| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "data-flow.h" |
| #include "scopes.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #ifdef DEBUG |
| void BitVector::Print() { |
| bool first = true; |
| PrintF("{"); |
| for (int i = 0; i < length(); i++) { |
| if (Contains(i)) { |
| if (!first) PrintF(","); |
| first = false; |
| PrintF("%d", i); |
| } |
| } |
| PrintF("}"); |
| } |
| #endif |
| |
| |
| void BitVector::Iterator::Advance() { |
| current_++; |
| uint32_t val = current_value_; |
| while (val == 0) { |
| current_index_++; |
| if (Done()) return; |
| val = target_->data_[current_index_]; |
| current_ = current_index_ << 5; |
| } |
| val = SkipZeroBytes(val); |
| val = SkipZeroBits(val); |
| current_value_ = val >> 1; |
| } |
| |
| |
| bool AssignedVariablesAnalyzer::Analyze(CompilationInfo* info) { |
| Scope* scope = info->scope(); |
| int size = scope->num_parameters() + scope->num_stack_slots(); |
| if (size == 0) return true; |
| AssignedVariablesAnalyzer analyzer(info, size); |
| return analyzer.Analyze(); |
| } |
| |
| |
| AssignedVariablesAnalyzer::AssignedVariablesAnalyzer(CompilationInfo* info, |
| int size) |
| : info_(info), av_(size) { |
| } |
| |
| |
| bool AssignedVariablesAnalyzer::Analyze() { |
| ASSERT(av_.length() > 0); |
| VisitStatements(info_->function()->body()); |
| return !HasStackOverflow(); |
| } |
| |
| |
| Variable* AssignedVariablesAnalyzer::FindSmiLoopVariable(ForStatement* stmt) { |
| // The loop must have all necessary parts. |
| if (stmt->init() == NULL || stmt->cond() == NULL || stmt->next() == NULL) { |
| return NULL; |
| } |
| // The initialization statement has to be a simple assignment. |
| Assignment* init = stmt->init()->StatementAsSimpleAssignment(); |
| if (init == NULL) return NULL; |
| |
| // We only deal with local variables. |
| Variable* loop_var = init->target()->AsVariableProxy()->AsVariable(); |
| if (loop_var == NULL || !loop_var->IsStackAllocated()) return NULL; |
| |
| // Don't try to get clever with const or dynamic variables. |
| if (loop_var->mode() != Variable::VAR) return NULL; |
| |
| // The initial value has to be a smi. |
| Literal* init_lit = init->value()->AsLiteral(); |
| if (init_lit == NULL || !init_lit->handle()->IsSmi()) return NULL; |
| int init_value = Smi::cast(*init_lit->handle())->value(); |
| |
| // The condition must be a compare of variable with <, <=, >, or >=. |
| CompareOperation* cond = stmt->cond()->AsCompareOperation(); |
| if (cond == NULL) return NULL; |
| if (cond->op() != Token::LT |
| && cond->op() != Token::LTE |
| && cond->op() != Token::GT |
| && cond->op() != Token::GTE) return NULL; |
| |
| // The lhs must be the same variable as in the init expression. |
| if (cond->left()->AsVariableProxy()->AsVariable() != loop_var) return NULL; |
| |
| // The rhs must be a smi. |
| Literal* term_lit = cond->right()->AsLiteral(); |
| if (term_lit == NULL || !term_lit->handle()->IsSmi()) return NULL; |
| int term_value = Smi::cast(*term_lit->handle())->value(); |
| |
| // The count operation updates the same variable as in the init expression. |
| CountOperation* update = stmt->next()->StatementAsCountOperation(); |
| if (update == NULL) return NULL; |
| if (update->expression()->AsVariableProxy()->AsVariable() != loop_var) { |
| return NULL; |
| } |
| |
| // The direction of the count operation must agree with the start and the end |
| // value. We currently do not allow the initial value to be the same as the |
| // terminal value. This _would_ be ok as long as the loop body never executes |
| // or executes exactly one time. |
| if (init_value == term_value) return NULL; |
| if (init_value < term_value && update->op() != Token::INC) return NULL; |
| if (init_value > term_value && update->op() != Token::DEC) return NULL; |
| |
| // Check that the update operation cannot overflow the smi range. This can |
| // occur in the two cases where the loop bound is equal to the largest or |
| // smallest smi. |
| if (update->op() == Token::INC && term_value == Smi::kMaxValue) return NULL; |
| if (update->op() == Token::DEC && term_value == Smi::kMinValue) return NULL; |
| |
| // Found a smi loop variable. |
| return loop_var; |
| } |
| |
| int AssignedVariablesAnalyzer::BitIndex(Variable* var) { |
| ASSERT(var != NULL); |
| ASSERT(var->IsStackAllocated()); |
| Slot* slot = var->AsSlot(); |
| if (slot->type() == Slot::PARAMETER) { |
| return slot->index(); |
| } else { |
| return info_->scope()->num_parameters() + slot->index(); |
| } |
| } |
| |
| |
| void AssignedVariablesAnalyzer::RecordAssignedVar(Variable* var) { |
| ASSERT(var != NULL); |
| if (var->IsStackAllocated()) { |
| av_.Add(BitIndex(var)); |
| } |
| } |
| |
| |
| void AssignedVariablesAnalyzer::MarkIfTrivial(Expression* expr) { |
| Variable* var = expr->AsVariableProxy()->AsVariable(); |
| if (var != NULL && |
| var->IsStackAllocated() && |
| !var->is_arguments() && |
| var->mode() != Variable::CONST && |
| (var->is_this() || !av_.Contains(BitIndex(var)))) { |
| expr->AsVariableProxy()->MarkAsTrivial(); |
| } |
| } |
| |
| |
| void AssignedVariablesAnalyzer::ProcessExpression(Expression* expr) { |
| BitVector saved_av(av_); |
| av_.Clear(); |
| Visit(expr); |
| av_.Union(saved_av); |
| } |
| |
| void AssignedVariablesAnalyzer::VisitBlock(Block* stmt) { |
| VisitStatements(stmt->statements()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitExpressionStatement( |
| ExpressionStatement* stmt) { |
| ProcessExpression(stmt->expression()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) { |
| // Do nothing. |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitIfStatement(IfStatement* stmt) { |
| ProcessExpression(stmt->condition()); |
| Visit(stmt->then_statement()); |
| Visit(stmt->else_statement()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitContinueStatement( |
| ContinueStatement* stmt) { |
| // Nothing to do. |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitBreakStatement(BreakStatement* stmt) { |
| // Nothing to do. |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitReturnStatement(ReturnStatement* stmt) { |
| ProcessExpression(stmt->expression()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitWithEnterStatement( |
| WithEnterStatement* stmt) { |
| ProcessExpression(stmt->expression()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitWithExitStatement( |
| WithExitStatement* stmt) { |
| // Nothing to do. |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) { |
| BitVector result(av_); |
| av_.Clear(); |
| Visit(stmt->tag()); |
| result.Union(av_); |
| for (int i = 0; i < stmt->cases()->length(); i++) { |
| CaseClause* clause = stmt->cases()->at(i); |
| if (!clause->is_default()) { |
| av_.Clear(); |
| Visit(clause->label()); |
| result.Union(av_); |
| } |
| VisitStatements(clause->statements()); |
| } |
| av_.Union(result); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) { |
| ProcessExpression(stmt->cond()); |
| Visit(stmt->body()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitWhileStatement(WhileStatement* stmt) { |
| ProcessExpression(stmt->cond()); |
| Visit(stmt->body()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitForStatement(ForStatement* stmt) { |
| if (stmt->init() != NULL) Visit(stmt->init()); |
| if (stmt->cond() != NULL) ProcessExpression(stmt->cond()); |
| if (stmt->next() != NULL) Visit(stmt->next()); |
| |
| // Process loop body. After visiting the loop body av_ contains |
| // the assigned variables of the loop body. |
| BitVector saved_av(av_); |
| av_.Clear(); |
| Visit(stmt->body()); |
| |
| Variable* var = FindSmiLoopVariable(stmt); |
| if (var != NULL && !av_.Contains(BitIndex(var))) { |
| stmt->set_loop_variable(var); |
| } |
| av_.Union(saved_av); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitForInStatement(ForInStatement* stmt) { |
| ProcessExpression(stmt->each()); |
| ProcessExpression(stmt->enumerable()); |
| Visit(stmt->body()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitTryCatchStatement( |
| TryCatchStatement* stmt) { |
| Visit(stmt->try_block()); |
| Visit(stmt->catch_block()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitTryFinallyStatement( |
| TryFinallyStatement* stmt) { |
| Visit(stmt->try_block()); |
| Visit(stmt->finally_block()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitDebuggerStatement( |
| DebuggerStatement* stmt) { |
| // Nothing to do. |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) { |
| // Nothing to do. |
| ASSERT(av_.IsEmpty()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitSharedFunctionInfoLiteral( |
| SharedFunctionInfoLiteral* expr) { |
| // Nothing to do. |
| ASSERT(av_.IsEmpty()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitConditional(Conditional* expr) { |
| ASSERT(av_.IsEmpty()); |
| |
| Visit(expr->condition()); |
| |
| BitVector result(av_); |
| av_.Clear(); |
| Visit(expr->then_expression()); |
| result.Union(av_); |
| |
| av_.Clear(); |
| Visit(expr->else_expression()); |
| av_.Union(result); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitVariableProxy(VariableProxy* expr) { |
| // Nothing to do. |
| ASSERT(av_.IsEmpty()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitLiteral(Literal* expr) { |
| // Nothing to do. |
| ASSERT(av_.IsEmpty()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) { |
| // Nothing to do. |
| ASSERT(av_.IsEmpty()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) { |
| ASSERT(av_.IsEmpty()); |
| BitVector result(av_.length()); |
| for (int i = 0; i < expr->properties()->length(); i++) { |
| Visit(expr->properties()->at(i)->value()); |
| result.Union(av_); |
| av_.Clear(); |
| } |
| av_ = result; |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) { |
| ASSERT(av_.IsEmpty()); |
| BitVector result(av_.length()); |
| for (int i = 0; i < expr->values()->length(); i++) { |
| Visit(expr->values()->at(i)); |
| result.Union(av_); |
| av_.Clear(); |
| } |
| av_ = result; |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitCatchExtensionObject( |
| CatchExtensionObject* expr) { |
| ASSERT(av_.IsEmpty()); |
| Visit(expr->key()); |
| ProcessExpression(expr->value()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) { |
| ASSERT(av_.IsEmpty()); |
| |
| // There are three kinds of assignments: variable assignments, property |
| // assignments, and reference errors (invalid left-hand sides). |
| Variable* var = expr->target()->AsVariableProxy()->AsVariable(); |
| Property* prop = expr->target()->AsProperty(); |
| ASSERT(var == NULL || prop == NULL); |
| |
| if (var != NULL) { |
| MarkIfTrivial(expr->value()); |
| Visit(expr->value()); |
| if (expr->is_compound()) { |
| // Left-hand side occurs also as an rvalue. |
| MarkIfTrivial(expr->target()); |
| ProcessExpression(expr->target()); |
| } |
| RecordAssignedVar(var); |
| |
| } else if (prop != NULL) { |
| MarkIfTrivial(expr->value()); |
| Visit(expr->value()); |
| if (!prop->key()->IsPropertyName()) { |
| MarkIfTrivial(prop->key()); |
| ProcessExpression(prop->key()); |
| } |
| MarkIfTrivial(prop->obj()); |
| ProcessExpression(prop->obj()); |
| |
| } else { |
| Visit(expr->target()); |
| } |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) { |
| ASSERT(av_.IsEmpty()); |
| Visit(expr->exception()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitProperty(Property* expr) { |
| ASSERT(av_.IsEmpty()); |
| if (!expr->key()->IsPropertyName()) { |
| MarkIfTrivial(expr->key()); |
| Visit(expr->key()); |
| } |
| MarkIfTrivial(expr->obj()); |
| ProcessExpression(expr->obj()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitCall(Call* expr) { |
| ASSERT(av_.IsEmpty()); |
| Visit(expr->expression()); |
| BitVector result(av_); |
| for (int i = 0; i < expr->arguments()->length(); i++) { |
| av_.Clear(); |
| Visit(expr->arguments()->at(i)); |
| result.Union(av_); |
| } |
| av_ = result; |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitCallNew(CallNew* expr) { |
| ASSERT(av_.IsEmpty()); |
| Visit(expr->expression()); |
| BitVector result(av_); |
| for (int i = 0; i < expr->arguments()->length(); i++) { |
| av_.Clear(); |
| Visit(expr->arguments()->at(i)); |
| result.Union(av_); |
| } |
| av_ = result; |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitCallRuntime(CallRuntime* expr) { |
| ASSERT(av_.IsEmpty()); |
| BitVector result(av_); |
| for (int i = 0; i < expr->arguments()->length(); i++) { |
| av_.Clear(); |
| Visit(expr->arguments()->at(i)); |
| result.Union(av_); |
| } |
| av_ = result; |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitUnaryOperation(UnaryOperation* expr) { |
| ASSERT(av_.IsEmpty()); |
| MarkIfTrivial(expr->expression()); |
| Visit(expr->expression()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) { |
| ASSERT(av_.IsEmpty()); |
| if (expr->is_prefix()) MarkIfTrivial(expr->expression()); |
| Visit(expr->expression()); |
| |
| Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); |
| if (var != NULL) RecordAssignedVar(var); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) { |
| ASSERT(av_.IsEmpty()); |
| MarkIfTrivial(expr->right()); |
| Visit(expr->right()); |
| MarkIfTrivial(expr->left()); |
| ProcessExpression(expr->left()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) { |
| ASSERT(av_.IsEmpty()); |
| MarkIfTrivial(expr->right()); |
| Visit(expr->right()); |
| MarkIfTrivial(expr->left()); |
| ProcessExpression(expr->left()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitCompareToNull(CompareToNull* expr) { |
| ASSERT(av_.IsEmpty()); |
| MarkIfTrivial(expr->expression()); |
| Visit(expr->expression()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitThisFunction(ThisFunction* expr) { |
| // Nothing to do. |
| ASSERT(av_.IsEmpty()); |
| } |
| |
| |
| void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) { |
| UNREACHABLE(); |
| } |
| |
| |
| } } // namespace v8::internal |