blob: 351636faf776502f5203985745c8917857af195e [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_IA32_CODE_STUBS_IA32_H_
#define V8_IA32_CODE_STUBS_IA32_H_
#include "macro-assembler.h"
#include "code-stubs.h"
#include "ic-inl.h"
namespace v8 {
namespace internal {
// Compute a transcendental math function natively, or call the
// TranscendentalCache runtime function.
class TranscendentalCacheStub: public CodeStub {
public:
explicit TranscendentalCacheStub(TranscendentalCache::Type type)
: type_(type) {}
void Generate(MacroAssembler* masm);
private:
TranscendentalCache::Type type_;
Major MajorKey() { return TranscendentalCache; }
int MinorKey() { return type_; }
Runtime::FunctionId RuntimeFunction();
void GenerateOperation(MacroAssembler* masm);
};
class ToBooleanStub: public CodeStub {
public:
ToBooleanStub() { }
void Generate(MacroAssembler* masm);
private:
Major MajorKey() { return ToBoolean; }
int MinorKey() { return 0; }
};
// Flag that indicates how to generate code for the stub GenericBinaryOpStub.
enum GenericBinaryFlags {
NO_GENERIC_BINARY_FLAGS = 0,
NO_SMI_CODE_IN_STUB = 1 << 0 // Omit smi code in stub.
};
class GenericBinaryOpStub: public CodeStub {
public:
GenericBinaryOpStub(Token::Value op,
OverwriteMode mode,
GenericBinaryFlags flags,
TypeInfo operands_type)
: op_(op),
mode_(mode),
flags_(flags),
args_in_registers_(false),
args_reversed_(false),
static_operands_type_(operands_type),
runtime_operands_type_(BinaryOpIC::DEFAULT),
name_(NULL) {
if (static_operands_type_.IsSmi()) {
mode_ = NO_OVERWRITE;
}
use_sse3_ = CpuFeatures::IsSupported(SSE3);
ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
}
GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo runtime_operands_type)
: op_(OpBits::decode(key)),
mode_(ModeBits::decode(key)),
flags_(FlagBits::decode(key)),
args_in_registers_(ArgsInRegistersBits::decode(key)),
args_reversed_(ArgsReversedBits::decode(key)),
use_sse3_(SSE3Bits::decode(key)),
static_operands_type_(TypeInfo::ExpandedRepresentation(
StaticTypeInfoBits::decode(key))),
runtime_operands_type_(runtime_operands_type),
name_(NULL) {
}
// Generate code to call the stub with the supplied arguments. This will add
// code at the call site to prepare arguments either in registers or on the
// stack together with the actual call.
void GenerateCall(MacroAssembler* masm, Register left, Register right);
void GenerateCall(MacroAssembler* masm, Register left, Smi* right);
void GenerateCall(MacroAssembler* masm, Smi* left, Register right);
bool ArgsInRegistersSupported() {
return op_ == Token::ADD || op_ == Token::SUB
|| op_ == Token::MUL || op_ == Token::DIV;
}
private:
Token::Value op_;
OverwriteMode mode_;
GenericBinaryFlags flags_;
bool args_in_registers_; // Arguments passed in registers not on the stack.
bool args_reversed_; // Left and right argument are swapped.
bool use_sse3_;
// Number type information of operands, determined by code generator.
TypeInfo static_operands_type_;
// Operand type information determined at runtime.
BinaryOpIC::TypeInfo runtime_operands_type_;
char* name_;
const char* GetName();
#ifdef DEBUG
void Print() {
PrintF("GenericBinaryOpStub %d (op %s), "
"(mode %d, flags %d, registers %d, reversed %d, type_info %s)\n",
MinorKey(),
Token::String(op_),
static_cast<int>(mode_),
static_cast<int>(flags_),
static_cast<int>(args_in_registers_),
static_cast<int>(args_reversed_),
static_operands_type_.ToString());
}
#endif
// Minor key encoding in 18 bits RRNNNFRASOOOOOOOMM.
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
class OpBits: public BitField<Token::Value, 2, 7> {};
class SSE3Bits: public BitField<bool, 9, 1> {};
class ArgsInRegistersBits: public BitField<bool, 10, 1> {};
class ArgsReversedBits: public BitField<bool, 11, 1> {};
class FlagBits: public BitField<GenericBinaryFlags, 12, 1> {};
class StaticTypeInfoBits: public BitField<int, 13, 3> {};
class RuntimeTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 16, 2> {};
Major MajorKey() { return GenericBinaryOp; }
int MinorKey() {
// Encode the parameters in a unique 18 bit value.
return OpBits::encode(op_)
| ModeBits::encode(mode_)
| FlagBits::encode(flags_)
| SSE3Bits::encode(use_sse3_)
| ArgsInRegistersBits::encode(args_in_registers_)
| ArgsReversedBits::encode(args_reversed_)
| StaticTypeInfoBits::encode(
static_operands_type_.ThreeBitRepresentation())
| RuntimeTypeInfoBits::encode(runtime_operands_type_);
}
void Generate(MacroAssembler* masm);
void GenerateSmiCode(MacroAssembler* masm, Label* slow);
void GenerateLoadArguments(MacroAssembler* masm);
void GenerateReturn(MacroAssembler* masm);
void GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure);
void GenerateRegisterArgsPush(MacroAssembler* masm);
void GenerateTypeTransition(MacroAssembler* masm);
bool IsOperationCommutative() {
return (op_ == Token::ADD) || (op_ == Token::MUL);
}
void SetArgsInRegisters() { args_in_registers_ = true; }
void SetArgsReversed() { args_reversed_ = true; }
bool HasSmiCodeInStub() { return (flags_ & NO_SMI_CODE_IN_STUB) == 0; }
bool HasArgsInRegisters() { return args_in_registers_; }
bool HasArgsReversed() { return args_reversed_; }
bool ShouldGenerateSmiCode() {
return HasSmiCodeInStub() &&
runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
runtime_operands_type_ != BinaryOpIC::STRINGS;
}
bool ShouldGenerateFPCode() {
return runtime_operands_type_ != BinaryOpIC::STRINGS;
}
virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
virtual InlineCacheState GetICState() {
return BinaryOpIC::ToState(runtime_operands_type_);
}
friend class CodeGenerator;
};
class StringHelper : public AllStatic {
public:
// Generate code for copying characters using a simple loop. This should only
// be used in places where the number of characters is small and the
// additional setup and checking in GenerateCopyCharactersREP adds too much
// overhead. Copying of overlapping regions is not supported.
static void GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
Register scratch,
bool ascii);
// Generate code for copying characters using the rep movs instruction.
// Copies ecx characters from esi to edi. Copying of overlapping regions is
// not supported.
static void GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest, // Must be edi.
Register src, // Must be esi.
Register count, // Must be ecx.
Register scratch, // Neither of above.
bool ascii);
// Probe the symbol table for a two character string. If the string
// requires non-standard hashing a jump to the label not_probed is
// performed and registers c1 and c2 are preserved. In all other
// cases they are clobbered. If the string is not found by probing a
// jump to the label not_found is performed. This jump does not
// guarantee that the string is not in the symbol table. If the
// string is found the code falls through with the string in
// register eax.
static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_probed,
Label* not_found);
// Generate string hash.
static void GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character,
Register scratch);
static void GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character,
Register scratch);
static void GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
// Flag that indicates how to generate code for the stub StringAddStub.
enum StringAddFlags {
NO_STRING_ADD_FLAGS = 0,
// Omit left string check in stub (left is definitely a string).
NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
// Omit right string check in stub (right is definitely a string).
NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
// Omit both string checks in stub.
NO_STRING_CHECK_IN_STUB =
NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
};
class StringAddStub: public CodeStub {
public:
explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}
private:
Major MajorKey() { return StringAdd; }
int MinorKey() { return flags_; }
void Generate(MacroAssembler* masm);
void GenerateConvertArgument(MacroAssembler* masm,
int stack_offset,
Register arg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* slow);
const StringAddFlags flags_;
};
class SubStringStub: public CodeStub {
public:
SubStringStub() {}
private:
Major MajorKey() { return SubString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class StringCompareStub: public CodeStub {
public:
explicit StringCompareStub() {
}
// Compare two flat ascii strings and returns result in eax after popping two
// arguments from the stack.
static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3);
private:
Major MajorKey() { return StringCompare; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
};
class NumberToStringStub: public CodeStub {
public:
NumberToStringStub() { }
// Generate code to do a lookup in the number string cache. If the number in
// the register object is found in the cache the generated code falls through
// with the result in the result register. The object and the result register
// can be the same. If the number is not found in the cache the code jumps to
// the label not_found with only the content of register object unchanged.
static void GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
bool object_is_smi,
Label* not_found);
private:
Major MajorKey() { return NumberToString; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
const char* GetName() { return "NumberToStringStub"; }
#ifdef DEBUG
void Print() {
PrintF("NumberToStringStub\n");
}
#endif
};
} } // namespace v8::internal
#endif // V8_IA32_CODE_STUBS_IA32_H_