
| |
| // Floating point case. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| if (NumberInfo::IsNumber(operands_type_)) { |
| if (FLAG_debug_code) { |
| // Assert at runtime that inputs are only numbers. |
| __ AbortIfNotNumber(edx, |
| "GenericBinaryOpStub operand not a number."); |
| __ AbortIfNotNumber(eax, |
| "GenericBinaryOpStub operand not a number."); |
| } |
| FloatingPointHelper::LoadSSE2Operands(masm); |
| } else { |
| FloatingPointHelper::LoadSSE2Operands(masm, &call_runtime); |
| } |
| |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| GenerateHeapResultAllocation(masm, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| GenerateReturn(masm); |
| } else { // SSE2 not available, use FPU. |
| if (NumberInfo::IsNumber(operands_type_)) { |
| if (FLAG_debug_code) { |
| // Assert at runtime that inputs are only numbers. |
| __ AbortIfNotNumber(edx, |
| "GenericBinaryOpStub operand not a number."); |
| __ AbortIfNotNumber(eax, |
| "GenericBinaryOpStub operand not a number."); |
| } |
| } else { |
| FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx); |
| } |
| FloatingPointHelper::LoadFloatOperands( |
| masm, |
| ecx, |
| FloatingPointHelper::ARGS_IN_REGISTERS); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| Label after_alloc_failure; |
| GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| GenerateReturn(masm); |
| __ bind(&after_alloc_failure); |
| __ ffree(); |
| __ jmp(&call_runtime); |
| } |
| } |
| case Token::MOD: { |
| // For MOD we go directly to runtime in the non-smi case. |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: { |
| Label non_smi_result; |
| FloatingPointHelper::LoadAsIntegers(masm, use_sse3_, &call_runtime); |
| switch (op_) { |
| case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; |
| case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; |
| case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; |
| case Token::SAR: __ sar_cl(eax); break; |
| case Token::SHL: __ shl_cl(eax); break; |
| case Token::SHR: __ shr_cl(eax); break; |
| default: UNREACHABLE(); |
| } |
| if (op_ == Token::SHR) { |
| // Check if result is non-negative and fits in a smi. |
| __ test(eax, Immediate(0xc0000000)); |
| __ j(not_zero, &call_runtime); |
| } else { |
| // Check if result fits in a smi. |
| __ cmp(eax, 0xc0000000); |
| __ j(negative, &non_smi_result); |
| } |
| // Tag smi result and return. |
| __ SmiTag(eax); |
| GenerateReturn(masm); |
| |
| // All ops except SHR return a signed int32 that we load in a HeapNumber. |
| if (op_ != Token::SHR) { |
| __ bind(&non_smi_result); |
| // Allocate a heap number if needed. |
| __ mov(ebx, Operand(eax)); // ebx: result |
| Label skip_allocation; |
| switch (mode_) { |
| case OVERWRITE_LEFT: |
| case OVERWRITE_RIGHT: |
| // If the operand was an object, we skip the |
| // allocation of a heap number. |
| __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 1 * kPointerSize : 2 * kPointerSize)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Fall through! |
| case NO_OVERWRITE: |
| __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(ebx)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| GenerateReturn(masm); |
| } |
| break; |
| } |
| default: UNREACHABLE(); break; |
| } |
| |
| // If all else fails, use the runtime system to get the correct |
| // result. If arguments was passed in registers now place them on the |
| // stack in the correct order below the return address. |
| __ bind(&call_runtime); |
| if (HasArgsInRegisters()) { |
| __ pop(ecx); |
| if (HasArgsReversed()) { |
| __ push(eax); |
| __ push(edx); |
| } else { |
| __ push(edx); |
| __ push(eax); |
| } |
| __ push(ecx); |
| } |
| switch (op_) { |
| case Token::ADD: { |
| // Test for string arguments before calling runtime. |
| Label not_strings, not_string1, string1, string1_smi2; |
| Result answer; |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, ¬_string1); |
| __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, ¬_string1); |
| |
| // First argument is a string, test second. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &string1_smi2); |
| __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &string1); |
| |
| // First and second argument are strings. Jump to the string add stub. |
| StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
| __ TailCallStub(&string_add_stub); |
| |
| __ bind(&string1_smi2); |
| // First argument is a string, second is a smi. Try to lookup the number |
| // string for the smi in the number string cache. |
| NumberToStringStub::GenerateLookupNumberStringCache( |
| masm, eax, edi, ebx, ecx, true, &string1); |
| |
| // Call the string add stub to make the result. |
| __ EnterInternalFrame(); |
| __ push(edx); // Original first argument. |
| __ push(edi); // Number to string result for second argument. |
| __ CallStub(&string_add_stub); |
| __ LeaveInternalFrame(); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&string1); |
| __ InvokeBuiltin( |
| HasArgsReversed() ? |
| Builtins::STRING_ADD_RIGHT : |
| Builtins::STRING_ADD_LEFT, |
| JUMP_FUNCTION); |
| |
| // First argument was not a string, test second. |
| __ bind(¬_string1); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, ¬_strings); |
| __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, ¬_strings); |
| |
| // Only second argument is a string. |
| __ InvokeBuiltin( |
| HasArgsReversed() ? |
| Builtins::STRING_ADD_LEFT : |
| Builtins::STRING_ADD_RIGHT, |
| JUMP_FUNCTION); |
| |
| __ bind(¬_strings); |
| // Neither argument is a string. |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| } |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm, |
| Label* alloc_failure) { |
| Label skip_allocation; |
| OverwriteMode mode = mode_; |
| if (HasArgsReversed()) { |
| if (mode == OVERWRITE_RIGHT) { |
| mode = OVERWRITE_LEFT; |
| } else if (mode == OVERWRITE_LEFT) { |
| mode = OVERWRITE_RIGHT; |
| } |
| } |
| switch (mode) { |
| case OVERWRITE_LEFT: { |
| // If the argument in edx is already an object, we skip the |
| // allocation of a heap number. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Allocate a heap number for the result. Keep eax and edx intact |
| // for the possible runtime call. |
| __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| // Now edx can be overwritten losing one of the arguments as we are |
| // now done and will not need it any more. |
| __ mov(edx, Operand(ebx)); |
| __ bind(&skip_allocation); |
| // Use object in edx as a result holder |
| __ mov(eax, Operand(edx)); |
| break; |
| } |
| case OVERWRITE_RIGHT: |
| // If the argument in eax is already an object, we skip the |
| // allocation of a heap number. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Fall through! |
| case NO_OVERWRITE: |
| // Allocate a heap number for the result. Keep eax and edx intact |
| // for the possible runtime call. |
| __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| // Now eax can be overwritten losing one of the arguments as we are |
| // now done and will not need it any more. |
| __ mov(eax, ebx); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
| // If arguments are not passed in registers read them from the stack. |
| if (!HasArgsInRegisters()) { |
| __ mov(eax, Operand(esp, 1 * kPointerSize)); |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
| // If arguments are not passed in registers remove them from the stack before |
| // returning. |
| if (!HasArgsInRegisters()) { |
| __ ret(2 * kPointerSize); // Remove both operands |
| } else { |
| __ ret(0); |
| } |
| } |
| |
| |
| void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| // Input on stack: |
| // esp[4]: argument (should be number). |
| // esp[0]: return address. |
| // Test that eax is a number. |
| Label runtime_call; |
| Label runtime_call_clear_stack; |
| Label input_not_smi; |
| Label loaded; |
| __ mov(eax, Operand(esp, kPointerSize)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &input_not_smi); |
| // Input is a smi. Untag and load it onto the FPU stack. |
| // Then load the low and high words of the double into ebx, edx. |
| ASSERT_EQ(1, kSmiTagSize); |
| __ sar(eax, 1); |
| __ sub(Operand(esp), Immediate(2 * kPointerSize)); |
| __ mov(Operand(esp, 0), eax); |
| __ fild_s(Operand(esp, 0)); |
| __ fst_d(Operand(esp, 0)); |
| __ pop(edx); |
| __ pop(ebx); |
| __ jmp(&loaded); |
| __ bind(&input_not_smi); |
| // Check if input is a HeapNumber. |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); |
| __ j(not_equal, &runtime_call); |
| // Input is a HeapNumber. Push it on the FPU stack and load its |
| // low and high words into ebx, edx. |
| __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
| __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); |
| |
| __ bind(&loaded); |
| // ST[0] == double value |
| // ebx = low 32 bits of double value |
| // edx = high 32 bits of double value |
| // Compute hash: |
| // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| __ mov(ecx, ebx); |
| __ xor_(ecx, Operand(edx)); |
| __ mov(eax, ecx); |
| __ sar(eax, 16); |
| __ xor_(ecx, Operand(eax)); |
| __ mov(eax, ecx); |
| __ sar(eax, 8); |
| __ xor_(ecx, Operand(eax)); |
| ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
| __ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1)); |
| // ST[0] == double value. |
| // ebx = low 32 bits of double value. |
| // edx = high 32 bits of double value. |
| // ecx = TranscendentalCache::hash(double value). |
| __ mov(eax, |
| Immediate(ExternalReference::transcendental_cache_array_address())); |
| // Eax points to cache array. |
| __ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0]))); |
| // Eax points to the cache for the type type_. |
| // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| __ test(eax, Operand(eax)); |
| __ j(zero, &runtime_call_clear_stack); |
| #ifdef DEBUG |
| // Check that the layout of cache elements match expectations. |
| { // NOLINT - doesn't like a single brace on a line. |
| TranscendentalCache::Element test_elem[2]; |
| char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| CHECK_EQ(0, elem_in0 - elem_start); |
| CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| } |
| #endif |
| // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. |
| __ lea(ecx, Operand(ecx, ecx, times_2, 0)); |
| __ lea(ecx, Operand(eax, ecx, times_4, 0)); |
| // Check if cache matches: Double value is stored in uint32_t[2] array. |
| Label cache_miss; |
| __ cmp(ebx, Operand(ecx, 0)); |
| __ j(not_equal, &cache_miss); |
| __ cmp(edx, Operand(ecx, kIntSize)); |
| __ j(not_equal, &cache_miss); |
| // Cache hit! |
| __ mov(eax, Operand(ecx, 2 * kIntSize)); |
| __ fstp(0); |
| __ ret(kPointerSize); |
| |
| __ bind(&cache_miss); |
| // Update cache with new value. |
| // We are short on registers, so use no_reg as scratch. |
| // This gives slightly larger code. |
| __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); |
| GenerateOperation(masm); |
| __ mov(Operand(ecx, 0), ebx); |
| __ mov(Operand(ecx, kIntSize), edx); |
| __ mov(Operand(ecx, 2 * kIntSize), eax); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ ret(kPointerSize); |
| |
| __ bind(&runtime_call_clear_stack); |
| __ fstp(0); |
| __ bind(&runtime_call); |
| __ TailCallRuntime(ExternalReference(RuntimeFunction()), 1, 1); |
| } |
| |
| |
| Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| switch (type_) { |
| // Add more cases when necessary. |
| case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| case TranscendentalCache::COS: return Runtime::kMath_cos; |
| default: |
| UNIMPLEMENTED(); |
| return Runtime::kAbort; |
| } |
| } |
| |
| |
| void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) { |
| // Only free register is edi. |
| Label done; |
| ASSERT(type_ == TranscendentalCache::SIN || |
| type_ == TranscendentalCache::COS); |
| // More transcendental types can be added later. |
| |
| // Both fsin and fcos require arguments in the range +/-2^63 and |
| // return NaN for infinities and NaN. They can share all code except |
| // the actual fsin/fcos operation. |
| Label in_range; |
| // If argument is outside the range -2^63..2^63, fsin/cos doesn't |
| // work. We must reduce it to the appropriate range. |
| __ mov(edi, edx); |
| __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only. |
| int supported_exponent_limit = |
| (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift; |
| __ cmp(Operand(edi), Immediate(supported_exponent_limit)); |
| __ j(below, &in_range, taken); |
| // Check for infinity and NaN. Both return NaN for sin. |
| __ cmp(Operand(edi), Immediate(0x7ff00000)); |
| Label non_nan_result; |
| __ j(not_equal, &non_nan_result, taken); |
| // Input is +/-Infinity or NaN. Result is NaN. |
| __ fstp(0); |
| // NaN is represented by 0x7ff8000000000000. |
| __ push(Immediate(0x7ff80000)); |
| __ push(Immediate(0)); |
| __ fld_d(Operand(esp, 0)); |
| __ add(Operand(esp), Immediate(2 * kPointerSize)); |
| __ jmp(&done); |
| |
| __ bind(&non_nan_result); |
| |
| // Use fpmod to restrict argument to the range +/-2*PI. |
| __ mov(edi, eax); // Save eax before using fnstsw_ax. |
| __ fldpi(); |
| __ fadd(0); |
| __ fld(1); |
| // FPU Stack: input, 2*pi, input. |
| { |
| Label no_exceptions; |
| __ fwait(); |
| __ fnstsw_ax(); |
| // Clear if Illegal Operand or Zero Division exceptions are set. |
| __ test(Operand(eax), Immediate(5)); |
| __ j(zero, &no_exceptions); |
| __ fnclex(); |
| __ bind(&no_exceptions); |
| } |
| |
| // Compute st(0) % st(1) |
| { |
| Label partial_remainder_loop; |
| __ bind(&partial_remainder_loop); |
| __ fprem1(); |
| __ fwait(); |
| __ fnstsw_ax(); |
| __ test(Operand(eax), Immediate(0x400 /* C2 */)); |
| // If C2 is set, computation only has partial result. Loop to |
| // continue computation. |
| __ j(not_zero, &partial_remainder_loop); |
| } |
| // FPU Stack: input, 2*pi, input % 2*pi |
| __ fstp(2); |
| __ fstp(0); |
| __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer). |
| |
| // FPU Stack: input % 2*pi |
| __ bind(&in_range); |
| switch (type_) { |
| case TranscendentalCache::SIN: |
| __ fsin(); |
| break; |
| case TranscendentalCache::COS: |
| __ fcos(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ bind(&done); |
| } |
| |
| |
| // Get the integer part of a heap number. Surprisingly, all this bit twiddling |
| // is faster than using the built-in instructions on floating point registers. |
| // Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the |
| // trashed registers. |
| void IntegerConvert(MacroAssembler* masm, |
| Register source, |
| bool use_sse3, |
| Label* conversion_failure) { |
| ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx)); |
| Label done, right_exponent, normal_exponent; |
| Register scratch = ebx; |
| Register scratch2 = edi; |
| // Get exponent word. |
| __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); |
| // Get exponent alone in scratch2. |
| __ mov(scratch2, scratch); |
| __ and_(scratch2, HeapNumber::kExponentMask); |
| if (use_sse3) { |
| CpuFeatures::Scope scope(SSE3); |
| // Check whether the exponent is too big for a 64 bit signed integer. |
| static const uint32_t kTooBigExponent = |
| (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; |
| __ cmp(Operand(scratch2), Immediate(kTooBigExponent)); |
| __ j(greater_equal, conversion_failure); |
| // Load x87 register with heap number. |
| __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); |
| // Reserve space for 64 bit answer. |
| __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. |
| // Do conversion, which cannot fail because we checked the exponent. |
| __ fisttp_d(Operand(esp, 0)); |
| __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx. |
| __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. |
| } else { |
| // Load ecx with zero. We use this either for the final shift or |
| // for the answer. |
| __ xor_(ecx, Operand(ecx)); |
| // Check whether the exponent matches a 32 bit signed int that cannot be |
| // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the |
| // exponent is 30 (biased). This is the exponent that we are fastest at and |
| // also the highest exponent we can handle here. |
| const uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ cmp(Operand(scratch2), Immediate(non_smi_exponent)); |
| // If we have a match of the int32-but-not-Smi exponent then skip some |
| // logic. |
| __ j(equal, &right_exponent); |
| // If the exponent is higher than that then go to slow case. This catches |
| // numbers that don't fit in a signed int32, infinities and NaNs. |
| __ j(less, &normal_exponent); |
| |
| { |
| // Handle a big exponent. The only reason we have this code is that the |
| // >>> operator has a tendency to generate numbers with an exponent of 31. |
| const uint32_t big_non_smi_exponent = |
| (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; |
| __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent)); |
| __ j(not_equal, conversion_failure); |
| // We have the big exponent, typically from >>>. This means the number is |
| // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. |
| __ mov(scratch2, scratch); |
| __ and_(scratch2, HeapNumber::kMantissaMask); |
| // Put back the implicit 1. |
| __ or_(scratch2, 1 << HeapNumber::kExponentShift); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We just orred in the implicit bit so that took care of one and |
| // we want to use the full unsigned range so we subtract 1 bit from the |
| // shift distance. |
| const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; |
| __ shl(scratch2, big_shift_distance); |
| // Get the second half of the double. |
| __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 21 bits to get the most significant 11 bits or the low |
| // mantissa word. |
| __ shr(ecx, 32 - big_shift_distance); |
| __ or_(ecx, Operand(scratch2)); |
| // We have the answer in ecx, but we may need to negate it. |
| __ test(scratch, Operand(scratch)); |
| __ j(positive, &done); |
| __ neg(ecx); |
| __ jmp(&done); |
| } |
| |
| __ bind(&normal_exponent); |
| // Exponent word in scratch, exponent part of exponent word in scratch2. |
| // Zero in ecx. |
| // We know the exponent is smaller than 30 (biased). If it is less than |
| // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
| // it rounds to zero. |
| const uint32_t zero_exponent = |
| (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
| __ sub(Operand(scratch2), Immediate(zero_exponent)); |
| // ecx already has a Smi zero. |
| __ j(less, &done); |
| |
| // We have a shifted exponent between 0 and 30 in scratch2. |
| __ shr(scratch2, HeapNumber::kExponentShift); |
| __ mov(ecx, Immediate(30)); |
| __ sub(ecx, Operand(scratch2)); |
| |
| __ bind(&right_exponent); |
| // Here ecx is the shift, scratch is the exponent word. |
| // Get the top bits of the mantissa. |
| __ and_(scratch, HeapNumber::kMantissaMask); |
| // Put back the implicit 1. |
| __ or_(scratch, 1 << HeapNumber::kExponentShift); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We have kExponentShift + 1 significant bits int he low end of the |
| // word. Shift them to the top bits. |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ shl(scratch, shift_distance); |
| // Get the second half of the double. For some exponents we don't |
| // actually need this because the bits get shifted out again, but |
| // it's probably slower to test than just to do it. |
| __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 22 bits to get the most significant 10 bits or the low |
| // mantissa word. |
| __ shr(scratch2, 32 - shift_distance); |
| __ or_(scratch2, Operand(scratch)); |
| // Move down according to the exponent. |
| __ shr_cl(scratch2); |
| // Now the unsigned answer is in scratch2. We need to move it to ecx and |
| // we may need to fix the sign. |
| Label negative; |
| __ xor_(ecx, Operand(ecx)); |
| __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset)); |
| __ j(greater, &negative); |
| __ mov(ecx, scratch2); |
| __ jmp(&done); |
| __ bind(&negative); |
| __ sub(ecx, Operand(scratch2)); |
| __ bind(&done); |
| } |
| } |
| |
| |
| // Input: edx, eax are the left and right objects of a bit op. |
| // Output: eax, ecx are left and right integers for a bit op. |
| void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
| bool use_sse3, |
| Label* conversion_failure) { |
| // Check float operands. |
| Label arg1_is_object, check_undefined_arg1; |
| Label arg2_is_object, check_undefined_arg2; |
| Label load_arg2, done; |
| |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &arg1_is_object); |
| __ SmiUntag(edx); |
| __ jmp(&load_arg2); |
| |
| // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| __ bind(&check_undefined_arg1); |
| __ cmp(edx, Factory::undefined_value()); |
| __ j(not_equal, conversion_failure); |
| __ mov(edx, Immediate(0)); |
| __ jmp(&load_arg2); |
| |
| __ bind(&arg1_is_object); |
| __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ cmp(ebx, Factory::heap_number_map()); |
| __ j(not_equal, &check_undefined_arg1); |
| // Get the untagged integer version of the edx heap number in ecx. |
| IntegerConvert(masm, edx, use_sse3, conversion_failure); |
| __ mov(edx, ecx); |
| |
| // Here edx has the untagged integer, eax has a Smi or a heap number. |
| __ bind(&load_arg2); |
| // Test if arg2 is a Smi. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &arg2_is_object); |
| __ SmiUntag(eax); |
| __ mov(ecx, eax); |
| __ jmp(&done); |
| |
| // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| __ bind(&check_undefined_arg2); |
| __ cmp(eax, Factory::undefined_value()); |
| __ j(not_equal, conversion_failure); |
| __ mov(ecx, Immediate(0)); |
| __ jmp(&done); |
| |
| __ bind(&arg2_is_object); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(ebx, Factory::heap_number_map()); |
| __ j(not_equal, &check_undefined_arg2); |
| // Get the untagged integer version of the eax heap number in ecx. |
| IntegerConvert(masm, eax, use_sse3, conversion_failure); |
| __ bind(&done); |
| __ mov(eax, edx); |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, |
| Register number) { |
| Label load_smi, done; |
| |
| __ test(number, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi, not_taken); |
| __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); |
| __ jmp(&done); |
| |
| __ bind(&load_smi); |
| __ SmiUntag(number); |
| __ push(number); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(number); |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) { |
| Label load_smi_edx, load_eax, load_smi_eax, done; |
| // Load operand in edx into xmm0. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| |
| __ bind(&load_eax); |
| // Load operand in eax into xmm1. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ jmp(&done); |
| |
| __ bind(&load_smi_edx); |
| __ SmiUntag(edx); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm0, Operand(edx)); |
| __ SmiTag(edx); // Retag smi for heap number overwriting test. |
| __ jmp(&load_eax); |
| |
| __ bind(&load_smi_eax); |
| __ SmiUntag(eax); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm1, Operand(eax)); |
| __ SmiTag(eax); // Retag smi for heap number overwriting test. |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, |
| Label* not_numbers) { |
| Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; |
| // Load operand in edx into xmm0, or branch to not_numbers. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. |
| __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Factory::heap_number_map()); |
| __ j(not_equal, not_numbers); // Argument in edx is not a number. |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| __ bind(&load_eax); |
| // Load operand in eax into xmm1, or branch to not_numbers. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. |
| __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map()); |
| __ j(equal, &load_float_eax); |
| __ jmp(not_numbers); // Argument in eax is not a number. |
| __ bind(&load_smi_edx); |
| __ SmiUntag(edx); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm0, Operand(edx)); |
| __ SmiTag(edx); // Retag smi for heap number overwriting test. |
| __ jmp(&load_eax); |
| __ bind(&load_smi_eax); |
| __ SmiUntag(eax); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm1, Operand(eax)); |
| __ SmiTag(eax); // Retag smi for heap number overwriting test. |
| __ jmp(&done); |
| __ bind(&load_float_eax); |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm, |
| Register scratch) { |
| const Register left = edx; |
| const Register right = eax; |
| __ mov(scratch, left); |
| ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
| __ SmiUntag(scratch); |
| __ cvtsi2sd(xmm0, Operand(scratch)); |
| |
| __ mov(scratch, right); |
| __ SmiUntag(scratch); |
| __ cvtsi2sd(xmm1, Operand(scratch)); |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, |
| Register scratch, |
| ArgLocation arg_location) { |
| Label load_smi_1, load_smi_2, done_load_1, done; |
| if (arg_location == ARGS_IN_REGISTERS) { |
| __ mov(scratch, edx); |
| } else { |
| __ mov(scratch, Operand(esp, 2 * kPointerSize)); |
| } |
| __ test(scratch, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_1, not_taken); |
| __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
| __ bind(&done_load_1); |
| |
| if (arg_location == ARGS_IN_REGISTERS) { |
| __ mov(scratch, eax); |
| } else { |
| __ mov(scratch, Operand(esp, 1 * kPointerSize)); |
| } |
| __ test(scratch, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_2, not_taken); |
| __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
| __ jmp(&done); |
| |
| __ bind(&load_smi_1); |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| __ jmp(&done_load_1); |
| |
| __ bind(&load_smi_2); |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm, |
| Register scratch) { |
| const Register left = edx; |
| const Register right = eax; |
| __ mov(scratch, left); |
| ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| |
| __ mov(scratch, right); |
| __ SmiUntag(scratch); |
| __ mov(Operand(esp, 0), scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| } |
| |
| |
| void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, |
| Label* non_float, |
| Register scratch) { |
| Label test_other, done; |
| // Test if both operands are floats or smi -> scratch=k_is_float; |
| // Otherwise scratch = k_not_float. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, &test_other, not_taken); // argument in edx is OK |
| __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ cmp(scratch, Factory::heap_number_map()); |
| __ j(not_equal, non_float); // argument in edx is not a number -> NaN |
| |
| __ bind(&test_other); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &done); // argument in eax is OK |
| __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(scratch, Factory::heap_number_map()); |
| __ j(not_equal, non_float); // argument in eax is not a number -> NaN |
| |
| // Fall-through: Both operands are numbers. |
| __ bind(&done); |
| } |
| |
| |
| void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| Label slow, done; |
| |
| if (op_ == Token::SUB) { |
| // Check whether the value is a smi. |
| Label try_float; |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &try_float, not_taken); |
| |
| // Go slow case if the value of the expression is zero |
| // to make sure that we switch between 0 and -0. |
| __ test(eax, Operand(eax)); |
| __ j(zero, &slow, not_taken); |
| |
| // The value of the expression is a smi that is not zero. Try |
| // optimistic subtraction '0 - value'. |
| Label undo; |
| __ mov(edx, Operand(eax)); |
| __ Set(eax, Immediate(0)); |
| __ sub(eax, Operand(edx)); |
| __ j(overflow, &undo, not_taken); |
| |
| // If result is a smi we are done. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &done, taken); |
| |
| // Restore eax and go slow case. |
| __ bind(&undo); |
| __ mov(eax, Operand(edx)); |
| __ jmp(&slow); |
| |
| // Try floating point case. |
| __ bind(&try_float); |
| __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(edx, Factory::heap_number_map()); |
| __ j(not_equal, &slow); |
| if (overwrite_) { |
| __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
| __ xor_(edx, HeapNumber::kSignMask); // Flip sign. |
| __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx); |
| } else { |
| __ mov(edx, Operand(eax)); |
| // edx: operand |
| __ AllocateHeapNumber(eax, ebx, ecx, &undo); |
| // eax: allocated 'empty' number |
| __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. |
| __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); |
| __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); |
| __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); |
| } |
| } else if (op_ == Token::BIT_NOT) { |
| // Check if the operand is a heap number. |
| __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(edx, Factory::heap_number_map()); |
| __ j(not_equal, &slow, not_taken); |
| |
| // Convert the heap number in eax to an untagged integer in ecx. |
| IntegerConvert(masm, eax, CpuFeatures::IsSupported(SSE3), &slow); |
| |
| // Do the bitwise operation and check if the result fits in a smi. |
| Label try_float; |
| __ not_(ecx); |
| __ cmp(ecx, 0xc0000000); |
| __ j(sign, &try_float, not_taken); |
| |
| // Tag the result as a smi and we're done. |
| ASSERT(kSmiTagSize == 1); |
| __ lea(eax, Operand(ecx, times_2, kSmiTag)); |
| __ jmp(&done); |
| |
| // Try to store the result in a heap number. |
| __ bind(&try_float); |
| if (!overwrite_) { |
| // Allocate a fresh heap number, but don't overwrite eax until |
| // we're sure we can do it without going through the slow case |
| // that needs the value in eax. |
| __ AllocateHeapNumber(ebx, edx, edi, &slow); |
| __ mov(eax, Operand(ebx)); |
| } |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(ecx)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ push(ecx); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(ecx); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| |
| // Return from the stub. |
| __ bind(&done); |
| __ StubReturn(1); |
| |
| // Handle the slow case by jumping to the JavaScript builtin. |
| __ bind(&slow); |
| __ pop(ecx); // pop return address. |
| __ push(eax); |
| __ push(ecx); // push return address |
| switch (op_) { |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
| break; |
| case Token::BIT_NOT: |
| __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) { |
| // Check if the calling frame is an arguments adaptor frame. |
| __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
| __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Arguments adaptor case: Read the arguments length from the |
| // adaptor frame and return it. |
| // Otherwise nothing to do: The number of formal parameters has already been |
| // passed in register eax by calling function. Just return it. |
| if (CpuFeatures::IsSupported(CMOV)) { |
| CpuFeatures::Scope use_cmov(CMOV); |
| __ cmov(equal, eax, |
| Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| } else { |
| Label exit; |
| __ j(not_equal, &exit); |
| __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ bind(&exit); |
| } |
| __ ret(0); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| // The key is in edx and the parameter count is in eax. |
| |
| // The displacement is used for skipping the frame pointer on the |
| // stack. It is the offset of the last parameter (if any) relative |
| // to the frame pointer. |
| static const int kDisplacement = 1 * kPointerSize; |
| |
| // Check that the key is a smi. |
| Label slow; |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &slow, not_taken); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor; |
| __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); |
| __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adaptor); |
| |
| // Check index against formal parameters count limit passed in |
| // through register eax. Use unsigned comparison to get negative |
| // check for free. |
| __ cmp(edx, Operand(eax)); |
| __ j(above_equal, &slow, not_taken); |
| |
| // Read the argument from the stack and return it. |
| ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this |
| __ lea(ebx, Operand(ebp, eax, times_2, 0)); |
| __ neg(edx); |
| __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
| __ ret(0); |
| |
| // Arguments adaptor case: Check index against actual arguments |
| // limit found in the arguments adaptor frame. Use unsigned |
| // comparison to get negative check for free. |
| __ bind(&adaptor); |
| __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ cmp(edx, Operand(ecx)); |
| __ j(above_equal, &slow, not_taken); |
| |
| // Read the argument from the stack and return it. |
| ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this |
| __ lea(ebx, Operand(ebx, ecx, times_2, 0)); |
| __ neg(edx); |
| __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
| __ ret(0); |
| |
| // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| // by calling the runtime system. |
| __ bind(&slow); |
| __ pop(ebx); // Return address. |
| __ push(edx); |
| __ push(ebx); |
| __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| // esp[0] : return address |
| // esp[4] : number of parameters |
| // esp[8] : receiver displacement |
| // esp[16] : function |
| |
| // The displacement is used for skipping the return address and the |
| // frame pointer on the stack. It is the offset of the last |
| // parameter (if any) relative to the frame pointer. |
| static const int kDisplacement = 2 * kPointerSize; |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor_frame, try_allocate, runtime; |
| __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
| __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adaptor_frame); |
| |
| // Get the length from the frame. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| __ jmp(&try_allocate); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ mov(Operand(esp, 1 * kPointerSize), ecx); |
| __ lea(edx, Operand(edx, ecx, times_2, kDisplacement)); |
| __ mov(Operand(esp, 2 * kPointerSize), edx); |
| |
| // Try the new space allocation. Start out with computing the size of |
| // the arguments object and the elements array. |
| Label add_arguments_object; |
| __ bind(&try_allocate); |
| __ test(ecx, Operand(ecx)); |
| __ j(zero, &add_arguments_object); |
| __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); |
| __ bind(&add_arguments_object); |
| __ add(Operand(ecx), Immediate(Heap::kArgumentsObjectSize)); |
| |
| // Do the allocation of both objects in one go. |
| __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); |
| |
| // Get the arguments boilerplate from the current (global) context. |
| int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); |
| __ mov(edi, Operand(edi, offset)); |
| |
| // Copy the JS object part. |
| for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
| __ mov(ebx, FieldOperand(edi, i)); |
| __ mov(FieldOperand(eax, i), ebx); |
| } |
| |
| // Setup the callee in-object property. |
| ASSERT(Heap::arguments_callee_index == 0); |
| __ mov(ebx, Operand(esp, 3 * kPointerSize)); |
| __ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx); |
| |
| // Get the length (smi tagged) and set that as an in-object property too. |
| ASSERT(Heap::arguments_length_index == 1); |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| __ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx); |
| |
| // If there are no actual arguments, we're done. |
| Label done; |
| __ test(ecx, Operand(ecx)); |
| __ j(zero, &done); |
| |
| // Get the parameters pointer from the stack and untag the length. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| __ SmiUntag(ecx); |
| |
| // Setup the elements pointer in the allocated arguments object and |
| // initialize the header in the elements fixed array. |
| __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize)); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); |
| __ mov(FieldOperand(edi, FixedArray::kMapOffset), |
| Immediate(Factory::fixed_array_map())); |
| __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); |
| |
| // Copy the fixed array slots. |
| Label loop; |
| __ bind(&loop); |
| __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. |
| __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); |
| __ add(Operand(edi), Immediate(kPointerSize)); |
| __ sub(Operand(edx), Immediate(kPointerSize)); |
| __ dec(ecx); |
| __ j(not_zero, &loop); |
| |
| // Return and remove the on-stack parameters. |
| __ bind(&done); |
| __ ret(3 * kPointerSize); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3, 1); |
| } |
| |
| |
| void RegExpExecStub::Generate(MacroAssembler* masm) { |
| // Just jump directly to runtime if native RegExp is not selected at compile |
| // time or if regexp entry in generated code is turned off runtime switch or |
| // at compilation. |
| #ifndef V8_NATIVE_REGEXP |
| __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); |
| #else // V8_NATIVE_REGEXP |
| if (!FLAG_regexp_entry_native) { |
| __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); |
| return; |
| } |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: last_match_info (expected JSArray) |
| // esp[8]: previous index |
| // esp[12]: subject string |
| // esp[16]: JSRegExp object |
| |
| static const int kLastMatchInfoOffset = 1 * kPointerSize; |
| static const int kPreviousIndexOffset = 2 * kPointerSize; |
| static const int kSubjectOffset = 3 * kPointerSize; |
| static const int kJSRegExpOffset = 4 * kPointerSize; |
| |
| Label runtime, invoke_regexp; |
| |
| // Ensure that a RegExp stack is allocated. |
| ExternalReference address_of_regexp_stack_memory_address = |
| ExternalReference::address_of_regexp_stack_memory_address(); |
| ExternalReference address_of_regexp_stack_memory_size = |
| ExternalReference::address_of_regexp_stack_memory_size(); |
| __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| __ test(ebx, Operand(ebx)); |
| __ j(zero, &runtime, not_taken); |
| |
| // Check that the first argument is a JSRegExp object. |
| __ mov(eax, Operand(esp, kJSRegExpOffset)); |
| ASSERT_EQ(0, kSmiTag); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &runtime); |
| __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); |
| __ j(not_equal, &runtime); |
| // Check that the RegExp has been compiled (data contains a fixed array). |
| __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
| if (FLAG_debug_code) { |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected"); |
| __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); |
| __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
| } |
| |
| // ecx: RegExp data (FixedArray) |
| // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); |
| __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); |
| __ j(not_equal, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // Check that the number of captures fit in the static offsets vector buffer. |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| // uses the asumption that smis are 2 * their untagged value. |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| __ add(Operand(edx), Immediate(2)); // edx was a smi. |
| // Check that the static offsets vector buffer is large enough. |
| __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); |
| __ j(above, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the second argument is a string. |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &runtime); |
| Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
| __ j(NegateCondition(is_string), &runtime); |
| // Get the length of the string to ebx. |
| __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
| |
| // ebx: Length of subject string |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the third argument is a positive smi. |
| // Check that the third argument is a positive smi less than the subject |
| // string length. A negative value will be greater (usigned comparison). |
| __ mov(eax, Operand(esp, kPreviousIndexOffset)); |
| __ SmiUntag(eax); |
| __ cmp(eax, Operand(ebx)); |
| __ j(above, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the fourth object is a JSArray object. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &runtime); |
| __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); |
| __ j(not_equal, &runtime); |
| // Check that the JSArray is in fast case. |
| __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
| __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); |
| __ cmp(eax, Factory::fixed_array_map()); |
| __ j(not_equal, &runtime); |
| // Check that the last match info has space for the capture registers and the |
| // additional information. |
| __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); |
| __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead)); |
| __ cmp(edx, Operand(eax)); |
| __ j(greater, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // Check the representation and encoding of the subject string. |
| Label seq_string, seq_two_byte_string, check_code; |
| const int kStringRepresentationEncodingMask = |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| __ and_(ebx, kStringRepresentationEncodingMask); |
| // First check for sequential string. |
| ASSERT_EQ(0, kStringTag); |
| ASSERT_EQ(0, kSeqStringTag); |
| __ test(Operand(ebx), |
| Immediate(kIsNotStringMask | kStringRepresentationMask)); |
| __ j(zero, &seq_string); |
| |
| // Check for flat cons string. |
| // A flat cons string is a cons string where the second part is the empty |
| // string. In that case the subject string is just the first part of the cons |
| // string. Also in this case the first part of the cons string is known to be |
| // a sequential string or an external string. |
| __ mov(edx, ebx); |
| __ and_(edx, kStringRepresentationMask); |
| __ cmp(edx, kConsStringTag); |
| __ j(not_equal, &runtime); |
| __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset)); |
| __ cmp(Operand(edx), Factory::empty_string()); |
| __ j(not_equal, &runtime); |
| __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| ASSERT_EQ(0, kSeqStringTag); |
| __ test(ebx, Immediate(kStringRepresentationMask)); |
| __ j(not_zero, &runtime); |
| __ and_(ebx, kStringRepresentationEncodingMask); |
| |
| __ bind(&seq_string); |
| // eax: subject string (sequential either ascii to two byte) |
| // ebx: suject string type & kStringRepresentationEncodingMask |
| // ecx: RegExp data (FixedArray) |
| // Check that the irregexp code has been generated for an ascii string. If |
| // it has, the field contains a code object otherwise it contains the hole. |
| __ cmp(ebx, kStringTag | kSeqStringTag | kTwoByteStringTag); |
| __ j(equal, &seq_two_byte_string); |
| if (FLAG_debug_code) { |
| __ cmp(ebx, kStringTag | kSeqStringTag | kAsciiStringTag); |
| __ Check(equal, "Expected sequential ascii string"); |
| } |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset)); |
| __ Set(edi, Immediate(1)); // Type is ascii. |
| __ jmp(&check_code); |
| |
| __ bind(&seq_two_byte_string); |
| // eax: subject string |
| // ecx: RegExp data (FixedArray) |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); |
| __ Set(edi, Immediate(0)); // Type is two byte. |
| |
| __ bind(&check_code); |
| // Check that the irregexp code has been generated for the actual string |
| // encoding. If it has, the field contains a code object otherwise it contains |
| // the hole. |
| __ CmpObjectType(edx, CODE_TYPE, ebx); |
| __ j(not_equal, &runtime); |
| |
| // eax: subject string |
| // edx: code |
| // edi: encoding of subject string (1 if ascii, 0 if two_byte); |
| // Load used arguments before starting to push arguments for call to native |
| // RegExp code to avoid handling changing stack height. |
| __ mov(ebx, Operand(esp, kPreviousIndexOffset)); |
| __ SmiUntag(ebx); // Previous index from smi. |
| |
| // eax: subject string |
| // ebx: previous index |
| // edx: code |
| // edi: encoding of subject string (1 if ascii 0 if two_byte); |
| // All checks done. Now push arguments for native regexp code. |
| __ IncrementCounter(&Counters::regexp_entry_native, 1); |
| |
| // Argument 7: Indicate that this is a direct call from JavaScript. |
| __ push(Immediate(1)); |
| |
| // Argument 6: Start (high end) of backtracking stack memory area. |
| __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address)); |
| __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| __ push(ecx); |
| |
| // Argument 5: static offsets vector buffer. |
| __ push(Immediate(ExternalReference::address_of_static_offsets_vector())); |
| |
| // Argument 4: End of string data |
| // Argument 3: Start of string data |
| Label push_two_byte, push_rest; |
| __ test(edi, Operand(edi)); |
| __ mov(edi, FieldOperand(eax, String::kLengthOffset)); |
| __ j(zero, &push_two_byte); |
| __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize)); |
| __ push(ecx); // Argument 4. |
| __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize)); |
| __ push(ecx); // Argument 3. |
| __ jmp(&push_rest); |
| |
| __ bind(&push_two_byte); |
| __ lea(ecx, FieldOperand(eax, edi, times_2, SeqTwoByteString::kHeaderSize)); |
| __ push(ecx); // Argument 4. |
| __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); |
| __ push(ecx); // Argument 3. |
| |
| __ bind(&push_rest); |
| |
| // Argument 2: Previous index. |
| __ push(ebx); |
| |
| // Argument 1: Subject string. |
| __ push(eax); |
| |
| // Locate the code entry and call it. |
| __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ call(Operand(edx)); |
| // Remove arguments. |
| __ add(Operand(esp), Immediate(7 * kPointerSize)); |
| |
| // Check the result. |
| Label success; |
| __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS); |
| __ j(equal, &success, taken); |
| Label failure; |
| __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); |
| __ j(equal, &failure, taken); |
| __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); |
| // If not exception it can only be retry. Handle that in the runtime system. |
| __ j(not_equal, &runtime); |
| // Result must now be exception. If there is no pending exception already a |
| // stack overflow (on the backtrack stack) was detected in RegExp code but |
| // haven't created the exception yet. Handle that in the runtime system. |
| // TODO(592) Rerunning the RegExp to get the stack overflow exception. |
| ExternalReference pending_exception(Top::k_pending_exception_address); |
| __ mov(eax, |
| Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| __ cmp(eax, Operand::StaticVariable(pending_exception)); |
| __ j(equal, &runtime); |
| __ bind(&failure); |
| // For failure and exception return null. |
| __ mov(Operand(eax), Factory::null_value()); |
| __ ret(4 * kPointerSize); |
| |
| // Load RegExp data. |
| __ bind(&success); |
| __ mov(eax, Operand(esp, kJSRegExpOffset)); |
| __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| __ add(Operand(edx), Immediate(2)); // edx was a smi. |
| |
| // edx: Number of capture registers |
| // Load last_match_info which is still known to be a fast case JSArray. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
| |
| // ebx: last_match_info backing store (FixedArray) |
| // edx: number of capture registers |
| // Store the capture count. |
| __ SmiTag(edx); // Number of capture registers to smi. |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); |
| __ SmiUntag(edx); // Number of capture registers back from smi. |
| // Store last subject and last input. |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); |
| __ mov(ecx, ebx); |
| __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi); |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); |
| __ mov(ecx, ebx); |
| __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi); |
| |
| // Get the static offsets vector filled by the native regexp code. |
| ExternalReference address_of_static_offsets_vector = |
| ExternalReference::address_of_static_offsets_vector(); |
| __ mov(ecx, Immediate(address_of_static_offsets_vector)); |
| |
| // ebx: last_match_info backing store (FixedArray) |
| // ecx: offsets vector |
| // edx: number of capture registers |
| Label next_capture, done; |
| __ mov(eax, Operand(esp, kPreviousIndexOffset)); |
| // Capture register counter starts from number of capture registers and |
| // counts down until wraping after zero. |
| __ bind(&next_capture); |
| __ sub(Operand(edx), Immediate(1)); |
| __ j(negative, &done); |
| // Read the value from the static offsets vector buffer. |
| __ mov(edi, Operand(ecx, edx, times_int_size, 0)); |
| // Perform explicit shift |
| ASSERT_EQ(0, kSmiTag); |
| __ shl(edi, kSmiTagSize); |
| // Add previous index (from its stack slot) if value is not negative. |
| Label capture_negative; |
| // Carry flag set by shift above. |
| __ j(negative, &capture_negative, not_taken); |
| __ add(edi, Operand(eax)); // Add previous index (adding smi to smi). |
| __ bind(&capture_negative); |
| // Store the smi value in the last match info. |
| __ mov(FieldOperand(ebx, |
| edx, |
| times_pointer_size, |
| RegExpImpl::kFirstCaptureOffset), |
| edi); |
| __ jmp(&next_capture); |
| __ bind(&done); |
| |
| // Return last match info. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ ret(4 * kPointerSize); |
| |
| // Do the runtime call to execute the regexp. |
| __ bind(&runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); |
| #endif // V8_NATIVE_REGEXP |
| } |
| |
| |
| void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| bool object_is_smi, |
| Label* not_found) { |
| // Currently only lookup for smis. Check for smi if object is not known to be |
| // a smi. |
| if (!object_is_smi) { |
| ASSERT(kSmiTag == 0); |
| __ test(object, Immediate(kSmiTagMask)); |
| __ j(not_zero, not_found); |
| } |
| |
| // Use of registers. Register result is used as a temporary. |
| Register number_string_cache = result; |
| Register mask = scratch1; |
| Register scratch = scratch2; |
| |
| // Load the number string cache. |
| ExternalReference roots_address = ExternalReference::roots_address(); |
| __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex)); |
| __ mov(number_string_cache, |
| Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
| // Make the hash mask from the length of the number string cache. It |
| // contains two elements (number and string) for each cache entry. |
| __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); |
| __ shr(mask, 1); // Divide length by two (length is not a smi). |
| __ sub(Operand(mask), Immediate(1)); // Make mask. |
| // Calculate the entry in the number string cache. The hash value in the |
| // number string cache for smis is just the smi value. |
| __ mov(scratch, object); |
| __ SmiUntag(scratch); |
| __ and_(scratch, Operand(mask)); |
| // Check if the entry is the smi we are looking for. |
| __ cmp(object, |
| FieldOperand(number_string_cache, |
| scratch, |
| times_twice_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ j(not_equal, not_found); |
| |
| // Get the result from the cache. |
| __ mov(result, |
| FieldOperand(number_string_cache, |
| scratch, |
| times_twice_pointer_size, |
| FixedArray::kHeaderSize + kPointerSize)); |
| __ IncrementCounter(&Counters::number_to_string_native, 1); |
| } |
| |
| |
| void NumberToStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| __ mov(ebx, Operand(esp, kPointerSize)); |
| |
| // Generate code to lookup number in the number string cache. |
| GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime); |
| __ ret(1 * kPointerSize); |
| |
| __ bind(&runtime); |
| // Handle number to string in the runtime system if not found in the cache. |
| __ TailCallRuntime(ExternalReference(Runtime::kNumberToString), 1, 1); |
| } |
| |
| |
| void CompareStub::Generate(MacroAssembler* masm) { |
| Label call_builtin, done; |
| |
| // NOTICE! This code is only reached after a smi-fast-case check, so |
| // it is certain that at least one operand isn't a smi. |
| |
| if (cc_ == equal) { // Both strict and non-strict. |
| Label slow; // Fallthrough label. |
| // Equality is almost reflexive (everything but NaN), so start by testing |
| // for "identity and not NaN". |
| { |
| Label not_identical; |
| __ cmp(eax, Operand(edx)); |
| __ j(not_equal, ¬_identical); |
| // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
| // so we do the second best thing - test it ourselves. |
| |
| if (never_nan_nan_) { |
| __ Set(eax, Immediate(0)); |
| __ ret(0); |
| } else { |
| Label return_equal; |
| Label heap_number; |
| // If it's not a heap number, then return equal. |
| __ cmp(FieldOperand(edx, HeapObject::kMapOffset), |
| Immediate(Factory::heap_number_map())); |
| __ j(equal, &heap_number); |
| __ bind(&return_equal); |
| __ Set(eax, Immediate(0)); |
| __ ret(0); |
| |
| __ bind(&heap_number); |
| // It is a heap number, so return non-equal if it's NaN and equal if |
| // it's not NaN. |
| // The representation of NaN values has all exponent bits (52..62) set, |
| // and not all mantissa bits (0..51) clear. |
| // We only accept QNaNs, which have bit 51 set. |
| // Read top bits of double representation (second word of value). |
| |
| // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., |
| // all bits in the mask are set. We only need to check the word |
| // that contains the exponent and high bit of the mantissa. |
| ASSERT_NE(0, (kQuietNaNHighBitsMask << 1) & 0x80000000u); |
| __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| __ xor_(eax, Operand(eax)); |
| // Shift value and mask so kQuietNaNHighBitsMask applies to topmost |
| // bits. |
| __ add(edx, Operand(edx)); |
| __ cmp(edx, kQuietNaNHighBitsMask << 1); |
| __ setcc(above_equal, eax); |
| __ ret(0); |
| } |
| |
| __ bind(¬_identical); |
| } |
| |
| // If we're doing a strict equality comparison, we don't have to do |
| // type conversion, so we generate code to do fast comparison for objects |
| // and oddballs. Non-smi numbers and strings still go through the usual |
| // slow-case code. |
| if (strict_) { |
| // If either is a Smi (we know that not both are), then they can only |
| // be equal if the other is a HeapNumber. If so, use the slow case. |
| { |
| Label not_smis; |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ mov(ecx, Immediate(kSmiTagMask)); |
| __ and_(ecx, Operand(eax)); |
| __ test(ecx, Operand(edx)); |
| __ j(not_zero, ¬_smis); |
| // One operand is a smi. |
| |
| // Check whether the non-smi is a heap number. |
| ASSERT_EQ(1, kSmiTagMask); |
| // ecx still holds eax & kSmiTag, which is either zero or one. |
| __ sub(Operand(ecx), Immediate(0x01)); |
| __ mov(ebx, edx); |
| __ xor_(ebx, Operand(eax)); |
| __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx. |
| __ xor_(ebx, Operand(eax)); |
| // if eax was smi, ebx is now edx, else eax. |
| |
| // Check if the non-smi operand is a heap number. |
| __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), |
| Immediate(Factory::heap_number_map())); |
| // If heap number, handle it in the slow case. |
| __ j(equal, &slow); |
| // Return non-equal (ebx is not zero) |
| __ mov(eax, ebx); |
| __ ret(0); |
| |
| __ bind(¬_smis); |
| } |
| |
| // If either operand is a JSObject or an oddball value, then they are not |
| // equal since their pointers are different |
| // There is no test for undetectability in strict equality. |
| |
| // Get the type of the first operand. |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| |
| // If the first object is a JS object, we have done pointer comparison. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| Label first_non_object; |
| __ cmp(ecx, FIRST_JS_OBJECT_TYPE); |
| __ j(less, &first_non_object); |
| |
| // Return non-zero (eax is not zero) |
| Label return_not_equal; |
| ASSERT(kHeapObjectTag != 0); |
| __ bind(&return_not_equal); |
| __ ret(0); |
| |
| __ bind(&first_non_object); |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(ecx, ODDBALL_TYPE); |
| __ j(equal, &return_not_equal); |
| |
| __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| |
| __ cmp(ecx, FIRST_JS_OBJECT_TYPE); |
| __ j(greater_equal, &return_not_equal); |
| |
| // Check for oddballs: true, false, null, undefined. |
| __ cmp(ecx, ODDBALL_TYPE); |
| __ j(equal, &return_not_equal); |
| |
| // Fall through to the general case. |
| } |
| __ bind(&slow); |
| } |
| |
| // Push arguments below the return address. |
| __ pop(ecx); |
| __ push(eax); |
| __ push(edx); |
| __ push(ecx); |
| |
| // Inlined floating point compare. |
| // Call builtin if operands are not floating point or smi. |
| Label check_for_symbols; |
| Label unordered; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| CpuFeatures::Scope use_cmov(CMOV); |
| |
| FloatingPointHelper::LoadSSE2Operands(masm, &check_for_symbols); |
| __ comisd(xmm0, xmm1); |
| |
| // Jump to builtin for NaN. |
| __ j(parity_even, &unordered, not_taken); |
| __ mov(eax, 0); // equal |
| __ mov(ecx, Immediate(Smi::FromInt(1))); |
| __ cmov(above, eax, Operand(ecx)); |
| __ mov(ecx, Immediate(Smi::FromInt(-1))); |
| __ cmov(below, eax, Operand(ecx)); |
| __ ret(2 * kPointerSize); |
| } else { |
| FloatingPointHelper::CheckFloatOperands(masm, &check_for_symbols, ebx); |
| FloatingPointHelper::LoadFloatOperands(masm, ecx); |
| __ FCmp(); |
| |
| // Jump to builtin for NaN. |
| __ j(parity_even, &unordered, not_taken); |
| |
| Label below_lbl, above_lbl; |
| // Return a result of -1, 0, or 1, to indicate result of comparison. |
| __ j(below, &below_lbl, not_taken); |
| __ j(above, &above_lbl, not_taken); |
| |
| __ xor_(eax, Operand(eax)); // equal |
| // Both arguments were pushed in case a runtime call was needed. |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&below_lbl); |
| __ mov(eax, Immediate(Smi::FromInt(-1))); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&above_lbl); |
| __ mov(eax, Immediate(Smi::FromInt(1))); |
| __ ret(2 * kPointerSize); // eax, edx were pushed |
| } |
| // If one of the numbers was NaN, then the result is always false. |
| // The cc is never not-equal. |
| __ bind(&unordered); |
| ASSERT(cc_ != not_equal); |
| if (cc_ == less || cc_ == less_equal) { |
| __ mov(eax, Immediate(Smi::FromInt(1))); |
| } else { |
| __ mov(eax, Immediate(Smi::FromInt(-1))); |
| } |
| __ ret(2 * kPointerSize); // eax, edx were pushed |
| |
| // Fast negative check for symbol-to-symbol equality. |
| __ bind(&check_for_symbols); |
| Label check_for_strings; |
| if (cc_ == equal) { |
| BranchIfNonSymbol(masm, &check_for_strings, eax, ecx); |
| BranchIfNonSymbol(masm, &check_for_strings, edx, ecx); |
| |
| // We've already checked for object identity, so if both operands |
| // are symbols they aren't equal. Register eax already holds a |
| // non-zero value, which indicates not equal, so just return. |
| __ ret(2 * kPointerSize); |
| } |
| |
| __ bind(&check_for_strings); |
| |
| __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &call_builtin); |
| |
| // Inline comparison of ascii strings. |
| StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| edx, |
| eax, |
| ecx, |
| ebx, |
| edi); |
| #ifdef DEBUG |
| __ Abort("Unexpected fall-through from string comparison"); |
| #endif |
| |
| __ bind(&call_builtin); |
| // must swap argument order |
| __ pop(ecx); |
| __ pop(edx); |
| __ pop(eax); |
| __ push(edx); |
| __ push(eax); |
| |
| // Figure out which native to call and setup the arguments. |
| Builtins::JavaScript builtin; |
| if (cc_ == equal) { |
| builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| } else { |
| builtin = Builtins::COMPARE; |
| int ncr; // NaN compare result |
| if (cc_ == less || cc_ == less_equal) { |
| ncr = GREATER; |
| } else { |
| ASSERT(cc_ == greater || cc_ == greater_equal); // remaining cases |
| ncr = LESS; |
| } |
| __ push(Immediate(Smi::FromInt(ncr))); |
| } |
| |
| // Restore return address on the stack. |
| __ push(ecx); |
| |
| // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ InvokeBuiltin(builtin, JUMP_FUNCTION); |
| } |
| |
| |
| void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, |
| Label* label, |
| Register object, |
| Register scratch) { |
| __ test(object, Immediate(kSmiTagMask)); |
| __ j(zero, label); |
| __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); |
| __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); |
| __ and_(scratch, kIsSymbolMask | kIsNotStringMask); |
| __ cmp(scratch, kSymbolTag | kStringTag); |
| __ j(not_equal, label); |
| } |
| |
| |
| void StackCheckStub::Generate(MacroAssembler* masm) { |
| // Because builtins always remove the receiver from the stack, we |
| // have to fake one to avoid underflowing the stack. The receiver |
| // must be inserted below the return address on the stack so we |
| // temporarily store that in a register. |
| __ pop(eax); |
| __ push(Immediate(Smi::FromInt(0))); |
| __ push(eax); |
| |
| // Do tail-call to runtime routine. |
| __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1, 1); |
| } |
| |
| |
| void CallFunctionStub::Generate(MacroAssembler* masm) { |
| Label slow; |
| |
| // If the receiver might be a value (string, number or boolean) check for this |
| // and box it if it is. |
| if (ReceiverMightBeValue()) { |
| // Get the receiver from the stack. |
| // +1 ~ return address |
| Label receiver_is_value, receiver_is_js_object; |
| __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize)); |
| |
| // Check if receiver is a smi (which is a number value). |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &receiver_is_value, not_taken); |
| |
| // Check if the receiver is a valid JS object. |
| __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi); |
| __ j(above_equal, &receiver_is_js_object); |
| |
| // Call the runtime to box the value. |
| __ bind(&receiver_is_value); |
| __ EnterInternalFrame(); |
| __ push(eax); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ LeaveInternalFrame(); |
| __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax); |
| |
| __ bind(&receiver_is_js_object); |
| } |
| |
| // Get the function to call from the stack. |
| // +2 ~ receiver, return address |
| __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize)); |
| |
| // Check that the function really is a JavaScript function. |
| __ test(edi, Immediate(kSmiTagMask)); |
| __ j(zero, &slow, not_taken); |
| // Goto slow case if we do not have a function. |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &slow, not_taken); |
| |
| // Fast-case: Just invoke the function. |
| ParameterCount actual(argc_); |
| __ InvokeFunction(edi, actual, JUMP_FUNCTION); |
| |
| // Slow-case: Non-function called. |
| __ bind(&slow); |
| // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| // of the original receiver from the call site). |
| __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi); |
| __ Set(eax, Immediate(argc_)); |
| __ Set(ebx, Immediate(0)); |
| __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); |
| Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
| __ jmp(adaptor, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| // eax holds the exception. |
| |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // Drop the sp to the top of the handler. |
| ExternalReference handler_address(Top::k_handler_address); |
| __ mov(esp, Operand::StaticVariable(handler_address)); |
| |
| // Restore next handler and frame pointer, discard handler state. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| __ pop(Operand::StaticVariable(handler_address)); |
| ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); |
| __ pop(ebp); |
| __ pop(edx); // Remove state. |
| |
| // Before returning we restore the context from the frame pointer if |
| // not NULL. The frame pointer is NULL in the exception handler of |
| // a JS entry frame. |
| __ xor_(esi, Operand(esi)); // Tentatively set context pointer to NULL. |
| Label skip; |
| __ cmp(ebp, 0); |
| __ j(equal, &skip, not_taken); |
| __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
| __ bind(&skip); |
| |
| ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| __ ret(0); |
| } |
| |
| |
| // If true, a Handle<T> passed by value is passed and returned by |
| // using the location_ field directly. If false, it is passed and |
| // returned as a pointer to a handle. |
| #ifdef USING_MAC_ABI |
| static const bool kPassHandlesDirectly = true; |
| #else |
| static const bool kPassHandlesDirectly = false; |
| #endif |
| |
| |
| void ApiGetterEntryStub::Generate(MacroAssembler* masm) { |
| Label get_result; |
| Label prologue; |
| Label promote_scheduled_exception; |
| __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc); |
| ASSERT_EQ(kArgc, 4); |
| if (kPassHandlesDirectly) { |
| // When handles as passed directly we don't have to allocate extra |
| // space for and pass an out parameter. |
| __ mov(Operand(esp, 0 * kPointerSize), ebx); // name. |
| __ mov(Operand(esp, 1 * kPointerSize), eax); // arguments pointer. |
| } else { |
| // The function expects three arguments to be passed but we allocate |
| // four to get space for the output cell. The argument slots are filled |
| // as follows: |
| // |
| // 3: output cell |
| // 2: arguments pointer |
| // 1: name |
| // 0: pointer to the output cell |
| // |
| // Note that this is one more "argument" than the function expects |
| // so the out cell will have to be popped explicitly after returning |
| // from the function. |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); // name. |
| __ mov(Operand(esp, 2 * kPointerSize), eax); // arguments pointer. |
| __ mov(ebx, esp); |
| __ add(Operand(ebx), Immediate(3 * kPointerSize)); |
| __ mov(Operand(esp, 0 * kPointerSize), ebx); // output |
| __ mov(Operand(esp, 3 * kPointerSize), Immediate(0)); // out cell. |
| } |
| // Call the api function! |
| __ call(fun()->address(), RelocInfo::RUNTIME_ENTRY); |
| // Check if the function scheduled an exception. |
| ExternalReference scheduled_exception_address = |
| ExternalReference::scheduled_exception_address(); |
| __ cmp(Operand::StaticVariable(scheduled_exception_address), |
| Immediate(Factory::the_hole_value())); |
| __ j(not_equal, &promote_scheduled_exception, not_taken); |
| if (!kPassHandlesDirectly) { |
| // The returned value is a pointer to the handle holding the result. |
| // Dereference this to get to the location. |
| __ mov(eax, Operand(eax, 0)); |
| } |
| // Check if the result handle holds 0 |
| __ test(eax, Operand(eax)); |
| __ j(not_zero, &get_result, taken); |
| // It was zero; the result is undefined. |
| __ mov(eax, Factory::undefined_value()); |
| __ jmp(&prologue); |
| // It was non-zero. Dereference to get the result value. |
| __ bind(&get_result); |
| __ mov(eax, Operand(eax, 0)); |
| __ bind(&prologue); |
| __ LeaveExitFrame(ExitFrame::MODE_NORMAL); |
| __ ret(0); |
| __ bind(&promote_scheduled_exception); |
| __ TailCallRuntime(ExternalReference(Runtime::kPromoteScheduledException), |
| 0, |
| 1); |
| } |
| |
| |
| void CEntryStub::GenerateCore(MacroAssembler* masm, |
| Label* throw_normal_exception, |
| Label* throw_termination_exception, |
| Label* throw_out_of_memory_exception, |
| bool do_gc, |
| bool always_allocate_scope) { |
| // eax: result parameter for PerformGC, if any |
| // ebx: pointer to C function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // edi: number of arguments including receiver (C callee-saved) |
| // esi: pointer to the first argument (C callee-saved) |
| |
| // Result returned in eax, or eax+edx if result_size_ is 2. |
| |
| if (do_gc) { |
| __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. |
| __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); |
| } |
| |
| ExternalReference scope_depth = |
| ExternalReference::heap_always_allocate_scope_depth(); |
| if (always_allocate_scope) { |
| __ inc(Operand::StaticVariable(scope_depth)); |
| } |
| |
| // Call C function. |
| __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. |
| __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. |
| __ call(Operand(ebx)); |
| // Result is in eax or edx:eax - do not destroy these registers! |
| |
| if (always_allocate_scope) { |
| __ dec(Operand::StaticVariable(scope_depth)); |
| } |
| |
| // Make sure we're not trying to return 'the hole' from the runtime |
| // call as this may lead to crashes in the IC code later. |
| if (FLAG_debug_code) { |
| Label okay; |
| __ cmp(eax, Factory::the_hole_value()); |
| __ j(not_equal, &okay); |
| __ int3(); |
| __ bind(&okay); |
| } |
| |
| // Check for failure result. |
| Label failure_returned; |
| ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| __ lea(ecx, Operand(eax, 1)); |
| // Lower 2 bits of ecx are 0 iff eax has failure tag. |
| __ test(ecx, Immediate(kFailureTagMask)); |
| __ j(zero, &failure_returned, not_taken); |
| |
| // Exit the JavaScript to C++ exit frame. |
| __ LeaveExitFrame(mode_); |
| __ ret(0); |
| |
| // Handling of failure. |
| __ bind(&failure_returned); |
| |
| Label retry; |
| // If the returned exception is RETRY_AFTER_GC continue at retry label |
| ASSERT(Failure::RETRY_AFTER_GC == 0); |
| __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| __ j(zero, &retry, taken); |
| |
| // Special handling of out of memory exceptions. |
| __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
| __ j(equal, throw_out_of_memory_exception); |
| |
| // Retrieve the pending exception and clear the variable. |
| ExternalReference pending_exception_address(Top::k_pending_exception_address); |
| __ mov(eax, Operand::StaticVariable(pending_exception_address)); |
| __ mov(edx, |
| Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| __ mov(Operand::StaticVariable(pending_exception_address), edx); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(eax, Factory::termination_exception()); |
| __ j(equal, throw_termination_exception); |
| |
| // Handle normal exception. |
| __ jmp(throw_normal_exception); |
| |
| // Retry. |
| __ bind(&retry); |
| } |
| |
| |
| void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| UncatchableExceptionType type) { |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| |
| // Drop sp to the top stack handler. |
| ExternalReference handler_address(Top::k_handler_address); |
| __ mov(esp, Operand::StaticVariable(handler_address)); |
| |
| // Unwind the handlers until the ENTRY handler is found. |
| Label loop, done; |
| __ bind(&loop); |
| // Load the type of the current stack handler. |
| const int kStateOffset = StackHandlerConstants::kStateOffset; |
| __ cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY)); |
| __ j(equal, &done); |
| // Fetch the next handler in the list. |
| const int kNextOffset = StackHandlerConstants::kNextOffset; |
| __ mov(esp, Operand(esp, kNextOffset)); |
| __ jmp(&loop); |
| __ bind(&done); |
| |
| // Set the top handler address to next handler past the current ENTRY handler. |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| __ pop(Operand::StaticVariable(handler_address)); |
| |
| if (type == OUT_OF_MEMORY) { |
| // Set external caught exception to false. |
| ExternalReference external_caught(Top::k_external_caught_exception_address); |
| __ mov(eax, false); |
| __ mov(Operand::StaticVariable(external_caught), eax); |
| |
| // Set pending exception and eax to out of memory exception. |
| ExternalReference pending_exception(Top::k_pending_exception_address); |
| __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
| __ mov(Operand::StaticVariable(pending_exception), eax); |
| } |
| |
| // Clear the context pointer. |
| __ xor_(esi, Operand(esi)); |
| |
| // Restore fp from handler and discard handler state. |
| ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); |
| __ pop(ebp); |
| __ pop(edx); // State. |
| |
| ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| __ ret(0); |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // eax: number of arguments including receiver |
| // ebx: pointer to C function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // esi: current context (C callee-saved) |
| // edi: JS function of the caller (C callee-saved) |
| |
| // NOTE: Invocations of builtins may return failure objects instead |
| // of a proper result. The builtin entry handles this by performing |
| // a garbage collection and retrying the builtin (twice). |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| __ EnterExitFrame(mode_); |
| |
| // eax: result parameter for PerformGC, if any (setup below) |
| // ebx: pointer to builtin function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // edi: number of arguments including receiver (C callee-saved) |
| // esi: argv pointer (C callee-saved) |
| |
| Label throw_normal_exception; |
| Label throw_termination_exception; |
| Label throw_out_of_memory_exception; |
| |
| // Call into the runtime system. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| false, |
| false); |
| |
| // Do space-specific GC and retry runtime call. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| false); |
| |
| // Do full GC and retry runtime call one final time. |
| Failure* failure = Failure::InternalError(); |
| __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| true); |
| |
| __ bind(&throw_out_of_memory_exception); |
| GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| |
| __ bind(&throw_termination_exception); |
| GenerateThrowUncatchable(masm, TERMINATION); |
| |
| __ bind(&throw_normal_exception); |
| GenerateThrowTOS(masm); |
| } |
| |
| |
| void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| Label invoke, exit; |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| Label not_outermost_js, not_outermost_js_2; |
| #endif |
| |
| // Setup frame. |
| __ push(ebp); |
| __ mov(ebp, Operand(esp)); |
| |
| // Push marker in two places. |
| int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| __ push(Immediate(Smi::FromInt(marker))); // context slot |
| __ push(Immediate(Smi::FromInt(marker))); // function slot |
| // Save callee-saved registers (C calling conventions). |
| __ push(edi); |
| __ push(esi); |
| __ push(ebx); |
| |
| // Save copies of the top frame descriptor on the stack. |
| ExternalReference c_entry_fp(Top::k_c_entry_fp_address); |
| __ push(Operand::StaticVariable(c_entry_fp)); |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| // If this is the outermost JS call, set js_entry_sp value. |
| ExternalReference js_entry_sp(Top::k_js_entry_sp_address); |
| __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| __ j(not_equal, ¬_outermost_js); |
| __ mov(Operand::StaticVariable(js_entry_sp), ebp); |
| __ bind(¬_outermost_js); |
| #endif |
| |
| // Call a faked try-block that does the invoke. |
| __ call(&invoke); |
| |
| // Caught exception: Store result (exception) in the pending |
| // exception field in the JSEnv and return a failure sentinel. |
| ExternalReference pending_exception(Top::k_pending_exception_address); |
| __ mov(Operand::StaticVariable(pending_exception), eax); |
| __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); |
| __ jmp(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| |
| // Clear any pending exceptions. |
| __ mov(edx, |
| Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| __ mov(Operand::StaticVariable(pending_exception), edx); |
| |
| // Fake a receiver (NULL). |
| __ push(Immediate(0)); // receiver |
| |
| // Invoke the function by calling through JS entry trampoline |
| // builtin and pop the faked function when we return. Notice that we |
| // cannot store a reference to the trampoline code directly in this |
| // stub, because the builtin stubs may not have been generated yet. |
| if (is_construct) { |
| ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
| __ mov(edx, Immediate(construct_entry)); |
| } else { |
| ExternalReference entry(Builtins::JSEntryTrampoline); |
| __ mov(edx, Immediate(entry)); |
| } |
| __ mov(edx, Operand(edx, 0)); // deref address |
| __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
| __ call(Operand(edx)); |
| |
| // Unlink this frame from the handler chain. |
| __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); |
| // Pop next_sp. |
| __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| // If current EBP value is the same as js_entry_sp value, it means that |
| // the current function is the outermost. |
| __ cmp(ebp, Operand::StaticVariable(js_entry_sp)); |
| __ j(not_equal, ¬_outermost_js_2); |
| __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| __ bind(¬_outermost_js_2); |
| #endif |
| |
| // Restore the top frame descriptor from the stack. |
| __ bind(&exit); |
| __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address))); |
| |
| // Restore callee-saved registers (C calling conventions). |
| __ pop(ebx); |
| __ pop(esi); |
| __ pop(edi); |
| __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers |
| |
| // Restore frame pointer and return. |
| __ pop(ebp); |
| __ ret(0); |
| } |
| |
| |
| void InstanceofStub::Generate(MacroAssembler* masm) { |
| // Get the object - go slow case if it's a smi. |
| Label slow; |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, function |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &slow, not_taken); |
| |
| // Check that the left hand is a JS object. |
| __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); // eax - object map |
| __ movzx_b(ecx, FieldOperand(eax, Map::kInstanceTypeOffset)); // ecx - type |
| __ cmp(ecx, FIRST_JS_OBJECT_TYPE); |
| __ j(less, &slow, not_taken); |
| __ cmp(ecx, LAST_JS_OBJECT_TYPE); |
| __ j(greater, &slow, not_taken); |
| |
| // Get the prototype of the function. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address |
| __ TryGetFunctionPrototype(edx, ebx, ecx, &slow); |
| |
| // Check that the function prototype is a JS object. |
| __ test(ebx, Immediate(kSmiTagMask)); |
| __ j(zero, &slow, not_taken); |
| __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ cmp(ecx, FIRST_JS_OBJECT_TYPE); |
| __ j(less, &slow, not_taken); |
| __ cmp(ecx, LAST_JS_OBJECT_TYPE); |
| __ j(greater, &slow, not_taken); |
| |
| // Register mapping: eax is object map and ebx is function prototype. |
| __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset)); |
| |
| // Loop through the prototype chain looking for the function prototype. |
| Label loop, is_instance, is_not_instance; |
| __ bind(&loop); |
| __ cmp(ecx, Operand(ebx)); |
| __ j(equal, &is_instance); |
| __ cmp(Operand(ecx), Immediate(Factory::null_value())); |
| __ j(equal, &is_not_instance); |
| __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); |
| __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset)); |
| __ jmp(&loop); |
| |
| __ bind(&is_instance); |
| __ Set(eax, Immediate(0)); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&is_not_instance); |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ ret(2 * kPointerSize); |
| |
| // Slow-case: Go through the JavaScript implementation. |
| __ bind(&slow); |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
| } |
| |
| |
| // Unfortunately you have to run without snapshots to see most of these |
| // names in the profile since most compare stubs end up in the snapshot. |
| const char* CompareStub::GetName() { |
| switch (cc_) { |
| case less: return "CompareStub_LT"; |
| case greater: return "CompareStub_GT"; |
| case less_equal: return "CompareStub_LE"; |
| case greater_equal: return "CompareStub_GE"; |
| case not_equal: { |
| if (strict_) { |
| if (never_nan_nan_) { |
| return "CompareStub_NE_STRICT_NO_NAN"; |
| } else { |
| return "CompareStub_NE_STRICT"; |
| } |
| } else { |
| if (never_nan_nan_) { |
| return "CompareStub_NE_NO_NAN"; |
| } else { |
| return "CompareStub_NE"; |
| } |
| } |
| } |
| case equal: { |
| if (strict_) { |
| if (never_nan_nan_) { |
| return "CompareStub_EQ_STRICT_NO_NAN"; |
| } else { |
| return "CompareStub_EQ_STRICT"; |
| } |
| } else { |
| if (never_nan_nan_) { |
| return "CompareStub_EQ_NO_NAN"; |
| } else { |
| return "CompareStub_EQ"; |
| } |
| } |
| } |
| default: return "CompareStub"; |
| } |
| } |
| |
| |
| int CompareStub::MinorKey() { |
| // Encode the three parameters in a unique 16 bit value. |
| ASSERT(static_cast<unsigned>(cc_) < (1 << 14)); |
| int nnn_value = (never_nan_nan_ ? 2 : 0); |
| if (cc_ != equal) nnn_value = 0; // Avoid duplicate stubs. |
| return (static_cast<unsigned>(cc_) << 2) | nnn_value | (strict_ ? 1 : 0); |
| } |
| |
| |
| void StringAddStub::Generate(MacroAssembler* masm) { |
| Label string_add_runtime; |
| |
| // Load the two arguments. |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. |
| |
| // Make sure that both arguments are strings if not known in advance. |
| if (string_check_) { |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &string_add_runtime); |
| __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx); |
| __ j(above_equal, &string_add_runtime); |
| |
| // First argument is a a string, test second. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, &string_add_runtime); |
| __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx); |
| __ j(above_equal, &string_add_runtime); |
| } |
| |
| // Both arguments are strings. |
| // eax: first string |
| // edx: second string |
| // Check if either of the strings are empty. In that case return the other. |
| Label second_not_zero_length, both_not_zero_length; |
| __ mov(ecx, FieldOperand(edx, String::kLengthOffset)); |
| __ test(ecx, Operand(ecx)); |
| __ j(not_zero, &second_not_zero_length); |
| // Second string is empty, result is first string which is already in eax. |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| __ bind(&second_not_zero_length); |
| __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
| __ test(ebx, Operand(ebx)); |
| __ j(not_zero, &both_not_zero_length); |
| // First string is empty, result is second string which is in edx. |
| __ mov(eax, edx); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| // Both strings are non-empty. |
| // eax: first string |
| // ebx: length of first string |
| // ecx: length of second string |
| // edx: second string |
| // Look at the length of the result of adding the two strings. |
| Label string_add_flat_result, longer_than_two; |
| __ bind(&both_not_zero_length); |
| __ add(ebx, Operand(ecx)); |
| // Use the runtime system when adding two one character strings, as it |
| // contains optimizations for this specific case using the symbol table. |
| __ cmp(ebx, 2); |
| __ j(not_equal, &longer_than_two); |
| |
| // Check that both strings are non-external ascii strings. |
| __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, |
| &string_add_runtime); |
| |
| // Get the two characters forming the sub string. |
| __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); |
| __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); |
| |
| // Try to lookup two character string in symbol table. If it is not found |
| // just allocate a new one. |
| Label make_two_character_string, make_flat_ascii_string; |
| GenerateTwoCharacterSymbolTableProbe(masm, ebx, ecx, eax, edx, edi, |
| &make_two_character_string); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&make_two_character_string); |
| __ Set(ebx, Immediate(2)); |
| __ jmp(&make_flat_ascii_string); |
| |
| __ bind(&longer_than_two); |
| // Check if resulting string will be flat. |
| __ cmp(ebx, String::kMinNonFlatLength); |
| __ j(below, &string_add_flat_result); |
| // Handle exceptionally long strings in the runtime system. |
| ASSERT((String::kMaxLength & 0x80000000) == 0); |
| __ cmp(ebx, String::kMaxLength); |
| __ j(above, &string_add_runtime); |
| |
| // If result is not supposed to be flat allocate a cons string object. If both |
| // strings are ascii the result is an ascii cons string. |
| Label non_ascii, allocated; |
| __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| __ and_(ecx, Operand(edi)); |
| ASSERT(kStringEncodingMask == kAsciiStringTag); |
| __ test(ecx, Immediate(kAsciiStringTag)); |
| __ j(zero, &non_ascii); |
| // Allocate an acsii cons string. |
| __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime); |
| __ bind(&allocated); |
| // Fill the fields of the cons string. |
| __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx); |
| __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax); |
| __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx); |
| __ mov(eax, ecx); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| __ bind(&non_ascii); |
| // Allocate a two byte cons string. |
| __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime); |
| __ jmp(&allocated); |
| |
| // Handle creating a flat result. First check that both strings are not |
| // external strings. |
| // eax: first string |
| // ebx: length of resulting flat string |
| // edx: second string |
| __ bind(&string_add_flat_result); |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ and_(ecx, kStringRepresentationMask); |
| __ cmp(ecx, kExternalStringTag); |
| __ j(equal, &string_add_runtime); |
| __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ and_(ecx, kStringRepresentationMask); |
| __ cmp(ecx, kExternalStringTag); |
| __ j(equal, &string_add_runtime); |
| // Now check if both strings are ascii strings. |
| // eax: first string |
| // ebx: length of resulting flat string |
| // edx: second string |
| Label non_ascii_string_add_flat_result; |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| ASSERT(kStringEncodingMask == kAsciiStringTag); |
| __ test(ecx, Immediate(kAsciiStringTag)); |
| __ j(zero, &non_ascii_string_add_flat_result); |
| __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ test(ecx, Immediate(kAsciiStringTag)); |
| __ j(zero, &string_add_runtime); |
| |
| __ bind(&make_flat_ascii_string); |
| // Both strings are ascii strings. As they are short they are both flat. |
| // ebx: length of resulting flat string |
| __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime); |
| // eax: result string |
| __ mov(ecx, eax); |
| // Locate first character of result. |
| __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Load first argument and locate first character. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // eax: result string |
| // ecx: first character of result |
| // edx: first char of first argument |
| // edi: length of first argument |
| GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
| // Load second argument and locate first character. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // eax: result string |
| // ecx: next character of result |
| // edx: first char of second argument |
| // edi: length of second argument |
| GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| // Handle creating a flat two byte result. |
| // eax: first string - known to be two byte |
| // ebx: length of resulting flat string |
| // edx: second string |
| __ bind(&non_ascii_string_add_flat_result); |
| __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ and_(ecx, kAsciiStringTag); |
| __ j(not_zero, &string_add_runtime); |
| // Both strings are two byte strings. As they are short they are both |
| // flat. |
| __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime); |
| // eax: result string |
| __ mov(ecx, eax); |
| // Locate first character of result. |
| __ add(Operand(ecx), |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Load first argument and locate first character. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ add(Operand(edx), |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // eax: result string |
| // ecx: first character of result |
| // edx: first char of first argument |
| // edi: length of first argument |
| GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
| // Load second argument and locate first character. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // eax: result string |
| // ecx: next character of result |
| // edx: first char of second argument |
| // edi: length of second argument |
| GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| // Just jump to runtime to add the two strings. |
| __ bind(&string_add_runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kStringAdd), 2, 1); |
| } |
| |
| |
| void StringStubBase::GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| Label loop; |
| __ bind(&loop); |
| // This loop just copies one character at a time, as it is only used for very |
| // short strings. |
| if (ascii) { |
| __ mov_b(scratch, Operand(src, 0)); |
| __ mov_b(Operand(dest, 0), scratch); |
| __ add(Operand(src), Immediate(1)); |
| __ add(Operand(dest), Immediate(1)); |
| } else { |
| __ mov_w(scratch, Operand(src, 0)); |
| __ mov_w(Operand(dest, 0), scratch); |
| __ add(Operand(src), Immediate(2)); |
| __ add(Operand(dest), Immediate(2)); |
| } |
| __ sub(Operand(count), Immediate(1)); |
| __ j(not_zero, &loop); |
| } |
| |
| |
| void StringStubBase::GenerateCopyCharactersREP(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| // Copy characters using rep movs of doublewords. Align destination on 4 byte |
| // boundary before starting rep movs. Copy remaining characters after running |
| // rep movs. |
| ASSERT(dest.is(edi)); // rep movs destination |
| ASSERT(src.is(esi)); // rep movs source |
| ASSERT(count.is(ecx)); // rep movs count |
| ASSERT(!scratch.is(dest)); |
| ASSERT(!scratch.is(src)); |
| ASSERT(!scratch.is(count)); |
| |
| // Nothing to do for zero characters. |
| Label done; |
| __ test(count, Operand(count)); |
| __ j(zero, &done); |
| |
| // Make count the number of bytes to copy. |
| if (!ascii) { |
| __ shl(count, 1); |
| } |
| |
| // Don't enter the rep movs if there are less than 4 bytes to copy. |
| Label last_bytes; |
| __ test(count, Immediate(~3)); |
| __ j(zero, &last_bytes); |
| |
| // Copy from edi to esi using rep movs instruction. |
| __ mov(scratch, count); |
| __ sar(count, 2); // Number of doublewords to copy. |
| __ rep_movs(); |
| |
| // Find number of bytes left. |
| __ mov(count, scratch); |
| __ and_(count, 3); |
| |
| // Check if there are more bytes to copy. |
| __ bind(&last_bytes); |
| __ test(count, Operand(count)); |
| __ j(zero, &done); |
| |
| // Copy remaining characters. |
| Label loop; |
| __ bind(&loop); |
| __ mov_b(scratch, Operand(src, 0)); |
| __ mov_b(Operand(dest, 0), scratch); |
| __ add(Operand(src), Immediate(1)); |
| __ add(Operand(dest), Immediate(1)); |
| __ sub(Operand(count), Immediate(1)); |
| __ j(not_zero, &loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringStubBase::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* not_found) { |
| // Register scratch3 is the general scratch register in this function. |
| Register scratch = scratch3; |
| |
| // Make sure that both characters are not digits as such strings has a |
| // different hash algorithm. Don't try to look for these in the symbol table. |
| Label not_array_index; |
| __ mov(scratch, c1); |
| __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); |
| __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); |
| __ j(above, ¬_array_index); |
| __ mov(scratch, c2); |
| __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); |
| __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); |
| __ j(below_equal, not_found); |
| |
| __ bind(¬_array_index); |
| // Calculate the two character string hash. |
| Register hash = scratch1; |
| GenerateHashInit(masm, hash, c1, scratch); |
| GenerateHashAddCharacter(masm, hash, c2, scratch); |
| GenerateHashGetHash(masm, hash, scratch); |
| |
| // Collect the two characters in a register. |
| Register chars = c1; |
| __ shl(c2, kBitsPerByte); |
| __ or_(chars, Operand(c2)); |
| |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string. |
| |
| // Load the symbol table. |
| Register symbol_table = c2; |
| ExternalReference roots_address = ExternalReference::roots_address(); |
| __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex)); |
| __ mov(symbol_table, |
| Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
| |
| // Calculate capacity mask from the symbol table capacity. |
| Register mask = scratch2; |
| static const int kCapacityOffset = |
| FixedArray::kHeaderSize + |
| SymbolTable::kCapacityIndex * kPointerSize; |
| __ mov(mask, FieldOperand(symbol_table, kCapacityOffset)); |
| __ SmiUntag(mask); |
| __ sub(Operand(mask), Immediate(1)); |
| |
| // Registers |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string |
| // symbol_table: symbol table |
| // mask: capacity mask |
| // scratch: - |
| |
| // Perform a number of probes in the symbol table. |
| static const int kProbes = 4; |
| Label found_in_symbol_table; |
| Label next_probe[kProbes], next_probe_pop_mask[kProbes]; |
| for (int i = 0; i < kProbes; i++) { |
| // Calculate entry in symbol table. |
| __ mov(scratch, hash); |
| if (i > 0) { |
| __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i))); |
| } |
| __ and_(scratch, Operand(mask)); |
| |
| // Load the entry from the symble table. |
| Register candidate = scratch; // Scratch register contains candidate. |
| ASSERT_EQ(1, SymbolTableShape::kEntrySize); |
| static const int kFirstElementOffset = |
| FixedArray::kHeaderSize + |
| SymbolTable::kPrefixStartIndex * kPointerSize + |
| SymbolTableShape::kPrefixSize * kPointerSize; |
| __ mov(candidate, |
| FieldOperand(symbol_table, |
| scratch, |
| times_pointer_size, |
| kFirstElementOffset)); |
| |
| // If entry is undefined no string with this hash can be found. |
| __ cmp(candidate, Factory::undefined_value()); |
| __ j(equal, not_found); |
| |
| // If length is not 2 the string is not a candidate. |
| __ cmp(FieldOperand(candidate, String::kLengthOffset), Immediate(2)); |
| __ j(not_equal, &next_probe[i]); |
| |
| // As we are out of registers save the mask on the stack and use that |
| // register as a temporary. |
| __ push(mask); |
| Register temp = mask; |
| |
| // Check that the candidate is a non-external ascii string. |
| __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset)); |
| __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
| __ JumpIfInstanceTypeIsNotSequentialAscii( |
| temp, temp, &next_probe_pop_mask[i]); |
| |
| // Check if the two characters match. |
| __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); |
| __ and_(temp, 0x0000ffff); |
| __ cmp(chars, Operand(temp)); |
| __ j(equal, &found_in_symbol_table); |
| __ bind(&next_probe_pop_mask[i]); |
| __ pop(mask); |
| __ bind(&next_probe[i]); |
| } |
| |
| // No matching 2 character string found by probing. |
| __ jmp(not_found); |
| |
| // Scratch register contains result when we fall through to here. |
| Register result = scratch; |
| __ bind(&found_in_symbol_table); |
| __ pop(mask); // Pop temporally saved mask from the stack. |
| if (!result.is(eax)) { |
| __ mov(eax, result); |
| } |
| } |
| |
| |
| void StringStubBase::GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character, |
| Register scratch) { |
| // hash = character + (character << 10); |
| __ mov(hash, character); |
| __ shl(hash, 10); |
| __ add(hash, Operand(character)); |
| // hash ^= hash >> 6; |
| __ mov(scratch, hash); |
| __ sar(scratch, 6); |
| __ xor_(hash, Operand(scratch)); |
| } |
| |
| |
| void StringStubBase::GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character, |
| Register scratch) { |
| // hash += character; |
| __ add(hash, Operand(character)); |
| // hash += hash << 10; |
| __ mov(scratch, hash); |
| __ shl(scratch, 10); |
| __ add(hash, Operand(scratch)); |
| // hash ^= hash >> 6; |
| __ mov(scratch, hash); |
| __ sar(scratch, 6); |
| __ xor_(hash, Operand(scratch)); |
| } |
| |
| |
| void StringStubBase::GenerateHashGetHash(MacroAssembler* masm, |
| Register hash, |
| Register scratch) { |
| // hash += hash << 3; |
| __ mov(scratch, hash); |
| __ shl(scratch, 3); |
| __ add(hash, Operand(scratch)); |
| // hash ^= hash >> 11; |
| __ mov(scratch, hash); |
| __ sar(scratch, 11); |
| __ xor_(hash, Operand(scratch)); |
| // hash += hash << 15; |
| __ mov(scratch, hash); |
| __ shl(scratch, 15); |
| __ add(hash, Operand(scratch)); |
| |
| // if (hash == 0) hash = 27; |
| Label hash_not_zero; |
| __ test(hash, Operand(hash)); |
| __ j(not_zero, &hash_not_zero); |
| __ mov(hash, Immediate(27)); |
| __ bind(&hash_not_zero); |
| } |
| |
| |
| void SubStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: to |
| // esp[8]: from |
| // esp[12]: string |
| |
| // Make sure first argument is a string. |
| __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| ASSERT_EQ(0, kSmiTag); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &runtime); |
| Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
| __ j(NegateCondition(is_string), &runtime); |
| |
| // eax: string |
| // ebx: instance type |
| // Calculate length of sub string using the smi values. |
| Label result_longer_than_two; |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &runtime); |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &runtime); |
| __ sub(ecx, Operand(edx)); |
| // Special handling of sub-strings of length 1 and 2. One character strings |
| // are handled in the runtime system (looked up in the single character |
| // cache). Two character strings are looked for in the symbol cache. |
| __ SmiUntag(ecx); // Result length is no longer smi. |
| __ cmp(ecx, 2); |
| __ j(greater, &result_longer_than_two); |
| __ j(less, &runtime); |
| |
| // Sub string of length 2 requested. |
| // eax: string |
| // ebx: instance type |
| // ecx: sub string length (value is 2) |
| // edx: from index (smi) |
| __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime); |
| |
| // Get the two characters forming the sub string. |
| __ SmiUntag(edx); // From index is no longer smi. |
| __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize)); |
| __ movzx_b(ecx, |
| FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1)); |
| |
| // Try to lookup two character string in symbol table. |
| Label make_two_character_string; |
| GenerateTwoCharacterSymbolTableProbe(masm, ebx, ecx, eax, edx, edi, |
| &make_two_character_string); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&make_two_character_string); |
| // Setup registers for allocating the two character string. |
| __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| __ Set(ecx, Immediate(2)); |
| |
| __ bind(&result_longer_than_two); |
| // eax: string |
| // ebx: instance type |
| // ecx: result string length |
| // Check for flat ascii string |
| Label non_ascii_flat; |
| __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat); |
| |
| // Allocate the result. |
| __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime); |
| |
| // eax: result string |
| // ecx: result string length |
| __ mov(edx, esi); // esi used by following code. |
| // Locate first character of result. |
| __ mov(edi, eax); |
| __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Load string argument and locate character of sub string start. |
| __ mov(esi, Operand(esp, 3 * kPointerSize)); |
| __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from |
| __ SmiUntag(ebx); |
| __ add(esi, Operand(ebx)); |
| |
| // eax: result string |
| // ecx: result length |
| // edx: original value of esi |
| // edi: first character of result |
| // esi: character of sub string start |
| GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true); |
| __ mov(esi, edx); // Restore esi. |
| __ IncrementCounter(&Counters::sub_string_native, 1); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&non_ascii_flat); |
| // eax: string |
| // ebx: instance type & kStringRepresentationMask | kStringEncodingMask |
| // ecx: result string length |
| // Check for flat two byte string |
| __ cmp(ebx, kSeqStringTag | kTwoByteStringTag); |
| __ j(not_equal, &runtime); |
| |
| // Allocate the result. |
| __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime); |
| |
| // eax: result string |
| // ecx: result string length |
| __ mov(edx, esi); // esi used by following code. |
| // Locate first character of result. |
| __ mov(edi, eax); |
| __ add(Operand(edi), |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Load string argument and locate character of sub string start. |
| __ mov(esi, Operand(esp, 3 * kPointerSize)); |
| __ add(Operand(esi), |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from |
| // As from is a smi it is 2 times the value which matches the size of a two |
| // byte character. |
| ASSERT_EQ(0, kSmiTag); |
| ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); |
| __ add(esi, Operand(ebx)); |
| |
| // eax: result string |
| // ecx: result length |
| // edx: original value of esi |
| // edi: first character of result |
| // esi: character of sub string start |
| GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false); |
| __ mov(esi, edx); // Restore esi. |
| __ IncrementCounter(&Counters::sub_string_native, 1); |
| __ ret(3 * kPointerSize); |
| |
| // Just jump to runtime to create the sub string. |
| __ bind(&runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kSubString), 3, 1); |
| } |
| |
| |
| void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3) { |
| Label result_not_equal; |
| Label result_greater; |
| Label compare_lengths; |
| // Find minimum length. |
| Label left_shorter; |
| __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); |
| __ mov(scratch3, scratch1); |
| __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); |
| |
| Register length_delta = scratch3; |
| |
| __ j(less_equal, &left_shorter); |
| // Right string is shorter. Change scratch1 to be length of right string. |
| __ sub(scratch1, Operand(length_delta)); |
| __ bind(&left_shorter); |
| |
| Register min_length = scratch1; |
| |
| // If either length is zero, just compare lengths. |
| __ test(min_length, Operand(min_length)); |
| __ j(zero, &compare_lengths); |
| |
| // Change index to run from -min_length to -1 by adding min_length |
| // to string start. This means that loop ends when index reaches zero, |
| // which doesn't need an additional compare. |
| __ lea(left, |
| FieldOperand(left, |
| min_length, times_1, |
| SeqAsciiString::kHeaderSize)); |
| __ lea(right, |
| FieldOperand(right, |
| min_length, times_1, |
| SeqAsciiString::kHeaderSize)); |
| __ neg(min_length); |
| |
| Register index = min_length; // index = -min_length; |
| |
| { |
| // Compare loop. |
| Label loop; |
| __ bind(&loop); |
| // Compare characters. |
| __ mov_b(scratch2, Operand(left, index, times_1, 0)); |
| __ cmpb(scratch2, Operand(right, index, times_1, 0)); |
| __ j(not_equal, &result_not_equal); |
| __ add(Operand(index), Immediate(1)); |
| __ j(not_zero, &loop); |
| } |
| |
| // Compare lengths - strings up to min-length are equal. |
| __ bind(&compare_lengths); |
| __ test(length_delta, Operand(length_delta)); |
| __ j(not_zero, &result_not_equal); |
| |
| // Result is EQUAL. |
| ASSERT_EQ(0, EQUAL); |
| ASSERT_EQ(0, kSmiTag); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&result_not_equal); |
| __ j(greater, &result_greater); |
| |
| // Result is LESS. |
| __ Set(eax, Immediate(Smi::FromInt(LESS))); |
| __ ret(2 * kPointerSize); |
| |
| // Result is GREATER. |
| __ bind(&result_greater); |
| __ Set(eax, Immediate(Smi::FromInt(GREATER))); |
| __ ret(2 * kPointerSize); |
| } |
| |
| |
| void StringCompareStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: right string |
| // esp[8]: left string |
| |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); // left |
| __ mov(eax, Operand(esp, 1 * kPointerSize)); // right |
| |
| Label not_same; |
| __ cmp(edx, Operand(eax)); |
| __ j(not_equal, ¬_same); |
| ASSERT_EQ(0, EQUAL); |
| ASSERT_EQ(0, kSmiTag); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ IncrementCounter(&Counters::string_compare_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(¬_same); |
| |
| // Check that both objects are sequential ascii strings. |
| __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime); |
| |
| // Compare flat ascii strings. |
| __ IncrementCounter(&Counters::string_compare_native, 1); |
| GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); |
| |
| // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ bind(&runtime); |
| __ TailCallRuntime(ExternalReference(Runtime::kStringCompare), 2, 1); |
| } |
| |
| #undef __ |
| |
| } } // namespace v8::internal |