blob: 9c02ff48e10211ca4cc8df5c9db6cf6192463584 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "data-flow.h"
#include "scopes.h"
namespace v8 {
namespace internal {
#ifdef DEBUG
void BitVector::Print() {
bool first = true;
PrintF("{");
for (int i = 0; i < length(); i++) {
if (Contains(i)) {
if (!first) PrintF(",");
first = false;
PrintF("%d", i);
}
}
PrintF("}");
}
#endif
void BitVector::Iterator::Advance() {
current_++;
uint32_t val = current_value_;
while (val == 0) {
current_index_++;
if (Done()) return;
val = target_->data_[current_index_];
current_ = current_index_ << 5;
}
val = SkipZeroBytes(val);
val = SkipZeroBits(val);
current_value_ = val >> 1;
}
bool AssignedVariablesAnalyzer::Analyze(CompilationInfo* info) {
Scope* scope = info->scope();
int size = scope->num_parameters() + scope->num_stack_slots();
if (size == 0) return true;
AssignedVariablesAnalyzer analyzer(info, size);
return analyzer.Analyze();
}
AssignedVariablesAnalyzer::AssignedVariablesAnalyzer(CompilationInfo* info,
int size)
: info_(info), av_(size) {
}
bool AssignedVariablesAnalyzer::Analyze() {
ASSERT(av_.length() > 0);
VisitStatements(info_->function()->body());
return !HasStackOverflow();
}
Variable* AssignedVariablesAnalyzer::FindSmiLoopVariable(ForStatement* stmt) {
// The loop must have all necessary parts.
if (stmt->init() == NULL || stmt->cond() == NULL || stmt->next() == NULL) {
return NULL;
}
// The initialization statement has to be a simple assignment.
Assignment* init = stmt->init()->StatementAsSimpleAssignment();
if (init == NULL) return NULL;
// We only deal with local variables.
Variable* loop_var = init->target()->AsVariableProxy()->AsVariable();
if (loop_var == NULL || !loop_var->IsStackAllocated()) return NULL;
// Don't try to get clever with const or dynamic variables.
if (loop_var->mode() != Variable::VAR) return NULL;
// The initial value has to be a smi.
Literal* init_lit = init->value()->AsLiteral();
if (init_lit == NULL || !init_lit->handle()->IsSmi()) return NULL;
int init_value = Smi::cast(*init_lit->handle())->value();
// The condition must be a compare of variable with <, <=, >, or >=.
CompareOperation* cond = stmt->cond()->AsCompareOperation();
if (cond == NULL) return NULL;
if (cond->op() != Token::LT
&& cond->op() != Token::LTE
&& cond->op() != Token::GT
&& cond->op() != Token::GTE) return NULL;
// The lhs must be the same variable as in the init expression.
if (cond->left()->AsVariableProxy()->AsVariable() != loop_var) return NULL;
// The rhs must be a smi.
Literal* term_lit = cond->right()->AsLiteral();
if (term_lit == NULL || !term_lit->handle()->IsSmi()) return NULL;
int term_value = Smi::cast(*term_lit->handle())->value();
// The count operation updates the same variable as in the init expression.
CountOperation* update = stmt->next()->StatementAsCountOperation();
if (update == NULL) return NULL;
if (update->expression()->AsVariableProxy()->AsVariable() != loop_var) {
return NULL;
}
// The direction of the count operation must agree with the start and the end
// value. We currently do not allow the initial value to be the same as the
// terminal value. This _would_ be ok as long as the loop body never executes
// or executes exactly one time.
if (init_value == term_value) return NULL;
if (init_value < term_value && update->op() != Token::INC) return NULL;
if (init_value > term_value && update->op() != Token::DEC) return NULL;
// Check that the update operation cannot overflow the smi range. This can
// occur in the two cases where the loop bound is equal to the largest or
// smallest smi.
if (update->op() == Token::INC && term_value == Smi::kMaxValue) return NULL;
if (update->op() == Token::DEC && term_value == Smi::kMinValue) return NULL;
// Found a smi loop variable.
return loop_var;
}
int AssignedVariablesAnalyzer::BitIndex(Variable* var) {
ASSERT(var != NULL);
ASSERT(var->IsStackAllocated());
Slot* slot = var->AsSlot();
if (slot->type() == Slot::PARAMETER) {
return slot->index();
} else {
return info_->scope()->num_parameters() + slot->index();
}
}
void AssignedVariablesAnalyzer::RecordAssignedVar(Variable* var) {
ASSERT(var != NULL);
if (var->IsStackAllocated()) {
av_.Add(BitIndex(var));
}
}
void AssignedVariablesAnalyzer::MarkIfTrivial(Expression* expr) {
Variable* var = expr->AsVariableProxy()->AsVariable();
if (var != NULL &&
var->IsStackAllocated() &&
!var->is_arguments() &&
var->mode() != Variable::CONST &&
(var->is_this() || !av_.Contains(BitIndex(var)))) {
expr->AsVariableProxy()->MarkAsTrivial();
}
}
void AssignedVariablesAnalyzer::ProcessExpression(Expression* expr) {
BitVector saved_av(av_);
av_.Clear();
Visit(expr);
av_.Union(saved_av);
}
void AssignedVariablesAnalyzer::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void AssignedVariablesAnalyzer::VisitExpressionStatement(
ExpressionStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) {
// Do nothing.
}
void AssignedVariablesAnalyzer::VisitIfStatement(IfStatement* stmt) {
ProcessExpression(stmt->condition());
Visit(stmt->then_statement());
Visit(stmt->else_statement());
}
void AssignedVariablesAnalyzer::VisitContinueStatement(
ContinueStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitBreakStatement(BreakStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitReturnStatement(ReturnStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitWithEnterStatement(
WithEnterStatement* stmt) {
ProcessExpression(stmt->expression());
}
void AssignedVariablesAnalyzer::VisitWithExitStatement(
WithExitStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) {
BitVector result(av_);
av_.Clear();
Visit(stmt->tag());
result.Union(av_);
for (int i = 0; i < stmt->cases()->length(); i++) {
CaseClause* clause = stmt->cases()->at(i);
if (!clause->is_default()) {
av_.Clear();
Visit(clause->label());
result.Union(av_);
}
VisitStatements(clause->statements());
}
av_.Union(result);
}
void AssignedVariablesAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) {
ProcessExpression(stmt->cond());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitWhileStatement(WhileStatement* stmt) {
ProcessExpression(stmt->cond());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) Visit(stmt->init());
if (stmt->cond() != NULL) ProcessExpression(stmt->cond());
if (stmt->next() != NULL) Visit(stmt->next());
// Process loop body. After visiting the loop body av_ contains
// the assigned variables of the loop body.
BitVector saved_av(av_);
av_.Clear();
Visit(stmt->body());
Variable* var = FindSmiLoopVariable(stmt);
if (var != NULL && !av_.Contains(BitIndex(var))) {
stmt->set_loop_variable(var);
}
av_.Union(saved_av);
}
void AssignedVariablesAnalyzer::VisitForInStatement(ForInStatement* stmt) {
ProcessExpression(stmt->each());
ProcessExpression(stmt->enumerable());
Visit(stmt->body());
}
void AssignedVariablesAnalyzer::VisitTryCatchStatement(
TryCatchStatement* stmt) {
Visit(stmt->try_block());
Visit(stmt->catch_block());
}
void AssignedVariablesAnalyzer::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
Visit(stmt->try_block());
Visit(stmt->finally_block());
}
void AssignedVariablesAnalyzer::VisitDebuggerStatement(
DebuggerStatement* stmt) {
// Nothing to do.
}
void AssignedVariablesAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitConditional(Conditional* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->condition());
BitVector result(av_);
av_.Clear();
Visit(expr->then_expression());
result.Union(av_);
av_.Clear();
Visit(expr->else_expression());
av_.Union(result);
}
void AssignedVariablesAnalyzer::VisitVariableProxy(VariableProxy* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitLiteral(Literal* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_.length());
for (int i = 0; i < expr->properties()->length(); i++) {
Visit(expr->properties()->at(i)->value());
result.Union(av_);
av_.Clear();
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_.length());
for (int i = 0; i < expr->values()->length(); i++) {
Visit(expr->values()->at(i));
result.Union(av_);
av_.Clear();
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->key());
ProcessExpression(expr->value());
}
void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) {
ASSERT(av_.IsEmpty());
// There are three kinds of assignments: variable assignments, property
// assignments, and reference errors (invalid left-hand sides).
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
ASSERT(var == NULL || prop == NULL);
if (var != NULL) {
MarkIfTrivial(expr->value());
Visit(expr->value());
if (expr->is_compound()) {
// Left-hand side occurs also as an rvalue.
MarkIfTrivial(expr->target());
ProcessExpression(expr->target());
}
RecordAssignedVar(var);
} else if (prop != NULL) {
MarkIfTrivial(expr->value());
Visit(expr->value());
if (!prop->key()->IsPropertyName()) {
MarkIfTrivial(prop->key());
ProcessExpression(prop->key());
}
MarkIfTrivial(prop->obj());
ProcessExpression(prop->obj());
} else {
Visit(expr->target());
}
}
void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->exception());
}
void AssignedVariablesAnalyzer::VisitProperty(Property* expr) {
ASSERT(av_.IsEmpty());
if (!expr->key()->IsPropertyName()) {
MarkIfTrivial(expr->key());
Visit(expr->key());
}
MarkIfTrivial(expr->obj());
ProcessExpression(expr->obj());
}
void AssignedVariablesAnalyzer::VisitCall(Call* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCallNew(CallNew* expr) {
ASSERT(av_.IsEmpty());
Visit(expr->expression());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitCallRuntime(CallRuntime* expr) {
ASSERT(av_.IsEmpty());
BitVector result(av_);
for (int i = 0; i < expr->arguments()->length(); i++) {
av_.Clear();
Visit(expr->arguments()->at(i));
result.Union(av_);
}
av_ = result;
}
void AssignedVariablesAnalyzer::VisitUnaryOperation(UnaryOperation* expr) {
ASSERT(av_.IsEmpty());
MarkIfTrivial(expr->expression());
Visit(expr->expression());
}
void AssignedVariablesAnalyzer::VisitIncrementOperation(
IncrementOperation* expr) {
UNREACHABLE();
}
void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) {
ASSERT(av_.IsEmpty());
if (expr->is_prefix()) MarkIfTrivial(expr->expression());
Visit(expr->expression());
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (var != NULL) RecordAssignedVar(var);
}
void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(av_.IsEmpty());
MarkIfTrivial(expr->right());
Visit(expr->right());
MarkIfTrivial(expr->left());
ProcessExpression(expr->left());
}
void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) {
ASSERT(av_.IsEmpty());
MarkIfTrivial(expr->right());
Visit(expr->right());
MarkIfTrivial(expr->left());
ProcessExpression(expr->left());
}
void AssignedVariablesAnalyzer::VisitCompareToNull(CompareToNull* expr) {
ASSERT(av_.IsEmpty());
MarkIfTrivial(expr->expression());
Visit(expr->expression());
}
void AssignedVariablesAnalyzer::VisitThisFunction(ThisFunction* expr) {
// Nothing to do.
ASSERT(av_.IsEmpty());
}
void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
} } // namespace v8::internal