blob: 461c3f5fab9b1280bfad66ceb52c831d8d2ad469 [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "bootstrapper.h"
#include "compiler.h"
#include "debug.h"
#include "execution.h"
#include "global-handles.h"
#include "natives.h"
#include "runtime.h"
#include "string-search.h"
#include "stub-cache.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
v8::ImplementationUtilities::HandleScopeData HandleScope::current_ =
{ NULL, NULL, 0 };
int HandleScope::NumberOfHandles() {
int n = HandleScopeImplementer::instance()->blocks()->length();
if (n == 0) return 0;
return ((n - 1) * kHandleBlockSize) + static_cast<int>(
(current_.next - HandleScopeImplementer::instance()->blocks()->last()));
}
Object** HandleScope::Extend() {
Object** result = current_.next;
ASSERT(result == current_.limit);
// Make sure there's at least one scope on the stack and that the
// top of the scope stack isn't a barrier.
if (current_.level == 0) {
Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
"Cannot create a handle without a HandleScope");
return NULL;
}
HandleScopeImplementer* impl = HandleScopeImplementer::instance();
// If there's more room in the last block, we use that. This is used
// for fast creation of scopes after scope barriers.
if (!impl->blocks()->is_empty()) {
Object** limit = &impl->blocks()->last()[kHandleBlockSize];
if (current_.limit != limit) {
current_.limit = limit;
ASSERT(limit - current_.next < kHandleBlockSize);
}
}
// If we still haven't found a slot for the handle, we extend the
// current handle scope by allocating a new handle block.
if (result == current_.limit) {
// If there's a spare block, use it for growing the current scope.
result = impl->GetSpareOrNewBlock();
// Add the extension to the global list of blocks, but count the
// extension as part of the current scope.
impl->blocks()->Add(result);
current_.limit = &result[kHandleBlockSize];
}
return result;
}
void HandleScope::DeleteExtensions() {
HandleScopeImplementer::instance()->DeleteExtensions(current_.limit);
}
void HandleScope::ZapRange(Object** start, Object** end) {
ASSERT(end - start <= kHandleBlockSize);
for (Object** p = start; p != end; p++) {
*reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
}
}
Address HandleScope::current_level_address() {
return reinterpret_cast<Address>(&current_.level);
}
Address HandleScope::current_next_address() {
return reinterpret_cast<Address>(&current_.next);
}
Address HandleScope::current_limit_address() {
return reinterpret_cast<Address>(&current_.limit);
}
Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
Handle<JSArray> array) {
CALL_HEAP_FUNCTION(content->AddKeysFromJSArray(*array), FixedArray);
}
Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
Handle<FixedArray> second) {
CALL_HEAP_FUNCTION(first->UnionOfKeys(*second), FixedArray);
}
Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
Handle<JSFunction> constructor,
Handle<JSGlobalProxy> global) {
CALL_HEAP_FUNCTION(Heap::ReinitializeJSGlobalProxy(*constructor, *global),
JSGlobalProxy);
}
void SetExpectedNofProperties(Handle<JSFunction> func, int nof) {
// If objects constructed from this function exist then changing
// 'estimated_nof_properties' is dangerous since the previous value might
// have been compiled into the fast construct stub. More over, the inobject
// slack tracking logic might have adjusted the previous value, so even
// passing the same value is risky.
if (func->shared()->live_objects_may_exist()) return;
func->shared()->set_expected_nof_properties(nof);
if (func->has_initial_map()) {
Handle<Map> new_initial_map =
Factory::CopyMapDropTransitions(Handle<Map>(func->initial_map()));
new_initial_map->set_unused_property_fields(nof);
func->set_initial_map(*new_initial_map);
}
}
void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) {
CALL_HEAP_FUNCTION_VOID(func->SetPrototype(*value));
}
static int ExpectedNofPropertiesFromEstimate(int estimate) {
// If no properties are added in the constructor, they are more likely
// to be added later.
if (estimate == 0) estimate = 2;
// We do not shrink objects that go into a snapshot (yet), so we adjust
// the estimate conservatively.
if (Serializer::enabled()) return estimate + 2;
// Inobject slack tracking will reclaim redundant inobject space later,
// so we can afford to adjust the estimate generously.
return estimate + 8;
}
void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
int estimate) {
// See the comment in SetExpectedNofProperties.
if (shared->live_objects_may_exist()) return;
shared->set_expected_nof_properties(
ExpectedNofPropertiesFromEstimate(estimate));
}
void NormalizeProperties(Handle<JSObject> object,
PropertyNormalizationMode mode,
int expected_additional_properties) {
CALL_HEAP_FUNCTION_VOID(object->NormalizeProperties(
mode,
expected_additional_properties));
}
void NormalizeElements(Handle<JSObject> object) {
CALL_HEAP_FUNCTION_VOID(object->NormalizeElements());
}
void TransformToFastProperties(Handle<JSObject> object,
int unused_property_fields) {
CALL_HEAP_FUNCTION_VOID(
object->TransformToFastProperties(unused_property_fields));
}
void NumberDictionarySet(Handle<NumberDictionary> dictionary,
uint32_t index,
Handle<Object> value,
PropertyDetails details) {
CALL_HEAP_FUNCTION_VOID(dictionary->Set(index, *value, details));
}
void FlattenString(Handle<String> string) {
CALL_HEAP_FUNCTION_VOID(string->TryFlatten());
}
Handle<String> FlattenGetString(Handle<String> string) {
CALL_HEAP_FUNCTION(string->TryFlatten(), String);
}
Handle<Object> SetPrototype(Handle<JSFunction> function,
Handle<Object> prototype) {
ASSERT(function->should_have_prototype());
CALL_HEAP_FUNCTION(Accessors::FunctionSetPrototype(*function,
*prototype,
NULL),
Object);
}
Handle<Object> SetProperty(Handle<JSObject> object,
Handle<String> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(object->SetProperty(*key, *value, attributes), Object);
}
Handle<Object> SetProperty(Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(
Runtime::SetObjectProperty(object, key, value, attributes), Object);
}
Handle<Object> ForceSetProperty(Handle<JSObject> object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(
Runtime::ForceSetObjectProperty(object, key, value, attributes), Object);
}
Handle<Object> SetNormalizedProperty(Handle<JSObject> object,
Handle<String> key,
Handle<Object> value,
PropertyDetails details) {
CALL_HEAP_FUNCTION(object->SetNormalizedProperty(*key, *value, details),
Object);
}
Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
Handle<Object> key) {
CALL_HEAP_FUNCTION(Runtime::ForceDeleteObjectProperty(object, key), Object);
}
Handle<Object> SetLocalPropertyIgnoreAttributes(
Handle<JSObject> object,
Handle<String> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(object->
SetLocalPropertyIgnoreAttributes(*key, *value, attributes), Object);
}
Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object,
Handle<String> key,
Handle<Object> value,
PropertyAttributes attributes) {
CALL_HEAP_FUNCTION(object->SetPropertyWithInterceptor(*key,
*value,
attributes),
Object);
}
Handle<Object> GetProperty(Handle<JSObject> obj,
const char* name) {
Handle<String> str = Factory::LookupAsciiSymbol(name);
CALL_HEAP_FUNCTION(obj->GetProperty(*str), Object);
}
Handle<Object> GetProperty(Handle<Object> obj,
Handle<Object> key) {
CALL_HEAP_FUNCTION(Runtime::GetObjectProperty(obj, key), Object);
}
Handle<Object> GetElement(Handle<Object> obj,
uint32_t index) {
CALL_HEAP_FUNCTION(Runtime::GetElement(obj, index), Object);
}
Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<String> name,
PropertyAttributes* attributes) {
CALL_HEAP_FUNCTION(holder->GetPropertyWithInterceptor(*receiver,
*name,
attributes),
Object);
}
Handle<Object> GetPrototype(Handle<Object> obj) {
Handle<Object> result(obj->GetPrototype());
return result;
}
Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) {
const bool skip_hidden_prototypes = false;
CALL_HEAP_FUNCTION(obj->SetPrototype(*value, skip_hidden_prototypes), Object);
}
Handle<Object> GetHiddenProperties(Handle<JSObject> obj,
bool create_if_needed) {
Object* holder = obj->BypassGlobalProxy();
if (holder->IsUndefined()) return Factory::undefined_value();
obj = Handle<JSObject>(JSObject::cast(holder));
if (obj->HasFastProperties()) {
// If the object has fast properties, check whether the first slot
// in the descriptor array matches the hidden symbol. Since the
// hidden symbols hash code is zero (and no other string has hash
// code zero) it will always occupy the first entry if present.
DescriptorArray* descriptors = obj->map()->instance_descriptors();
if ((descriptors->number_of_descriptors() > 0) &&
(descriptors->GetKey(0) == Heap::hidden_symbol()) &&
descriptors->IsProperty(0)) {
ASSERT(descriptors->GetType(0) == FIELD);
return Handle<Object>(obj->FastPropertyAt(descriptors->GetFieldIndex(0)));
}
}
// Only attempt to find the hidden properties in the local object and not
// in the prototype chain. Note that HasLocalProperty() can cause a GC in
// the general case in the presence of interceptors.
if (!obj->HasHiddenPropertiesObject()) {
// Hidden properties object not found. Allocate a new hidden properties
// object if requested. Otherwise return the undefined value.
if (create_if_needed) {
Handle<Object> hidden_obj = Factory::NewJSObject(Top::object_function());
CALL_HEAP_FUNCTION(obj->SetHiddenPropertiesObject(*hidden_obj), Object);
} else {
return Factory::undefined_value();
}
}
return Handle<Object>(obj->GetHiddenPropertiesObject());
}
Handle<Object> DeleteElement(Handle<JSObject> obj,
uint32_t index) {
CALL_HEAP_FUNCTION(obj->DeleteElement(index, JSObject::NORMAL_DELETION),
Object);
}
Handle<Object> DeleteProperty(Handle<JSObject> obj,
Handle<String> prop) {
CALL_HEAP_FUNCTION(obj->DeleteProperty(*prop, JSObject::NORMAL_DELETION),
Object);
}
Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) {
CALL_HEAP_FUNCTION(Heap::LookupSingleCharacterStringFromCode(index), Object);
}
Handle<String> SubString(Handle<String> str,
int start,
int end,
PretenureFlag pretenure) {
CALL_HEAP_FUNCTION(str->SubString(start, end, pretenure), String);
}
Handle<Object> SetElement(Handle<JSObject> object,
uint32_t index,
Handle<Object> value) {
if (object->HasPixelElements() || object->HasExternalArrayElements()) {
if (!value->IsSmi() && !value->IsHeapNumber() && !value->IsUndefined()) {
bool has_exception;
Handle<Object> number = Execution::ToNumber(value, &has_exception);
if (has_exception) return Handle<Object>();
value = number;
}
}
CALL_HEAP_FUNCTION(object->SetElement(index, *value), Object);
}
Handle<Object> SetOwnElement(Handle<JSObject> object,
uint32_t index,
Handle<Object> value) {
ASSERT(!object->HasPixelElements());
ASSERT(!object->HasExternalArrayElements());
CALL_HEAP_FUNCTION(object->SetElement(index, *value, false), Object);
}
Handle<JSObject> Copy(Handle<JSObject> obj) {
CALL_HEAP_FUNCTION(Heap::CopyJSObject(*obj), JSObject);
}
Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) {
CALL_HEAP_FUNCTION(obj->DefineAccessor(*info), Object);
}
// Wrappers for scripts are kept alive and cached in weak global
// handles referred from proxy objects held by the scripts as long as
// they are used. When they are not used anymore, the garbage
// collector will call the weak callback on the global handle
// associated with the wrapper and get rid of both the wrapper and the
// handle.
static void ClearWrapperCache(Persistent<v8::Value> handle, void*) {
#ifdef ENABLE_HEAP_PROTECTION
// Weak reference callbacks are called as if from outside V8. We
// need to reeenter to unprotect the heap.
VMState state(OTHER);
#endif
Handle<Object> cache = Utils::OpenHandle(*handle);
JSValue* wrapper = JSValue::cast(*cache);
Proxy* proxy = Script::cast(wrapper->value())->wrapper();
ASSERT(proxy->proxy() == reinterpret_cast<Address>(cache.location()));
proxy->set_proxy(0);
GlobalHandles::Destroy(cache.location());
Counters::script_wrappers.Decrement();
}
Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
if (script->wrapper()->proxy() != NULL) {
// Return the script wrapper directly from the cache.
return Handle<JSValue>(
reinterpret_cast<JSValue**>(script->wrapper()->proxy()));
}
// Construct a new script wrapper.
Counters::script_wrappers.Increment();
Handle<JSFunction> constructor = Top::script_function();
Handle<JSValue> result =
Handle<JSValue>::cast(Factory::NewJSObject(constructor));
result->set_value(*script);
// Create a new weak global handle and use it to cache the wrapper
// for future use. The cache will automatically be cleared by the
// garbage collector when it is not used anymore.
Handle<Object> handle = GlobalHandles::Create(*result);
GlobalHandles::MakeWeak(handle.location(), NULL, &ClearWrapperCache);
script->wrapper()->set_proxy(reinterpret_cast<Address>(handle.location()));
return result;
}
// Init line_ends array with code positions of line ends inside script
// source.
void InitScriptLineEnds(Handle<Script> script) {
if (!script->line_ends()->IsUndefined()) return;
if (!script->source()->IsString()) {
ASSERT(script->source()->IsUndefined());
Handle<FixedArray> empty = Factory::NewFixedArray(0);
script->set_line_ends(*empty);
ASSERT(script->line_ends()->IsFixedArray());
return;
}
Handle<String> src(String::cast(script->source()));
Handle<FixedArray> array = CalculateLineEnds(src, true);
if (*array != Heap::empty_fixed_array()) {
array->set_map(Heap::fixed_cow_array_map());
}
script->set_line_ends(*array);
ASSERT(script->line_ends()->IsFixedArray());
}
template <typename SourceChar>
static void CalculateLineEnds(List<int>* line_ends,
Vector<const SourceChar> src,
bool with_last_line) {
const int src_len = src.length();
StringSearch<char, SourceChar> search(CStrVector("\n"));
// Find and record line ends.
int position = 0;
while (position != -1 && position < src_len) {
position = search.Search(src, position);
if (position != -1) {
line_ends->Add(position);
position++;
} else if (with_last_line) {
// Even if the last line misses a line end, it is counted.
line_ends->Add(src_len);
return;
}
}
}
Handle<FixedArray> CalculateLineEnds(Handle<String> src,
bool with_last_line) {
src = FlattenGetString(src);
// Rough estimate of line count based on a roughly estimated average
// length of (unpacked) code.
int line_count_estimate = src->length() >> 4;
List<int> line_ends(line_count_estimate);
{
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid.
// Dispatch on type of strings.
if (src->IsAsciiRepresentation()) {
CalculateLineEnds(&line_ends, src->ToAsciiVector(), with_last_line);
} else {
CalculateLineEnds(&line_ends, src->ToUC16Vector(), with_last_line);
}
}
int line_count = line_ends.length();
Handle<FixedArray> array = Factory::NewFixedArray(line_count);
for (int i = 0; i < line_count; i++) {
array->set(i, Smi::FromInt(line_ends[i]));
}
return array;
}
// Convert code position into line number.
int GetScriptLineNumber(Handle<Script> script, int code_pos) {
InitScriptLineEnds(script);
AssertNoAllocation no_allocation;
FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
const int line_ends_len = line_ends_array->length();
if (!line_ends_len) return -1;
if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
return script->line_offset()->value();
}
int left = 0;
int right = line_ends_len;
while (int half = (right - left) / 2) {
if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
right -= half;
} else {
left += half;
}
}
return right + script->line_offset()->value();
}
int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
AssertNoAllocation no_allocation;
if (!script->line_ends()->IsUndefined()) {
return GetScriptLineNumber(script, code_pos);
}
// Slow mode: we do not have line_ends. We have to iterate through source.
if (!script->source()->IsString()) {
return -1;
}
String* source = String::cast(script->source());
int line = 0;
int len = source->length();
for (int pos = 0; pos < len; pos++) {
if (pos == code_pos) {
break;
}
if (source->Get(pos) == '\n') {
line++;
}
}
return line;
}
void CustomArguments::IterateInstance(ObjectVisitor* v) {
v->VisitPointers(values_, values_ + ARRAY_SIZE(values_));
}
// Compute the property keys from the interceptor.
v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSObject> receiver,
Handle<JSObject> object) {
Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
CustomArguments args(interceptor->data(), *receiver, *object);
v8::AccessorInfo info(args.end());
v8::Handle<v8::Array> result;
if (!interceptor->enumerator()->IsUndefined()) {
v8::NamedPropertyEnumerator enum_fun =
v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator());
LOG(ApiObjectAccess("interceptor-named-enum", *object));
{
// Leaving JavaScript.
VMState state(EXTERNAL);
result = enum_fun(info);
}
}
return result;
}
// Compute the element keys from the interceptor.
v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSObject> receiver,
Handle<JSObject> object) {
Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
CustomArguments args(interceptor->data(), *receiver, *object);
v8::AccessorInfo info(args.end());
v8::Handle<v8::Array> result;
if (!interceptor->enumerator()->IsUndefined()) {
v8::IndexedPropertyEnumerator enum_fun =
v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator());
LOG(ApiObjectAccess("interceptor-indexed-enum", *object));
{
// Leaving JavaScript.
VMState state(EXTERNAL);
result = enum_fun(info);
}
}
return result;
}
static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
int len = array->length();
for (int i = 0; i < len; i++) {
Object* e = array->get(i);
if (!(e->IsString() || e->IsNumber())) return false;
}
return true;
}
Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSObject> object,
KeyCollectionType type) {
USE(ContainsOnlyValidKeys);
Handle<FixedArray> content = Factory::empty_fixed_array();
Handle<JSObject> arguments_boilerplate =
Handle<JSObject>(
Top::context()->global_context()->arguments_boilerplate());
Handle<JSFunction> arguments_function =
Handle<JSFunction>(
JSFunction::cast(arguments_boilerplate->map()->constructor()));
// Only collect keys if access is permitted.
for (Handle<Object> p = object;
*p != Heap::null_value();
p = Handle<Object>(p->GetPrototype())) {
Handle<JSObject> current(JSObject::cast(*p));
// Check access rights if required.
if (current->IsAccessCheckNeeded() &&
!Top::MayNamedAccess(*current, Heap::undefined_value(),
v8::ACCESS_KEYS)) {
Top::ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
break;
}
// Compute the element keys.
Handle<FixedArray> element_keys =
Factory::NewFixedArray(current->NumberOfEnumElements());
current->GetEnumElementKeys(*element_keys);
content = UnionOfKeys(content, element_keys);
ASSERT(ContainsOnlyValidKeys(content));
// Add the element keys from the interceptor.
if (current->HasIndexedInterceptor()) {
v8::Handle<v8::Array> result =
GetKeysForIndexedInterceptor(object, current);
if (!result.IsEmpty())
content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
ASSERT(ContainsOnlyValidKeys(content));
}
// We can cache the computed property keys if access checks are
// not needed and no interceptors are involved.
//
// We do not use the cache if the object has elements and
// therefore it does not make sense to cache the property names
// for arguments objects. Arguments objects will always have
// elements.
// Wrapped strings have elements, but don't have an elements
// array or dictionary. So the fast inline test for whether to
// use the cache says yes, so we should not create a cache.
bool cache_enum_keys =
((current->map()->constructor() != *arguments_function) &&
!current->IsJSValue() &&
!current->IsAccessCheckNeeded() &&
!current->HasNamedInterceptor() &&
!current->HasIndexedInterceptor());
// Compute the property keys and cache them if possible.
content =
UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
ASSERT(ContainsOnlyValidKeys(content));
// Add the property keys from the interceptor.
if (current->HasNamedInterceptor()) {
v8::Handle<v8::Array> result =
GetKeysForNamedInterceptor(object, current);
if (!result.IsEmpty())
content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
ASSERT(ContainsOnlyValidKeys(content));
}
// If we only want local properties we bail out after the first
// iteration.
if (type == LOCAL_ONLY)
break;
}
return content;
}
Handle<JSArray> GetKeysFor(Handle<JSObject> object) {
Counters::for_in.Increment();
Handle<FixedArray> elements = GetKeysInFixedArrayFor(object,
INCLUDE_PROTOS);
return Factory::NewJSArrayWithElements(elements);
}
Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
bool cache_result) {
int index = 0;
if (object->HasFastProperties()) {
if (object->map()->instance_descriptors()->HasEnumCache()) {
Counters::enum_cache_hits.Increment();
DescriptorArray* desc = object->map()->instance_descriptors();
return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache()));
}
Counters::enum_cache_misses.Increment();
int num_enum = object->NumberOfEnumProperties();
Handle<FixedArray> storage = Factory::NewFixedArray(num_enum);
Handle<FixedArray> sort_array = Factory::NewFixedArray(num_enum);
Handle<DescriptorArray> descs =
Handle<DescriptorArray>(object->map()->instance_descriptors());
for (int i = 0; i < descs->number_of_descriptors(); i++) {
if (descs->IsProperty(i) && !descs->IsDontEnum(i)) {
(*storage)->set(index, descs->GetKey(i));
PropertyDetails details(descs->GetDetails(i));
(*sort_array)->set(index, Smi::FromInt(details.index()));
index++;
}
}
(*storage)->SortPairs(*sort_array, sort_array->length());
if (cache_result) {
Handle<FixedArray> bridge_storage =
Factory::NewFixedArray(DescriptorArray::kEnumCacheBridgeLength);
DescriptorArray* desc = object->map()->instance_descriptors();
desc->SetEnumCache(*bridge_storage, *storage);
}
ASSERT(storage->length() == index);
return storage;
} else {
int num_enum = object->NumberOfEnumProperties();
Handle<FixedArray> storage = Factory::NewFixedArray(num_enum);
Handle<FixedArray> sort_array = Factory::NewFixedArray(num_enum);
object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array);
return storage;
}
}
bool EnsureCompiled(Handle<SharedFunctionInfo> shared,
ClearExceptionFlag flag) {
return shared->is_compiled() || CompileLazyShared(shared, flag);
}
static bool CompileLazyHelper(CompilationInfo* info,
ClearExceptionFlag flag) {
// Compile the source information to a code object.
ASSERT(info->IsOptimizing() || !info->shared_info()->is_compiled());
bool result = Compiler::CompileLazy(info);
ASSERT(result != Top::has_pending_exception());
if (!result && flag == CLEAR_EXCEPTION) Top::clear_pending_exception();
return result;
}
bool CompileLazyShared(Handle<SharedFunctionInfo> shared,
ClearExceptionFlag flag) {
CompilationInfo info(shared);
return CompileLazyHelper(&info, flag);
}
bool CompileLazy(Handle<JSFunction> function,
ClearExceptionFlag flag) {
bool result = true;
if (function->shared()->is_compiled()) {
function->ReplaceCode(function->shared()->code());
function->shared()->set_code_age(0);
} else {
CompilationInfo info(function);
result = CompileLazyHelper(&info, flag);
ASSERT(!result || function->is_compiled());
}
if (result && function->is_compiled()) {
PROFILE(FunctionCreateEvent(*function));
}
return result;
}
bool CompileLazyInLoop(Handle<JSFunction> function,
ClearExceptionFlag flag) {
bool result = true;
if (function->shared()->is_compiled()) {
function->ReplaceCode(function->shared()->code());
function->shared()->set_code_age(0);
} else {
CompilationInfo info(function);
info.MarkAsInLoop();
result = CompileLazyHelper(&info, flag);
ASSERT(!result || function->is_compiled());
}
if (result && function->is_compiled()) {
PROFILE(FunctionCreateEvent(*function));
}
return result;
}
bool CompileOptimized(Handle<JSFunction> function, int osr_ast_id) {
CompilationInfo info(function);
info.SetOptimizing(osr_ast_id);
bool result = CompileLazyHelper(&info, KEEP_EXCEPTION);
if (result) PROFILE(FunctionCreateEvent(*function));
return result;
}
OptimizedObjectForAddingMultipleProperties::
OptimizedObjectForAddingMultipleProperties(Handle<JSObject> object,
int expected_additional_properties,
bool condition) {
object_ = object;
if (condition && object_->HasFastProperties()) {
// Normalize the properties of object to avoid n^2 behavior
// when extending the object multiple properties. Indicate the number of
// properties to be added.
unused_property_fields_ = object->map()->unused_property_fields();
NormalizeProperties(object_,
KEEP_INOBJECT_PROPERTIES,
expected_additional_properties);
has_been_transformed_ = true;
} else {
has_been_transformed_ = false;
}
}
OptimizedObjectForAddingMultipleProperties::
~OptimizedObjectForAddingMultipleProperties() {
// Reoptimize the object to allow fast property access.
if (has_been_transformed_) {
TransformToFastProperties(object_, unused_property_fields_);
}
}
} } // namespace v8::internal