| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_ |
| #define V8_ARM_MACRO_ASSEMBLER_ARM_H_ |
| |
| #include "assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declaration. |
| class CallWrapper; |
| |
| // ---------------------------------------------------------------------------- |
| // Static helper functions |
| |
| // Generate a MemOperand for loading a field from an object. |
| static inline MemOperand FieldMemOperand(Register object, int offset) { |
| return MemOperand(object, offset - kHeapObjectTag); |
| } |
| |
| |
| static inline Operand SmiUntagOperand(Register object) { |
| return Operand(object, ASR, kSmiTagSize); |
| } |
| |
| |
| |
| // Give alias names to registers |
| const Register cp = { 8 }; // JavaScript context pointer |
| const Register roots = { 10 }; // Roots array pointer. |
| |
| enum InvokeJSFlags { |
| CALL_JS, |
| JUMP_JS |
| }; |
| |
| |
| // Flags used for the AllocateInNewSpace functions. |
| enum AllocationFlags { |
| // No special flags. |
| NO_ALLOCATION_FLAGS = 0, |
| // Return the pointer to the allocated already tagged as a heap object. |
| TAG_OBJECT = 1 << 0, |
| // The content of the result register already contains the allocation top in |
| // new space. |
| RESULT_CONTAINS_TOP = 1 << 1, |
| // Specify that the requested size of the space to allocate is specified in |
| // words instead of bytes. |
| SIZE_IN_WORDS = 1 << 2 |
| }; |
| |
| |
| // Flags used for the ObjectToDoubleVFPRegister function. |
| enum ObjectToDoubleFlags { |
| // No special flags. |
| NO_OBJECT_TO_DOUBLE_FLAGS = 0, |
| // Object is known to be a non smi. |
| OBJECT_NOT_SMI = 1 << 0, |
| // Don't load NaNs or infinities, branch to the non number case instead. |
| AVOID_NANS_AND_INFINITIES = 1 << 1 |
| }; |
| |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class MacroAssembler: public Assembler { |
| public: |
| // The isolate parameter can be NULL if the macro assembler should |
| // not use isolate-dependent functionality. In this case, it's the |
| // responsibility of the caller to never invoke such function on the |
| // macro assembler. |
| MacroAssembler(Isolate* isolate, void* buffer, int size); |
| |
| // Jump, Call, and Ret pseudo instructions implementing inter-working. |
| void Jump(Register target, Condition cond = al); |
| void Jump(byte* target, RelocInfo::Mode rmode, Condition cond = al); |
| void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); |
| static int CallSize(Register target, Condition cond = al); |
| void Call(Register target, Condition cond = al); |
| static int CallSize(byte* target, RelocInfo::Mode rmode, Condition cond = al); |
| void Call(byte* target, RelocInfo::Mode rmode, Condition cond = al); |
| static int CallSize(Handle<Code> code, |
| RelocInfo::Mode rmode, |
| Condition cond = al); |
| void Call(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); |
| void Ret(Condition cond = al); |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the sp register. |
| void Drop(int count, Condition cond = al); |
| |
| void Ret(int drop, Condition cond = al); |
| |
| // Swap two registers. If the scratch register is omitted then a slightly |
| // less efficient form using xor instead of mov is emitted. |
| void Swap(Register reg1, |
| Register reg2, |
| Register scratch = no_reg, |
| Condition cond = al); |
| |
| |
| void And(Register dst, Register src1, const Operand& src2, |
| Condition cond = al); |
| void Ubfx(Register dst, Register src, int lsb, int width, |
| Condition cond = al); |
| void Sbfx(Register dst, Register src, int lsb, int width, |
| Condition cond = al); |
| // The scratch register is not used for ARMv7. |
| // scratch can be the same register as src (in which case it is trashed), but |
| // not the same as dst. |
| void Bfi(Register dst, |
| Register src, |
| Register scratch, |
| int lsb, |
| int width, |
| Condition cond = al); |
| void Bfc(Register dst, int lsb, int width, Condition cond = al); |
| void Usat(Register dst, int satpos, const Operand& src, |
| Condition cond = al); |
| |
| void Call(Label* target); |
| void Move(Register dst, Handle<Object> value); |
| // May do nothing if the registers are identical. |
| void Move(Register dst, Register src); |
| // Jumps to the label at the index given by the Smi in "index". |
| void SmiJumpTable(Register index, Vector<Label*> targets); |
| // Load an object from the root table. |
| void LoadRoot(Register destination, |
| Heap::RootListIndex index, |
| Condition cond = al); |
| // Store an object to the root table. |
| void StoreRoot(Register source, |
| Heap::RootListIndex index, |
| Condition cond = al); |
| |
| |
| // Check if object is in new space. |
| // scratch can be object itself, but it will be clobbered. |
| void InNewSpace(Register object, |
| Register scratch, |
| Condition cond, // eq for new space, ne otherwise |
| Label* branch); |
| |
| |
| // For the page containing |object| mark the region covering [address] |
| // dirty. The object address must be in the first 8K of an allocated page. |
| void RecordWriteHelper(Register object, |
| Register address, |
| Register scratch); |
| |
| // For the page containing |object| mark the region covering |
| // [object+offset] dirty. The object address must be in the first 8K |
| // of an allocated page. The 'scratch' registers are used in the |
| // implementation and all 3 registers are clobbered by the |
| // operation, as well as the ip register. RecordWrite updates the |
| // write barrier even when storing smis. |
| void RecordWrite(Register object, |
| Operand offset, |
| Register scratch0, |
| Register scratch1); |
| |
| // For the page containing |object| mark the region covering |
| // [address] dirty. The object address must be in the first 8K of an |
| // allocated page. All 3 registers are clobbered by the operation, |
| // as well as the ip register. RecordWrite updates the write barrier |
| // even when storing smis. |
| void RecordWrite(Register object, |
| Register address, |
| Register scratch); |
| |
| // Push two registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Condition cond = al) { |
| ASSERT(!src1.is(src2)); |
| if (src1.code() > src2.code()) { |
| stm(db_w, sp, src1.bit() | src2.bit(), cond); |
| } else { |
| str(src1, MemOperand(sp, 4, NegPreIndex), cond); |
| str(src2, MemOperand(sp, 4, NegPreIndex), cond); |
| } |
| } |
| |
| // Push three registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Condition cond = al) { |
| ASSERT(!src1.is(src2)); |
| ASSERT(!src2.is(src3)); |
| ASSERT(!src1.is(src3)); |
| if (src1.code() > src2.code()) { |
| if (src2.code() > src3.code()) { |
| stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond); |
| } else { |
| stm(db_w, sp, src1.bit() | src2.bit(), cond); |
| str(src3, MemOperand(sp, 4, NegPreIndex), cond); |
| } |
| } else { |
| str(src1, MemOperand(sp, 4, NegPreIndex), cond); |
| Push(src2, src3, cond); |
| } |
| } |
| |
| // Push four registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, |
| Register src3, Register src4, Condition cond = al) { |
| ASSERT(!src1.is(src2)); |
| ASSERT(!src2.is(src3)); |
| ASSERT(!src1.is(src3)); |
| ASSERT(!src1.is(src4)); |
| ASSERT(!src2.is(src4)); |
| ASSERT(!src3.is(src4)); |
| if (src1.code() > src2.code()) { |
| if (src2.code() > src3.code()) { |
| if (src3.code() > src4.code()) { |
| stm(db_w, |
| sp, |
| src1.bit() | src2.bit() | src3.bit() | src4.bit(), |
| cond); |
| } else { |
| stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond); |
| str(src4, MemOperand(sp, 4, NegPreIndex), cond); |
| } |
| } else { |
| stm(db_w, sp, src1.bit() | src2.bit(), cond); |
| Push(src3, src4, cond); |
| } |
| } else { |
| str(src1, MemOperand(sp, 4, NegPreIndex), cond); |
| Push(src2, src3, src4, cond); |
| } |
| } |
| |
| // Pop two registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2, Condition cond = al) { |
| ASSERT(!src1.is(src2)); |
| if (src1.code() > src2.code()) { |
| ldm(ia_w, sp, src1.bit() | src2.bit(), cond); |
| } else { |
| ldr(src2, MemOperand(sp, 4, PostIndex), cond); |
| ldr(src1, MemOperand(sp, 4, PostIndex), cond); |
| } |
| } |
| |
| // Push and pop the registers that can hold pointers, as defined by the |
| // RegList constant kSafepointSavedRegisters. |
| void PushSafepointRegisters(); |
| void PopSafepointRegisters(); |
| void PushSafepointRegistersAndDoubles(); |
| void PopSafepointRegistersAndDoubles(); |
| // Store value in register src in the safepoint stack slot for |
| // register dst. |
| void StoreToSafepointRegisterSlot(Register src, Register dst); |
| void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst); |
| // Load the value of the src register from its safepoint stack slot |
| // into register dst. |
| void LoadFromSafepointRegisterSlot(Register dst, Register src); |
| |
| // Load two consecutive registers with two consecutive memory locations. |
| void Ldrd(Register dst1, |
| Register dst2, |
| const MemOperand& src, |
| Condition cond = al); |
| |
| // Store two consecutive registers to two consecutive memory locations. |
| void Strd(Register src1, |
| Register src2, |
| const MemOperand& dst, |
| Condition cond = al); |
| |
| // Clear specified FPSCR bits. |
| void ClearFPSCRBits(const uint32_t bits_to_clear, |
| const Register scratch, |
| const Condition cond = al); |
| |
| // Compare double values and move the result to the normal condition flags. |
| void VFPCompareAndSetFlags(const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const Condition cond = al); |
| void VFPCompareAndSetFlags(const DwVfpRegister src1, |
| const double src2, |
| const Condition cond = al); |
| |
| // Compare double values and then load the fpscr flags to a register. |
| void VFPCompareAndLoadFlags(const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const Register fpscr_flags, |
| const Condition cond = al); |
| void VFPCompareAndLoadFlags(const DwVfpRegister src1, |
| const double src2, |
| const Register fpscr_flags, |
| const Condition cond = al); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Activation frames |
| |
| void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } |
| void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } |
| |
| void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } |
| void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } |
| |
| // Enter exit frame. |
| // stack_space - extra stack space, used for alignment before call to C. |
| void EnterExitFrame(bool save_doubles, int stack_space = 0); |
| |
| // Leave the current exit frame. Expects the return value in r0. |
| // Expect the number of values, pushed prior to the exit frame, to |
| // remove in a register (or no_reg, if there is nothing to remove). |
| void LeaveExitFrame(bool save_doubles, Register argument_count); |
| |
| // Get the actual activation frame alignment for target environment. |
| static int ActivationFrameAlignment(); |
| |
| void LoadContext(Register dst, int context_chain_length); |
| |
| void LoadGlobalFunction(int index, Register function); |
| |
| // Load the initial map from the global function. The registers |
| // function and map can be the same, function is then overwritten. |
| void LoadGlobalFunctionInitialMap(Register function, |
| Register map, |
| Register scratch); |
| |
| // --------------------------------------------------------------------------- |
| // JavaScript invokes |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper = NULL); |
| |
| void InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper = NULL); |
| |
| void InvokeFunction(JSFunction* function, |
| const ParameterCount& actual, |
| InvokeFlag flag); |
| |
| void IsObjectJSObjectType(Register heap_object, |
| Register map, |
| Register scratch, |
| Label* fail); |
| |
| void IsInstanceJSObjectType(Register map, |
| Register scratch, |
| Label* fail); |
| |
| void IsObjectJSStringType(Register object, |
| Register scratch, |
| Label* fail); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // --------------------------------------------------------------------------- |
| // Debugger Support |
| |
| void DebugBreak(); |
| #endif |
| |
| // --------------------------------------------------------------------------- |
| // Exception handling |
| |
| // Push a new try handler and link into try handler chain. |
| // The return address must be passed in register lr. |
| // On exit, r0 contains TOS (code slot). |
| void PushTryHandler(CodeLocation try_location, HandlerType type); |
| |
| // Unlink the stack handler on top of the stack from the try handler chain. |
| // Must preserve the result register. |
| void PopTryHandler(); |
| |
| // Passes thrown value (in r0) to the handler of top of the try handler chain. |
| void Throw(Register value); |
| |
| // Propagates an uncatchable exception to the top of the current JS stack's |
| // handler chain. |
| void ThrowUncatchable(UncatchableExceptionType type, Register value); |
| |
| // --------------------------------------------------------------------------- |
| // Inline caching support |
| |
| // Generate code for checking access rights - used for security checks |
| // on access to global objects across environments. The holder register |
| // is left untouched, whereas both scratch registers are clobbered. |
| void CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss); |
| |
| inline void MarkCode(NopMarkerTypes type) { |
| nop(type); |
| } |
| |
| // Check if the given instruction is a 'type' marker. |
| // ie. check if is is a mov r<type>, r<type> (referenced as nop(type)) |
| // These instructions are generated to mark special location in the code, |
| // like some special IC code. |
| static inline bool IsMarkedCode(Instr instr, int type) { |
| ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)); |
| return IsNop(instr, type); |
| } |
| |
| |
| static inline int GetCodeMarker(Instr instr) { |
| int dst_reg_offset = 12; |
| int dst_mask = 0xf << dst_reg_offset; |
| int src_mask = 0xf; |
| int dst_reg = (instr & dst_mask) >> dst_reg_offset; |
| int src_reg = instr & src_mask; |
| uint32_t non_register_mask = ~(dst_mask | src_mask); |
| uint32_t mov_mask = al | 13 << 21; |
| |
| // Return <n> if we have a mov rn rn, else return -1. |
| int type = ((instr & non_register_mask) == mov_mask) && |
| (dst_reg == src_reg) && |
| (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER) |
| ? src_reg |
| : -1; |
| ASSERT((type == -1) || |
| ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER))); |
| return type; |
| } |
| |
| |
| // --------------------------------------------------------------------------- |
| // Allocation support |
| |
| // Allocate an object in new space. The object_size is specified |
| // either in bytes or in words if the allocation flag SIZE_IN_WORDS |
| // is passed. If the new space is exhausted control continues at the |
| // gc_required label. The allocated object is returned in result. If |
| // the flag tag_allocated_object is true the result is tagged as as |
| // a heap object. All registers are clobbered also when control |
| // continues at the gc_required label. |
| void AllocateInNewSpace(int object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags); |
| void AllocateInNewSpace(Register object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| // Undo allocation in new space. The object passed and objects allocated after |
| // it will no longer be allocated. The caller must make sure that no pointers |
| // are left to the object(s) no longer allocated as they would be invalid when |
| // allocation is undone. |
| void UndoAllocationInNewSpace(Register object, Register scratch); |
| |
| |
| void AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateTwoByteConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateAsciiConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Allocates a heap number or jumps to the gc_required label if the young |
| // space is full and a scavenge is needed. All registers are clobbered also |
| // when control continues at the gc_required label. |
| void AllocateHeapNumber(Register result, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* gc_required); |
| void AllocateHeapNumberWithValue(Register result, |
| DwVfpRegister value, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* gc_required); |
| |
| // Copies a fixed number of fields of heap objects from src to dst. |
| void CopyFields(Register dst, Register src, RegList temps, int field_count); |
| |
| // Copies a number of bytes from src to dst. All registers are clobbered. On |
| // exit src and dst will point to the place just after where the last byte was |
| // read or written and length will be zero. |
| void CopyBytes(Register src, |
| Register dst, |
| Register length, |
| Register scratch); |
| |
| // --------------------------------------------------------------------------- |
| // Support functions. |
| |
| // Try to get function prototype of a function and puts the value in |
| // the result register. Checks that the function really is a |
| // function and jumps to the miss label if the fast checks fail. The |
| // function register will be untouched; the other registers may be |
| // clobbered. |
| void TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss); |
| |
| // Compare object type for heap object. heap_object contains a non-Smi |
| // whose object type should be compared with the given type. This both |
| // sets the flags and leaves the object type in the type_reg register. |
| // It leaves the map in the map register (unless the type_reg and map register |
| // are the same register). It leaves the heap object in the heap_object |
| // register unless the heap_object register is the same register as one of the |
| // other registers. |
| void CompareObjectType(Register heap_object, |
| Register map, |
| Register type_reg, |
| InstanceType type); |
| |
| // Compare instance type in a map. map contains a valid map object whose |
| // object type should be compared with the given type. This both |
| // sets the flags and leaves the object type in the type_reg register. It |
| // leaves the heap object in the heap_object register unless the heap_object |
| // register is the same register as type_reg. |
| void CompareInstanceType(Register map, |
| Register type_reg, |
| InstanceType type); |
| |
| |
| // Check if the map of an object is equal to a specified map (either |
| // given directly or as an index into the root list) and branch to |
| // label if not. Skip the smi check if not required (object is known |
| // to be a heap object) |
| void CheckMap(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Label* fail, |
| bool is_heap_object); |
| |
| void CheckMap(Register obj, |
| Register scratch, |
| Heap::RootListIndex index, |
| Label* fail, |
| bool is_heap_object); |
| |
| |
| // Compare the object in a register to a value from the root list. |
| // Uses the ip register as scratch. |
| void CompareRoot(Register obj, Heap::RootListIndex index); |
| |
| |
| // Load and check the instance type of an object for being a string. |
| // Loads the type into the second argument register. |
| // Returns a condition that will be enabled if the object was a string. |
| Condition IsObjectStringType(Register obj, |
| Register type) { |
| ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset)); |
| tst(type, Operand(kIsNotStringMask)); |
| ASSERT_EQ(0, kStringTag); |
| return eq; |
| } |
| |
| |
| // Generates code for reporting that an illegal operation has |
| // occurred. |
| void IllegalOperation(int num_arguments); |
| |
| // Picks out an array index from the hash field. |
| // Register use: |
| // hash - holds the index's hash. Clobbered. |
| // index - holds the overwritten index on exit. |
| void IndexFromHash(Register hash, Register index); |
| |
| // Get the number of least significant bits from a register |
| void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits); |
| void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits); |
| |
| // Uses VFP instructions to Convert a Smi to a double. |
| void IntegerToDoubleConversionWithVFP3(Register inReg, |
| Register outHighReg, |
| Register outLowReg); |
| |
| // Load the value of a number object into a VFP double register. If the object |
| // is not a number a jump to the label not_number is performed and the VFP |
| // double register is unchanged. |
| void ObjectToDoubleVFPRegister( |
| Register object, |
| DwVfpRegister value, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| SwVfpRegister scratch3, |
| Label* not_number, |
| ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS); |
| |
| // Load the value of a smi object into a VFP double register. The register |
| // scratch1 can be the same register as smi in which case smi will hold the |
| // untagged value afterwards. |
| void SmiToDoubleVFPRegister(Register smi, |
| DwVfpRegister value, |
| Register scratch1, |
| SwVfpRegister scratch2); |
| |
| // Convert the HeapNumber pointed to by source to a 32bits signed integer |
| // dest. If the HeapNumber does not fit into a 32bits signed integer branch |
| // to not_int32 label. If VFP3 is available double_scratch is used but not |
| // scratch2. |
| void ConvertToInt32(Register source, |
| Register dest, |
| Register scratch, |
| Register scratch2, |
| DwVfpRegister double_scratch, |
| Label *not_int32); |
| |
| // Truncates a double using a specific rounding mode. |
| // Clears the z flag (ne condition) if an overflow occurs. |
| // If exact_conversion is true, the z flag is also cleared if the conversion |
| // was inexact, ie. if the double value could not be converted exactly |
| // to a 32bit integer. |
| void EmitVFPTruncate(VFPRoundingMode rounding_mode, |
| SwVfpRegister result, |
| DwVfpRegister double_input, |
| Register scratch1, |
| Register scratch2, |
| CheckForInexactConversion check |
| = kDontCheckForInexactConversion); |
| |
| // Helper for EmitECMATruncate. |
| // This will truncate a floating-point value outside of the singed 32bit |
| // integer range to a 32bit signed integer. |
| // Expects the double value loaded in input_high and input_low. |
| // Exits with the answer in 'result'. |
| // Note that this code does not work for values in the 32bit range! |
| void EmitOutOfInt32RangeTruncate(Register result, |
| Register input_high, |
| Register input_low, |
| Register scratch); |
| |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. See ECMA-262 9.5: ToInt32. |
| // Exits with 'result' holding the answer and all other registers clobbered. |
| void EmitECMATruncate(Register result, |
| DwVfpRegister double_input, |
| SwVfpRegister single_scratch, |
| Register scratch, |
| Register scratch2, |
| Register scratch3); |
| |
| // Count leading zeros in a 32 bit word. On ARM5 and later it uses the clz |
| // instruction. On pre-ARM5 hardware this routine gives the wrong answer |
| // for 0 (31 instead of 32). Source and scratch can be the same in which case |
| // the source is clobbered. Source and zeros can also be the same in which |
| // case scratch should be a different register. |
| void CountLeadingZeros(Register zeros, |
| Register source, |
| Register scratch); |
| |
| // --------------------------------------------------------------------------- |
| // Runtime calls |
| |
| // Call a code stub. |
| void CallStub(CodeStub* stub, Condition cond = al); |
| |
| // Call a code stub. |
| void TailCallStub(CodeStub* stub, Condition cond = al); |
| |
| // Tail call a code stub (jump) and return the code object called. Try to |
| // generate the code if necessary. Do not perform a GC but instead return |
| // a retry after GC failure. |
| MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub, |
| Condition cond = al); |
| |
| // Call a runtime routine. |
| void CallRuntime(const Runtime::Function* f, int num_arguments); |
| void CallRuntimeSaveDoubles(Runtime::FunctionId id); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId fid, int num_arguments); |
| |
| // Convenience function: call an external reference. |
| void CallExternalReference(const ExternalReference& ext, |
| int num_arguments); |
| |
| // Tail call of a runtime routine (jump). |
| // Like JumpToExternalReference, but also takes care of passing the number |
| // of parameters. |
| void TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size); |
| |
| // Tail call of a runtime routine (jump). Try to generate the code if |
| // necessary. Do not perform a GC but instead return a retry after GC |
| // failure. |
| MUST_USE_RESULT MaybeObject* TryTailCallExternalReference( |
| const ExternalReference& ext, int num_arguments, int result_size); |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size); |
| |
| // Before calling a C-function from generated code, align arguments on stack. |
| // After aligning the frame, non-register arguments must be stored in |
| // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments |
| // are word sized. |
| // Some compilers/platforms require the stack to be aligned when calling |
| // C++ code. |
| // Needs a scratch register to do some arithmetic. This register will be |
| // trashed. |
| void PrepareCallCFunction(int num_arguments, Register scratch); |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, Register scratch, int num_arguments); |
| |
| void GetCFunctionDoubleResult(const DoubleRegister dst); |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Restores context. |
| // stack_space - space to be unwound on exit (includes the call js |
| // arguments space and the additional space allocated for the fast call). |
| MaybeObject* TryCallApiFunctionAndReturn(ExternalReference function, |
| int stack_space); |
| |
| // Jump to a runtime routine. |
| void JumpToExternalReference(const ExternalReference& builtin); |
| |
| MaybeObject* TryJumpToExternalReference(const ExternalReference& ext); |
| |
| // Invoke specified builtin JavaScript function. Adds an entry to |
| // the unresolved list if the name does not resolve. |
| void InvokeBuiltin(Builtins::JavaScript id, |
| InvokeJSFlags flags, |
| CallWrapper* call_wrapper = NULL); |
| |
| // Store the code object for the given builtin in the target register and |
| // setup the function in r1. |
| void GetBuiltinEntry(Register target, Builtins::JavaScript id); |
| |
| // Store the function for the given builtin in the target register. |
| void GetBuiltinFunction(Register target, Builtins::JavaScript id); |
| |
| Handle<Object> CodeObject() { |
| ASSERT(!code_object_.is_null()); |
| return code_object_; |
| } |
| |
| |
| // --------------------------------------------------------------------------- |
| // StatsCounter support |
| |
| void SetCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| void IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| void DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Debugging |
| |
| // Calls Abort(msg) if the condition cond is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cond, const char* msg); |
| void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index); |
| void AssertFastElements(Register elements); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cond, const char* msg); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(const char* msg); |
| |
| // Verify restrictions about code generated in stubs. |
| void set_generating_stub(bool value) { generating_stub_ = value; } |
| bool generating_stub() { return generating_stub_; } |
| void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } |
| bool allow_stub_calls() { return allow_stub_calls_; } |
| |
| // --------------------------------------------------------------------------- |
| // Number utilities |
| |
| // Check whether the value of reg is a power of two and not zero. If not |
| // control continues at the label not_power_of_two. If reg is a power of two |
| // the register scratch contains the value of (reg - 1) when control falls |
| // through. |
| void JumpIfNotPowerOfTwoOrZero(Register reg, |
| Register scratch, |
| Label* not_power_of_two_or_zero); |
| // Check whether the value of reg is a power of two and not zero. |
| // Control falls through if it is, with scratch containing the mask |
| // value (reg - 1). |
| // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is |
| // zero or negative, or jumps to the 'not_power_of_two' label if the value is |
| // strictly positive but not a power of two. |
| void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, |
| Register scratch, |
| Label* zero_and_neg, |
| Label* not_power_of_two); |
| |
| // --------------------------------------------------------------------------- |
| // Smi utilities |
| |
| void SmiTag(Register reg, SBit s = LeaveCC) { |
| add(reg, reg, Operand(reg), s); |
| } |
| void SmiTag(Register dst, Register src, SBit s = LeaveCC) { |
| add(dst, src, Operand(src), s); |
| } |
| |
| // Try to convert int32 to smi. If the value is to large, preserve |
| // the original value and jump to not_a_smi. Destroys scratch and |
| // sets flags. |
| void TrySmiTag(Register reg, Label* not_a_smi, Register scratch) { |
| mov(scratch, reg); |
| SmiTag(scratch, SetCC); |
| b(vs, not_a_smi); |
| mov(reg, scratch); |
| } |
| |
| void SmiUntag(Register reg, SBit s = LeaveCC) { |
| mov(reg, Operand(reg, ASR, kSmiTagSize), s); |
| } |
| void SmiUntag(Register dst, Register src, SBit s = LeaveCC) { |
| mov(dst, Operand(src, ASR, kSmiTagSize), s); |
| } |
| |
| // Jump the register contains a smi. |
| inline void JumpIfSmi(Register value, Label* smi_label) { |
| tst(value, Operand(kSmiTagMask)); |
| b(eq, smi_label); |
| } |
| // Jump if either of the registers contain a non-smi. |
| inline void JumpIfNotSmi(Register value, Label* not_smi_label) { |
| tst(value, Operand(kSmiTagMask)); |
| b(ne, not_smi_label); |
| } |
| // Jump if either of the registers contain a non-smi. |
| void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi); |
| // Jump if either of the registers contain a smi. |
| void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); |
| |
| // Abort execution if argument is a smi. Used in debug code. |
| void AbortIfSmi(Register object); |
| void AbortIfNotSmi(Register object); |
| |
| // Abort execution if argument is a string. Used in debug code. |
| void AbortIfNotString(Register object); |
| |
| // Abort execution if argument is not the root value with the given index. |
| void AbortIfNotRootValue(Register src, |
| Heap::RootListIndex root_value_index, |
| const char* message); |
| |
| // --------------------------------------------------------------------------- |
| // HeapNumber utilities |
| |
| void JumpIfNotHeapNumber(Register object, |
| Register heap_number_map, |
| Register scratch, |
| Label* on_not_heap_number); |
| |
| // --------------------------------------------------------------------------- |
| // String utilities |
| |
| // Checks if both objects are sequential ASCII strings and jumps to label |
| // if either is not. Assumes that neither object is a smi. |
| void JumpIfNonSmisNotBothSequentialAsciiStrings(Register object1, |
| Register object2, |
| Register scratch1, |
| Register scratch2, |
| Label* failure); |
| |
| // Checks if both objects are sequential ASCII strings and jumps to label |
| // if either is not. |
| void JumpIfNotBothSequentialAsciiStrings(Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* not_flat_ascii_strings); |
| |
| // Checks if both instance types are sequential ASCII strings and jumps to |
| // label if either is not. |
| void JumpIfBothInstanceTypesAreNotSequentialAscii( |
| Register first_object_instance_type, |
| Register second_object_instance_type, |
| Register scratch1, |
| Register scratch2, |
| Label* failure); |
| |
| // Check if instance type is sequential ASCII string and jump to label if |
| // it is not. |
| void JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
| Register scratch, |
| Label* failure); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Patching helpers. |
| |
| // Get the location of a relocated constant (its address in the constant pool) |
| // from its load site. |
| void GetRelocatedValueLocation(Register ldr_location, |
| Register result); |
| |
| |
| private: |
| void CallCFunctionHelper(Register function, |
| ExternalReference function_reference, |
| Register scratch, |
| int num_arguments); |
| |
| void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al); |
| static int CallSize(intptr_t target, |
| RelocInfo::Mode rmode, |
| Condition cond = al); |
| void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = al); |
| |
| // Helper functions for generating invokes. |
| void InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_reg, |
| Label* done, |
| InvokeFlag flag, |
| CallWrapper* call_wrapper = NULL); |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void LeaveFrame(StackFrame::Type type); |
| |
| void InitializeNewString(Register string, |
| Register length, |
| Heap::RootListIndex map_index, |
| Register scratch1, |
| Register scratch2); |
| |
| // Compute memory operands for safepoint stack slots. |
| static int SafepointRegisterStackIndex(int reg_code); |
| MemOperand SafepointRegisterSlot(Register reg); |
| MemOperand SafepointRegistersAndDoublesSlot(Register reg); |
| |
| bool generating_stub_; |
| bool allow_stub_calls_; |
| // This handle will be patched with the code object on installation. |
| Handle<Object> code_object_; |
| |
| // Needs access to SafepointRegisterStackIndex for optimized frame |
| // traversal. |
| friend class OptimizedFrame; |
| }; |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // The code patcher is used to patch (typically) small parts of code e.g. for |
| // debugging and other types of instrumentation. When using the code patcher |
| // the exact number of bytes specified must be emitted. It is not legal to emit |
| // relocation information. If any of these constraints are violated it causes |
| // an assertion to fail. |
| class CodePatcher { |
| public: |
| CodePatcher(byte* address, int instructions); |
| virtual ~CodePatcher(); |
| |
| // Macro assembler to emit code. |
| MacroAssembler* masm() { return &masm_; } |
| |
| // Emit an instruction directly. |
| void Emit(Instr instr); |
| |
| // Emit an address directly. |
| void Emit(Address addr); |
| |
| // Emit the condition part of an instruction leaving the rest of the current |
| // instruction unchanged. |
| void EmitCondition(Condition cond); |
| |
| private: |
| byte* address_; // The address of the code being patched. |
| int instructions_; // Number of instructions of the expected patch size. |
| int size_; // Number of bytes of the expected patch size. |
| MacroAssembler masm_; // Macro assembler used to generate the code. |
| }; |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| // Helper class for generating code or data associated with the code |
| // right after a call instruction. As an example this can be used to |
| // generate safepoint data after calls for crankshaft. |
| class CallWrapper { |
| public: |
| CallWrapper() { } |
| virtual ~CallWrapper() { } |
| // Called just before emitting a call. Argument is the size of the generated |
| // call code. |
| virtual void BeforeCall(int call_size) = 0; |
| // Called just after emitting a call, i.e., at the return site for the call. |
| virtual void AfterCall() = 0; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| static MemOperand ContextOperand(Register context, int index) { |
| return MemOperand(context, Context::SlotOffset(index)); |
| } |
| |
| |
| static inline MemOperand GlobalObjectOperand() { |
| return ContextOperand(cp, Context::GLOBAL_INDEX); |
| } |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| #define CODE_COVERAGE_STRINGIFY(x) #x |
| #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) |
| #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) |
| #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> |
| #else |
| #define ACCESS_MASM(masm) masm-> |
| #endif |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_ |