blob: 5ef6eb7534a4c94b6a8fe74671778ee9c8945ec6 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "x64/lithium-x64.h"
#include "x64/lithium-codegen-x64.h"
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
void L##type::CompileToNative(LCodeGen* generator) { \
generator->Do##type(this); \
}
LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
LOsrEntry::LOsrEntry() {
for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) {
register_spills_[i] = NULL;
}
for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) {
double_register_spills_[i] = NULL;
}
}
void LOsrEntry::MarkSpilledRegister(int allocation_index,
LOperand* spill_operand) {
ASSERT(spill_operand->IsStackSlot());
ASSERT(register_spills_[allocation_index] == NULL);
register_spills_[allocation_index] = spill_operand;
}
void LOsrEntry::MarkSpilledDoubleRegister(int allocation_index,
LOperand* spill_operand) {
ASSERT(spill_operand->IsDoubleStackSlot());
ASSERT(double_register_spills_[allocation_index] == NULL);
double_register_spills_[allocation_index] = spill_operand;
}
void LInstruction::PrintTo(StringStream* stream) {
stream->Add("%s ", this->Mnemonic());
if (HasResult()) {
PrintOutputOperandTo(stream);
}
PrintDataTo(stream);
if (HasEnvironment()) {
stream->Add(" ");
environment()->PrintTo(stream);
}
if (HasPointerMap()) {
stream->Add(" ");
pointer_map()->PrintTo(stream);
}
}
template<int R, int I, int T>
void LTemplateInstruction<R, I, T>::PrintDataTo(StringStream* stream) {
stream->Add("= ");
inputs_.PrintOperandsTo(stream);
}
template<int R, int I, int T>
void LTemplateInstruction<R, I, T>::PrintOutputOperandTo(StringStream* stream) {
results_.PrintOperandsTo(stream);
}
template<typename T, int N>
void OperandContainer<T, N>::PrintOperandsTo(StringStream* stream) {
for (int i = 0; i < N; i++) {
if (i > 0) stream->Add(" ");
elems_[i]->PrintTo(stream);
}
}
void LLabel::PrintDataTo(StringStream* stream) {
LGap::PrintDataTo(stream);
LLabel* rep = replacement();
if (rep != NULL) {
stream->Add(" Dead block replaced with B%d", rep->block_id());
}
}
bool LGap::IsRedundant() const {
for (int i = 0; i < 4; i++) {
if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) {
return false;
}
}
return true;
}
void LGap::PrintDataTo(StringStream* stream) {
for (int i = 0; i < 4; i++) {
stream->Add("(");
if (parallel_moves_[i] != NULL) {
parallel_moves_[i]->PrintDataTo(stream);
}
stream->Add(") ");
}
}
const char* LArithmeticD::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-d";
case Token::SUB: return "sub-d";
case Token::MUL: return "mul-d";
case Token::DIV: return "div-d";
case Token::MOD: return "mod-d";
default:
UNREACHABLE();
return NULL;
}
}
const char* LArithmeticT::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-t";
case Token::SUB: return "sub-t";
case Token::MUL: return "mul-t";
case Token::MOD: return "mod-t";
case Token::DIV: return "div-t";
default:
UNREACHABLE();
return NULL;
}
}
void LGoto::PrintDataTo(StringStream* stream) {
stream->Add("B%d", block_id());
}
void LBranch::PrintDataTo(StringStream* stream) {
stream->Add("B%d | B%d on ", true_block_id(), false_block_id());
InputAt(0)->PrintTo(stream);
}
void LCmpIDAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if ");
InputAt(0)->PrintTo(stream);
stream->Add(" %s ", Token::String(op()));
InputAt(1)->PrintTo(stream);
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsNullAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if ");
InputAt(0)->PrintTo(stream);
stream->Add(is_strict() ? " === null" : " == null");
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsObjectAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_object(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsSmiAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_smi(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_instance_type(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_cached_array_index(");
InputAt(0)->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if class_of_test(");
InputAt(0)->PrintTo(stream);
stream->Add(", \"%o\") then B%d else B%d",
*hydrogen()->class_name(),
true_block_id(),
false_block_id());
}
void LTypeofIs::PrintDataTo(StringStream* stream) {
InputAt(0)->PrintTo(stream);
stream->Add(" == \"%s\"", *hydrogen()->type_literal()->ToCString());
}
void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if typeof ");
InputAt(0)->PrintTo(stream);
stream->Add(" == \"%s\" then B%d else B%d",
*hydrogen()->type_literal()->ToCString(),
true_block_id(), false_block_id());
}
void LCallConstantFunction::PrintDataTo(StringStream* stream) {
stream->Add("#%d / ", arity());
}
void LUnaryMathOperation::PrintDataTo(StringStream* stream) {
stream->Add("/%s ", hydrogen()->OpName());
InputAt(0)->PrintTo(stream);
}
void LLoadContextSlot::PrintDataTo(StringStream* stream) {
stream->Add("(%d, %d)", context_chain_length(), slot_index());
}
void LCallKeyed::PrintDataTo(StringStream* stream) {
stream->Add("[ecx] #%d / ", arity());
}
void LCallNamed::PrintDataTo(StringStream* stream) {
SmartPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallGlobal::PrintDataTo(StringStream* stream) {
SmartPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallKnownGlobal::PrintDataTo(StringStream* stream) {
stream->Add("#%d / ", arity());
}
void LCallNew::PrintDataTo(StringStream* stream) {
stream->Add("= ");
InputAt(0)->PrintTo(stream);
stream->Add(" #%d / ", arity());
}
void LClassOfTest::PrintDataTo(StringStream* stream) {
stream->Add("= class_of_test(");
InputAt(0)->PrintTo(stream);
stream->Add(", \"%o\")", *hydrogen()->class_name());
}
void LAccessArgumentsAt::PrintDataTo(StringStream* stream) {
arguments()->PrintTo(stream);
stream->Add(" length ");
length()->PrintTo(stream);
stream->Add(" index ");
index()->PrintTo(stream);
}
int LChunk::GetNextSpillIndex(bool is_double) {
return spill_slot_count_++;
}
LOperand* LChunk::GetNextSpillSlot(bool is_double) {
// All stack slots are Double stack slots on x64.
// Alternatively, at some point, start using half-size
// stack slots for int32 values.
int index = GetNextSpillIndex(is_double);
if (is_double) {
return LDoubleStackSlot::Create(index);
} else {
return LStackSlot::Create(index);
}
}
void LChunk::MarkEmptyBlocks() {
HPhase phase("Mark empty blocks", this);
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
int first = block->first_instruction_index();
int last = block->last_instruction_index();
LInstruction* first_instr = instructions()->at(first);
LInstruction* last_instr = instructions()->at(last);
LLabel* label = LLabel::cast(first_instr);
if (last_instr->IsGoto()) {
LGoto* goto_instr = LGoto::cast(last_instr);
if (!goto_instr->include_stack_check() &&
label->IsRedundant() &&
!label->is_loop_header()) {
bool can_eliminate = true;
for (int i = first + 1; i < last && can_eliminate; ++i) {
LInstruction* cur = instructions()->at(i);
if (cur->IsGap()) {
LGap* gap = LGap::cast(cur);
if (!gap->IsRedundant()) {
can_eliminate = false;
}
} else {
can_eliminate = false;
}
}
if (can_eliminate) {
label->set_replacement(GetLabel(goto_instr->block_id()));
}
}
}
}
}
void LStoreNamed::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LStoreKeyed::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
stream->Add("] <- ");
value()->PrintTo(stream);
}
int LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) {
LGap* gap = new LGap(block);
int index = -1;
if (instr->IsControl()) {
instructions_.Add(gap);
index = instructions_.length();
instructions_.Add(instr);
} else {
index = instructions_.length();
instructions_.Add(instr);
instructions_.Add(gap);
}
if (instr->HasPointerMap()) {
pointer_maps_.Add(instr->pointer_map());
instr->pointer_map()->set_lithium_position(index);
}
return index;
}
LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) {
return LConstantOperand::Create(constant->id());
}
int LChunk::GetParameterStackSlot(int index) const {
// The receiver is at index 0, the first parameter at index 1, so we
// shift all parameter indexes down by the number of parameters, and
// make sure they end up negative so they are distinguishable from
// spill slots.
int result = index - graph()->info()->scope()->num_parameters() - 1;
ASSERT(result < 0);
return result;
}
// A parameter relative to ebp in the arguments stub.
int LChunk::ParameterAt(int index) {
ASSERT(-1 <= index); // -1 is the receiver.
return (1 + graph()->info()->scope()->num_parameters() - index) *
kPointerSize;
}
LGap* LChunk::GetGapAt(int index) const {
return LGap::cast(instructions_[index]);
}
bool LChunk::IsGapAt(int index) const {
return instructions_[index]->IsGap();
}
int LChunk::NearestGapPos(int index) const {
while (!IsGapAt(index)) index--;
return index;
}
void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) {
GetGapAt(index)->GetOrCreateParallelMove(LGap::START)->AddMove(from, to);
}
Handle<Object> LChunk::LookupLiteral(LConstantOperand* operand) const {
return HConstant::cast(graph_->LookupValue(operand->index()))->handle();
}
Representation LChunk::LookupLiteralRepresentation(
LConstantOperand* operand) const {
return graph_->LookupValue(operand->index())->representation();
}
LChunk* LChunkBuilder::Build() {
ASSERT(is_unused());
chunk_ = new LChunk(graph());
HPhase phase("Building chunk", chunk_);
status_ = BUILDING;
const ZoneList<HBasicBlock*>* blocks = graph()->blocks();
for (int i = 0; i < blocks->length(); i++) {
HBasicBlock* next = NULL;
if (i < blocks->length() - 1) next = blocks->at(i + 1);
DoBasicBlock(blocks->at(i), next);
if (is_aborted()) return NULL;
}
status_ = DONE;
return chunk_;
}
void LChunkBuilder::Abort(const char* format, ...) {
if (FLAG_trace_bailout) {
SmartPointer<char> debug_name = graph()->debug_name()->ToCString();
PrintF("Aborting LChunk building in @\"%s\": ", *debug_name);
va_list arguments;
va_start(arguments, format);
OS::VPrint(format, arguments);
va_end(arguments);
PrintF("\n");
}
status_ = ABORTED;
}
LRegister* LChunkBuilder::ToOperand(Register reg) {
return LRegister::Create(Register::ToAllocationIndex(reg));
}
LUnallocated* LChunkBuilder::ToUnallocated(Register reg) {
return new LUnallocated(LUnallocated::FIXED_REGISTER,
Register::ToAllocationIndex(reg));
}
LUnallocated* LChunkBuilder::ToUnallocated(XMMRegister reg) {
return new LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER,
XMMRegister::ToAllocationIndex(reg));
}
LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) {
return Use(value, ToUnallocated(fixed_register));
}
LOperand* LChunkBuilder::UseFixedDouble(HValue* value, XMMRegister reg) {
return Use(value, ToUnallocated(reg));
}
LOperand* LChunkBuilder::UseRegister(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) {
return Use(value,
new LUnallocated(LUnallocated::MUST_HAVE_REGISTER,
LUnallocated::USED_AT_START));
}
LOperand* LChunkBuilder::UseTempRegister(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::WRITABLE_REGISTER));
}
LOperand* LChunkBuilder::Use(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::NONE));
}
LOperand* LChunkBuilder::UseAtStart(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::NONE,
LUnallocated::USED_AT_START));
}
LOperand* LChunkBuilder::UseOrConstant(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: Use(value);
}
LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseAtStart(value);
}
LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseRegister(value);
}
LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseRegisterAtStart(value);
}
LOperand* LChunkBuilder::UseAny(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: Use(value, new LUnallocated(LUnallocated::ANY));
}
LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) {
if (value->EmitAtUses()) {
HInstruction* instr = HInstruction::cast(value);
VisitInstruction(instr);
}
allocator_->RecordUse(value, operand);
return operand;
}
template<int I, int T>
LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr,
LUnallocated* result) {
allocator_->RecordDefinition(current_instruction_, result);
instr->set_result(result);
return instr;
}
template<int I, int T>
LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::NONE));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineAsRegister(
LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineAsSpilled(
LTemplateInstruction<1, I, T>* instr,
int index) {
return Define(instr, new LUnallocated(LUnallocated::FIXED_SLOT, index));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineSameAsFirst(
LTemplateInstruction<1, I, T>* instr) {
return Define(instr, new LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineFixed(LTemplateInstruction<1, I, T>* instr,
Register reg) {
return Define(instr, ToUnallocated(reg));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineFixedDouble(
LTemplateInstruction<1, I, T>* instr,
XMMRegister reg) {
return Define(instr, ToUnallocated(reg));
}
LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) {
HEnvironment* hydrogen_env = current_block_->last_environment();
instr->set_environment(CreateEnvironment(hydrogen_env));
return instr;
}
LInstruction* LChunkBuilder::SetInstructionPendingDeoptimizationEnvironment(
LInstruction* instr, int ast_id) {
ASSERT(instructions_pending_deoptimization_environment_ == NULL);
ASSERT(pending_deoptimization_ast_id_ == AstNode::kNoNumber);
instructions_pending_deoptimization_environment_ = instr;
pending_deoptimization_ast_id_ = ast_id;
return instr;
}
void LChunkBuilder::ClearInstructionPendingDeoptimizationEnvironment() {
instructions_pending_deoptimization_environment_ = NULL;
pending_deoptimization_ast_id_ = AstNode::kNoNumber;
}
LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize) {
allocator_->MarkAsCall();
instr = AssignPointerMap(instr);
if (hinstr->HasSideEffects()) {
ASSERT(hinstr->next()->IsSimulate());
HSimulate* sim = HSimulate::cast(hinstr->next());
instr = SetInstructionPendingDeoptimizationEnvironment(
instr, sim->ast_id());
}
// If instruction does not have side-effects lazy deoptimization
// after the call will try to deoptimize to the point before the call.
// Thus we still need to attach environment to this call even if
// call sequence can not deoptimize eagerly.
bool needs_environment =
(can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) || !hinstr->HasSideEffects();
if (needs_environment && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
return instr;
}
LInstruction* LChunkBuilder::MarkAsSaveDoubles(LInstruction* instr) {
allocator_->MarkAsSaveDoubles();
return instr;
}
LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) {
ASSERT(!instr->HasPointerMap());
instr->set_pointer_map(new LPointerMap(position_));
return instr;
}
LUnallocated* LChunkBuilder::TempRegister() {
LUnallocated* operand = new LUnallocated(LUnallocated::MUST_HAVE_REGISTER);
allocator_->RecordTemporary(operand);
return operand;
}
LOperand* LChunkBuilder::FixedTemp(Register reg) {
LUnallocated* operand = ToUnallocated(reg);
allocator_->RecordTemporary(operand);
return operand;
}
LOperand* LChunkBuilder::FixedTemp(XMMRegister reg) {
LUnallocated* operand = ToUnallocated(reg);
allocator_->RecordTemporary(operand);
return operand;
}
LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) {
return new LLabel(instr->block());
}
LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
return AssignEnvironment(new LDeoptimize);
}
LInstruction* LChunkBuilder::DoBit(Token::Value op,
HBitwiseBinaryOperation* instr) {
Abort("Unimplemented: %s", "DoBit");
return NULL;
}
LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr) {
Abort("Unimplemented: %s", "DoArithmeticD");
return NULL;
}
LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(op == Token::ADD ||
op == Token::DIV ||
op == Token::MOD ||
op == Token::MUL ||
op == Token::SUB);
HValue* left = instr->left();
HValue* right = instr->right();
ASSERT(left->representation().IsTagged());
ASSERT(right->representation().IsTagged());
LOperand* left_operand = UseFixed(left, rdx);
LOperand* right_operand = UseFixed(right, rax);
LArithmeticT* result = new LArithmeticT(op, left_operand, right_operand);
return MarkAsCall(DefineFixed(result, rax), instr);
}
void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) {
ASSERT(is_building());
current_block_ = block;
next_block_ = next_block;
if (block->IsStartBlock()) {
block->UpdateEnvironment(graph_->start_environment());
argument_count_ = 0;
} else if (block->predecessors()->length() == 1) {
// We have a single predecessor => copy environment and outgoing
// argument count from the predecessor.
ASSERT(block->phis()->length() == 0);
HBasicBlock* pred = block->predecessors()->at(0);
HEnvironment* last_environment = pred->last_environment();
ASSERT(last_environment != NULL);
// Only copy the environment, if it is later used again.
if (pred->end()->SecondSuccessor() == NULL) {
ASSERT(pred->end()->FirstSuccessor() == block);
} else {
if (pred->end()->FirstSuccessor()->block_id() > block->block_id() ||
pred->end()->SecondSuccessor()->block_id() > block->block_id()) {
last_environment = last_environment->Copy();
}
}
block->UpdateEnvironment(last_environment);
ASSERT(pred->argument_count() >= 0);
argument_count_ = pred->argument_count();
} else {
// We are at a state join => process phis.
HBasicBlock* pred = block->predecessors()->at(0);
// No need to copy the environment, it cannot be used later.
HEnvironment* last_environment = pred->last_environment();
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
last_environment->SetValueAt(phi->merged_index(), phi);
}
for (int i = 0; i < block->deleted_phis()->length(); ++i) {
last_environment->SetValueAt(block->deleted_phis()->at(i),
graph_->GetConstantUndefined());
}
block->UpdateEnvironment(last_environment);
// Pick up the outgoing argument count of one of the predecessors.
argument_count_ = pred->argument_count();
}
HInstruction* current = block->first();
int start = chunk_->instructions()->length();
while (current != NULL && !is_aborted()) {
// Code for constants in registers is generated lazily.
if (!current->EmitAtUses()) {
VisitInstruction(current);
}
current = current->next();
}
int end = chunk_->instructions()->length() - 1;
if (end >= start) {
block->set_first_instruction_index(start);
block->set_last_instruction_index(end);
}
block->set_argument_count(argument_count_);
next_block_ = NULL;
current_block_ = NULL;
}
void LChunkBuilder::VisitInstruction(HInstruction* current) {
HInstruction* old_current = current_instruction_;
current_instruction_ = current;
allocator_->BeginInstruction();
if (current->has_position()) position_ = current->position();
LInstruction* instr = current->CompileToLithium(this);
if (instr != NULL) {
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
if (current->IsBranch() && !instr->IsGoto()) {
// TODO(fschneider): Handle branch instructions uniformly like
// other instructions. This requires us to generate the right
// branch instruction already at the HIR level.
ASSERT(instr->IsControl());
HBranch* branch = HBranch::cast(current);
instr->set_hydrogen_value(branch->value());
HBasicBlock* first = branch->FirstSuccessor();
HBasicBlock* second = branch->SecondSuccessor();
ASSERT(first != NULL && second != NULL);
instr->SetBranchTargets(first->block_id(), second->block_id());
} else {
instr->set_hydrogen_value(current);
}
int index = chunk_->AddInstruction(instr, current_block_);
allocator_->SummarizeInstruction(index);
} else {
// This instruction should be omitted.
allocator_->OmitInstruction();
}
current_instruction_ = old_current;
}
LEnvironment* LChunkBuilder::CreateEnvironment(HEnvironment* hydrogen_env) {
if (hydrogen_env == NULL) return NULL;
LEnvironment* outer = CreateEnvironment(hydrogen_env->outer());
int ast_id = hydrogen_env->ast_id();
ASSERT(ast_id != AstNode::kNoNumber);
int value_count = hydrogen_env->length();
LEnvironment* result = new LEnvironment(hydrogen_env->closure(),
ast_id,
hydrogen_env->parameter_count(),
argument_count_,
value_count,
outer);
int argument_index = 0;
for (int i = 0; i < value_count; ++i) {
HValue* value = hydrogen_env->values()->at(i);
LOperand* op = NULL;
if (value->IsArgumentsObject()) {
op = NULL;
} else if (value->IsPushArgument()) {
op = new LArgument(argument_index++);
} else {
op = UseAny(value);
}
result->AddValue(op, value->representation());
}
return result;
}
LInstruction* LChunkBuilder::DoGoto(HGoto* instr) {
LGoto* result = new LGoto(instr->FirstSuccessor()->block_id(),
instr->include_stack_check());
return (instr->include_stack_check())
? AssignPointerMap(result)
: result;
}
LInstruction* LChunkBuilder::DoBranch(HBranch* instr) {
Abort("Unimplemented: %s", "DoBranch");
return NULL;
}
LInstruction* LChunkBuilder::DoCompareMapAndBranch(
HCompareMapAndBranch* instr) {
Abort("Unimplemented: %s", "DoCompareMapAndBranch");
return NULL;
}
LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) {
Abort("Unimplemented: %s", "DoArgumentsLength");
return NULL;
}
LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) {
Abort("Unimplemented: %s", "DoArgumentsElements");
return NULL;
}
LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) {
Abort("Unimplemented: %s", "DoInstanceOf");
return NULL;
}
LInstruction* LChunkBuilder::DoInstanceOfKnownGlobal(
HInstanceOfKnownGlobal* instr) {
Abort("Unimplemented: %s", "DoInstanceOfKnownGlobal");
return NULL;
}
LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) {
Abort("Unimplemented: %s", "DoApplyArguments");
return NULL;
}
LInstruction* LChunkBuilder::DoPushArgument(HPushArgument* instr) {
Abort("Unimplemented: %s", "DoPushArgument");
return NULL;
}
LInstruction* LChunkBuilder::DoGlobalObject(HGlobalObject* instr) {
Abort("Unimplemented: %s", "DoGlobalObject");
return NULL;
}
LInstruction* LChunkBuilder::DoGlobalReceiver(HGlobalReceiver* instr) {
Abort("Unimplemented: %s", "DoGlobalReceiver");
return NULL;
}
LInstruction* LChunkBuilder::DoCallConstantFunction(
HCallConstantFunction* instr) {
Abort("Unimplemented: %s", "DoCallConstantFunction");
return NULL;
}
LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
Abort("Unimplemented: %s", "DoUnaryMathOperation");
return NULL;
}
LInstruction* LChunkBuilder::DoCallKeyed(HCallKeyed* instr) {
Abort("Unimplemented: %s", "DoCallKeyed");
return NULL;
}
LInstruction* LChunkBuilder::DoCallNamed(HCallNamed* instr) {
Abort("Unimplemented: %s", "DoCallNamed");
return NULL;
}
LInstruction* LChunkBuilder::DoCallGlobal(HCallGlobal* instr) {
Abort("Unimplemented: %s", "DoCallGlobal");
return NULL;
}
LInstruction* LChunkBuilder::DoCallKnownGlobal(HCallKnownGlobal* instr) {
Abort("Unimplemented: %s", "DoCallKnownGlobal");
return NULL;
}
LInstruction* LChunkBuilder::DoCallNew(HCallNew* instr) {
Abort("Unimplemented: %s", "DoCallNew");
return NULL;
}
LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) {
Abort("Unimplemented: %s", "DoCallFunction");
return NULL;
}
LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) {
Abort("Unimplemented: %s", "DoCallRuntime");
return NULL;
}
LInstruction* LChunkBuilder::DoShr(HShr* instr) {
Abort("Unimplemented: %s", "DoShr");
return NULL;
}
LInstruction* LChunkBuilder::DoSar(HSar* instr) {
Abort("Unimplemented: %s", "DoSar");
return NULL;
}
LInstruction* LChunkBuilder::DoShl(HShl* instr) {
Abort("Unimplemented: %s", "DoShl");
return NULL;
}
LInstruction* LChunkBuilder::DoBitAnd(HBitAnd* instr) {
Abort("Unimplemented: %s", "DoBitAnd");
return NULL;
}
LInstruction* LChunkBuilder::DoBitNot(HBitNot* instr) {
Abort("Unimplemented: %s", "DoBitNot");
return NULL;
}
LInstruction* LChunkBuilder::DoBitOr(HBitOr* instr) {
Abort("Unimplemented: %s", "DoBitOr");
return NULL;
}
LInstruction* LChunkBuilder::DoBitXor(HBitXor* instr) {
Abort("Unimplemented: %s", "DoBitXor");
return NULL;
}
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
Abort("Unimplemented: %s", "DoDiv");
return NULL;
}
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
Abort("Unimplemented: %s", "DoMod");
return NULL;
}
LInstruction* LChunkBuilder::DoMul(HMul* instr) {
Abort("Unimplemented: %s", "DoMul");
return NULL;
}
LInstruction* LChunkBuilder::DoSub(HSub* instr) {
Abort("Unimplemented: %s", "DoSub");
return NULL;
}
LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand());
LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand());
LAddI* add = new LAddI(left, right);
LInstruction* result = DefineSameAsFirst(add);
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
Abort("Unimplemented: %s", "DoAdd on Doubles");
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::ADD, instr);
}
return NULL;
}
LInstruction* LChunkBuilder::DoPower(HPower* instr) {
Abort("Unimplemented: %s", "DoPower");
return NULL;
}
LInstruction* LChunkBuilder::DoCompare(HCompare* instr) {
Abort("Unimplemented: %s", "DoCompare");
return NULL;
}
LInstruction* LChunkBuilder::DoCompareJSObjectEq(
HCompareJSObjectEq* instr) {
Abort("Unimplemented: %s", "DoCompareJSObjectEq");
return NULL;
}
LInstruction* LChunkBuilder::DoIsNull(HIsNull* instr) {
Abort("Unimplemented: %s", "DoIsNull");
return NULL;
}
LInstruction* LChunkBuilder::DoIsObject(HIsObject* instr) {
Abort("Unimplemented: %s", "DoIsObject");
return NULL;
}
LInstruction* LChunkBuilder::DoIsSmi(HIsSmi* instr) {
Abort("Unimplemented: %s", "DoIsSmi");
return NULL;
}
LInstruction* LChunkBuilder::DoHasInstanceType(HHasInstanceType* instr) {
Abort("Unimplemented: %s", "DoHasInstanceType");
return NULL;
}
LInstruction* LChunkBuilder::DoHasCachedArrayIndex(
HHasCachedArrayIndex* instr) {
Abort("Unimplemented: %s", "DoHasCachedArrayIndex");
return NULL;
}
LInstruction* LChunkBuilder::DoClassOfTest(HClassOfTest* instr) {
Abort("Unimplemented: %s", "DoClassOfTest");
return NULL;
}
LInstruction* LChunkBuilder::DoJSArrayLength(HJSArrayLength* instr) {
Abort("Unimplemented: %s", "DoJSArrayLength");
return NULL;
}
LInstruction* LChunkBuilder::DoFixedArrayLength(HFixedArrayLength* instr) {
Abort("Unimplemented: %s", "DoFixedArrayLength");
return NULL;
}
LInstruction* LChunkBuilder::DoValueOf(HValueOf* instr) {
Abort("Unimplemented: %s", "DoValueOf");
return NULL;
}
LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) {
Abort("Unimplemented: %s", "DoBoundsCheck");
return NULL;
}
LInstruction* LChunkBuilder::DoThrow(HThrow* instr) {
Abort("Unimplemented: %s", "DoThrow");
return NULL;
}
LInstruction* LChunkBuilder::DoChange(HChange* instr) {
Abort("Unimplemented: %s", "DoChange");
return NULL;
}
LInstruction* LChunkBuilder::DoCheckNonSmi(HCheckNonSmi* instr) {
Abort("Unimplemented: %s", "DoCheckNonSmi");
return NULL;
}
LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) {
Abort("Unimplemented: %s", "DoCheckInstanceType");
return NULL;
}
LInstruction* LChunkBuilder::DoCheckPrototypeMaps(HCheckPrototypeMaps* instr) {
Abort("Unimplemented: %s", "DoCheckPrototypeMaps");
return NULL;
}
LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) {
Abort("Unimplemented: %s", "DoCheckSmi");
return NULL;
}
LInstruction* LChunkBuilder::DoCheckFunction(HCheckFunction* instr) {
Abort("Unimplemented: %s", "DoCheckFunction");
return NULL;
}
LInstruction* LChunkBuilder::DoCheckMap(HCheckMap* instr) {
Abort("Unimplemented: %s", "DoCheckMap");
return NULL;
}
LInstruction* LChunkBuilder::DoReturn(HReturn* instr) {
return new LReturn(UseFixed(instr->value(), rax));
}
LInstruction* LChunkBuilder::DoConstant(HConstant* instr) {
Representation r = instr->representation();
if (r.IsInteger32()) {
int32_t value = instr->Integer32Value();
return DefineAsRegister(new LConstantI(value));
} else if (r.IsDouble()) {
double value = instr->DoubleValue();
LOperand* temp = TempRegister();
return DefineAsRegister(new LConstantD(value, temp));
} else if (r.IsTagged()) {
return DefineAsRegister(new LConstantT(instr->handle()));
} else {
UNREACHABLE();
return NULL;
}
}
LInstruction* LChunkBuilder::DoLoadGlobal(HLoadGlobal* instr) {
Abort("Unimplemented: %s", "DoLoadGlobal");
return NULL;
}
LInstruction* LChunkBuilder::DoStoreGlobal(HStoreGlobal* instr) {
Abort("Unimplemented: %s", "DoStoreGlobal");
return NULL;
}
LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) {
Abort("Unimplemented: %s", "DoLoadContextSlot");
return NULL;
}
LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) {
Abort("Unimplemented: %s", "DoLoadNamedField");
return NULL;
}
LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) {
Abort("Unimplemented: %s", "DoLoadNamedGeneric");
return NULL;
}
LInstruction* LChunkBuilder::DoLoadFunctionPrototype(
HLoadFunctionPrototype* instr) {
Abort("Unimplemented: %s", "DoLoadFunctionPrototype");
return NULL;
}
LInstruction* LChunkBuilder::DoLoadElements(HLoadElements* instr) {
Abort("Unimplemented: %s", "DoLoadElements");
return NULL;
}
LInstruction* LChunkBuilder::DoLoadKeyedFastElement(
HLoadKeyedFastElement* instr) {
Abort("Unimplemented: %s", "DoLoadKeyedFastElement");
return NULL;
}
LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) {
Abort("Unimplemented: %s", "DoLoadKeyedGeneric");
return NULL;
}
LInstruction* LChunkBuilder::DoStoreKeyedFastElement(
HStoreKeyedFastElement* instr) {
Abort("Unimplemented: %s", "DoStoreKeyedFastElement");
return NULL;
}
LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) {
Abort("Unimplemented: %s", "DoStoreKeyedGeneric");
return NULL;
}
LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) {
Abort("Unimplemented: %s", "DoStoreNamedField");
return NULL;
}
LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) {
Abort("Unimplemented: %s", "DoStoreNamedGeneric");
return NULL;
}
LInstruction* LChunkBuilder::DoArrayLiteral(HArrayLiteral* instr) {
Abort("Unimplemented: %s", "DoArrayLiteral");
return NULL;
}
LInstruction* LChunkBuilder::DoObjectLiteral(HObjectLiteral* instr) {
Abort("Unimplemented: %s", "DoObjectLiteral");
return NULL;
}
LInstruction* LChunkBuilder::DoRegExpLiteral(HRegExpLiteral* instr) {
Abort("Unimplemented: %s", "DoRegExpLiteral");
return NULL;
}
LInstruction* LChunkBuilder::DoFunctionLiteral(HFunctionLiteral* instr) {
Abort("Unimplemented: %s", "DoFunctionLiteral");
return NULL;
}
LInstruction* LChunkBuilder::DoDeleteProperty(HDeleteProperty* instr) {
Abort("Unimplemented: %s", "DoDeleteProperty");
return NULL;
}
LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) {
Abort("Unimplemented: %s", "DoOsrEntry");
return NULL;
}
LInstruction* LChunkBuilder::DoParameter(HParameter* instr) {
int spill_index = chunk()->GetParameterStackSlot(instr->index());
return DefineAsSpilled(new LParameter, spill_index);
}
LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) {
Abort("Unimplemented: %s", "DoUnknownOSRValue");
return NULL;
}
LInstruction* LChunkBuilder::DoCallStub(HCallStub* instr) {
Abort("Unimplemented: %s", "DoCallStub");
return NULL;
}
LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) {
Abort("Unimplemented: %s", "DoArgumentsObject");
return NULL;
}
LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) {
Abort("Unimplemented: %s", "DoAccessArgumentsAt");
return NULL;
}
LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) {
Abort("Unimplemented: %s", "DoTypeof");
return NULL;
}
LInstruction* LChunkBuilder::DoTypeofIs(HTypeofIs* instr) {
Abort("Unimplemented: %s", "DoTypeofIs");
return NULL;
}
LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) {
HEnvironment* env = current_block_->last_environment();
ASSERT(env != NULL);
env->set_ast_id(instr->ast_id());
env->Drop(instr->pop_count());
for (int i = 0; i < instr->values()->length(); ++i) {
HValue* value = instr->values()->at(i);
if (instr->HasAssignedIndexAt(i)) {
env->Bind(instr->GetAssignedIndexAt(i), value);
} else {
env->Push(value);
}
}
ASSERT(env->length() == instr->environment_length());
// If there is an instruction pending deoptimization environment create a
// lazy bailout instruction to capture the environment.
if (pending_deoptimization_ast_id_ == instr->ast_id()) {
LLazyBailout* lazy_bailout = new LLazyBailout;
LInstruction* result = AssignEnvironment(lazy_bailout);
instructions_pending_deoptimization_environment_->
set_deoptimization_environment(result->environment());
ClearInstructionPendingDeoptimizationEnvironment();
return result;
}
return NULL;
}
LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) {
return MarkAsCall(new LStackCheck, instr);
}
LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) {
Abort("Unimplemented: %s", "DoEnterInlined");
return NULL;
}
LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) {
Abort("Unimplemented: %s", "DoLeaveInlined");
return NULL;
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64