| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_ |
| #define V8_IA32_MACRO_ASSEMBLER_IA32_H_ |
| |
| #include "assembler.h" |
| #include "type-info.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Flags used for the AllocateInNewSpace functions. |
| enum AllocationFlags { |
| // No special flags. |
| NO_ALLOCATION_FLAGS = 0, |
| // Return the pointer to the allocated already tagged as a heap object. |
| TAG_OBJECT = 1 << 0, |
| // The content of the result register already contains the allocation top in |
| // new space. |
| RESULT_CONTAINS_TOP = 1 << 1 |
| }; |
| |
| // Convenience for platform-independent signatures. We do not normally |
| // distinguish memory operands from other operands on ia32. |
| typedef Operand MemOperand; |
| |
| // Forward declaration. |
| class PostCallGenerator; |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class MacroAssembler: public Assembler { |
| public: |
| // The isolate parameter can be NULL if the macro assembler should |
| // not use isolate-dependent functionality. In this case, it's the |
| // responsibility of the caller to never invoke such function on the |
| // macro assembler. |
| MacroAssembler(Isolate* isolate, void* buffer, int size); |
| |
| // --------------------------------------------------------------------------- |
| // GC Support |
| |
| // For page containing |object| mark region covering |addr| dirty. |
| // RecordWriteHelper only works if the object is not in new |
| // space. |
| void RecordWriteHelper(Register object, |
| Register addr, |
| Register scratch); |
| |
| // Check if object is in new space. |
| // scratch can be object itself, but it will be clobbered. |
| template <typename LabelType> |
| void InNewSpace(Register object, |
| Register scratch, |
| Condition cc, // equal for new space, not_equal otherwise. |
| LabelType* branch); |
| |
| // For page containing |object| mark region covering [object+offset] |
| // dirty. |object| is the object being stored into, |value| is the |
| // object being stored. If offset is zero, then the scratch register |
| // contains the array index into the elements array represented as a |
| // Smi. All registers are clobbered by the operation. RecordWrite |
| // filters out smis so it does not update the write barrier if the |
| // value is a smi. |
| void RecordWrite(Register object, |
| int offset, |
| Register value, |
| Register scratch); |
| |
| // For page containing |object| mark region covering |address| |
| // dirty. |object| is the object being stored into, |value| is the |
| // object being stored. All registers are clobbered by the |
| // operation. RecordWrite filters out smis so it does not update the |
| // write barrier if the value is a smi. |
| void RecordWrite(Register object, |
| Register address, |
| Register value); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // --------------------------------------------------------------------------- |
| // Debugger Support |
| |
| void DebugBreak(); |
| #endif |
| |
| // --------------------------------------------------------------------------- |
| // Activation frames |
| |
| void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } |
| void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } |
| |
| void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } |
| void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } |
| |
| // Enter specific kind of exit frame. Expects the number of |
| // arguments in register eax and sets up the number of arguments in |
| // register edi and the pointer to the first argument in register |
| // esi. |
| void EnterExitFrame(bool save_doubles); |
| |
| void EnterApiExitFrame(int argc); |
| |
| // Leave the current exit frame. Expects the return value in |
| // register eax:edx (untouched) and the pointer to the first |
| // argument in register esi. |
| void LeaveExitFrame(bool save_doubles); |
| |
| // Leave the current exit frame. Expects the return value in |
| // register eax (untouched). |
| void LeaveApiExitFrame(); |
| |
| // Find the function context up the context chain. |
| void LoadContext(Register dst, int context_chain_length); |
| |
| // Load the global function with the given index. |
| void LoadGlobalFunction(int index, Register function); |
| |
| // Load the initial map from the global function. The registers |
| // function and map can be the same. |
| void LoadGlobalFunctionInitialMap(Register function, Register map); |
| |
| // Push and pop the registers that can hold pointers. |
| void PushSafepointRegisters() { pushad(); } |
| void PopSafepointRegisters() { popad(); } |
| // Store the value in register/immediate src in the safepoint |
| // register stack slot for register dst. |
| void StoreToSafepointRegisterSlot(Register dst, Register src); |
| void StoreToSafepointRegisterSlot(Register dst, Immediate src); |
| void LoadFromSafepointRegisterSlot(Register dst, Register src); |
| |
| // --------------------------------------------------------------------------- |
| // JavaScript invokes |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeCode(const Operand& code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| PostCallGenerator* post_call_generator = NULL); |
| |
| void InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag, |
| PostCallGenerator* post_call_generator = NULL); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| PostCallGenerator* post_call_generator = NULL); |
| |
| void InvokeFunction(JSFunction* function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| PostCallGenerator* post_call_generator = NULL); |
| |
| // Invoke specified builtin JavaScript function. Adds an entry to |
| // the unresolved list if the name does not resolve. |
| void InvokeBuiltin(Builtins::JavaScript id, |
| InvokeFlag flag, |
| PostCallGenerator* post_call_generator = NULL); |
| |
| // Store the function for the given builtin in the target register. |
| void GetBuiltinFunction(Register target, Builtins::JavaScript id); |
| |
| // Store the code object for the given builtin in the target register. |
| void GetBuiltinEntry(Register target, Builtins::JavaScript id); |
| |
| // Expression support |
| void Set(Register dst, const Immediate& x); |
| void Set(const Operand& dst, const Immediate& x); |
| |
| // Support for constant splitting. |
| bool IsUnsafeImmediate(const Immediate& x); |
| void SafeSet(Register dst, const Immediate& x); |
| void SafePush(const Immediate& x); |
| |
| // Compare object type for heap object. |
| // Incoming register is heap_object and outgoing register is map. |
| void CmpObjectType(Register heap_object, InstanceType type, Register map); |
| |
| // Compare instance type for map. |
| void CmpInstanceType(Register map, InstanceType type); |
| |
| // Check if the map of an object is equal to a specified map and |
| // branch to label if not. Skip the smi check if not required |
| // (object is known to be a heap object) |
| void CheckMap(Register obj, |
| Handle<Map> map, |
| Label* fail, |
| bool is_heap_object); |
| |
| // Check if the object in register heap_object is a string. Afterwards the |
| // register map contains the object map and the register instance_type |
| // contains the instance_type. The registers map and instance_type can be the |
| // same in which case it contains the instance type afterwards. Either of the |
| // registers map and instance_type can be the same as heap_object. |
| Condition IsObjectStringType(Register heap_object, |
| Register map, |
| Register instance_type); |
| |
| // Check if a heap object's type is in the JSObject range, not including |
| // JSFunction. The object's map will be loaded in the map register. |
| // Any or all of the three registers may be the same. |
| // The contents of the scratch register will always be overwritten. |
| void IsObjectJSObjectType(Register heap_object, |
| Register map, |
| Register scratch, |
| Label* fail); |
| |
| // The contents of the scratch register will be overwritten. |
| void IsInstanceJSObjectType(Register map, Register scratch, Label* fail); |
| |
| // FCmp is similar to integer cmp, but requires unsigned |
| // jcc instructions (je, ja, jae, jb, jbe, je, and jz). |
| void FCmp(); |
| |
| // Smi tagging support. |
| void SmiTag(Register reg) { |
| ASSERT(kSmiTag == 0); |
| ASSERT(kSmiTagSize == 1); |
| add(reg, Operand(reg)); |
| } |
| void SmiUntag(Register reg) { |
| sar(reg, kSmiTagSize); |
| } |
| |
| // Modifies the register even if it does not contain a Smi! |
| void SmiUntag(Register reg, TypeInfo info, Label* non_smi) { |
| ASSERT(kSmiTagSize == 1); |
| sar(reg, kSmiTagSize); |
| if (info.IsSmi()) { |
| ASSERT(kSmiTag == 0); |
| j(carry, non_smi); |
| } |
| } |
| |
| // Modifies the register even if it does not contain a Smi! |
| void SmiUntag(Register reg, Label* is_smi) { |
| ASSERT(kSmiTagSize == 1); |
| sar(reg, kSmiTagSize); |
| ASSERT(kSmiTag == 0); |
| j(not_carry, is_smi); |
| } |
| |
| // Jump the register contains a smi. |
| inline void JumpIfSmi(Register value, Label* smi_label) { |
| test(value, Immediate(kSmiTagMask)); |
| j(zero, smi_label, not_taken); |
| } |
| // Jump if register contain a non-smi. |
| inline void JumpIfNotSmi(Register value, Label* not_smi_label) { |
| test(value, Immediate(kSmiTagMask)); |
| j(not_zero, not_smi_label, not_taken); |
| } |
| |
| // Assumes input is a heap object. |
| void JumpIfNotNumber(Register reg, TypeInfo info, Label* on_not_number); |
| |
| // Assumes input is a heap number. Jumps on things out of range. Also jumps |
| // on the min negative int32. Ignores frational parts. |
| void ConvertToInt32(Register dst, |
| Register src, // Can be the same as dst. |
| Register scratch, // Can be no_reg or dst, but not src. |
| TypeInfo info, |
| Label* on_not_int32); |
| |
| void LoadPowerOf2(XMMRegister dst, Register scratch, int power); |
| |
| // Abort execution if argument is not a number. Used in debug code. |
| void AbortIfNotNumber(Register object); |
| |
| // Abort execution if argument is not a smi. Used in debug code. |
| void AbortIfNotSmi(Register object); |
| |
| // Abort execution if argument is a smi. Used in debug code. |
| void AbortIfSmi(Register object); |
| |
| // Abort execution if argument is a string. Used in debug code. |
| void AbortIfNotString(Register object); |
| |
| // --------------------------------------------------------------------------- |
| // Exception handling |
| |
| // Push a new try handler and link into try handler chain. The return |
| // address must be pushed before calling this helper. |
| void PushTryHandler(CodeLocation try_location, HandlerType type); |
| |
| // Unlink the stack handler on top of the stack from the try handler chain. |
| void PopTryHandler(); |
| |
| // Activate the top handler in the try hander chain. |
| void Throw(Register value); |
| |
| void ThrowUncatchable(UncatchableExceptionType type, Register value); |
| |
| // --------------------------------------------------------------------------- |
| // Inline caching support |
| |
| // Generate code for checking access rights - used for security checks |
| // on access to global objects across environments. The holder register |
| // is left untouched, but the scratch register is clobbered. |
| void CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Allocation support |
| |
| // Allocate an object in new space. If the new space is exhausted control |
| // continues at the gc_required label. The allocated object is returned in |
| // result and end of the new object is returned in result_end. The register |
| // scratch can be passed as no_reg in which case an additional object |
| // reference will be added to the reloc info. The returned pointers in result |
| // and result_end have not yet been tagged as heap objects. If |
| // result_contains_top_on_entry is true the content of result is known to be |
| // the allocation top on entry (could be result_end from a previous call to |
| // AllocateInNewSpace). If result_contains_top_on_entry is true scratch |
| // should be no_reg as it is never used. |
| void AllocateInNewSpace(int object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| void AllocateInNewSpace(int header_size, |
| ScaleFactor element_size, |
| Register element_count, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| void AllocateInNewSpace(Register object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| // Undo allocation in new space. The object passed and objects allocated after |
| // it will no longer be allocated. Make sure that no pointers are left to the |
| // object(s) no longer allocated as they would be invalid when allocation is |
| // un-done. |
| void UndoAllocationInNewSpace(Register object); |
| |
| // Allocate a heap number in new space with undefined value. The |
| // register scratch2 can be passed as no_reg; the others must be |
| // valid registers. Returns tagged pointer in result register, or |
| // jumps to gc_required if new space is full. |
| void AllocateHeapNumber(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Allocate a sequential string. All the header fields of the string object |
| // are initialized. |
| void AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateAsciiString(Register result, |
| int length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Allocate a raw cons string object. Only the map field of the result is |
| // initialized. |
| void AllocateConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateAsciiConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Copy memory, byte-by-byte, from source to destination. Not optimized for |
| // long or aligned copies. |
| // The contents of index and scratch are destroyed. |
| void CopyBytes(Register source, |
| Register destination, |
| Register length, |
| Register scratch); |
| |
| // --------------------------------------------------------------------------- |
| // Support functions. |
| |
| // Check if result is zero and op is negative. |
| void NegativeZeroTest(Register result, Register op, Label* then_label); |
| |
| // Check if result is zero and any of op1 and op2 are negative. |
| // Register scratch is destroyed, and it must be different from op2. |
| void NegativeZeroTest(Register result, Register op1, Register op2, |
| Register scratch, Label* then_label); |
| |
| // Try to get function prototype of a function and puts the value in |
| // the result register. Checks that the function really is a |
| // function and jumps to the miss label if the fast checks fail. The |
| // function register will be untouched; the other registers may be |
| // clobbered. |
| void TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss); |
| |
| // Generates code for reporting that an illegal operation has |
| // occurred. |
| void IllegalOperation(int num_arguments); |
| |
| // Picks out an array index from the hash field. |
| // Register use: |
| // hash - holds the index's hash. Clobbered. |
| // index - holds the overwritten index on exit. |
| void IndexFromHash(Register hash, Register index); |
| |
| // --------------------------------------------------------------------------- |
| // Runtime calls |
| |
| // Call a code stub. Generate the code if necessary. |
| void CallStub(CodeStub* stub); |
| |
| // Call a code stub and return the code object called. Try to generate |
| // the code if necessary. Do not perform a GC but instead return a retry |
| // after GC failure. |
| MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub); |
| |
| // Tail call a code stub (jump). Generate the code if necessary. |
| void TailCallStub(CodeStub* stub); |
| |
| // Tail call a code stub (jump) and return the code object called. Try to |
| // generate the code if necessary. Do not perform a GC but instead return |
| // a retry after GC failure. |
| MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub); |
| |
| // Return from a code stub after popping its arguments. |
| void StubReturn(int argc); |
| |
| // Call a runtime routine. |
| void CallRuntime(const Runtime::Function* f, int num_arguments); |
| void CallRuntimeSaveDoubles(Runtime::FunctionId id); |
| |
| // Call a runtime function, returning the CodeStub object called. |
| // Try to generate the stub code if necessary. Do not perform a GC |
| // but instead return a retry after GC failure. |
| MUST_USE_RESULT MaybeObject* TryCallRuntime(const Runtime::Function* f, |
| int num_arguments); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId id, int num_arguments); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id, |
| int num_arguments); |
| |
| // Convenience function: call an external reference. |
| void CallExternalReference(ExternalReference ref, int num_arguments); |
| |
| // Tail call of a runtime routine (jump). |
| // Like JumpToExternalReference, but also takes care of passing the number |
| // of parameters. |
| void TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size); |
| |
| // Tail call of a runtime routine (jump). Try to generate the code if |
| // necessary. Do not perform a GC but instead return a retry after GC failure. |
| MUST_USE_RESULT MaybeObject* TryTailCallExternalReference( |
| const ExternalReference& ext, int num_arguments, int result_size); |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size); |
| |
| // Convenience function: tail call a runtime routine (jump). Try to generate |
| // the code if necessary. Do not perform a GC but instead return a retry after |
| // GC failure. |
| MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size); |
| |
| // Before calling a C-function from generated code, align arguments on stack. |
| // After aligning the frame, arguments must be stored in esp[0], esp[4], |
| // etc., not pushed. The argument count assumes all arguments are word sized. |
| // Some compilers/platforms require the stack to be aligned when calling |
| // C++ code. |
| // Needs a scratch register to do some arithmetic. This register will be |
| // trashed. |
| void PrepareCallCFunction(int num_arguments, Register scratch); |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, int num_arguments); |
| |
| // Prepares stack to put arguments (aligns and so on). Reserves |
| // space for return value if needed (assumes the return value is a handle). |
| // Uses callee-saved esi to restore stack state after call. Arguments must be |
| // stored in ApiParameterOperand(0), ApiParameterOperand(1) etc. Saves |
| // context (esi). |
| void PrepareCallApiFunction(int argc, Register scratch); |
| |
| // Calls an API function. Allocates HandleScope, extracts |
| // returned value from handle and propagates exceptions. |
| // Clobbers ebx, edi and caller-save registers. Restores context. |
| // On return removes stack_space * kPointerSize (GCed). |
| MaybeObject* TryCallApiFunctionAndReturn(ApiFunction* function, |
| int stack_space); |
| |
| // Jump to a runtime routine. |
| void JumpToExternalReference(const ExternalReference& ext); |
| |
| MaybeObject* TryJumpToExternalReference(const ExternalReference& ext); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Utilities |
| |
| void Ret(); |
| |
| // Return and drop arguments from stack, where the number of arguments |
| // may be bigger than 2^16 - 1. Requires a scratch register. |
| void Ret(int bytes_dropped, Register scratch); |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the esp register. |
| void Drop(int element_count); |
| |
| void Call(Label* target) { call(target); } |
| |
| // Emit call to the code we are currently generating. |
| void CallSelf() { |
| Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location())); |
| call(self, RelocInfo::CODE_TARGET); |
| } |
| |
| // Move if the registers are not identical. |
| void Move(Register target, Register source); |
| |
| void Move(Register target, Handle<Object> value); |
| |
| Handle<Object> CodeObject() { |
| ASSERT(!code_object_.is_null()); |
| return code_object_; |
| } |
| |
| |
| // --------------------------------------------------------------------------- |
| // StatsCounter support |
| |
| void SetCounter(StatsCounter* counter, int value); |
| void IncrementCounter(StatsCounter* counter, int value); |
| void DecrementCounter(StatsCounter* counter, int value); |
| void IncrementCounter(Condition cc, StatsCounter* counter, int value); |
| void DecrementCounter(Condition cc, StatsCounter* counter, int value); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Debugging |
| |
| // Calls Abort(msg) if the condition cc is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cc, const char* msg); |
| |
| void AssertFastElements(Register elements); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cc, const char* msg); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(const char* msg); |
| |
| // Check that the stack is aligned. |
| void CheckStackAlignment(); |
| |
| // Verify restrictions about code generated in stubs. |
| void set_generating_stub(bool value) { generating_stub_ = value; } |
| bool generating_stub() { return generating_stub_; } |
| void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } |
| bool allow_stub_calls() { return allow_stub_calls_; } |
| |
| // --------------------------------------------------------------------------- |
| // String utilities. |
| |
| // Check whether the instance type represents a flat ascii string. Jump to the |
| // label if not. If the instance type can be scratched specify same register |
| // for both instance type and scratch. |
| void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type, |
| Register scratch, |
| Label* on_not_flat_ascii_string); |
| |
| // Checks if both objects are sequential ASCII strings, and jumps to label |
| // if either is not. |
| void JumpIfNotBothSequentialAsciiStrings(Register object1, |
| Register object2, |
| Register scratch1, |
| Register scratch2, |
| Label* on_not_flat_ascii_strings); |
| |
| static int SafepointRegisterStackIndex(Register reg) { |
| return SafepointRegisterStackIndex(reg.code()); |
| } |
| |
| private: |
| bool generating_stub_; |
| bool allow_stub_calls_; |
| // This handle will be patched with the code object on installation. |
| Handle<Object> code_object_; |
| |
| // Helper functions for generating invokes. |
| void InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| const Operand& code_operand, |
| NearLabel* done, |
| InvokeFlag flag, |
| PostCallGenerator* post_call_generator = NULL); |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void LeaveFrame(StackFrame::Type type); |
| |
| void EnterExitFramePrologue(); |
| void EnterExitFrameEpilogue(int argc, bool save_doubles); |
| |
| void LeaveExitFrameEpilogue(); |
| |
| // Allocation support helpers. |
| void LoadAllocationTopHelper(Register result, |
| Register scratch, |
| AllocationFlags flags); |
| void UpdateAllocationTopHelper(Register result_end, Register scratch); |
| |
| // Helper for PopHandleScope. Allowed to perform a GC and returns |
| // NULL if gc_allowed. Does not perform a GC if !gc_allowed, and |
| // possibly returns a failure object indicating an allocation failure. |
| MUST_USE_RESULT MaybeObject* PopHandleScopeHelper(Register saved, |
| Register scratch, |
| bool gc_allowed); |
| |
| |
| // Compute memory operands for safepoint stack slots. |
| Operand SafepointRegisterSlot(Register reg); |
| static int SafepointRegisterStackIndex(int reg_code); |
| |
| // Needs access to SafepointRegisterStackIndex for optimized frame |
| // traversal. |
| friend class OptimizedFrame; |
| }; |
| |
| |
| template <typename LabelType> |
| void MacroAssembler::InNewSpace(Register object, |
| Register scratch, |
| Condition cc, |
| LabelType* branch) { |
| ASSERT(cc == equal || cc == not_equal); |
| if (Serializer::enabled()) { |
| // Can't do arithmetic on external references if it might get serialized. |
| mov(scratch, Operand(object)); |
| // The mask isn't really an address. We load it as an external reference in |
| // case the size of the new space is different between the snapshot maker |
| // and the running system. |
| and_(Operand(scratch), |
| Immediate(ExternalReference::new_space_mask(isolate()))); |
| cmp(Operand(scratch), |
| Immediate(ExternalReference::new_space_start(isolate()))); |
| j(cc, branch); |
| } else { |
| int32_t new_space_start = reinterpret_cast<int32_t>( |
| ExternalReference::new_space_start(isolate()).address()); |
| lea(scratch, Operand(object, -new_space_start)); |
| and_(scratch, isolate()->heap()->NewSpaceMask()); |
| j(cc, branch); |
| } |
| } |
| |
| |
| // The code patcher is used to patch (typically) small parts of code e.g. for |
| // debugging and other types of instrumentation. When using the code patcher |
| // the exact number of bytes specified must be emitted. Is not legal to emit |
| // relocation information. If any of these constraints are violated it causes |
| // an assertion. |
| class CodePatcher { |
| public: |
| CodePatcher(byte* address, int size); |
| virtual ~CodePatcher(); |
| |
| // Macro assembler to emit code. |
| MacroAssembler* masm() { return &masm_; } |
| |
| private: |
| byte* address_; // The address of the code being patched. |
| int size_; // Number of bytes of the expected patch size. |
| MacroAssembler masm_; // Macro assembler used to generate the code. |
| }; |
| |
| |
| // Helper class for generating code or data associated with the code |
| // right after a call instruction. As an example this can be used to |
| // generate safepoint data after calls for crankshaft. |
| class PostCallGenerator { |
| public: |
| PostCallGenerator() { } |
| virtual ~PostCallGenerator() { } |
| virtual void Generate() = 0; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| // Generate an Operand for loading a field from an object. |
| static inline Operand FieldOperand(Register object, int offset) { |
| return Operand(object, offset - kHeapObjectTag); |
| } |
| |
| |
| // Generate an Operand for loading an indexed field from an object. |
| static inline Operand FieldOperand(Register object, |
| Register index, |
| ScaleFactor scale, |
| int offset) { |
| return Operand(object, index, scale, offset - kHeapObjectTag); |
| } |
| |
| |
| static inline Operand ContextOperand(Register context, int index) { |
| return Operand(context, Context::SlotOffset(index)); |
| } |
| |
| |
| static inline Operand GlobalObjectOperand() { |
| return ContextOperand(esi, Context::GLOBAL_INDEX); |
| } |
| |
| |
| // Generates an Operand for saving parameters after PrepareCallApiFunction. |
| Operand ApiParameterOperand(int index); |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| extern void LogGeneratedCodeCoverage(const char* file_line); |
| #define CODE_COVERAGE_STRINGIFY(x) #x |
| #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) |
| #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) |
| #define ACCESS_MASM(masm) { \ |
| byte* ia32_coverage_function = \ |
| reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \ |
| masm->pushfd(); \ |
| masm->pushad(); \ |
| masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \ |
| masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \ |
| masm->pop(eax); \ |
| masm->popad(); \ |
| masm->popfd(); \ |
| } \ |
| masm-> |
| #else |
| #define ACCESS_MASM(masm) masm-> |
| #endif |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_ |