| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "bootstrapper.h" |
| #include "code-stubs.h" |
| #include "codegen-inl.h" |
| #include "compiler.h" |
| #include "debug.h" |
| #include "ic-inl.h" |
| #include "jsregexp.h" |
| #include "jump-target-inl.h" |
| #include "parser.h" |
| #include "regexp-macro-assembler.h" |
| #include "regexp-stack.h" |
| #include "register-allocator-inl.h" |
| #include "runtime.h" |
| #include "scopes.h" |
| #include "stub-cache.h" |
| #include "virtual-frame-inl.h" |
| #include "virtual-frame-arm-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| // ------------------------------------------------------------------------- |
| // Platform-specific DeferredCode functions. |
| |
| void DeferredCode::SaveRegisters() { |
| // On ARM you either have a completely spilled frame or you |
| // handle it yourself, but at the moment there's no automation |
| // of registers and deferred code. |
| } |
| |
| |
| void DeferredCode::RestoreRegisters() { |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // Platform-specific RuntimeCallHelper functions. |
| |
| void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
| frame_state_->frame()->AssertIsSpilled(); |
| } |
| |
| |
| void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
| } |
| |
| |
| void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
| masm->EnterInternalFrame(); |
| } |
| |
| |
| void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
| masm->LeaveInternalFrame(); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenState implementation. |
| |
| CodeGenState::CodeGenState(CodeGenerator* owner) |
| : owner_(owner), |
| previous_(owner->state()) { |
| owner->set_state(this); |
| } |
| |
| |
| ConditionCodeGenState::ConditionCodeGenState(CodeGenerator* owner, |
| JumpTarget* true_target, |
| JumpTarget* false_target) |
| : CodeGenState(owner), |
| true_target_(true_target), |
| false_target_(false_target) { |
| owner->set_state(this); |
| } |
| |
| |
| TypeInfoCodeGenState::TypeInfoCodeGenState(CodeGenerator* owner, |
| Slot* slot, |
| TypeInfo type_info) |
| : CodeGenState(owner), |
| slot_(slot) { |
| owner->set_state(this); |
| old_type_info_ = owner->set_type_info(slot, type_info); |
| } |
| |
| |
| CodeGenState::~CodeGenState() { |
| ASSERT(owner_->state() == this); |
| owner_->set_state(previous_); |
| } |
| |
| |
| TypeInfoCodeGenState::~TypeInfoCodeGenState() { |
| owner()->set_type_info(slot_, old_type_info_); |
| } |
| |
| // ------------------------------------------------------------------------- |
| // CodeGenerator implementation |
| |
| int CodeGenerator::inlined_write_barrier_size_ = -1; |
| |
| CodeGenerator::CodeGenerator(MacroAssembler* masm) |
| : deferred_(8), |
| masm_(masm), |
| info_(NULL), |
| frame_(NULL), |
| allocator_(NULL), |
| cc_reg_(al), |
| state_(NULL), |
| loop_nesting_(0), |
| type_info_(NULL), |
| function_return_(JumpTarget::BIDIRECTIONAL), |
| function_return_is_shadowed_(false) { |
| } |
| |
| |
| // Calling conventions: |
| // fp: caller's frame pointer |
| // sp: stack pointer |
| // r1: called JS function |
| // cp: callee's context |
| |
| void CodeGenerator::Generate(CompilationInfo* info) { |
| // Record the position for debugging purposes. |
| CodeForFunctionPosition(info->function()); |
| Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); |
| |
| // Initialize state. |
| info_ = info; |
| |
| int slots = scope()->num_parameters() + scope()->num_stack_slots(); |
| ScopedVector<TypeInfo> type_info_array(slots); |
| for (int i = 0; i < slots; i++) { |
| type_info_array[i] = TypeInfo::Unknown(); |
| } |
| type_info_ = &type_info_array; |
| |
| ASSERT(allocator_ == NULL); |
| RegisterAllocator register_allocator(this); |
| allocator_ = ®ister_allocator; |
| ASSERT(frame_ == NULL); |
| frame_ = new VirtualFrame(); |
| cc_reg_ = al; |
| |
| // Adjust for function-level loop nesting. |
| ASSERT_EQ(0, loop_nesting_); |
| loop_nesting_ = info->is_in_loop() ? 1 : 0; |
| |
| { |
| CodeGenState state(this); |
| |
| // Entry: |
| // Stack: receiver, arguments |
| // lr: return address |
| // fp: caller's frame pointer |
| // sp: stack pointer |
| // r1: called JS function |
| // cp: callee's context |
| allocator_->Initialize(); |
| |
| #ifdef DEBUG |
| if (strlen(FLAG_stop_at) > 0 && |
| info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
| frame_->SpillAll(); |
| __ stop("stop-at"); |
| } |
| #endif |
| |
| frame_->Enter(); |
| // tos: code slot |
| |
| // Allocate space for locals and initialize them. This also checks |
| // for stack overflow. |
| frame_->AllocateStackSlots(); |
| |
| frame_->AssertIsSpilled(); |
| int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
| if (heap_slots > 0) { |
| // Allocate local context. |
| // Get outer context and create a new context based on it. |
| __ ldr(r0, frame_->Function()); |
| frame_->EmitPush(r0); |
| if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
| FastNewContextStub stub(heap_slots); |
| frame_->CallStub(&stub, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kNewContext, 1); |
| } |
| |
| #ifdef DEBUG |
| JumpTarget verified_true; |
| __ cmp(r0, cp); |
| verified_true.Branch(eq); |
| __ stop("NewContext: r0 is expected to be the same as cp"); |
| verified_true.Bind(); |
| #endif |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| } |
| |
| // TODO(1241774): Improve this code: |
| // 1) only needed if we have a context |
| // 2) no need to recompute context ptr every single time |
| // 3) don't copy parameter operand code from SlotOperand! |
| { |
| Comment cmnt2(masm_, "[ copy context parameters into .context"); |
| // Note that iteration order is relevant here! If we have the same |
| // parameter twice (e.g., function (x, y, x)), and that parameter |
| // needs to be copied into the context, it must be the last argument |
| // passed to the parameter that needs to be copied. This is a rare |
| // case so we don't check for it, instead we rely on the copying |
| // order: such a parameter is copied repeatedly into the same |
| // context location and thus the last value is what is seen inside |
| // the function. |
| frame_->AssertIsSpilled(); |
| for (int i = 0; i < scope()->num_parameters(); i++) { |
| Variable* par = scope()->parameter(i); |
| Slot* slot = par->AsSlot(); |
| if (slot != NULL && slot->type() == Slot::CONTEXT) { |
| ASSERT(!scope()->is_global_scope()); // No params in global scope. |
| __ ldr(r1, frame_->ParameterAt(i)); |
| // Loads r2 with context; used below in RecordWrite. |
| __ str(r1, SlotOperand(slot, r2)); |
| // Load the offset into r3. |
| int slot_offset = |
| FixedArray::kHeaderSize + slot->index() * kPointerSize; |
| __ RecordWrite(r2, Operand(slot_offset), r3, r1); |
| } |
| } |
| } |
| |
| // Store the arguments object. This must happen after context |
| // initialization because the arguments object may be stored in |
| // the context. |
| if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { |
| StoreArgumentsObject(true); |
| } |
| |
| // Initialize ThisFunction reference if present. |
| if (scope()->is_function_scope() && scope()->function() != NULL) { |
| frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); |
| StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT); |
| } |
| |
| // Initialize the function return target after the locals are set |
| // up, because it needs the expected frame height from the frame. |
| function_return_.SetExpectedHeight(); |
| function_return_is_shadowed_ = false; |
| |
| // Generate code to 'execute' declarations and initialize functions |
| // (source elements). In case of an illegal redeclaration we need to |
| // handle that instead of processing the declarations. |
| if (scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ illegal redeclarations"); |
| scope()->VisitIllegalRedeclaration(this); |
| } else { |
| Comment cmnt(masm_, "[ declarations"); |
| ProcessDeclarations(scope()->declarations()); |
| // Bail out if a stack-overflow exception occurred when processing |
| // declarations. |
| if (HasStackOverflow()) return; |
| } |
| |
| if (FLAG_trace) { |
| frame_->CallRuntime(Runtime::kTraceEnter, 0); |
| // Ignore the return value. |
| } |
| |
| // Compile the body of the function in a vanilla state. Don't |
| // bother compiling all the code if the scope has an illegal |
| // redeclaration. |
| if (!scope()->HasIllegalRedeclaration()) { |
| Comment cmnt(masm_, "[ function body"); |
| #ifdef DEBUG |
| bool is_builtin = Bootstrapper::IsActive(); |
| bool should_trace = |
| is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; |
| if (should_trace) { |
| frame_->CallRuntime(Runtime::kDebugTrace, 0); |
| // Ignore the return value. |
| } |
| #endif |
| VisitStatements(info->function()->body()); |
| } |
| } |
| |
| // Handle the return from the function. |
| if (has_valid_frame()) { |
| // If there is a valid frame, control flow can fall off the end of |
| // the body. In that case there is an implicit return statement. |
| ASSERT(!function_return_is_shadowed_); |
| frame_->PrepareForReturn(); |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| if (function_return_.is_bound()) { |
| function_return_.Jump(); |
| } else { |
| function_return_.Bind(); |
| GenerateReturnSequence(); |
| } |
| } else if (function_return_.is_linked()) { |
| // If the return target has dangling jumps to it, then we have not |
| // yet generated the return sequence. This can happen when (a) |
| // control does not flow off the end of the body so we did not |
| // compile an artificial return statement just above, and (b) there |
| // are return statements in the body but (c) they are all shadowed. |
| function_return_.Bind(); |
| GenerateReturnSequence(); |
| } |
| |
| // Adjust for function-level loop nesting. |
| ASSERT(loop_nesting_ == info->is_in_loop()? 1 : 0); |
| loop_nesting_ = 0; |
| |
| // Code generation state must be reset. |
| ASSERT(!has_cc()); |
| ASSERT(state_ == NULL); |
| ASSERT(loop_nesting() == 0); |
| ASSERT(!function_return_is_shadowed_); |
| function_return_.Unuse(); |
| DeleteFrame(); |
| |
| // Process any deferred code using the register allocator. |
| if (!HasStackOverflow()) { |
| ProcessDeferred(); |
| } |
| |
| allocator_ = NULL; |
| type_info_ = NULL; |
| } |
| |
| |
| int CodeGenerator::NumberOfSlot(Slot* slot) { |
| if (slot == NULL) return kInvalidSlotNumber; |
| switch (slot->type()) { |
| case Slot::PARAMETER: |
| return slot->index(); |
| case Slot::LOCAL: |
| return slot->index() + scope()->num_parameters(); |
| default: |
| break; |
| } |
| return kInvalidSlotNumber; |
| } |
| |
| |
| MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
| // Currently, this assertion will fail if we try to assign to |
| // a constant variable that is constant because it is read-only |
| // (such as the variable referring to a named function expression). |
| // We need to implement assignments to read-only variables. |
| // Ideally, we should do this during AST generation (by converting |
| // such assignments into expression statements); however, in general |
| // we may not be able to make the decision until past AST generation, |
| // that is when the entire program is known. |
| ASSERT(slot != NULL); |
| int index = slot->index(); |
| switch (slot->type()) { |
| case Slot::PARAMETER: |
| return frame_->ParameterAt(index); |
| |
| case Slot::LOCAL: |
| return frame_->LocalAt(index); |
| |
| case Slot::CONTEXT: { |
| // Follow the context chain if necessary. |
| ASSERT(!tmp.is(cp)); // do not overwrite context register |
| Register context = cp; |
| int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
| for (int i = 0; i < chain_length; i++) { |
| // Load the closure. |
| // (All contexts, even 'with' contexts, have a closure, |
| // and it is the same for all contexts inside a function. |
| // There is no need to go to the function context first.) |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| // Load the function context (which is the incoming, outer context). |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| // We may have a 'with' context now. Get the function context. |
| // (In fact this mov may never be the needed, since the scope analysis |
| // may not permit a direct context access in this case and thus we are |
| // always at a function context. However it is safe to dereference be- |
| // cause the function context of a function context is itself. Before |
| // deleting this mov we should try to create a counter-example first, |
| // though...) |
| __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
| return ContextOperand(tmp, index); |
| } |
| |
| default: |
| UNREACHABLE(); |
| return MemOperand(r0, 0); |
| } |
| } |
| |
| |
| MemOperand CodeGenerator::ContextSlotOperandCheckExtensions( |
| Slot* slot, |
| Register tmp, |
| Register tmp2, |
| JumpTarget* slow) { |
| ASSERT(slot->type() == Slot::CONTEXT); |
| Register context = cp; |
| |
| for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| } |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| } |
| // Check that last extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
| return ContextOperand(tmp, slot->index()); |
| } |
| |
| |
| // Loads a value on TOS. If it is a boolean value, the result may have been |
| // (partially) translated into branches, or it may have set the condition |
| // code register. If force_cc is set, the value is forced to set the |
| // condition code register and no value is pushed. If the condition code |
| // register was set, has_cc() is true and cc_reg_ contains the condition to |
| // test for 'true'. |
| void CodeGenerator::LoadCondition(Expression* x, |
| JumpTarget* true_target, |
| JumpTarget* false_target, |
| bool force_cc) { |
| ASSERT(!has_cc()); |
| int original_height = frame_->height(); |
| |
| { ConditionCodeGenState new_state(this, true_target, false_target); |
| Visit(x); |
| |
| // If we hit a stack overflow, we may not have actually visited |
| // the expression. In that case, we ensure that we have a |
| // valid-looking frame state because we will continue to generate |
| // code as we unwind the C++ stack. |
| // |
| // It's possible to have both a stack overflow and a valid frame |
| // state (eg, a subexpression overflowed, visiting it returned |
| // with a dummied frame state, and visiting this expression |
| // returned with a normal-looking state). |
| if (HasStackOverflow() && |
| has_valid_frame() && |
| !has_cc() && |
| frame_->height() == original_height) { |
| true_target->Jump(); |
| } |
| } |
| if (force_cc && frame_ != NULL && !has_cc()) { |
| // Convert the TOS value to a boolean in the condition code register. |
| ToBoolean(true_target, false_target); |
| } |
| ASSERT(!force_cc || !has_valid_frame() || has_cc()); |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::Load(Expression* expr) { |
| // We generally assume that we are not in a spilled scope for most |
| // of the code generator. A failure to ensure this caused issue 815 |
| // and this assert is designed to catch similar issues. |
| frame_->AssertIsNotSpilled(); |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| JumpTarget true_target; |
| JumpTarget false_target; |
| LoadCondition(expr, &true_target, &false_target, false); |
| |
| if (has_cc()) { |
| // Convert cc_reg_ into a boolean value. |
| JumpTarget loaded; |
| JumpTarget materialize_true; |
| materialize_true.Branch(cc_reg_); |
| frame_->EmitPushRoot(Heap::kFalseValueRootIndex); |
| loaded.Jump(); |
| materialize_true.Bind(); |
| frame_->EmitPushRoot(Heap::kTrueValueRootIndex); |
| loaded.Bind(); |
| cc_reg_ = al; |
| } |
| |
| if (true_target.is_linked() || false_target.is_linked()) { |
| // We have at least one condition value that has been "translated" |
| // into a branch, thus it needs to be loaded explicitly. |
| JumpTarget loaded; |
| if (frame_ != NULL) { |
| loaded.Jump(); // Don't lose the current TOS. |
| } |
| bool both = true_target.is_linked() && false_target.is_linked(); |
| // Load "true" if necessary. |
| if (true_target.is_linked()) { |
| true_target.Bind(); |
| frame_->EmitPushRoot(Heap::kTrueValueRootIndex); |
| } |
| // If both "true" and "false" need to be loaded jump across the code for |
| // "false". |
| if (both) { |
| loaded.Jump(); |
| } |
| // Load "false" if necessary. |
| if (false_target.is_linked()) { |
| false_target.Bind(); |
| frame_->EmitPushRoot(Heap::kFalseValueRootIndex); |
| } |
| // A value is loaded on all paths reaching this point. |
| loaded.Bind(); |
| } |
| ASSERT(has_valid_frame()); |
| ASSERT(!has_cc()); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::LoadGlobal() { |
| Register reg = frame_->GetTOSRegister(); |
| __ ldr(reg, GlobalObjectOperand()); |
| frame_->EmitPush(reg); |
| } |
| |
| |
| void CodeGenerator::LoadGlobalReceiver(Register scratch) { |
| Register reg = frame_->GetTOSRegister(); |
| __ ldr(reg, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ ldr(reg, |
| FieldMemOperand(reg, GlobalObject::kGlobalReceiverOffset)); |
| frame_->EmitPush(reg); |
| } |
| |
| |
| ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { |
| if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; |
| ASSERT(scope()->arguments_shadow() != NULL); |
| // We don't want to do lazy arguments allocation for functions that |
| // have heap-allocated contexts, because it interfers with the |
| // uninitialized const tracking in the context objects. |
| return (scope()->num_heap_slots() > 0) |
| ? EAGER_ARGUMENTS_ALLOCATION |
| : LAZY_ARGUMENTS_ALLOCATION; |
| } |
| |
| |
| void CodeGenerator::StoreArgumentsObject(bool initial) { |
| ArgumentsAllocationMode mode = ArgumentsMode(); |
| ASSERT(mode != NO_ARGUMENTS_ALLOCATION); |
| |
| Comment cmnt(masm_, "[ store arguments object"); |
| if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { |
| // When using lazy arguments allocation, we store the hole value |
| // as a sentinel indicating that the arguments object hasn't been |
| // allocated yet. |
| frame_->EmitPushRoot(Heap::kArgumentsMarkerRootIndex); |
| } else { |
| frame_->SpillAll(); |
| ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); |
| __ ldr(r2, frame_->Function()); |
| // The receiver is below the arguments, the return address, and the |
| // frame pointer on the stack. |
| const int kReceiverDisplacement = 2 + scope()->num_parameters(); |
| __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize)); |
| __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
| frame_->Adjust(3); |
| __ Push(r2, r1, r0); |
| frame_->CallStub(&stub, 3); |
| frame_->EmitPush(r0); |
| } |
| |
| Variable* arguments = scope()->arguments(); |
| Variable* shadow = scope()->arguments_shadow(); |
| ASSERT(arguments != NULL && arguments->AsSlot() != NULL); |
| ASSERT(shadow != NULL && shadow->AsSlot() != NULL); |
| JumpTarget done; |
| if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { |
| // We have to skip storing into the arguments slot if it has |
| // already been written to. This can happen if the a function |
| // has a local variable named 'arguments'. |
| LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); |
| Register arguments = frame_->PopToRegister(); |
| __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); |
| __ cmp(arguments, ip); |
| done.Branch(ne); |
| } |
| StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT); |
| if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); |
| StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT); |
| } |
| |
| |
| void CodeGenerator::LoadTypeofExpression(Expression* expr) { |
| // Special handling of identifiers as subexpressions of typeof. |
| Variable* variable = expr->AsVariableProxy()->AsVariable(); |
| if (variable != NULL && !variable->is_this() && variable->is_global()) { |
| // For a global variable we build the property reference |
| // <global>.<variable> and perform a (regular non-contextual) property |
| // load to make sure we do not get reference errors. |
| Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
| Literal key(variable->name()); |
| Property property(&global, &key, RelocInfo::kNoPosition); |
| Reference ref(this, &property); |
| ref.GetValue(); |
| } else if (variable != NULL && variable->AsSlot() != NULL) { |
| // For a variable that rewrites to a slot, we signal it is the immediate |
| // subexpression of a typeof. |
| LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF); |
| } else { |
| // Anything else can be handled normally. |
| Load(expr); |
| } |
| } |
| |
| |
| Reference::Reference(CodeGenerator* cgen, |
| Expression* expression, |
| bool persist_after_get) |
| : cgen_(cgen), |
| expression_(expression), |
| type_(ILLEGAL), |
| persist_after_get_(persist_after_get) { |
| // We generally assume that we are not in a spilled scope for most |
| // of the code generator. A failure to ensure this caused issue 815 |
| // and this assert is designed to catch similar issues. |
| cgen->frame()->AssertIsNotSpilled(); |
| cgen->LoadReference(this); |
| } |
| |
| |
| Reference::~Reference() { |
| ASSERT(is_unloaded() || is_illegal()); |
| } |
| |
| |
| void CodeGenerator::LoadReference(Reference* ref) { |
| Comment cmnt(masm_, "[ LoadReference"); |
| Expression* e = ref->expression(); |
| Property* property = e->AsProperty(); |
| Variable* var = e->AsVariableProxy()->AsVariable(); |
| |
| if (property != NULL) { |
| // The expression is either a property or a variable proxy that rewrites |
| // to a property. |
| Load(property->obj()); |
| if (property->key()->IsPropertyName()) { |
| ref->set_type(Reference::NAMED); |
| } else { |
| Load(property->key()); |
| ref->set_type(Reference::KEYED); |
| } |
| } else if (var != NULL) { |
| // The expression is a variable proxy that does not rewrite to a |
| // property. Global variables are treated as named property references. |
| if (var->is_global()) { |
| LoadGlobal(); |
| ref->set_type(Reference::NAMED); |
| } else { |
| ASSERT(var->AsSlot() != NULL); |
| ref->set_type(Reference::SLOT); |
| } |
| } else { |
| // Anything else is a runtime error. |
| Load(e); |
| frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
| } |
| } |
| |
| |
| void CodeGenerator::UnloadReference(Reference* ref) { |
| int size = ref->size(); |
| ref->set_unloaded(); |
| if (size == 0) return; |
| |
| // Pop a reference from the stack while preserving TOS. |
| VirtualFrame::RegisterAllocationScope scope(this); |
| Comment cmnt(masm_, "[ UnloadReference"); |
| if (size > 0) { |
| Register tos = frame_->PopToRegister(); |
| frame_->Drop(size); |
| frame_->EmitPush(tos); |
| } |
| } |
| |
| |
| // ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given |
| // register to a boolean in the condition code register. The code |
| // may jump to 'false_target' in case the register converts to 'false'. |
| void CodeGenerator::ToBoolean(JumpTarget* true_target, |
| JumpTarget* false_target) { |
| // Note: The generated code snippet does not change stack variables. |
| // Only the condition code should be set. |
| bool known_smi = frame_->KnownSmiAt(0); |
| Register tos = frame_->PopToRegister(); |
| |
| // Fast case checks |
| |
| // Check if the value is 'false'. |
| if (!known_smi) { |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(tos, ip); |
| false_target->Branch(eq); |
| |
| // Check if the value is 'true'. |
| __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
| __ cmp(tos, ip); |
| true_target->Branch(eq); |
| |
| // Check if the value is 'undefined'. |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(tos, ip); |
| false_target->Branch(eq); |
| } |
| |
| // Check if the value is a smi. |
| __ cmp(tos, Operand(Smi::FromInt(0))); |
| |
| if (!known_smi) { |
| false_target->Branch(eq); |
| __ tst(tos, Operand(kSmiTagMask)); |
| true_target->Branch(eq); |
| |
| // Slow case. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Implements the slow case by using ToBooleanStub. |
| // The ToBooleanStub takes a single argument, and |
| // returns a non-zero value for true, or zero for false. |
| // Both the argument value and the return value use the |
| // register assigned to tos_ |
| ToBooleanStub stub(tos); |
| frame_->CallStub(&stub, 0); |
| // Convert the result in "tos" to a condition code. |
| __ cmp(tos, Operand(0, RelocInfo::NONE)); |
| } else { |
| // Implements slow case by calling the runtime. |
| frame_->EmitPush(tos); |
| frame_->CallRuntime(Runtime::kToBool, 1); |
| // Convert the result (r0) to a condition code. |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(r0, ip); |
| } |
| } |
| |
| cc_reg_ = ne; |
| } |
| |
| |
| void CodeGenerator::GenericBinaryOperation(Token::Value op, |
| OverwriteMode overwrite_mode, |
| GenerateInlineSmi inline_smi, |
| int constant_rhs) { |
| // top of virtual frame: y |
| // 2nd elt. on virtual frame : x |
| // result : top of virtual frame |
| |
| // Stub is entered with a call: 'return address' is in lr. |
| switch (op) { |
| case Token::ADD: |
| case Token::SUB: |
| if (inline_smi) { |
| JumpTarget done; |
| Register rhs = frame_->PopToRegister(); |
| Register lhs = frame_->PopToRegister(rhs); |
| Register scratch = VirtualFrame::scratch0(); |
| __ orr(scratch, rhs, Operand(lhs)); |
| // Check they are both small and positive. |
| __ tst(scratch, Operand(kSmiTagMask | 0xc0000000)); |
| ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. |
| STATIC_ASSERT(kSmiTag == 0); |
| if (op == Token::ADD) { |
| __ add(r0, lhs, Operand(rhs), LeaveCC, eq); |
| } else { |
| __ sub(r0, lhs, Operand(rhs), LeaveCC, eq); |
| } |
| done.Branch(eq); |
| GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 0); |
| done.Bind(); |
| frame_->EmitPush(r0); |
| break; |
| } else { |
| // Fall through! |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| if (inline_smi) { |
| bool rhs_is_smi = frame_->KnownSmiAt(0); |
| bool lhs_is_smi = frame_->KnownSmiAt(1); |
| Register rhs = frame_->PopToRegister(); |
| Register lhs = frame_->PopToRegister(rhs); |
| Register smi_test_reg; |
| Condition cond; |
| if (!rhs_is_smi || !lhs_is_smi) { |
| if (rhs_is_smi) { |
| smi_test_reg = lhs; |
| } else if (lhs_is_smi) { |
| smi_test_reg = rhs; |
| } else { |
| smi_test_reg = VirtualFrame::scratch0(); |
| __ orr(smi_test_reg, rhs, Operand(lhs)); |
| } |
| // Check they are both Smis. |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| cond = eq; |
| } else { |
| cond = al; |
| } |
| ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. |
| if (op == Token::BIT_OR) { |
| __ orr(r0, lhs, Operand(rhs), LeaveCC, cond); |
| } else if (op == Token::BIT_AND) { |
| __ and_(r0, lhs, Operand(rhs), LeaveCC, cond); |
| } else { |
| ASSERT(op == Token::BIT_XOR); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ eor(r0, lhs, Operand(rhs), LeaveCC, cond); |
| } |
| if (cond != al) { |
| JumpTarget done; |
| done.Branch(cond); |
| GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 0); |
| done.Bind(); |
| } |
| frame_->EmitPush(r0); |
| break; |
| } else { |
| // Fall through! |
| } |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| case Token::SHL: |
| case Token::SHR: |
| case Token::SAR: { |
| Register rhs = frame_->PopToRegister(); |
| Register lhs = frame_->PopToRegister(rhs); // Don't pop to rhs register. |
| GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); |
| break; |
| } |
| |
| case Token::COMMA: { |
| Register scratch = frame_->PopToRegister(); |
| // Simply discard left value. |
| frame_->Drop(); |
| frame_->EmitPush(scratch); |
| break; |
| } |
| |
| default: |
| // Other cases should have been handled before this point. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| class DeferredInlineSmiOperation: public DeferredCode { |
| public: |
| DeferredInlineSmiOperation(Token::Value op, |
| int value, |
| bool reversed, |
| OverwriteMode overwrite_mode, |
| Register tos) |
| : op_(op), |
| value_(value), |
| reversed_(reversed), |
| overwrite_mode_(overwrite_mode), |
| tos_register_(tos) { |
| set_comment("[ DeferredInlinedSmiOperation"); |
| } |
| |
| virtual void Generate(); |
| // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and |
| // Exit(). Currently on ARM SaveRegisters() and RestoreRegisters() are empty |
| // methods, it is the responsibility of the deferred code to save and restore |
| // registers. |
| virtual bool AutoSaveAndRestore() { return false; } |
| |
| void JumpToNonSmiInput(Condition cond); |
| void JumpToAnswerOutOfRange(Condition cond); |
| |
| private: |
| void GenerateNonSmiInput(); |
| void GenerateAnswerOutOfRange(); |
| void WriteNonSmiAnswer(Register answer, |
| Register heap_number, |
| Register scratch); |
| |
| Token::Value op_; |
| int value_; |
| bool reversed_; |
| OverwriteMode overwrite_mode_; |
| Register tos_register_; |
| Label non_smi_input_; |
| Label answer_out_of_range_; |
| }; |
| |
| |
| // For bit operations we try harder and handle the case where the input is not |
| // a Smi but a 32bits integer without calling the generic stub. |
| void DeferredInlineSmiOperation::JumpToNonSmiInput(Condition cond) { |
| ASSERT(Token::IsBitOp(op_)); |
| |
| __ b(cond, &non_smi_input_); |
| } |
| |
| |
| // For bit operations the result is always 32bits so we handle the case where |
| // the result does not fit in a Smi without calling the generic stub. |
| void DeferredInlineSmiOperation::JumpToAnswerOutOfRange(Condition cond) { |
| ASSERT(Token::IsBitOp(op_)); |
| |
| if ((op_ == Token::SHR) && !CpuFeatures::IsSupported(VFP3)) { |
| // >>> requires an unsigned to double conversion and the non VFP code |
| // does not support this conversion. |
| __ b(cond, entry_label()); |
| } else { |
| __ b(cond, &answer_out_of_range_); |
| } |
| } |
| |
| |
| // On entry the non-constant side of the binary operation is in tos_register_ |
| // and the constant smi side is nowhere. The tos_register_ is not used by the |
| // virtual frame. On exit the answer is in the tos_register_ and the virtual |
| // frame is unchanged. |
| void DeferredInlineSmiOperation::Generate() { |
| VirtualFrame copied_frame(*frame_state()->frame()); |
| copied_frame.SpillAll(); |
| |
| Register lhs = r1; |
| Register rhs = r0; |
| switch (op_) { |
| case Token::ADD: { |
| // Revert optimistic add. |
| if (reversed_) { |
| __ sub(r0, tos_register_, Operand(Smi::FromInt(value_))); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } else { |
| __ sub(r1, tos_register_, Operand(Smi::FromInt(value_))); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } |
| break; |
| } |
| |
| case Token::SUB: { |
| // Revert optimistic sub. |
| if (reversed_) { |
| __ rsb(r0, tos_register_, Operand(Smi::FromInt(value_))); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } else { |
| __ add(r1, tos_register_, Operand(Smi::FromInt(value_))); |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } |
| break; |
| } |
| |
| // For these operations there is no optimistic operation that needs to be |
| // reverted. |
| case Token::MUL: |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::SHL: |
| case Token::SHR: |
| case Token::SAR: { |
| if (tos_register_.is(r1)) { |
| __ mov(r0, Operand(Smi::FromInt(value_))); |
| } else { |
| ASSERT(tos_register_.is(r0)); |
| __ mov(r1, Operand(Smi::FromInt(value_))); |
| } |
| if (reversed_ == tos_register_.is(r1)) { |
| lhs = r0; |
| rhs = r1; |
| } |
| break; |
| } |
| |
| default: |
| // Other cases should have been handled before this point. |
| UNREACHABLE(); |
| break; |
| } |
| |
| GenericBinaryOpStub stub(op_, overwrite_mode_, lhs, rhs, value_); |
| __ CallStub(&stub); |
| |
| // The generic stub returns its value in r0, but that's not |
| // necessarily what we want. We want whatever the inlined code |
| // expected, which is that the answer is in the same register as |
| // the operand was. |
| __ Move(tos_register_, r0); |
| |
| // The tos register was not in use for the virtual frame that we |
| // came into this function with, so we can merge back to that frame |
| // without trashing it. |
| copied_frame.MergeTo(frame_state()->frame()); |
| |
| Exit(); |
| |
| if (non_smi_input_.is_linked()) { |
| GenerateNonSmiInput(); |
| } |
| |
| if (answer_out_of_range_.is_linked()) { |
| GenerateAnswerOutOfRange(); |
| } |
| } |
| |
| |
| // Convert and write the integer answer into heap_number. |
| void DeferredInlineSmiOperation::WriteNonSmiAnswer(Register answer, |
| Register heap_number, |
| Register scratch) { |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ vmov(s0, answer); |
| if (op_ == Token::SHR) { |
| __ vcvt_f64_u32(d0, s0); |
| } else { |
| __ vcvt_f64_s32(d0, s0); |
| } |
| __ sub(scratch, heap_number, Operand(kHeapObjectTag)); |
| __ vstr(d0, scratch, HeapNumber::kValueOffset); |
| } else { |
| WriteInt32ToHeapNumberStub stub(answer, heap_number, scratch); |
| __ CallStub(&stub); |
| } |
| } |
| |
| |
| void DeferredInlineSmiOperation::GenerateNonSmiInput() { |
| // We know the left hand side is not a Smi and the right hand side is an |
| // immediate value (value_) which can be represented as a Smi. We only |
| // handle bit operations. |
| ASSERT(Token::IsBitOp(op_)); |
| |
| if (FLAG_debug_code) { |
| __ Abort("Should not fall through!"); |
| } |
| |
| __ bind(&non_smi_input_); |
| if (FLAG_debug_code) { |
| __ AbortIfSmi(tos_register_); |
| } |
| |
| // This routine uses the registers from r2 to r6. At the moment they are |
| // not used by the register allocator, but when they are it should use |
| // SpillAll and MergeTo like DeferredInlineSmiOperation::Generate() above. |
| |
| Register heap_number_map = r7; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ ldr(r3, FieldMemOperand(tos_register_, HeapNumber::kMapOffset)); |
| __ cmp(r3, heap_number_map); |
| // Not a number, fall back to the GenericBinaryOpStub. |
| __ b(ne, entry_label()); |
| |
| Register int32 = r2; |
| // Not a 32bits signed int, fall back to the GenericBinaryOpStub. |
| __ ConvertToInt32(tos_register_, int32, r4, r5, entry_label()); |
| |
| // tos_register_ (r0 or r1): Original heap number. |
| // int32: signed 32bits int. |
| |
| Label result_not_a_smi; |
| int shift_value = value_ & 0x1f; |
| switch (op_) { |
| case Token::BIT_OR: __ orr(int32, int32, Operand(value_)); break; |
| case Token::BIT_XOR: __ eor(int32, int32, Operand(value_)); break; |
| case Token::BIT_AND: __ and_(int32, int32, Operand(value_)); break; |
| case Token::SAR: |
| ASSERT(!reversed_); |
| if (shift_value != 0) { |
| __ mov(int32, Operand(int32, ASR, shift_value)); |
| } |
| break; |
| case Token::SHR: |
| ASSERT(!reversed_); |
| if (shift_value != 0) { |
| __ mov(int32, Operand(int32, LSR, shift_value), SetCC); |
| } else { |
| // SHR is special because it is required to produce a positive answer. |
| __ cmp(int32, Operand(0, RelocInfo::NONE)); |
| } |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ b(mi, &result_not_a_smi); |
| } else { |
| // Non VFP code cannot convert from unsigned to double, so fall back |
| // to GenericBinaryOpStub. |
| __ b(mi, entry_label()); |
| } |
| break; |
| case Token::SHL: |
| ASSERT(!reversed_); |
| if (shift_value != 0) { |
| __ mov(int32, Operand(int32, LSL, shift_value)); |
| } |
| break; |
| default: UNREACHABLE(); |
| } |
| // Check that the *signed* result fits in a smi. Not necessary for AND, SAR |
| // if the shift if more than 0 or SHR if the shit is more than 1. |
| if (!( (op_ == Token::AND) || |
| ((op_ == Token::SAR) && (shift_value > 0)) || |
| ((op_ == Token::SHR) && (shift_value > 1)))) { |
| __ add(r3, int32, Operand(0x40000000), SetCC); |
| __ b(mi, &result_not_a_smi); |
| } |
| __ mov(tos_register_, Operand(int32, LSL, kSmiTagSize)); |
| Exit(); |
| |
| if (result_not_a_smi.is_linked()) { |
| __ bind(&result_not_a_smi); |
| if (overwrite_mode_ != OVERWRITE_LEFT) { |
| ASSERT((overwrite_mode_ == NO_OVERWRITE) || |
| (overwrite_mode_ == OVERWRITE_RIGHT)); |
| // If the allocation fails, fall back to the GenericBinaryOpStub. |
| __ AllocateHeapNumber(r4, r5, r6, heap_number_map, entry_label()); |
| // Nothing can go wrong now, so overwrite tos. |
| __ mov(tos_register_, Operand(r4)); |
| } |
| |
| // int32: answer as signed 32bits integer. |
| // tos_register_: Heap number to write the answer into. |
| WriteNonSmiAnswer(int32, tos_register_, r3); |
| |
| Exit(); |
| } |
| } |
| |
| |
| void DeferredInlineSmiOperation::GenerateAnswerOutOfRange() { |
| // The input from a bitwise operation were Smis but the result cannot fit |
| // into a Smi, so we store it into a heap number. VirtualFrame::scratch0() |
| // holds the untagged result to be converted. tos_register_ contains the |
| // input. See the calls to JumpToAnswerOutOfRange to see how we got here. |
| ASSERT(Token::IsBitOp(op_)); |
| ASSERT(!reversed_); |
| |
| Register untagged_result = VirtualFrame::scratch0(); |
| |
| if (FLAG_debug_code) { |
| __ Abort("Should not fall through!"); |
| } |
| |
| __ bind(&answer_out_of_range_); |
| if (((value_ & 0x1f) == 0) && (op_ == Token::SHR)) { |
| // >>> 0 is a special case where the untagged_result register is not set up |
| // yet. We untag the input to get it. |
| __ mov(untagged_result, Operand(tos_register_, ASR, kSmiTagSize)); |
| } |
| |
| // This routine uses the registers from r2 to r6. At the moment they are |
| // not used by the register allocator, but when they are it should use |
| // SpillAll and MergeTo like DeferredInlineSmiOperation::Generate() above. |
| |
| // Allocate the result heap number. |
| Register heap_number_map = VirtualFrame::scratch1(); |
| Register heap_number = r4; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| // If the allocation fails, fall back to the GenericBinaryOpStub. |
| __ AllocateHeapNumber(heap_number, r5, r6, heap_number_map, entry_label()); |
| WriteNonSmiAnswer(untagged_result, heap_number, r3); |
| __ mov(tos_register_, Operand(heap_number)); |
| |
| Exit(); |
| } |
| |
| |
| static bool PopCountLessThanEqual2(unsigned int x) { |
| x &= x - 1; |
| return (x & (x - 1)) == 0; |
| } |
| |
| |
| // Returns the index of the lowest bit set. |
| static int BitPosition(unsigned x) { |
| int bit_posn = 0; |
| while ((x & 0xf) == 0) { |
| bit_posn += 4; |
| x >>= 4; |
| } |
| while ((x & 1) == 0) { |
| bit_posn++; |
| x >>= 1; |
| } |
| return bit_posn; |
| } |
| |
| |
| // Can we multiply by x with max two shifts and an add. |
| // This answers yes to all integers from 2 to 10. |
| static bool IsEasyToMultiplyBy(int x) { |
| if (x < 2) return false; // Avoid special cases. |
| if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows. |
| if (IsPowerOf2(x)) return true; // Simple shift. |
| if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift. |
| if (IsPowerOf2(x + 1)) return true; // Patterns like 11111. |
| return false; |
| } |
| |
| |
| // Can multiply by anything that IsEasyToMultiplyBy returns true for. |
| // Source and destination may be the same register. This routine does |
| // not set carry and overflow the way a mul instruction would. |
| static void InlineMultiplyByKnownInt(MacroAssembler* masm, |
| Register source, |
| Register destination, |
| int known_int) { |
| if (IsPowerOf2(known_int)) { |
| masm->mov(destination, Operand(source, LSL, BitPosition(known_int))); |
| } else if (PopCountLessThanEqual2(known_int)) { |
| int first_bit = BitPosition(known_int); |
| int second_bit = BitPosition(known_int ^ (1 << first_bit)); |
| masm->add(destination, source, |
| Operand(source, LSL, second_bit - first_bit)); |
| if (first_bit != 0) { |
| masm->mov(destination, Operand(destination, LSL, first_bit)); |
| } |
| } else { |
| ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111. |
| int the_bit = BitPosition(known_int + 1); |
| masm->rsb(destination, source, Operand(source, LSL, the_bit)); |
| } |
| } |
| |
| |
| void CodeGenerator::SmiOperation(Token::Value op, |
| Handle<Object> value, |
| bool reversed, |
| OverwriteMode mode) { |
| int int_value = Smi::cast(*value)->value(); |
| |
| bool both_sides_are_smi = frame_->KnownSmiAt(0); |
| |
| bool something_to_inline; |
| switch (op) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::BIT_AND: |
| case Token::BIT_OR: |
| case Token::BIT_XOR: { |
| something_to_inline = true; |
| break; |
| } |
| case Token::SHL: { |
| something_to_inline = (both_sides_are_smi || !reversed); |
| break; |
| } |
| case Token::SHR: |
| case Token::SAR: { |
| if (reversed) { |
| something_to_inline = false; |
| } else { |
| something_to_inline = true; |
| } |
| break; |
| } |
| case Token::MOD: { |
| if (reversed || int_value < 2 || !IsPowerOf2(int_value)) { |
| something_to_inline = false; |
| } else { |
| something_to_inline = true; |
| } |
| break; |
| } |
| case Token::MUL: { |
| if (!IsEasyToMultiplyBy(int_value)) { |
| something_to_inline = false; |
| } else { |
| something_to_inline = true; |
| } |
| break; |
| } |
| default: { |
| something_to_inline = false; |
| break; |
| } |
| } |
| |
| if (!something_to_inline) { |
| if (!reversed) { |
| // Push the rhs onto the virtual frame by putting it in a TOS register. |
| Register rhs = frame_->GetTOSRegister(); |
| __ mov(rhs, Operand(value)); |
| frame_->EmitPush(rhs, TypeInfo::Smi()); |
| GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, int_value); |
| } else { |
| // Pop the rhs, then push lhs and rhs in the right order. Only performs |
| // at most one pop, the rest takes place in TOS registers. |
| Register lhs = frame_->GetTOSRegister(); // Get reg for pushing. |
| Register rhs = frame_->PopToRegister(lhs); // Don't use lhs for this. |
| __ mov(lhs, Operand(value)); |
| frame_->EmitPush(lhs, TypeInfo::Smi()); |
| TypeInfo t = both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Unknown(); |
| frame_->EmitPush(rhs, t); |
| GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, |
| GenericBinaryOpStub::kUnknownIntValue); |
| } |
| return; |
| } |
| |
| // We move the top of stack to a register (normally no move is invoved). |
| Register tos = frame_->PopToRegister(); |
| switch (op) { |
| case Token::ADD: { |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| |
| __ add(tos, tos, Operand(value), SetCC); |
| deferred->Branch(vs); |
| if (!both_sides_are_smi) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| } |
| deferred->BindExit(); |
| frame_->EmitPush(tos); |
| break; |
| } |
| |
| case Token::SUB: { |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| |
| if (reversed) { |
| __ rsb(tos, tos, Operand(value), SetCC); |
| } else { |
| __ sub(tos, tos, Operand(value), SetCC); |
| } |
| deferred->Branch(vs); |
| if (!both_sides_are_smi) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| } |
| deferred->BindExit(); |
| frame_->EmitPush(tos); |
| break; |
| } |
| |
| |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: { |
| if (both_sides_are_smi) { |
| switch (op) { |
| case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; |
| case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; |
| case Token::BIT_AND: __ And(tos, tos, Operand(value)); break; |
| default: UNREACHABLE(); |
| } |
| frame_->EmitPush(tos, TypeInfo::Smi()); |
| } else { |
| DeferredInlineSmiOperation* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| __ tst(tos, Operand(kSmiTagMask)); |
| deferred->JumpToNonSmiInput(ne); |
| switch (op) { |
| case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; |
| case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; |
| case Token::BIT_AND: __ And(tos, tos, Operand(value)); break; |
| default: UNREACHABLE(); |
| } |
| deferred->BindExit(); |
| TypeInfo result_type = |
| (op == Token::BIT_AND) ? TypeInfo::Smi() : TypeInfo::Integer32(); |
| frame_->EmitPush(tos, result_type); |
| } |
| break; |
| } |
| |
| case Token::SHL: |
| if (reversed) { |
| ASSERT(both_sides_are_smi); |
| int max_shift = 0; |
| int max_result = int_value == 0 ? 1 : int_value; |
| while (Smi::IsValid(max_result << 1)) { |
| max_shift++; |
| max_result <<= 1; |
| } |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, true, mode, tos); |
| // Mask off the last 5 bits of the shift operand (rhs). This is part |
| // of the definition of shift in JS and we know we have a Smi so we |
| // can safely do this. The masked version gets passed to the |
| // deferred code, but that makes no difference. |
| __ and_(tos, tos, Operand(Smi::FromInt(0x1f))); |
| __ cmp(tos, Operand(Smi::FromInt(max_shift))); |
| deferred->Branch(ge); |
| Register scratch = VirtualFrame::scratch0(); |
| __ mov(scratch, Operand(tos, ASR, kSmiTagSize)); // Untag. |
| __ mov(tos, Operand(Smi::FromInt(int_value))); // Load constant. |
| __ mov(tos, Operand(tos, LSL, scratch)); // Shift constant. |
| deferred->BindExit(); |
| TypeInfo result = TypeInfo::Integer32(); |
| frame_->EmitPush(tos, result); |
| break; |
| } |
| // Fall through! |
| case Token::SHR: |
| case Token::SAR: { |
| ASSERT(!reversed); |
| int shift_value = int_value & 0x1f; |
| TypeInfo result = TypeInfo::Number(); |
| |
| if (op == Token::SHR) { |
| if (shift_value > 1) { |
| result = TypeInfo::Smi(); |
| } else if (shift_value > 0) { |
| result = TypeInfo::Integer32(); |
| } |
| } else if (op == Token::SAR) { |
| if (shift_value > 0) { |
| result = TypeInfo::Smi(); |
| } else { |
| result = TypeInfo::Integer32(); |
| } |
| } else { |
| ASSERT(op == Token::SHL); |
| result = TypeInfo::Integer32(); |
| } |
| |
| DeferredInlineSmiOperation* deferred = |
| new DeferredInlineSmiOperation(op, shift_value, false, mode, tos); |
| if (!both_sides_are_smi) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| deferred->JumpToNonSmiInput(ne); |
| } |
| switch (op) { |
| case Token::SHL: { |
| if (shift_value != 0) { |
| Register untagged_result = VirtualFrame::scratch0(); |
| Register scratch = VirtualFrame::scratch1(); |
| int adjusted_shift = shift_value - kSmiTagSize; |
| ASSERT(adjusted_shift >= 0); |
| |
| if (adjusted_shift != 0) { |
| __ mov(untagged_result, Operand(tos, LSL, adjusted_shift)); |
| } else { |
| __ mov(untagged_result, Operand(tos)); |
| } |
| // Check that the *signed* result fits in a smi. |
| __ add(scratch, untagged_result, Operand(0x40000000), SetCC); |
| deferred->JumpToAnswerOutOfRange(mi); |
| __ mov(tos, Operand(untagged_result, LSL, kSmiTagSize)); |
| } |
| break; |
| } |
| case Token::SHR: { |
| if (shift_value != 0) { |
| Register untagged_result = VirtualFrame::scratch0(); |
| // Remove tag. |
| __ mov(untagged_result, Operand(tos, ASR, kSmiTagSize)); |
| __ mov(untagged_result, Operand(untagged_result, LSR, shift_value)); |
| if (shift_value == 1) { |
| // Check that the *unsigned* result fits in a smi. |
| // Neither of the two high-order bits can be set: |
| // - 0x80000000: high bit would be lost when smi tagging |
| // - 0x40000000: this number would convert to negative when Smi |
| // tagging. |
| // These two cases can only happen with shifts by 0 or 1 when |
| // handed a valid smi. |
| __ tst(untagged_result, Operand(0xc0000000)); |
| deferred->JumpToAnswerOutOfRange(ne); |
| } |
| __ mov(tos, Operand(untagged_result, LSL, kSmiTagSize)); |
| } else { |
| __ cmp(tos, Operand(0, RelocInfo::NONE)); |
| deferred->JumpToAnswerOutOfRange(mi); |
| } |
| break; |
| } |
| case Token::SAR: { |
| if (shift_value != 0) { |
| // Do the shift and the tag removal in one operation. If the shift |
| // is 31 bits (the highest possible value) then we emit the |
| // instruction as a shift by 0 which in the ARM ISA means shift |
| // arithmetically by 32. |
| __ mov(tos, Operand(tos, ASR, (kSmiTagSize + shift_value) & 0x1f)); |
| __ mov(tos, Operand(tos, LSL, kSmiTagSize)); |
| } |
| break; |
| } |
| default: UNREACHABLE(); |
| } |
| deferred->BindExit(); |
| frame_->EmitPush(tos, result); |
| break; |
| } |
| |
| case Token::MOD: { |
| ASSERT(!reversed); |
| ASSERT(int_value >= 2); |
| ASSERT(IsPowerOf2(int_value)); |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| unsigned mask = (0x80000000u | kSmiTagMask); |
| __ tst(tos, Operand(mask)); |
| deferred->Branch(ne); // Go to deferred code on non-Smis and negative. |
| mask = (int_value << kSmiTagSize) - 1; |
| __ and_(tos, tos, Operand(mask)); |
| deferred->BindExit(); |
| // Mod of positive power of 2 Smi gives a Smi if the lhs is an integer. |
| frame_->EmitPush( |
| tos, |
| both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Number()); |
| break; |
| } |
| |
| case Token::MUL: { |
| ASSERT(IsEasyToMultiplyBy(int_value)); |
| DeferredCode* deferred = |
| new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); |
| unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value; |
| max_smi_that_wont_overflow <<= kSmiTagSize; |
| unsigned mask = 0x80000000u; |
| while ((mask & max_smi_that_wont_overflow) == 0) { |
| mask |= mask >> 1; |
| } |
| mask |= kSmiTagMask; |
| // This does a single mask that checks for a too high value in a |
| // conservative way and for a non-Smi. It also filters out negative |
| // numbers, unfortunately, but since this code is inline we prefer |
| // brevity to comprehensiveness. |
| __ tst(tos, Operand(mask)); |
| deferred->Branch(ne); |
| InlineMultiplyByKnownInt(masm_, tos, tos, int_value); |
| deferred->BindExit(); |
| frame_->EmitPush(tos); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void CodeGenerator::Comparison(Condition cc, |
| Expression* left, |
| Expression* right, |
| bool strict) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| |
| if (left != NULL) Load(left); |
| if (right != NULL) Load(right); |
| |
| // sp[0] : y |
| // sp[1] : x |
| // result : cc register |
| |
| // Strict only makes sense for equality comparisons. |
| ASSERT(!strict || cc == eq); |
| |
| Register lhs; |
| Register rhs; |
| |
| bool lhs_is_smi; |
| bool rhs_is_smi; |
| |
| // We load the top two stack positions into registers chosen by the virtual |
| // frame. This should keep the register shuffling to a minimum. |
| // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
| if (cc == gt || cc == le) { |
| cc = ReverseCondition(cc); |
| lhs_is_smi = frame_->KnownSmiAt(0); |
| rhs_is_smi = frame_->KnownSmiAt(1); |
| lhs = frame_->PopToRegister(); |
| rhs = frame_->PopToRegister(lhs); // Don't pop to the same register again! |
| } else { |
| rhs_is_smi = frame_->KnownSmiAt(0); |
| lhs_is_smi = frame_->KnownSmiAt(1); |
| rhs = frame_->PopToRegister(); |
| lhs = frame_->PopToRegister(rhs); // Don't pop to the same register again! |
| } |
| |
| bool both_sides_are_smi = (lhs_is_smi && rhs_is_smi); |
| |
| ASSERT(rhs.is(r0) || rhs.is(r1)); |
| ASSERT(lhs.is(r0) || lhs.is(r1)); |
| |
| JumpTarget exit; |
| |
| if (!both_sides_are_smi) { |
| // Now we have the two sides in r0 and r1. We flush any other registers |
| // because the stub doesn't know about register allocation. |
| frame_->SpillAll(); |
| Register scratch = VirtualFrame::scratch0(); |
| Register smi_test_reg; |
| if (lhs_is_smi) { |
| smi_test_reg = rhs; |
| } else if (rhs_is_smi) { |
| smi_test_reg = lhs; |
| } else { |
| __ orr(scratch, lhs, Operand(rhs)); |
| smi_test_reg = scratch; |
| } |
| __ tst(smi_test_reg, Operand(kSmiTagMask)); |
| JumpTarget smi; |
| smi.Branch(eq); |
| |
| // Perform non-smi comparison by stub. |
| // CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0. |
| // We call with 0 args because there are 0 on the stack. |
| CompareStub stub(cc, strict, NO_SMI_COMPARE_IN_STUB, lhs, rhs); |
| frame_->CallStub(&stub, 0); |
| __ cmp(r0, Operand(0, RelocInfo::NONE)); |
| exit.Jump(); |
| |
| smi.Bind(); |
| } |
| |
| // Do smi comparisons by pointer comparison. |
| __ cmp(lhs, Operand(rhs)); |
| |
| exit.Bind(); |
| cc_reg_ = cc; |
| } |
| |
| |
| // Call the function on the stack with the given arguments. |
| void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
| CallFunctionFlags flags, |
| int position) { |
| // Push the arguments ("left-to-right") on the stack. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Record the position for debugging purposes. |
| CodeForSourcePosition(position); |
| |
| // Use the shared code stub to call the function. |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| CallFunctionStub call_function(arg_count, in_loop, flags); |
| frame_->CallStub(&call_function, arg_count + 1); |
| |
| // Restore context and pop function from the stack. |
| __ ldr(cp, frame_->Context()); |
| frame_->Drop(); // discard the TOS |
| } |
| |
| |
| void CodeGenerator::CallApplyLazy(Expression* applicand, |
| Expression* receiver, |
| VariableProxy* arguments, |
| int position) { |
| // An optimized implementation of expressions of the form |
| // x.apply(y, arguments). |
| // If the arguments object of the scope has not been allocated, |
| // and x.apply is Function.prototype.apply, this optimization |
| // just copies y and the arguments of the current function on the |
| // stack, as receiver and arguments, and calls x. |
| // In the implementation comments, we call x the applicand |
| // and y the receiver. |
| |
| ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); |
| ASSERT(arguments->IsArguments()); |
| |
| // Load applicand.apply onto the stack. This will usually |
| // give us a megamorphic load site. Not super, but it works. |
| Load(applicand); |
| Handle<String> name = Factory::LookupAsciiSymbol("apply"); |
| frame_->Dup(); |
| frame_->CallLoadIC(name, RelocInfo::CODE_TARGET); |
| frame_->EmitPush(r0); |
| |
| // Load the receiver and the existing arguments object onto the |
| // expression stack. Avoid allocating the arguments object here. |
| Load(receiver); |
| LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); |
| |
| // At this point the top two stack elements are probably in registers |
| // since they were just loaded. Ensure they are in regs and get the |
| // regs. |
| Register receiver_reg = frame_->Peek2(); |
| Register arguments_reg = frame_->Peek(); |
| |
| // From now on the frame is spilled. |
| frame_->SpillAll(); |
| |
| // Emit the source position information after having loaded the |
| // receiver and the arguments. |
| CodeForSourcePosition(position); |
| // Contents of the stack at this point: |
| // sp[0]: arguments object of the current function or the hole. |
| // sp[1]: receiver |
| // sp[2]: applicand.apply |
| // sp[3]: applicand. |
| |
| // Check if the arguments object has been lazily allocated |
| // already. If so, just use that instead of copying the arguments |
| // from the stack. This also deals with cases where a local variable |
| // named 'arguments' has been introduced. |
| JumpTarget slow; |
| Label done; |
| __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); |
| __ cmp(ip, arguments_reg); |
| slow.Branch(ne); |
| |
| Label build_args; |
| // Get rid of the arguments object probe. |
| frame_->Drop(); |
| // Stack now has 3 elements on it. |
| // Contents of stack at this point: |
| // sp[0]: receiver - in the receiver_reg register. |
| // sp[1]: applicand.apply |
| // sp[2]: applicand. |
| |
| // Check that the receiver really is a JavaScript object. |
| __ BranchOnSmi(receiver_reg, &build_args); |
| // We allow all JSObjects including JSFunctions. As long as |
| // JS_FUNCTION_TYPE is the last instance type and it is right |
| // after LAST_JS_OBJECT_TYPE, we do not have to check the upper |
| // bound. |
| STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
| __ CompareObjectType(receiver_reg, r2, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &build_args); |
| |
| // Check that applicand.apply is Function.prototype.apply. |
| __ ldr(r0, MemOperand(sp, kPointerSize)); |
| __ BranchOnSmi(r0, &build_args); |
| __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE); |
| __ b(ne, &build_args); |
| Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply)); |
| __ ldr(r1, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); |
| __ sub(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ cmp(r1, Operand(apply_code)); |
| __ b(ne, &build_args); |
| |
| // Check that applicand is a function. |
| __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); |
| __ BranchOnSmi(r1, &build_args); |
| __ CompareObjectType(r1, r2, r3, JS_FUNCTION_TYPE); |
| __ b(ne, &build_args); |
| |
| // Copy the arguments to this function possibly from the |
| // adaptor frame below it. |
| Label invoke, adapted; |
| __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
| __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &adapted); |
| |
| // No arguments adaptor frame. Copy fixed number of arguments. |
| __ mov(r0, Operand(scope()->num_parameters())); |
| for (int i = 0; i < scope()->num_parameters(); i++) { |
| __ ldr(r2, frame_->ParameterAt(i)); |
| __ push(r2); |
| } |
| __ jmp(&invoke); |
| |
| // Arguments adaptor frame present. Copy arguments from there, but |
| // avoid copying too many arguments to avoid stack overflows. |
| __ bind(&adapted); |
| static const uint32_t kArgumentsLimit = 1 * KB; |
| __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ mov(r0, Operand(r0, LSR, kSmiTagSize)); |
| __ mov(r3, r0); |
| __ cmp(r0, Operand(kArgumentsLimit)); |
| __ b(gt, &build_args); |
| |
| // Loop through the arguments pushing them onto the execution |
| // stack. We don't inform the virtual frame of the push, so we don't |
| // have to worry about getting rid of the elements from the virtual |
| // frame. |
| Label loop; |
| // r3 is a small non-negative integer, due to the test above. |
| __ cmp(r3, Operand(0, RelocInfo::NONE)); |
| __ b(eq, &invoke); |
| // Compute the address of the first argument. |
| __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2)); |
| __ add(r2, r2, Operand(kPointerSize)); |
| __ bind(&loop); |
| // Post-decrement argument address by kPointerSize on each iteration. |
| __ ldr(r4, MemOperand(r2, kPointerSize, NegPostIndex)); |
| __ push(r4); |
| __ sub(r3, r3, Operand(1), SetCC); |
| __ b(gt, &loop); |
| |
| // Invoke the function. |
| __ bind(&invoke); |
| ParameterCount actual(r0); |
| __ InvokeFunction(r1, actual, CALL_FUNCTION); |
| // Drop applicand.apply and applicand from the stack, and push |
| // the result of the function call, but leave the spilled frame |
| // unchanged, with 3 elements, so it is correct when we compile the |
| // slow-case code. |
| __ add(sp, sp, Operand(2 * kPointerSize)); |
| __ push(r0); |
| // Stack now has 1 element: |
| // sp[0]: result |
| __ jmp(&done); |
| |
| // Slow-case: Allocate the arguments object since we know it isn't |
| // there, and fall-through to the slow-case where we call |
| // applicand.apply. |
| __ bind(&build_args); |
| // Stack now has 3 elements, because we have jumped from where: |
| // sp[0]: receiver |
| // sp[1]: applicand.apply |
| // sp[2]: applicand. |
| StoreArgumentsObject(false); |
| |
| // Stack and frame now have 4 elements. |
| slow.Bind(); |
| |
| // Generic computation of x.apply(y, args) with no special optimization. |
| // Flip applicand.apply and applicand on the stack, so |
| // applicand looks like the receiver of the applicand.apply call. |
| // Then process it as a normal function call. |
| __ ldr(r0, MemOperand(sp, 3 * kPointerSize)); |
| __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); |
| __ Strd(r0, r1, MemOperand(sp, 2 * kPointerSize)); |
| |
| CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); |
| frame_->CallStub(&call_function, 3); |
| // The function and its two arguments have been dropped. |
| frame_->Drop(); // Drop the receiver as well. |
| frame_->EmitPush(r0); |
| frame_->SpillAll(); // A spilled frame is also jumping to label done. |
| // Stack now has 1 element: |
| // sp[0]: result |
| __ bind(&done); |
| |
| // Restore the context register after a call. |
| __ ldr(cp, frame_->Context()); |
| } |
| |
| |
| void CodeGenerator::Branch(bool if_true, JumpTarget* target) { |
| ASSERT(has_cc()); |
| Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_); |
| target->Branch(cc); |
| cc_reg_ = al; |
| } |
| |
| |
| void CodeGenerator::CheckStack() { |
| frame_->SpillAll(); |
| Comment cmnt(masm_, "[ check stack"); |
| __ LoadRoot(ip, Heap::kStackLimitRootIndex); |
| masm_->cmp(sp, Operand(ip)); |
| StackCheckStub stub; |
| // Call the stub if lower. |
| masm_->mov(ip, |
| Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()), |
| RelocInfo::CODE_TARGET), |
| LeaveCC, |
| lo); |
| masm_->Call(ip, lo); |
| } |
| |
| |
| void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| for (int i = 0; frame_ != NULL && i < statements->length(); i++) { |
| Visit(statements->at(i)); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitBlock(Block* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Block"); |
| CodeForStatementPosition(node); |
| node->break_target()->SetExpectedHeight(); |
| VisitStatements(node->statements()); |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| node->break_target()->Unuse(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(pairs)); |
| frame_->EmitPush(Operand(Smi::FromInt(is_eval() ? 1 : 0))); |
| |
| frame_->CallRuntime(Runtime::kDeclareGlobals, 3); |
| // The result is discarded. |
| } |
| |
| |
| void CodeGenerator::VisitDeclaration(Declaration* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Declaration"); |
| Variable* var = node->proxy()->var(); |
| ASSERT(var != NULL); // must have been resolved |
| Slot* slot = var->AsSlot(); |
| |
| // If it was not possible to allocate the variable at compile time, |
| // we need to "declare" it at runtime to make sure it actually |
| // exists in the local context. |
| if (slot != NULL && slot->type() == Slot::LOOKUP) { |
| // Variables with a "LOOKUP" slot were introduced as non-locals |
| // during variable resolution and must have mode DYNAMIC. |
| ASSERT(var->is_dynamic()); |
| // For now, just do a runtime call. |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(var->name())); |
| // Declaration nodes are always declared in only two modes. |
| ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); |
| PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; |
| frame_->EmitPush(Operand(Smi::FromInt(attr))); |
| // Push initial value, if any. |
| // Note: For variables we must not push an initial value (such as |
| // 'undefined') because we may have a (legal) redeclaration and we |
| // must not destroy the current value. |
| if (node->mode() == Variable::CONST) { |
| frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); |
| } else if (node->fun() != NULL) { |
| Load(node->fun()); |
| } else { |
| frame_->EmitPush(Operand(0, RelocInfo::NONE)); |
| } |
| |
| frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); |
| // Ignore the return value (declarations are statements). |
| |
| ASSERT(frame_->height() == original_height); |
| return; |
| } |
| |
| ASSERT(!var->is_global()); |
| |
| // If we have a function or a constant, we need to initialize the variable. |
| Expression* val = NULL; |
| if (node->mode() == Variable::CONST) { |
| val = new Literal(Factory::the_hole_value()); |
| } else { |
| val = node->fun(); // NULL if we don't have a function |
| } |
| |
| |
| if (val != NULL) { |
| WriteBarrierCharacter wb_info = |
| val->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI; |
| if (val->AsLiteral() != NULL) wb_info = NEVER_NEWSPACE; |
| // Set initial value. |
| Reference target(this, node->proxy()); |
| Load(val); |
| target.SetValue(NOT_CONST_INIT, wb_info); |
| |
| // Get rid of the assigned value (declarations are statements). |
| frame_->Drop(); |
| } |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ ExpressionStatement"); |
| CodeForStatementPosition(node); |
| Expression* expression = node->expression(); |
| expression->MarkAsStatement(); |
| Load(expression); |
| frame_->Drop(); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "// EmptyStatement"); |
| CodeForStatementPosition(node); |
| // nothing to do |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitIfStatement(IfStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ IfStatement"); |
| // Generate different code depending on which parts of the if statement |
| // are present or not. |
| bool has_then_stm = node->HasThenStatement(); |
| bool has_else_stm = node->HasElseStatement(); |
| |
| CodeForStatementPosition(node); |
| |
| JumpTarget exit; |
| if (has_then_stm && has_else_stm) { |
| Comment cmnt(masm_, "[ IfThenElse"); |
| JumpTarget then; |
| JumpTarget else_; |
| // if (cond) |
| LoadCondition(node->condition(), &then, &else_, true); |
| if (frame_ != NULL) { |
| Branch(false, &else_); |
| } |
| // then |
| if (frame_ != NULL || then.is_linked()) { |
| then.Bind(); |
| Visit(node->then_statement()); |
| } |
| if (frame_ != NULL) { |
| exit.Jump(); |
| } |
| // else |
| if (else_.is_linked()) { |
| else_.Bind(); |
| Visit(node->else_statement()); |
| } |
| |
| } else if (has_then_stm) { |
| Comment cmnt(masm_, "[ IfThen"); |
| ASSERT(!has_else_stm); |
| JumpTarget then; |
| // if (cond) |
| LoadCondition(node->condition(), &then, &exit, true); |
| if (frame_ != NULL) { |
| Branch(false, &exit); |
| } |
| // then |
| if (frame_ != NULL || then.is_linked()) { |
| then.Bind(); |
| Visit(node->then_statement()); |
| } |
| |
| } else if (has_else_stm) { |
| Comment cmnt(masm_, "[ IfElse"); |
| ASSERT(!has_then_stm); |
| JumpTarget else_; |
| // if (!cond) |
| LoadCondition(node->condition(), &exit, &else_, true); |
| if (frame_ != NULL) { |
| Branch(true, &exit); |
| } |
| // else |
| if (frame_ != NULL || else_.is_linked()) { |
| else_.Bind(); |
| Visit(node->else_statement()); |
| } |
| |
| } else { |
| Comment cmnt(masm_, "[ If"); |
| ASSERT(!has_then_stm && !has_else_stm); |
| // if (cond) |
| LoadCondition(node->condition(), &exit, &exit, false); |
| if (frame_ != NULL) { |
| if (has_cc()) { |
| cc_reg_ = al; |
| } else { |
| frame_->Drop(); |
| } |
| } |
| } |
| |
| // end |
| if (exit.is_linked()) { |
| exit.Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { |
| Comment cmnt(masm_, "[ ContinueStatement"); |
| CodeForStatementPosition(node); |
| node->target()->continue_target()->Jump(); |
| } |
| |
| |
| void CodeGenerator::VisitBreakStatement(BreakStatement* node) { |
| Comment cmnt(masm_, "[ BreakStatement"); |
| CodeForStatementPosition(node); |
| node->target()->break_target()->Jump(); |
| } |
| |
| |
| void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { |
| Comment cmnt(masm_, "[ ReturnStatement"); |
| |
| CodeForStatementPosition(node); |
| Load(node->expression()); |
| frame_->PopToR0(); |
| frame_->PrepareForReturn(); |
| if (function_return_is_shadowed_) { |
| function_return_.Jump(); |
| } else { |
| // Pop the result from the frame and prepare the frame for |
| // returning thus making it easier to merge. |
| if (function_return_.is_bound()) { |
| // If the function return label is already bound we reuse the |
| // code by jumping to the return site. |
| function_return_.Jump(); |
| } else { |
| function_return_.Bind(); |
| GenerateReturnSequence(); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::GenerateReturnSequence() { |
| if (FLAG_trace) { |
| // Push the return value on the stack as the parameter. |
| // Runtime::TraceExit returns the parameter as it is. |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kTraceExit, 1); |
| } |
| |
| #ifdef DEBUG |
| // Add a label for checking the size of the code used for returning. |
| Label check_exit_codesize; |
| masm_->bind(&check_exit_codesize); |
| #endif |
| // Make sure that the constant pool is not emitted inside of the return |
| // sequence. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Tear down the frame which will restore the caller's frame pointer and |
| // the link register. |
| frame_->Exit(); |
| |
| // Here we use masm_-> instead of the __ macro to avoid the code coverage |
| // tool from instrumenting as we rely on the code size here. |
| int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize; |
| masm_->add(sp, sp, Operand(sp_delta)); |
| masm_->Jump(lr); |
| DeleteFrame(); |
| |
| #ifdef DEBUG |
| // Check that the size of the code used for returning matches what is |
| // expected by the debugger. If the sp_delts above cannot be encoded in |
| // the add instruction the add will generate two instructions. |
| int return_sequence_length = |
| masm_->InstructionsGeneratedSince(&check_exit_codesize); |
| CHECK(return_sequence_length == |
| Assembler::kJSReturnSequenceInstructions || |
| return_sequence_length == |
| Assembler::kJSReturnSequenceInstructions + 1); |
| #endif |
| } |
| } |
| |
| |
| void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ WithEnterStatement"); |
| CodeForStatementPosition(node); |
| Load(node->expression()); |
| if (node->is_catch_block()) { |
| frame_->CallRuntime(Runtime::kPushCatchContext, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kPushContext, 1); |
| } |
| #ifdef DEBUG |
| JumpTarget verified_true; |
| __ cmp(r0, cp); |
| verified_true.Branch(eq); |
| __ stop("PushContext: r0 is expected to be the same as cp"); |
| verified_true.Bind(); |
| #endif |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ WithExitStatement"); |
| CodeForStatementPosition(node); |
| // Pop context. |
| __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX)); |
| // Update context local. |
| __ str(cp, frame_->Context()); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ SwitchStatement"); |
| CodeForStatementPosition(node); |
| node->break_target()->SetExpectedHeight(); |
| |
| Load(node->tag()); |
| |
| JumpTarget next_test; |
| JumpTarget fall_through; |
| JumpTarget default_entry; |
| JumpTarget default_exit(JumpTarget::BIDIRECTIONAL); |
| ZoneList<CaseClause*>* cases = node->cases(); |
| int length = cases->length(); |
| CaseClause* default_clause = NULL; |
| |
| for (int i = 0; i < length; i++) { |
| CaseClause* clause = cases->at(i); |
| if (clause->is_default()) { |
| // Remember the default clause and compile it at the end. |
| default_clause = clause; |
| continue; |
| } |
| |
| Comment cmnt(masm_, "[ Case clause"); |
| // Compile the test. |
| next_test.Bind(); |
| next_test.Unuse(); |
| // Duplicate TOS. |
| frame_->Dup(); |
| Comparison(eq, NULL, clause->label(), true); |
| Branch(false, &next_test); |
| |
| // Before entering the body from the test, remove the switch value from |
| // the stack. |
| frame_->Drop(); |
| |
| // Label the body so that fall through is enabled. |
| if (i > 0 && cases->at(i - 1)->is_default()) { |
| default_exit.Bind(); |
| } else { |
| fall_through.Bind(); |
| fall_through.Unuse(); |
| } |
| VisitStatements(clause->statements()); |
| |
| // If control flow can fall through from the body, jump to the next body |
| // or the end of the statement. |
| if (frame_ != NULL) { |
| if (i < length - 1 && cases->at(i + 1)->is_default()) { |
| default_entry.Jump(); |
| } else { |
| fall_through.Jump(); |
| } |
| } |
| } |
| |
| // The final "test" removes the switch value. |
| next_test.Bind(); |
| frame_->Drop(); |
| |
| // If there is a default clause, compile it. |
| if (default_clause != NULL) { |
| Comment cmnt(masm_, "[ Default clause"); |
| default_entry.Bind(); |
| VisitStatements(default_clause->statements()); |
| // If control flow can fall out of the default and there is a case after |
| // it, jump to that case's body. |
| if (frame_ != NULL && default_exit.is_bound()) { |
| default_exit.Jump(); |
| } |
| } |
| |
| if (fall_through.is_linked()) { |
| fall_through.Bind(); |
| } |
| |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| node->break_target()->Unuse(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ DoWhileStatement"); |
| CodeForStatementPosition(node); |
| node->break_target()->SetExpectedHeight(); |
| JumpTarget body(JumpTarget::BIDIRECTIONAL); |
| IncrementLoopNesting(); |
| |
| // Label the top of the loop for the backward CFG edge. If the test |
| // is always true we can use the continue target, and if the test is |
| // always false there is no need. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| switch (info) { |
| case ALWAYS_TRUE: |
| node->continue_target()->SetExpectedHeight(); |
| node->continue_target()->Bind(); |
| break; |
| case ALWAYS_FALSE: |
| node->continue_target()->SetExpectedHeight(); |
| break; |
| case DONT_KNOW: |
| node->continue_target()->SetExpectedHeight(); |
| body.Bind(); |
| break; |
| } |
| |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| // Compile the test. |
| switch (info) { |
| case ALWAYS_TRUE: |
| // If control can fall off the end of the body, jump back to the |
| // top. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| break; |
| case ALWAYS_FALSE: |
| // If we have a continue in the body, we only have to bind its |
| // jump target. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| break; |
| case DONT_KNOW: |
| // We have to compile the test expression if it can be reached by |
| // control flow falling out of the body or via continue. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (has_valid_frame()) { |
| Comment cmnt(masm_, "[ DoWhileCondition"); |
| CodeForDoWhileConditionPosition(node); |
| LoadCondition(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| // A invalid frame here indicates that control did not |
| // fall out of the test expression. |
| Branch(true, &body); |
| } |
| } |
| break; |
| } |
| |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| DecrementLoopNesting(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitWhileStatement(WhileStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ WhileStatement"); |
| CodeForStatementPosition(node); |
| |
| // If the test is never true and has no side effects there is no need |
| // to compile the test or body. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| if (info == ALWAYS_FALSE) return; |
| |
| node->break_target()->SetExpectedHeight(); |
| IncrementLoopNesting(); |
| |
| // Label the top of the loop with the continue target for the backward |
| // CFG edge. |
| node->continue_target()->SetExpectedHeight(); |
| node->continue_target()->Bind(); |
| |
| if (info == DONT_KNOW) { |
| JumpTarget body(JumpTarget::BIDIRECTIONAL); |
| LoadCondition(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| // A NULL frame indicates that control did not fall out of the |
| // test expression. |
| Branch(false, node->break_target()); |
| } |
| if (has_valid_frame() || body.is_linked()) { |
| body.Bind(); |
| } |
| } |
| |
| if (has_valid_frame()) { |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| // If control flow can fall out of the body, jump back to the top. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| DecrementLoopNesting(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitForStatement(ForStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ ForStatement"); |
| CodeForStatementPosition(node); |
| if (node->init() != NULL) { |
| Visit(node->init()); |
| } |
| |
| // If the test is never true there is no need to compile the test or |
| // body. |
| ConditionAnalysis info = AnalyzeCondition(node->cond()); |
| if (info == ALWAYS_FALSE) return; |
| |
| node->break_target()->SetExpectedHeight(); |
| IncrementLoopNesting(); |
| |
| // We know that the loop index is a smi if it is not modified in the |
| // loop body and it is checked against a constant limit in the loop |
| // condition. In this case, we reset the static type information of the |
| // loop index to smi before compiling the body, the update expression, and |
| // the bottom check of the loop condition. |
| TypeInfoCodeGenState type_info_scope(this, |
| node->is_fast_smi_loop() ? |
| node->loop_variable()->AsSlot() : |
| NULL, |
| TypeInfo::Smi()); |
| |
| // If there is no update statement, label the top of the loop with the |
| // continue target, otherwise with the loop target. |
| JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
| if (node->next() == NULL) { |
| node->continue_target()->SetExpectedHeight(); |
| node->continue_target()->Bind(); |
| } else { |
| node->continue_target()->SetExpectedHeight(); |
| loop.Bind(); |
| } |
| |
| // If the test is always true, there is no need to compile it. |
| if (info == DONT_KNOW) { |
| JumpTarget body; |
| LoadCondition(node->cond(), &body, node->break_target(), true); |
| if (has_valid_frame()) { |
| Branch(false, node->break_target()); |
| } |
| if (has_valid_frame() || body.is_linked()) { |
| body.Bind(); |
| } |
| } |
| |
| if (has_valid_frame()) { |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| Visit(node->body()); |
| |
| if (node->next() == NULL) { |
| // If there is no update statement and control flow can fall out |
| // of the loop, jump directly to the continue label. |
| if (has_valid_frame()) { |
| node->continue_target()->Jump(); |
| } |
| } else { |
| // If there is an update statement and control flow can reach it |
| // via falling out of the body of the loop or continuing, we |
| // compile the update statement. |
| if (node->continue_target()->is_linked()) { |
| node->continue_target()->Bind(); |
| } |
| if (has_valid_frame()) { |
| // Record source position of the statement as this code which is |
| // after the code for the body actually belongs to the loop |
| // statement and not the body. |
| CodeForStatementPosition(node); |
| Visit(node->next()); |
| loop.Jump(); |
| } |
| } |
| } |
| if (node->break_target()->is_linked()) { |
| node->break_target()->Bind(); |
| } |
| DecrementLoopNesting(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitForInStatement(ForInStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ ForInStatement"); |
| CodeForStatementPosition(node); |
| |
| JumpTarget primitive; |
| JumpTarget jsobject; |
| JumpTarget fixed_array; |
| JumpTarget entry(JumpTarget::BIDIRECTIONAL); |
| JumpTarget end_del_check; |
| JumpTarget exit; |
| |
| // Get the object to enumerate over (converted to JSObject). |
| Load(node->enumerable()); |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| // Both SpiderMonkey and kjs ignore null and undefined in contrast |
| // to the specification. 12.6.4 mandates a call to ToObject. |
| frame_->EmitPop(r0); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(r0, ip); |
| exit.Branch(eq); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r0, ip); |
| exit.Branch(eq); |
| |
| // Stack layout in body: |
| // [iteration counter (Smi)] |
| // [length of array] |
| // [FixedArray] |
| // [Map or 0] |
| // [Object] |
| |
| // Check if enumerable is already a JSObject |
| __ tst(r0, Operand(kSmiTagMask)); |
| primitive.Branch(eq); |
| __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); |
| jsobject.Branch(hs); |
| |
| primitive.Bind(); |
| frame_->EmitPush(r0); |
| frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, 1); |
| |
| jsobject.Bind(); |
| // Get the set of properties (as a FixedArray or Map). |
| // r0: value to be iterated over |
| frame_->EmitPush(r0); // Push the object being iterated over. |
| |
| // Check cache validity in generated code. This is a fast case for |
| // the JSObject::IsSimpleEnum cache validity checks. If we cannot |
| // guarantee cache validity, call the runtime system to check cache |
| // validity or get the property names in a fixed array. |
| JumpTarget call_runtime; |
| JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
| JumpTarget check_prototype; |
| JumpTarget use_cache; |
| __ mov(r1, Operand(r0)); |
| loop.Bind(); |
| // Check that there are no elements. |
| __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); |
| __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex); |
| __ cmp(r2, r4); |
| call_runtime.Branch(ne); |
| // Check that instance descriptors are not empty so that we can |
| // check for an enum cache. Leave the map in r3 for the subsequent |
| // prototype load. |
| __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldr(r2, FieldMemOperand(r3, Map::kInstanceDescriptorsOffset)); |
| __ LoadRoot(ip, Heap::kEmptyDescriptorArrayRootIndex); |
| __ cmp(r2, ip); |
| call_runtime.Branch(eq); |
| // Check that there in an enum cache in the non-empty instance |
| // descriptors. This is the case if the next enumeration index |
| // field does not contain a smi. |
| __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumerationIndexOffset)); |
| __ tst(r2, Operand(kSmiTagMask)); |
| call_runtime.Branch(eq); |
| // For all objects but the receiver, check that the cache is empty. |
| // r4: empty fixed array root. |
| __ cmp(r1, r0); |
| check_prototype.Branch(eq); |
| __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| __ cmp(r2, r4); |
| call_runtime.Branch(ne); |
| check_prototype.Bind(); |
| // Load the prototype from the map and loop if non-null. |
| __ ldr(r1, FieldMemOperand(r3, Map::kPrototypeOffset)); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(r1, ip); |
| loop.Branch(ne); |
| // The enum cache is valid. Load the map of the object being |
| // iterated over and use the cache for the iteration. |
| __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| use_cache.Jump(); |
| |
| call_runtime.Bind(); |
| // Call the runtime to get the property names for the object. |
| frame_->EmitPush(r0); // push the object (slot 4) for the runtime call |
| frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); |
| |
| // If we got a map from the runtime call, we can do a fast |
| // modification check. Otherwise, we got a fixed array, and we have |
| // to do a slow check. |
| // r0: map or fixed array (result from call to |
| // Runtime::kGetPropertyNamesFast) |
| __ mov(r2, Operand(r0)); |
| __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kMetaMapRootIndex); |
| __ cmp(r1, ip); |
| fixed_array.Branch(ne); |
| |
| use_cache.Bind(); |
| // Get enum cache |
| // r0: map (either the result from a call to |
| // Runtime::kGetPropertyNamesFast or has been fetched directly from |
| // the object) |
| __ mov(r1, Operand(r0)); |
| __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset)); |
| __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset)); |
| __ ldr(r2, |
| FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| |
| frame_->EmitPush(r0); // map |
| frame_->EmitPush(r2); // enum cache bridge cache |
| __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r0); |
| entry.Jump(); |
| |
| fixed_array.Bind(); |
| __ mov(r1, Operand(Smi::FromInt(0))); |
| frame_->EmitPush(r1); // insert 0 in place of Map |
| frame_->EmitPush(r0); |
| |
| // Push the length of the array and the initial index onto the stack. |
| __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
| frame_->EmitPush(r0); |
| __ mov(r0, Operand(Smi::FromInt(0))); // init index |
| frame_->EmitPush(r0); |
| |
| // Condition. |
| entry.Bind(); |
| // sp[0] : index |
| // sp[1] : array/enum cache length |
| // sp[2] : array or enum cache |
| // sp[3] : 0 or map |
| // sp[4] : enumerable |
| // Grab the current frame's height for the break and continue |
| // targets only after all the state is pushed on the frame. |
| node->break_target()->SetExpectedHeight(); |
| node->continue_target()->SetExpectedHeight(); |
| |
| // Load the current count to r0, load the length to r1. |
| __ Ldrd(r0, r1, frame_->ElementAt(0)); |
| __ cmp(r0, r1); // compare to the array length |
| node->break_target()->Branch(hs); |
| |
| // Get the i'th entry of the array. |
| __ ldr(r2, frame_->ElementAt(2)); |
| __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| |
| // Get Map or 0. |
| __ ldr(r2, frame_->ElementAt(3)); |
| // Check if this (still) matches the map of the enumerable. |
| // If not, we have to filter the key. |
| __ ldr(r1, frame_->ElementAt(4)); |
| __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ cmp(r1, Operand(r2)); |
| end_del_check.Branch(eq); |
| |
| // Convert the entry to a string (or null if it isn't a property anymore). |
| __ ldr(r0, frame_->ElementAt(4)); // push enumerable |
| frame_->EmitPush(r0); |
| frame_->EmitPush(r3); // push entry |
| frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, 2); |
| __ mov(r3, Operand(r0), SetCC); |
| // If the property has been removed while iterating, we just skip it. |
| node->continue_target()->Branch(eq); |
| |
| end_del_check.Bind(); |
| // Store the entry in the 'each' expression and take another spin in the |
| // loop. r3: i'th entry of the enum cache (or string there of) |
| frame_->EmitPush(r3); // push entry |
| { VirtualFrame::RegisterAllocationScope scope(this); |
| Reference each(this, node->each()); |
| if (!each.is_illegal()) { |
| if (each.size() > 0) { |
| // Loading a reference may leave the frame in an unspilled state. |
| frame_->SpillAll(); // Sync stack to memory. |
| // Get the value (under the reference on the stack) from memory. |
| __ ldr(r0, frame_->ElementAt(each.size())); |
| frame_->EmitPush(r0); |
| each.SetValue(NOT_CONST_INIT, UNLIKELY_SMI); |
| frame_->Drop(2); // The result of the set and the extra pushed value. |
| } else { |
| // If the reference was to a slot we rely on the convenient property |
| // that it doesn't matter whether a value (eg, ebx pushed above) is |
| // right on top of or right underneath a zero-sized reference. |
| each.SetValue(NOT_CONST_INIT, UNLIKELY_SMI); |
| frame_->Drop(1); // Drop the result of the set operation. |
| } |
| } |
| } |
| // Body. |
| CheckStack(); // TODO(1222600): ignore if body contains calls. |
| { VirtualFrame::RegisterAllocationScope scope(this); |
| Visit(node->body()); |
| } |
| |
| // Next. Reestablish a spilled frame in case we are coming here via |
| // a continue in the body. |
| node->continue_target()->Bind(); |
| frame_->SpillAll(); |
| frame_->EmitPop(r0); |
| __ add(r0, r0, Operand(Smi::FromInt(1))); |
| frame_->EmitPush(r0); |
| entry.Jump(); |
| |
| // Cleanup. No need to spill because VirtualFrame::Drop is safe for |
| // any frame. |
| node->break_target()->Bind(); |
| frame_->Drop(5); |
| |
| // Exit. |
| exit.Bind(); |
| node->continue_target()->Unuse(); |
| node->break_target()->Unuse(); |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ TryCatchStatement"); |
| CodeForStatementPosition(node); |
| |
| JumpTarget try_block; |
| JumpTarget exit; |
| |
| try_block.Call(); |
| // --- Catch block --- |
| frame_->EmitPush(r0); |
| |
| // Store the caught exception in the catch variable. |
| Variable* catch_var = node->catch_var()->var(); |
| ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL); |
| StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT); |
| |
| // Remove the exception from the stack. |
| frame_->Drop(); |
| |
| { VirtualFrame::RegisterAllocationScope scope(this); |
| VisitStatements(node->catch_block()->statements()); |
| } |
| if (frame_ != NULL) { |
| exit.Jump(); |
| } |
| |
| |
| // --- Try block --- |
| try_block.Bind(); |
| |
| frame_->PushTryHandler(TRY_CATCH_HANDLER); |
| int handler_height = frame_->height(); |
| |
| // Shadow the labels for all escapes from the try block, including |
| // returns. During shadowing, the original label is hidden as the |
| // LabelShadow and operations on the original actually affect the |
| // shadowing label. |
| // |
| // We should probably try to unify the escaping labels and the return |
| // label. |
| int nof_escapes = node->escaping_targets()->length(); |
| List<ShadowTarget*> shadows(1 + nof_escapes); |
| |
| // Add the shadow target for the function return. |
| static const int kReturnShadowIndex = 0; |
| shadows.Add(new ShadowTarget(&function_return_)); |
| bool function_return_was_shadowed = function_return_is_shadowed_; |
| function_return_is_shadowed_ = true; |
| ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
| |
| // Add the remaining shadow targets. |
| for (int i = 0; i < nof_escapes; i++) { |
| shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
| } |
| |
| // Generate code for the statements in the try block. |
| { VirtualFrame::RegisterAllocationScope scope(this); |
| VisitStatements(node->try_block()->statements()); |
| } |
| |
| // Stop the introduced shadowing and count the number of required unlinks. |
| // After shadowing stops, the original labels are unshadowed and the |
| // LabelShadows represent the formerly shadowing labels. |
| bool has_unlinks = false; |
| for (int i = 0; i < shadows.length(); i++) { |
| shadows[i]->StopShadowing(); |
| has_unlinks = has_unlinks || shadows[i]->is_linked(); |
| } |
| function_return_is_shadowed_ = function_return_was_shadowed; |
| |
| // Get an external reference to the handler address. |
| ExternalReference handler_address(Top::k_handler_address); |
| |
| // If we can fall off the end of the try block, unlink from try chain. |
| if (has_valid_frame()) { |
| // The next handler address is on top of the frame. Unlink from |
| // the handler list and drop the rest of this handler from the |
| // frame. |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); // r0 can contain the return value. |
| __ mov(r3, Operand(handler_address)); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| if (has_unlinks) { |
| exit.Jump(); |
| } |
| } |
| |
| // Generate unlink code for the (formerly) shadowing labels that have been |
| // jumped to. Deallocate each shadow target. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (shadows[i]->is_linked()) { |
| // Unlink from try chain; |
| shadows[i]->Bind(); |
| // Because we can be jumping here (to spilled code) from unspilled |
| // code, we need to reestablish a spilled frame at this block. |
| frame_->SpillAll(); |
| |
| // Reload sp from the top handler, because some statements that we |
| // break from (eg, for...in) may have left stuff on the stack. |
| __ mov(r3, Operand(handler_address)); |
| __ ldr(sp, MemOperand(r3)); |
| frame_->Forget(frame_->height() - handler_height); |
| |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); // r0 can contain the return value. |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
| frame_->PrepareForReturn(); |
| } |
| shadows[i]->other_target()->Jump(); |
| } |
| } |
| |
| exit.Bind(); |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| Comment cmnt(masm_, "[ TryFinallyStatement"); |
| CodeForStatementPosition(node); |
| |
| // State: Used to keep track of reason for entering the finally |
| // block. Should probably be extended to hold information for |
| // break/continue from within the try block. |
| enum { FALLING, THROWING, JUMPING }; |
| |
| JumpTarget try_block; |
| JumpTarget finally_block; |
| |
| try_block.Call(); |
| |
| frame_->EmitPush(r0); // save exception object on the stack |
| // In case of thrown exceptions, this is where we continue. |
| __ mov(r2, Operand(Smi::FromInt(THROWING))); |
| finally_block.Jump(); |
| |
| // --- Try block --- |
| try_block.Bind(); |
| |
| frame_->PushTryHandler(TRY_FINALLY_HANDLER); |
| int handler_height = frame_->height(); |
| |
| // Shadow the labels for all escapes from the try block, including |
| // returns. Shadowing hides the original label as the LabelShadow and |
| // operations on the original actually affect the shadowing label. |
| // |
| // We should probably try to unify the escaping labels and the return |
| // label. |
| int nof_escapes = node->escaping_targets()->length(); |
| List<ShadowTarget*> shadows(1 + nof_escapes); |
| |
| // Add the shadow target for the function return. |
| static const int kReturnShadowIndex = 0; |
| shadows.Add(new ShadowTarget(&function_return_)); |
| bool function_return_was_shadowed = function_return_is_shadowed_; |
| function_return_is_shadowed_ = true; |
| ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
| |
| // Add the remaining shadow targets. |
| for (int i = 0; i < nof_escapes; i++) { |
| shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
| } |
| |
| // Generate code for the statements in the try block. |
| { VirtualFrame::RegisterAllocationScope scope(this); |
| VisitStatements(node->try_block()->statements()); |
| } |
| |
| // Stop the introduced shadowing and count the number of required unlinks. |
| // After shadowing stops, the original labels are unshadowed and the |
| // LabelShadows represent the formerly shadowing labels. |
| int nof_unlinks = 0; |
| for (int i = 0; i < shadows.length(); i++) { |
| shadows[i]->StopShadowing(); |
| if (shadows[i]->is_linked()) nof_unlinks++; |
| } |
| function_return_is_shadowed_ = function_return_was_shadowed; |
| |
| // Get an external reference to the handler address. |
| ExternalReference handler_address(Top::k_handler_address); |
| |
| // If we can fall off the end of the try block, unlink from the try |
| // chain and set the state on the frame to FALLING. |
| if (has_valid_frame()) { |
| // The next handler address is on top of the frame. |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ mov(r3, Operand(handler_address)); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| // Fake a top of stack value (unneeded when FALLING) and set the |
| // state in r2, then jump around the unlink blocks if any. |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r0); |
| __ mov(r2, Operand(Smi::FromInt(FALLING))); |
| if (nof_unlinks > 0) { |
| finally_block.Jump(); |
| } |
| } |
| |
| // Generate code to unlink and set the state for the (formerly) |
| // shadowing targets that have been jumped to. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (shadows[i]->is_linked()) { |
| // If we have come from the shadowed return, the return value is |
| // in (a non-refcounted reference to) r0. We must preserve it |
| // until it is pushed. |
| // |
| // Because we can be jumping here (to spilled code) from |
| // unspilled code, we need to reestablish a spilled frame at |
| // this block. |
| shadows[i]->Bind(); |
| frame_->SpillAll(); |
| |
| // Reload sp from the top handler, because some statements that |
| // we break from (eg, for...in) may have left stuff on the |
| // stack. |
| __ mov(r3, Operand(handler_address)); |
| __ ldr(sp, MemOperand(r3)); |
| frame_->Forget(frame_->height() - handler_height); |
| |
| // Unlink this handler and drop it from the frame. The next |
| // handler address is currently on top of the frame. |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| frame_->EmitPop(r1); |
| __ str(r1, MemOperand(r3)); |
| frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
| |
| if (i == kReturnShadowIndex) { |
| // If this label shadowed the function return, materialize the |
| // return value on the stack. |
| frame_->EmitPush(r0); |
| } else { |
| // Fake TOS for targets that shadowed breaks and continues. |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(r0); |
| } |
| __ mov(r2, Operand(Smi::FromInt(JUMPING + i))); |
| if (--nof_unlinks > 0) { |
| // If this is not the last unlink block, jump around the next. |
| finally_block.Jump(); |
| } |
| } |
| } |
| |
| // --- Finally block --- |
| finally_block.Bind(); |
| |
| // Push the state on the stack. |
| frame_->EmitPush(r2); |
| |
| // We keep two elements on the stack - the (possibly faked) result |
| // and the state - while evaluating the finally block. |
| // |
| // Generate code for the statements in the finally block. |
| { VirtualFrame::RegisterAllocationScope scope(this); |
| VisitStatements(node->finally_block()->statements()); |
| } |
| |
| if (has_valid_frame()) { |
| // Restore state and return value or faked TOS. |
| frame_->EmitPop(r2); |
| frame_->EmitPop(r0); |
| } |
| |
| // Generate code to jump to the right destination for all used |
| // formerly shadowing targets. Deallocate each shadow target. |
| for (int i = 0; i < shadows.length(); i++) { |
| if (has_valid_frame() && shadows[i]->is_bound()) { |
| JumpTarget* original = shadows[i]->other_target(); |
| __ cmp(r2, Operand(Smi::FromInt(JUMPING + i))); |
| if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
| JumpTarget skip; |
| skip.Branch(ne); |
| frame_->PrepareForReturn(); |
| original->Jump(); |
| skip.Bind(); |
| } else { |
| original->Branch(eq); |
| } |
| } |
| } |
| |
| if (has_valid_frame()) { |
| // Check if we need to rethrow the exception. |
| JumpTarget exit; |
| __ cmp(r2, Operand(Smi::FromInt(THROWING))); |
| exit.Branch(ne); |
| |
| // Rethrow exception. |
| frame_->EmitPush(r0); |
| frame_->CallRuntime(Runtime::kReThrow, 1); |
| |
| // Done. |
| exit.Bind(); |
| } |
| ASSERT(!has_valid_frame() || frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ DebuggerStatament"); |
| CodeForStatementPosition(node); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| frame_->DebugBreak(); |
| #endif |
| // Ignore the return value. |
| ASSERT(frame_->height() == original_height); |
| } |
| |
| |
| void CodeGenerator::InstantiateFunction( |
| Handle<SharedFunctionInfo> function_info, |
| bool pretenure) { |
| // Use the fast case closure allocation code that allocates in new |
| // space for nested functions that don't need literals cloning. |
| if (scope()->is_function_scope() && |
| function_info->num_literals() == 0 && |
| !pretenure) { |
| FastNewClosureStub stub; |
| frame_->EmitPush(Operand(function_info)); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 1); |
| frame_->EmitPush(r0); |
| } else { |
| // Create a new closure. |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(function_info)); |
| frame_->EmitPush(Operand(pretenure |
| ? Factory::true_value() |
| : Factory::false_value())); |
| frame_->CallRuntime(Runtime::kNewClosure, 3); |
| frame_->EmitPush(r0); |
| } |
| } |
| |
| |
| void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ FunctionLiteral"); |
| |
| // Build the function info and instantiate it. |
| Handle<SharedFunctionInfo> function_info = |
| Compiler::BuildFunctionInfo(node, script()); |
| if (function_info.is_null()) { |
| SetStackOverflow(); |
| ASSERT(frame_->height() == original_height); |
| return; |
| } |
| InstantiateFunction(function_info, node->pretenure()); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitSharedFunctionInfoLiteral( |
| SharedFunctionInfoLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); |
| InstantiateFunction(node->shared_function_info(), false); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitConditional(Conditional* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Conditional"); |
| JumpTarget then; |
| JumpTarget else_; |
| LoadCondition(node->condition(), &then, &else_, true); |
| if (has_valid_frame()) { |
| Branch(false, &else_); |
| } |
| if (has_valid_frame() || then.is_linked()) { |
| then.Bind(); |
| Load(node->then_expression()); |
| } |
| if (else_.is_linked()) { |
| JumpTarget exit; |
| if (has_valid_frame()) exit.Jump(); |
| else_.Bind(); |
| Load(node->else_expression()); |
| if (exit.is_linked()) exit.Bind(); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
| if (slot->type() == Slot::LOOKUP) { |
| ASSERT(slot->var()->is_dynamic()); |
| |
| // JumpTargets do not yet support merging frames so the frame must be |
| // spilled when jumping to these targets. |
| JumpTarget slow; |
| JumpTarget done; |
| |
| // Generate fast case for loading from slots that correspond to |
| // local/global variables or arguments unless they are shadowed by |
| // eval-introduced bindings. |
| EmitDynamicLoadFromSlotFastCase(slot, |
| typeof_state, |
| &slow, |
| &done); |
| |
| slow.Bind(); |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(slot->var()->name())); |
| |
| if (typeof_state == INSIDE_TYPEOF) { |
| frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
| } else { |
| frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
| } |
| |
| done.Bind(); |
| frame_->EmitPush(r0); |
| |
| } else { |
| Register scratch = VirtualFrame::scratch0(); |
| TypeInfo info = type_info(slot); |
| frame_->EmitPush(SlotOperand(slot, scratch), info); |
| |
| if (slot->var()->mode() == Variable::CONST) { |
| // Const slots may contain 'the hole' value (the constant hasn't been |
| // initialized yet) which needs to be converted into the 'undefined' |
| // value. |
| Comment cmnt(masm_, "[ Unhole const"); |
| Register tos = frame_->PopToRegister(); |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(tos, ip); |
| __ LoadRoot(tos, Heap::kUndefinedValueRootIndex, eq); |
| frame_->EmitPush(tos); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, |
| TypeofState state) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| LoadFromSlot(slot, state); |
| |
| // Bail out quickly if we're not using lazy arguments allocation. |
| if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; |
| |
| // ... or if the slot isn't a non-parameter arguments slot. |
| if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; |
| |
| // Load the loaded value from the stack into a register but leave it on the |
| // stack. |
| Register tos = frame_->Peek(); |
| |
| // If the loaded value is the sentinel that indicates that we |
| // haven't loaded the arguments object yet, we need to do it now. |
| JumpTarget exit; |
| __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); |
| __ cmp(tos, ip); |
| exit.Branch(ne); |
| frame_->Drop(); |
| StoreArgumentsObject(false); |
| exit.Bind(); |
| } |
| |
| |
| void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { |
| ASSERT(slot != NULL); |
| VirtualFrame::RegisterAllocationScope scope(this); |
| if (slot->type() == Slot::LOOKUP) { |
| ASSERT(slot->var()->is_dynamic()); |
| |
| // For now, just do a runtime call. |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(slot->var()->name())); |
| |
| if (init_state == CONST_INIT) { |
| // Same as the case for a normal store, but ignores attribute |
| // (e.g. READ_ONLY) of context slot so that we can initialize |
| // const properties (introduced via eval("const foo = (some |
| // expr);")). Also, uses the current function context instead of |
| // the top context. |
| // |
| // Note that we must declare the foo upon entry of eval(), via a |
| // context slot declaration, but we cannot initialize it at the |
| // same time, because the const declaration may be at the end of |
| // the eval code (sigh...) and the const variable may have been |
| // used before (where its value is 'undefined'). Thus, we can only |
| // do the initialization when we actually encounter the expression |
| // and when the expression operands are defined and valid, and |
| // thus we need the split into 2 operations: declaration of the |
| // context slot followed by initialization. |
| frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
| } else { |
| frame_->CallRuntime(Runtime::kStoreContextSlot, 3); |
| } |
| // Storing a variable must keep the (new) value on the expression |
| // stack. This is necessary for compiling assignment expressions. |
| frame_->EmitPush(r0); |
| |
| } else { |
| ASSERT(!slot->var()->is_dynamic()); |
| Register scratch = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| |
| // The frame must be spilled when branching to this target. |
| JumpTarget exit; |
| |
| if (init_state == CONST_INIT) { |
| ASSERT(slot->var()->mode() == Variable::CONST); |
| // Only the first const initialization must be executed (the slot |
| // still contains 'the hole' value). When the assignment is |
| // executed, the code is identical to a normal store (see below). |
| Comment cmnt(masm_, "[ Init const"); |
| __ ldr(scratch, SlotOperand(slot, scratch)); |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(scratch, ip); |
| exit.Branch(ne); |
| } |
| |
| // We must execute the store. Storing a variable must keep the |
| // (new) value on the stack. This is necessary for compiling |
| // assignment expressions. |
| // |
| // Note: We will reach here even with slot->var()->mode() == |
| // Variable::CONST because of const declarations which will |
| // initialize consts to 'the hole' value and by doing so, end up |
| // calling this code. r2 may be loaded with context; used below in |
| // RecordWrite. |
| Register tos = frame_->Peek(); |
| __ str(tos, SlotOperand(slot, scratch)); |
| if (slot->type() == Slot::CONTEXT) { |
| // Skip write barrier if the written value is a smi. |
| __ tst(tos, Operand(kSmiTagMask)); |
| // We don't use tos any more after here. |
| exit.Branch(eq); |
| // scratch is loaded with context when calling SlotOperand above. |
| int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
| // We need an extra register. Until we have a way to do that in the |
| // virtual frame we will cheat and ask for a free TOS register. |
| Register scratch3 = frame_->GetTOSRegister(); |
| __ RecordWrite(scratch, Operand(offset), scratch2, scratch3); |
| } |
| // If we definitely did not jump over the assignment, we do not need |
| // to bind the exit label. Doing so can defeat peephole |
| // optimization. |
| if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) { |
| exit.Bind(); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot, |
| TypeofState typeof_state, |
| JumpTarget* slow) { |
| // Check that no extension objects have been created by calls to |
| // eval from the current scope to the global scope. |
| Register tmp = frame_->scratch0(); |
| Register tmp2 = frame_->scratch1(); |
| Register context = cp; |
| Scope* s = scope(); |
| while (s != NULL) { |
| if (s->num_heap_slots() > 0) { |
| if (s->calls_eval()) { |
| frame_->SpillAll(); |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| } |
| // Load next context in chain. |
| __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| context = tmp; |
| } |
| // If no outer scope calls eval, we do not need to check more |
| // context extensions. |
| if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
| s = s->outer_scope(); |
| } |
| |
| if (s->is_eval_scope()) { |
| frame_->SpillAll(); |
| Label next, fast; |
| __ Move(tmp, context); |
| __ bind(&next); |
| // Terminate at global context. |
| __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kGlobalContextMapRootIndex); |
| __ cmp(tmp2, ip); |
| __ b(eq, &fast); |
| // Check that extension is NULL. |
| __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX)); |
| __ tst(tmp2, tmp2); |
| slow->Branch(ne); |
| // Load next context in chain. |
| __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX)); |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
| __ b(&next); |
| __ bind(&fast); |
| } |
| |
| // Load the global object. |
| LoadGlobal(); |
| // Setup the name register and call load IC. |
| frame_->CallLoadIC(slot->var()->name(), |
| typeof_state == INSIDE_TYPEOF |
| ? RelocInfo::CODE_TARGET |
| : RelocInfo::CODE_TARGET_CONTEXT); |
| } |
| |
| |
| void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, |
| TypeofState typeof_state, |
| JumpTarget* slow, |
| JumpTarget* done) { |
| // Generate fast-case code for variables that might be shadowed by |
| // eval-introduced variables. Eval is used a lot without |
| // introducing variables. In those cases, we do not want to |
| // perform a runtime call for all variables in the scope |
| // containing the eval. |
| if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
| LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); |
| frame_->SpillAll(); |
| done->Jump(); |
| |
| } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
| frame_->SpillAll(); |
| Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); |
| Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); |
| if (potential_slot != NULL) { |
| // Generate fast case for locals that rewrite to slots. |
| __ ldr(r0, |
| ContextSlotOperandCheckExtensions(potential_slot, |
| r1, |
| r2, |
| slow)); |
| if (potential_slot->var()->mode() == Variable::CONST) { |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(r0, ip); |
| __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); |
| } |
| done->Jump(); |
| } else if (rewrite != NULL) { |
| // Generate fast case for argument loads. |
| Property* property = rewrite->AsProperty(); |
| if (property != NULL) { |
| VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); |
| Literal* key_literal = property->key()->AsLiteral(); |
| if (obj_proxy != NULL && |
| key_literal != NULL && |
| obj_proxy->IsArguments() && |
| key_literal->handle()->IsSmi()) { |
| // Load arguments object if there are no eval-introduced |
| // variables. Then load the argument from the arguments |
| // object using keyed load. |
| __ ldr(r0, |
| ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), |
| r1, |
| r2, |
| slow)); |
| frame_->EmitPush(r0); |
| __ mov(r1, Operand(key_literal->handle())); |
| frame_->EmitPush(r1); |
| EmitKeyedLoad(); |
| done->Jump(); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::VisitSlot(Slot* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Slot"); |
| LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitVariableProxy(VariableProxy* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ VariableProxy"); |
| |
| Variable* var = node->var(); |
| Expression* expr = var->rewrite(); |
| if (expr != NULL) { |
| Visit(expr); |
| } else { |
| ASSERT(var->is_global()); |
| Reference ref(this, node); |
| ref.GetValue(); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitLiteral(Literal* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Literal"); |
| Register reg = frame_->GetTOSRegister(); |
| bool is_smi = node->handle()->IsSmi(); |
| __ mov(reg, Operand(node->handle())); |
| frame_->EmitPush(reg, is_smi ? TypeInfo::Smi() : TypeInfo::Unknown()); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ RexExp Literal"); |
| |
| Register tmp = VirtualFrame::scratch0(); |
| // Free up a TOS register that can be used to push the literal. |
| Register literal = frame_->GetTOSRegister(); |
| |
| // Retrieve the literal array and check the allocated entry. |
| |
| // Load the function of this activation. |
| __ ldr(tmp, frame_->Function()); |
| |
| // Load the literals array of the function. |
| __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kLiteralsOffset)); |
| |
| // Load the literal at the ast saved index. |
| int literal_offset = |
| FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
| __ ldr(literal, FieldMemOperand(tmp, literal_offset)); |
| |
| JumpTarget materialized; |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(literal, ip); |
| // This branch locks the virtual frame at the done label to match the |
| // one we have here, where the literal register is not on the stack and |
| // nothing is spilled. |
| materialized.Branch(ne); |
| |
| // If the entry is undefined we call the runtime system to compute |
| // the literal. |
| // literal array (0) |
| frame_->EmitPush(tmp); |
| // literal index (1) |
| frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); |
| // RegExp pattern (2) |
| frame_->EmitPush(Operand(node->pattern())); |
| // RegExp flags (3) |
| frame_->EmitPush(Operand(node->flags())); |
| frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); |
| __ Move(literal, r0); |
| |
| materialized.Bind(); |
| |
| frame_->EmitPush(literal); |
| int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
| frame_->EmitPush(Operand(Smi::FromInt(size))); |
| frame_->CallRuntime(Runtime::kAllocateInNewSpace, 1); |
| // TODO(lrn): Use AllocateInNewSpace macro with fallback to runtime. |
| // r0 is newly allocated space. |
| |
| // Reuse literal variable with (possibly) a new register, still holding |
| // the materialized boilerplate. |
| literal = frame_->PopToRegister(r0); |
| |
| __ CopyFields(r0, literal, tmp.bit(), size / kPointerSize); |
| |
| // Push the clone. |
| frame_->EmitPush(r0); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ ObjectLiteral"); |
| |
| Register literal = frame_->GetTOSRegister(); |
| // Load the function of this activation. |
| __ ldr(literal, frame_->Function()); |
| // Literal array. |
| __ ldr(literal, FieldMemOperand(literal, JSFunction::kLiteralsOffset)); |
| frame_->EmitPush(literal); |
| // Literal index. |
| frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); |
| // Constant properties. |
| frame_->EmitPush(Operand(node->constant_properties())); |
| // Should the object literal have fast elements? |
| frame_->EmitPush(Operand(Smi::FromInt(node->fast_elements() ? 1 : 0))); |
| if (node->depth() > 1) { |
| frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); |
| } else { |
| frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); |
| } |
| frame_->EmitPush(r0); // save the result |
| |
| // Mark all computed expressions that are bound to a key that |
| // is shadowed by a later occurrence of the same key. For the |
| // marked expressions, no store code is emitted. |
| node->CalculateEmitStore(); |
| |
| for (int i = 0; i < node->properties()->length(); i++) { |
| // At the start of each iteration, the top of stack contains |
| // the newly created object literal. |
| ObjectLiteral::Property* property = node->properties()->at(i); |
| Literal* key = property->key(); |
| Expression* value = property->value(); |
| switch (property->kind()) { |
| case ObjectLiteral::Property::CONSTANT: |
| break; |
| case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
| if (CompileTimeValue::IsCompileTimeValue(property->value())) break; |
| // else fall through |
| case ObjectLiteral::Property::COMPUTED: |
| if (key->handle()->IsSymbol()) { |
| Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); |
| Load(value); |
| if (property->emit_store()) { |
| frame_->PopToR0(); |
| // Fetch the object literal. |
| frame_->SpillAllButCopyTOSToR1(); |
| __ mov(r2, Operand(key->handle())); |
| frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); |
| } else { |
| frame_->Drop(); |
| } |
| break; |
| } |
| // else fall through |
| case ObjectLiteral::Property::PROTOTYPE: { |
| frame_->Dup(); |
| Load(key); |
| Load(value); |
| if (property->emit_store()) { |
| frame_->CallRuntime(Runtime::kSetProperty, 3); |
| } else { |
| frame_->Drop(3); |
| } |
| break; |
| } |
| case ObjectLiteral::Property::SETTER: { |
| frame_->Dup(); |
| Load(key); |
| frame_->EmitPush(Operand(Smi::FromInt(1))); |
| Load(value); |
| frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
| break; |
| } |
| case ObjectLiteral::Property::GETTER: { |
| frame_->Dup(); |
| Load(key); |
| frame_->EmitPush(Operand(Smi::FromInt(0))); |
| Load(value); |
| frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
| break; |
| } |
| } |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ ArrayLiteral"); |
| |
| Register tos = frame_->GetTOSRegister(); |
| // Load the function of this activation. |
| __ ldr(tos, frame_->Function()); |
| // Load the literals array of the function. |
| __ ldr(tos, FieldMemOperand(tos, JSFunction::kLiteralsOffset)); |
| frame_->EmitPush(tos); |
| frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); |
| frame_->EmitPush(Operand(node->constant_elements())); |
| int length = node->values()->length(); |
| if (node->constant_elements()->map() == Heap::fixed_cow_array_map()) { |
| FastCloneShallowArrayStub stub( |
| FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); |
| frame_->CallStub(&stub, 3); |
| __ IncrementCounter(&Counters::cow_arrays_created_stub, 1, r1, r2); |
| } else if (node->depth() > 1) { |
| frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); |
| } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { |
| frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); |
| } else { |
| FastCloneShallowArrayStub stub( |
| FastCloneShallowArrayStub::CLONE_ELEMENTS, length); |
| frame_->CallStub(&stub, 3); |
| } |
| frame_->EmitPush(r0); // save the result |
| // r0: created object literal |
| |
| // Generate code to set the elements in the array that are not |
| // literals. |
| for (int i = 0; i < node->values()->length(); i++) { |
| Expression* value = node->values()->at(i); |
| |
| // If value is a literal the property value is already set in the |
| // boilerplate object. |
| if (value->AsLiteral() != NULL) continue; |
| // If value is a materialized literal the property value is already set |
| // in the boilerplate object if it is simple. |
| if (CompileTimeValue::IsCompileTimeValue(value)) continue; |
| |
| // The property must be set by generated code. |
| Load(value); |
| frame_->PopToR0(); |
| // Fetch the object literal. |
| frame_->SpillAllButCopyTOSToR1(); |
| |
| // Get the elements array. |
| __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); |
| |
| // Write to the indexed properties array. |
| int offset = i * kPointerSize + FixedArray::kHeaderSize; |
| __ str(r0, FieldMemOperand(r1, offset)); |
| |
| // Update the write barrier for the array address. |
| __ RecordWrite(r1, Operand(offset), r3, r2); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| // Call runtime routine to allocate the catch extension object and |
| // assign the exception value to the catch variable. |
| Comment cmnt(masm_, "[ CatchExtensionObject"); |
| Load(node->key()); |
| Load(node->value()); |
| frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); |
| frame_->EmitPush(r0); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::EmitSlotAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm(), "[ Variable Assignment"); |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| ASSERT(var != NULL); |
| Slot* slot = var->AsSlot(); |
| ASSERT(slot != NULL); |
| |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| // For a compound assignment the right-hand side is a binary operation |
| // between the current property value and the actual right-hand side. |
| LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
| |
| // Perform the binary operation. |
| Literal* literal = node->value()->AsLiteral(); |
| bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
| if (literal != NULL && literal->handle()->IsSmi()) { |
| SmiOperation(node->binary_op(), |
| literal->handle(), |
| false, |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| GenerateInlineSmi inline_smi = |
| loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
| if (literal != NULL) { |
| ASSERT(!literal->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| Load(node->value()); |
| GenericBinaryOperation(node->binary_op(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
| inline_smi); |
| } |
| } else { |
| Load(node->value()); |
| } |
| |
| // Perform the assignment. |
| if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { |
| CodeForSourcePosition(node->position()); |
| StoreToSlot(slot, |
| node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm(), "[ Named Property Assignment"); |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| Property* prop = node->target()->AsProperty(); |
| ASSERT(var == NULL || (prop == NULL && var->is_global())); |
| |
| // Initialize name and evaluate the receiver sub-expression if necessary. If |
| // the receiver is trivial it is not placed on the stack at this point, but |
| // loaded whenever actually needed. |
| Handle<String> name; |
| bool is_trivial_receiver = false; |
| if (var != NULL) { |
| name = var->name(); |
| } else { |
| Literal* lit = prop->key()->AsLiteral(); |
| ASSERT_NOT_NULL(lit); |
| name = Handle<String>::cast(lit->handle()); |
| // Do not materialize the receiver on the frame if it is trivial. |
| is_trivial_receiver = prop->obj()->IsTrivial(); |
| if (!is_trivial_receiver) Load(prop->obj()); |
| } |
| |
| // Change to slow case in the beginning of an initialization block to |
| // avoid the quadratic behavior of repeatedly adding fast properties. |
| if (node->starts_initialization_block()) { |
| // Initialization block consists of assignments of the form expr.x = ..., so |
| // this will never be an assignment to a variable, so there must be a |
| // receiver object. |
| ASSERT_EQ(NULL, var); |
| if (is_trivial_receiver) { |
| Load(prop->obj()); |
| } else { |
| frame_->Dup(); |
| } |
| frame_->CallRuntime(Runtime::kToSlowProperties, 1); |
| } |
| |
| // Change to fast case at the end of an initialization block. To prepare for |
| // that add an extra copy of the receiver to the frame, so that it can be |
| // converted back to fast case after the assignment. |
| if (node->ends_initialization_block() && !is_trivial_receiver) { |
| frame_->Dup(); |
| } |
| |
| // Stack layout: |
| // [tos] : receiver (only materialized if non-trivial) |
| // [tos+1] : receiver if at the end of an initialization block |
| |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| // For a compound assignment the right-hand side is a binary operation |
| // between the current property value and the actual right-hand side. |
| if (is_trivial_receiver) { |
| Load(prop->obj()); |
| } else if (var != NULL) { |
| LoadGlobal(); |
| } else { |
| frame_->Dup(); |
| } |
| EmitNamedLoad(name, var != NULL); |
| |
| // Perform the binary operation. |
| Literal* literal = node->value()->AsLiteral(); |
| bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
| if (literal != NULL && literal->handle()->IsSmi()) { |
| SmiOperation(node->binary_op(), |
| literal->handle(), |
| false, |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| GenerateInlineSmi inline_smi = |
| loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
| if (literal != NULL) { |
| ASSERT(!literal->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| Load(node->value()); |
| GenericBinaryOperation(node->binary_op(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
| inline_smi); |
| } |
| } else { |
| // For non-compound assignment just load the right-hand side. |
| Load(node->value()); |
| } |
| |
| // Stack layout: |
| // [tos] : value |
| // [tos+1] : receiver (only materialized if non-trivial) |
| // [tos+2] : receiver if at the end of an initialization block |
| |
| // Perform the assignment. It is safe to ignore constants here. |
| ASSERT(var == NULL || var->mode() != Variable::CONST); |
| ASSERT_NE(Token::INIT_CONST, node->op()); |
| if (is_trivial_receiver) { |
| // Load the receiver and swap with the value. |
| Load(prop->obj()); |
| Register t0 = frame_->PopToRegister(); |
| Register t1 = frame_->PopToRegister(t0); |
| frame_->EmitPush(t0); |
| frame_->EmitPush(t1); |
| } |
| CodeForSourcePosition(node->position()); |
| bool is_contextual = (var != NULL); |
| EmitNamedStore(name, is_contextual); |
| frame_->EmitPush(r0); |
| |
| // Change to fast case at the end of an initialization block. |
| if (node->ends_initialization_block()) { |
| ASSERT_EQ(NULL, var); |
| // The argument to the runtime call is the receiver. |
| if (is_trivial_receiver) { |
| Load(prop->obj()); |
| } else { |
| // A copy of the receiver is below the value of the assignment. Swap |
| // the receiver and the value of the assignment expression. |
| Register t0 = frame_->PopToRegister(); |
| Register t1 = frame_->PopToRegister(t0); |
| frame_->EmitPush(t0); |
| frame_->EmitPush(t1); |
| } |
| frame_->CallRuntime(Runtime::kToFastProperties, 1); |
| } |
| |
| // Stack layout: |
| // [tos] : result |
| |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Keyed Property Assignment"); |
| Property* prop = node->target()->AsProperty(); |
| ASSERT_NOT_NULL(prop); |
| |
| // Evaluate the receiver subexpression. |
| Load(prop->obj()); |
| |
| WriteBarrierCharacter wb_info; |
| |
| // Change to slow case in the beginning of an initialization block to |
| // avoid the quadratic behavior of repeatedly adding fast properties. |
| if (node->starts_initialization_block()) { |
| frame_->Dup(); |
| frame_->CallRuntime(Runtime::kToSlowProperties, 1); |
| } |
| |
| // Change to fast case at the end of an initialization block. To prepare for |
| // that add an extra copy of the receiver to the frame, so that it can be |
| // converted back to fast case after the assignment. |
| if (node->ends_initialization_block()) { |
| frame_->Dup(); |
| } |
| |
| // Evaluate the key subexpression. |
| Load(prop->key()); |
| |
| // Stack layout: |
| // [tos] : key |
| // [tos+1] : receiver |
| // [tos+2] : receiver if at the end of an initialization block |
| // |
| // Evaluate the right-hand side. |
| if (node->is_compound()) { |
| // For a compound assignment the right-hand side is a binary operation |
| // between the current property value and the actual right-hand side. |
| // Duplicate receiver and key for loading the current property value. |
| frame_->Dup2(); |
| EmitKeyedLoad(); |
| frame_->EmitPush(r0); |
| |
| // Perform the binary operation. |
| Literal* literal = node->value()->AsLiteral(); |
| bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
| if (literal != NULL && literal->handle()->IsSmi()) { |
| SmiOperation(node->binary_op(), |
| literal->handle(), |
| false, |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| GenerateInlineSmi inline_smi = |
| loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
| if (literal != NULL) { |
| ASSERT(!literal->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| Load(node->value()); |
| GenericBinaryOperation(node->binary_op(), |
| overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, |
| inline_smi); |
| } |
| wb_info = node->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI; |
| } else { |
| // For non-compound assignment just load the right-hand side. |
| Load(node->value()); |
| wb_info = node->value()->AsLiteral() != NULL ? |
| NEVER_NEWSPACE : |
| (node->value()->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI); |
| } |
| |
| // Stack layout: |
| // [tos] : value |
| // [tos+1] : key |
| // [tos+2] : receiver |
| // [tos+3] : receiver if at the end of an initialization block |
| |
| // Perform the assignment. It is safe to ignore constants here. |
| ASSERT(node->op() != Token::INIT_CONST); |
| CodeForSourcePosition(node->position()); |
| EmitKeyedStore(prop->key()->type(), wb_info); |
| frame_->EmitPush(r0); |
| |
| // Stack layout: |
| // [tos] : result |
| // [tos+1] : receiver if at the end of an initialization block |
| |
| // Change to fast case at the end of an initialization block. |
| if (node->ends_initialization_block()) { |
| // The argument to the runtime call is the extra copy of the receiver, |
| // which is below the value of the assignment. Swap the receiver and |
| // the value of the assignment expression. |
| Register t0 = frame_->PopToRegister(); |
| Register t1 = frame_->PopToRegister(t0); |
| frame_->EmitPush(t1); |
| frame_->EmitPush(t0); |
| frame_->CallRuntime(Runtime::kToFastProperties, 1); |
| } |
| |
| // Stack layout: |
| // [tos] : result |
| |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitAssignment(Assignment* node) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Assignment"); |
| |
| Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
| Property* prop = node->target()->AsProperty(); |
| |
| if (var != NULL && !var->is_global()) { |
| EmitSlotAssignment(node); |
| |
| } else if ((prop != NULL && prop->key()->IsPropertyName()) || |
| (var != NULL && var->is_global())) { |
| // Properties whose keys are property names and global variables are |
| // treated as named property references. We do not need to consider |
| // global 'this' because it is not a valid left-hand side. |
| EmitNamedPropertyAssignment(node); |
| |
| } else if (prop != NULL) { |
| // Other properties (including rewritten parameters for a function that |
| // uses arguments) are keyed property assignments. |
| EmitKeyedPropertyAssignment(node); |
| |
| } else { |
| // Invalid left-hand side. |
| Load(node->target()); |
| frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
| // The runtime call doesn't actually return but the code generator will |
| // still generate code and expects a certain frame height. |
| frame_->EmitPush(r0); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitThrow(Throw* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Throw"); |
| |
| Load(node->exception()); |
| CodeForSourcePosition(node->position()); |
| frame_->CallRuntime(Runtime::kThrow, 1); |
| frame_->EmitPush(r0); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitProperty(Property* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Property"); |
| |
| { Reference property(this, node); |
| property.GetValue(); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitCall(Call* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ Call"); |
| |
| Expression* function = node->expression(); |
| ZoneList<Expression*>* args = node->arguments(); |
| |
| // Standard function call. |
| // Check if the function is a variable or a property. |
| Variable* var = function->AsVariableProxy()->AsVariable(); |
| Property* property = function->AsProperty(); |
| |
| // ------------------------------------------------------------------------ |
| // Fast-case: Use inline caching. |
| // --- |
| // According to ECMA-262, section 11.2.3, page 44, the function to call |
| // must be resolved after the arguments have been evaluated. The IC code |
| // automatically handles this by loading the arguments before the function |
| // is resolved in cache misses (this also holds for megamorphic calls). |
| // ------------------------------------------------------------------------ |
| |
| if (var != NULL && var->is_possibly_eval()) { |
| // ---------------------------------- |
| // JavaScript example: 'eval(arg)' // eval is not known to be shadowed |
| // ---------------------------------- |
| |
| // In a call to eval, we first call %ResolvePossiblyDirectEval to |
| // resolve the function we need to call and the receiver of the |
| // call. Then we call the resolved function using the given |
| // arguments. |
| |
| // Prepare stack for call to resolved function. |
| Load(function); |
| |
| // Allocate a frame slot for the receiver. |
| frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
| |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| // If we know that eval can only be shadowed by eval-introduced |
| // variables we attempt to load the global eval function directly |
| // in generated code. If we succeed, there is no need to perform a |
| // context lookup in the runtime system. |
| JumpTarget done; |
| if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { |
| ASSERT(var->AsSlot()->type() == Slot::LOOKUP); |
| JumpTarget slow; |
| // Prepare the stack for the call to |
| // ResolvePossiblyDirectEvalNoLookup by pushing the loaded |
| // function, the first argument to the eval call and the |
| // receiver. |
| LoadFromGlobalSlotCheckExtensions(var->AsSlot(), |
| NOT_INSIDE_TYPEOF, |
| &slow); |
| frame_->EmitPush(r0); |
| if (arg_count > 0) { |
| __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); |
| frame_->EmitPush(r1); |
| } else { |
| frame_->EmitPush(r2); |
| } |
| __ ldr(r1, frame_->Receiver()); |
| frame_->EmitPush(r1); |
| |
| frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 3); |
| |
| done.Jump(); |
| slow.Bind(); |
| } |
| |
| // Prepare the stack for the call to ResolvePossiblyDirectEval by |
| // pushing the loaded function, the first argument to the eval |
| // call and the receiver. |
| __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize)); |
| frame_->EmitPush(r1); |
| if (arg_count > 0) { |
| __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); |
| frame_->EmitPush(r1); |
| } else { |
| frame_->EmitPush(r2); |
| } |
| __ ldr(r1, frame_->Receiver()); |
| frame_->EmitPush(r1); |
| |
| // Resolve the call. |
| frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); |
| |
| // If we generated fast-case code bind the jump-target where fast |
| // and slow case merge. |
| if (done.is_linked()) done.Bind(); |
| |
| // Touch up stack with the right values for the function and the receiver. |
| __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); |
| __ str(r1, MemOperand(sp, arg_count * kPointerSize)); |
| |
| // Call the function. |
| CodeForSourcePosition(node->position()); |
| |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); |
| frame_->CallStub(&call_function, arg_count + 1); |
| |
| __ ldr(cp, frame_->Context()); |
| // Remove the function from the stack. |
| frame_->Drop(); |
| frame_->EmitPush(r0); |
| |
| } else if (var != NULL && !var->is_this() && var->is_global()) { |
| // ---------------------------------- |
| // JavaScript example: 'foo(1, 2, 3)' // foo is global |
| // ---------------------------------- |
| // Pass the global object as the receiver and let the IC stub |
| // patch the stack to use the global proxy as 'this' in the |
| // invoked function. |
| LoadGlobal(); |
| |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| // Setup the name register and call the IC initialization code. |
| __ mov(r2, Operand(var->name())); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = StubCache::ComputeCallInitialize(arg_count, in_loop); |
| CodeForSourcePosition(node->position()); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT, |
| arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| |
| } else if (var != NULL && var->AsSlot() != NULL && |
| var->AsSlot()->type() == Slot::LOOKUP) { |
| // ---------------------------------- |
| // JavaScript examples: |
| // |
| // with (obj) foo(1, 2, 3) // foo may be in obj. |
| // |
| // function f() {}; |
| // function g() { |
| // eval(...); |
| // f(); // f could be in extension object. |
| // } |
| // ---------------------------------- |
| |
| JumpTarget slow, done; |
| |
| // Generate fast case for loading functions from slots that |
| // correspond to local/global variables or arguments unless they |
| // are shadowed by eval-introduced bindings. |
| EmitDynamicLoadFromSlotFastCase(var->AsSlot(), |
| NOT_INSIDE_TYPEOF, |
| &slow, |
| &done); |
| |
| slow.Bind(); |
| // Load the function |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(var->name())); |
| frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
| // r0: slot value; r1: receiver |
| |
| // Load the receiver. |
| frame_->EmitPush(r0); // function |
| frame_->EmitPush(r1); // receiver |
| |
| // If fast case code has been generated, emit code to push the |
| // function and receiver and have the slow path jump around this |
| // code. |
| if (done.is_linked()) { |
| JumpTarget call; |
| call.Jump(); |
| done.Bind(); |
| frame_->EmitPush(r0); // function |
| LoadGlobalReceiver(VirtualFrame::scratch0()); // receiver |
| call.Bind(); |
| } |
| |
| // Call the function. At this point, everything is spilled but the |
| // function and receiver are in r0 and r1. |
| CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
| frame_->EmitPush(r0); |
| |
| } else if (property != NULL) { |
| // Check if the key is a literal string. |
| Literal* literal = property->key()->AsLiteral(); |
| |
| if (literal != NULL && literal->handle()->IsSymbol()) { |
| // ------------------------------------------------------------------ |
| // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' |
| // ------------------------------------------------------------------ |
| |
| Handle<String> name = Handle<String>::cast(literal->handle()); |
| |
| if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && |
| name->IsEqualTo(CStrVector("apply")) && |
| args->length() == 2 && |
| args->at(1)->AsVariableProxy() != NULL && |
| args->at(1)->AsVariableProxy()->IsArguments()) { |
| // Use the optimized Function.prototype.apply that avoids |
| // allocating lazily allocated arguments objects. |
| CallApplyLazy(property->obj(), |
| args->at(0), |
| args->at(1)->AsVariableProxy(), |
| node->position()); |
| |
| } else { |
| Load(property->obj()); // Receiver. |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| // Set the name register and call the IC initialization code. |
| __ mov(r2, Operand(name)); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = |
| StubCache::ComputeCallInitialize(arg_count, in_loop); |
| CodeForSourcePosition(node->position()); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| } |
| |
| } else { |
| // ------------------------------------------- |
| // JavaScript example: 'array[index](1, 2, 3)' |
| // ------------------------------------------- |
| |
| // Load the receiver and name of the function. |
| Load(property->obj()); |
| Load(property->key()); |
| |
| if (property->is_synthetic()) { |
| EmitKeyedLoad(); |
| // Put the function below the receiver. |
| // Use the global receiver. |
| frame_->EmitPush(r0); // Function. |
| LoadGlobalReceiver(VirtualFrame::scratch0()); |
| // Call the function. |
| CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); |
| frame_->EmitPush(r0); |
| } else { |
| // Swap the name of the function and the receiver on the stack to follow |
| // the calling convention for call ICs. |
| Register key = frame_->PopToRegister(); |
| Register receiver = frame_->PopToRegister(key); |
| frame_->EmitPush(key); |
| frame_->EmitPush(receiver); |
| |
| // Load the arguments. |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Load the key into r2 and call the IC initialization code. |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = |
| StubCache::ComputeKeyedCallInitialize(arg_count, in_loop); |
| CodeForSourcePosition(node->position()); |
| frame_->SpillAll(); |
| __ ldr(r2, frame_->ElementAt(arg_count + 1)); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
| frame_->Drop(); // Drop the key still on the stack. |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| } |
| } |
| |
| } else { |
| // ---------------------------------- |
| // JavaScript example: 'foo(1, 2, 3)' // foo is not global |
| // ---------------------------------- |
| |
| // Load the function. |
| Load(function); |
| |
| // Pass the global proxy as the receiver. |
| LoadGlobalReceiver(VirtualFrame::scratch0()); |
| |
| // Call the function. |
| CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
| frame_->EmitPush(r0); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitCallNew(CallNew* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ CallNew"); |
| |
| // According to ECMA-262, section 11.2.2, page 44, the function |
| // expression in new calls must be evaluated before the |
| // arguments. This is different from ordinary calls, where the |
| // actual function to call is resolved after the arguments have been |
| // evaluated. |
| |
| // Push constructor on the stack. If it's not a function it's used as |
| // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is |
| // ignored. |
| Load(node->expression()); |
| |
| // Push the arguments ("left-to-right") on the stack. |
| ZoneList<Expression*>* args = node->arguments(); |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| // Spill everything from here to simplify the implementation. |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| // Load the argument count into r0 and the function into r1 as per |
| // calling convention. |
| __ mov(r0, Operand(arg_count)); |
| __ ldr(r1, frame_->ElementAt(arg_count)); |
| |
| // Call the construct call builtin that handles allocation and |
| // constructor invocation. |
| CodeForSourcePosition(node->position()); |
| Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall)); |
| frame_->CallCodeObject(ic, RelocInfo::CONSTRUCT_CALL, arg_count + 1); |
| frame_->EmitPush(r0); |
| |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { |
| Register scratch = VirtualFrame::scratch0(); |
| JumpTarget null, function, leave, non_function_constructor; |
| |
| // Load the object into register. |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register tos = frame_->PopToRegister(); |
| |
| // If the object is a smi, we return null. |
| __ tst(tos, Operand(kSmiTagMask)); |
| null.Branch(eq); |
| |
| // Check that the object is a JS object but take special care of JS |
| // functions to make sure they have 'Function' as their class. |
| __ CompareObjectType(tos, tos, scratch, FIRST_JS_OBJECT_TYPE); |
| null.Branch(lt); |
| |
| // As long as JS_FUNCTION_TYPE is the last instance type and it is |
| // right after LAST_JS_OBJECT_TYPE, we can avoid checking for |
| // LAST_JS_OBJECT_TYPE. |
| STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
| __ cmp(scratch, Operand(JS_FUNCTION_TYPE)); |
| function.Branch(eq); |
| |
| // Check if the constructor in the map is a function. |
| __ ldr(tos, FieldMemOperand(tos, Map::kConstructorOffset)); |
| __ CompareObjectType(tos, scratch, scratch, JS_FUNCTION_TYPE); |
| non_function_constructor.Branch(ne); |
| |
| // The tos register now contains the constructor function. Grab the |
| // instance class name from there. |
| __ ldr(tos, FieldMemOperand(tos, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(tos, |
| FieldMemOperand(tos, SharedFunctionInfo::kInstanceClassNameOffset)); |
| frame_->EmitPush(tos); |
| leave.Jump(); |
| |
| // Functions have class 'Function'. |
| function.Bind(); |
| __ mov(tos, Operand(Factory::function_class_symbol())); |
| frame_->EmitPush(tos); |
| leave.Jump(); |
| |
| // Objects with a non-function constructor have class 'Object'. |
| non_function_constructor.Bind(); |
| __ mov(tos, Operand(Factory::Object_symbol())); |
| frame_->EmitPush(tos); |
| leave.Jump(); |
| |
| // Non-JS objects have class null. |
| null.Bind(); |
| __ LoadRoot(tos, Heap::kNullValueRootIndex); |
| frame_->EmitPush(tos); |
| |
| // All done. |
| leave.Bind(); |
| } |
| |
| |
| void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
| Register scratch = VirtualFrame::scratch0(); |
| JumpTarget leave; |
| |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register tos = frame_->PopToRegister(); // tos contains object. |
| // if (object->IsSmi()) return the object. |
| __ tst(tos, Operand(kSmiTagMask)); |
| leave.Branch(eq); |
| // It is a heap object - get map. If (!object->IsJSValue()) return the object. |
| __ CompareObjectType(tos, scratch, scratch, JS_VALUE_TYPE); |
| leave.Branch(ne); |
| // Load the value. |
| __ ldr(tos, FieldMemOperand(tos, JSValue::kValueOffset)); |
| leave.Bind(); |
| frame_->EmitPush(tos); |
| } |
| |
| |
| void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| JumpTarget leave; |
| |
| ASSERT(args->length() == 2); |
| Load(args->at(0)); // Load the object. |
| Load(args->at(1)); // Load the value. |
| Register value = frame_->PopToRegister(); |
| Register object = frame_->PopToRegister(value); |
| // if (object->IsSmi()) return object. |
| __ tst(object, Operand(kSmiTagMask)); |
| leave.Branch(eq); |
| // It is a heap object - get map. If (!object->IsJSValue()) return the object. |
| __ CompareObjectType(object, scratch1, scratch1, JS_VALUE_TYPE); |
| leave.Branch(ne); |
| // Store the value. |
| __ str(value, FieldMemOperand(object, JSValue::kValueOffset)); |
| // Update the write barrier. |
| __ RecordWrite(object, |
| Operand(JSValue::kValueOffset - kHeapObjectTag), |
| scratch1, |
| scratch2); |
| // Leave. |
| leave.Bind(); |
| frame_->EmitPush(value); |
| } |
| |
| |
| void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register reg = frame_->PopToRegister(); |
| __ tst(reg, Operand(kSmiTagMask)); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
| // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc. |
| ASSERT_EQ(args->length(), 3); |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| if (ShouldGenerateLog(args->at(0))) { |
| Load(args->at(1)); |
| Load(args->at(2)); |
| frame_->CallRuntime(Runtime::kLog, 2); |
| } |
| #endif |
| frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
| } |
| |
| |
| void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register reg = frame_->PopToRegister(); |
| __ tst(reg, Operand(kSmiTagMask | 0x80000000u)); |
| cc_reg_ = eq; |
| } |
| |
| |
| // Generates the Math.pow method. |
| void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| if (!CpuFeatures::IsSupported(VFP3)) { |
| frame_->CallRuntime(Runtime::kMath_pow, 2); |
| frame_->EmitPush(r0); |
| } else { |
| CpuFeatures::Scope scope(VFP3); |
| JumpTarget runtime, done; |
| Label exponent_nonsmi, base_nonsmi, powi, not_minus_half, allocate_return; |
| |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| |
| // Get base and exponent to registers. |
| Register exponent = frame_->PopToRegister(); |
| Register base = frame_->PopToRegister(exponent); |
| Register heap_number_map = no_reg; |
| |
| // Set the frame for the runtime jump target. The code below jumps to the |
| // jump target label so the frame needs to be established before that. |
| ASSERT(runtime.entry_frame() == NULL); |
| runtime.set_entry_frame(frame_); |
| |
| __ BranchOnNotSmi(exponent, &exponent_nonsmi); |
| __ BranchOnNotSmi(base, &base_nonsmi); |
| |
| heap_number_map = r6; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| // Exponent is a smi and base is a smi. Get the smi value into vfp register |
| // d1. |
| __ SmiToDoubleVFPRegister(base, d1, scratch1, s0); |
| __ b(&powi); |
| |
| __ bind(&base_nonsmi); |
| // Exponent is smi and base is non smi. Get the double value from the base |
| // into vfp register d1. |
| __ ObjectToDoubleVFPRegister(base, d1, |
| scratch1, scratch2, heap_number_map, s0, |
| runtime.entry_label()); |
| |
| __ bind(&powi); |
| |
| // Load 1.0 into d0. |
| __ vmov(d0, 1.0); |
| |
| // Get the absolute untagged value of the exponent and use that for the |
| // calculation. |
| __ mov(scratch1, Operand(exponent, ASR, kSmiTagSize), SetCC); |
| // Negate if negative. |
| __ rsb(scratch1, scratch1, Operand(0, RelocInfo::NONE), LeaveCC, mi); |
| __ vmov(d2, d0, mi); // 1.0 needed in d2 later if exponent is negative. |
| |
| // Run through all the bits in the exponent. The result is calculated in d0 |
| // and d1 holds base^(bit^2). |
| Label more_bits; |
| __ bind(&more_bits); |
| __ mov(scratch1, Operand(scratch1, LSR, 1), SetCC); |
| __ vmul(d0, d0, d1, cs); // Multiply with base^(bit^2) if bit is set. |
| __ vmul(d1, d1, d1, ne); // Don't bother calculating next d1 if done. |
| __ b(ne, &more_bits); |
| |
| // If exponent is positive we are done. |
| __ cmp(exponent, Operand(0, RelocInfo::NONE)); |
| __ b(ge, &allocate_return); |
| |
| // If exponent is negative result is 1/result (d2 already holds 1.0 in that |
| // case). However if d0 has reached infinity this will not provide the |
| // correct result, so call runtime if that is the case. |
| __ mov(scratch2, Operand(0x7FF00000)); |
| __ mov(scratch1, Operand(0, RelocInfo::NONE)); |
| __ vmov(d1, scratch1, scratch2); // Load infinity into d1. |
| __ VFPCompareAndSetFlags(d0, d1); |
| runtime.Branch(eq); // d0 reached infinity. |
| __ vdiv(d0, d2, d0); |
| __ b(&allocate_return); |
| |
| __ bind(&exponent_nonsmi); |
| // Special handling of raising to the power of -0.5 and 0.5. First check |
| // that the value is a heap number and that the lower bits (which for both |
| // values are zero). |
| heap_number_map = r6; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| __ ldr(scratch1, FieldMemOperand(exponent, HeapObject::kMapOffset)); |
| __ ldr(scratch2, FieldMemOperand(exponent, HeapNumber::kMantissaOffset)); |
| __ cmp(scratch1, heap_number_map); |
| runtime.Branch(ne); |
| __ tst(scratch2, scratch2); |
| runtime.Branch(ne); |
| |
| // Load the higher bits (which contains the floating point exponent). |
| __ ldr(scratch1, FieldMemOperand(exponent, HeapNumber::kExponentOffset)); |
| |
| // Compare exponent with -0.5. |
| __ cmp(scratch1, Operand(0xbfe00000)); |
| __ b(ne, ¬_minus_half); |
| |
| // Get the double value from the base into vfp register d0. |
| __ ObjectToDoubleVFPRegister(base, d0, |
| scratch1, scratch2, heap_number_map, s0, |
| runtime.entry_label(), |
| AVOID_NANS_AND_INFINITIES); |
| |
| // Load 1.0 into d2. |
| __ vmov(d2, 1.0); |
| |
| // Calculate the reciprocal of the square root. 1/sqrt(x) = sqrt(1/x). |
| __ vdiv(d0, d2, d0); |
| __ vsqrt(d0, d0); |
| |
| __ b(&allocate_return); |
| |
| __ bind(¬_minus_half); |
| // Compare exponent with 0.5. |
| __ cmp(scratch1, Operand(0x3fe00000)); |
| runtime.Branch(ne); |
| |
| // Get the double value from the base into vfp register d0. |
| __ ObjectToDoubleVFPRegister(base, d0, |
| scratch1, scratch2, heap_number_map, s0, |
| runtime.entry_label(), |
| AVOID_NANS_AND_INFINITIES); |
| __ vsqrt(d0, d0); |
| |
| __ bind(&allocate_return); |
| Register scratch3 = r5; |
| __ AllocateHeapNumberWithValue(scratch3, d0, scratch1, scratch2, |
| heap_number_map, runtime.entry_label()); |
| __ mov(base, scratch3); |
| done.Jump(); |
| |
| runtime.Bind(); |
| |
| // Push back the arguments again for the runtime call. |
| frame_->EmitPush(base); |
| frame_->EmitPush(exponent); |
| frame_->CallRuntime(Runtime::kMath_pow, 2); |
| __ Move(base, r0); |
| |
| done.Bind(); |
| frame_->EmitPush(base); |
| } |
| } |
| |
| |
| // Generates the Math.sqrt method. |
| void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| |
| if (!CpuFeatures::IsSupported(VFP3)) { |
| frame_->CallRuntime(Runtime::kMath_sqrt, 1); |
| frame_->EmitPush(r0); |
| } else { |
| CpuFeatures::Scope scope(VFP3); |
| JumpTarget runtime, done; |
| |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| |
| // Get the value from the frame. |
| Register tos = frame_->PopToRegister(); |
| |
| // Set the frame for the runtime jump target. The code below jumps to the |
| // jump target label so the frame needs to be established before that. |
| ASSERT(runtime.entry_frame() == NULL); |
| runtime.set_entry_frame(frame_); |
| |
| Register heap_number_map = r6; |
| Register new_heap_number = r5; |
| __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| |
| // Get the double value from the heap number into vfp register d0. |
| __ ObjectToDoubleVFPRegister(tos, d0, |
| scratch1, scratch2, heap_number_map, s0, |
| runtime.entry_label()); |
| |
| // Calculate the square root of d0 and place result in a heap number object. |
| __ vsqrt(d0, d0); |
| __ AllocateHeapNumberWithValue(new_heap_number, |
| d0, |
| scratch1, scratch2, |
| heap_number_map, |
| runtime.entry_label()); |
| __ mov(tos, Operand(new_heap_number)); |
| done.Jump(); |
| |
| runtime.Bind(); |
| // Push back the argument again for the runtime call. |
| frame_->EmitPush(tos); |
| frame_->CallRuntime(Runtime::kMath_sqrt, 1); |
| __ Move(tos, r0); |
| |
| done.Bind(); |
| frame_->EmitPush(tos); |
| } |
| } |
| |
| |
| class DeferredStringCharCodeAt : public DeferredCode { |
| public: |
| DeferredStringCharCodeAt(Register object, |
| Register index, |
| Register scratch, |
| Register result) |
| : result_(result), |
| char_code_at_generator_(object, |
| index, |
| scratch, |
| result, |
| &need_conversion_, |
| &need_conversion_, |
| &index_out_of_range_, |
| STRING_INDEX_IS_NUMBER) {} |
| |
| StringCharCodeAtGenerator* fast_case_generator() { |
| return &char_code_at_generator_; |
| } |
| |
| virtual void Generate() { |
| VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
| char_code_at_generator_.GenerateSlow(masm(), call_helper); |
| |
| __ bind(&need_conversion_); |
| // Move the undefined value into the result register, which will |
| // trigger conversion. |
| __ LoadRoot(result_, Heap::kUndefinedValueRootIndex); |
| __ jmp(exit_label()); |
| |
| __ bind(&index_out_of_range_); |
| // When the index is out of range, the spec requires us to return |
| // NaN. |
| __ LoadRoot(result_, Heap::kNanValueRootIndex); |
| __ jmp(exit_label()); |
| } |
| |
| private: |
| Register result_; |
| |
| Label need_conversion_; |
| Label index_out_of_range_; |
| |
| StringCharCodeAtGenerator char_code_at_generator_; |
| }; |
| |
| |
| // This generates code that performs a String.prototype.charCodeAt() call |
| // or returns a smi in order to trigger conversion. |
| void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) { |
| Comment(masm_, "[ GenerateStringCharCodeAt"); |
| ASSERT(args->length() == 2); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| Register index = frame_->PopToRegister(); |
| Register object = frame_->PopToRegister(index); |
| |
| // We need two extra registers. |
| Register scratch = VirtualFrame::scratch0(); |
| Register result = VirtualFrame::scratch1(); |
| |
| DeferredStringCharCodeAt* deferred = |
| new DeferredStringCharCodeAt(object, |
| index, |
| scratch, |
| result); |
| deferred->fast_case_generator()->GenerateFast(masm_); |
| deferred->BindExit(); |
| frame_->EmitPush(result); |
| } |
| |
| |
| class DeferredStringCharFromCode : public DeferredCode { |
| public: |
| DeferredStringCharFromCode(Register code, |
| Register result) |
| : char_from_code_generator_(code, result) {} |
| |
| StringCharFromCodeGenerator* fast_case_generator() { |
| return &char_from_code_generator_; |
| } |
| |
| virtual void Generate() { |
| VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
| char_from_code_generator_.GenerateSlow(masm(), call_helper); |
| } |
| |
| private: |
| StringCharFromCodeGenerator char_from_code_generator_; |
| }; |
| |
| |
| // Generates code for creating a one-char string from a char code. |
| void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) { |
| Comment(masm_, "[ GenerateStringCharFromCode"); |
| ASSERT(args->length() == 1); |
| |
| Load(args->at(0)); |
| |
| Register result = frame_->GetTOSRegister(); |
| Register code = frame_->PopToRegister(result); |
| |
| DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( |
| code, result); |
| deferred->fast_case_generator()->GenerateFast(masm_); |
| deferred->BindExit(); |
| frame_->EmitPush(result); |
| } |
| |
| |
| class DeferredStringCharAt : public DeferredCode { |
| public: |
| DeferredStringCharAt(Register object, |
| Register index, |
| Register scratch1, |
| Register scratch2, |
| Register result) |
| : result_(result), |
| char_at_generator_(object, |
| index, |
| scratch1, |
| scratch2, |
| result, |
| &need_conversion_, |
| &need_conversion_, |
| &index_out_of_range_, |
| STRING_INDEX_IS_NUMBER) {} |
| |
| StringCharAtGenerator* fast_case_generator() { |
| return &char_at_generator_; |
| } |
| |
| virtual void Generate() { |
| VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
| char_at_generator_.GenerateSlow(masm(), call_helper); |
| |
| __ bind(&need_conversion_); |
| // Move smi zero into the result register, which will trigger |
| // conversion. |
| __ mov(result_, Operand(Smi::FromInt(0))); |
| __ jmp(exit_label()); |
| |
| __ bind(&index_out_of_range_); |
| // When the index is out of range, the spec requires us to return |
| // the empty string. |
| __ LoadRoot(result_, Heap::kEmptyStringRootIndex); |
| __ jmp(exit_label()); |
| } |
| |
| private: |
| Register result_; |
| |
| Label need_conversion_; |
| Label index_out_of_range_; |
| |
| StringCharAtGenerator char_at_generator_; |
| }; |
| |
| |
| // This generates code that performs a String.prototype.charAt() call |
| // or returns a smi in order to trigger conversion. |
| void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) { |
| Comment(masm_, "[ GenerateStringCharAt"); |
| ASSERT(args->length() == 2); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| Register index = frame_->PopToRegister(); |
| Register object = frame_->PopToRegister(index); |
| |
| // We need three extra registers. |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| // Use r6 without notifying the virtual frame. |
| Register result = r6; |
| |
| DeferredStringCharAt* deferred = |
| new DeferredStringCharAt(object, |
| index, |
| scratch1, |
| scratch2, |
| result); |
| deferred->fast_case_generator()->GenerateFast(masm_); |
| deferred->BindExit(); |
| frame_->EmitPush(result); |
| } |
| |
| |
| void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| JumpTarget answer; |
| // We need the CC bits to come out as not_equal in the case where the |
| // object is a smi. This can't be done with the usual test opcode so |
| // we use XOR to get the right CC bits. |
| Register possible_array = frame_->PopToRegister(); |
| Register scratch = VirtualFrame::scratch0(); |
| __ and_(scratch, possible_array, Operand(kSmiTagMask)); |
| __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); |
| answer.Branch(ne); |
| // It is a heap object - get the map. Check if the object is a JS array. |
| __ CompareObjectType(possible_array, scratch, scratch, JS_ARRAY_TYPE); |
| answer.Bind(); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| JumpTarget answer; |
| // We need the CC bits to come out as not_equal in the case where the |
| // object is a smi. This can't be done with the usual test opcode so |
| // we use XOR to get the right CC bits. |
| Register possible_regexp = frame_->PopToRegister(); |
| Register scratch = VirtualFrame::scratch0(); |
| __ and_(scratch, possible_regexp, Operand(kSmiTagMask)); |
| __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); |
| answer.Branch(ne); |
| // It is a heap object - get the map. Check if the object is a regexp. |
| __ CompareObjectType(possible_regexp, scratch, scratch, JS_REGEXP_TYPE); |
| answer.Bind(); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register possible_object = frame_->PopToRegister(); |
| __ tst(possible_object, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(possible_object, ip); |
| true_target()->Branch(eq); |
| |
| Register map_reg = VirtualFrame::scratch0(); |
| __ ldr(map_reg, FieldMemOperand(possible_object, HeapObject::kMapOffset)); |
| // Undetectable objects behave like undefined when tested with typeof. |
| __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kBitFieldOffset)); |
| __ tst(possible_object, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(ne); |
| |
| __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); |
| __ cmp(possible_object, Operand(FIRST_JS_OBJECT_TYPE)); |
| false_target()->Branch(lt); |
| __ cmp(possible_object, Operand(LAST_JS_OBJECT_TYPE)); |
| cc_reg_ = le; |
| } |
| |
| |
| void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' || |
| // typeof(arg) == function). |
| // It includes undetectable objects (as opposed to IsObject). |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register value = frame_->PopToRegister(); |
| __ tst(value, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| // Check that this is an object. |
| __ ldr(value, FieldMemOperand(value, HeapObject::kMapOffset)); |
| __ ldrb(value, FieldMemOperand(value, Map::kInstanceTypeOffset)); |
| __ cmp(value, Operand(FIRST_JS_OBJECT_TYPE)); |
| cc_reg_ = ge; |
| } |
| |
| |
| // Deferred code to check whether the String JavaScript object is safe for using |
| // default value of. This code is called after the bit caching this information |
| // in the map has been checked with the map for the object in the map_result_ |
| // register. On return the register map_result_ contains 1 for true and 0 for |
| // false. |
| class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode { |
| public: |
| DeferredIsStringWrapperSafeForDefaultValueOf(Register object, |
| Register map_result, |
| Register scratch1, |
| Register scratch2) |
| : object_(object), |
| map_result_(map_result), |
| scratch1_(scratch1), |
| scratch2_(scratch2) { } |
| |
| virtual void Generate() { |
| Label false_result; |
| |
| // Check that map is loaded as expected. |
| if (FLAG_debug_code) { |
| __ ldr(ip, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| __ cmp(map_result_, ip); |
| __ Assert(eq, "Map not in expected register"); |
| } |
| |
| // Check for fast case object. Generate false result for slow case object. |
| __ ldr(scratch1_, FieldMemOperand(object_, JSObject::kPropertiesOffset)); |
| __ ldr(scratch1_, FieldMemOperand(scratch1_, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHashTableMapRootIndex); |
| __ cmp(scratch1_, ip); |
| __ b(eq, &false_result); |
| |
| // Look for valueOf symbol in the descriptor array, and indicate false if |
| // found. The type is not checked, so if it is a transition it is a false |
| // negative. |
| __ ldr(map_result_, |
| FieldMemOperand(map_result_, Map::kInstanceDescriptorsOffset)); |
| __ ldr(scratch2_, FieldMemOperand(map_result_, FixedArray::kLengthOffset)); |
| // map_result_: descriptor array |
| // scratch2_: length of descriptor array |
| // Calculate the end of the descriptor array. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kPointerSize == 4); |
| __ add(scratch1_, |
| map_result_, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ add(scratch1_, |
| scratch1_, |
| Operand(scratch2_, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| |
| // Calculate location of the first key name. |
| __ add(map_result_, |
| map_result_, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag + |
| DescriptorArray::kFirstIndex * kPointerSize)); |
| // Loop through all the keys in the descriptor array. If one of these is the |
| // symbol valueOf the result is false. |
| Label entry, loop; |
| // The use of ip to store the valueOf symbol asumes that it is not otherwise |
| // used in the loop below. |
| __ mov(ip, Operand(Factory::value_of_symbol())); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ ldr(scratch2_, MemOperand(map_result_, 0)); |
| __ cmp(scratch2_, ip); |
| __ b(eq, &false_result); |
| __ add(map_result_, map_result_, Operand(kPointerSize)); |
| __ bind(&entry); |
| __ cmp(map_result_, Operand(scratch1_)); |
| __ b(ne, &loop); |
| |
| // Reload map as register map_result_ was used as temporary above. |
| __ ldr(map_result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
| |
| // If a valueOf property is not found on the object check that it's |
| // prototype is the un-modified String prototype. If not result is false. |
| __ ldr(scratch1_, FieldMemOperand(map_result_, Map::kPrototypeOffset)); |
| __ tst(scratch1_, Operand(kSmiTagMask)); |
| __ b(eq, &false_result); |
| __ ldr(scratch1_, FieldMemOperand(scratch1_, HeapObject::kMapOffset)); |
| __ ldr(scratch2_, |
| ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ ldr(scratch2_, |
| FieldMemOperand(scratch2_, GlobalObject::kGlobalContextOffset)); |
| __ ldr(scratch2_, |
| ContextOperand( |
| scratch2_, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); |
| __ cmp(scratch1_, scratch2_); |
| __ b(ne, &false_result); |
| |
| // Set the bit in the map to indicate that it has been checked safe for |
| // default valueOf and set true result. |
| __ ldr(scratch1_, FieldMemOperand(map_result_, Map::kBitField2Offset)); |
| __ orr(scratch1_, |
| scratch1_, |
| Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); |
| __ str(scratch1_, FieldMemOperand(map_result_, Map::kBitField2Offset)); |
| __ mov(map_result_, Operand(1)); |
| __ jmp(exit_label()); |
| __ bind(&false_result); |
| // Set false result. |
| __ mov(map_result_, Operand(0, RelocInfo::NONE)); |
| } |
| |
| private: |
| Register object_; |
| Register map_result_; |
| Register scratch1_; |
| Register scratch2_; |
| }; |
| |
| |
| void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf( |
| ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register obj = frame_->PopToRegister(); // Pop the string wrapper. |
| if (FLAG_debug_code) { |
| __ AbortIfSmi(obj); |
| } |
| |
| // Check whether this map has already been checked to be safe for default |
| // valueOf. |
| Register map_result = VirtualFrame::scratch0(); |
| __ ldr(map_result, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| __ ldrb(ip, FieldMemOperand(map_result, Map::kBitField2Offset)); |
| __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); |
| true_target()->Branch(ne); |
| |
| // We need an additional two scratch registers for the deferred code. |
| Register scratch1 = VirtualFrame::scratch1(); |
| // Use r6 without notifying the virtual frame. |
| Register scratch2 = r6; |
| |
| DeferredIsStringWrapperSafeForDefaultValueOf* deferred = |
| new DeferredIsStringWrapperSafeForDefaultValueOf( |
| obj, map_result, scratch1, scratch2); |
| deferred->Branch(eq); |
| deferred->BindExit(); |
| __ tst(map_result, Operand(map_result)); |
| cc_reg_ = ne; |
| } |
| |
| |
| void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { |
| // This generates a fast version of: |
| // (%_ClassOf(arg) === 'Function') |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register possible_function = frame_->PopToRegister(); |
| __ tst(possible_function, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| Register map_reg = VirtualFrame::scratch0(); |
| Register scratch = VirtualFrame::scratch1(); |
| __ CompareObjectType(possible_function, map_reg, scratch, JS_FUNCTION_TYPE); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register possible_undetectable = frame_->PopToRegister(); |
| __ tst(possible_undetectable, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| Register scratch = VirtualFrame::scratch0(); |
| __ ldr(scratch, |
| FieldMemOperand(possible_undetectable, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
| __ tst(scratch, Operand(1 << Map::kIsUndetectable)); |
| cc_reg_ = ne; |
| } |
| |
| |
| void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| |
| Register scratch0 = VirtualFrame::scratch0(); |
| Register scratch1 = VirtualFrame::scratch1(); |
| // Get the frame pointer for the calling frame. |
| __ ldr(scratch0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Skip the arguments adaptor frame if it exists. |
| __ ldr(scratch1, |
| MemOperand(scratch0, StandardFrameConstants::kContextOffset)); |
| __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ ldr(scratch0, |
| MemOperand(scratch0, StandardFrameConstants::kCallerFPOffset), eq); |
| |
| // Check the marker in the calling frame. |
| __ ldr(scratch1, |
| MemOperand(scratch0, StandardFrameConstants::kMarkerOffset)); |
| __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 0); |
| |
| Register tos = frame_->GetTOSRegister(); |
| Register scratch0 = VirtualFrame::scratch0(); |
| Register scratch1 = VirtualFrame::scratch1(); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| __ ldr(scratch0, |
| MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(scratch1, |
| MemOperand(scratch0, StandardFrameConstants::kContextOffset)); |
| __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Get the number of formal parameters. |
| __ mov(tos, Operand(Smi::FromInt(scope()->num_parameters())), LeaveCC, ne); |
| |
| // Arguments adaptor case: Read the arguments length from the |
| // adaptor frame. |
| __ ldr(tos, |
| MemOperand(scratch0, ArgumentsAdaptorFrameConstants::kLengthOffset), |
| eq); |
| |
| frame_->EmitPush(tos); |
| } |
| |
| |
| void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| |
| // Satisfy contract with ArgumentsAccessStub: |
| // Load the key into r1 and the formal parameters count into r0. |
| Load(args->at(0)); |
| frame_->PopToR1(); |
| frame_->SpillAll(); |
| __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); |
| |
| // Call the shared stub to get to arguments[key]. |
| ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateRandomHeapNumber( |
| ZoneList<Expression*>* args) { |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| ASSERT(args->length() == 0); |
| |
| Label slow_allocate_heapnumber; |
| Label heapnumber_allocated; |
| |
| __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(r4, r1, r2, r6, &slow_allocate_heapnumber); |
| __ jmp(&heapnumber_allocated); |
| |
| __ bind(&slow_allocate_heapnumber); |
| // Allocate a heap number. |
| __ CallRuntime(Runtime::kNumberAlloc, 0); |
| __ mov(r4, Operand(r0)); |
| |
| __ bind(&heapnumber_allocated); |
| |
| // Convert 32 random bits in r0 to 0.(32 random bits) in a double |
| // by computing: |
| // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). |
| if (CpuFeatures::IsSupported(VFP3)) { |
| __ PrepareCallCFunction(0, r1); |
| __ CallCFunction(ExternalReference::random_uint32_function(), 0); |
| |
| CpuFeatures::Scope scope(VFP3); |
| // 0x41300000 is the top half of 1.0 x 2^20 as a double. |
| // Create this constant using mov/orr to avoid PC relative load. |
| __ mov(r1, Operand(0x41000000)); |
| __ orr(r1, r1, Operand(0x300000)); |
| // Move 0x41300000xxxxxxxx (x = random bits) to VFP. |
| __ vmov(d7, r0, r1); |
| // Move 0x4130000000000000 to VFP. |
| __ mov(r0, Operand(0, RelocInfo::NONE)); |
| __ vmov(d8, r0, r1); |
| // Subtract and store the result in the heap number. |
| __ vsub(d7, d7, d8); |
| __ sub(r0, r4, Operand(kHeapObjectTag)); |
| __ vstr(d7, r0, HeapNumber::kValueOffset); |
| frame_->EmitPush(r4); |
| } else { |
| __ mov(r0, Operand(r4)); |
| __ PrepareCallCFunction(1, r1); |
| __ CallCFunction( |
| ExternalReference::fill_heap_number_with_random_function(), 1); |
| frame_->EmitPush(r0); |
| } |
| } |
| |
| |
| void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| StringAddStub stub(NO_STRING_ADD_FLAGS); |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 2); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(3, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| |
| SubStringStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 3); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| |
| StringCompareStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 2); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { |
| ASSERT_EQ(4, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| Load(args->at(3)); |
| RegExpExecStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 4); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) { |
| ASSERT_EQ(3, args->length()); |
| |
| Load(args->at(0)); // Size of array, smi. |
| Load(args->at(1)); // "index" property value. |
| Load(args->at(2)); // "input" property value. |
| RegExpConstructResultStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 3); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| class DeferredSearchCache: public DeferredCode { |
| public: |
| DeferredSearchCache(Register dst, Register cache, Register key) |
| : dst_(dst), cache_(cache), key_(key) { |
| set_comment("[ DeferredSearchCache"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register dst_, cache_, key_; |
| }; |
| |
| |
| void DeferredSearchCache::Generate() { |
| __ Push(cache_, key_); |
| __ CallRuntime(Runtime::kGetFromCache, 2); |
| __ Move(dst_, r0); |
| } |
| |
| |
| void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) { |
| ASSERT_EQ(2, args->length()); |
| |
| ASSERT_NE(NULL, args->at(0)->AsLiteral()); |
| int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); |
| |
| Handle<FixedArray> jsfunction_result_caches( |
| Top::global_context()->jsfunction_result_caches()); |
| if (jsfunction_result_caches->length() <= cache_id) { |
| __ Abort("Attempt to use undefined cache."); |
| frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
| return; |
| } |
| |
| Load(args->at(1)); |
| |
| frame_->PopToR1(); |
| frame_->SpillAll(); |
| Register key = r1; // Just poped to r1 |
| Register result = r0; // Free, as frame has just been spilled. |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| |
| __ ldr(scratch1, ContextOperand(cp, Context::GLOBAL_INDEX)); |
| __ ldr(scratch1, |
| FieldMemOperand(scratch1, GlobalObject::kGlobalContextOffset)); |
| __ ldr(scratch1, |
| ContextOperand(scratch1, Context::JSFUNCTION_RESULT_CACHES_INDEX)); |
| __ ldr(scratch1, |
| FieldMemOperand(scratch1, FixedArray::OffsetOfElementAt(cache_id))); |
| |
| DeferredSearchCache* deferred = |
| new DeferredSearchCache(result, scratch1, key); |
| |
| const int kFingerOffset = |
| FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex); |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ ldr(result, FieldMemOperand(scratch1, kFingerOffset)); |
| // result now holds finger offset as a smi. |
| __ add(scratch2, scratch1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| // scratch2 now points to the start of fixed array elements. |
| __ ldr(result, |
| MemOperand( |
| scratch2, result, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex)); |
| // Note side effect of PreIndex: scratch2 now points to the key of the pair. |
| __ cmp(key, result); |
| deferred->Branch(ne); |
| |
| __ ldr(result, MemOperand(scratch2, kPointerSize)); |
| |
| deferred->BindExit(); |
| frame_->EmitPush(result); |
| } |
| |
| |
| void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| |
| // Load the argument on the stack and jump to the runtime. |
| Load(args->at(0)); |
| |
| NumberToStringStub stub; |
| frame_->SpillAll(); |
| frame_->CallStub(&stub, 1); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| class DeferredSwapElements: public DeferredCode { |
| public: |
| DeferredSwapElements(Register object, Register index1, Register index2) |
| : object_(object), index1_(index1), index2_(index2) { |
| set_comment("[ DeferredSwapElements"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register object_, index1_, index2_; |
| }; |
| |
| |
| void DeferredSwapElements::Generate() { |
| __ push(object_); |
| __ push(index1_); |
| __ push(index2_); |
| __ CallRuntime(Runtime::kSwapElements, 3); |
| } |
| |
| |
| void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) { |
| Comment cmnt(masm_, "[ GenerateSwapElements"); |
| |
| ASSERT_EQ(3, args->length()); |
| |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Load(args->at(2)); |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| Register index2 = r2; |
| Register index1 = r1; |
| Register object = r0; |
| Register tmp1 = r3; |
| Register tmp2 = r4; |
| |
| frame_->EmitPop(index2); |
| frame_->EmitPop(index1); |
| frame_->EmitPop(object); |
| |
| DeferredSwapElements* deferred = |
| new DeferredSwapElements(object, index1, index2); |
| |
| // Fetch the map and check if array is in fast case. |
| // Check that object doesn't require security checks and |
| // has no indexed interceptor. |
| __ CompareObjectType(object, tmp1, tmp2, FIRST_JS_OBJECT_TYPE); |
| deferred->Branch(lt); |
| __ ldrb(tmp2, FieldMemOperand(tmp1, Map::kBitFieldOffset)); |
| __ tst(tmp2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask)); |
| deferred->Branch(nz); |
| |
| // Check the object's elements are in fast case and writable. |
| __ ldr(tmp1, FieldMemOperand(object, JSObject::kElementsOffset)); |
| __ ldr(tmp2, FieldMemOperand(tmp1, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(tmp2, ip); |
| deferred->Branch(ne); |
| |
| // Smi-tagging is equivalent to multiplying by 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| |
| // Check that both indices are smis. |
| __ mov(tmp2, index1); |
| __ orr(tmp2, tmp2, index2); |
| __ tst(tmp2, Operand(kSmiTagMask)); |
| deferred->Branch(nz); |
| |
| // Check that both indices are valid. |
| __ ldr(tmp2, FieldMemOperand(object, JSArray::kLengthOffset)); |
| __ cmp(tmp2, index1); |
| __ cmp(tmp2, index2, hi); |
| deferred->Branch(ls); |
| |
| // Bring the offsets into the fixed array in tmp1 into index1 and |
| // index2. |
| __ mov(tmp2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ add(index1, tmp2, Operand(index1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(index2, tmp2, Operand(index2, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| |
| // Swap elements. |
| Register tmp3 = object; |
| object = no_reg; |
| __ ldr(tmp3, MemOperand(tmp1, index1)); |
| __ ldr(tmp2, MemOperand(tmp1, index2)); |
| __ str(tmp3, MemOperand(tmp1, index2)); |
| __ str(tmp2, MemOperand(tmp1, index1)); |
| |
| Label done; |
| __ InNewSpace(tmp1, tmp2, eq, &done); |
| // Possible optimization: do a check that both values are Smis |
| // (or them and test against Smi mask.) |
| |
| __ mov(tmp2, tmp1); |
| __ add(index1, index1, tmp1); |
| __ add(index2, index2, tmp1); |
| __ RecordWriteHelper(tmp1, index1, tmp3); |
| __ RecordWriteHelper(tmp2, index2, tmp3); |
| __ bind(&done); |
| |
| deferred->BindExit(); |
| __ LoadRoot(tmp1, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(tmp1); |
| } |
| |
| |
| void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) { |
| Comment cmnt(masm_, "[ GenerateCallFunction"); |
| |
| ASSERT(args->length() >= 2); |
| |
| int n_args = args->length() - 2; // for receiver and function. |
| Load(args->at(0)); // receiver |
| for (int i = 0; i < n_args; i++) { |
| Load(args->at(i + 1)); |
| } |
| Load(args->at(n_args + 1)); // function |
| frame_->CallJSFunction(n_args); |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| Load(args->at(0)); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| TranscendentalCacheStub stub(TranscendentalCache::SIN); |
| frame_->SpillAllButCopyTOSToR0(); |
| frame_->CallStub(&stub, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kMath_sin, 1); |
| } |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| Load(args->at(0)); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| TranscendentalCacheStub stub(TranscendentalCache::COS); |
| frame_->SpillAllButCopyTOSToR0(); |
| frame_->CallStub(&stub, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kMath_cos, 1); |
| } |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) { |
| ASSERT_EQ(args->length(), 1); |
| Load(args->at(0)); |
| if (CpuFeatures::IsSupported(VFP3)) { |
| TranscendentalCacheStub stub(TranscendentalCache::LOG); |
| frame_->SpillAllButCopyTOSToR0(); |
| frame_->CallStub(&stub, 1); |
| } else { |
| frame_->CallRuntime(Runtime::kMath_log, 1); |
| } |
| frame_->EmitPush(r0); |
| } |
| |
| |
| void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| |
| // Load the two objects into registers and perform the comparison. |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Register lhs = frame_->PopToRegister(); |
| Register rhs = frame_->PopToRegister(lhs); |
| __ cmp(lhs, rhs); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| |
| // Load the two objects into registers and perform the comparison. |
| Load(args->at(0)); |
| Load(args->at(1)); |
| Register right = frame_->PopToRegister(); |
| Register left = frame_->PopToRegister(right); |
| Register tmp = frame_->scratch0(); |
| Register tmp2 = frame_->scratch1(); |
| |
| // Jumps to done must have the eq flag set if the test is successful |
| // and clear if the test has failed. |
| Label done; |
| |
| // Fail if either is a non-HeapObject. |
| __ cmp(left, Operand(right)); |
| __ b(eq, &done); |
| __ and_(tmp, left, Operand(right)); |
| __ eor(tmp, tmp, Operand(kSmiTagMask)); |
| __ tst(tmp, Operand(kSmiTagMask)); |
| __ b(ne, &done); |
| __ ldr(tmp, FieldMemOperand(left, HeapObject::kMapOffset)); |
| __ ldrb(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset)); |
| __ cmp(tmp2, Operand(JS_REGEXP_TYPE)); |
| __ b(ne, &done); |
| __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
| __ cmp(tmp, Operand(tmp2)); |
| __ b(ne, &done); |
| __ ldr(tmp, FieldMemOperand(left, JSRegExp::kDataOffset)); |
| __ ldr(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset)); |
| __ cmp(tmp, tmp2); |
| __ bind(&done); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register value = frame_->PopToRegister(); |
| Register tmp = frame_->scratch0(); |
| __ ldr(tmp, FieldMemOperand(value, String::kHashFieldOffset)); |
| __ tst(tmp, Operand(String::kContainsCachedArrayIndexMask)); |
| cc_reg_ = eq; |
| } |
| |
| |
| void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 1); |
| Load(args->at(0)); |
| Register value = frame_->PopToRegister(); |
| |
| __ ldr(value, FieldMemOperand(value, String::kHashFieldOffset)); |
| __ IndexFromHash(value, value); |
| frame_->EmitPush(value); |
| } |
| |
| |
| void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) { |
| ASSERT(args->length() == 2); |
| Load(args->at(0)); |
| Register value = frame_->PopToRegister(); |
| __ LoadRoot(value, Heap::kUndefinedValueRootIndex); |
| frame_->EmitPush(value); |
| } |
| |
| |
| void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| if (CheckForInlineRuntimeCall(node)) { |
| ASSERT((has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| return; |
| } |
| |
| ZoneList<Expression*>* args = node->arguments(); |
| Comment cmnt(masm_, "[ CallRuntime"); |
| Runtime::Function* function = node->function(); |
| |
| if (function == NULL) { |
| // Prepare stack for calling JS runtime function. |
| // Push the builtins object found in the current global object. |
| Register scratch = VirtualFrame::scratch0(); |
| __ ldr(scratch, GlobalObjectOperand()); |
| Register builtins = frame_->GetTOSRegister(); |
| __ ldr(builtins, FieldMemOperand(scratch, GlobalObject::kBuiltinsOffset)); |
| frame_->EmitPush(builtins); |
| } |
| |
| // Push the arguments ("left-to-right"). |
| int arg_count = args->length(); |
| for (int i = 0; i < arg_count; i++) { |
| Load(args->at(i)); |
| } |
| |
| VirtualFrame::SpilledScope spilled_scope(frame_); |
| |
| if (function == NULL) { |
| // Call the JS runtime function. |
| __ mov(r2, Operand(node->name())); |
| InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
| Handle<Code> stub = StubCache::ComputeCallInitialize(arg_count, in_loop); |
| frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
| __ ldr(cp, frame_->Context()); |
| frame_->EmitPush(r0); |
| } else { |
| // Call the C runtime function. |
| frame_->CallRuntime(function, arg_count); |
| frame_->EmitPush(r0); |
| } |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ UnaryOperation"); |
| |
| Token::Value op = node->op(); |
| |
| if (op == Token::NOT) { |
| LoadCondition(node->expression(), false_target(), true_target(), true); |
| // LoadCondition may (and usually does) leave a test and branch to |
| // be emitted by the caller. In that case, negate the condition. |
| if (has_cc()) cc_reg_ = NegateCondition(cc_reg_); |
| |
| } else if (op == Token::DELETE) { |
| Property* property = node->expression()->AsProperty(); |
| Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
| if (property != NULL) { |
| Load(property->obj()); |
| Load(property->key()); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| |
| } else if (variable != NULL) { |
| Slot* slot = variable->AsSlot(); |
| if (variable->is_global()) { |
| LoadGlobal(); |
| frame_->EmitPush(Operand(variable->name())); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| |
| } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
| // lookup the context holding the named variable |
| frame_->EmitPush(cp); |
| frame_->EmitPush(Operand(variable->name())); |
| frame_->CallRuntime(Runtime::kLookupContext, 2); |
| // r0: context |
| frame_->EmitPush(r0); |
| frame_->EmitPush(Operand(variable->name())); |
| frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| |
| } else { |
| // Default: Result of deleting non-global, not dynamically |
| // introduced variables is false. |
| frame_->EmitPushRoot(Heap::kFalseValueRootIndex); |
| } |
| |
| } else { |
| // Default: Result of deleting expressions is true. |
| Load(node->expression()); // may have side-effects |
| frame_->Drop(); |
| frame_->EmitPushRoot(Heap::kTrueValueRootIndex); |
| } |
| |
| } else if (op == Token::TYPEOF) { |
| // Special case for loading the typeof expression; see comment on |
| // LoadTypeofExpression(). |
| LoadTypeofExpression(node->expression()); |
| frame_->CallRuntime(Runtime::kTypeof, 1); |
| frame_->EmitPush(r0); // r0 has result |
| |
| } else { |
| bool can_overwrite = node->expression()->ResultOverwriteAllowed(); |
| UnaryOverwriteMode overwrite = |
| can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; |
| |
| bool no_negative_zero = node->expression()->no_negative_zero(); |
| Load(node->expression()); |
| switch (op) { |
| case Token::NOT: |
| case Token::DELETE: |
| case Token::TYPEOF: |
| UNREACHABLE(); // handled above |
| break; |
| |
| case Token::SUB: { |
| frame_->PopToR0(); |
| GenericUnaryOpStub stub( |
| Token::SUB, |
| overwrite, |
| NO_UNARY_FLAGS, |
| no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); // r0 has result |
| break; |
| } |
| |
| case Token::BIT_NOT: { |
| Register tos = frame_->PopToRegister(); |
| JumpTarget not_smi_label; |
| JumpTarget continue_label; |
| // Smi check. |
| __ tst(tos, Operand(kSmiTagMask)); |
| not_smi_label.Branch(ne); |
| |
| __ mvn(tos, Operand(tos)); |
| __ bic(tos, tos, Operand(kSmiTagMask)); // Bit-clear inverted smi-tag. |
| frame_->EmitPush(tos); |
| // The fast case is the first to jump to the continue label, so it gets |
| // to decide the virtual frame layout. |
| continue_label.Jump(); |
| |
| not_smi_label.Bind(); |
| frame_->SpillAll(); |
| __ Move(r0, tos); |
| GenericUnaryOpStub stub(Token::BIT_NOT, |
| overwrite, |
| NO_UNARY_SMI_CODE_IN_STUB); |
| frame_->CallStub(&stub, 0); |
| frame_->EmitPush(r0); |
| |
| continue_label.Bind(); |
| break; |
| } |
| |
| case Token::VOID: |
| frame_->Drop(); |
| frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); |
| break; |
| |
| case Token::ADD: { |
| Register tos = frame_->Peek(); |
| // Smi check. |
| JumpTarget continue_label; |
| __ tst(tos, Operand(kSmiTagMask)); |
| continue_label.Branch(eq); |
| |
| frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); |
| frame_->EmitPush(r0); |
| |
| continue_label.Bind(); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| class DeferredCountOperation: public DeferredCode { |
| public: |
| DeferredCountOperation(Register value, |
| bool is_increment, |
| bool is_postfix, |
| int target_size) |
| : value_(value), |
| is_increment_(is_increment), |
| is_postfix_(is_postfix), |
| target_size_(target_size) {} |
| |
| virtual void Generate() { |
| VirtualFrame copied_frame(*frame_state()->frame()); |
| |
| Label slow; |
| // Check for smi operand. |
| __ tst(value_, Operand(kSmiTagMask)); |
| __ b(ne, &slow); |
| |
| // Revert optimistic increment/decrement. |
| if (is_increment_) { |
| __ sub(value_, value_, Operand(Smi::FromInt(1))); |
| } else { |
| __ add(value_, value_, Operand(Smi::FromInt(1))); |
| } |
| |
| // Slow case: Convert to number. At this point the |
| // value to be incremented is in the value register.. |
| __ bind(&slow); |
| |
| // Convert the operand to a number. |
| copied_frame.EmitPush(value_); |
| |
| copied_frame.InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); |
| |
| if (is_postfix_) { |
| // Postfix: store to result (on the stack). |
| __ str(r0, MemOperand(sp, target_size_ * kPointerSize)); |
| } |
| |
| copied_frame.EmitPush(r0); |
| copied_frame.EmitPush(Operand(Smi::FromInt(1))); |
| |
| if (is_increment_) { |
| copied_frame.CallRuntime(Runtime::kNumberAdd, 2); |
| } else { |
| copied_frame.CallRuntime(Runtime::kNumberSub, 2); |
| } |
| |
| __ Move(value_, r0); |
| |
| copied_frame.MergeTo(frame_state()->frame()); |
| } |
| |
| private: |
| Register value_; |
| bool is_increment_; |
| bool is_postfix_; |
| int target_size_; |
| }; |
| |
| |
| void CodeGenerator::VisitCountOperation(CountOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ CountOperation"); |
| VirtualFrame::RegisterAllocationScope scope(this); |
| |
| bool is_postfix = node->is_postfix(); |
| bool is_increment = node->op() == Token::INC; |
| |
| Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
| bool is_const = (var != NULL && var->mode() == Variable::CONST); |
| bool is_slot = (var != NULL && var->mode() == Variable::VAR); |
| |
| if (!is_const && is_slot && type_info(var->AsSlot()).IsSmi()) { |
| // The type info declares that this variable is always a Smi. That |
| // means it is a Smi both before and after the increment/decrement. |
| // Lets make use of that to make a very minimal count. |
| Reference target(this, node->expression(), !is_const); |
| ASSERT(!target.is_illegal()); |
| target.GetValue(); // Pushes the value. |
| Register value = frame_->PopToRegister(); |
| if (is_postfix) frame_->EmitPush(value); |
| if (is_increment) { |
| __ add(value, value, Operand(Smi::FromInt(1))); |
| } else { |
| __ sub(value, value, Operand(Smi::FromInt(1))); |
| } |
| frame_->EmitPush(value); |
| target.SetValue(NOT_CONST_INIT, LIKELY_SMI); |
| if (is_postfix) frame_->Pop(); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| return; |
| } |
| |
| // If it's a postfix expression and its result is not ignored and the |
| // reference is non-trivial, then push a placeholder on the stack now |
| // to hold the result of the expression. |
| bool placeholder_pushed = false; |
| if (!is_slot && is_postfix) { |
| frame_->EmitPush(Operand(Smi::FromInt(0))); |
| placeholder_pushed = true; |
| } |
| |
| // A constant reference is not saved to, so a constant reference is not a |
| // compound assignment reference. |
| { Reference target(this, node->expression(), !is_const); |
| if (target.is_illegal()) { |
| // Spoof the virtual frame to have the expected height (one higher |
| // than on entry). |
| if (!placeholder_pushed) frame_->EmitPush(Operand(Smi::FromInt(0))); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| return; |
| } |
| |
| // This pushes 0, 1 or 2 words on the object to be used later when updating |
| // the target. It also pushes the current value of the target. |
| target.GetValue(); |
| |
| bool value_is_known_smi = frame_->KnownSmiAt(0); |
| Register value = frame_->PopToRegister(); |
| |
| // Postfix: Store the old value as the result. |
| if (placeholder_pushed) { |
| frame_->SetElementAt(value, target.size()); |
| } else if (is_postfix) { |
| frame_->EmitPush(value); |
| __ mov(VirtualFrame::scratch0(), value); |
| value = VirtualFrame::scratch0(); |
| } |
| |
| // We can't use any type information here since the virtual frame from the |
| // deferred code may have lost information and we can't merge a virtual |
| // frame with less specific type knowledge to a virtual frame with more |
| // specific knowledge that has already used that specific knowledge to |
| // generate code. |
| frame_->ForgetTypeInfo(); |
| |
| // The constructor here will capture the current virtual frame and use it to |
| // merge to after the deferred code has run. No virtual frame changes are |
| // allowed from here until the 'BindExit' below. |
| DeferredCode* deferred = |
| new DeferredCountOperation(value, |
| is_increment, |
| is_postfix, |
| target.size()); |
| if (!value_is_known_smi) { |
| // Check for smi operand. |
| __ tst(value, Operand(kSmiTagMask)); |
| |
| deferred->Branch(ne); |
| } |
| |
| // Perform optimistic increment/decrement. |
| if (is_increment) { |
| __ add(value, value, Operand(Smi::FromInt(1)), SetCC); |
| } else { |
| __ sub(value, value, Operand(Smi::FromInt(1)), SetCC); |
| } |
| |
| // If increment/decrement overflows, go to deferred code. |
| deferred->Branch(vs); |
| |
| deferred->BindExit(); |
| |
| // Store the new value in the target if not const. |
| // At this point the answer is in the value register. |
| frame_->EmitPush(value); |
| // Set the target with the result, leaving the result on |
| // top of the stack. Removes the target from the stack if |
| // it has a non-zero size. |
| if (!is_const) target.SetValue(NOT_CONST_INIT, LIKELY_SMI); |
| } |
| |
| // Postfix: Discard the new value and use the old. |
| if (is_postfix) frame_->Pop(); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { |
| // According to ECMA-262 section 11.11, page 58, the binary logical |
| // operators must yield the result of one of the two expressions |
| // before any ToBoolean() conversions. This means that the value |
| // produced by a && or || operator is not necessarily a boolean. |
| |
| // NOTE: If the left hand side produces a materialized value (not in |
| // the CC register), we force the right hand side to do the |
| // same. This is necessary because we may have to branch to the exit |
| // after evaluating the left hand side (due to the shortcut |
| // semantics), but the compiler must (statically) know if the result |
| // of compiling the binary operation is materialized or not. |
| if (node->op() == Token::AND) { |
| JumpTarget is_true; |
| LoadCondition(node->left(), &is_true, false_target(), false); |
| if (has_valid_frame() && !has_cc()) { |
| // The left-hand side result is on top of the virtual frame. |
| JumpTarget pop_and_continue; |
| JumpTarget exit; |
| |
| frame_->Dup(); |
| // Avoid popping the result if it converts to 'false' using the |
| // standard ToBoolean() conversion as described in ECMA-262, |
| // section 9.2, page 30. |
| ToBoolean(&pop_and_continue, &exit); |
| Branch(false, &exit); |
| |
| // Pop the result of evaluating the first part. |
| pop_and_continue.Bind(); |
| frame_->Pop(); |
| |
| // Evaluate right side expression. |
| is_true.Bind(); |
| Load(node->right()); |
| |
| // Exit (always with a materialized value). |
| exit.Bind(); |
| } else if (has_cc() || is_true.is_linked()) { |
| // The left-hand side is either (a) partially compiled to |
| // control flow with a final branch left to emit or (b) fully |
| // compiled to control flow and possibly true. |
| if (has_cc()) { |
| Branch(false, false_target()); |
| } |
| is_true.Bind(); |
| LoadCondition(node->right(), true_target(), false_target(), false); |
| } else { |
| // Nothing to do. |
| ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked()); |
| } |
| |
| } else { |
| ASSERT(node->op() == Token::OR); |
| JumpTarget is_false; |
| LoadCondition(node->left(), true_target(), &is_false, false); |
| if (has_valid_frame() && !has_cc()) { |
| // The left-hand side result is on top of the virtual frame. |
| JumpTarget pop_and_continue; |
| JumpTarget exit; |
| |
| frame_->Dup(); |
| // Avoid popping the result if it converts to 'true' using the |
| // standard ToBoolean() conversion as described in ECMA-262, |
| // section 9.2, page 30. |
| ToBoolean(&exit, &pop_and_continue); |
| Branch(true, &exit); |
| |
| // Pop the result of evaluating the first part. |
| pop_and_continue.Bind(); |
| frame_->Pop(); |
| |
| // Evaluate right side expression. |
| is_false.Bind(); |
| Load(node->right()); |
| |
| // Exit (always with a materialized value). |
| exit.Bind(); |
| } else if (has_cc() || is_false.is_linked()) { |
| // The left-hand side is either (a) partially compiled to |
| // control flow with a final branch left to emit or (b) fully |
| // compiled to control flow and possibly false. |
| if (has_cc()) { |
| Branch(true, true_target()); |
| } |
| is_false.Bind(); |
| LoadCondition(node->right(), true_target(), false_target(), false); |
| } else { |
| // Nothing to do. |
| ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked()); |
| } |
| } |
| } |
| |
| |
| void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ BinaryOperation"); |
| |
| if (node->op() == Token::AND || node->op() == Token::OR) { |
| GenerateLogicalBooleanOperation(node); |
| } else { |
| // Optimize for the case where (at least) one of the expressions |
| // is a literal small integer. |
| Literal* lliteral = node->left()->AsLiteral(); |
| Literal* rliteral = node->right()->AsLiteral(); |
| // NOTE: The code below assumes that the slow cases (calls to runtime) |
| // never return a constant/immutable object. |
| bool overwrite_left = node->left()->ResultOverwriteAllowed(); |
| bool overwrite_right = node->right()->ResultOverwriteAllowed(); |
| |
| if (rliteral != NULL && rliteral->handle()->IsSmi()) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| Load(node->left()); |
| if (frame_->KnownSmiAt(0)) overwrite_left = false; |
| SmiOperation(node->op(), |
| rliteral->handle(), |
| false, |
| overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE); |
| } else if (lliteral != NULL && lliteral->handle()->IsSmi()) { |
| VirtualFrame::RegisterAllocationScope scope(this); |
| Load(node->right()); |
| if (frame_->KnownSmiAt(0)) overwrite_right = false; |
| SmiOperation(node->op(), |
| lliteral->handle(), |
| true, |
| overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE); |
| } else { |
| GenerateInlineSmi inline_smi = |
| loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; |
| if (lliteral != NULL) { |
| ASSERT(!lliteral->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| if (rliteral != NULL) { |
| ASSERT(!rliteral->handle()->IsSmi()); |
| inline_smi = DONT_GENERATE_INLINE_SMI; |
| } |
| VirtualFrame::RegisterAllocationScope scope(this); |
| OverwriteMode overwrite_mode = NO_OVERWRITE; |
| if (overwrite_left) { |
| overwrite_mode = OVERWRITE_LEFT; |
| } else if (overwrite_right) { |
| overwrite_mode = OVERWRITE_RIGHT; |
| } |
| Load(node->left()); |
| Load(node->right()); |
| GenericBinaryOperation(node->op(), overwrite_mode, inline_smi); |
| } |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| frame_->EmitPush(MemOperand(frame_->Function())); |
| ASSERT_EQ(original_height + 1, frame_->height()); |
| } |
| |
| |
| void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ CompareOperation"); |
| |
| VirtualFrame::RegisterAllocationScope nonspilled_scope(this); |
| |
| // Get the expressions from the node. |
| Expression* left = node->left(); |
| Expression* right = node->right(); |
| Token::Value op = node->op(); |
| |
| // To make typeof testing for natives implemented in JavaScript really |
| // efficient, we generate special code for expressions of the form: |
| // 'typeof <expression> == <string>'. |
| UnaryOperation* operation = left->AsUnaryOperation(); |
| if ((op == Token::EQ || op == Token::EQ_STRICT) && |
| (operation != NULL && operation->op() == Token::TYPEOF) && |
| (right->AsLiteral() != NULL && |
| right->AsLiteral()->handle()->IsString())) { |
| Handle<String> check(String::cast(*right->AsLiteral()->handle())); |
| |
| // Load the operand, move it to a register. |
| LoadTypeofExpression(operation->expression()); |
| Register tos = frame_->PopToRegister(); |
| |
| Register scratch = VirtualFrame::scratch0(); |
| |
| if (check->Equals(Heap::number_symbol())) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| true_target()->Branch(eq); |
| __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); |
| __ cmp(tos, ip); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::string_symbol())) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
| |
| // It can be an undetectable string object. |
| __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); |
| __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(eq); |
| |
| __ ldrb(scratch, FieldMemOperand(tos, Map::kInstanceTypeOffset)); |
| __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); |
| cc_reg_ = lt; |
| |
| } else if (check->Equals(Heap::boolean_symbol())) { |
| __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
| __ cmp(tos, ip); |
| true_target()->Branch(eq); |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(tos, ip); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::undefined_symbol())) { |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(tos, ip); |
| true_target()->Branch(eq); |
| |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); |
| __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); |
| |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::function_symbol())) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| Register map_reg = scratch; |
| __ CompareObjectType(tos, map_reg, tos, JS_FUNCTION_TYPE); |
| true_target()->Branch(eq); |
| // Regular expressions are callable so typeof == 'function'. |
| __ CompareInstanceType(map_reg, tos, JS_REGEXP_TYPE); |
| cc_reg_ = eq; |
| |
| } else if (check->Equals(Heap::object_symbol())) { |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(tos, ip); |
| true_target()->Branch(eq); |
| |
| Register map_reg = scratch; |
| __ CompareObjectType(tos, map_reg, tos, JS_REGEXP_TYPE); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldrb(tos, FieldMemOperand(map_reg, Map::kBitFieldOffset)); |
| __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(tos, Operand(1 << Map::kIsUndetectable)); |
| false_target()->Branch(eq); |
| |
| __ ldrb(tos, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); |
| __ cmp(tos, Operand(FIRST_JS_OBJECT_TYPE)); |
| false_target()->Branch(lt); |
| __ cmp(tos, Operand(LAST_JS_OBJECT_TYPE)); |
| cc_reg_ = le; |
| |
| } else { |
| // Uncommon case: typeof testing against a string literal that is |
| // never returned from the typeof operator. |
| false_target()->Jump(); |
| } |
| ASSERT(!has_valid_frame() || |
| (has_cc() && frame_->height() == original_height)); |
| return; |
| } |
| |
| switch (op) { |
| case Token::EQ: |
| Comparison(eq, left, right, false); |
| break; |
| |
| case Token::LT: |
| Comparison(lt, left, right); |
| break; |
| |
| case Token::GT: |
| Comparison(gt, left, right); |
| break; |
| |
| case Token::LTE: |
| Comparison(le, left, right); |
| break; |
| |
| case Token::GTE: |
| Comparison(ge, left, right); |
| break; |
| |
| case Token::EQ_STRICT: |
| Comparison(eq, left, right, true); |
| break; |
| |
| case Token::IN: { |
| Load(left); |
| Load(right); |
| frame_->InvokeBuiltin(Builtins::IN, CALL_JS, 2); |
| frame_->EmitPush(r0); |
| break; |
| } |
| |
| case Token::INSTANCEOF: { |
| Load(left); |
| Load(right); |
| InstanceofStub stub(InstanceofStub::kNoFlags); |
| frame_->CallStub(&stub, 2); |
| // At this point if instanceof succeeded then r0 == 0. |
| __ tst(r0, Operand(r0)); |
| cc_reg_ = eq; |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| ASSERT((has_cc() && frame_->height() == original_height) || |
| (!has_cc() && frame_->height() == original_height + 1)); |
| } |
| |
| |
| void CodeGenerator::VisitCompareToNull(CompareToNull* node) { |
| #ifdef DEBUG |
| int original_height = frame_->height(); |
| #endif |
| Comment cmnt(masm_, "[ CompareToNull"); |
| |
| Load(node->expression()); |
| Register tos = frame_->PopToRegister(); |
| __ LoadRoot(ip, Heap::kNullValueRootIndex); |
| __ cmp(tos, ip); |
| |
| // The 'null' value is only equal to 'undefined' if using non-strict |
| // comparisons. |
| if (!node->is_strict()) { |
| true_target()->Branch(eq); |
| __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); |
| __ cmp(tos, Operand(ip)); |
| true_target()->Branch(eq); |
| |
| __ tst(tos, Operand(kSmiTagMask)); |
| false_target()->Branch(eq); |
| |
| // It can be an undetectable object. |
| __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); |
| __ ldrb(tos, FieldMemOperand(tos, Map::kBitFieldOffset)); |
| __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); |
| __ cmp(tos, Operand(1 << Map::kIsUndetectable)); |
| } |
| |
| cc_reg_ = eq; |
| ASSERT(has_cc() && frame_->height() == original_height); |
| } |
| |
| |
| class DeferredReferenceGetNamedValue: public DeferredCode { |
| public: |
| explicit DeferredReferenceGetNamedValue(Register receiver, |
| Handle<String> name, |
| bool is_contextual) |
| : receiver_(receiver), |
| name_(name), |
| is_contextual_(is_contextual), |
| is_dont_delete_(false) { |
| set_comment(is_contextual |
| ? "[ DeferredReferenceGetNamedValue (contextual)" |
| : "[ DeferredReferenceGetNamedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| void set_is_dont_delete(bool value) { |
| ASSERT(is_contextual_); |
| is_dont_delete_ = value; |
| } |
| |
| private: |
| Register receiver_; |
| Handle<String> name_; |
| bool is_contextual_; |
| bool is_dont_delete_; |
| }; |
| |
| |
| // Convention for this is that on entry the receiver is in a register that |
| // is not used by the stack. On exit the answer is found in that same |
| // register and the stack has the same height. |
| void DeferredReferenceGetNamedValue::Generate() { |
| #ifdef DEBUG |
| int expected_height = frame_state()->frame()->height(); |
| #endif |
| VirtualFrame copied_frame(*frame_state()->frame()); |
| copied_frame.SpillAll(); |
| |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| ASSERT(!receiver_.is(scratch1) && !receiver_.is(scratch2)); |
| __ DecrementCounter(&Counters::named_load_inline, 1, scratch1, scratch2); |
| __ IncrementCounter(&Counters::named_load_inline_miss, 1, scratch1, scratch2); |
| |
| // Ensure receiver in r0 and name in r2 to match load ic calling convention. |
| __ Move(r0, receiver_); |
| __ mov(r2, Operand(name_)); |
| |
| // The rest of the instructions in the deferred code must be together. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); |
| RelocInfo::Mode mode = is_contextual_ |
| ? RelocInfo::CODE_TARGET_CONTEXT |
| : RelocInfo::CODE_TARGET; |
| __ Call(ic, mode); |
| // We must mark the code just after the call with the correct marker. |
| MacroAssembler::NopMarkerTypes code_marker; |
| if (is_contextual_) { |
| code_marker = is_dont_delete_ |
| ? MacroAssembler::PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE |
| : MacroAssembler::PROPERTY_ACCESS_INLINED_CONTEXT; |
| } else { |
| code_marker = MacroAssembler::PROPERTY_ACCESS_INLINED; |
| } |
| __ MarkCode(code_marker); |
| |
| // At this point the answer is in r0. We move it to the expected register |
| // if necessary. |
| __ Move(receiver_, r0); |
| |
| // Now go back to the frame that we entered with. This will not overwrite |
| // the receiver register since that register was not in use when we came |
| // in. The instructions emitted by this merge are skipped over by the |
| // inline load patching mechanism when looking for the branch instruction |
| // that tells it where the code to patch is. |
| copied_frame.MergeTo(frame_state()->frame()); |
| |
| // Block the constant pool for one more instruction after leaving this |
| // constant pool block scope to include the branch instruction ending the |
| // deferred code. |
| __ BlockConstPoolFor(1); |
| } |
| ASSERT_EQ(expected_height, frame_state()->frame()->height()); |
| } |
| |
| |
| class DeferredReferenceGetKeyedValue: public DeferredCode { |
| public: |
| DeferredReferenceGetKeyedValue(Register key, Register receiver) |
| : key_(key), receiver_(receiver) { |
| set_comment("[ DeferredReferenceGetKeyedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register key_; |
| Register receiver_; |
| }; |
| |
| |
| // Takes key and register in r0 and r1 or vice versa. Returns result |
| // in r0. |
| void DeferredReferenceGetKeyedValue::Generate() { |
| ASSERT((key_.is(r0) && receiver_.is(r1)) || |
| (key_.is(r1) && receiver_.is(r0))); |
| |
| VirtualFrame copied_frame(*frame_state()->frame()); |
| copied_frame.SpillAll(); |
| |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| __ DecrementCounter(&Counters::keyed_load_inline, 1, scratch1, scratch2); |
| __ IncrementCounter(&Counters::keyed_load_inline_miss, 1, scratch1, scratch2); |
| |
| // Ensure key in r0 and receiver in r1 to match keyed load ic calling |
| // convention. |
| if (key_.is(r1)) { |
| __ Swap(r0, r1, ip); |
| } |
| |
| // The rest of the instructions in the deferred code must be together. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Call keyed load IC. It has the arguments key and receiver in r0 and r1. |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); |
| __ Call(ic, RelocInfo::CODE_TARGET); |
| // The call must be followed by a nop instruction to indicate that the |
| // keyed load has been inlined. |
| __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); |
| |
| // Now go back to the frame that we entered with. This will not overwrite |
| // the receiver or key registers since they were not in use when we came |
| // in. The instructions emitted by this merge are skipped over by the |
| // inline load patching mechanism when looking for the branch instruction |
| // that tells it where the code to patch is. |
| copied_frame.MergeTo(frame_state()->frame()); |
| |
| // Block the constant pool for one more instruction after leaving this |
| // constant pool block scope to include the branch instruction ending the |
| // deferred code. |
| __ BlockConstPoolFor(1); |
| } |
| } |
| |
| |
| class DeferredReferenceSetKeyedValue: public DeferredCode { |
| public: |
| DeferredReferenceSetKeyedValue(Register value, |
| Register key, |
| Register receiver) |
| : value_(value), key_(key), receiver_(receiver) { |
| set_comment("[ DeferredReferenceSetKeyedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register value_; |
| Register key_; |
| Register receiver_; |
| }; |
| |
| |
| void DeferredReferenceSetKeyedValue::Generate() { |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| __ DecrementCounter(&Counters::keyed_store_inline, 1, scratch1, scratch2); |
| __ IncrementCounter( |
| &Counters::keyed_store_inline_miss, 1, scratch1, scratch2); |
| |
| // Ensure value in r0, key in r1 and receiver in r2 to match keyed store ic |
| // calling convention. |
| if (value_.is(r1)) { |
| __ Swap(r0, r1, ip); |
| } |
| ASSERT(receiver_.is(r2)); |
| |
| // The rest of the instructions in the deferred code must be together. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Call keyed store IC. It has the arguments value, key and receiver in r0, |
| // r1 and r2. |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); |
| __ Call(ic, RelocInfo::CODE_TARGET); |
| // The call must be followed by a nop instruction to indicate that the |
| // keyed store has been inlined. |
| __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); |
| |
| // Block the constant pool for one more instruction after leaving this |
| // constant pool block scope to include the branch instruction ending the |
| // deferred code. |
| __ BlockConstPoolFor(1); |
| } |
| } |
| |
| |
| class DeferredReferenceSetNamedValue: public DeferredCode { |
| public: |
| DeferredReferenceSetNamedValue(Register value, |
| Register receiver, |
| Handle<String> name) |
| : value_(value), receiver_(receiver), name_(name) { |
| set_comment("[ DeferredReferenceSetNamedValue"); |
| } |
| |
| virtual void Generate(); |
| |
| private: |
| Register value_; |
| Register receiver_; |
| Handle<String> name_; |
| }; |
| |
| |
| // Takes value in r0, receiver in r1 and returns the result (the |
| // value) in r0. |
| void DeferredReferenceSetNamedValue::Generate() { |
| // Record the entry frame and spill. |
| VirtualFrame copied_frame(*frame_state()->frame()); |
| copied_frame.SpillAll(); |
| |
| // Ensure value in r0, receiver in r1 to match store ic calling |
| // convention. |
| ASSERT(value_.is(r0) && receiver_.is(r1)); |
| __ mov(r2, Operand(name_)); |
| |
| // The rest of the instructions in the deferred code must be together. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| // Call keyed store IC. It has the arguments value, key and receiver in r0, |
| // r1 and r2. |
| Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); |
| __ Call(ic, RelocInfo::CODE_TARGET); |
| // The call must be followed by a nop instruction to indicate that the |
| // named store has been inlined. |
| __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); |
| |
| // Go back to the frame we entered with. The instructions |
| // generated by this merge are skipped over by the inline store |
| // patching mechanism when looking for the branch instruction that |
| // tells it where the code to patch is. |
| copied_frame.MergeTo(frame_state()->frame()); |
| |
| // Block the constant pool for one more instruction after leaving this |
| // constant pool block scope to include the branch instruction ending the |
| // deferred code. |
| __ BlockConstPoolFor(1); |
| } |
| } |
| |
| |
| // Consumes the top of stack (the receiver) and pushes the result instead. |
| void CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { |
| bool contextual_load_in_builtin = |
| is_contextual && |
| (Bootstrapper::IsActive() || |
| (!info_->closure().is_null() && info_->closure()->IsBuiltin())); |
| |
| if (scope()->is_global_scope() || |
| loop_nesting() == 0 || |
| contextual_load_in_builtin) { |
| Comment cmnt(masm(), "[ Load from named Property"); |
| // Setup the name register and call load IC. |
| frame_->CallLoadIC(name, |
| is_contextual |
| ? RelocInfo::CODE_TARGET_CONTEXT |
| : RelocInfo::CODE_TARGET); |
| frame_->EmitPush(r0); // Push answer. |
| } else { |
| // Inline the in-object property case. |
| Comment cmnt(masm(), is_contextual |
| ? "[ Inlined contextual property load" |
| : "[ Inlined named property load"); |
| |
| // Counter will be decremented in the deferred code. Placed here to avoid |
| // having it in the instruction stream below where patching will occur. |
| if (is_contextual) { |
| __ IncrementCounter(&Counters::named_load_global_inline, 1, |
| frame_->scratch0(), frame_->scratch1()); |
| } else { |
| __ IncrementCounter(&Counters::named_load_inline, 1, |
| frame_->scratch0(), frame_->scratch1()); |
| } |
| |
| // The following instructions are the inlined load of an in-object property. |
| // Parts of this code is patched, so the exact instructions generated needs |
| // to be fixed. Therefore the instruction pool is blocked when generating |
| // this code |
| |
| // Load the receiver from the stack. |
| Register receiver = frame_->PopToRegister(); |
| |
| DeferredReferenceGetNamedValue* deferred = |
| new DeferredReferenceGetNamedValue(receiver, name, is_contextual); |
| |
| bool is_dont_delete = false; |
| if (is_contextual) { |
| if (!info_->closure().is_null()) { |
| // When doing lazy compilation we can check if the global cell |
| // already exists and use its "don't delete" status as a hint. |
| AssertNoAllocation no_gc; |
| v8::internal::GlobalObject* global_object = |
| info_->closure()->context()->global(); |
| LookupResult lookup; |
| global_object->LocalLookupRealNamedProperty(*name, &lookup); |
| if (lookup.IsProperty() && lookup.type() == NORMAL) { |
| ASSERT(lookup.holder() == global_object); |
| ASSERT(global_object->property_dictionary()->ValueAt( |
| lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell()); |
| is_dont_delete = lookup.IsDontDelete(); |
| } |
| } |
| if (is_dont_delete) { |
| __ IncrementCounter(&Counters::dont_delete_hint_hit, 1, |
| frame_->scratch0(), frame_->scratch1()); |
| } |
| } |
| |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| if (!is_contextual) { |
| // Check that the receiver is a heap object. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| deferred->Branch(eq); |
| } |
| |
| // Check for the_hole_value if necessary. |
| // Below we rely on the number of instructions generated, and we can't |
| // cope with the Check macro which does not generate a fixed number of |
| // instructions. |
| Label skip, check_the_hole, cont; |
| if (FLAG_debug_code && is_contextual && is_dont_delete) { |
| __ b(&skip); |
| __ bind(&check_the_hole); |
| __ Check(ne, "DontDelete cells can't contain the hole"); |
| __ b(&cont); |
| __ bind(&skip); |
| } |
| |
| #ifdef DEBUG |
| int InlinedNamedLoadInstructions = 5; |
| Label check_inlined_codesize; |
| masm_->bind(&check_inlined_codesize); |
| #endif |
| |
| Register scratch = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| |
| // Check the map. The null map used below is patched by the inline cache |
| // code. Therefore we can't use a LoadRoot call. |
| __ ldr(scratch, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| __ mov(scratch2, Operand(Factory::null_value())); |
| __ cmp(scratch, scratch2); |
| deferred->Branch(ne); |
| |
| if (is_contextual) { |
| #ifdef DEBUG |
| InlinedNamedLoadInstructions += 1; |
| #endif |
| // Load the (initially invalid) cell and get its value. |
| masm()->mov(receiver, Operand(Factory::null_value())); |
| __ ldr(receiver, |
| FieldMemOperand(receiver, JSGlobalPropertyCell::kValueOffset)); |
| |
| deferred->set_is_dont_delete(is_dont_delete); |
| |
| if (!is_dont_delete) { |
| #ifdef DEBUG |
| InlinedNamedLoadInstructions += 3; |
| #endif |
| __ cmp(receiver, Operand(Factory::the_hole_value())); |
| deferred->Branch(eq); |
| } else if (FLAG_debug_code) { |
| #ifdef DEBUG |
| InlinedNamedLoadInstructions += 3; |
| #endif |
| __ cmp(receiver, Operand(Factory::the_hole_value())); |
| __ b(&check_the_hole, eq); |
| __ bind(&cont); |
| } |
| } else { |
| // Initially use an invalid index. The index will be patched by the |
| // inline cache code. |
| __ ldr(receiver, MemOperand(receiver, 0)); |
| } |
| |
| // Make sure that the expected number of instructions are generated. |
| // If the code before is updated, the offsets in ic-arm.cc |
| // LoadIC::PatchInlinedContextualLoad and PatchInlinedLoad need |
| // to be updated. |
| ASSERT_EQ(InlinedNamedLoadInstructions, |
| masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
| } |
| |
| deferred->BindExit(); |
| // At this point the receiver register has the result, either from the |
| // deferred code or from the inlined code. |
| frame_->EmitPush(receiver); |
| } |
| } |
| |
| |
| void CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { |
| #ifdef DEBUG |
| int expected_height = frame()->height() - (is_contextual ? 1 : 2); |
| #endif |
| |
| Result result; |
| if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { |
| frame()->CallStoreIC(name, is_contextual); |
| } else { |
| // Inline the in-object property case. |
| JumpTarget slow, done; |
| |
| // Get the value and receiver from the stack. |
| frame()->PopToR0(); |
| Register value = r0; |
| frame()->PopToR1(); |
| Register receiver = r1; |
| |
| DeferredReferenceSetNamedValue* deferred = |
| new DeferredReferenceSetNamedValue(value, receiver, name); |
| |
| // Check that the receiver is a heap object. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| deferred->Branch(eq); |
| |
| // The following instructions are the part of the inlined |
| // in-object property store code which can be patched. Therefore |
| // the exact number of instructions generated must be fixed, so |
| // the constant pool is blocked while generating this code. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| Register scratch0 = VirtualFrame::scratch0(); |
| Register scratch1 = VirtualFrame::scratch1(); |
| |
| // Check the map. Initially use an invalid map to force a |
| // failure. The map check will be patched in the runtime system. |
| __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| |
| #ifdef DEBUG |
| Label check_inlined_codesize; |
| masm_->bind(&check_inlined_codesize); |
| #endif |
| __ mov(scratch0, Operand(Factory::null_value())); |
| __ cmp(scratch0, scratch1); |
| deferred->Branch(ne); |
| |
| int offset = 0; |
| __ str(value, MemOperand(receiver, offset)); |
| |
| // Update the write barrier and record its size. We do not use |
| // the RecordWrite macro here because we want the offset |
| // addition instruction first to make it easy to patch. |
| Label record_write_start, record_write_done; |
| __ bind(&record_write_start); |
| // Add offset into the object. |
| __ add(scratch0, receiver, Operand(offset)); |
| // Test that the object is not in the new space. We cannot set |
| // region marks for new space pages. |
| __ InNewSpace(receiver, scratch1, eq, &record_write_done); |
| // Record the actual write. |
| __ RecordWriteHelper(receiver, scratch0, scratch1); |
| __ bind(&record_write_done); |
| // Clobber all input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (FLAG_debug_code) { |
| __ mov(receiver, Operand(BitCast<int32_t>(kZapValue))); |
| __ mov(scratch0, Operand(BitCast<int32_t>(kZapValue))); |
| __ mov(scratch1, Operand(BitCast<int32_t>(kZapValue))); |
| } |
| // Check that this is the first inlined write barrier or that |
| // this inlined write barrier has the same size as all the other |
| // inlined write barriers. |
| ASSERT((inlined_write_barrier_size_ == -1) || |
| (inlined_write_barrier_size_ == |
| masm()->InstructionsGeneratedSince(&record_write_start))); |
| inlined_write_barrier_size_ = |
| masm()->InstructionsGeneratedSince(&record_write_start); |
| |
| // Make sure that the expected number of instructions are generated. |
| ASSERT_EQ(GetInlinedNamedStoreInstructionsAfterPatch(), |
| masm()->InstructionsGeneratedSince(&check_inlined_codesize)); |
| } |
| deferred->BindExit(); |
| } |
| ASSERT_EQ(expected_height, frame()->height()); |
| } |
| |
| |
| void CodeGenerator::EmitKeyedLoad() { |
| if (loop_nesting() == 0) { |
| Comment cmnt(masm_, "[ Load from keyed property"); |
| frame_->CallKeyedLoadIC(); |
| } else { |
| // Inline the keyed load. |
| Comment cmnt(masm_, "[ Inlined load from keyed property"); |
| |
| // Counter will be decremented in the deferred code. Placed here to avoid |
| // having it in the instruction stream below where patching will occur. |
| __ IncrementCounter(&Counters::keyed_load_inline, 1, |
| frame_->scratch0(), frame_->scratch1()); |
| |
| // Load the key and receiver from the stack. |
| bool key_is_known_smi = frame_->KnownSmiAt(0); |
| Register key = frame_->PopToRegister(); |
| Register receiver = frame_->PopToRegister(key); |
| |
| // The deferred code expects key and receiver in registers. |
| DeferredReferenceGetKeyedValue* deferred = |
| new DeferredReferenceGetKeyedValue(key, receiver); |
| |
| // Check that the receiver is a heap object. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| deferred->Branch(eq); |
| |
| // The following instructions are the part of the inlined load keyed |
| // property code which can be patched. Therefore the exact number of |
| // instructions generated need to be fixed, so the constant pool is blocked |
| // while generating this code. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| // Check the map. The null map used below is patched by the inline cache |
| // code. |
| __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| |
| // Check that the key is a smi. |
| if (!key_is_known_smi) { |
| __ tst(key, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| } |
| |
| #ifdef DEBUG |
| Label check_inlined_codesize; |
| masm_->bind(&check_inlined_codesize); |
| #endif |
| __ mov(scratch2, Operand(Factory::null_value())); |
| __ cmp(scratch1, scratch2); |
| deferred->Branch(ne); |
| |
| // Get the elements array from the receiver. |
| __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| __ AssertFastElements(scratch1); |
| |
| // Check that key is within bounds. Use unsigned comparison to handle |
| // negative keys. |
| __ ldr(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset)); |
| __ cmp(scratch2, key); |
| deferred->Branch(ls); // Unsigned less equal. |
| |
| // Load and check that the result is not the hole (key is a smi). |
| __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex); |
| __ add(scratch1, |
| scratch1, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(scratch1, |
| MemOperand(scratch1, key, LSL, |
| kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); |
| __ cmp(scratch1, scratch2); |
| deferred->Branch(eq); |
| |
| __ mov(r0, scratch1); |
| // Make sure that the expected number of instructions are generated. |
| ASSERT_EQ(GetInlinedKeyedLoadInstructionsAfterPatch(), |
| masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
| } |
| |
| deferred->BindExit(); |
| } |
| } |
| |
| |
| void CodeGenerator::EmitKeyedStore(StaticType* key_type, |
| WriteBarrierCharacter wb_info) { |
| // Generate inlined version of the keyed store if the code is in a loop |
| // and the key is likely to be a smi. |
| if (loop_nesting() > 0 && key_type->IsLikelySmi()) { |
| // Inline the keyed store. |
| Comment cmnt(masm_, "[ Inlined store to keyed property"); |
| |
| Register scratch1 = VirtualFrame::scratch0(); |
| Register scratch2 = VirtualFrame::scratch1(); |
| Register scratch3 = r3; |
| |
| // Counter will be decremented in the deferred code. Placed here to avoid |
| // having it in the instruction stream below where patching will occur. |
| __ IncrementCounter(&Counters::keyed_store_inline, 1, |
| scratch1, scratch2); |
| |
| |
| |
| // Load the value, key and receiver from the stack. |
| bool value_is_harmless = frame_->KnownSmiAt(0); |
| if (wb_info == NEVER_NEWSPACE) value_is_harmless = true; |
| bool key_is_smi = frame_->KnownSmiAt(1); |
| Register value = frame_->PopToRegister(); |
| Register key = frame_->PopToRegister(value); |
| VirtualFrame::SpilledScope spilled(frame_); |
| Register receiver = r2; |
| frame_->EmitPop(receiver); |
| |
| #ifdef DEBUG |
| bool we_remembered_the_write_barrier = value_is_harmless; |
| #endif |
| |
| // The deferred code expects value, key and receiver in registers. |
| DeferredReferenceSetKeyedValue* deferred = |
| new DeferredReferenceSetKeyedValue(value, key, receiver); |
| |
| // Check that the value is a smi. As this inlined code does not set the |
| // write barrier it is only possible to store smi values. |
| if (!value_is_harmless) { |
| // If the value is not likely to be a Smi then let's test the fixed array |
| // for new space instead. See below. |
| if (wb_info == LIKELY_SMI) { |
| __ tst(value, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| #ifdef DEBUG |
| we_remembered_the_write_barrier = true; |
| #endif |
| } |
| } |
| |
| if (!key_is_smi) { |
| // Check that the key is a smi. |
| __ tst(key, Operand(kSmiTagMask)); |
| deferred->Branch(ne); |
| } |
| |
| // Check that the receiver is a heap object. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| deferred->Branch(eq); |
| |
| // Check that the receiver is a JSArray. |
| __ CompareObjectType(receiver, scratch1, scratch1, JS_ARRAY_TYPE); |
| deferred->Branch(ne); |
| |
| // Check that the key is within bounds. Both the key and the length of |
| // the JSArray are smis. Use unsigned comparison to handle negative keys. |
| __ ldr(scratch1, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| __ cmp(scratch1, key); |
| deferred->Branch(ls); // Unsigned less equal. |
| |
| // Get the elements array from the receiver. |
| __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| if (!value_is_harmless && wb_info != LIKELY_SMI) { |
| Label ok; |
| __ and_(scratch2, scratch1, Operand(ExternalReference::new_space_mask())); |
| __ cmp(scratch2, Operand(ExternalReference::new_space_start())); |
| __ tst(value, Operand(kSmiTagMask), ne); |
| deferred->Branch(ne); |
| #ifdef DEBUG |
| we_remembered_the_write_barrier = true; |
| #endif |
| } |
| // Check that the elements array is not a dictionary. |
| __ ldr(scratch2, FieldMemOperand(scratch1, JSObject::kMapOffset)); |
| // The following instructions are the part of the inlined store keyed |
| // property code which can be patched. Therefore the exact number of |
| // instructions generated need to be fixed, so the constant pool is blocked |
| // while generating this code. |
| { Assembler::BlockConstPoolScope block_const_pool(masm_); |
| #ifdef DEBUG |
| Label check_inlined_codesize; |
| masm_->bind(&check_inlined_codesize); |
| #endif |
| |
| // Read the fixed array map from the constant pool (not from the root |
| // array) so that the value can be patched. When debugging, we patch this |
| // comparison to always fail so that we will hit the IC call in the |
| // deferred code which will allow the debugger to break for fast case |
| // stores. |
| __ mov(scratch3, Operand(Factory::fixed_array_map())); |
| __ cmp(scratch2, scratch3); |
| deferred->Branch(ne); |
| |
| // Store the value. |
| __ add(scratch1, scratch1, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ str(value, |
| MemOperand(scratch1, key, LSL, |
| kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); |
| |
| // Make sure that the expected number of instructions are generated. |
| ASSERT_EQ(kInlinedKeyedStoreInstructionsAfterPatch, |
| masm_->InstructionsGeneratedSince(&check_inlined_codesize)); |
| } |
| |
| ASSERT(we_remembered_the_write_barrier); |
| |
| deferred->BindExit(); |
| } else { |
| frame()->CallKeyedStoreIC(); |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| bool CodeGenerator::HasValidEntryRegisters() { return true; } |
| #endif |
| |
| |
| #undef __ |
| #define __ ACCESS_MASM(masm) |
| |
| Handle<String> Reference::GetName() { |
| ASSERT(type_ == NAMED); |
| Property* property = expression_->AsProperty(); |
| if (property == NULL) { |
| // Global variable reference treated as a named property reference. |
| VariableProxy* proxy = expression_->AsVariableProxy(); |
| ASSERT(proxy->AsVariable() != NULL); |
| ASSERT(proxy->AsVariable()->is_global()); |
| return proxy->name(); |
| } else { |
| Literal* raw_name = property->key()->AsLiteral(); |
| ASSERT(raw_name != NULL); |
| return Handle<String>(String::cast(*raw_name->handle())); |
| } |
| } |
| |
| |
| void Reference::DupIfPersist() { |
| if (persist_after_get_) { |
| switch (type_) { |
| case KEYED: |
| cgen_->frame()->Dup2(); |
| break; |
| case NAMED: |
| cgen_->frame()->Dup(); |
| // Fall through. |
| case UNLOADED: |
| case ILLEGAL: |
| case SLOT: |
| // Do nothing. |
| ; |
| } |
| } else { |
| set_unloaded(); |
| } |
| } |
| |
| |
| void Reference::GetValue() { |
| ASSERT(cgen_->HasValidEntryRegisters()); |
| ASSERT(!is_illegal()); |
| ASSERT(!cgen_->has_cc()); |
| MacroAssembler* masm = cgen_->masm(); |
| Property* property = expression_->AsProperty(); |
| if (property != NULL) { |
| cgen_->CodeForSourcePosition(property->position()); |
| } |
| |
| switch (type_) { |
| case SLOT: { |
| Comment cmnt(masm, "[ Load from Slot"); |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); |
| ASSERT(slot != NULL); |
| DupIfPersist(); |
| cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
| break; |
| } |
| |
| case NAMED: { |
| Variable* var = expression_->AsVariableProxy()->AsVariable(); |
| bool is_global = var != NULL; |
| ASSERT(!is_global || var->is_global()); |
| Handle<String> name = GetName(); |
| DupIfPersist(); |
| cgen_->EmitNamedLoad(name, is_global); |
| break; |
| } |
| |
| case KEYED: { |
| ASSERT(property != NULL); |
| DupIfPersist(); |
| cgen_->EmitKeyedLoad(); |
| cgen_->frame()->EmitPush(r0); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void Reference::SetValue(InitState init_state, WriteBarrierCharacter wb_info) { |
| ASSERT(!is_illegal()); |
| ASSERT(!cgen_->has_cc()); |
| MacroAssembler* masm = cgen_->masm(); |
| VirtualFrame* frame = cgen_->frame(); |
| Property* property = expression_->AsProperty(); |
| if (property != NULL) { |
| cgen_->CodeForSourcePosition(property->position()); |
| } |
| |
| switch (type_) { |
| case SLOT: { |
| Comment cmnt(masm, "[ Store to Slot"); |
| Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); |
| cgen_->StoreToSlot(slot, init_state); |
| set_unloaded(); |
| break; |
| } |
| |
| case NAMED: { |
| Comment cmnt(masm, "[ Store to named Property"); |
| cgen_->EmitNamedStore(GetName(), false); |
| frame->EmitPush(r0); |
| set_unloaded(); |
| break; |
| } |
| |
| case KEYED: { |
| Comment cmnt(masm, "[ Store to keyed Property"); |
| Property* property = expression_->AsProperty(); |
| ASSERT(property != NULL); |
| cgen_->CodeForSourcePosition(property->position()); |
| cgen_->EmitKeyedStore(property->key()->type(), wb_info); |
| frame->EmitPush(r0); |
| set_unloaded(); |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| const char* GenericBinaryOpStub::GetName() { |
| if (name_ != NULL) return name_; |
| const int len = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(len); |
| if (name_ == NULL) return "OOM"; |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, len), |
| "GenericBinaryOpStub_%s_%s%s_%s", |
| op_name, |
| overwrite_name, |
| specialized_on_rhs_ ? "_ConstantRhs" : "", |
| BinaryOpIC::GetName(runtime_operands_type_)); |
| return name_; |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |