| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2010 the V8 project authors. All rights reserved. |
| |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| #include "mips/assembler-mips-inl.h" |
| #include "serialize.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| CpuFeatures::CpuFeatures() |
| : supported_(0), |
| enabled_(0), |
| found_by_runtime_probing_(0) { |
| } |
| |
| void CpuFeatures::Probe(bool portable) { |
| // If the compiler is allowed to use fpu then we can use fpu too in our |
| // code generation. |
| #if !defined(__mips__) |
| // For the simulator=mips build, use FPU when FLAG_enable_fpu is enabled. |
| if (FLAG_enable_fpu) { |
| supported_ |= 1u << FPU; |
| } |
| #else |
| if (portable && Serializer::enabled()) { |
| supported_ |= OS::CpuFeaturesImpliedByPlatform(); |
| return; // No features if we might serialize. |
| } |
| |
| if (OS::MipsCpuHasFeature(FPU)) { |
| // This implementation also sets the FPU flags if |
| // runtime detection of FPU returns true. |
| supported_ |= 1u << FPU; |
| found_by_runtime_probing_ |= 1u << FPU; |
| } |
| |
| if (!portable) found_by_runtime_probing_ = 0; |
| #endif |
| } |
| |
| |
| int ToNumber(Register reg) { |
| ASSERT(reg.is_valid()); |
| const int kNumbers[] = { |
| 0, // zero_reg |
| 1, // at |
| 2, // v0 |
| 3, // v1 |
| 4, // a0 |
| 5, // a1 |
| 6, // a2 |
| 7, // a3 |
| 8, // t0 |
| 9, // t1 |
| 10, // t2 |
| 11, // t3 |
| 12, // t4 |
| 13, // t5 |
| 14, // t6 |
| 15, // t7 |
| 16, // s0 |
| 17, // s1 |
| 18, // s2 |
| 19, // s3 |
| 20, // s4 |
| 21, // s5 |
| 22, // s6 |
| 23, // s7 |
| 24, // t8 |
| 25, // t9 |
| 26, // k0 |
| 27, // k1 |
| 28, // gp |
| 29, // sp |
| 30, // s8_fp |
| 31, // ra |
| }; |
| return kNumbers[reg.code()]; |
| } |
| |
| |
| Register ToRegister(int num) { |
| ASSERT(num >= 0 && num < kNumRegisters); |
| const Register kRegisters[] = { |
| zero_reg, |
| at, |
| v0, v1, |
| a0, a1, a2, a3, |
| t0, t1, t2, t3, t4, t5, t6, t7, |
| s0, s1, s2, s3, s4, s5, s6, s7, |
| t8, t9, |
| k0, k1, |
| gp, |
| sp, |
| s8_fp, |
| ra |
| }; |
| return kRegisters[num]; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo. |
| |
| const int RelocInfo::kApplyMask = 0; |
| |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Being |
| // specially coded on MIPS means that it is a lui/ori instruction, and that is |
| // always the case inside code objects. |
| return true; |
| } |
| |
| |
| // Patch the code at the current address with the supplied instructions. |
| void RelocInfo::PatchCode(byte* instructions, int instruction_count) { |
| Instr* pc = reinterpret_cast<Instr*>(pc_); |
| Instr* instr = reinterpret_cast<Instr*>(instructions); |
| for (int i = 0; i < instruction_count; i++) { |
| *(pc + i) = *(instr + i); |
| } |
| |
| // Indicate that code has changed. |
| CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); |
| } |
| |
| |
| // Patch the code at the current PC with a call to the target address. |
| // Additional guard instructions can be added if required. |
| void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { |
| // Patch the code at the current address with a call to the target. |
| UNIMPLEMENTED_MIPS(); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand and MemOperand. |
| // See assembler-mips-inl.h for inlined constructors. |
| |
| Operand::Operand(Handle<Object> handle) { |
| rm_ = no_reg; |
| // Verify all Objects referred by code are NOT in new space. |
| Object* obj = *handle; |
| ASSERT(!HEAP->InNewSpace(obj)); |
| if (obj->IsHeapObject()) { |
| imm32_ = reinterpret_cast<intptr_t>(handle.location()); |
| rmode_ = RelocInfo::EMBEDDED_OBJECT; |
| } else { |
| // No relocation needed. |
| imm32_ = reinterpret_cast<intptr_t>(obj); |
| rmode_ = RelocInfo::NONE; |
| } |
| } |
| |
| |
| MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { |
| offset_ = offset; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Specific instructions, constants, and masks. |
| |
| static const int kNegOffset = 0x00008000; |
| // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) |
| // operations as post-increment of sp. |
| const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) |
| | (sp.code() << kRtShift) | (kPointerSize & kImm16Mask); |
| // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. |
| const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) |
| | (sp.code() << kRtShift) | (-kPointerSize & kImm16Mask); |
| // sw(r, MemOperand(sp, 0)) |
| const Instr kPushRegPattern = SW | (sp.code() << kRsShift) |
| | (0 & kImm16Mask); |
| // lw(r, MemOperand(sp, 0)) |
| const Instr kPopRegPattern = LW | (sp.code() << kRsShift) |
| | (0 & kImm16Mask); |
| |
| const Instr kLwRegFpOffsetPattern = LW | (s8_fp.code() << kRsShift) |
| | (0 & kImm16Mask); |
| |
| const Instr kSwRegFpOffsetPattern = SW | (s8_fp.code() << kRsShift) |
| | (0 & kImm16Mask); |
| |
| const Instr kLwRegFpNegOffsetPattern = LW | (s8_fp.code() << kRsShift) |
| | (kNegOffset & kImm16Mask); |
| |
| const Instr kSwRegFpNegOffsetPattern = SW | (s8_fp.code() << kRsShift) |
| | (kNegOffset & kImm16Mask); |
| // A mask for the Rt register for push, pop, lw, sw instructions. |
| const Instr kRtMask = kRtFieldMask; |
| const Instr kLwSwInstrTypeMask = 0xffe00000; |
| const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; |
| const Instr kLwSwOffsetMask = kImm16Mask; |
| |
| |
| // Spare buffer. |
| static const int kMinimalBufferSize = 4 * KB; |
| |
| |
| Assembler::Assembler(void* buffer, int buffer_size) |
| : AssemblerBase(Isolate::Current()), |
| positions_recorder_(this), |
| allow_peephole_optimization_(false) { |
| // BUG(3245989): disable peephole optimization if crankshaft is enabled. |
| allow_peephole_optimization_ = FLAG_peephole_optimization; |
| if (buffer == NULL) { |
| // Do our own buffer management. |
| if (buffer_size <= kMinimalBufferSize) { |
| buffer_size = kMinimalBufferSize; |
| |
| if (isolate()->assembler_spare_buffer() != NULL) { |
| buffer = isolate()->assembler_spare_buffer(); |
| isolate()->set_assembler_spare_buffer(NULL); |
| } |
| } |
| if (buffer == NULL) { |
| buffer_ = NewArray<byte>(buffer_size); |
| } else { |
| buffer_ = static_cast<byte*>(buffer); |
| } |
| buffer_size_ = buffer_size; |
| own_buffer_ = true; |
| |
| } else { |
| // Use externally provided buffer instead. |
| ASSERT(buffer_size > 0); |
| buffer_ = static_cast<byte*>(buffer); |
| buffer_size_ = buffer_size; |
| own_buffer_ = false; |
| } |
| |
| // Setup buffer pointers. |
| ASSERT(buffer_ != NULL); |
| pc_ = buffer_; |
| reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); |
| |
| last_trampoline_pool_end_ = 0; |
| no_trampoline_pool_before_ = 0; |
| trampoline_pool_blocked_nesting_ = 0; |
| next_buffer_check_ = kMaxBranchOffset - kTrampolineSize; |
| } |
| |
| |
| Assembler::~Assembler() { |
| if (own_buffer_) { |
| if (isolate()->assembler_spare_buffer() == NULL && |
| buffer_size_ == kMinimalBufferSize) { |
| isolate()->set_assembler_spare_buffer(buffer_); |
| } else { |
| DeleteArray(buffer_); |
| } |
| } |
| } |
| |
| |
| void Assembler::GetCode(CodeDesc* desc) { |
| ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. |
| // Setup code descriptor. |
| desc->buffer = buffer_; |
| desc->buffer_size = buffer_size_; |
| desc->instr_size = pc_offset(); |
| desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| } |
| |
| |
| void Assembler::Align(int m) { |
| ASSERT(m >= 4 && IsPowerOf2(m)); |
| while ((pc_offset() & (m - 1)) != 0) { |
| nop(); |
| } |
| } |
| |
| |
| void Assembler::CodeTargetAlign() { |
| // No advantage to aligning branch/call targets to more than |
| // single instruction, that I am aware of. |
| Align(4); |
| } |
| |
| |
| Register Assembler::GetRt(Instr instr) { |
| Register rt; |
| rt.code_ = (instr & kRtMask) >> kRtShift; |
| return rt; |
| } |
| |
| |
| bool Assembler::IsPop(Instr instr) { |
| return (instr & ~kRtMask) == kPopRegPattern; |
| } |
| |
| |
| bool Assembler::IsPush(Instr instr) { |
| return (instr & ~kRtMask) == kPushRegPattern; |
| } |
| |
| |
| bool Assembler::IsSwRegFpOffset(Instr instr) { |
| return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsLwRegFpOffset(Instr instr) { |
| return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsSwRegFpNegOffset(Instr instr) { |
| return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == |
| kSwRegFpNegOffsetPattern); |
| } |
| |
| |
| bool Assembler::IsLwRegFpNegOffset(Instr instr) { |
| return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == |
| kLwRegFpNegOffsetPattern); |
| } |
| |
| |
| // Labels refer to positions in the (to be) generated code. |
| // There are bound, linked, and unused labels. |
| // |
| // Bound labels refer to known positions in the already |
| // generated code. pos() is the position the label refers to. |
| // |
| // Linked labels refer to unknown positions in the code |
| // to be generated; pos() is the position of the last |
| // instruction using the label. |
| |
| // The link chain is terminated by a value in the instruction of -1, |
| // which is an otherwise illegal value (branch -1 is inf loop). |
| // The instruction 16-bit offset field addresses 32-bit words, but in |
| // code is conv to an 18-bit value addressing bytes, hence the -4 value. |
| |
| const int kEndOfChain = -4; |
| |
| |
| bool Assembler::IsBranch(Instr instr) { |
| uint32_t opcode = ((instr & kOpcodeMask)); |
| uint32_t rt_field = ((instr & kRtFieldMask)); |
| uint32_t rs_field = ((instr & kRsFieldMask)); |
| uint32_t label_constant = (instr & ~kImm16Mask); |
| // Checks if the instruction is a branch. |
| return opcode == BEQ || |
| opcode == BNE || |
| opcode == BLEZ || |
| opcode == BGTZ || |
| opcode == BEQL || |
| opcode == BNEL || |
| opcode == BLEZL || |
| opcode == BGTZL|| |
| (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || |
| rt_field == BLTZAL || rt_field == BGEZAL)) || |
| (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. |
| label_constant == 0; // Emitted label const in reg-exp engine. |
| } |
| |
| |
| bool Assembler::IsNop(Instr instr, unsigned int type) { |
| // See Assembler::nop(type). |
| ASSERT(type < 32); |
| uint32_t opcode = ((instr & kOpcodeMask)); |
| uint32_t rt = ((instr & kRtFieldMask) >> kRtShift); |
| uint32_t rs = ((instr & kRsFieldMask) >> kRsShift); |
| uint32_t sa = ((instr & kSaFieldMask) >> kSaShift); |
| |
| // nop(type) == sll(zero_reg, zero_reg, type); |
| // Technically all these values will be 0 but |
| // this makes more sense to the reader. |
| |
| bool ret = (opcode == SLL && |
| rt == static_cast<uint32_t>(ToNumber(zero_reg)) && |
| rs == static_cast<uint32_t>(ToNumber(zero_reg)) && |
| sa == type); |
| |
| return ret; |
| } |
| |
| |
| int32_t Assembler::GetBranchOffset(Instr instr) { |
| ASSERT(IsBranch(instr)); |
| return ((int16_t)(instr & kImm16Mask)) << 2; |
| } |
| |
| |
| bool Assembler::IsLw(Instr instr) { |
| return ((instr & kOpcodeMask) == LW); |
| } |
| |
| |
| int16_t Assembler::GetLwOffset(Instr instr) { |
| ASSERT(IsLw(instr)); |
| return ((instr & kImm16Mask)); |
| } |
| |
| |
| Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { |
| ASSERT(IsLw(instr)); |
| |
| // We actually create a new lw instruction based on the original one. |
| Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
| | (offset & kImm16Mask); |
| |
| return temp_instr; |
| } |
| |
| |
| bool Assembler::IsSw(Instr instr) { |
| return ((instr & kOpcodeMask) == SW); |
| } |
| |
| |
| Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { |
| ASSERT(IsSw(instr)); |
| return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); |
| } |
| |
| |
| bool Assembler::IsAddImmediate(Instr instr) { |
| return ((instr & kOpcodeMask) == ADDIU); |
| } |
| |
| |
| Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { |
| ASSERT(IsAddImmediate(instr)); |
| return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); |
| } |
| |
| |
| int Assembler::target_at(int32_t pos) { |
| Instr instr = instr_at(pos); |
| if ((instr & ~kImm16Mask) == 0) { |
| // Emitted label constant, not part of a branch. |
| if (instr == 0) { |
| return kEndOfChain; |
| } else { |
| int32_t imm18 =((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
| return (imm18 + pos); |
| } |
| } |
| // Check we have a branch instruction. |
| ASSERT(IsBranch(instr)); |
| // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming |
| // the compiler uses arithmectic shifts for signed integers. |
| int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14; |
| |
| if (imm18 == kEndOfChain) { |
| // EndOfChain sentinel is returned directly, not relative to pc or pos. |
| return kEndOfChain; |
| } else { |
| return pos + kBranchPCOffset + imm18; |
| } |
| } |
| |
| |
| void Assembler::target_at_put(int32_t pos, int32_t target_pos) { |
| Instr instr = instr_at(pos); |
| if ((instr & ~kImm16Mask) == 0) { |
| ASSERT(target_pos == kEndOfChain || target_pos >= 0); |
| // Emitted label constant, not part of a branch. |
| // Make label relative to Code* of generated Code object. |
| instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| return; |
| } |
| |
| ASSERT(IsBranch(instr)); |
| int32_t imm18 = target_pos - (pos + kBranchPCOffset); |
| ASSERT((imm18 & 3) == 0); |
| |
| instr &= ~kImm16Mask; |
| int32_t imm16 = imm18 >> 2; |
| ASSERT(is_int16(imm16)); |
| |
| instr_at_put(pos, instr | (imm16 & kImm16Mask)); |
| } |
| |
| |
| void Assembler::print(Label* L) { |
| if (L->is_unused()) { |
| PrintF("unused label\n"); |
| } else if (L->is_bound()) { |
| PrintF("bound label to %d\n", L->pos()); |
| } else if (L->is_linked()) { |
| Label l = *L; |
| PrintF("unbound label"); |
| while (l.is_linked()) { |
| PrintF("@ %d ", l.pos()); |
| Instr instr = instr_at(l.pos()); |
| if ((instr & ~kImm16Mask) == 0) { |
| PrintF("value\n"); |
| } else { |
| PrintF("%d\n", instr); |
| } |
| next(&l); |
| } |
| } else { |
| PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| } |
| } |
| |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| ASSERT(0 <= pos && pos <= pc_offset()); // Must have valid binding position. |
| while (L->is_linked()) { |
| int32_t fixup_pos = L->pos(); |
| int32_t dist = pos - fixup_pos; |
| next(L); // Call next before overwriting link with target at fixup_pos. |
| if (dist > kMaxBranchOffset) { |
| do { |
| int32_t trampoline_pos = get_trampoline_entry(fixup_pos); |
| ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset); |
| target_at_put(fixup_pos, trampoline_pos); |
| fixup_pos = trampoline_pos; |
| dist = pos - fixup_pos; |
| } while (dist > kMaxBranchOffset); |
| } else if (dist < -kMaxBranchOffset) { |
| do { |
| int32_t trampoline_pos = get_trampoline_entry(fixup_pos, false); |
| ASSERT((trampoline_pos - fixup_pos) >= -kMaxBranchOffset); |
| target_at_put(fixup_pos, trampoline_pos); |
| fixup_pos = trampoline_pos; |
| dist = pos - fixup_pos; |
| } while (dist < -kMaxBranchOffset); |
| }; |
| target_at_put(fixup_pos, pos); |
| } |
| L->bind_to(pos); |
| |
| // Keep track of the last bound label so we don't eliminate any instructions |
| // before a bound label. |
| if (pos > last_bound_pos_) |
| last_bound_pos_ = pos; |
| } |
| |
| |
| void Assembler::link_to(Label* L, Label* appendix) { |
| if (appendix->is_linked()) { |
| if (L->is_linked()) { |
| // Append appendix to L's list. |
| int fixup_pos; |
| int link = L->pos(); |
| do { |
| fixup_pos = link; |
| link = target_at(fixup_pos); |
| } while (link > 0); |
| ASSERT(link == kEndOfChain); |
| target_at_put(fixup_pos, appendix->pos()); |
| } else { |
| // L is empty, simply use appendix. |
| *L = *appendix; |
| } |
| } |
| appendix->Unuse(); // Appendix should not be used anymore. |
| } |
| |
| |
| void Assembler::bind(Label* L) { |
| ASSERT(!L->is_bound()); // Label can only be bound once. |
| bind_to(L, pc_offset()); |
| } |
| |
| |
| void Assembler::next(Label* L) { |
| ASSERT(L->is_linked()); |
| int link = target_at(L->pos()); |
| ASSERT(link > 0 || link == kEndOfChain); |
| if (link == kEndOfChain) { |
| L->Unuse(); |
| } else if (link > 0) { |
| L->link_to(link); |
| } |
| } |
| |
| |
| // We have to use a temporary register for things that can be relocated even |
| // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction |
| // space. There is no guarantee that the relocated location can be similarly |
| // encoded. |
| bool Assembler::MustUseReg(RelocInfo::Mode rmode) { |
| return rmode != RelocInfo::NONE; |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| Register rd, |
| uint16_t sa, |
| SecondaryField func) { |
| ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (rd.code() << kRdShift) | (sa << kSaShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| uint16_t msb, |
| uint16_t lsb, |
| SecondaryField func) { |
| ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (msb << kRdShift) | (lsb << kSaShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| FPURegister ft, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func) { |
| ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); |
| ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
| Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift) |
| | (fd.code() << kFdShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| Register rt, |
| FPURegister fs, |
| FPURegister fd, |
| SecondaryField func) { |
| ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); |
| ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
| Instr instr = opcode | fmt | (rt.code() << kRtShift) |
| | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrRegister(Opcode opcode, |
| SecondaryField fmt, |
| Register rt, |
| FPUControlRegister fs, |
| SecondaryField func) { |
| ASSERT(fs.is_valid() && rt.is_valid()); |
| ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
| Instr instr = |
| opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; |
| emit(instr); |
| } |
| |
| |
| // Instructions with immediate value. |
| // Registers are in the order of the instruction encoding, from left to right. |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| Register rt, |
| int32_t j) { |
| ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| SecondaryField SF, |
| int32_t j) { |
| ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j))); |
| Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::GenInstrImmediate(Opcode opcode, |
| Register rs, |
| FPURegister ft, |
| int32_t j) { |
| ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); |
| ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
| Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
| | (j & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| // Registers are in the order of the instruction encoding, from left to right. |
| void Assembler::GenInstrJump(Opcode opcode, |
| uint32_t address) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| ASSERT(is_uint26(address)); |
| Instr instr = opcode | address; |
| emit(instr); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| // Returns the next free label entry from the next trampoline pool. |
| int32_t Assembler::get_label_entry(int32_t pos, bool next_pool) { |
| int trampoline_count = trampolines_.length(); |
| int32_t label_entry = 0; |
| ASSERT(trampoline_count > 0); |
| |
| if (next_pool) { |
| for (int i = 0; i < trampoline_count; i++) { |
| if (trampolines_[i].start() > pos) { |
| label_entry = trampolines_[i].take_label(); |
| break; |
| } |
| } |
| } else { // Caller needs a label entry from the previous pool. |
| for (int i = trampoline_count-1; i >= 0; i--) { |
| if (trampolines_[i].end() < pos) { |
| label_entry = trampolines_[i].take_label(); |
| break; |
| } |
| } |
| } |
| return label_entry; |
| } |
| |
| |
| // Returns the next free trampoline entry from the next trampoline pool. |
| int32_t Assembler::get_trampoline_entry(int32_t pos, bool next_pool) { |
| int trampoline_count = trampolines_.length(); |
| int32_t trampoline_entry = 0; |
| ASSERT(trampoline_count > 0); |
| |
| if (next_pool) { |
| for (int i = 0; i < trampoline_count; i++) { |
| if (trampolines_[i].start() > pos) { |
| trampoline_entry = trampolines_[i].take_slot(); |
| break; |
| } |
| } |
| } else { // Caller needs a trampoline entry from the previous pool. |
| for (int i = trampoline_count-1; i >= 0; i--) { |
| if (trampolines_[i].end() < pos) { |
| trampoline_entry = trampolines_[i].take_slot(); |
| break; |
| } |
| } |
| } |
| return trampoline_entry; |
| } |
| |
| |
| int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { |
| int32_t target_pos; |
| int32_t pc_offset_v = pc_offset(); |
| |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| int32_t dist = pc_offset_v - target_pos; |
| if (dist > kMaxBranchOffset) { |
| do { |
| int32_t trampoline_pos = get_trampoline_entry(target_pos); |
| ASSERT((trampoline_pos - target_pos) > 0); |
| ASSERT((trampoline_pos - target_pos) <= kMaxBranchOffset); |
| target_at_put(trampoline_pos, target_pos); |
| target_pos = trampoline_pos; |
| dist = pc_offset_v - target_pos; |
| } while (dist > kMaxBranchOffset); |
| } else if (dist < -kMaxBranchOffset) { |
| do { |
| int32_t trampoline_pos = get_trampoline_entry(target_pos, false); |
| ASSERT((target_pos - trampoline_pos) > 0); |
| ASSERT((target_pos - trampoline_pos) <= kMaxBranchOffset); |
| target_at_put(trampoline_pos, target_pos); |
| target_pos = trampoline_pos; |
| dist = pc_offset_v - target_pos; |
| } while (dist < -kMaxBranchOffset); |
| } |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| int32_t dist = pc_offset_v - target_pos; |
| if (dist > kMaxBranchOffset) { |
| do { |
| int32_t label_pos = get_label_entry(target_pos); |
| ASSERT((label_pos - target_pos) < kMaxBranchOffset); |
| label_at_put(L, label_pos); |
| target_pos = label_pos; |
| dist = pc_offset_v - target_pos; |
| } while (dist > kMaxBranchOffset); |
| } else if (dist < -kMaxBranchOffset) { |
| do { |
| int32_t label_pos = get_label_entry(target_pos, false); |
| ASSERT((label_pos - target_pos) > -kMaxBranchOffset); |
| label_at_put(L, label_pos); |
| target_pos = label_pos; |
| dist = pc_offset_v - target_pos; |
| } while (dist < -kMaxBranchOffset); |
| } |
| L->link_to(pc_offset()); |
| } else { |
| L->link_to(pc_offset()); |
| return kEndOfChain; |
| } |
| } |
| |
| int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); |
| ASSERT((offset & 3) == 0); |
| ASSERT(is_int16(offset >> 2)); |
| |
| return offset; |
| } |
| |
| |
| void Assembler::label_at_put(Label* L, int at_offset) { |
| int target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); |
| } else { |
| if (L->is_linked()) { |
| target_pos = L->pos(); // L's link. |
| int32_t imm18 = target_pos - at_offset; |
| ASSERT((imm18 & 3) == 0); |
| int32_t imm16 = imm18 >> 2; |
| ASSERT(is_int16(imm16)); |
| instr_at_put(at_offset, (imm16 & kImm16Mask)); |
| } else { |
| target_pos = kEndOfChain; |
| instr_at_put(at_offset, 0); |
| } |
| L->link_to(at_offset); |
| } |
| } |
| |
| |
| //------- Branch and jump instructions -------- |
| |
| void Assembler::b(int16_t offset) { |
| beq(zero_reg, zero_reg, offset); |
| } |
| |
| |
| void Assembler::bal(int16_t offset) { |
| positions_recorder()->WriteRecordedPositions(); |
| bgezal(zero_reg, offset); |
| } |
| |
| |
| void Assembler::beq(Register rs, Register rt, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BEQ, rs, rt, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bgez(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BGEZ, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bgezal(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| positions_recorder()->WriteRecordedPositions(); |
| GenInstrImmediate(REGIMM, rs, BGEZAL, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bgtz(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BGTZ, rs, zero_reg, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::blez(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BLEZ, rs, zero_reg, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bltz(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(REGIMM, rs, BLTZ, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bltzal(Register rs, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| positions_recorder()->WriteRecordedPositions(); |
| GenInstrImmediate(REGIMM, rs, BLTZAL, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::bne(Register rs, Register rt, int16_t offset) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| GenInstrImmediate(BNE, rs, rt, offset); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::j(int32_t target) { |
| ASSERT(is_uint28(target) && ((target & 3) == 0)); |
| GenInstrJump(J, target >> 2); |
| } |
| |
| |
| void Assembler::jr(Register rs) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| if (rs.is(ra)) { |
| positions_recorder()->WriteRecordedPositions(); |
| } |
| GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| void Assembler::jal(int32_t target) { |
| positions_recorder()->WriteRecordedPositions(); |
| ASSERT(is_uint28(target) && ((target & 3) == 0)); |
| GenInstrJump(JAL, target >> 2); |
| } |
| |
| |
| void Assembler::jalr(Register rs, Register rd) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| positions_recorder()->WriteRecordedPositions(); |
| GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); |
| BlockTrampolinePoolFor(1); // For associated delay slot. |
| } |
| |
| |
| //-------Data-processing-instructions--------- |
| |
| // Arithmetic. |
| |
| void Assembler::addu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); |
| } |
| |
| |
| void Assembler::addiu(Register rd, Register rs, int32_t j) { |
| GenInstrImmediate(ADDIU, rs, rd, j); |
| |
| // Eliminate pattern: push(r), pop(). |
| // addiu(sp, sp, Operand(-kPointerSize)); |
| // sw(src, MemOperand(sp, 0); |
| // addiu(sp, sp, Operand(kPointerSize)); |
| // Both instructions can be eliminated. |
| if (can_peephole_optimize(3) && |
| // Pattern. |
| instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && |
| (instr_at(pc_ - 2 * kInstrSize) & ~kRtMask) == kPushRegPattern && |
| (instr_at(pc_ - 3 * kInstrSize)) == kPushInstruction) { |
| pc_ -= 3 * kInstrSize; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); |
| } |
| } |
| |
| // Eliminate pattern: push(ry), pop(rx). |
| // addiu(sp, sp, -kPointerSize) |
| // sw(ry, MemOperand(sp, 0) |
| // lw(rx, MemOperand(sp, 0) |
| // addiu(sp, sp, kPointerSize); |
| // Both instructions can be eliminated if ry = rx. |
| // If ry != rx, a register copy from ry to rx is inserted |
| // after eliminating the push and the pop instructions. |
| if (can_peephole_optimize(4)) { |
| Instr pre_push_sp_set = instr_at(pc_ - 4 * kInstrSize); |
| Instr push_instr = instr_at(pc_ - 3 * kInstrSize); |
| Instr pop_instr = instr_at(pc_ - 2 * kInstrSize); |
| Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize); |
| |
| if (IsPush(push_instr) && |
| IsPop(pop_instr) && pre_push_sp_set == kPushInstruction && |
| post_pop_sp_set == kPopInstruction) { |
| if ((pop_instr & kRtMask) != (push_instr & kRtMask)) { |
| // For consecutive push and pop on different registers, |
| // we delete both the push & pop and insert a register move. |
| // push ry, pop rx --> mov rx, ry. |
| Register reg_pushed, reg_popped; |
| reg_pushed = GetRt(push_instr); |
| reg_popped = GetRt(pop_instr); |
| pc_ -= 4 * kInstrSize; |
| // Insert a mov instruction, which is better than a pair of push & pop. |
| or_(reg_popped, reg_pushed, zero_reg); |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push/pop (diff reg) replaced by a reg move\n", |
| pc_offset()); |
| } |
| } else { |
| // For consecutive push and pop on the same register, |
| // both the push and the pop can be deleted. |
| pc_ -= 4 * kInstrSize; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); |
| } |
| } |
| } |
| } |
| |
| if (can_peephole_optimize(5)) { |
| Instr pre_push_sp_set = instr_at(pc_ - 5 * kInstrSize); |
| Instr mem_write_instr = instr_at(pc_ - 4 * kInstrSize); |
| Instr lw_instr = instr_at(pc_ - 3 * kInstrSize); |
| Instr mem_read_instr = instr_at(pc_ - 2 * kInstrSize); |
| Instr post_pop_sp_set = instr_at(pc_ - 1 * kInstrSize); |
| |
| if (IsPush(mem_write_instr) && |
| pre_push_sp_set == kPushInstruction && |
| IsPop(mem_read_instr) && |
| post_pop_sp_set == kPopInstruction) { |
| if ((IsLwRegFpOffset(lw_instr) || |
| IsLwRegFpNegOffset(lw_instr))) { |
| if ((mem_write_instr & kRtMask) == |
| (mem_read_instr & kRtMask)) { |
| // Pattern: push & pop from/to same register, |
| // with a fp+offset lw in between. |
| // |
| // The following: |
| // addiu sp, sp, -4 |
| // sw rx, [sp, #0]! |
| // lw rz, [fp, #-24] |
| // lw rx, [sp, 0], |
| // addiu sp, sp, 4 |
| // |
| // Becomes: |
| // if(rx == rz) |
| // delete all |
| // else |
| // lw rz, [fp, #-24] |
| |
| if ((mem_write_instr & kRtMask) == (lw_instr & kRtMask)) { |
| pc_ -= 5 * kInstrSize; |
| } else { |
| pc_ -= 5 * kInstrSize; |
| // Reinsert back the lw rz. |
| emit(lw_instr); |
| } |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset()); |
| } |
| } else { |
| // Pattern: push & pop from/to different registers |
| // with a fp + offset lw in between. |
| // |
| // The following: |
| // addiu sp, sp ,-4 |
| // sw rx, [sp, 0] |
| // lw rz, [fp, #-24] |
| // lw ry, [sp, 0] |
| // addiu sp, sp, 4 |
| // |
| // Becomes: |
| // if(ry == rz) |
| // mov ry, rx; |
| // else if(rx != rz) |
| // lw rz, [fp, #-24] |
| // mov ry, rx |
| // else if((ry != rz) || (rx == rz)) becomes: |
| // mov ry, rx |
| // lw rz, [fp, #-24] |
| |
| Register reg_pushed, reg_popped; |
| if ((mem_read_instr & kRtMask) == (lw_instr & kRtMask)) { |
| reg_pushed = GetRt(mem_write_instr); |
| reg_popped = GetRt(mem_read_instr); |
| pc_ -= 5 * kInstrSize; |
| or_(reg_popped, reg_pushed, zero_reg); // Move instruction. |
| } else if ((mem_write_instr & kRtMask) |
| != (lw_instr & kRtMask)) { |
| reg_pushed = GetRt(mem_write_instr); |
| reg_popped = GetRt(mem_read_instr); |
| pc_ -= 5 * kInstrSize; |
| emit(lw_instr); |
| or_(reg_popped, reg_pushed, zero_reg); // Move instruction. |
| } else if (((mem_read_instr & kRtMask) |
| != (lw_instr & kRtMask)) || |
| ((mem_write_instr & kRtMask) |
| == (lw_instr & kRtMask)) ) { |
| reg_pushed = GetRt(mem_write_instr); |
| reg_popped = GetRt(mem_read_instr); |
| pc_ -= 5 * kInstrSize; |
| or_(reg_popped, reg_pushed, zero_reg); // Move instruction. |
| emit(lw_instr); |
| } |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset()); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void Assembler::subu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); |
| } |
| |
| |
| void Assembler::mul(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); |
| } |
| |
| |
| void Assembler::mult(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); |
| } |
| |
| |
| void Assembler::multu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); |
| } |
| |
| |
| void Assembler::div(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); |
| } |
| |
| |
| void Assembler::divu(Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); |
| } |
| |
| |
| // Logical. |
| |
| void Assembler::and_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); |
| } |
| |
| |
| void Assembler::andi(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(ANDI, rs, rt, j); |
| } |
| |
| |
| void Assembler::or_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); |
| } |
| |
| |
| void Assembler::ori(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(ORI, rs, rt, j); |
| } |
| |
| |
| void Assembler::xor_(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); |
| } |
| |
| |
| void Assembler::xori(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(XORI, rs, rt, j); |
| } |
| |
| |
| void Assembler::nor(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); |
| } |
| |
| |
| // Shifts. |
| void Assembler::sll(Register rd, |
| Register rt, |
| uint16_t sa, |
| bool coming_from_nop) { |
| // Don't allow nop instructions in the form sll zero_reg, zero_reg to be |
| // generated using the sll instruction. They must be generated using |
| // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo |
| // instructions. |
| ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg))); |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); |
| } |
| |
| |
| void Assembler::sllv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); |
| } |
| |
| |
| void Assembler::srl(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL); |
| } |
| |
| |
| void Assembler::srlv(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); |
| } |
| |
| |
| void Assembler::sra(Register rd, Register rt, uint16_t sa) { |
| GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA); |
| } |
| |
| |
| void Assembler::srav(Register rd, Register rt, Register rs) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); |
| } |
| |
| |
| void Assembler::rotr(Register rd, Register rt, uint16_t sa) { |
| // Should be called via MacroAssembler::Ror. |
| ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa)); |
| ASSERT(mips32r2); |
| Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
| | (rd.code() << kRdShift) | (sa << kSaShift) | SRL; |
| emit(instr); |
| } |
| |
| |
| void Assembler::rotrv(Register rd, Register rt, Register rs) { |
| // Should be called via MacroAssembler::Ror. |
| ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() ); |
| ASSERT(mips32r2); |
| Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
| | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; |
| emit(instr); |
| } |
| |
| |
| //------------Memory-instructions------------- |
| |
| // Helper for base-reg + offset, when offset is larger than int16. |
| void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) { |
| ASSERT(!src.rm().is(at)); |
| lui(at, src.offset_ >> kLuiShift); |
| ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset. |
| addu(at, at, src.rm()); // Add base register. |
| } |
| |
| |
| void Assembler::lb(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lbu(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lh(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lhu(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::lw(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to load. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0)); |
| } |
| |
| if (can_peephole_optimize(2)) { |
| Instr sw_instr = instr_at(pc_ - 2 * kInstrSize); |
| Instr lw_instr = instr_at(pc_ - 1 * kInstrSize); |
| |
| if ((IsSwRegFpOffset(sw_instr) && |
| IsLwRegFpOffset(lw_instr)) || |
| (IsSwRegFpNegOffset(sw_instr) && |
| IsLwRegFpNegOffset(lw_instr))) { |
| if ((lw_instr & kLwSwInstrArgumentMask) == |
| (sw_instr & kLwSwInstrArgumentMask)) { |
| // Pattern: Lw/sw same fp+offset, same register. |
| // |
| // The following: |
| // sw rx, [fp, #-12] |
| // lw rx, [fp, #-12] |
| // |
| // Becomes: |
| // sw rx, [fp, #-12] |
| |
| pc_ -= 1 * kInstrSize; |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x sw/lw (fp + same offset), same reg\n", pc_offset()); |
| } |
| } else if ((lw_instr & kLwSwOffsetMask) == |
| (sw_instr & kLwSwOffsetMask)) { |
| // Pattern: Lw/sw same fp+offset, different register. |
| // |
| // The following: |
| // sw rx, [fp, #-12] |
| // lw ry, [fp, #-12] |
| // |
| // Becomes: |
| // sw rx, [fp, #-12] |
| // mov ry, rx |
| |
| Register reg_stored, reg_loaded; |
| reg_stored = GetRt(sw_instr); |
| reg_loaded = GetRt(lw_instr); |
| pc_ -= 1 * kInstrSize; |
| // Insert a mov instruction, which is better than lw. |
| or_(reg_loaded, reg_stored, zero_reg); // Move instruction. |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x sw/lw (fp + same offset), diff reg \n", pc_offset()); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void Assembler::lwl(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::lwr(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::sb(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to store. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::sh(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to store. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0)); |
| } |
| } |
| |
| |
| void Assembler::sw(Register rd, const MemOperand& rs) { |
| if (is_int16(rs.offset_)) { |
| GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
| } else { // Offset > 16 bits, use multiple instructions to store. |
| LoadRegPlusOffsetToAt(rs); |
| GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0)); |
| } |
| |
| // Eliminate pattern: pop(), push(r). |
| // addiu sp, sp, Operand(kPointerSize); |
| // addiu sp, sp, Operand(-kPointerSize); |
| // -> sw r, MemOpernad(sp, 0); |
| if (can_peephole_optimize(3) && |
| // Pattern. |
| instr_at(pc_ - 1 * kInstrSize) == |
| (kPushRegPattern | (rd.code() << kRtShift)) && |
| instr_at(pc_ - 2 * kInstrSize) == kPushInstruction && |
| instr_at(pc_ - 3 * kInstrSize) == kPopInstruction) { |
| pc_ -= 3 * kInstrSize; |
| GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); |
| if (FLAG_print_peephole_optimization) { |
| PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); |
| } |
| } |
| } |
| |
| |
| void Assembler::swl(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::swr(Register rd, const MemOperand& rs) { |
| GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); |
| } |
| |
| |
| void Assembler::lui(Register rd, int32_t j) { |
| GenInstrImmediate(LUI, zero_reg, rd, j); |
| } |
| |
| |
| //-------------Misc-instructions-------------- |
| |
| // Break / Trap instructions. |
| void Assembler::break_(uint32_t code) { |
| ASSERT((code & ~0xfffff) == 0); |
| Instr break_instr = SPECIAL | BREAK | (code << 6); |
| emit(break_instr); |
| } |
| |
| |
| void Assembler::tge(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = SPECIAL | TGE | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tgeu(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = SPECIAL | TGEU | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tlt(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tltu(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TLTU | rs.code() << kRsShift |
| | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::teq(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| void Assembler::tne(Register rs, Register rt, uint16_t code) { |
| ASSERT(is_uint10(code)); |
| Instr instr = |
| SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; |
| emit(instr); |
| } |
| |
| |
| // Move from HI/LO register. |
| |
| void Assembler::mfhi(Register rd) { |
| GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); |
| } |
| |
| |
| void Assembler::mflo(Register rd) { |
| GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); |
| } |
| |
| |
| // Set on less than instructions. |
| void Assembler::slt(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); |
| } |
| |
| |
| void Assembler::sltu(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); |
| } |
| |
| |
| void Assembler::slti(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(SLTI, rs, rt, j); |
| } |
| |
| |
| void Assembler::sltiu(Register rt, Register rs, int32_t j) { |
| GenInstrImmediate(SLTIU, rs, rt, j); |
| } |
| |
| |
| // Conditional move. |
| void Assembler::movz(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); |
| } |
| |
| |
| void Assembler::movn(Register rd, Register rs, Register rt) { |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); |
| } |
| |
| |
| void Assembler::movt(Register rd, Register rs, uint16_t cc) { |
| Register rt; |
| rt.code_ = (cc & 0x0003) << 2 | 1; |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); |
| } |
| |
| |
| void Assembler::movf(Register rd, Register rs, uint16_t cc) { |
| Register rt; |
| rt.code_ = (cc & 0x0003) << 2 | 0; |
| GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); |
| } |
| |
| |
| // Bit twiddling. |
| void Assembler::clz(Register rd, Register rs) { |
| // Clz instr requires same GPR number in 'rd' and 'rt' fields. |
| GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); |
| } |
| |
| |
| void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Ins. |
| // Ins instr has 'rt' field as dest, and two uint5: msb, lsb. |
| ASSERT(mips32r2); |
| GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); |
| } |
| |
| |
| void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { |
| // Should be called via MacroAssembler::Ext. |
| // Ext instr has 'rt' field as dest, and two uint5: msb, lsb. |
| ASSERT(mips32r2); |
| GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); |
| } |
| |
| |
| //--------Coprocessor-instructions---------------- |
| |
| // Load, store, move. |
| void Assembler::lwc1(FPURegister fd, const MemOperand& src) { |
| GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); |
| } |
| |
| |
| void Assembler::ldc1(FPURegister fd, const MemOperand& src) { |
| // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit |
| // load to two 32-bit loads. |
| GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); |
| FPURegister nextfpreg; |
| nextfpreg.setcode(fd.code() + 1); |
| GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4); |
| } |
| |
| |
| void Assembler::swc1(FPURegister fd, const MemOperand& src) { |
| GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); |
| } |
| |
| |
| void Assembler::sdc1(FPURegister fd, const MemOperand& src) { |
| // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit |
| // store to two 32-bit stores. |
| GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); |
| FPURegister nextfpreg; |
| nextfpreg.setcode(fd.code() + 1); |
| GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4); |
| } |
| |
| |
| void Assembler::mtc1(Register rt, FPURegister fs) { |
| GenInstrRegister(COP1, MTC1, rt, fs, f0); |
| } |
| |
| |
| void Assembler::mfc1(Register rt, FPURegister fs) { |
| GenInstrRegister(COP1, MFC1, rt, fs, f0); |
| } |
| |
| |
| void Assembler::ctc1(Register rt, FPUControlRegister fs) { |
| GenInstrRegister(COP1, CTC1, rt, fs); |
| } |
| |
| |
| void Assembler::cfc1(Register rt, FPUControlRegister fs) { |
| GenInstrRegister(COP1, CFC1, rt, fs); |
| } |
| |
| |
| // Arithmetic. |
| |
| void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| GenInstrRegister(COP1, D, ft, fs, fd, ADD_D); |
| } |
| |
| |
| void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| GenInstrRegister(COP1, D, ft, fs, fd, SUB_D); |
| } |
| |
| |
| void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| GenInstrRegister(COP1, D, ft, fs, fd, MUL_D); |
| } |
| |
| |
| void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) { |
| GenInstrRegister(COP1, D, ft, fs, fd, DIV_D); |
| } |
| |
| |
| void Assembler::abs_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, ABS_D); |
| } |
| |
| |
| void Assembler::mov_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, MOV_D); |
| } |
| |
| |
| void Assembler::neg_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, NEG_D); |
| } |
| |
| |
| void Assembler::sqrt_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D); |
| } |
| |
| |
| // Conversions. |
| |
| void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); |
| } |
| |
| |
| void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); |
| } |
| |
| |
| void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S); |
| } |
| |
| |
| void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D); |
| } |
| |
| |
| void Assembler::round_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S); |
| } |
| |
| |
| void Assembler::round_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D); |
| } |
| |
| |
| void Assembler::floor_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S); |
| } |
| |
| |
| void Assembler::floor_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D); |
| } |
| |
| |
| void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S); |
| } |
| |
| |
| void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D); |
| } |
| |
| |
| void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); |
| } |
| |
| |
| void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); |
| } |
| |
| |
| void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S); |
| } |
| |
| |
| void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D); |
| } |
| |
| |
| void Assembler::round_l_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S); |
| } |
| |
| |
| void Assembler::round_l_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D); |
| } |
| |
| |
| void Assembler::floor_l_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S); |
| } |
| |
| |
| void Assembler::floor_l_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D); |
| } |
| |
| |
| void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S); |
| } |
| |
| |
| void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D); |
| } |
| |
| |
| void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); |
| } |
| |
| |
| void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); |
| } |
| |
| |
| void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); |
| } |
| |
| |
| void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); |
| } |
| |
| |
| void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { |
| ASSERT(mips32r2); |
| GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); |
| } |
| |
| |
| void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { |
| GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); |
| } |
| |
| |
| // Conditions. |
| void Assembler::c(FPUCondition cond, SecondaryField fmt, |
| FPURegister fs, FPURegister ft, uint16_t cc) { |
| ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
| ASSERT(is_uint3(cc)); |
| ASSERT((fmt & ~(31 << kRsShift)) == 0); |
| Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift |
| | cc << 8 | 3 << 4 | cond; |
| emit(instr); |
| } |
| |
| |
| void Assembler::fcmp(FPURegister src1, const double src2, |
| FPUCondition cond) { |
| ASSERT(isolate()->cpu_features()->IsSupported(FPU)); |
| ASSERT(src2 == 0.0); |
| mtc1(zero_reg, f14); |
| cvt_d_w(f14, f14); |
| c(cond, D, src1, f14, 0); |
| } |
| |
| |
| void Assembler::bc1f(int16_t offset, uint16_t cc) { |
| ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
| ASSERT(is_uint3(cc)); |
| Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| void Assembler::bc1t(int16_t offset, uint16_t cc) { |
| ASSERT(isolate()->cpu_features()->IsEnabled(FPU)); |
| ASSERT(is_uint3(cc)); |
| Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); |
| emit(instr); |
| } |
| |
| |
| // Debugging. |
| void Assembler::RecordJSReturn() { |
| positions_recorder()->WriteRecordedPositions(); |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::JS_RETURN); |
| } |
| |
| |
| void Assembler::RecordDebugBreakSlot() { |
| positions_recorder()->WriteRecordedPositions(); |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); |
| } |
| |
| |
| void Assembler::RecordComment(const char* msg) { |
| if (FLAG_code_comments) { |
| CheckBuffer(); |
| RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| } |
| } |
| |
| |
| void Assembler::GrowBuffer() { |
| if (!own_buffer_) FATAL("external code buffer is too small"); |
| |
| // Compute new buffer size. |
| CodeDesc desc; // The new buffer. |
| if (buffer_size_ < 4*KB) { |
| desc.buffer_size = 4*KB; |
| } else if (buffer_size_ < 1*MB) { |
| desc.buffer_size = 2*buffer_size_; |
| } else { |
| desc.buffer_size = buffer_size_ + 1*MB; |
| } |
| CHECK_GT(desc.buffer_size, 0); // No overflow. |
| |
| // Setup new buffer. |
| desc.buffer = NewArray<byte>(desc.buffer_size); |
| |
| desc.instr_size = pc_offset(); |
| desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); |
| |
| // Copy the data. |
| int pc_delta = desc.buffer - buffer_; |
| int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); |
| memmove(desc.buffer, buffer_, desc.instr_size); |
| memmove(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.pos(), desc.reloc_size); |
| |
| // Switch buffers. |
| DeleteArray(buffer_); |
| buffer_ = desc.buffer; |
| buffer_size_ = desc.buffer_size; |
| pc_ += pc_delta; |
| reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, |
| reloc_info_writer.last_pc() + pc_delta); |
| |
| // On ia32 and ARM pc relative addressing is used, and we thus need to apply a |
| // shift by pc_delta. But on MIPS the target address it directly loaded, so |
| // we do not need to relocate here. |
| |
| ASSERT(!overflow()); |
| } |
| |
| |
| void Assembler::db(uint8_t data) { |
| CheckBuffer(); |
| *reinterpret_cast<uint8_t*>(pc_) = data; |
| pc_ += sizeof(uint8_t); |
| } |
| |
| |
| void Assembler::dd(uint32_t data) { |
| CheckBuffer(); |
| *reinterpret_cast<uint32_t*>(pc_) = data; |
| pc_ += sizeof(uint32_t); |
| } |
| |
| |
| void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { |
| RelocInfo rinfo(pc_, rmode, data); // We do not try to reuse pool constants. |
| if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) { |
| // Adjust code for new modes. |
| ASSERT(RelocInfo::IsDebugBreakSlot(rmode) |
| || RelocInfo::IsJSReturn(rmode) |
| || RelocInfo::IsComment(rmode) |
| || RelocInfo::IsPosition(rmode)); |
| // These modes do not need an entry in the constant pool. |
| } |
| if (rinfo.rmode() != RelocInfo::NONE) { |
| // Don't record external references unless the heap will be serialized. |
| if (rmode == RelocInfo::EXTERNAL_REFERENCE && |
| !Serializer::enabled() && |
| !FLAG_debug_code) { |
| return; |
| } |
| ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here. |
| reloc_info_writer.Write(&rinfo); |
| } |
| } |
| |
| |
| void Assembler::BlockTrampolinePoolFor(int instructions) { |
| BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); |
| } |
| |
| |
| void Assembler::CheckTrampolinePool(bool force_emit) { |
| // Calculate the offset of the next check. |
| next_buffer_check_ = pc_offset() + kCheckConstInterval; |
| |
| int dist = pc_offset() - last_trampoline_pool_end_; |
| |
| if (dist <= kMaxDistBetweenPools && !force_emit) { |
| return; |
| } |
| |
| // Some small sequences of instructions must not be broken up by the |
| // insertion of a trampoline pool; such sequences are protected by setting |
| // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, |
| // which are both checked here. Also, recursive calls to CheckTrampolinePool |
| // are blocked by trampoline_pool_blocked_nesting_. |
| if ((trampoline_pool_blocked_nesting_ > 0) || |
| (pc_offset() < no_trampoline_pool_before_)) { |
| // Emission is currently blocked; make sure we try again as soon as |
| // possible. |
| if (trampoline_pool_blocked_nesting_ > 0) { |
| next_buffer_check_ = pc_offset() + kInstrSize; |
| } else { |
| next_buffer_check_ = no_trampoline_pool_before_; |
| } |
| return; |
| } |
| |
| // First we emit jump (2 instructions), then we emit trampoline pool. |
| { BlockTrampolinePoolScope block_trampoline_pool(this); |
| Label after_pool; |
| b(&after_pool); |
| nop(); |
| |
| int pool_start = pc_offset(); |
| for (int i = 0; i < kSlotsPerTrampoline; i++) { |
| b(&after_pool); |
| nop(); |
| } |
| for (int i = 0; i < kLabelsPerTrampoline; i++) { |
| emit(0); |
| } |
| last_trampoline_pool_end_ = pc_offset() - kInstrSize; |
| bind(&after_pool); |
| trampolines_.Add(Trampoline(pool_start, |
| kSlotsPerTrampoline, |
| kLabelsPerTrampoline)); |
| |
| // Since a trampoline pool was just emitted, |
| // move the check offset forward by the standard interval. |
| next_buffer_check_ = last_trampoline_pool_end_ + kMaxDistBetweenPools; |
| } |
| return; |
| } |
| |
| |
| Address Assembler::target_address_at(Address pc) { |
| Instr instr1 = instr_at(pc); |
| Instr instr2 = instr_at(pc + kInstrSize); |
| // Check we have 2 instructions generated by li. |
| ASSERT(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || |
| ((instr1 == nopInstr) && ((instr2 & kOpcodeMask) == ADDI || |
| (instr2 & kOpcodeMask) == ORI || |
| (instr2 & kOpcodeMask) == LUI))); |
| // Interpret these 2 instructions. |
| if (instr1 == nopInstr) { |
| if ((instr2 & kOpcodeMask) == ADDI) { |
| return reinterpret_cast<Address>(((instr2 & kImm16Mask) << 16) >> 16); |
| } else if ((instr2 & kOpcodeMask) == ORI) { |
| return reinterpret_cast<Address>(instr2 & kImm16Mask); |
| } else if ((instr2 & kOpcodeMask) == LUI) { |
| return reinterpret_cast<Address>((instr2 & kImm16Mask) << 16); |
| } |
| } else if ((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) { |
| // 32 bit value. |
| return reinterpret_cast<Address>( |
| (instr1 & kImm16Mask) << 16 | (instr2 & kImm16Mask)); |
| } |
| |
| // We should never get here. |
| UNREACHABLE(); |
| return (Address)0x0; |
| } |
| |
| |
| void Assembler::set_target_address_at(Address pc, Address target) { |
| // On MIPS we need to patch the code to generate. |
| |
| // First check we have a li. |
| Instr instr2 = instr_at(pc + kInstrSize); |
| #ifdef DEBUG |
| Instr instr1 = instr_at(pc); |
| |
| // Check we have indeed the result from a li with MustUseReg true. |
| CHECK(((instr1 & kOpcodeMask) == LUI && (instr2 & kOpcodeMask) == ORI) || |
| ((instr1 == 0) && ((instr2 & kOpcodeMask)== ADDIU || |
| (instr2 & kOpcodeMask)== ORI || |
| (instr2 & kOpcodeMask)== LUI))); |
| #endif |
| |
| uint32_t rt_code = (instr2 & kRtFieldMask); |
| uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| uint32_t itarget = reinterpret_cast<uint32_t>(target); |
| |
| if (is_int16(itarget)) { |
| // nop. |
| // addiu rt zero_reg j. |
| *p = nopInstr; |
| *(p+1) = ADDIU | rt_code | (itarget & kImm16Mask); |
| } else if (!(itarget & kHiMask)) { |
| // nop. |
| // ori rt zero_reg j. |
| *p = nopInstr; |
| *(p+1) = ORI | rt_code | (itarget & kImm16Mask); |
| } else if (!(itarget & kImm16Mask)) { |
| // nop. |
| // lui rt (kHiMask & itarget) >> kLuiShift. |
| *p = nopInstr; |
| *(p+1) = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); |
| } else { |
| // lui rt (kHiMask & itarget) >> kLuiShift. |
| // ori rt rt, (kImm16Mask & itarget). |
| *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); |
| *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask); |
| } |
| |
| CPU::FlushICache(pc, 2 * sizeof(int32_t)); |
| } |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS |