| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_IA32) |
| |
| #include "code-stubs.h" |
| #include "bootstrapper.h" |
| #include "jsregexp.h" |
| #include "regexp-macro-assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void ToNumberStub::Generate(MacroAssembler* masm) { |
| // The ToNumber stub takes one argument in eax. |
| NearLabel check_heap_number, call_builtin; |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &check_heap_number); |
| __ ret(0); |
| |
| __ bind(&check_heap_number); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); |
| __ j(not_equal, &call_builtin); |
| __ ret(0); |
| |
| __ bind(&call_builtin); |
| __ pop(ecx); // Pop return address. |
| __ push(eax); |
| __ push(ecx); // Push return address. |
| __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); |
| } |
| |
| |
| void FastNewClosureStub::Generate(MacroAssembler* masm) { |
| // Create a new closure from the given function info in new |
| // space. Set the context to the current context in esi. |
| Label gc; |
| __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT); |
| |
| // Get the function info from the stack. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| |
| // Compute the function map in the current global context and set that |
| // as the map of the allocated object. |
| __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); |
| __ mov(ecx, Operand(ecx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); |
| __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx); |
| |
| // Initialize the rest of the function. We don't have to update the |
| // write barrier because the allocated object is in new space. |
| __ mov(ebx, Immediate(Factory::empty_fixed_array())); |
| __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); |
| __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset), |
| Immediate(Factory::the_hole_value())); |
| __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx); |
| __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi); |
| __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx); |
| __ mov(FieldOperand(eax, JSFunction::kNextFunctionLinkOffset), |
| Immediate(Factory::undefined_value())); |
| |
| // Initialize the code pointer in the function to be the one |
| // found in the shared function info object. |
| __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); |
| __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
| __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx); |
| |
| // Return and remove the on-stack parameter. |
| __ ret(1 * kPointerSize); |
| |
| // Create a new closure through the slower runtime call. |
| __ bind(&gc); |
| __ pop(ecx); // Temporarily remove return address. |
| __ pop(edx); |
| __ push(esi); |
| __ push(edx); |
| __ push(Immediate(Factory::false_value())); |
| __ push(ecx); // Restore return address. |
| __ TailCallRuntime(Runtime::kNewClosure, 3, 1); |
| } |
| |
| |
| void FastNewContextStub::Generate(MacroAssembler* masm) { |
| // Try to allocate the context in new space. |
| Label gc; |
| int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
| __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, |
| eax, ebx, ecx, &gc, TAG_OBJECT); |
| |
| // Get the function from the stack. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| |
| // Setup the object header. |
| __ mov(FieldOperand(eax, HeapObject::kMapOffset), Factory::context_map()); |
| __ mov(FieldOperand(eax, Context::kLengthOffset), |
| Immediate(Smi::FromInt(length))); |
| |
| // Setup the fixed slots. |
| __ Set(ebx, Immediate(0)); // Set to NULL. |
| __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx); |
| __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax); |
| __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx); |
| __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx); |
| |
| // Copy the global object from the surrounding context. We go through the |
| // context in the function (ecx) to match the allocation behavior we have |
| // in the runtime system (see Heap::AllocateFunctionContext). |
| __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset)); |
| __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx); |
| |
| // Initialize the rest of the slots to undefined. |
| __ mov(ebx, Factory::undefined_value()); |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
| __ mov(Operand(eax, Context::SlotOffset(i)), ebx); |
| } |
| |
| // Return and remove the on-stack parameter. |
| __ mov(esi, Operand(eax)); |
| __ ret(1 * kPointerSize); |
| |
| // Need to collect. Call into runtime system. |
| __ bind(&gc); |
| __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
| } |
| |
| |
| void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| // Stack layout on entry: |
| // |
| // [esp + kPointerSize]: constant elements. |
| // [esp + (2 * kPointerSize)]: literal index. |
| // [esp + (3 * kPointerSize)]: literals array. |
| |
| // All sizes here are multiples of kPointerSize. |
| int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
| int size = JSArray::kSize + elements_size; |
| |
| // Load boilerplate object into ecx and check if we need to create a |
| // boilerplate. |
| Label slow_case; |
| __ mov(ecx, Operand(esp, 3 * kPointerSize)); |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); |
| STATIC_ASSERT(kPointerSize == 4); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ cmp(ecx, Factory::undefined_value()); |
| __ j(equal, &slow_case); |
| |
| if (FLAG_debug_code) { |
| const char* message; |
| Handle<Map> expected_map; |
| if (mode_ == CLONE_ELEMENTS) { |
| message = "Expected (writable) fixed array"; |
| expected_map = Factory::fixed_array_map(); |
| } else { |
| ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
| message = "Expected copy-on-write fixed array"; |
| expected_map = Factory::fixed_cow_array_map(); |
| } |
| __ push(ecx); |
| __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
| __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map); |
| __ Assert(equal, message); |
| __ pop(ecx); |
| } |
| |
| // Allocate both the JS array and the elements array in one big |
| // allocation. This avoids multiple limit checks. |
| __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT); |
| |
| // Copy the JS array part. |
| for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
| if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
| __ mov(ebx, FieldOperand(ecx, i)); |
| __ mov(FieldOperand(eax, i), ebx); |
| } |
| } |
| |
| if (length_ > 0) { |
| // Get hold of the elements array of the boilerplate and setup the |
| // elements pointer in the resulting object. |
| __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); |
| __ lea(edx, Operand(eax, JSArray::kSize)); |
| __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx); |
| |
| // Copy the elements array. |
| for (int i = 0; i < elements_size; i += kPointerSize) { |
| __ mov(ebx, FieldOperand(ecx, i)); |
| __ mov(FieldOperand(edx, i), ebx); |
| } |
| } |
| |
| // Return and remove the on-stack parameters. |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&slow_case); |
| __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
| } |
| |
| |
| // NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined). |
| void ToBooleanStub::Generate(MacroAssembler* masm) { |
| NearLabel false_result, true_result, not_string; |
| __ mov(eax, Operand(esp, 1 * kPointerSize)); |
| |
| // 'null' => false. |
| __ cmp(eax, Factory::null_value()); |
| __ j(equal, &false_result); |
| |
| // Get the map and type of the heap object. |
| __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset)); |
| |
| // Undetectable => false. |
| __ test_b(FieldOperand(edx, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| __ j(not_zero, &false_result); |
| |
| // JavaScript object => true. |
| __ CmpInstanceType(edx, FIRST_JS_OBJECT_TYPE); |
| __ j(above_equal, &true_result); |
| |
| // String value => false iff empty. |
| __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE); |
| __ j(above_equal, ¬_string); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0)); |
| __ j(zero, &false_result); |
| __ jmp(&true_result); |
| |
| __ bind(¬_string); |
| // HeapNumber => false iff +0, -0, or NaN. |
| __ cmp(edx, Factory::heap_number_map()); |
| __ j(not_equal, &true_result); |
| __ fldz(); |
| __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ FCmp(); |
| __ j(zero, &false_result); |
| // Fall through to |true_result|. |
| |
| // Return 1/0 for true/false in eax. |
| __ bind(&true_result); |
| __ mov(eax, 1); |
| __ ret(1 * kPointerSize); |
| __ bind(&false_result); |
| __ mov(eax, 0); |
| __ ret(1 * kPointerSize); |
| } |
| |
| |
| const char* GenericBinaryOpStub::GetName() { |
| if (name_ != NULL) return name_; |
| const int kMaxNameLength = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| if (name_ == NULL) return "OOM"; |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", |
| op_name, |
| overwrite_name, |
| (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
| args_in_registers_ ? "RegArgs" : "StackArgs", |
| args_reversed_ ? "_R" : "", |
| static_operands_type_.ToString(), |
| BinaryOpIC::GetName(runtime_operands_type_)); |
| return name_; |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateCall( |
| MacroAssembler* masm, |
| Register left, |
| Register right) { |
| if (!ArgsInRegistersSupported()) { |
| // Pass arguments on the stack. |
| __ push(left); |
| __ push(right); |
| } else { |
| // The calling convention with registers is left in edx and right in eax. |
| Register left_arg = edx; |
| Register right_arg = eax; |
| if (!(left.is(left_arg) && right.is(right_arg))) { |
| if (left.is(right_arg) && right.is(left_arg)) { |
| if (IsOperationCommutative()) { |
| SetArgsReversed(); |
| } else { |
| __ xchg(left, right); |
| } |
| } else if (left.is(left_arg)) { |
| __ mov(right_arg, right); |
| } else if (right.is(right_arg)) { |
| __ mov(left_arg, left); |
| } else if (left.is(right_arg)) { |
| if (IsOperationCommutative()) { |
| __ mov(left_arg, right); |
| SetArgsReversed(); |
| } else { |
| // Order of moves important to avoid destroying left argument. |
| __ mov(left_arg, left); |
| __ mov(right_arg, right); |
| } |
| } else if (right.is(left_arg)) { |
| if (IsOperationCommutative()) { |
| __ mov(right_arg, left); |
| SetArgsReversed(); |
| } else { |
| // Order of moves important to avoid destroying right argument. |
| __ mov(right_arg, right); |
| __ mov(left_arg, left); |
| } |
| } else { |
| // Order of moves is not important. |
| __ mov(left_arg, left); |
| __ mov(right_arg, right); |
| } |
| } |
| |
| // Update flags to indicate that arguments are in registers. |
| SetArgsInRegisters(); |
| __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| } |
| |
| // Call the stub. |
| __ CallStub(this); |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateCall( |
| MacroAssembler* masm, |
| Register left, |
| Smi* right) { |
| if (!ArgsInRegistersSupported()) { |
| // Pass arguments on the stack. |
| __ push(left); |
| __ push(Immediate(right)); |
| } else { |
| // The calling convention with registers is left in edx and right in eax. |
| Register left_arg = edx; |
| Register right_arg = eax; |
| if (left.is(left_arg)) { |
| __ mov(right_arg, Immediate(right)); |
| } else if (left.is(right_arg) && IsOperationCommutative()) { |
| __ mov(left_arg, Immediate(right)); |
| SetArgsReversed(); |
| } else { |
| // For non-commutative operations, left and right_arg might be |
| // the same register. Therefore, the order of the moves is |
| // important here in order to not overwrite left before moving |
| // it to left_arg. |
| __ mov(left_arg, left); |
| __ mov(right_arg, Immediate(right)); |
| } |
| |
| // Update flags to indicate that arguments are in registers. |
| SetArgsInRegisters(); |
| __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| } |
| |
| // Call the stub. |
| __ CallStub(this); |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateCall( |
| MacroAssembler* masm, |
| Smi* left, |
| Register right) { |
| if (!ArgsInRegistersSupported()) { |
| // Pass arguments on the stack. |
| __ push(Immediate(left)); |
| __ push(right); |
| } else { |
| // The calling convention with registers is left in edx and right in eax. |
| Register left_arg = edx; |
| Register right_arg = eax; |
| if (right.is(right_arg)) { |
| __ mov(left_arg, Immediate(left)); |
| } else if (right.is(left_arg) && IsOperationCommutative()) { |
| __ mov(right_arg, Immediate(left)); |
| SetArgsReversed(); |
| } else { |
| // For non-commutative operations, right and left_arg might be |
| // the same register. Therefore, the order of the moves is |
| // important here in order to not overwrite right before moving |
| // it to right_arg. |
| __ mov(right_arg, right); |
| __ mov(left_arg, Immediate(left)); |
| } |
| // Update flags to indicate that arguments are in registers. |
| SetArgsInRegisters(); |
| __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
| } |
| |
| // Call the stub. |
| __ CallStub(this); |
| } |
| |
| |
| class FloatingPointHelper : public AllStatic { |
| public: |
| |
| enum ArgLocation { |
| ARGS_ON_STACK, |
| ARGS_IN_REGISTERS |
| }; |
| |
| // Code pattern for loading a floating point value. Input value must |
| // be either a smi or a heap number object (fp value). Requirements: |
| // operand in register number. Returns operand as floating point number |
| // on FPU stack. |
| static void LoadFloatOperand(MacroAssembler* masm, Register number); |
| |
| // Code pattern for loading floating point values. Input values must |
| // be either smi or heap number objects (fp values). Requirements: |
| // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax. |
| // Returns operands as floating point numbers on FPU stack. |
| static void LoadFloatOperands(MacroAssembler* masm, |
| Register scratch, |
| ArgLocation arg_location = ARGS_ON_STACK); |
| |
| // Similar to LoadFloatOperand but assumes that both operands are smis. |
| // Expects operands in edx, eax. |
| static void LoadFloatSmis(MacroAssembler* masm, Register scratch); |
| |
| // Test if operands are smi or number objects (fp). Requirements: |
| // operand_1 in eax, operand_2 in edx; falls through on float |
| // operands, jumps to the non_float label otherwise. |
| static void CheckFloatOperands(MacroAssembler* masm, |
| Label* non_float, |
| Register scratch); |
| |
| // Checks that the two floating point numbers on top of the FPU stack |
| // have int32 values. |
| static void CheckFloatOperandsAreInt32(MacroAssembler* masm, |
| Label* non_int32); |
| |
| // Takes the operands in edx and eax and loads them as integers in eax |
| // and ecx. |
| static void LoadAsIntegers(MacroAssembler* masm, |
| TypeInfo type_info, |
| bool use_sse3, |
| Label* operand_conversion_failure); |
| static void LoadNumbersAsIntegers(MacroAssembler* masm, |
| TypeInfo type_info, |
| bool use_sse3, |
| Label* operand_conversion_failure); |
| static void LoadUnknownsAsIntegers(MacroAssembler* masm, |
| bool use_sse3, |
| Label* operand_conversion_failure); |
| |
| // Must only be called after LoadUnknownsAsIntegers. Assumes that the |
| // operands are pushed on the stack, and that their conversions to int32 |
| // are in eax and ecx. Checks that the original numbers were in the int32 |
| // range. |
| static void CheckLoadedIntegersWereInt32(MacroAssembler* masm, |
| bool use_sse3, |
| Label* not_int32); |
| |
| // Assumes that operands are smis or heap numbers and loads them |
| // into xmm0 and xmm1. Operands are in edx and eax. |
| // Leaves operands unchanged. |
| static void LoadSSE2Operands(MacroAssembler* masm); |
| |
| // Test if operands are numbers (smi or HeapNumber objects), and load |
| // them into xmm0 and xmm1 if they are. Jump to label not_numbers if |
| // either operand is not a number. Operands are in edx and eax. |
| // Leaves operands unchanged. |
| static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); |
| |
| // Similar to LoadSSE2Operands but assumes that both operands are smis. |
| // Expects operands in edx, eax. |
| static void LoadSSE2Smis(MacroAssembler* masm, Register scratch); |
| |
| // Checks that the two floating point numbers loaded into xmm0 and xmm1 |
| // have int32 values. |
| static void CheckSSE2OperandsAreInt32(MacroAssembler* masm, |
| Label* non_int32, |
| Register scratch); |
| }; |
| |
| |
| void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
| // 1. Move arguments into edx, eax except for DIV and MOD, which need the |
| // dividend in eax and edx free for the division. Use eax, ebx for those. |
| Comment load_comment(masm, "-- Load arguments"); |
| Register left = edx; |
| Register right = eax; |
| if (op_ == Token::DIV || op_ == Token::MOD) { |
| left = eax; |
| right = ebx; |
| if (HasArgsInRegisters()) { |
| __ mov(ebx, eax); |
| __ mov(eax, edx); |
| } |
| } |
| if (!HasArgsInRegisters()) { |
| __ mov(right, Operand(esp, 1 * kPointerSize)); |
| __ mov(left, Operand(esp, 2 * kPointerSize)); |
| } |
| |
| if (static_operands_type_.IsSmi()) { |
| if (FLAG_debug_code) { |
| __ AbortIfNotSmi(left); |
| __ AbortIfNotSmi(right); |
| } |
| if (op_ == Token::BIT_OR) { |
| __ or_(right, Operand(left)); |
| GenerateReturn(masm); |
| return; |
| } else if (op_ == Token::BIT_AND) { |
| __ and_(right, Operand(left)); |
| GenerateReturn(masm); |
| return; |
| } else if (op_ == Token::BIT_XOR) { |
| __ xor_(right, Operand(left)); |
| GenerateReturn(masm); |
| return; |
| } |
| } |
| |
| // 2. Prepare the smi check of both operands by oring them together. |
| Comment smi_check_comment(masm, "-- Smi check arguments"); |
| Label not_smis; |
| Register combined = ecx; |
| ASSERT(!left.is(combined) && !right.is(combined)); |
| switch (op_) { |
| case Token::BIT_OR: |
| // Perform the operation into eax and smi check the result. Preserve |
| // eax in case the result is not a smi. |
| ASSERT(!left.is(ecx) && !right.is(ecx)); |
| __ mov(ecx, right); |
| __ or_(right, Operand(left)); // Bitwise or is commutative. |
| combined = right; |
| break; |
| |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| __ mov(combined, right); |
| __ or_(combined, Operand(left)); |
| break; |
| |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| // Move the right operand into ecx for the shift operation, use eax |
| // for the smi check register. |
| ASSERT(!left.is(ecx) && !right.is(ecx)); |
| __ mov(ecx, right); |
| __ or_(right, Operand(left)); |
| combined = right; |
| break; |
| |
| default: |
| break; |
| } |
| |
| // 3. Perform the smi check of the operands. |
| STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case. |
| __ test(combined, Immediate(kSmiTagMask)); |
| __ j(not_zero, ¬_smis, not_taken); |
| |
| // 4. Operands are both smis, perform the operation leaving the result in |
| // eax and check the result if necessary. |
| Comment perform_smi(masm, "-- Perform smi operation"); |
| Label use_fp_on_smis; |
| switch (op_) { |
| case Token::BIT_OR: |
| // Nothing to do. |
| break; |
| |
| case Token::BIT_XOR: |
| ASSERT(right.is(eax)); |
| __ xor_(right, Operand(left)); // Bitwise xor is commutative. |
| break; |
| |
| case Token::BIT_AND: |
| ASSERT(right.is(eax)); |
| __ and_(right, Operand(left)); // Bitwise and is commutative. |
| break; |
| |
| case Token::SHL: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ shl_cl(left); |
| // Check that the *signed* result fits in a smi. |
| __ cmp(left, 0xc0000000); |
| __ j(sign, &use_fp_on_smis, not_taken); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::SAR: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ sar_cl(left); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::SHR: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ shr_cl(left); |
| // Check that the *unsigned* result fits in a smi. |
| // Neither of the two high-order bits can be set: |
| // - 0x80000000: high bit would be lost when smi tagging. |
| // - 0x40000000: this number would convert to negative when |
| // Smi tagging these two cases can only happen with shifts |
| // by 0 or 1 when handed a valid smi. |
| __ test(left, Immediate(0xc0000000)); |
| __ j(not_zero, slow, not_taken); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::ADD: |
| ASSERT(right.is(eax)); |
| __ add(right, Operand(left)); // Addition is commutative. |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| break; |
| |
| case Token::SUB: |
| __ sub(left, Operand(right)); |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| __ mov(eax, left); |
| break; |
| |
| case Token::MUL: |
| // If the smi tag is 0 we can just leave the tag on one operand. |
| STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| // We can't revert the multiplication if the result is not a smi |
| // so save the right operand. |
| __ mov(ebx, right); |
| // Remove tag from one of the operands (but keep sign). |
| __ SmiUntag(right); |
| // Do multiplication. |
| __ imul(right, Operand(left)); // Multiplication is commutative. |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(right, combined, &use_fp_on_smis); |
| break; |
| |
| case Token::DIV: |
| // We can't revert the division if the result is not a smi so |
| // save the left operand. |
| __ mov(edi, left); |
| // Check for 0 divisor. |
| __ test(right, Operand(right)); |
| __ j(zero, &use_fp_on_smis, not_taken); |
| // Sign extend left into edx:eax. |
| ASSERT(left.is(eax)); |
| __ cdq(); |
| // Divide edx:eax by right. |
| __ idiv(right); |
| // Check for the corner case of dividing the most negative smi by |
| // -1. We cannot use the overflow flag, since it is not set by idiv |
| // instruction. |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ cmp(eax, 0x40000000); |
| __ j(equal, &use_fp_on_smis); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(eax, combined, &use_fp_on_smis); |
| // Check that the remainder is zero. |
| __ test(edx, Operand(edx)); |
| __ j(not_zero, &use_fp_on_smis); |
| // Tag the result and store it in register eax. |
| __ SmiTag(eax); |
| break; |
| |
| case Token::MOD: |
| // Check for 0 divisor. |
| __ test(right, Operand(right)); |
| __ j(zero, ¬_smis, not_taken); |
| |
| // Sign extend left into edx:eax. |
| ASSERT(left.is(eax)); |
| __ cdq(); |
| // Divide edx:eax by right. |
| __ idiv(right); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(edx, combined, slow); |
| // Move remainder to register eax. |
| __ mov(eax, edx); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| // 5. Emit return of result in eax. |
| GenerateReturn(masm); |
| |
| // 6. For some operations emit inline code to perform floating point |
| // operations on known smis (e.g., if the result of the operation |
| // overflowed the smi range). |
| switch (op_) { |
| case Token::SHL: { |
| Comment perform_float(masm, "-- Perform float operation on smis"); |
| __ bind(&use_fp_on_smis); |
| if (runtime_operands_type_ != BinaryOpIC::UNINIT_OR_SMI) { |
| // Result we want is in left == edx, so we can put the allocated heap |
| // number in eax. |
| __ AllocateHeapNumber(eax, ecx, ebx, slow); |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(left)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| // It's OK to overwrite the right argument on the stack because we |
| // are about to return. |
| __ mov(Operand(esp, 1 * kPointerSize), left); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| GenerateReturn(masm); |
| } else { |
| ASSERT(runtime_operands_type_ == BinaryOpIC::UNINIT_OR_SMI); |
| __ jmp(slow); |
| } |
| break; |
| } |
| |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Comment perform_float(masm, "-- Perform float operation on smis"); |
| __ bind(&use_fp_on_smis); |
| // Restore arguments to edx, eax. |
| switch (op_) { |
| case Token::ADD: |
| // Revert right = right + left. |
| __ sub(right, Operand(left)); |
| break; |
| case Token::SUB: |
| // Revert left = left - right. |
| __ add(left, Operand(right)); |
| break; |
| case Token::MUL: |
| // Right was clobbered but a copy is in ebx. |
| __ mov(right, ebx); |
| break; |
| case Token::DIV: |
| // Left was clobbered but a copy is in edi. Right is in ebx for |
| // division. |
| __ mov(edx, edi); |
| __ mov(eax, right); |
| break; |
| default: UNREACHABLE(); |
| break; |
| } |
| if (runtime_operands_type_ != BinaryOpIC::UNINIT_OR_SMI) { |
| __ AllocateHeapNumber(ecx, ebx, no_reg, slow); |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Smis(masm, ebx); |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::LoadFloatSmis(masm, ebx); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); |
| } |
| __ mov(eax, ecx); |
| GenerateReturn(masm); |
| } else { |
| ASSERT(runtime_operands_type_ == BinaryOpIC::UNINIT_OR_SMI); |
| __ jmp(slow); |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| // 7. Non-smi operands, fall out to the non-smi code with the operands in |
| // edx and eax. |
| Comment done_comment(masm, "-- Enter non-smi code"); |
| __ bind(¬_smis); |
| switch (op_) { |
| case Token::BIT_OR: |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| // Right operand is saved in ecx and eax was destroyed by the smi |
| // check. |
| __ mov(eax, ecx); |
| break; |
| |
| case Token::DIV: |
| case Token::MOD: |
| // Operands are in eax, ebx at this point. |
| __ mov(edx, eax); |
| __ mov(eax, ebx); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| __ IncrementCounter(&Counters::generic_binary_stub_calls, 1); |
| |
| if (runtime_operands_type_ == BinaryOpIC::UNINIT_OR_SMI) { |
| Label slow; |
| if (ShouldGenerateSmiCode()) GenerateSmiCode(masm, &slow); |
| __ bind(&slow); |
| GenerateTypeTransition(masm); |
| } |
| |
| // Generate fast case smi code if requested. This flag is set when the fast |
| // case smi code is not generated by the caller. Generating it here will speed |
| // up common operations. |
| if (ShouldGenerateSmiCode()) { |
| GenerateSmiCode(masm, &call_runtime); |
| } else if (op_ != Token::MOD) { // MOD goes straight to runtime. |
| if (!HasArgsInRegisters()) { |
| GenerateLoadArguments(masm); |
| } |
| } |
| |
| // Floating point case. |
| if (ShouldGenerateFPCode()) { |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
| HasSmiCodeInStub()) { |
| // Execution reaches this point when the first non-smi argument occurs |
| // (and only if smi code is generated). This is the right moment to |
| // patch to HEAP_NUMBERS state. The transition is attempted only for |
| // the four basic operations. The stub stays in the DEFAULT state |
| // forever for all other operations (also if smi code is skipped). |
| GenerateTypeTransition(masm); |
| break; |
| } |
| |
| Label not_floats; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| if (static_operands_type_.IsNumber()) { |
| if (FLAG_debug_code) { |
| // Assert at runtime that inputs are only numbers. |
| __ AbortIfNotNumber(edx); |
| __ AbortIfNotNumber(eax); |
| } |
| if (static_operands_type_.IsSmi()) { |
| if (FLAG_debug_code) { |
| __ AbortIfNotSmi(edx); |
| __ AbortIfNotSmi(eax); |
| } |
| FloatingPointHelper::LoadSSE2Smis(masm, ecx); |
| } else { |
| FloatingPointHelper::LoadSSE2Operands(masm); |
| } |
| } else { |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| } |
| |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| GenerateHeapResultAllocation(masm, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| GenerateReturn(masm); |
| } else { // SSE2 not available, use FPU. |
| if (static_operands_type_.IsNumber()) { |
| if (FLAG_debug_code) { |
| // Assert at runtime that inputs are only numbers. |
| __ AbortIfNotNumber(edx); |
| __ AbortIfNotNumber(eax); |
| } |
| } else { |
| FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); |
| } |
| FloatingPointHelper::LoadFloatOperands( |
| masm, |
| ecx, |
| FloatingPointHelper::ARGS_IN_REGISTERS); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| Label after_alloc_failure; |
| GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| GenerateReturn(masm); |
| __ bind(&after_alloc_failure); |
| __ ffree(); |
| __ jmp(&call_runtime); |
| } |
| __ bind(¬_floats); |
| if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
| !HasSmiCodeInStub()) { |
| // Execution reaches this point when the first non-number argument |
| // occurs (and only if smi code is skipped from the stub, otherwise |
| // the patching has already been done earlier in this case branch). |
| // Try patching to STRINGS for ADD operation. |
| if (op_ == Token::ADD) { |
| GenerateTypeTransition(masm); |
| } |
| } |
| break; |
| } |
| case Token::MOD: { |
| // For MOD we go directly to runtime in the non-smi case. |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: { |
| Label non_smi_result; |
| FloatingPointHelper::LoadAsIntegers(masm, |
| static_operands_type_, |
| use_sse3_, |
| &call_runtime); |
| switch (op_) { |
| case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; |
| case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; |
| case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; |
| case Token::SAR: __ sar_cl(eax); break; |
| case Token::SHL: __ shl_cl(eax); break; |
| case Token::SHR: __ shr_cl(eax); break; |
| default: UNREACHABLE(); |
| } |
| if (op_ == Token::SHR) { |
| // Check if result is non-negative and fits in a smi. |
| __ test(eax, Immediate(0xc0000000)); |
| __ j(not_zero, &call_runtime); |
| } else { |
| // Check if result fits in a smi. |
| __ cmp(eax, 0xc0000000); |
| __ j(negative, &non_smi_result); |
| } |
| // Tag smi result and return. |
| __ SmiTag(eax); |
| GenerateReturn(masm); |
| |
| // All ops except SHR return a signed int32 that we load in |
| // a HeapNumber. |
| if (op_ != Token::SHR) { |
| __ bind(&non_smi_result); |
| // Allocate a heap number if needed. |
| __ mov(ebx, Operand(eax)); // ebx: result |
| NearLabel skip_allocation; |
| switch (mode_) { |
| case OVERWRITE_LEFT: |
| case OVERWRITE_RIGHT: |
| // If the operand was an object, we skip the |
| // allocation of a heap number. |
| __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 1 * kPointerSize : 2 * kPointerSize)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Fall through! |
| case NO_OVERWRITE: |
| __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(ebx)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| GenerateReturn(masm); |
| } |
| break; |
| } |
| default: UNREACHABLE(); break; |
| } |
| } |
| |
| // If all else fails, use the runtime system to get the correct |
| // result. If arguments was passed in registers now place them on the |
| // stack in the correct order below the return address. |
| |
| // Avoid hitting the string ADD code below when allocation fails in |
| // the floating point code above. |
| if (op_ != Token::ADD) { |
| __ bind(&call_runtime); |
| } |
| |
| if (HasArgsInRegisters()) { |
| GenerateRegisterArgsPush(masm); |
| } |
| |
| switch (op_) { |
| case Token::ADD: { |
| // Test for string arguments before calling runtime. |
| |
| // If this stub has already generated FP-specific code then the arguments |
| // are already in edx, eax |
| if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { |
| GenerateLoadArguments(masm); |
| } |
| |
| // Registers containing left and right operands respectively. |
| Register lhs, rhs; |
| if (HasArgsReversed()) { |
| lhs = eax; |
| rhs = edx; |
| } else { |
| lhs = edx; |
| rhs = eax; |
| } |
| |
| // Test if left operand is a string. |
| NearLabel lhs_not_string; |
| __ test(lhs, Immediate(kSmiTagMask)); |
| __ j(zero, &lhs_not_string); |
| __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &lhs_not_string); |
| |
| StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); |
| __ TailCallStub(&string_add_left_stub); |
| |
| NearLabel call_runtime_with_args; |
| // Left operand is not a string, test right. |
| __ bind(&lhs_not_string); |
| __ test(rhs, Immediate(kSmiTagMask)); |
| __ j(zero, &call_runtime_with_args); |
| __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &call_runtime_with_args); |
| |
| StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); |
| __ TailCallStub(&string_add_right_stub); |
| |
| // Neither argument is a string. |
| __ bind(&call_runtime); |
| if (HasArgsInRegisters()) { |
| GenerateRegisterArgsPush(masm); |
| } |
| __ bind(&call_runtime_with_args); |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| } |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm, |
| Label* alloc_failure) { |
| Label skip_allocation; |
| OverwriteMode mode = mode_; |
| if (HasArgsReversed()) { |
| if (mode == OVERWRITE_RIGHT) { |
| mode = OVERWRITE_LEFT; |
| } else if (mode == OVERWRITE_LEFT) { |
| mode = OVERWRITE_RIGHT; |
| } |
| } |
| switch (mode) { |
| case OVERWRITE_LEFT: { |
| // If the argument in edx is already an object, we skip the |
| // allocation of a heap number. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Allocate a heap number for the result. Keep eax and edx intact |
| // for the possible runtime call. |
| __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| // Now edx can be overwritten losing one of the arguments as we are |
| // now done and will not need it any more. |
| __ mov(edx, Operand(ebx)); |
| __ bind(&skip_allocation); |
| // Use object in edx as a result holder |
| __ mov(eax, Operand(edx)); |
| break; |
| } |
| case OVERWRITE_RIGHT: |
| // If the argument in eax is already an object, we skip the |
| // allocation of a heap number. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Fall through! |
| case NO_OVERWRITE: |
| // Allocate a heap number for the result. Keep eax and edx intact |
| // for the possible runtime call. |
| __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| // Now eax can be overwritten losing one of the arguments as we are |
| // now done and will not need it any more. |
| __ mov(eax, ebx); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
| // If arguments are not passed in registers read them from the stack. |
| ASSERT(!HasArgsInRegisters()); |
| __ mov(eax, Operand(esp, 1 * kPointerSize)); |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
| // If arguments are not passed in registers remove them from the stack before |
| // returning. |
| if (!HasArgsInRegisters()) { |
| __ ret(2 * kPointerSize); // Remove both operands |
| } else { |
| __ ret(0); |
| } |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
| ASSERT(HasArgsInRegisters()); |
| __ pop(ecx); |
| if (HasArgsReversed()) { |
| __ push(eax); |
| __ push(edx); |
| } else { |
| __ push(edx); |
| __ push(eax); |
| } |
| __ push(ecx); |
| } |
| |
| |
| void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| // Ensure the operands are on the stack. |
| if (HasArgsInRegisters()) { |
| GenerateRegisterArgsPush(masm); |
| } |
| |
| __ pop(ecx); // Save return address. |
| |
| // Left and right arguments are now on top. |
| // Push this stub's key. Although the operation and the type info are |
| // encoded into the key, the encoding is opaque, so push them too. |
| __ push(Immediate(Smi::FromInt(MinorKey()))); |
| __ push(Immediate(Smi::FromInt(op_))); |
| __ push(Immediate(Smi::FromInt(runtime_operands_type_))); |
| |
| __ push(ecx); // Push return address. |
| |
| // Patch the caller to an appropriate specialized stub and return the |
| // operation result to the caller of the stub. |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
| 5, |
| 1); |
| } |
| |
| |
| Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
| GenericBinaryOpStub stub(key, type_info); |
| return stub.GetCode(); |
| } |
| |
| |
| Handle<Code> GetTypeRecordingBinaryOpStub(int key, |
| TRBinaryOpIC::TypeInfo type_info, |
| TRBinaryOpIC::TypeInfo result_type_info) { |
| TypeRecordingBinaryOpStub stub(key, type_info, result_type_info); |
| return stub.GetCode(); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
| __ pop(ecx); // Save return address. |
| __ push(edx); |
| __ push(eax); |
| // Left and right arguments are now on top. |
| // Push this stub's key. Although the operation and the type info are |
| // encoded into the key, the encoding is opaque, so push them too. |
| __ push(Immediate(Smi::FromInt(MinorKey()))); |
| __ push(Immediate(Smi::FromInt(op_))); |
| __ push(Immediate(Smi::FromInt(operands_type_))); |
| |
| __ push(ecx); // Push return address. |
| |
| // Patch the caller to an appropriate specialized stub and return the |
| // operation result to the caller of the stub. |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch)), |
| 5, |
| 1); |
| } |
| |
| |
| // Prepare for a type transition runtime call when the args are already on |
| // the stack, under the return address. |
| void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs( |
| MacroAssembler* masm) { |
| __ pop(ecx); // Save return address. |
| // Left and right arguments are already on top of the stack. |
| // Push this stub's key. Although the operation and the type info are |
| // encoded into the key, the encoding is opaque, so push them too. |
| __ push(Immediate(Smi::FromInt(MinorKey()))); |
| __ push(Immediate(Smi::FromInt(op_))); |
| __ push(Immediate(Smi::FromInt(operands_type_))); |
| |
| __ push(ecx); // Push return address. |
| |
| // Patch the caller to an appropriate specialized stub and return the |
| // operation result to the caller of the stub. |
| __ TailCallExternalReference( |
| ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch)), |
| 5, |
| 1); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { |
| switch (operands_type_) { |
| case TRBinaryOpIC::UNINITIALIZED: |
| GenerateTypeTransition(masm); |
| break; |
| case TRBinaryOpIC::SMI: |
| GenerateSmiStub(masm); |
| break; |
| case TRBinaryOpIC::INT32: |
| GenerateInt32Stub(masm); |
| break; |
| case TRBinaryOpIC::HEAP_NUMBER: |
| GenerateHeapNumberStub(masm); |
| break; |
| case TRBinaryOpIC::STRING: |
| GenerateStringStub(masm); |
| break; |
| case TRBinaryOpIC::GENERIC: |
| GenerateGeneric(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| const char* TypeRecordingBinaryOpStub::GetName() { |
| if (name_ != NULL) return name_; |
| const int kMaxNameLength = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| if (name_ == NULL) return "OOM"; |
| const char* op_name = Token::Name(op_); |
| const char* overwrite_name; |
| switch (mode_) { |
| case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
| case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
| case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
| default: overwrite_name = "UnknownOverwrite"; break; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| "TypeRecordingBinaryOpStub_%s_%s_%s", |
| op_name, |
| overwrite_name, |
| TRBinaryOpIC::GetName(operands_type_)); |
| return name_; |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, |
| Label* slow, |
| SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { |
| // 1. Move arguments into edx, eax except for DIV and MOD, which need the |
| // dividend in eax and edx free for the division. Use eax, ebx for those. |
| Comment load_comment(masm, "-- Load arguments"); |
| Register left = edx; |
| Register right = eax; |
| if (op_ == Token::DIV || op_ == Token::MOD) { |
| left = eax; |
| right = ebx; |
| __ mov(ebx, eax); |
| __ mov(eax, edx); |
| } |
| |
| |
| // 2. Prepare the smi check of both operands by oring them together. |
| Comment smi_check_comment(masm, "-- Smi check arguments"); |
| Label not_smis; |
| Register combined = ecx; |
| ASSERT(!left.is(combined) && !right.is(combined)); |
| switch (op_) { |
| case Token::BIT_OR: |
| // Perform the operation into eax and smi check the result. Preserve |
| // eax in case the result is not a smi. |
| ASSERT(!left.is(ecx) && !right.is(ecx)); |
| __ mov(ecx, right); |
| __ or_(right, Operand(left)); // Bitwise or is commutative. |
| combined = right; |
| break; |
| |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| __ mov(combined, right); |
| __ or_(combined, Operand(left)); |
| break; |
| |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| // Move the right operand into ecx for the shift operation, use eax |
| // for the smi check register. |
| ASSERT(!left.is(ecx) && !right.is(ecx)); |
| __ mov(ecx, right); |
| __ or_(right, Operand(left)); |
| combined = right; |
| break; |
| |
| default: |
| break; |
| } |
| |
| // 3. Perform the smi check of the operands. |
| STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case. |
| __ test(combined, Immediate(kSmiTagMask)); |
| __ j(not_zero, ¬_smis, not_taken); |
| |
| // 4. Operands are both smis, perform the operation leaving the result in |
| // eax and check the result if necessary. |
| Comment perform_smi(masm, "-- Perform smi operation"); |
| Label use_fp_on_smis; |
| switch (op_) { |
| case Token::BIT_OR: |
| // Nothing to do. |
| break; |
| |
| case Token::BIT_XOR: |
| ASSERT(right.is(eax)); |
| __ xor_(right, Operand(left)); // Bitwise xor is commutative. |
| break; |
| |
| case Token::BIT_AND: |
| ASSERT(right.is(eax)); |
| __ and_(right, Operand(left)); // Bitwise and is commutative. |
| break; |
| |
| case Token::SHL: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ shl_cl(left); |
| // Check that the *signed* result fits in a smi. |
| __ cmp(left, 0xc0000000); |
| __ j(sign, &use_fp_on_smis, not_taken); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::SAR: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ sar_cl(left); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::SHR: |
| // Remove tags from operands (but keep sign). |
| __ SmiUntag(left); |
| __ SmiUntag(ecx); |
| // Perform the operation. |
| __ shr_cl(left); |
| // Check that the *unsigned* result fits in a smi. |
| // Neither of the two high-order bits can be set: |
| // - 0x80000000: high bit would be lost when smi tagging. |
| // - 0x40000000: this number would convert to negative when |
| // Smi tagging these two cases can only happen with shifts |
| // by 0 or 1 when handed a valid smi. |
| __ test(left, Immediate(0xc0000000)); |
| __ j(not_zero, slow, not_taken); |
| // Tag the result and store it in register eax. |
| __ SmiTag(left); |
| __ mov(eax, left); |
| break; |
| |
| case Token::ADD: |
| ASSERT(right.is(eax)); |
| __ add(right, Operand(left)); // Addition is commutative. |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| break; |
| |
| case Token::SUB: |
| __ sub(left, Operand(right)); |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| __ mov(eax, left); |
| break; |
| |
| case Token::MUL: |
| // If the smi tag is 0 we can just leave the tag on one operand. |
| STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| // We can't revert the multiplication if the result is not a smi |
| // so save the right operand. |
| __ mov(ebx, right); |
| // Remove tag from one of the operands (but keep sign). |
| __ SmiUntag(right); |
| // Do multiplication. |
| __ imul(right, Operand(left)); // Multiplication is commutative. |
| __ j(overflow, &use_fp_on_smis, not_taken); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(right, combined, &use_fp_on_smis); |
| break; |
| |
| case Token::DIV: |
| // We can't revert the division if the result is not a smi so |
| // save the left operand. |
| __ mov(edi, left); |
| // Check for 0 divisor. |
| __ test(right, Operand(right)); |
| __ j(zero, &use_fp_on_smis, not_taken); |
| // Sign extend left into edx:eax. |
| ASSERT(left.is(eax)); |
| __ cdq(); |
| // Divide edx:eax by right. |
| __ idiv(right); |
| // Check for the corner case of dividing the most negative smi by |
| // -1. We cannot use the overflow flag, since it is not set by idiv |
| // instruction. |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ cmp(eax, 0x40000000); |
| __ j(equal, &use_fp_on_smis); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(eax, combined, &use_fp_on_smis); |
| // Check that the remainder is zero. |
| __ test(edx, Operand(edx)); |
| __ j(not_zero, &use_fp_on_smis); |
| // Tag the result and store it in register eax. |
| __ SmiTag(eax); |
| break; |
| |
| case Token::MOD: |
| // Check for 0 divisor. |
| __ test(right, Operand(right)); |
| __ j(zero, ¬_smis, not_taken); |
| |
| // Sign extend left into edx:eax. |
| ASSERT(left.is(eax)); |
| __ cdq(); |
| // Divide edx:eax by right. |
| __ idiv(right); |
| // Check for negative zero result. Use combined = left | right. |
| __ NegativeZeroTest(edx, combined, slow); |
| // Move remainder to register eax. |
| __ mov(eax, edx); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| // 5. Emit return of result in eax. Some operations have registers pushed. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| __ ret(0); |
| break; |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: |
| __ ret(2 * kPointerSize); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // 6. For some operations emit inline code to perform floating point |
| // operations on known smis (e.g., if the result of the operation |
| // overflowed the smi range). |
| if (allow_heapnumber_results == NO_HEAPNUMBER_RESULTS) { |
| __ bind(&use_fp_on_smis); |
| switch (op_) { |
| // Undo the effects of some operations, and some register moves. |
| case Token::SHL: |
| // The arguments are saved on the stack, and only used from there. |
| break; |
| case Token::ADD: |
| // Revert right = right + left. |
| __ sub(right, Operand(left)); |
| break; |
| case Token::SUB: |
| // Revert left = left - right. |
| __ add(left, Operand(right)); |
| break; |
| case Token::MUL: |
| // Right was clobbered but a copy is in ebx. |
| __ mov(right, ebx); |
| break; |
| case Token::DIV: |
| // Left was clobbered but a copy is in edi. Right is in ebx for |
| // division. They should be in eax, ebx for jump to not_smi. |
| __ mov(eax, edi); |
| break; |
| default: |
| // No other operators jump to use_fp_on_smis. |
| break; |
| } |
| __ jmp(¬_smis); |
| } else { |
| ASSERT(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS); |
| switch (op_) { |
| case Token::SHL: { |
| Comment perform_float(masm, "-- Perform float operation on smis"); |
| __ bind(&use_fp_on_smis); |
| // Result we want is in left == edx, so we can put the allocated heap |
| // number in eax. |
| __ AllocateHeapNumber(eax, ecx, ebx, slow); |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(left)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| // It's OK to overwrite the right argument on the stack because we |
| // are about to return. |
| __ mov(Operand(esp, 1 * kPointerSize), left); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| __ ret(2 * kPointerSize); |
| break; |
| } |
| |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Comment perform_float(masm, "-- Perform float operation on smis"); |
| __ bind(&use_fp_on_smis); |
| // Restore arguments to edx, eax. |
| switch (op_) { |
| case Token::ADD: |
| // Revert right = right + left. |
| __ sub(right, Operand(left)); |
| break; |
| case Token::SUB: |
| // Revert left = left - right. |
| __ add(left, Operand(right)); |
| break; |
| case Token::MUL: |
| // Right was clobbered but a copy is in ebx. |
| __ mov(right, ebx); |
| break; |
| case Token::DIV: |
| // Left was clobbered but a copy is in edi. Right is in ebx for |
| // division. |
| __ mov(edx, edi); |
| __ mov(eax, right); |
| break; |
| default: UNREACHABLE(); |
| break; |
| } |
| __ AllocateHeapNumber(ecx, ebx, no_reg, slow); |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Smis(masm, ebx); |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::LoadFloatSmis(masm, ebx); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); |
| } |
| __ mov(eax, ecx); |
| __ ret(0); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| // 7. Non-smi operands, fall out to the non-smi code with the operands in |
| // edx and eax. |
| Comment done_comment(masm, "-- Enter non-smi code"); |
| __ bind(¬_smis); |
| switch (op_) { |
| case Token::BIT_OR: |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| // Right operand is saved in ecx and eax was destroyed by the smi |
| // check. |
| __ mov(eax, ecx); |
| break; |
| |
| case Token::DIV: |
| case Token::MOD: |
| // Operands are in eax, ebx at this point. |
| __ mov(edx, eax); |
| __ mov(eax, ebx); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| break; |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: |
| GenerateRegisterArgsPush(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (result_type_ == TRBinaryOpIC::UNINITIALIZED || |
| result_type_ == TRBinaryOpIC::SMI) { |
| GenerateSmiCode(masm, &call_runtime, NO_HEAPNUMBER_RESULTS); |
| } else { |
| GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); |
| } |
| __ bind(&call_runtime); |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| GenerateTypeTransition(masm); |
| break; |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: |
| GenerateTypeTransitionWithSavedArgs(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { |
| ASSERT(operands_type_ == TRBinaryOpIC::STRING); |
| ASSERT(op_ == Token::ADD); |
| // Try to add arguments as strings, otherwise, transition to the generic |
| // TRBinaryOpIC type. |
| GenerateAddStrings(masm); |
| GenerateTypeTransition(masm); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
| Label call_runtime; |
| ASSERT(operands_type_ == TRBinaryOpIC::INT32); |
| |
| // Floating point case. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Label not_floats; |
| Label not_int32; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, ¬_int32, ecx); |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| // Check result type if it is currently Int32. |
| if (result_type_ <= TRBinaryOpIC::INT32) { |
| __ cvttsd2si(ecx, Operand(xmm0)); |
| __ cvtsi2sd(xmm2, Operand(ecx)); |
| __ ucomisd(xmm0, xmm2); |
| __ j(not_zero, ¬_int32); |
| __ j(carry, ¬_int32); |
| } |
| GenerateHeapResultAllocation(masm, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| __ ret(0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); |
| FloatingPointHelper::LoadFloatOperands( |
| masm, |
| ecx, |
| FloatingPointHelper::ARGS_IN_REGISTERS); |
| FloatingPointHelper::CheckFloatOperandsAreInt32(masm, ¬_int32); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| Label after_alloc_failure; |
| GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ ret(0); |
| __ bind(&after_alloc_failure); |
| __ ffree(); |
| __ jmp(&call_runtime); |
| } |
| |
| __ bind(¬_floats); |
| __ bind(¬_int32); |
| GenerateTypeTransition(masm); |
| break; |
| } |
| |
| case Token::MOD: { |
| // For MOD we go directly to runtime in the non-smi case. |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: { |
| GenerateRegisterArgsPush(masm); |
| Label not_floats; |
| Label not_int32; |
| Label non_smi_result; |
| /* { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, ¬_int32, ecx); |
| }*/ |
| FloatingPointHelper::LoadUnknownsAsIntegers(masm, |
| use_sse3_, |
| ¬_floats); |
| FloatingPointHelper::CheckLoadedIntegersWereInt32(masm, use_sse3_, |
| ¬_int32); |
| switch (op_) { |
| case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; |
| case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; |
| case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; |
| case Token::SAR: __ sar_cl(eax); break; |
| case Token::SHL: __ shl_cl(eax); break; |
| case Token::SHR: __ shr_cl(eax); break; |
| default: UNREACHABLE(); |
| } |
| if (op_ == Token::SHR) { |
| // Check if result is non-negative and fits in a smi. |
| __ test(eax, Immediate(0xc0000000)); |
| __ j(not_zero, &call_runtime); |
| } else { |
| // Check if result fits in a smi. |
| __ cmp(eax, 0xc0000000); |
| __ j(negative, &non_smi_result); |
| } |
| // Tag smi result and return. |
| __ SmiTag(eax); |
| __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. |
| |
| // All ops except SHR return a signed int32 that we load in |
| // a HeapNumber. |
| if (op_ != Token::SHR) { |
| __ bind(&non_smi_result); |
| // Allocate a heap number if needed. |
| __ mov(ebx, Operand(eax)); // ebx: result |
| NearLabel skip_allocation; |
| switch (mode_) { |
| case OVERWRITE_LEFT: |
| case OVERWRITE_RIGHT: |
| // If the operand was an object, we skip the |
| // allocation of a heap number. |
| __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 1 * kPointerSize : 2 * kPointerSize)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Fall through! |
| case NO_OVERWRITE: |
| __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(ebx)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. |
| } |
| |
| __ bind(¬_floats); |
| __ bind(¬_int32); |
| GenerateTypeTransitionWithSavedArgs(masm); |
| break; |
| } |
| default: UNREACHABLE(); break; |
| } |
| |
| // If an allocation fails, or SHR or MOD hit a hard case, |
| // use the runtime system to get the correct result. |
| __ bind(&call_runtime); |
| |
| switch (op_) { |
| case Token::ADD: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| case Token::SUB: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
| Label call_runtime; |
| ASSERT(operands_type_ == TRBinaryOpIC::HEAP_NUMBER); |
| |
| // Floating point case. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Label not_floats; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| GenerateHeapResultAllocation(masm, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| __ ret(0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); |
| FloatingPointHelper::LoadFloatOperands( |
| masm, |
| ecx, |
| FloatingPointHelper::ARGS_IN_REGISTERS); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| Label after_alloc_failure; |
| GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ ret(0); |
| __ bind(&after_alloc_failure); |
| __ ffree(); |
| __ jmp(&call_runtime); |
| } |
| |
| __ bind(¬_floats); |
| GenerateTypeTransition(masm); |
| break; |
| } |
| |
| case Token::MOD: { |
| // For MOD we go directly to runtime in the non-smi case. |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: { |
| GenerateRegisterArgsPush(masm); |
| Label not_floats; |
| Label non_smi_result; |
| FloatingPointHelper::LoadUnknownsAsIntegers(masm, |
| use_sse3_, |
| ¬_floats); |
| switch (op_) { |
| case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; |
| case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; |
| case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; |
| case Token::SAR: __ sar_cl(eax); break; |
| case Token::SHL: __ shl_cl(eax); break; |
| case Token::SHR: __ shr_cl(eax); break; |
| default: UNREACHABLE(); |
| } |
| if (op_ == Token::SHR) { |
| // Check if result is non-negative and fits in a smi. |
| __ test(eax, Immediate(0xc0000000)); |
| __ j(not_zero, &call_runtime); |
| } else { |
| // Check if result fits in a smi. |
| __ cmp(eax, 0xc0000000); |
| __ j(negative, &non_smi_result); |
| } |
| // Tag smi result and return. |
| __ SmiTag(eax); |
| __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. |
| |
| // All ops except SHR return a signed int32 that we load in |
| // a HeapNumber. |
| if (op_ != Token::SHR) { |
| __ bind(&non_smi_result); |
| // Allocate a heap number if needed. |
| __ mov(ebx, Operand(eax)); // ebx: result |
| NearLabel skip_allocation; |
| switch (mode_) { |
| case OVERWRITE_LEFT: |
| case OVERWRITE_RIGHT: |
| // If the operand was an object, we skip the |
| // allocation of a heap number. |
| __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 1 * kPointerSize : 2 * kPointerSize)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Fall through! |
| case NO_OVERWRITE: |
| __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(ebx)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. |
| } |
| |
| __ bind(¬_floats); |
| GenerateTypeTransitionWithSavedArgs(masm); |
| break; |
| } |
| default: UNREACHABLE(); break; |
| } |
| |
| // If an allocation fails, or SHR or MOD hit a hard case, |
| // use the runtime system to get the correct result. |
| __ bind(&call_runtime); |
| |
| switch (op_) { |
| case Token::ADD: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| case Token::SUB: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { |
| Label call_runtime; |
| |
| __ IncrementCounter(&Counters::generic_binary_stub_calls, 1); |
| |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| break; |
| case Token::MOD: |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: |
| GenerateRegisterArgsPush(masm); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); |
| |
| // Floating point case. |
| switch (op_) { |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: { |
| Label not_floats; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); |
| |
| switch (op_) { |
| case Token::ADD: __ addsd(xmm0, xmm1); break; |
| case Token::SUB: __ subsd(xmm0, xmm1); break; |
| case Token::MUL: __ mulsd(xmm0, xmm1); break; |
| case Token::DIV: __ divsd(xmm0, xmm1); break; |
| default: UNREACHABLE(); |
| } |
| GenerateHeapResultAllocation(masm, &call_runtime); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| __ ret(0); |
| } else { // SSE2 not available, use FPU. |
| FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); |
| FloatingPointHelper::LoadFloatOperands( |
| masm, |
| ecx, |
| FloatingPointHelper::ARGS_IN_REGISTERS); |
| switch (op_) { |
| case Token::ADD: __ faddp(1); break; |
| case Token::SUB: __ fsubp(1); break; |
| case Token::MUL: __ fmulp(1); break; |
| case Token::DIV: __ fdivp(1); break; |
| default: UNREACHABLE(); |
| } |
| Label after_alloc_failure; |
| GenerateHeapResultAllocation(masm, &after_alloc_failure); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ ret(0); |
| __ bind(&after_alloc_failure); |
| __ ffree(); |
| __ jmp(&call_runtime); |
| } |
| __ bind(¬_floats); |
| break; |
| } |
| case Token::MOD: { |
| // For MOD we go directly to runtime in the non-smi case. |
| break; |
| } |
| case Token::BIT_OR: |
| case Token::BIT_AND: |
| case Token::BIT_XOR: |
| case Token::SAR: |
| case Token::SHL: |
| case Token::SHR: { |
| Label non_smi_result; |
| FloatingPointHelper::LoadUnknownsAsIntegers(masm, |
| use_sse3_, |
| &call_runtime); |
| switch (op_) { |
| case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; |
| case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; |
| case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; |
| case Token::SAR: __ sar_cl(eax); break; |
| case Token::SHL: __ shl_cl(eax); break; |
| case Token::SHR: __ shr_cl(eax); break; |
| default: UNREACHABLE(); |
| } |
| if (op_ == Token::SHR) { |
| // Check if result is non-negative and fits in a smi. |
| __ test(eax, Immediate(0xc0000000)); |
| __ j(not_zero, &call_runtime); |
| } else { |
| // Check if result fits in a smi. |
| __ cmp(eax, 0xc0000000); |
| __ j(negative, &non_smi_result); |
| } |
| // Tag smi result and return. |
| __ SmiTag(eax); |
| __ ret(2 * kPointerSize); // Drop the arguments from the stack. |
| |
| // All ops except SHR return a signed int32 that we load in |
| // a HeapNumber. |
| if (op_ != Token::SHR) { |
| __ bind(&non_smi_result); |
| // Allocate a heap number if needed. |
| __ mov(ebx, Operand(eax)); // ebx: result |
| NearLabel skip_allocation; |
| switch (mode_) { |
| case OVERWRITE_LEFT: |
| case OVERWRITE_RIGHT: |
| // If the operand was an object, we skip the |
| // allocation of a heap number. |
| __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? |
| 1 * kPointerSize : 2 * kPointerSize)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Fall through! |
| case NO_OVERWRITE: |
| __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| // Store the result in the HeapNumber and return. |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(ebx)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| __ fild_s(Operand(esp, 1 * kPointerSize)); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| __ ret(2 * kPointerSize); |
| } |
| break; |
| } |
| default: UNREACHABLE(); break; |
| } |
| |
| // If all else fails, use the runtime system to get the correct |
| // result. |
| __ bind(&call_runtime); |
| switch (op_) { |
| case Token::ADD: { |
| GenerateAddStrings(masm); |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
| break; |
| } |
| case Token::SUB: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
| break; |
| case Token::MUL: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
| break; |
| case Token::DIV: |
| GenerateRegisterArgsPush(masm); |
| __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
| break; |
| case Token::MOD: |
| __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
| break; |
| case Token::BIT_OR: |
| __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
| break; |
| case Token::BIT_AND: |
| __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
| break; |
| case Token::BIT_XOR: |
| __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
| break; |
| case Token::SAR: |
| __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
| break; |
| case Token::SHL: |
| __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
| break; |
| case Token::SHR: |
| __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { |
| ASSERT(op_ == Token::ADD); |
| NearLabel left_not_string, call_runtime; |
| |
| // Registers containing left and right operands respectively. |
| Register left = edx; |
| Register right = eax; |
| |
| // Test if left operand is a string. |
| __ test(left, Immediate(kSmiTagMask)); |
| __ j(zero, &left_not_string); |
| __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &left_not_string); |
| |
| StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_left_stub); |
| |
| // Left operand is not a string, test right. |
| __ bind(&left_not_string); |
| __ test(right, Immediate(kSmiTagMask)); |
| __ j(zero, &call_runtime); |
| __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx); |
| __ j(above_equal, &call_runtime); |
| |
| StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); |
| GenerateRegisterArgsPush(masm); |
| __ TailCallStub(&string_add_right_stub); |
| |
| // Neither argument is a string. |
| __ bind(&call_runtime); |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( |
| MacroAssembler* masm, |
| Label* alloc_failure) { |
| Label skip_allocation; |
| OverwriteMode mode = mode_; |
| switch (mode) { |
| case OVERWRITE_LEFT: { |
| // If the argument in edx is already an object, we skip the |
| // allocation of a heap number. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Allocate a heap number for the result. Keep eax and edx intact |
| // for the possible runtime call. |
| __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| // Now edx can be overwritten losing one of the arguments as we are |
| // now done and will not need it any more. |
| __ mov(edx, Operand(ebx)); |
| __ bind(&skip_allocation); |
| // Use object in edx as a result holder |
| __ mov(eax, Operand(edx)); |
| break; |
| } |
| case OVERWRITE_RIGHT: |
| // If the argument in eax is already an object, we skip the |
| // allocation of a heap number. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &skip_allocation, not_taken); |
| // Fall through! |
| case NO_OVERWRITE: |
| // Allocate a heap number for the result. Keep eax and edx intact |
| // for the possible runtime call. |
| __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); |
| // Now eax can be overwritten losing one of the arguments as we are |
| // now done and will not need it any more. |
| __ mov(eax, ebx); |
| __ bind(&skip_allocation); |
| break; |
| default: UNREACHABLE(); |
| } |
| } |
| |
| |
| void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
| __ pop(ecx); |
| __ push(edx); |
| __ push(eax); |
| __ push(ecx); |
| } |
| |
| |
| void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
| // TAGGED case: |
| // Input: |
| // esp[4]: tagged number input argument (should be number). |
| // esp[0]: return address. |
| // Output: |
| // eax: tagged double result. |
| // UNTAGGED case: |
| // Input:: |
| // esp[0]: return address. |
| // xmm1: untagged double input argument |
| // Output: |
| // xmm1: untagged double result. |
| |
| Label runtime_call; |
| Label runtime_call_clear_stack; |
| Label skip_cache; |
| const bool tagged = (argument_type_ == TAGGED); |
| if (tagged) { |
| // Test that eax is a number. |
| NearLabel input_not_smi; |
| NearLabel loaded; |
| __ mov(eax, Operand(esp, kPointerSize)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &input_not_smi); |
| // Input is a smi. Untag and load it onto the FPU stack. |
| // Then load the low and high words of the double into ebx, edx. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ sar(eax, 1); |
| __ sub(Operand(esp), Immediate(2 * kPointerSize)); |
| __ mov(Operand(esp, 0), eax); |
| __ fild_s(Operand(esp, 0)); |
| __ fst_d(Operand(esp, 0)); |
| __ pop(edx); |
| __ pop(ebx); |
| __ jmp(&loaded); |
| __ bind(&input_not_smi); |
| // Check if input is a HeapNumber. |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); |
| __ j(not_equal, &runtime_call); |
| // Input is a HeapNumber. Push it on the FPU stack and load its |
| // low and high words into ebx, edx. |
| __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
| __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); |
| |
| __ bind(&loaded); |
| } else { // UNTAGGED. |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatures::Scope sse4_scope(SSE4_1); |
| __ pextrd(Operand(edx), xmm1, 0x1); // copy xmm1[63..32] to edx. |
| } else { |
| __ pshufd(xmm0, xmm1, 0x1); |
| __ movd(Operand(edx), xmm0); |
| } |
| __ movd(Operand(ebx), xmm1); |
| } |
| |
| // ST[0] or xmm1 == double value |
| // ebx = low 32 bits of double value |
| // edx = high 32 bits of double value |
| // Compute hash (the shifts are arithmetic): |
| // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
| __ mov(ecx, ebx); |
| __ xor_(ecx, Operand(edx)); |
| __ mov(eax, ecx); |
| __ sar(eax, 16); |
| __ xor_(ecx, Operand(eax)); |
| __ mov(eax, ecx); |
| __ sar(eax, 8); |
| __ xor_(ecx, Operand(eax)); |
| ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); |
| __ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1)); |
| |
| // ST[0] or xmm1 == double value. |
| // ebx = low 32 bits of double value. |
| // edx = high 32 bits of double value. |
| // ecx = TranscendentalCache::hash(double value). |
| __ mov(eax, |
| Immediate(ExternalReference::transcendental_cache_array_address())); |
| // Eax points to cache array. |
| __ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0]))); |
| // Eax points to the cache for the type type_. |
| // If NULL, the cache hasn't been initialized yet, so go through runtime. |
| __ test(eax, Operand(eax)); |
| __ j(zero, &runtime_call_clear_stack); |
| #ifdef DEBUG |
| // Check that the layout of cache elements match expectations. |
| { TranscendentalCache::Element test_elem[2]; |
| char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
| char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
| char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
| char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
| char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
| CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
| CHECK_EQ(0, elem_in0 - elem_start); |
| CHECK_EQ(kIntSize, elem_in1 - elem_start); |
| CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
| } |
| #endif |
| // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. |
| __ lea(ecx, Operand(ecx, ecx, times_2, 0)); |
| __ lea(ecx, Operand(eax, ecx, times_4, 0)); |
| // Check if cache matches: Double value is stored in uint32_t[2] array. |
| NearLabel cache_miss; |
| __ cmp(ebx, Operand(ecx, 0)); |
| __ j(not_equal, &cache_miss); |
| __ cmp(edx, Operand(ecx, kIntSize)); |
| __ j(not_equal, &cache_miss); |
| // Cache hit! |
| __ mov(eax, Operand(ecx, 2 * kIntSize)); |
| if (tagged) { |
| __ fstp(0); |
| __ ret(kPointerSize); |
| } else { // UNTAGGED. |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } |
| |
| __ bind(&cache_miss); |
| // Update cache with new value. |
| // We are short on registers, so use no_reg as scratch. |
| // This gives slightly larger code. |
| if (tagged) { |
| __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); |
| } else { // UNTAGGED. |
| __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); |
| __ sub(Operand(esp), Immediate(kDoubleSize)); |
| __ movdbl(Operand(esp, 0), xmm1); |
| __ fld_d(Operand(esp, 0)); |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| } |
| GenerateOperation(masm); |
| __ mov(Operand(ecx, 0), ebx); |
| __ mov(Operand(ecx, kIntSize), edx); |
| __ mov(Operand(ecx, 2 * kIntSize), eax); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| if (tagged) { |
| __ ret(kPointerSize); |
| } else { // UNTAGGED. |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ Ret(); |
| |
| // Skip cache and return answer directly, only in untagged case. |
| __ bind(&skip_cache); |
| __ sub(Operand(esp), Immediate(kDoubleSize)); |
| __ movdbl(Operand(esp, 0), xmm1); |
| __ fld_d(Operand(esp, 0)); |
| GenerateOperation(masm); |
| __ fstp_d(Operand(esp, 0)); |
| __ movdbl(xmm1, Operand(esp, 0)); |
| __ add(Operand(esp), Immediate(kDoubleSize)); |
| // We return the value in xmm1 without adding it to the cache, but |
| // we cause a scavenging GC so that future allocations will succeed. |
| __ EnterInternalFrame(); |
| // Allocate an unused object bigger than a HeapNumber. |
| __ push(Immediate(Smi::FromInt(2 * kDoubleSize))); |
| __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); |
| __ LeaveInternalFrame(); |
| __ Ret(); |
| } |
| |
| // Call runtime, doing whatever allocation and cleanup is necessary. |
| if (tagged) { |
| __ bind(&runtime_call_clear_stack); |
| __ fstp(0); |
| __ bind(&runtime_call); |
| __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1); |
| } else { // UNTAGGED. |
| __ bind(&runtime_call_clear_stack); |
| __ bind(&runtime_call); |
| __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1); |
| __ EnterInternalFrame(); |
| __ push(eax); |
| __ CallRuntime(RuntimeFunction(), 1); |
| __ LeaveInternalFrame(); |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ Ret(); |
| } |
| } |
| |
| |
| Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
| switch (type_) { |
| case TranscendentalCache::SIN: return Runtime::kMath_sin; |
| case TranscendentalCache::COS: return Runtime::kMath_cos; |
| case TranscendentalCache::LOG: return Runtime::kMath_log; |
| default: |
| UNIMPLEMENTED(); |
| return Runtime::kAbort; |
| } |
| } |
| |
| |
| void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) { |
| // Only free register is edi. |
| // Input value is on FP stack, and also in ebx/edx. |
| // Input value is possibly in xmm1. |
| // Address of result (a newly allocated HeapNumber) may be in eax. |
| if (type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS) { |
| // Both fsin and fcos require arguments in the range +/-2^63 and |
| // return NaN for infinities and NaN. They can share all code except |
| // the actual fsin/fcos operation. |
| NearLabel in_range, done; |
| // If argument is outside the range -2^63..2^63, fsin/cos doesn't |
| // work. We must reduce it to the appropriate range. |
| __ mov(edi, edx); |
| __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only. |
| int supported_exponent_limit = |
| (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift; |
| __ cmp(Operand(edi), Immediate(supported_exponent_limit)); |
| __ j(below, &in_range, taken); |
| // Check for infinity and NaN. Both return NaN for sin. |
| __ cmp(Operand(edi), Immediate(0x7ff00000)); |
| NearLabel non_nan_result; |
| __ j(not_equal, &non_nan_result, taken); |
| // Input is +/-Infinity or NaN. Result is NaN. |
| __ fstp(0); |
| // NaN is represented by 0x7ff8000000000000. |
| __ push(Immediate(0x7ff80000)); |
| __ push(Immediate(0)); |
| __ fld_d(Operand(esp, 0)); |
| __ add(Operand(esp), Immediate(2 * kPointerSize)); |
| __ jmp(&done); |
| |
| __ bind(&non_nan_result); |
| |
| // Use fpmod to restrict argument to the range +/-2*PI. |
| __ mov(edi, eax); // Save eax before using fnstsw_ax. |
| __ fldpi(); |
| __ fadd(0); |
| __ fld(1); |
| // FPU Stack: input, 2*pi, input. |
| { |
| NearLabel no_exceptions; |
| __ fwait(); |
| __ fnstsw_ax(); |
| // Clear if Illegal Operand or Zero Division exceptions are set. |
| __ test(Operand(eax), Immediate(5)); |
| __ j(zero, &no_exceptions); |
| __ fnclex(); |
| __ bind(&no_exceptions); |
| } |
| |
| // Compute st(0) % st(1) |
| { |
| NearLabel partial_remainder_loop; |
| __ bind(&partial_remainder_loop); |
| __ fprem1(); |
| __ fwait(); |
| __ fnstsw_ax(); |
| __ test(Operand(eax), Immediate(0x400 /* C2 */)); |
| // If C2 is set, computation only has partial result. Loop to |
| // continue computation. |
| __ j(not_zero, &partial_remainder_loop); |
| } |
| // FPU Stack: input, 2*pi, input % 2*pi |
| __ fstp(2); |
| __ fstp(0); |
| __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer). |
| |
| // FPU Stack: input % 2*pi |
| __ bind(&in_range); |
| switch (type_) { |
| case TranscendentalCache::SIN: |
| __ fsin(); |
| break; |
| case TranscendentalCache::COS: |
| __ fcos(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ bind(&done); |
| } else { |
| ASSERT(type_ == TranscendentalCache::LOG); |
| __ fldln2(); |
| __ fxch(); |
| __ fyl2x(); |
| } |
| } |
| |
| |
| // Get the integer part of a heap number. Surprisingly, all this bit twiddling |
| // is faster than using the built-in instructions on floating point registers. |
| // Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the |
| // trashed registers. |
| void IntegerConvert(MacroAssembler* masm, |
| Register source, |
| TypeInfo type_info, |
| bool use_sse3, |
| Label* conversion_failure) { |
| ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx)); |
| Label done, right_exponent, normal_exponent; |
| Register scratch = ebx; |
| Register scratch2 = edi; |
| if (type_info.IsInteger32() && CpuFeatures::IsEnabled(SSE2)) { |
| CpuFeatures::Scope scope(SSE2); |
| __ cvttsd2si(ecx, FieldOperand(source, HeapNumber::kValueOffset)); |
| return; |
| } |
| if (!type_info.IsInteger32() || !use_sse3) { |
| // Get exponent word. |
| __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); |
| // Get exponent alone in scratch2. |
| __ mov(scratch2, scratch); |
| __ and_(scratch2, HeapNumber::kExponentMask); |
| } |
| if (use_sse3) { |
| CpuFeatures::Scope scope(SSE3); |
| if (!type_info.IsInteger32()) { |
| // Check whether the exponent is too big for a 64 bit signed integer. |
| static const uint32_t kTooBigExponent = |
| (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; |
| __ cmp(Operand(scratch2), Immediate(kTooBigExponent)); |
| __ j(greater_equal, conversion_failure); |
| } |
| // Load x87 register with heap number. |
| __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); |
| // Reserve space for 64 bit answer. |
| __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. |
| // Do conversion, which cannot fail because we checked the exponent. |
| __ fisttp_d(Operand(esp, 0)); |
| __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx. |
| __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. |
| } else { |
| // Load ecx with zero. We use this either for the final shift or |
| // for the answer. |
| __ xor_(ecx, Operand(ecx)); |
| // Check whether the exponent matches a 32 bit signed int that cannot be |
| // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the |
| // exponent is 30 (biased). This is the exponent that we are fastest at and |
| // also the highest exponent we can handle here. |
| const uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| __ cmp(Operand(scratch2), Immediate(non_smi_exponent)); |
| // If we have a match of the int32-but-not-Smi exponent then skip some |
| // logic. |
| __ j(equal, &right_exponent); |
| // If the exponent is higher than that then go to slow case. This catches |
| // numbers that don't fit in a signed int32, infinities and NaNs. |
| __ j(less, &normal_exponent); |
| |
| { |
| // Handle a big exponent. The only reason we have this code is that the |
| // >>> operator has a tendency to generate numbers with an exponent of 31. |
| const uint32_t big_non_smi_exponent = |
| (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; |
| __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent)); |
| __ j(not_equal, conversion_failure); |
| // We have the big exponent, typically from >>>. This means the number is |
| // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. |
| __ mov(scratch2, scratch); |
| __ and_(scratch2, HeapNumber::kMantissaMask); |
| // Put back the implicit 1. |
| __ or_(scratch2, 1 << HeapNumber::kExponentShift); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We just orred in the implicit bit so that took care of one and |
| // we want to use the full unsigned range so we subtract 1 bit from the |
| // shift distance. |
| const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; |
| __ shl(scratch2, big_shift_distance); |
| // Get the second half of the double. |
| __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 21 bits to get the most significant 11 bits or the low |
| // mantissa word. |
| __ shr(ecx, 32 - big_shift_distance); |
| __ or_(ecx, Operand(scratch2)); |
| // We have the answer in ecx, but we may need to negate it. |
| __ test(scratch, Operand(scratch)); |
| __ j(positive, &done); |
| __ neg(ecx); |
| __ jmp(&done); |
| } |
| |
| __ bind(&normal_exponent); |
| // Exponent word in scratch, exponent part of exponent word in scratch2. |
| // Zero in ecx. |
| // We know the exponent is smaller than 30 (biased). If it is less than |
| // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
| // it rounds to zero. |
| const uint32_t zero_exponent = |
| (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
| __ sub(Operand(scratch2), Immediate(zero_exponent)); |
| // ecx already has a Smi zero. |
| __ j(less, &done); |
| |
| // We have a shifted exponent between 0 and 30 in scratch2. |
| __ shr(scratch2, HeapNumber::kExponentShift); |
| __ mov(ecx, Immediate(30)); |
| __ sub(ecx, Operand(scratch2)); |
| |
| __ bind(&right_exponent); |
| // Here ecx is the shift, scratch is the exponent word. |
| // Get the top bits of the mantissa. |
| __ and_(scratch, HeapNumber::kMantissaMask); |
| // Put back the implicit 1. |
| __ or_(scratch, 1 << HeapNumber::kExponentShift); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We have kExponentShift + 1 significant bits int he low end of the |
| // word. Shift them to the top bits. |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| __ shl(scratch, shift_distance); |
| // Get the second half of the double. For some exponents we don't |
| // actually need this because the bits get shifted out again, but |
| // it's probably slower to test than just to do it. |
| __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 22 bits to get the most significant 10 bits or the low |
| // mantissa word. |
| __ shr(scratch2, 32 - shift_distance); |
| __ or_(scratch2, Operand(scratch)); |
| // Move down according to the exponent. |
| __ shr_cl(scratch2); |
| // Now the unsigned answer is in scratch2. We need to move it to ecx and |
| // we may need to fix the sign. |
| NearLabel negative; |
| __ xor_(ecx, Operand(ecx)); |
| __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset)); |
| __ j(greater, &negative); |
| __ mov(ecx, scratch2); |
| __ jmp(&done); |
| __ bind(&negative); |
| __ sub(ecx, Operand(scratch2)); |
| __ bind(&done); |
| } |
| } |
| |
| |
| // Input: edx, eax are the left and right objects of a bit op. |
| // Output: eax, ecx are left and right integers for a bit op. |
| void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm, |
| TypeInfo type_info, |
| bool use_sse3, |
| Label* conversion_failure) { |
| // Check float operands. |
| Label arg1_is_object, check_undefined_arg1; |
| Label arg2_is_object, check_undefined_arg2; |
| Label load_arg2, done; |
| |
| if (!type_info.IsDouble()) { |
| if (!type_info.IsSmi()) { |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &arg1_is_object); |
| } else { |
| if (FLAG_debug_code) __ AbortIfNotSmi(edx); |
| } |
| __ SmiUntag(edx); |
| __ jmp(&load_arg2); |
| } |
| |
| __ bind(&arg1_is_object); |
| |
| // Get the untagged integer version of the edx heap number in ecx. |
| IntegerConvert(masm, edx, type_info, use_sse3, conversion_failure); |
| __ mov(edx, ecx); |
| |
| // Here edx has the untagged integer, eax has a Smi or a heap number. |
| __ bind(&load_arg2); |
| if (!type_info.IsDouble()) { |
| // Test if arg2 is a Smi. |
| if (!type_info.IsSmi()) { |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &arg2_is_object); |
| } else { |
| if (FLAG_debug_code) __ AbortIfNotSmi(eax); |
| } |
| __ SmiUntag(eax); |
| __ mov(ecx, eax); |
| __ jmp(&done); |
| } |
| |
| __ bind(&arg2_is_object); |
| |
| // Get the untagged integer version of the eax heap number in ecx. |
| IntegerConvert(masm, eax, type_info, use_sse3, conversion_failure); |
| __ bind(&done); |
| __ mov(eax, edx); |
| } |
| |
| |
| // Input: edx, eax are the left and right objects of a bit op. |
| // Output: eax, ecx are left and right integers for a bit op. |
| void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm, |
| bool use_sse3, |
| Label* conversion_failure) { |
| // Check float operands. |
| Label arg1_is_object, check_undefined_arg1; |
| Label arg2_is_object, check_undefined_arg2; |
| Label load_arg2, done; |
| |
| // Test if arg1 is a Smi. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &arg1_is_object); |
| |
| __ SmiUntag(edx); |
| __ jmp(&load_arg2); |
| |
| // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| __ bind(&check_undefined_arg1); |
| __ cmp(edx, Factory::undefined_value()); |
| __ j(not_equal, conversion_failure); |
| __ mov(edx, Immediate(0)); |
| __ jmp(&load_arg2); |
| |
| __ bind(&arg1_is_object); |
| __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ cmp(ebx, Factory::heap_number_map()); |
| __ j(not_equal, &check_undefined_arg1); |
| |
| // Get the untagged integer version of the edx heap number in ecx. |
| IntegerConvert(masm, |
| edx, |
| TypeInfo::Unknown(), |
| use_sse3, |
| conversion_failure); |
| __ mov(edx, ecx); |
| |
| // Here edx has the untagged integer, eax has a Smi or a heap number. |
| __ bind(&load_arg2); |
| |
| // Test if arg2 is a Smi. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &arg2_is_object); |
| |
| __ SmiUntag(eax); |
| __ mov(ecx, eax); |
| __ jmp(&done); |
| |
| // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
| __ bind(&check_undefined_arg2); |
| __ cmp(eax, Factory::undefined_value()); |
| __ j(not_equal, conversion_failure); |
| __ mov(ecx, Immediate(0)); |
| __ jmp(&done); |
| |
| __ bind(&arg2_is_object); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(ebx, Factory::heap_number_map()); |
| __ j(not_equal, &check_undefined_arg2); |
| |
| // Get the untagged integer version of the eax heap number in ecx. |
| IntegerConvert(masm, |
| eax, |
| TypeInfo::Unknown(), |
| use_sse3, |
| conversion_failure); |
| __ bind(&done); |
| __ mov(eax, edx); |
| } |
| |
| |
| void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
| TypeInfo type_info, |
| bool use_sse3, |
| Label* conversion_failure) { |
| if (type_info.IsNumber()) { |
| LoadNumbersAsIntegers(masm, type_info, use_sse3, conversion_failure); |
| } else { |
| LoadUnknownsAsIntegers(masm, use_sse3, conversion_failure); |
| } |
| } |
| |
| |
| void FloatingPointHelper::CheckLoadedIntegersWereInt32(MacroAssembler* masm, |
| bool use_sse3, |
| Label* not_int32) { |
| return; |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, |
| Register number) { |
| NearLabel load_smi, done; |
| |
| __ test(number, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi, not_taken); |
| __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); |
| __ jmp(&done); |
| |
| __ bind(&load_smi); |
| __ SmiUntag(number); |
| __ push(number); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(number); |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) { |
| NearLabel load_smi_edx, load_eax, load_smi_eax, done; |
| // Load operand in edx into xmm0. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| |
| __ bind(&load_eax); |
| // Load operand in eax into xmm1. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ jmp(&done); |
| |
| __ bind(&load_smi_edx); |
| __ SmiUntag(edx); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm0, Operand(edx)); |
| __ SmiTag(edx); // Retag smi for heap number overwriting test. |
| __ jmp(&load_eax); |
| |
| __ bind(&load_smi_eax); |
| __ SmiUntag(eax); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm1, Operand(eax)); |
| __ SmiTag(eax); // Retag smi for heap number overwriting test. |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, |
| Label* not_numbers) { |
| NearLabel load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; |
| // Load operand in edx into xmm0, or branch to not_numbers. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. |
| __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Factory::heap_number_map()); |
| __ j(not_equal, not_numbers); // Argument in edx is not a number. |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| __ bind(&load_eax); |
| // Load operand in eax into xmm1, or branch to not_numbers. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. |
| __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map()); |
| __ j(equal, &load_float_eax); |
| __ jmp(not_numbers); // Argument in eax is not a number. |
| __ bind(&load_smi_edx); |
| __ SmiUntag(edx); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm0, Operand(edx)); |
| __ SmiTag(edx); // Retag smi for heap number overwriting test. |
| __ jmp(&load_eax); |
| __ bind(&load_smi_eax); |
| __ SmiUntag(eax); // Untag smi before converting to float. |
| __ cvtsi2sd(xmm1, Operand(eax)); |
| __ SmiTag(eax); // Retag smi for heap number overwriting test. |
| __ jmp(&done); |
| __ bind(&load_float_eax); |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm, |
| Register scratch) { |
| const Register left = edx; |
| const Register right = eax; |
| __ mov(scratch, left); |
| ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
| __ SmiUntag(scratch); |
| __ cvtsi2sd(xmm0, Operand(scratch)); |
| |
| __ mov(scratch, right); |
| __ SmiUntag(scratch); |
| __ cvtsi2sd(xmm1, Operand(scratch)); |
| } |
| |
| |
| void FloatingPointHelper::CheckSSE2OperandsAreInt32(MacroAssembler* masm, |
| Label* non_int32, |
| Register scratch) { |
| __ cvttsd2si(scratch, Operand(xmm0)); |
| __ cvtsi2sd(xmm2, Operand(scratch)); |
| __ ucomisd(xmm0, xmm2); |
| __ j(not_zero, non_int32); |
| __ j(carry, non_int32); |
| __ cvttsd2si(scratch, Operand(xmm1)); |
| __ cvtsi2sd(xmm2, Operand(scratch)); |
| __ ucomisd(xmm1, xmm2); |
| __ j(not_zero, non_int32); |
| __ j(carry, non_int32); |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, |
| Register scratch, |
| ArgLocation arg_location) { |
| NearLabel load_smi_1, load_smi_2, done_load_1, done; |
| if (arg_location == ARGS_IN_REGISTERS) { |
| __ mov(scratch, edx); |
| } else { |
| __ mov(scratch, Operand(esp, 2 * kPointerSize)); |
| } |
| __ test(scratch, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_1, not_taken); |
| __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
| __ bind(&done_load_1); |
| |
| if (arg_location == ARGS_IN_REGISTERS) { |
| __ mov(scratch, eax); |
| } else { |
| __ mov(scratch, Operand(esp, 1 * kPointerSize)); |
| } |
| __ test(scratch, Immediate(kSmiTagMask)); |
| __ j(zero, &load_smi_2, not_taken); |
| __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); |
| __ jmp(&done); |
| |
| __ bind(&load_smi_1); |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| __ jmp(&done_load_1); |
| |
| __ bind(&load_smi_2); |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm, |
| Register scratch) { |
| const Register left = edx; |
| const Register right = eax; |
| __ mov(scratch, left); |
| ASSERT(!scratch.is(right)); // We're about to clobber scratch. |
| __ SmiUntag(scratch); |
| __ push(scratch); |
| __ fild_s(Operand(esp, 0)); |
| |
| __ mov(scratch, right); |
| __ SmiUntag(scratch); |
| __ mov(Operand(esp, 0), scratch); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(scratch); |
| } |
| |
| |
| void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, |
| Label* non_float, |
| Register scratch) { |
| NearLabel test_other, done; |
| // Test if both operands are floats or smi -> scratch=k_is_float; |
| // Otherwise scratch = k_not_float. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, &test_other, not_taken); // argument in edx is OK |
| __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ cmp(scratch, Factory::heap_number_map()); |
| __ j(not_equal, non_float); // argument in edx is not a number -> NaN |
| |
| __ bind(&test_other); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &done); // argument in eax is OK |
| __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(scratch, Factory::heap_number_map()); |
| __ j(not_equal, non_float); // argument in eax is not a number -> NaN |
| |
| // Fall-through: Both operands are numbers. |
| __ bind(&done); |
| } |
| |
| |
| void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm, |
| Label* non_int32) { |
| return; |
| } |
| |
| |
| void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
| Label slow, done, undo; |
| |
| if (op_ == Token::SUB) { |
| if (include_smi_code_) { |
| // Check whether the value is a smi. |
| NearLabel try_float; |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &try_float, not_taken); |
| |
| if (negative_zero_ == kStrictNegativeZero) { |
| // Go slow case if the value of the expression is zero |
| // to make sure that we switch between 0 and -0. |
| __ test(eax, Operand(eax)); |
| __ j(zero, &slow, not_taken); |
| } |
| |
| // The value of the expression is a smi that is not zero. Try |
| // optimistic subtraction '0 - value'. |
| __ mov(edx, Operand(eax)); |
| __ Set(eax, Immediate(0)); |
| __ sub(eax, Operand(edx)); |
| __ j(overflow, &undo, not_taken); |
| __ StubReturn(1); |
| |
| // Try floating point case. |
| __ bind(&try_float); |
| } else if (FLAG_debug_code) { |
| __ AbortIfSmi(eax); |
| } |
| |
| __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(edx, Factory::heap_number_map()); |
| __ j(not_equal, &slow); |
| if (overwrite_ == UNARY_OVERWRITE) { |
| __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); |
| __ xor_(edx, HeapNumber::kSignMask); // Flip sign. |
| __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx); |
| } else { |
| __ mov(edx, Operand(eax)); |
| // edx: operand |
| __ AllocateHeapNumber(eax, ebx, ecx, &undo); |
| // eax: allocated 'empty' number |
| __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. |
| __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); |
| __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); |
| __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); |
| } |
| } else if (op_ == Token::BIT_NOT) { |
| if (include_smi_code_) { |
| Label non_smi; |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &non_smi); |
| __ not_(eax); |
| __ and_(eax, ~kSmiTagMask); // Remove inverted smi-tag. |
| __ ret(0); |
| __ bind(&non_smi); |
| } else if (FLAG_debug_code) { |
| __ AbortIfSmi(eax); |
| } |
| |
| // Check if the operand is a heap number. |
| __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ cmp(edx, Factory::heap_number_map()); |
| __ j(not_equal, &slow, not_taken); |
| |
| // Convert the heap number in eax to an untagged integer in ecx. |
| IntegerConvert(masm, |
| eax, |
| TypeInfo::Unknown(), |
| CpuFeatures::IsSupported(SSE3), |
| &slow); |
| |
| // Do the bitwise operation and check if the result fits in a smi. |
| NearLabel try_float; |
| __ not_(ecx); |
| __ cmp(ecx, 0xc0000000); |
| __ j(sign, &try_float, not_taken); |
| |
| // Tag the result as a smi and we're done. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ lea(eax, Operand(ecx, times_2, kSmiTag)); |
| __ jmp(&done); |
| |
| // Try to store the result in a heap number. |
| __ bind(&try_float); |
| if (overwrite_ == UNARY_NO_OVERWRITE) { |
| // Allocate a fresh heap number, but don't overwrite eax until |
| // we're sure we can do it without going through the slow case |
| // that needs the value in eax. |
| __ AllocateHeapNumber(ebx, edx, edi, &slow); |
| __ mov(eax, Operand(ebx)); |
| } |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| __ cvtsi2sd(xmm0, Operand(ecx)); |
| __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); |
| } else { |
| __ push(ecx); |
| __ fild_s(Operand(esp, 0)); |
| __ pop(ecx); |
| __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| |
| // Return from the stub. |
| __ bind(&done); |
| __ StubReturn(1); |
| |
| // Restore eax and go slow case. |
| __ bind(&undo); |
| __ mov(eax, Operand(edx)); |
| |
| // Handle the slow case by jumping to the JavaScript builtin. |
| __ bind(&slow); |
| __ pop(ecx); // pop return address. |
| __ push(eax); |
| __ push(ecx); // push return address |
| switch (op_) { |
| case Token::SUB: |
| __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
| break; |
| case Token::BIT_NOT: |
| __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| // Registers are used as follows: |
| // edx = base |
| // eax = exponent |
| // ecx = temporary, result |
| |
| CpuFeatures::Scope use_sse2(SSE2); |
| Label allocate_return, call_runtime; |
| |
| // Load input parameters. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| __ mov(eax, Operand(esp, 1 * kPointerSize)); |
| |
| // Save 1 in xmm3 - we need this several times later on. |
| __ mov(ecx, Immediate(1)); |
| __ cvtsi2sd(xmm3, Operand(ecx)); |
| |
| Label exponent_nonsmi; |
| Label base_nonsmi; |
| // If the exponent is a heap number go to that specific case. |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &exponent_nonsmi); |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &base_nonsmi); |
| |
| // Optimized version when both exponent and base are smis. |
| Label powi; |
| __ SmiUntag(edx); |
| __ cvtsi2sd(xmm0, Operand(edx)); |
| __ jmp(&powi); |
| // exponent is smi and base is a heapnumber. |
| __ bind(&base_nonsmi); |
| __ cmp(FieldOperand(edx, HeapObject::kMapOffset), |
| Factory::heap_number_map()); |
| __ j(not_equal, &call_runtime); |
| |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| |
| // Optimized version of pow if exponent is a smi. |
| // xmm0 contains the base. |
| __ bind(&powi); |
| __ SmiUntag(eax); |
| |
| // Save exponent in base as we need to check if exponent is negative later. |
| // We know that base and exponent are in different registers. |
| __ mov(edx, eax); |
| |
| // Get absolute value of exponent. |
| NearLabel no_neg; |
| __ cmp(eax, 0); |
| __ j(greater_equal, &no_neg); |
| __ neg(eax); |
| __ bind(&no_neg); |
| |
| // Load xmm1 with 1. |
| __ movsd(xmm1, xmm3); |
| NearLabel while_true; |
| NearLabel no_multiply; |
| |
| __ bind(&while_true); |
| __ shr(eax, 1); |
| __ j(not_carry, &no_multiply); |
| __ mulsd(xmm1, xmm0); |
| __ bind(&no_multiply); |
| __ mulsd(xmm0, xmm0); |
| __ j(not_zero, &while_true); |
| |
| // base has the original value of the exponent - if the exponent is |
| // negative return 1/result. |
| __ test(edx, Operand(edx)); |
| __ j(positive, &allocate_return); |
| // Special case if xmm1 has reached infinity. |
| __ mov(ecx, Immediate(0x7FB00000)); |
| __ movd(xmm0, Operand(ecx)); |
| __ cvtss2sd(xmm0, xmm0); |
| __ ucomisd(xmm0, xmm1); |
| __ j(equal, &call_runtime); |
| __ divsd(xmm3, xmm1); |
| __ movsd(xmm1, xmm3); |
| __ jmp(&allocate_return); |
| |
| // exponent (or both) is a heapnumber - no matter what we should now work |
| // on doubles. |
| __ bind(&exponent_nonsmi); |
| __ cmp(FieldOperand(eax, HeapObject::kMapOffset), |
| Factory::heap_number_map()); |
| __ j(not_equal, &call_runtime); |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| // Test if exponent is nan. |
| __ ucomisd(xmm1, xmm1); |
| __ j(parity_even, &call_runtime); |
| |
| NearLabel base_not_smi; |
| NearLabel handle_special_cases; |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &base_not_smi); |
| __ SmiUntag(edx); |
| __ cvtsi2sd(xmm0, Operand(edx)); |
| __ jmp(&handle_special_cases); |
| |
| __ bind(&base_not_smi); |
| __ cmp(FieldOperand(edx, HeapObject::kMapOffset), |
| Factory::heap_number_map()); |
| __ j(not_equal, &call_runtime); |
| __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| __ and_(ecx, HeapNumber::kExponentMask); |
| __ cmp(Operand(ecx), Immediate(HeapNumber::kExponentMask)); |
| // base is NaN or +/-Infinity |
| __ j(greater_equal, &call_runtime); |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| |
| // base is in xmm0 and exponent is in xmm1. |
| __ bind(&handle_special_cases); |
| NearLabel not_minus_half; |
| // Test for -0.5. |
| // Load xmm2 with -0.5. |
| __ mov(ecx, Immediate(0xBF000000)); |
| __ movd(xmm2, Operand(ecx)); |
| __ cvtss2sd(xmm2, xmm2); |
| // xmm2 now has -0.5. |
| __ ucomisd(xmm2, xmm1); |
| __ j(not_equal, ¬_minus_half); |
| |
| // Calculates reciprocal of square root. |
| // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
| __ xorpd(xmm1, xmm1); |
| __ addsd(xmm1, xmm0); |
| __ sqrtsd(xmm1, xmm1); |
| __ divsd(xmm3, xmm1); |
| __ movsd(xmm1, xmm3); |
| __ jmp(&allocate_return); |
| |
| // Test for 0.5. |
| __ bind(¬_minus_half); |
| // Load xmm2 with 0.5. |
| // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. |
| __ addsd(xmm2, xmm3); |
| // xmm2 now has 0.5. |
| __ ucomisd(xmm2, xmm1); |
| __ j(not_equal, &call_runtime); |
| // Calculates square root. |
| // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
| __ xorpd(xmm1, xmm1); |
| __ addsd(xmm1, xmm0); |
| __ sqrtsd(xmm1, xmm1); |
| |
| __ bind(&allocate_return); |
| __ AllocateHeapNumber(ecx, eax, edx, &call_runtime); |
| __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm1); |
| __ mov(eax, ecx); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&call_runtime); |
| __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
| // The key is in edx and the parameter count is in eax. |
| |
| // The displacement is used for skipping the frame pointer on the |
| // stack. It is the offset of the last parameter (if any) relative |
| // to the frame pointer. |
| static const int kDisplacement = 1 * kPointerSize; |
| |
| // Check that the key is a smi. |
| Label slow; |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &slow, not_taken); |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| NearLabel adaptor; |
| __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); |
| __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adaptor); |
| |
| // Check index against formal parameters count limit passed in |
| // through register eax. Use unsigned comparison to get negative |
| // check for free. |
| __ cmp(edx, Operand(eax)); |
| __ j(above_equal, &slow, not_taken); |
| |
| // Read the argument from the stack and return it. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. |
| __ lea(ebx, Operand(ebp, eax, times_2, 0)); |
| __ neg(edx); |
| __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
| __ ret(0); |
| |
| // Arguments adaptor case: Check index against actual arguments |
| // limit found in the arguments adaptor frame. Use unsigned |
| // comparison to get negative check for free. |
| __ bind(&adaptor); |
| __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ cmp(edx, Operand(ecx)); |
| __ j(above_equal, &slow, not_taken); |
| |
| // Read the argument from the stack and return it. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. |
| __ lea(ebx, Operand(ebx, ecx, times_2, 0)); |
| __ neg(edx); |
| __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); |
| __ ret(0); |
| |
| // Slow-case: Handle non-smi or out-of-bounds access to arguments |
| // by calling the runtime system. |
| __ bind(&slow); |
| __ pop(ebx); // Return address. |
| __ push(edx); |
| __ push(ebx); |
| __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
| } |
| |
| |
| void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
| // esp[0] : return address |
| // esp[4] : number of parameters |
| // esp[8] : receiver displacement |
| // esp[16] : function |
| |
| // The displacement is used for skipping the return address and the |
| // frame pointer on the stack. It is the offset of the last |
| // parameter (if any) relative to the frame pointer. |
| static const int kDisplacement = 2 * kPointerSize; |
| |
| // Check if the calling frame is an arguments adaptor frame. |
| Label adaptor_frame, try_allocate, runtime; |
| __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
| __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &adaptor_frame); |
| |
| // Get the length from the frame. |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| __ jmp(&try_allocate); |
| |
| // Patch the arguments.length and the parameters pointer. |
| __ bind(&adaptor_frame); |
| __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ mov(Operand(esp, 1 * kPointerSize), ecx); |
| __ lea(edx, Operand(edx, ecx, times_2, kDisplacement)); |
| __ mov(Operand(esp, 2 * kPointerSize), edx); |
| |
| // Try the new space allocation. Start out with computing the size of |
| // the arguments object and the elements array. |
| NearLabel add_arguments_object; |
| __ bind(&try_allocate); |
| __ test(ecx, Operand(ecx)); |
| __ j(zero, &add_arguments_object); |
| __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); |
| __ bind(&add_arguments_object); |
| __ add(Operand(ecx), Immediate(Heap::kArgumentsObjectSize)); |
| |
| // Do the allocation of both objects in one go. |
| __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); |
| |
| // Get the arguments boilerplate from the current (global) context. |
| int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
| __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); |
| __ mov(edi, Operand(edi, offset)); |
| |
| // Copy the JS object part. |
| for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { |
| __ mov(ebx, FieldOperand(edi, i)); |
| __ mov(FieldOperand(eax, i), ebx); |
| } |
| |
| // Setup the callee in-object property. |
| STATIC_ASSERT(Heap::arguments_callee_index == 0); |
| __ mov(ebx, Operand(esp, 3 * kPointerSize)); |
| __ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx); |
| |
| // Get the length (smi tagged) and set that as an in-object property too. |
| STATIC_ASSERT(Heap::arguments_length_index == 1); |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); |
| __ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx); |
| |
| // If there are no actual arguments, we're done. |
| Label done; |
| __ test(ecx, Operand(ecx)); |
| __ j(zero, &done); |
| |
| // Get the parameters pointer from the stack. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| |
| // Setup the elements pointer in the allocated arguments object and |
| // initialize the header in the elements fixed array. |
| __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize)); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); |
| __ mov(FieldOperand(edi, FixedArray::kMapOffset), |
| Immediate(Factory::fixed_array_map())); |
| __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); |
| // Untag the length for the loop below. |
| __ SmiUntag(ecx); |
| |
| // Copy the fixed array slots. |
| NearLabel loop; |
| __ bind(&loop); |
| __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. |
| __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); |
| __ add(Operand(edi), Immediate(kPointerSize)); |
| __ sub(Operand(edx), Immediate(kPointerSize)); |
| __ dec(ecx); |
| __ j(not_zero, &loop); |
| |
| // Return and remove the on-stack parameters. |
| __ bind(&done); |
| __ ret(3 * kPointerSize); |
| |
| // Do the runtime call to allocate the arguments object. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
| } |
| |
| |
| void RegExpExecStub::Generate(MacroAssembler* masm) { |
| // Just jump directly to runtime if native RegExp is not selected at compile |
| // time or if regexp entry in generated code is turned off runtime switch or |
| // at compilation. |
| #ifdef V8_INTERPRETED_REGEXP |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #else // V8_INTERPRETED_REGEXP |
| if (!FLAG_regexp_entry_native) { |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| return; |
| } |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: last_match_info (expected JSArray) |
| // esp[8]: previous index |
| // esp[12]: subject string |
| // esp[16]: JSRegExp object |
| |
| static const int kLastMatchInfoOffset = 1 * kPointerSize; |
| static const int kPreviousIndexOffset = 2 * kPointerSize; |
| static const int kSubjectOffset = 3 * kPointerSize; |
| static const int kJSRegExpOffset = 4 * kPointerSize; |
| |
| Label runtime, invoke_regexp; |
| |
| // Ensure that a RegExp stack is allocated. |
| ExternalReference address_of_regexp_stack_memory_address = |
| ExternalReference::address_of_regexp_stack_memory_address(); |
| ExternalReference address_of_regexp_stack_memory_size = |
| ExternalReference::address_of_regexp_stack_memory_size(); |
| __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| __ test(ebx, Operand(ebx)); |
| __ j(zero, &runtime, not_taken); |
| |
| // Check that the first argument is a JSRegExp object. |
| __ mov(eax, Operand(esp, kJSRegExpOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &runtime); |
| __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); |
| __ j(not_equal, &runtime); |
| // Check that the RegExp has been compiled (data contains a fixed array). |
| __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
| if (FLAG_debug_code) { |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected"); |
| __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); |
| __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); |
| } |
| |
| // ecx: RegExp data (FixedArray) |
| // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
| __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); |
| __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); |
| __ j(not_equal, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // Check that the number of captures fit in the static offsets vector buffer. |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. This |
| // uses the asumption that smis are 2 * their untagged value. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(Operand(edx), Immediate(2)); // edx was a smi. |
| // Check that the static offsets vector buffer is large enough. |
| __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); |
| __ j(above, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the second argument is a string. |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &runtime); |
| Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
| __ j(NegateCondition(is_string), &runtime); |
| // Get the length of the string to ebx. |
| __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
| |
| // ebx: Length of subject string as a smi |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the third argument is a positive smi less than the subject |
| // string length. A negative value will be greater (unsigned comparison). |
| __ mov(eax, Operand(esp, kPreviousIndexOffset)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(not_zero, &runtime); |
| __ cmp(eax, Operand(ebx)); |
| __ j(above_equal, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // edx: Number of capture registers |
| // Check that the fourth object is a JSArray object. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &runtime); |
| __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); |
| __ j(not_equal, &runtime); |
| // Check that the JSArray is in fast case. |
| __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
| __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); |
| __ cmp(eax, Factory::fixed_array_map()); |
| __ j(not_equal, &runtime); |
| // Check that the last match info has space for the capture registers and the |
| // additional information. |
| __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); |
| __ SmiUntag(eax); |
| __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead)); |
| __ cmp(edx, Operand(eax)); |
| __ j(greater, &runtime); |
| |
| // ecx: RegExp data (FixedArray) |
| // Check the representation and encoding of the subject string. |
| Label seq_ascii_string, seq_two_byte_string, check_code; |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| // First check for flat two byte string. |
| __ and_(ebx, |
| kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); |
| STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); |
| __ j(zero, &seq_two_byte_string); |
| // Any other flat string must be a flat ascii string. |
| __ test(Operand(ebx), |
| Immediate(kIsNotStringMask | kStringRepresentationMask)); |
| __ j(zero, &seq_ascii_string); |
| |
| // Check for flat cons string. |
| // A flat cons string is a cons string where the second part is the empty |
| // string. In that case the subject string is just the first part of the cons |
| // string. Also in this case the first part of the cons string is known to be |
| // a sequential string or an external string. |
| STATIC_ASSERT(kExternalStringTag != 0); |
| STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
| __ test(Operand(ebx), |
| Immediate(kIsNotStringMask | kExternalStringTag)); |
| __ j(not_zero, &runtime); |
| // String is a cons string. |
| __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset)); |
| __ cmp(Operand(edx), Factory::empty_string()); |
| __ j(not_equal, &runtime); |
| __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| // String is a cons string with empty second part. |
| // eax: first part of cons string. |
| // ebx: map of first part of cons string. |
| // Is first part a flat two byte string? |
| __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), |
| kStringRepresentationMask | kStringEncodingMask); |
| STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); |
| __ j(zero, &seq_two_byte_string); |
| // Any other flat string must be ascii. |
| __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), |
| kStringRepresentationMask); |
| __ j(not_zero, &runtime); |
| |
| __ bind(&seq_ascii_string); |
| // eax: subject string (flat ascii) |
| // ecx: RegExp data (FixedArray) |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset)); |
| __ Set(edi, Immediate(1)); // Type is ascii. |
| __ jmp(&check_code); |
| |
| __ bind(&seq_two_byte_string); |
| // eax: subject string (flat two byte) |
| // ecx: RegExp data (FixedArray) |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); |
| __ Set(edi, Immediate(0)); // Type is two byte. |
| |
| __ bind(&check_code); |
| // Check that the irregexp code has been generated for the actual string |
| // encoding. If it has, the field contains a code object otherwise it contains |
| // the hole. |
| __ CmpObjectType(edx, CODE_TYPE, ebx); |
| __ j(not_equal, &runtime); |
| |
| // eax: subject string |
| // edx: code |
| // edi: encoding of subject string (1 if ascii, 0 if two_byte); |
| // Load used arguments before starting to push arguments for call to native |
| // RegExp code to avoid handling changing stack height. |
| __ mov(ebx, Operand(esp, kPreviousIndexOffset)); |
| __ SmiUntag(ebx); // Previous index from smi. |
| |
| // eax: subject string |
| // ebx: previous index |
| // edx: code |
| // edi: encoding of subject string (1 if ascii 0 if two_byte); |
| // All checks done. Now push arguments for native regexp code. |
| __ IncrementCounter(&Counters::regexp_entry_native, 1); |
| |
| static const int kRegExpExecuteArguments = 7; |
| __ EnterApiExitFrame(kRegExpExecuteArguments); |
| |
| // Argument 7: Indicate that this is a direct call from JavaScript. |
| __ mov(Operand(esp, 6 * kPointerSize), Immediate(1)); |
| |
| // Argument 6: Start (high end) of backtracking stack memory area. |
| __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address)); |
| __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| __ mov(Operand(esp, 5 * kPointerSize), ecx); |
| |
| // Argument 5: static offsets vector buffer. |
| __ mov(Operand(esp, 4 * kPointerSize), |
| Immediate(ExternalReference::address_of_static_offsets_vector())); |
| |
| // Argument 4: End of string data |
| // Argument 3: Start of string data |
| NearLabel setup_two_byte, setup_rest; |
| __ test(edi, Operand(edi)); |
| __ mov(edi, FieldOperand(eax, String::kLengthOffset)); |
| __ j(zero, &setup_two_byte); |
| __ SmiUntag(edi); |
| __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize)); |
| __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. |
| __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize)); |
| __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. |
| __ jmp(&setup_rest); |
| |
| __ bind(&setup_two_byte); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2). |
| __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize)); |
| __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. |
| __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); |
| __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. |
| |
| __ bind(&setup_rest); |
| |
| // Argument 2: Previous index. |
| __ mov(Operand(esp, 1 * kPointerSize), ebx); |
| |
| // Argument 1: Subject string. |
| __ mov(Operand(esp, 0 * kPointerSize), eax); |
| |
| // Locate the code entry and call it. |
| __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ call(Operand(edx)); |
| |
| // Drop arguments and come back to JS mode. |
| __ LeaveApiExitFrame(); |
| |
| // Check the result. |
| Label success; |
| __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS); |
| __ j(equal, &success, taken); |
| Label failure; |
| __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); |
| __ j(equal, &failure, taken); |
| __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); |
| // If not exception it can only be retry. Handle that in the runtime system. |
| __ j(not_equal, &runtime); |
| // Result must now be exception. If there is no pending exception already a |
| // stack overflow (on the backtrack stack) was detected in RegExp code but |
| // haven't created the exception yet. Handle that in the runtime system. |
| // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
| ExternalReference pending_exception(Top::k_pending_exception_address); |
| __ mov(edx, |
| Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| __ mov(eax, Operand::StaticVariable(pending_exception)); |
| __ cmp(edx, Operand(eax)); |
| __ j(equal, &runtime); |
| // For exception, throw the exception again. |
| |
| // Clear the pending exception variable. |
| __ mov(Operand::StaticVariable(pending_exception), edx); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(eax, Factory::termination_exception()); |
| Label throw_termination_exception; |
| __ j(equal, &throw_termination_exception); |
| |
| // Handle normal exception by following handler chain. |
| __ Throw(eax); |
| |
| __ bind(&throw_termination_exception); |
| __ ThrowUncatchable(TERMINATION, eax); |
| |
| __ bind(&failure); |
| // For failure to match, return null. |
| __ mov(Operand(eax), Factory::null_value()); |
| __ ret(4 * kPointerSize); |
| |
| // Load RegExp data. |
| __ bind(&success); |
| __ mov(eax, Operand(esp, kJSRegExpOffset)); |
| __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); |
| __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); |
| // Calculate number of capture registers (number_of_captures + 1) * 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(Operand(edx), Immediate(2)); // edx was a smi. |
| |
| // edx: Number of capture registers |
| // Load last_match_info which is still known to be a fast case JSArray. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); |
| |
| // ebx: last_match_info backing store (FixedArray) |
| // edx: number of capture registers |
| // Store the capture count. |
| __ SmiTag(edx); // Number of capture registers to smi. |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); |
| __ SmiUntag(edx); // Number of capture registers back from smi. |
| // Store last subject and last input. |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); |
| __ mov(ecx, ebx); |
| __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi); |
| __ mov(eax, Operand(esp, kSubjectOffset)); |
| __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); |
| __ mov(ecx, ebx); |
| __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi); |
| |
| // Get the static offsets vector filled by the native regexp code. |
| ExternalReference address_of_static_offsets_vector = |
| ExternalReference::address_of_static_offsets_vector(); |
| __ mov(ecx, Immediate(address_of_static_offsets_vector)); |
| |
| // ebx: last_match_info backing store (FixedArray) |
| // ecx: offsets vector |
| // edx: number of capture registers |
| NearLabel next_capture, done; |
| // Capture register counter starts from number of capture registers and |
| // counts down until wraping after zero. |
| __ bind(&next_capture); |
| __ sub(Operand(edx), Immediate(1)); |
| __ j(negative, &done); |
| // Read the value from the static offsets vector buffer. |
| __ mov(edi, Operand(ecx, edx, times_int_size, 0)); |
| __ SmiTag(edi); |
| // Store the smi value in the last match info. |
| __ mov(FieldOperand(ebx, |
| edx, |
| times_pointer_size, |
| RegExpImpl::kFirstCaptureOffset), |
| edi); |
| __ jmp(&next_capture); |
| __ bind(&done); |
| |
| // Return last match info. |
| __ mov(eax, Operand(esp, kLastMatchInfoOffset)); |
| __ ret(4 * kPointerSize); |
| |
| // Do the runtime call to execute the regexp. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
| #endif // V8_INTERPRETED_REGEXP |
| } |
| |
| |
| void RegExpConstructResultStub::Generate(MacroAssembler* masm) { |
| const int kMaxInlineLength = 100; |
| Label slowcase; |
| NearLabel done; |
| __ mov(ebx, Operand(esp, kPointerSize * 3)); |
| __ test(ebx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &slowcase); |
| __ cmp(Operand(ebx), Immediate(Smi::FromInt(kMaxInlineLength))); |
| __ j(above, &slowcase); |
| // Smi-tagging is equivalent to multiplying by 2. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| // Allocate RegExpResult followed by FixedArray with size in ebx. |
| // JSArray: [Map][empty properties][Elements][Length-smi][index][input] |
| // Elements: [Map][Length][..elements..] |
| __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize, |
| times_half_pointer_size, |
| ebx, // In: Number of elements (times 2, being a smi) |
| eax, // Out: Start of allocation (tagged). |
| ecx, // Out: End of allocation. |
| edx, // Scratch register |
| &slowcase, |
| TAG_OBJECT); |
| // eax: Start of allocated area, object-tagged. |
| |
| // Set JSArray map to global.regexp_result_map(). |
| // Set empty properties FixedArray. |
| // Set elements to point to FixedArray allocated right after the JSArray. |
| // Interleave operations for better latency. |
| __ mov(edx, ContextOperand(esi, Context::GLOBAL_INDEX)); |
| __ mov(ecx, Immediate(Factory::empty_fixed_array())); |
| __ lea(ebx, Operand(eax, JSRegExpResult::kSize)); |
| __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalContextOffset)); |
| __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); |
| __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx); |
| __ mov(edx, ContextOperand(edx, Context::REGEXP_RESULT_MAP_INDEX)); |
| __ mov(FieldOperand(eax, HeapObject::kMapOffset), edx); |
| |
| // Set input, index and length fields from arguments. |
| __ mov(ecx, Operand(esp, kPointerSize * 1)); |
| __ mov(FieldOperand(eax, JSRegExpResult::kInputOffset), ecx); |
| __ mov(ecx, Operand(esp, kPointerSize * 2)); |
| __ mov(FieldOperand(eax, JSRegExpResult::kIndexOffset), ecx); |
| __ mov(ecx, Operand(esp, kPointerSize * 3)); |
| __ mov(FieldOperand(eax, JSArray::kLengthOffset), ecx); |
| |
| // Fill out the elements FixedArray. |
| // eax: JSArray. |
| // ebx: FixedArray. |
| // ecx: Number of elements in array, as smi. |
| |
| // Set map. |
| __ mov(FieldOperand(ebx, HeapObject::kMapOffset), |
| Immediate(Factory::fixed_array_map())); |
| // Set length. |
| __ mov(FieldOperand(ebx, FixedArray::kLengthOffset), ecx); |
| // Fill contents of fixed-array with the-hole. |
| __ SmiUntag(ecx); |
| __ mov(edx, Immediate(Factory::the_hole_value())); |
| __ lea(ebx, FieldOperand(ebx, FixedArray::kHeaderSize)); |
| // Fill fixed array elements with hole. |
| // eax: JSArray. |
| // ecx: Number of elements to fill. |
| // ebx: Start of elements in FixedArray. |
| // edx: the hole. |
| Label loop; |
| __ test(ecx, Operand(ecx)); |
| __ bind(&loop); |
| __ j(less_equal, &done); // Jump if ecx is negative or zero. |
| __ sub(Operand(ecx), Immediate(1)); |
| __ mov(Operand(ebx, ecx, times_pointer_size, 0), edx); |
| __ jmp(&loop); |
| |
| __ bind(&done); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&slowcase); |
| __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); |
| } |
| |
| |
| void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
| Register object, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| bool object_is_smi, |
| Label* not_found) { |
| // Use of registers. Register result is used as a temporary. |
| Register number_string_cache = result; |
| Register mask = scratch1; |
| Register scratch = scratch2; |
| |
| // Load the number string cache. |
| ExternalReference roots_address = ExternalReference::roots_address(); |
| __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex)); |
| __ mov(number_string_cache, |
| Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
| // Make the hash mask from the length of the number string cache. It |
| // contains two elements (number and string) for each cache entry. |
| __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); |
| __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two. |
| __ sub(Operand(mask), Immediate(1)); // Make mask. |
| |
| // Calculate the entry in the number string cache. The hash value in the |
| // number string cache for smis is just the smi value, and the hash for |
| // doubles is the xor of the upper and lower words. See |
| // Heap::GetNumberStringCache. |
| NearLabel smi_hash_calculated; |
| NearLabel load_result_from_cache; |
| if (object_is_smi) { |
| __ mov(scratch, object); |
| __ SmiUntag(scratch); |
| } else { |
| NearLabel not_smi, hash_calculated; |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(object, Immediate(kSmiTagMask)); |
| __ j(not_zero, ¬_smi); |
| __ mov(scratch, object); |
| __ SmiUntag(scratch); |
| __ jmp(&smi_hash_calculated); |
| __ bind(¬_smi); |
| __ cmp(FieldOperand(object, HeapObject::kMapOffset), |
| Factory::heap_number_map()); |
| __ j(not_equal, not_found); |
| STATIC_ASSERT(8 == kDoubleSize); |
| __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset)); |
| __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); |
| // Object is heap number and hash is now in scratch. Calculate cache index. |
| __ and_(scratch, Operand(mask)); |
| Register index = scratch; |
| Register probe = mask; |
| __ mov(probe, |
| FieldOperand(number_string_cache, |
| index, |
| times_twice_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ test(probe, Immediate(kSmiTagMask)); |
| __ j(zero, not_found); |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope fscope(SSE2); |
| __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); |
| __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); |
| __ ucomisd(xmm0, xmm1); |
| } else { |
| __ fld_d(FieldOperand(object, HeapNumber::kValueOffset)); |
| __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset)); |
| __ FCmp(); |
| } |
| __ j(parity_even, not_found); // Bail out if NaN is involved. |
| __ j(not_equal, not_found); // The cache did not contain this value. |
| __ jmp(&load_result_from_cache); |
| } |
| |
| __ bind(&smi_hash_calculated); |
| // Object is smi and hash is now in scratch. Calculate cache index. |
| __ and_(scratch, Operand(mask)); |
| Register index = scratch; |
| // Check if the entry is the smi we are looking for. |
| __ cmp(object, |
| FieldOperand(number_string_cache, |
| index, |
| times_twice_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ j(not_equal, not_found); |
| |
| // Get the result from the cache. |
| __ bind(&load_result_from_cache); |
| __ mov(result, |
| FieldOperand(number_string_cache, |
| index, |
| times_twice_pointer_size, |
| FixedArray::kHeaderSize + kPointerSize)); |
| __ IncrementCounter(&Counters::number_to_string_native, 1); |
| } |
| |
| |
| void NumberToStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| __ mov(ebx, Operand(esp, kPointerSize)); |
| |
| // Generate code to lookup number in the number string cache. |
| GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime); |
| __ ret(1 * kPointerSize); |
| |
| __ bind(&runtime); |
| // Handle number to string in the runtime system if not found in the cache. |
| __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); |
| } |
| |
| |
| static int NegativeComparisonResult(Condition cc) { |
| ASSERT(cc != equal); |
| ASSERT((cc == less) || (cc == less_equal) |
| || (cc == greater) || (cc == greater_equal)); |
| return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
| } |
| |
| void CompareStub::Generate(MacroAssembler* masm) { |
| ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| |
| Label check_unequal_objects, done; |
| |
| // Compare two smis if required. |
| if (include_smi_compare_) { |
| Label non_smi, smi_done; |
| __ mov(ecx, Operand(edx)); |
| __ or_(ecx, Operand(eax)); |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &non_smi, not_taken); |
| __ sub(edx, Operand(eax)); // Return on the result of the subtraction. |
| __ j(no_overflow, &smi_done); |
| __ not_(edx); // Correct sign in case of overflow. edx is never 0 here. |
| __ bind(&smi_done); |
| __ mov(eax, edx); |
| __ ret(0); |
| __ bind(&non_smi); |
| } else if (FLAG_debug_code) { |
| __ mov(ecx, Operand(edx)); |
| __ or_(ecx, Operand(eax)); |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, "Unexpected smi operands."); |
| } |
| |
| // NOTICE! This code is only reached after a smi-fast-case check, so |
| // it is certain that at least one operand isn't a smi. |
| |
| // Identical objects can be compared fast, but there are some tricky cases |
| // for NaN and undefined. |
| { |
| Label not_identical; |
| __ cmp(eax, Operand(edx)); |
| __ j(not_equal, ¬_identical); |
| |
| if (cc_ != equal) { |
| // Check for undefined. undefined OP undefined is false even though |
| // undefined == undefined. |
| NearLabel check_for_nan; |
| __ cmp(edx, Factory::undefined_value()); |
| __ j(not_equal, &check_for_nan); |
| __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| __ ret(0); |
| __ bind(&check_for_nan); |
| } |
| |
| // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
| // so we do the second best thing - test it ourselves. |
| // Note: if cc_ != equal, never_nan_nan_ is not used. |
| if (never_nan_nan_ && (cc_ == equal)) { |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| } else { |
| NearLabel heap_number; |
| __ cmp(FieldOperand(edx, HeapObject::kMapOffset), |
| Immediate(Factory::heap_number_map())); |
| __ j(equal, &heap_number); |
| if (cc_ != equal) { |
| // Call runtime on identical JSObjects. Otherwise return equal. |
| __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
| __ j(above_equal, ¬_identical); |
| } |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| |
| __ bind(&heap_number); |
| // It is a heap number, so return non-equal if it's NaN and equal if |
| // it's not NaN. |
| // The representation of NaN values has all exponent bits (52..62) set, |
| // and not all mantissa bits (0..51) clear. |
| // We only accept QNaNs, which have bit 51 set. |
| // Read top bits of double representation (second word of value). |
| |
| // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., |
| // all bits in the mask are set. We only need to check the word |
| // that contains the exponent and high bit of the mantissa. |
| STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0); |
| __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); |
| __ Set(eax, Immediate(0)); |
| // Shift value and mask so kQuietNaNHighBitsMask applies to topmost |
| // bits. |
| __ add(edx, Operand(edx)); |
| __ cmp(edx, kQuietNaNHighBitsMask << 1); |
| if (cc_ == equal) { |
| STATIC_ASSERT(EQUAL != 1); |
| __ setcc(above_equal, eax); |
| __ ret(0); |
| } else { |
| NearLabel nan; |
| __ j(above_equal, &nan); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| __ bind(&nan); |
| __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| __ ret(0); |
| } |
| } |
| |
| __ bind(¬_identical); |
| } |
| |
| // Strict equality can quickly decide whether objects are equal. |
| // Non-strict object equality is slower, so it is handled later in the stub. |
| if (cc_ == equal && strict_) { |
| Label slow; // Fallthrough label. |
| NearLabel not_smis; |
| // If we're doing a strict equality comparison, we don't have to do |
| // type conversion, so we generate code to do fast comparison for objects |
| // and oddballs. Non-smi numbers and strings still go through the usual |
| // slow-case code. |
| // If either is a Smi (we know that not both are), then they can only |
| // be equal if the other is a HeapNumber. If so, use the slow case. |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT_EQ(0, Smi::FromInt(0)); |
| __ mov(ecx, Immediate(kSmiTagMask)); |
| __ and_(ecx, Operand(eax)); |
| __ test(ecx, Operand(edx)); |
| __ j(not_zero, ¬_smis); |
| // One operand is a smi. |
| |
| // Check whether the non-smi is a heap number. |
| STATIC_ASSERT(kSmiTagMask == 1); |
| // ecx still holds eax & kSmiTag, which is either zero or one. |
| __ sub(Operand(ecx), Immediate(0x01)); |
| __ mov(ebx, edx); |
| __ xor_(ebx, Operand(eax)); |
| __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx. |
| __ xor_(ebx, Operand(eax)); |
| // if eax was smi, ebx is now edx, else eax. |
| |
| // Check if the non-smi operand is a heap number. |
| __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), |
| Immediate(Factory::heap_number_map())); |
| // If heap number, handle it in the slow case. |
| __ j(equal, &slow); |
| // Return non-equal (ebx is not zero) |
| __ mov(eax, ebx); |
| __ ret(0); |
| |
| __ bind(¬_smis); |
| // If either operand is a JSObject or an oddball value, then they are not |
| // equal since their pointers are different |
| // There is no test for undetectability in strict equality. |
| |
| // Get the type of the first operand. |
| // If the first object is a JS object, we have done pointer comparison. |
| NearLabel first_non_object; |
| STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
| __ j(below, &first_non_object); |
| |
| // Return non-zero (eax is not zero) |
| NearLabel return_not_equal; |
| STATIC_ASSERT(kHeapObjectTag != 0); |
| __ bind(&return_not_equal); |
| __ ret(0); |
| |
| __ bind(&first_non_object); |
| // Check for oddballs: true, false, null, undefined. |
| __ CmpInstanceType(ecx, ODDBALL_TYPE); |
| __ j(equal, &return_not_equal); |
| |
| __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ecx); |
| __ j(above_equal, &return_not_equal); |
| |
| // Check for oddballs: true, false, null, undefined. |
| __ CmpInstanceType(ecx, ODDBALL_TYPE); |
| __ j(equal, &return_not_equal); |
| |
| // Fall through to the general case. |
| __ bind(&slow); |
| } |
| |
| // Generate the number comparison code. |
| if (include_number_compare_) { |
| Label non_number_comparison; |
| Label unordered; |
| if (CpuFeatures::IsSupported(SSE2)) { |
| CpuFeatures::Scope use_sse2(SSE2); |
| CpuFeatures::Scope use_cmov(CMOV); |
| |
| FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison); |
| __ ucomisd(xmm0, xmm1); |
| |
| // Don't base result on EFLAGS when a NaN is involved. |
| __ j(parity_even, &unordered, not_taken); |
| // Return a result of -1, 0, or 1, based on EFLAGS. |
| __ mov(eax, 0); // equal |
| __ mov(ecx, Immediate(Smi::FromInt(1))); |
| __ cmov(above, eax, Operand(ecx)); |
| __ mov(ecx, Immediate(Smi::FromInt(-1))); |
| __ cmov(below, eax, Operand(ecx)); |
| __ ret(0); |
| } else { |
| FloatingPointHelper::CheckFloatOperands( |
| masm, &non_number_comparison, ebx); |
| FloatingPointHelper::LoadFloatOperand(masm, eax); |
| FloatingPointHelper::LoadFloatOperand(masm, edx); |
| __ FCmp(); |
| |
| // Don't base result on EFLAGS when a NaN is involved. |
| __ j(parity_even, &unordered, not_taken); |
| |
| NearLabel below_label, above_label; |
| // Return a result of -1, 0, or 1, based on EFLAGS. |
| __ j(below, &below_label, not_taken); |
| __ j(above, &above_label, not_taken); |
| |
| __ Set(eax, Immediate(0)); |
| __ ret(0); |
| |
| __ bind(&below_label); |
| __ mov(eax, Immediate(Smi::FromInt(-1))); |
| __ ret(0); |
| |
| __ bind(&above_label); |
| __ mov(eax, Immediate(Smi::FromInt(1))); |
| __ ret(0); |
| } |
| |
| // If one of the numbers was NaN, then the result is always false. |
| // The cc is never not-equal. |
| __ bind(&unordered); |
| ASSERT(cc_ != not_equal); |
| if (cc_ == less || cc_ == less_equal) { |
| __ mov(eax, Immediate(Smi::FromInt(1))); |
| } else { |
| __ mov(eax, Immediate(Smi::FromInt(-1))); |
| } |
| __ ret(0); |
| |
| // The number comparison code did not provide a valid result. |
| __ bind(&non_number_comparison); |
| } |
| |
| // Fast negative check for symbol-to-symbol equality. |
| Label check_for_strings; |
| if (cc_ == equal) { |
| BranchIfNonSymbol(masm, &check_for_strings, eax, ecx); |
| BranchIfNonSymbol(masm, &check_for_strings, edx, ecx); |
| |
| // We've already checked for object identity, so if both operands |
| // are symbols they aren't equal. Register eax already holds a |
| // non-zero value, which indicates not equal, so just return. |
| __ ret(0); |
| } |
| |
| __ bind(&check_for_strings); |
| |
| __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, |
| &check_unequal_objects); |
| |
| // Inline comparison of ascii strings. |
| StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
| edx, |
| eax, |
| ecx, |
| ebx, |
| edi); |
| #ifdef DEBUG |
| __ Abort("Unexpected fall-through from string comparison"); |
| #endif |
| |
| __ bind(&check_unequal_objects); |
| if (cc_ == equal && !strict_) { |
| // Non-strict equality. Objects are unequal if |
| // they are both JSObjects and not undetectable, |
| // and their pointers are different. |
| NearLabel not_both_objects; |
| NearLabel return_unequal; |
| // At most one is a smi, so we can test for smi by adding the two. |
| // A smi plus a heap object has the low bit set, a heap object plus |
| // a heap object has the low bit clear. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagMask == 1); |
| __ lea(ecx, Operand(eax, edx, times_1, 0)); |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ j(not_zero, ¬_both_objects); |
| __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
| __ j(below, ¬_both_objects); |
| __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ebx); |
| __ j(below, ¬_both_objects); |
| // We do not bail out after this point. Both are JSObjects, and |
| // they are equal if and only if both are undetectable. |
| // The and of the undetectable flags is 1 if and only if they are equal. |
| __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| __ j(zero, &return_unequal); |
| __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), |
| 1 << Map::kIsUndetectable); |
| __ j(zero, &return_unequal); |
| // The objects are both undetectable, so they both compare as the value |
| // undefined, and are equal. |
| __ Set(eax, Immediate(EQUAL)); |
| __ bind(&return_unequal); |
| // Return non-equal by returning the non-zero object pointer in eax, |
| // or return equal if we fell through to here. |
| __ ret(0); // rax, rdx were pushed |
| __ bind(¬_both_objects); |
| } |
| |
| // Push arguments below the return address. |
| __ pop(ecx); |
| __ push(edx); |
| __ push(eax); |
| |
| // Figure out which native to call and setup the arguments. |
| Builtins::JavaScript builtin; |
| if (cc_ == equal) { |
| builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
| } else { |
| builtin = Builtins::COMPARE; |
| __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); |
| } |
| |
| // Restore return address on the stack. |
| __ push(ecx); |
| |
| // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ InvokeBuiltin(builtin, JUMP_FUNCTION); |
| } |
| |
| |
| void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, |
| Label* label, |
| Register object, |
| Register scratch) { |
| __ test(object, Immediate(kSmiTagMask)); |
| __ j(zero, label); |
| __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); |
| __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); |
| __ and_(scratch, kIsSymbolMask | kIsNotStringMask); |
| __ cmp(scratch, kSymbolTag | kStringTag); |
| __ j(not_equal, label); |
| } |
| |
| |
| void StackCheckStub::Generate(MacroAssembler* masm) { |
| __ TailCallRuntime(Runtime::kStackGuard, 0, 1); |
| } |
| |
| |
| void CallFunctionStub::Generate(MacroAssembler* masm) { |
| Label slow; |
| |
| // If the receiver might be a value (string, number or boolean) check for this |
| // and box it if it is. |
| if (ReceiverMightBeValue()) { |
| // Get the receiver from the stack. |
| // +1 ~ return address |
| Label receiver_is_value, receiver_is_js_object; |
| __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize)); |
| |
| // Check if receiver is a smi (which is a number value). |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &receiver_is_value, not_taken); |
| |
| // Check if the receiver is a valid JS object. |
| __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi); |
| __ j(above_equal, &receiver_is_js_object); |
| |
| // Call the runtime to box the value. |
| __ bind(&receiver_is_value); |
| __ EnterInternalFrame(); |
| __ push(eax); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ LeaveInternalFrame(); |
| __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax); |
| |
| __ bind(&receiver_is_js_object); |
| } |
| |
| // Get the function to call from the stack. |
| // +2 ~ receiver, return address |
| __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize)); |
| |
| // Check that the function really is a JavaScript function. |
| __ test(edi, Immediate(kSmiTagMask)); |
| __ j(zero, &slow, not_taken); |
| // Goto slow case if we do not have a function. |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &slow, not_taken); |
| |
| // Fast-case: Just invoke the function. |
| ParameterCount actual(argc_); |
| __ InvokeFunction(edi, actual, JUMP_FUNCTION); |
| |
| // Slow-case: Non-function called. |
| __ bind(&slow); |
| // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
| // of the original receiver from the call site). |
| __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi); |
| __ Set(eax, Immediate(argc_)); |
| __ Set(ebx, Immediate(0)); |
| __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); |
| Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
| __ jmp(adaptor, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
| __ Throw(eax); |
| } |
| |
| |
| void CEntryStub::GenerateCore(MacroAssembler* masm, |
| Label* throw_normal_exception, |
| Label* throw_termination_exception, |
| Label* throw_out_of_memory_exception, |
| bool do_gc, |
| bool always_allocate_scope) { |
| // eax: result parameter for PerformGC, if any |
| // ebx: pointer to C function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // edi: number of arguments including receiver (C callee-saved) |
| // esi: pointer to the first argument (C callee-saved) |
| |
| // Result returned in eax, or eax+edx if result_size_ is 2. |
| |
| // Check stack alignment. |
| if (FLAG_debug_code) { |
| __ CheckStackAlignment(); |
| } |
| |
| if (do_gc) { |
| // Pass failure code returned from last attempt as first argument to |
| // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the |
| // stack alignment is known to be correct. This function takes one argument |
| // which is passed on the stack, and we know that the stack has been |
| // prepared to pass at least one argument. |
| __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. |
| __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); |
| } |
| |
| ExternalReference scope_depth = |
| ExternalReference::heap_always_allocate_scope_depth(); |
| if (always_allocate_scope) { |
| __ inc(Operand::StaticVariable(scope_depth)); |
| } |
| |
| // Call C function. |
| __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. |
| __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. |
| __ call(Operand(ebx)); |
| // Result is in eax or edx:eax - do not destroy these registers! |
| |
| if (always_allocate_scope) { |
| __ dec(Operand::StaticVariable(scope_depth)); |
| } |
| |
| // Make sure we're not trying to return 'the hole' from the runtime |
| // call as this may lead to crashes in the IC code later. |
| if (FLAG_debug_code) { |
| NearLabel okay; |
| __ cmp(eax, Factory::the_hole_value()); |
| __ j(not_equal, &okay); |
| __ int3(); |
| __ bind(&okay); |
| } |
| |
| // Check for failure result. |
| Label failure_returned; |
| STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
| __ lea(ecx, Operand(eax, 1)); |
| // Lower 2 bits of ecx are 0 iff eax has failure tag. |
| __ test(ecx, Immediate(kFailureTagMask)); |
| __ j(zero, &failure_returned, not_taken); |
| |
| ExternalReference pending_exception_address(Top::k_pending_exception_address); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned some failure value. |
| if (FLAG_debug_code) { |
| __ push(edx); |
| __ mov(edx, Operand::StaticVariable( |
| ExternalReference::the_hole_value_location())); |
| NearLabel okay; |
| __ cmp(edx, Operand::StaticVariable(pending_exception_address)); |
| // Cannot use check here as it attempts to generate call into runtime. |
| __ j(equal, &okay); |
| __ int3(); |
| __ bind(&okay); |
| __ pop(edx); |
| } |
| |
| // Exit the JavaScript to C++ exit frame. |
| __ LeaveExitFrame(save_doubles_); |
| __ ret(0); |
| |
| // Handling of failure. |
| __ bind(&failure_returned); |
| |
| Label retry; |
| // If the returned exception is RETRY_AFTER_GC continue at retry label |
| STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
| __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
| __ j(zero, &retry, taken); |
| |
| // Special handling of out of memory exceptions. |
| __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); |
| __ j(equal, throw_out_of_memory_exception); |
| |
| // Retrieve the pending exception and clear the variable. |
| __ mov(eax, Operand::StaticVariable(pending_exception_address)); |
| __ mov(edx, |
| Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| __ mov(Operand::StaticVariable(pending_exception_address), edx); |
| |
| // Special handling of termination exceptions which are uncatchable |
| // by javascript code. |
| __ cmp(eax, Factory::termination_exception()); |
| __ j(equal, throw_termination_exception); |
| |
| // Handle normal exception. |
| __ jmp(throw_normal_exception); |
| |
| // Retry. |
| __ bind(&retry); |
| } |
| |
| |
| void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
| UncatchableExceptionType type) { |
| __ ThrowUncatchable(type, eax); |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // eax: number of arguments including receiver |
| // ebx: pointer to C function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // esi: current context (C callee-saved) |
| // edi: JS function of the caller (C callee-saved) |
| |
| // NOTE: Invocations of builtins may return failure objects instead |
| // of a proper result. The builtin entry handles this by performing |
| // a garbage collection and retrying the builtin (twice). |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| __ EnterExitFrame(save_doubles_); |
| |
| // eax: result parameter for PerformGC, if any (setup below) |
| // ebx: pointer to builtin function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // edi: number of arguments including receiver (C callee-saved) |
| // esi: argv pointer (C callee-saved) |
| |
| Label throw_normal_exception; |
| Label throw_termination_exception; |
| Label throw_out_of_memory_exception; |
| |
| // Call into the runtime system. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| false, |
| false); |
| |
| // Do space-specific GC and retry runtime call. |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| false); |
| |
| // Do full GC and retry runtime call one final time. |
| Failure* failure = Failure::InternalError(); |
| __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); |
| GenerateCore(masm, |
| &throw_normal_exception, |
| &throw_termination_exception, |
| &throw_out_of_memory_exception, |
| true, |
| true); |
| |
| __ bind(&throw_out_of_memory_exception); |
| GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
| |
| __ bind(&throw_termination_exception); |
| GenerateThrowUncatchable(masm, TERMINATION); |
| |
| __ bind(&throw_normal_exception); |
| GenerateThrowTOS(masm); |
| } |
| |
| |
| void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
| Label invoke, exit; |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| Label not_outermost_js, not_outermost_js_2; |
| #endif |
| |
| // Setup frame. |
| __ push(ebp); |
| __ mov(ebp, Operand(esp)); |
| |
| // Push marker in two places. |
| int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
| __ push(Immediate(Smi::FromInt(marker))); // context slot |
| __ push(Immediate(Smi::FromInt(marker))); // function slot |
| // Save callee-saved registers (C calling conventions). |
| __ push(edi); |
| __ push(esi); |
| __ push(ebx); |
| |
| // Save copies of the top frame descriptor on the stack. |
| ExternalReference c_entry_fp(Top::k_c_entry_fp_address); |
| __ push(Operand::StaticVariable(c_entry_fp)); |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| // If this is the outermost JS call, set js_entry_sp value. |
| ExternalReference js_entry_sp(Top::k_js_entry_sp_address); |
| __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| __ j(not_equal, ¬_outermost_js); |
| __ mov(Operand::StaticVariable(js_entry_sp), ebp); |
| __ bind(¬_outermost_js); |
| #endif |
| |
| // Call a faked try-block that does the invoke. |
| __ call(&invoke); |
| |
| // Caught exception: Store result (exception) in the pending |
| // exception field in the JSEnv and return a failure sentinel. |
| ExternalReference pending_exception(Top::k_pending_exception_address); |
| __ mov(Operand::StaticVariable(pending_exception), eax); |
| __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); |
| __ jmp(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
| |
| // Clear any pending exceptions. |
| __ mov(edx, |
| Operand::StaticVariable(ExternalReference::the_hole_value_location())); |
| __ mov(Operand::StaticVariable(pending_exception), edx); |
| |
| // Fake a receiver (NULL). |
| __ push(Immediate(0)); // receiver |
| |
| // Invoke the function by calling through JS entry trampoline |
| // builtin and pop the faked function when we return. Notice that we |
| // cannot store a reference to the trampoline code directly in this |
| // stub, because the builtin stubs may not have been generated yet. |
| if (is_construct) { |
| ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
| __ mov(edx, Immediate(construct_entry)); |
| } else { |
| ExternalReference entry(Builtins::JSEntryTrampoline); |
| __ mov(edx, Immediate(entry)); |
| } |
| __ mov(edx, Operand(edx, 0)); // deref address |
| __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
| __ call(Operand(edx)); |
| |
| // Unlink this frame from the handler chain. |
| __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); |
| // Pop next_sp. |
| __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| |
| #ifdef ENABLE_LOGGING_AND_PROFILING |
| // If current EBP value is the same as js_entry_sp value, it means that |
| // the current function is the outermost. |
| __ cmp(ebp, Operand::StaticVariable(js_entry_sp)); |
| __ j(not_equal, ¬_outermost_js_2); |
| __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| __ bind(¬_outermost_js_2); |
| #endif |
| |
| // Restore the top frame descriptor from the stack. |
| __ bind(&exit); |
| __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address))); |
| |
| // Restore callee-saved registers (C calling conventions). |
| __ pop(ebx); |
| __ pop(esi); |
| __ pop(edi); |
| __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers |
| |
| // Restore frame pointer and return. |
| __ pop(ebp); |
| __ ret(0); |
| } |
| |
| |
| // Generate stub code for instanceof. |
| // This code can patch a call site inlined cache of the instance of check, |
| // which looks like this. |
| // |
| // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map> |
| // 75 0a jne <some near label> |
| // b8 XX XX XX XX mov eax, <the hole, patched to either true or false> |
| // |
| // If call site patching is requested the stack will have the delta from the |
| // return address to the cmp instruction just below the return address. This |
| // also means that call site patching can only take place with arguments in |
| // registers. TOS looks like this when call site patching is requested |
| // |
| // esp[0] : return address |
| // esp[4] : delta from return address to cmp instruction |
| // |
| void InstanceofStub::Generate(MacroAssembler* masm) { |
| // Call site inlining and patching implies arguments in registers. |
| ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); |
| |
| // Fixed register usage throughout the stub. |
| Register object = eax; // Object (lhs). |
| Register map = ebx; // Map of the object. |
| Register function = edx; // Function (rhs). |
| Register prototype = edi; // Prototype of the function. |
| Register scratch = ecx; |
| |
| // Constants describing the call site code to patch. |
| static const int kDeltaToCmpImmediate = 2; |
| static const int kDeltaToMov = 8; |
| static const int kDeltaToMovImmediate = 9; |
| static const int8_t kCmpEdiImmediateByte1 = BitCast<int8_t, uint8_t>(0x81); |
| static const int8_t kCmpEdiImmediateByte2 = BitCast<int8_t, uint8_t>(0xff); |
| static const int8_t kMovEaxImmediateByte = BitCast<int8_t, uint8_t>(0xb8); |
| |
| ExternalReference roots_address = ExternalReference::roots_address(); |
| |
| ASSERT_EQ(object.code(), InstanceofStub::left().code()); |
| ASSERT_EQ(function.code(), InstanceofStub::right().code()); |
| |
| // Get the object and function - they are always both needed. |
| Label slow, not_js_object; |
| if (!HasArgsInRegisters()) { |
| __ mov(object, Operand(esp, 2 * kPointerSize)); |
| __ mov(function, Operand(esp, 1 * kPointerSize)); |
| } |
| |
| // Check that the left hand is a JS object. |
| __ test(object, Immediate(kSmiTagMask)); |
| __ j(zero, ¬_js_object, not_taken); |
| __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); |
| |
| // If there is a call site cache don't look in the global cache, but do the |
| // real lookup and update the call site cache. |
| if (!HasCallSiteInlineCheck()) { |
| // Look up the function and the map in the instanceof cache. |
| NearLabel miss; |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); |
| __ cmp(function, |
| Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
| __ j(not_equal, &miss); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex)); |
| __ cmp(map, Operand::StaticArray( |
| scratch, times_pointer_size, roots_address)); |
| __ j(not_equal, &miss); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| __ mov(eax, Operand::StaticArray( |
| scratch, times_pointer_size, roots_address)); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| __ bind(&miss); |
| } |
| |
| // Get the prototype of the function. |
| __ TryGetFunctionPrototype(function, prototype, scratch, &slow); |
| |
| // Check that the function prototype is a JS object. |
| __ test(prototype, Immediate(kSmiTagMask)); |
| __ j(zero, &slow, not_taken); |
| __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); |
| |
| // Update the global instanceof or call site inlined cache with the current |
| // map and function. The cached answer will be set when it is known below. |
| if (!HasCallSiteInlineCheck()) { |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex)); |
| __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_address), map); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); |
| __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_address), |
| function); |
| } else { |
| // The constants for the code patching are based on no push instructions |
| // at the call site. |
| ASSERT(HasArgsInRegisters()); |
| // Get return address and delta to inlined map check. |
| __ mov(scratch, Operand(esp, 0 * kPointerSize)); |
| __ sub(scratch, Operand(esp, 1 * kPointerSize)); |
| if (FLAG_debug_code) { |
| __ cmpb(Operand(scratch, 0), kCmpEdiImmediateByte1); |
| __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 1)"); |
| __ cmpb(Operand(scratch, 1), kCmpEdiImmediateByte2); |
| __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 2)"); |
| } |
| __ mov(Operand(scratch, kDeltaToCmpImmediate), map); |
| } |
| |
| // Loop through the prototype chain of the object looking for the function |
| // prototype. |
| __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset)); |
| NearLabel loop, is_instance, is_not_instance; |
| __ bind(&loop); |
| __ cmp(scratch, Operand(prototype)); |
| __ j(equal, &is_instance); |
| __ cmp(Operand(scratch), Immediate(Factory::null_value())); |
| __ j(equal, &is_not_instance); |
| __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); |
| __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset)); |
| __ jmp(&loop); |
| |
| __ bind(&is_instance); |
| if (!HasCallSiteInlineCheck()) { |
| __ Set(eax, Immediate(0)); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| __ mov(Operand::StaticArray(scratch, |
| times_pointer_size, roots_address), eax); |
| } else { |
| // Get return address and delta to inlined map check. |
| __ mov(eax, Factory::true_value()); |
| __ mov(scratch, Operand(esp, 0 * kPointerSize)); |
| __ sub(scratch, Operand(esp, 1 * kPointerSize)); |
| if (FLAG_debug_code) { |
| __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte); |
| __ Assert(equal, "InstanceofStub unexpected call site cache (mov)"); |
| } |
| __ mov(Operand(scratch, kDeltaToMovImmediate), eax); |
| if (!ReturnTrueFalseObject()) { |
| __ Set(eax, Immediate(0)); |
| } |
| } |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| __ bind(&is_not_instance); |
| if (!HasCallSiteInlineCheck()) { |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); |
| __ mov(Operand::StaticArray( |
| scratch, times_pointer_size, roots_address), eax); |
| } else { |
| // Get return address and delta to inlined map check. |
| __ mov(eax, Factory::false_value()); |
| __ mov(scratch, Operand(esp, 0 * kPointerSize)); |
| __ sub(scratch, Operand(esp, 1 * kPointerSize)); |
| if (FLAG_debug_code) { |
| __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte); |
| __ Assert(equal, "InstanceofStub unexpected call site cache (mov)"); |
| } |
| __ mov(Operand(scratch, kDeltaToMovImmediate), eax); |
| if (!ReturnTrueFalseObject()) { |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| } |
| } |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| Label object_not_null, object_not_null_or_smi; |
| __ bind(¬_js_object); |
| // Before null, smi and string value checks, check that the rhs is a function |
| // as for a non-function rhs an exception needs to be thrown. |
| __ test(function, Immediate(kSmiTagMask)); |
| __ j(zero, &slow, not_taken); |
| __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch); |
| __ j(not_equal, &slow, not_taken); |
| |
| // Null is not instance of anything. |
| __ cmp(object, Factory::null_value()); |
| __ j(not_equal, &object_not_null); |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| __ bind(&object_not_null); |
| // Smi values is not instance of anything. |
| __ test(object, Immediate(kSmiTagMask)); |
| __ j(not_zero, &object_not_null_or_smi, not_taken); |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| __ bind(&object_not_null_or_smi); |
| // String values is not instance of anything. |
| Condition is_string = masm->IsObjectStringType(object, scratch, scratch); |
| __ j(NegateCondition(is_string), &slow); |
| __ Set(eax, Immediate(Smi::FromInt(1))); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| |
| // Slow-case: Go through the JavaScript implementation. |
| __ bind(&slow); |
| if (!ReturnTrueFalseObject()) { |
| // Tail call the builtin which returns 0 or 1. |
| if (HasArgsInRegisters()) { |
| // Push arguments below return address. |
| __ pop(scratch); |
| __ push(object); |
| __ push(function); |
| __ push(scratch); |
| } |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
| } else { |
| // Call the builtin and convert 0/1 to true/false. |
| __ EnterInternalFrame(); |
| __ push(object); |
| __ push(function); |
| __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); |
| __ LeaveInternalFrame(); |
| NearLabel true_value, done; |
| __ test(eax, Operand(eax)); |
| __ j(zero, &true_value); |
| __ mov(eax, Factory::false_value()); |
| __ jmp(&done); |
| __ bind(&true_value); |
| __ mov(eax, Factory::true_value()); |
| __ bind(&done); |
| __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); |
| } |
| } |
| |
| |
| Register InstanceofStub::left() { return eax; } |
| |
| |
| Register InstanceofStub::right() { return edx; } |
| |
| |
| int CompareStub::MinorKey() { |
| // Encode the three parameters in a unique 16 bit value. To avoid duplicate |
| // stubs the never NaN NaN condition is only taken into account if the |
| // condition is equals. |
| ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); |
| ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| return ConditionField::encode(static_cast<unsigned>(cc_)) |
| | RegisterField::encode(false) // lhs_ and rhs_ are not used |
| | StrictField::encode(strict_) |
| | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) |
| | IncludeNumberCompareField::encode(include_number_compare_) |
| | IncludeSmiCompareField::encode(include_smi_compare_); |
| } |
| |
| |
| // Unfortunately you have to run without snapshots to see most of these |
| // names in the profile since most compare stubs end up in the snapshot. |
| const char* CompareStub::GetName() { |
| ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); |
| |
| if (name_ != NULL) return name_; |
| const int kMaxNameLength = 100; |
| name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); |
| if (name_ == NULL) return "OOM"; |
| |
| const char* cc_name; |
| switch (cc_) { |
| case less: cc_name = "LT"; break; |
| case greater: cc_name = "GT"; break; |
| case less_equal: cc_name = "LE"; break; |
| case greater_equal: cc_name = "GE"; break; |
| case equal: cc_name = "EQ"; break; |
| case not_equal: cc_name = "NE"; break; |
| default: cc_name = "UnknownCondition"; break; |
| } |
| |
| const char* strict_name = ""; |
| if (strict_ && (cc_ == equal || cc_ == not_equal)) { |
| strict_name = "_STRICT"; |
| } |
| |
| const char* never_nan_nan_name = ""; |
| if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { |
| never_nan_nan_name = "_NO_NAN"; |
| } |
| |
| const char* include_number_compare_name = ""; |
| if (!include_number_compare_) { |
| include_number_compare_name = "_NO_NUMBER"; |
| } |
| |
| const char* include_smi_compare_name = ""; |
| if (!include_smi_compare_) { |
| include_smi_compare_name = "_NO_SMI"; |
| } |
| |
| OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
| "CompareStub_%s%s%s%s%s", |
| cc_name, |
| strict_name, |
| never_nan_nan_name, |
| include_number_compare_name, |
| include_smi_compare_name); |
| return name_; |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharCodeAtGenerator |
| |
| void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
| Label flat_string; |
| Label ascii_string; |
| Label got_char_code; |
| |
| // If the receiver is a smi trigger the non-string case. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(object_, Immediate(kSmiTagMask)); |
| __ j(zero, receiver_not_string_); |
| |
| // Fetch the instance type of the receiver into result register. |
| __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| // If the receiver is not a string trigger the non-string case. |
| __ test(result_, Immediate(kIsNotStringMask)); |
| __ j(not_zero, receiver_not_string_); |
| |
| // If the index is non-smi trigger the non-smi case. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(index_, Immediate(kSmiTagMask)); |
| __ j(not_zero, &index_not_smi_); |
| |
| // Put smi-tagged index into scratch register. |
| __ mov(scratch_, index_); |
| __ bind(&got_smi_index_); |
| |
| // Check for index out of range. |
| __ cmp(scratch_, FieldOperand(object_, String::kLengthOffset)); |
| __ j(above_equal, index_out_of_range_); |
| |
| // We need special handling for non-flat strings. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ test(result_, Immediate(kStringRepresentationMask)); |
| __ j(zero, &flat_string); |
| |
| // Handle non-flat strings. |
| __ test(result_, Immediate(kIsConsStringMask)); |
| __ j(zero, &call_runtime_); |
| |
| // ConsString. |
| // Check whether the right hand side is the empty string (i.e. if |
| // this is really a flat string in a cons string). If that is not |
| // the case we would rather go to the runtime system now to flatten |
| // the string. |
| __ cmp(FieldOperand(object_, ConsString::kSecondOffset), |
| Immediate(Factory::empty_string())); |
| __ j(not_equal, &call_runtime_); |
| // Get the first of the two strings and load its instance type. |
| __ mov(object_, FieldOperand(object_, ConsString::kFirstOffset)); |
| __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| // If the first cons component is also non-flat, then go to runtime. |
| STATIC_ASSERT(kSeqStringTag == 0); |
| __ test(result_, Immediate(kStringRepresentationMask)); |
| __ j(not_zero, &call_runtime_); |
| |
| // Check for 1-byte or 2-byte string. |
| __ bind(&flat_string); |
| STATIC_ASSERT(kAsciiStringTag != 0); |
| __ test(result_, Immediate(kStringEncodingMask)); |
| __ j(not_zero, &ascii_string); |
| |
| // 2-byte string. |
| // Load the 2-byte character code into the result register. |
| STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| __ movzx_w(result_, FieldOperand(object_, |
| scratch_, times_1, // Scratch is smi-tagged. |
| SeqTwoByteString::kHeaderSize)); |
| __ jmp(&got_char_code); |
| |
| // ASCII string. |
| // Load the byte into the result register. |
| __ bind(&ascii_string); |
| __ SmiUntag(scratch_); |
| __ movzx_b(result_, FieldOperand(object_, |
| scratch_, times_1, |
| SeqAsciiString::kHeaderSize)); |
| __ bind(&got_char_code); |
| __ SmiTag(result_); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharCodeAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
| |
| // Index is not a smi. |
| __ bind(&index_not_smi_); |
| // If index is a heap number, try converting it to an integer. |
| __ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true); |
| call_helper.BeforeCall(masm); |
| __ push(object_); |
| __ push(index_); |
| __ push(index_); // Consumed by runtime conversion function. |
| if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
| __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
| } else { |
| ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
| // NumberToSmi discards numbers that are not exact integers. |
| __ CallRuntime(Runtime::kNumberToSmi, 1); |
| } |
| if (!scratch_.is(eax)) { |
| // Save the conversion result before the pop instructions below |
| // have a chance to overwrite it. |
| __ mov(scratch_, eax); |
| } |
| __ pop(index_); |
| __ pop(object_); |
| // Reload the instance type. |
| __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); |
| __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); |
| call_helper.AfterCall(masm); |
| // If index is still not a smi, it must be out of range. |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(scratch_, Immediate(kSmiTagMask)); |
| __ j(not_zero, index_out_of_range_); |
| // Otherwise, return to the fast path. |
| __ jmp(&got_smi_index_); |
| |
| // Call runtime. We get here when the receiver is a string and the |
| // index is a number, but the code of getting the actual character |
| // is too complex (e.g., when the string needs to be flattened). |
| __ bind(&call_runtime_); |
| call_helper.BeforeCall(masm); |
| __ push(object_); |
| __ push(index_); |
| __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
| if (!result_.is(eax)) { |
| __ mov(result_, eax); |
| } |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharFromCodeGenerator |
| |
| void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
| // Fast case of Heap::LookupSingleCharacterStringFromCode. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
| __ test(code_, |
| Immediate(kSmiTagMask | |
| ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
| __ j(not_zero, &slow_case_, not_taken); |
| |
| __ Set(result_, Immediate(Factory::single_character_string_cache())); |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| // At this point code register contains smi tagged ascii char code. |
| __ mov(result_, FieldOperand(result_, |
| code_, times_half_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ cmp(result_, Factory::undefined_value()); |
| __ j(equal, &slow_case_, not_taken); |
| __ bind(&exit_); |
| } |
| |
| |
| void StringCharFromCodeGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
| |
| __ bind(&slow_case_); |
| call_helper.BeforeCall(masm); |
| __ push(code_); |
| __ CallRuntime(Runtime::kCharFromCode, 1); |
| if (!result_.is(eax)) { |
| __ mov(result_, eax); |
| } |
| call_helper.AfterCall(masm); |
| __ jmp(&exit_); |
| |
| __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
| } |
| |
| |
| // ------------------------------------------------------------------------- |
| // StringCharAtGenerator |
| |
| void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
| char_code_at_generator_.GenerateFast(masm); |
| char_from_code_generator_.GenerateFast(masm); |
| } |
| |
| |
| void StringCharAtGenerator::GenerateSlow( |
| MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
| char_code_at_generator_.GenerateSlow(masm, call_helper); |
| char_from_code_generator_.GenerateSlow(masm, call_helper); |
| } |
| |
| |
| void StringAddStub::Generate(MacroAssembler* masm) { |
| Label string_add_runtime, call_builtin; |
| Builtins::JavaScript builtin_id = Builtins::ADD; |
| |
| // Load the two arguments. |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. |
| |
| // Make sure that both arguments are strings if not known in advance. |
| if (flags_ == NO_STRING_ADD_FLAGS) { |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &string_add_runtime); |
| __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx); |
| __ j(above_equal, &string_add_runtime); |
| |
| // First argument is a a string, test second. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(zero, &string_add_runtime); |
| __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx); |
| __ j(above_equal, &string_add_runtime); |
| } else { |
| // Here at least one of the arguments is definitely a string. |
| // We convert the one that is not known to be a string. |
| if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { |
| ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); |
| GenerateConvertArgument(masm, 2 * kPointerSize, eax, ebx, ecx, edi, |
| &call_builtin); |
| builtin_id = Builtins::STRING_ADD_RIGHT; |
| } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { |
| ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); |
| GenerateConvertArgument(masm, 1 * kPointerSize, edx, ebx, ecx, edi, |
| &call_builtin); |
| builtin_id = Builtins::STRING_ADD_LEFT; |
| } |
| } |
| |
| // Both arguments are strings. |
| // eax: first string |
| // edx: second string |
| // Check if either of the strings are empty. In that case return the other. |
| NearLabel second_not_zero_length, both_not_zero_length; |
| __ mov(ecx, FieldOperand(edx, String::kLengthOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(ecx, Operand(ecx)); |
| __ j(not_zero, &second_not_zero_length); |
| // Second string is empty, result is first string which is already in eax. |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| __ bind(&second_not_zero_length); |
| __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(ebx, Operand(ebx)); |
| __ j(not_zero, &both_not_zero_length); |
| // First string is empty, result is second string which is in edx. |
| __ mov(eax, edx); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| // Both strings are non-empty. |
| // eax: first string |
| // ebx: length of first string as a smi |
| // ecx: length of second string as a smi |
| // edx: second string |
| // Look at the length of the result of adding the two strings. |
| Label string_add_flat_result, longer_than_two; |
| __ bind(&both_not_zero_length); |
| __ add(ebx, Operand(ecx)); |
| STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength); |
| // Handle exceptionally long strings in the runtime system. |
| __ j(overflow, &string_add_runtime); |
| // Use the runtime system when adding two one character strings, as it |
| // contains optimizations for this specific case using the symbol table. |
| __ cmp(Operand(ebx), Immediate(Smi::FromInt(2))); |
| __ j(not_equal, &longer_than_two); |
| |
| // Check that both strings are non-external ascii strings. |
| __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, |
| &string_add_runtime); |
| |
| // Get the two characters forming the new string. |
| __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); |
| __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); |
| |
| // Try to lookup two character string in symbol table. If it is not found |
| // just allocate a new one. |
| Label make_two_character_string, make_two_character_string_no_reload; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, ebx, ecx, eax, edx, edi, |
| &make_two_character_string_no_reload, &make_two_character_string); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| // Allocate a two character string. |
| __ bind(&make_two_character_string); |
| // Reload the arguments. |
| __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. |
| // Get the two characters forming the new string. |
| __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); |
| __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); |
| __ bind(&make_two_character_string_no_reload); |
| __ IncrementCounter(&Counters::string_add_make_two_char, 1); |
| __ AllocateAsciiString(eax, // Result. |
| 2, // Length. |
| edi, // Scratch 1. |
| edx, // Scratch 2. |
| &string_add_runtime); |
| // Pack both characters in ebx. |
| __ shl(ecx, kBitsPerByte); |
| __ or_(ebx, Operand(ecx)); |
| // Set the characters in the new string. |
| __ mov_w(FieldOperand(eax, SeqAsciiString::kHeaderSize), ebx); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(&longer_than_two); |
| // Check if resulting string will be flat. |
| __ cmp(Operand(ebx), Immediate(Smi::FromInt(String::kMinNonFlatLength))); |
| __ j(below, &string_add_flat_result); |
| |
| // If result is not supposed to be flat allocate a cons string object. If both |
| // strings are ascii the result is an ascii cons string. |
| Label non_ascii, allocated, ascii_data; |
| __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); |
| __ and_(ecx, Operand(edi)); |
| STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
| __ test(ecx, Immediate(kAsciiStringTag)); |
| __ j(zero, &non_ascii); |
| __ bind(&ascii_data); |
| // Allocate an acsii cons string. |
| __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime); |
| __ bind(&allocated); |
| // Fill the fields of the cons string. |
| if (FLAG_debug_code) __ AbortIfNotSmi(ebx); |
| __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx); |
| __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset), |
| Immediate(String::kEmptyHashField)); |
| __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax); |
| __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx); |
| __ mov(eax, ecx); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| __ bind(&non_ascii); |
| // At least one of the strings is two-byte. Check whether it happens |
| // to contain only ascii characters. |
| // ecx: first instance type AND second instance type. |
| // edi: second instance type. |
| __ test(ecx, Immediate(kAsciiDataHintMask)); |
| __ j(not_zero, &ascii_data); |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ xor_(edi, Operand(ecx)); |
| STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
| __ and_(edi, kAsciiStringTag | kAsciiDataHintTag); |
| __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag); |
| __ j(equal, &ascii_data); |
| // Allocate a two byte cons string. |
| __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime); |
| __ jmp(&allocated); |
| |
| // Handle creating a flat result. First check that both strings are not |
| // external strings. |
| // eax: first string |
| // ebx: length of resulting flat string as a smi |
| // edx: second string |
| __ bind(&string_add_flat_result); |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ and_(ecx, kStringRepresentationMask); |
| __ cmp(ecx, kExternalStringTag); |
| __ j(equal, &string_add_runtime); |
| __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); |
| __ and_(ecx, kStringRepresentationMask); |
| __ cmp(ecx, kExternalStringTag); |
| __ j(equal, &string_add_runtime); |
| // Now check if both strings are ascii strings. |
| // eax: first string |
| // ebx: length of resulting flat string as a smi |
| // edx: second string |
| Label non_ascii_string_add_flat_result; |
| STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag); |
| __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
| __ j(zero, &non_ascii_string_add_flat_result); |
| __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
| __ j(zero, &string_add_runtime); |
| |
| // Both strings are ascii strings. As they are short they are both flat. |
| // ebx: length of resulting flat string as a smi |
| __ SmiUntag(ebx); |
| __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime); |
| // eax: result string |
| __ mov(ecx, eax); |
| // Locate first character of result. |
| __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Load first argument and locate first character. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ SmiUntag(edi); |
| __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // eax: result string |
| // ecx: first character of result |
| // edx: first char of first argument |
| // edi: length of first argument |
| StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
| // Load second argument and locate first character. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ SmiUntag(edi); |
| __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // eax: result string |
| // ecx: next character of result |
| // edx: first char of second argument |
| // edi: length of second argument |
| StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| // Handle creating a flat two byte result. |
| // eax: first string - known to be two byte |
| // ebx: length of resulting flat string as a smi |
| // edx: second string |
| __ bind(&non_ascii_string_add_flat_result); |
| __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); |
| __ j(not_zero, &string_add_runtime); |
| // Both strings are two byte strings. As they are short they are both |
| // flat. |
| __ SmiUntag(ebx); |
| __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime); |
| // eax: result string |
| __ mov(ecx, eax); |
| // Locate first character of result. |
| __ add(Operand(ecx), |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Load first argument and locate first character. |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ SmiUntag(edi); |
| __ add(Operand(edx), |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // eax: result string |
| // ecx: first character of result |
| // edx: first char of first argument |
| // edi: length of first argument |
| StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
| // Load second argument and locate first character. |
| __ mov(edx, Operand(esp, 1 * kPointerSize)); |
| __ mov(edi, FieldOperand(edx, String::kLengthOffset)); |
| __ SmiUntag(edi); |
| __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // eax: result string |
| // ecx: next character of result |
| // edx: first char of second argument |
| // edi: length of second argument |
| StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); |
| __ IncrementCounter(&Counters::string_add_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| // Just jump to runtime to add the two strings. |
| __ bind(&string_add_runtime); |
| __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| |
| if (call_builtin.is_linked()) { |
| __ bind(&call_builtin); |
| __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); |
| } |
| } |
| |
| |
| void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, |
| int stack_offset, |
| Register arg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* slow) { |
| // First check if the argument is already a string. |
| Label not_string, done; |
| __ test(arg, Immediate(kSmiTagMask)); |
| __ j(zero, ¬_string); |
| __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1); |
| __ j(below, &done); |
| |
| // Check the number to string cache. |
| Label not_cached; |
| __ bind(¬_string); |
| // Puts the cached result into scratch1. |
| NumberToStringStub::GenerateLookupNumberStringCache(masm, |
| arg, |
| scratch1, |
| scratch2, |
| scratch3, |
| false, |
| ¬_cached); |
| __ mov(arg, scratch1); |
| __ mov(Operand(esp, stack_offset), arg); |
| __ jmp(&done); |
| |
| // Check if the argument is a safe string wrapper. |
| __ bind(¬_cached); |
| __ test(arg, Immediate(kSmiTagMask)); |
| __ j(zero, slow); |
| __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1. |
| __ j(not_equal, slow); |
| __ test_b(FieldOperand(scratch1, Map::kBitField2Offset), |
| 1 << Map::kStringWrapperSafeForDefaultValueOf); |
| __ j(zero, slow); |
| __ mov(arg, FieldOperand(arg, JSValue::kValueOffset)); |
| __ mov(Operand(esp, stack_offset), arg); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| NearLabel loop; |
| __ bind(&loop); |
| // This loop just copies one character at a time, as it is only used for very |
| // short strings. |
| if (ascii) { |
| __ mov_b(scratch, Operand(src, 0)); |
| __ mov_b(Operand(dest, 0), scratch); |
| __ add(Operand(src), Immediate(1)); |
| __ add(Operand(dest), Immediate(1)); |
| } else { |
| __ mov_w(scratch, Operand(src, 0)); |
| __ mov_w(Operand(dest, 0), scratch); |
| __ add(Operand(src), Immediate(2)); |
| __ add(Operand(dest), Immediate(2)); |
| } |
| __ sub(Operand(count), Immediate(1)); |
| __ j(not_zero, &loop); |
| } |
| |
| |
| void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, |
| Register dest, |
| Register src, |
| Register count, |
| Register scratch, |
| bool ascii) { |
| // Copy characters using rep movs of doublewords. |
| // The destination is aligned on a 4 byte boundary because we are |
| // copying to the beginning of a newly allocated string. |
| ASSERT(dest.is(edi)); // rep movs destination |
| ASSERT(src.is(esi)); // rep movs source |
| ASSERT(count.is(ecx)); // rep movs count |
| ASSERT(!scratch.is(dest)); |
| ASSERT(!scratch.is(src)); |
| ASSERT(!scratch.is(count)); |
| |
| // Nothing to do for zero characters. |
| Label done; |
| __ test(count, Operand(count)); |
| __ j(zero, &done); |
| |
| // Make count the number of bytes to copy. |
| if (!ascii) { |
| __ shl(count, 1); |
| } |
| |
| // Don't enter the rep movs if there are less than 4 bytes to copy. |
| NearLabel last_bytes; |
| __ test(count, Immediate(~3)); |
| __ j(zero, &last_bytes); |
| |
| // Copy from edi to esi using rep movs instruction. |
| __ mov(scratch, count); |
| __ sar(count, 2); // Number of doublewords to copy. |
| __ cld(); |
| __ rep_movs(); |
| |
| // Find number of bytes left. |
| __ mov(count, scratch); |
| __ and_(count, 3); |
| |
| // Check if there are more bytes to copy. |
| __ bind(&last_bytes); |
| __ test(count, Operand(count)); |
| __ j(zero, &done); |
| |
| // Copy remaining characters. |
| NearLabel loop; |
| __ bind(&loop); |
| __ mov_b(scratch, Operand(src, 0)); |
| __ mov_b(Operand(dest, 0), scratch); |
| __ add(Operand(src), Immediate(1)); |
| __ add(Operand(dest), Immediate(1)); |
| __ sub(Operand(count), Immediate(1)); |
| __ j(not_zero, &loop); |
| |
| __ bind(&done); |
| } |
| |
| |
| void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
| Register c1, |
| Register c2, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* not_probed, |
| Label* not_found) { |
| // Register scratch3 is the general scratch register in this function. |
| Register scratch = scratch3; |
| |
| // Make sure that both characters are not digits as such strings has a |
| // different hash algorithm. Don't try to look for these in the symbol table. |
| NearLabel not_array_index; |
| __ mov(scratch, c1); |
| __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); |
| __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); |
| __ j(above, ¬_array_index); |
| __ mov(scratch, c2); |
| __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); |
| __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); |
| __ j(below_equal, not_probed); |
| |
| __ bind(¬_array_index); |
| // Calculate the two character string hash. |
| Register hash = scratch1; |
| GenerateHashInit(masm, hash, c1, scratch); |
| GenerateHashAddCharacter(masm, hash, c2, scratch); |
| GenerateHashGetHash(masm, hash, scratch); |
| |
| // Collect the two characters in a register. |
| Register chars = c1; |
| __ shl(c2, kBitsPerByte); |
| __ or_(chars, Operand(c2)); |
| |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string. |
| |
| // Load the symbol table. |
| Register symbol_table = c2; |
| ExternalReference roots_address = ExternalReference::roots_address(); |
| __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex)); |
| __ mov(symbol_table, |
| Operand::StaticArray(scratch, times_pointer_size, roots_address)); |
| |
| // Calculate capacity mask from the symbol table capacity. |
| Register mask = scratch2; |
| __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); |
| __ SmiUntag(mask); |
| __ sub(Operand(mask), Immediate(1)); |
| |
| // Registers |
| // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
| // hash: hash of two character string |
| // symbol_table: symbol table |
| // mask: capacity mask |
| // scratch: - |
| |
| // Perform a number of probes in the symbol table. |
| static const int kProbes = 4; |
| Label found_in_symbol_table; |
| Label next_probe[kProbes], next_probe_pop_mask[kProbes]; |
| for (int i = 0; i < kProbes; i++) { |
| // Calculate entry in symbol table. |
| __ mov(scratch, hash); |
| if (i > 0) { |
| __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i))); |
| } |
| __ and_(scratch, Operand(mask)); |
| |
| // Load the entry from the symbol table. |
| Register candidate = scratch; // Scratch register contains candidate. |
| STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
| __ mov(candidate, |
| FieldOperand(symbol_table, |
| scratch, |
| times_pointer_size, |
| SymbolTable::kElementsStartOffset)); |
| |
| // If entry is undefined no string with this hash can be found. |
| __ cmp(candidate, Factory::undefined_value()); |
| __ j(equal, not_found); |
| |
| // If length is not 2 the string is not a candidate. |
| __ cmp(FieldOperand(candidate, String::kLengthOffset), |
| Immediate(Smi::FromInt(2))); |
| __ j(not_equal, &next_probe[i]); |
| |
| // As we are out of registers save the mask on the stack and use that |
| // register as a temporary. |
| __ push(mask); |
| Register temp = mask; |
| |
| // Check that the candidate is a non-external ascii string. |
| __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset)); |
| __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); |
| __ JumpIfInstanceTypeIsNotSequentialAscii( |
| temp, temp, &next_probe_pop_mask[i]); |
| |
| // Check if the two characters match. |
| __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); |
| __ and_(temp, 0x0000ffff); |
| __ cmp(chars, Operand(temp)); |
| __ j(equal, &found_in_symbol_table); |
| __ bind(&next_probe_pop_mask[i]); |
| __ pop(mask); |
| __ bind(&next_probe[i]); |
| } |
| |
| // No matching 2 character string found by probing. |
| __ jmp(not_found); |
| |
| // Scratch register contains result when we fall through to here. |
| Register result = scratch; |
| __ bind(&found_in_symbol_table); |
| __ pop(mask); // Pop saved mask from the stack. |
| if (!result.is(eax)) { |
| __ mov(eax, result); |
| } |
| } |
| |
| |
| void StringHelper::GenerateHashInit(MacroAssembler* masm, |
| Register hash, |
| Register character, |
| Register scratch) { |
| // hash = character + (character << 10); |
| __ mov(hash, character); |
| __ shl(hash, 10); |
| __ add(hash, Operand(character)); |
| // hash ^= hash >> 6; |
| __ mov(scratch, hash); |
| __ sar(scratch, 6); |
| __ xor_(hash, Operand(scratch)); |
| } |
| |
| |
| void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
| Register hash, |
| Register character, |
| Register scratch) { |
| // hash += character; |
| __ add(hash, Operand(character)); |
| // hash += hash << 10; |
| __ mov(scratch, hash); |
| __ shl(scratch, 10); |
| __ add(hash, Operand(scratch)); |
| // hash ^= hash >> 6; |
| __ mov(scratch, hash); |
| __ sar(scratch, 6); |
| __ xor_(hash, Operand(scratch)); |
| } |
| |
| |
| void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
| Register hash, |
| Register scratch) { |
| // hash += hash << 3; |
| __ mov(scratch, hash); |
| __ shl(scratch, 3); |
| __ add(hash, Operand(scratch)); |
| // hash ^= hash >> 11; |
| __ mov(scratch, hash); |
| __ sar(scratch, 11); |
| __ xor_(hash, Operand(scratch)); |
| // hash += hash << 15; |
| __ mov(scratch, hash); |
| __ shl(scratch, 15); |
| __ add(hash, Operand(scratch)); |
| |
| // if (hash == 0) hash = 27; |
| NearLabel hash_not_zero; |
| __ test(hash, Operand(hash)); |
| __ j(not_zero, &hash_not_zero); |
| __ mov(hash, Immediate(27)); |
| __ bind(&hash_not_zero); |
| } |
| |
| |
| void SubStringStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: to |
| // esp[8]: from |
| // esp[12]: string |
| |
| // Make sure first argument is a string. |
| __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ test(eax, Immediate(kSmiTagMask)); |
| __ j(zero, &runtime); |
| Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); |
| __ j(NegateCondition(is_string), &runtime); |
| |
| // eax: string |
| // ebx: instance type |
| |
| // Calculate length of sub string using the smi values. |
| Label result_longer_than_two; |
| __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &runtime); |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. |
| __ test(edx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &runtime); |
| __ sub(ecx, Operand(edx)); |
| __ cmp(ecx, FieldOperand(eax, String::kLengthOffset)); |
| Label return_eax; |
| __ j(equal, &return_eax); |
| // Special handling of sub-strings of length 1 and 2. One character strings |
| // are handled in the runtime system (looked up in the single character |
| // cache). Two character strings are looked for in the symbol cache. |
| __ SmiUntag(ecx); // Result length is no longer smi. |
| __ cmp(ecx, 2); |
| __ j(greater, &result_longer_than_two); |
| __ j(less, &runtime); |
| |
| // Sub string of length 2 requested. |
| // eax: string |
| // ebx: instance type |
| // ecx: sub string length (value is 2) |
| // edx: from index (smi) |
| __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime); |
| |
| // Get the two characters forming the sub string. |
| __ SmiUntag(edx); // From index is no longer smi. |
| __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize)); |
| __ movzx_b(ecx, |
| FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1)); |
| |
| // Try to lookup two character string in symbol table. |
| Label make_two_character_string; |
| StringHelper::GenerateTwoCharacterSymbolTableProbe( |
| masm, ebx, ecx, eax, edx, edi, |
| &make_two_character_string, &make_two_character_string); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&make_two_character_string); |
| // Setup registers for allocating the two character string. |
| __ mov(eax, Operand(esp, 3 * kPointerSize)); |
| __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); |
| __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); |
| __ Set(ecx, Immediate(2)); |
| |
| __ bind(&result_longer_than_two); |
| // eax: string |
| // ebx: instance type |
| // ecx: result string length |
| // Check for flat ascii string |
| Label non_ascii_flat; |
| __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat); |
| |
| // Allocate the result. |
| __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime); |
| |
| // eax: result string |
| // ecx: result string length |
| __ mov(edx, esi); // esi used by following code. |
| // Locate first character of result. |
| __ mov(edi, eax); |
| __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| // Load string argument and locate character of sub string start. |
| __ mov(esi, Operand(esp, 3 * kPointerSize)); |
| __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
| __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from |
| __ SmiUntag(ebx); |
| __ add(esi, Operand(ebx)); |
| |
| // eax: result string |
| // ecx: result length |
| // edx: original value of esi |
| // edi: first character of result |
| // esi: character of sub string start |
| StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true); |
| __ mov(esi, edx); // Restore esi. |
| __ IncrementCounter(&Counters::sub_string_native, 1); |
| __ ret(3 * kPointerSize); |
| |
| __ bind(&non_ascii_flat); |
| // eax: string |
| // ebx: instance type & kStringRepresentationMask | kStringEncodingMask |
| // ecx: result string length |
| // Check for flat two byte string |
| __ cmp(ebx, kSeqStringTag | kTwoByteStringTag); |
| __ j(not_equal, &runtime); |
| |
| // Allocate the result. |
| __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime); |
| |
| // eax: result string |
| // ecx: result string length |
| __ mov(edx, esi); // esi used by following code. |
| // Locate first character of result. |
| __ mov(edi, eax); |
| __ add(Operand(edi), |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| // Load string argument and locate character of sub string start. |
| __ mov(esi, Operand(esp, 3 * kPointerSize)); |
| __ add(Operand(esi), |
| Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from |
| // As from is a smi it is 2 times the value which matches the size of a two |
| // byte character. |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
| __ add(esi, Operand(ebx)); |
| |
| // eax: result string |
| // ecx: result length |
| // edx: original value of esi |
| // edi: first character of result |
| // esi: character of sub string start |
| StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false); |
| __ mov(esi, edx); // Restore esi. |
| |
| __ bind(&return_eax); |
| __ IncrementCounter(&Counters::sub_string_native, 1); |
| __ ret(3 * kPointerSize); |
| |
| // Just jump to runtime to create the sub string. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kSubString, 3, 1); |
| } |
| |
| |
| void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
| Register left, |
| Register right, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3) { |
| Label result_not_equal; |
| Label result_greater; |
| Label compare_lengths; |
| |
| __ IncrementCounter(&Counters::string_compare_native, 1); |
| |
| // Find minimum length. |
| NearLabel left_shorter; |
| __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); |
| __ mov(scratch3, scratch1); |
| __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); |
| |
| Register length_delta = scratch3; |
| |
| __ j(less_equal, &left_shorter); |
| // Right string is shorter. Change scratch1 to be length of right string. |
| __ sub(scratch1, Operand(length_delta)); |
| __ bind(&left_shorter); |
| |
| Register min_length = scratch1; |
| |
| // If either length is zero, just compare lengths. |
| __ test(min_length, Operand(min_length)); |
| __ j(zero, &compare_lengths); |
| |
| // Change index to run from -min_length to -1 by adding min_length |
| // to string start. This means that loop ends when index reaches zero, |
| // which doesn't need an additional compare. |
| __ SmiUntag(min_length); |
| __ lea(left, |
| FieldOperand(left, |
| min_length, times_1, |
| SeqAsciiString::kHeaderSize)); |
| __ lea(right, |
| FieldOperand(right, |
| min_length, times_1, |
| SeqAsciiString::kHeaderSize)); |
| __ neg(min_length); |
| |
| Register index = min_length; // index = -min_length; |
| |
| { |
| // Compare loop. |
| NearLabel loop; |
| __ bind(&loop); |
| // Compare characters. |
| __ mov_b(scratch2, Operand(left, index, times_1, 0)); |
| __ cmpb(scratch2, Operand(right, index, times_1, 0)); |
| __ j(not_equal, &result_not_equal); |
| __ add(Operand(index), Immediate(1)); |
| __ j(not_zero, &loop); |
| } |
| |
| // Compare lengths - strings up to min-length are equal. |
| __ bind(&compare_lengths); |
| __ test(length_delta, Operand(length_delta)); |
| __ j(not_zero, &result_not_equal); |
| |
| // Result is EQUAL. |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ ret(0); |
| |
| __ bind(&result_not_equal); |
| __ j(greater, &result_greater); |
| |
| // Result is LESS. |
| __ Set(eax, Immediate(Smi::FromInt(LESS))); |
| __ ret(0); |
| |
| // Result is GREATER. |
| __ bind(&result_greater); |
| __ Set(eax, Immediate(Smi::FromInt(GREATER))); |
| __ ret(0); |
| } |
| |
| |
| void StringCompareStub::Generate(MacroAssembler* masm) { |
| Label runtime; |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: right string |
| // esp[8]: left string |
| |
| __ mov(edx, Operand(esp, 2 * kPointerSize)); // left |
| __ mov(eax, Operand(esp, 1 * kPointerSize)); // right |
| |
| NearLabel not_same; |
| __ cmp(edx, Operand(eax)); |
| __ j(not_equal, ¬_same); |
| STATIC_ASSERT(EQUAL == 0); |
| STATIC_ASSERT(kSmiTag == 0); |
| __ Set(eax, Immediate(Smi::FromInt(EQUAL))); |
| __ IncrementCounter(&Counters::string_compare_native, 1); |
| __ ret(2 * kPointerSize); |
| |
| __ bind(¬_same); |
| |
| // Check that both objects are sequential ascii strings. |
| __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime); |
| |
| // Compare flat ascii strings. |
| // Drop arguments from the stack. |
| __ pop(ecx); |
| __ add(Operand(esp), Immediate(2 * kPointerSize)); |
| __ push(ecx); |
| GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); |
| |
| // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
| // tagged as a small integer. |
| __ bind(&runtime); |
| __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
| } |
| |
| |
| void StringCharAtStub::Generate(MacroAssembler* masm) { |
| // Expects two arguments (object, index) on the stack: |
| |
| // Stack frame on entry. |
| // esp[0]: return address |
| // esp[4]: index |
| // esp[8]: object |
| |
| Register object = ebx; |
| Register index = eax; |
| Register scratch1 = ecx; |
| Register scratch2 = edx; |
| Register result = eax; |
| |
| __ pop(scratch1); // Return address. |
| __ pop(index); |
| __ pop(object); |
| __ push(scratch1); |
| |
| Label need_conversion; |
| Label index_out_of_range; |
| Label done; |
| StringCharAtGenerator generator(object, |
| index, |
| scratch1, |
| scratch2, |
| result, |
| &need_conversion, |
| &need_conversion, |
| &index_out_of_range, |
| STRING_INDEX_IS_NUMBER); |
| generator.GenerateFast(masm); |
| __ jmp(&done); |
| |
| __ bind(&index_out_of_range); |
| // When the index is out of range, the spec requires us to return |
| // the empty string. |
| __ Set(result, Immediate(Factory::empty_string())); |
| __ jmp(&done); |
| |
| __ bind(&need_conversion); |
| // Move smi zero into the result register, which will trigger |
| // conversion. |
| __ Set(result, Immediate(Smi::FromInt(0))); |
| __ jmp(&done); |
| |
| StubRuntimeCallHelper call_helper; |
| generator.GenerateSlow(masm, call_helper); |
| |
| __ bind(&done); |
| __ ret(0); |
| } |
| |
| void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::SMIS); |
| NearLabel miss; |
| __ mov(ecx, Operand(edx)); |
| __ or_(ecx, Operand(eax)); |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ j(not_zero, &miss, not_taken); |
| |
| if (GetCondition() == equal) { |
| // For equality we do not care about the sign of the result. |
| __ sub(eax, Operand(edx)); |
| } else { |
| NearLabel done; |
| __ sub(edx, Operand(eax)); |
| __ j(no_overflow, &done); |
| // Correct sign of result in case of overflow. |
| __ not_(edx); |
| __ bind(&done); |
| __ mov(eax, edx); |
| } |
| __ ret(0); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::HEAP_NUMBERS); |
| |
| NearLabel generic_stub; |
| NearLabel unordered; |
| NearLabel miss; |
| __ mov(ecx, Operand(edx)); |
| __ and_(ecx, Operand(eax)); |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ j(zero, &generic_stub, not_taken); |
| |
| __ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx); |
| __ j(not_equal, &miss, not_taken); |
| __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx); |
| __ j(not_equal, &miss, not_taken); |
| |
| // Inlining the double comparison and falling back to the general compare |
| // stub if NaN is involved or SS2 or CMOV is unsupported. |
| if (CpuFeatures::IsSupported(SSE2) && CpuFeatures::IsSupported(CMOV)) { |
| CpuFeatures::Scope scope1(SSE2); |
| CpuFeatures::Scope scope2(CMOV); |
| |
| // Load left and right operand |
| __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); |
| __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); |
| |
| // Compare operands |
| __ ucomisd(xmm0, xmm1); |
| |
| // Don't base result on EFLAGS when a NaN is involved. |
| __ j(parity_even, &unordered, not_taken); |
| |
| // Return a result of -1, 0, or 1, based on EFLAGS. |
| // Performing mov, because xor would destroy the flag register. |
| __ mov(eax, 0); // equal |
| __ mov(ecx, Immediate(Smi::FromInt(1))); |
| __ cmov(above, eax, Operand(ecx)); |
| __ mov(ecx, Immediate(Smi::FromInt(-1))); |
| __ cmov(below, eax, Operand(ecx)); |
| __ ret(0); |
| |
| __ bind(&unordered); |
| } |
| |
| CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS); |
| __ bind(&generic_stub); |
| __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
| ASSERT(state_ == CompareIC::OBJECTS); |
| NearLabel miss; |
| __ mov(ecx, Operand(edx)); |
| __ and_(ecx, Operand(eax)); |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ j(zero, &miss, not_taken); |
| |
| __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx); |
| __ j(not_equal, &miss, not_taken); |
| __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx); |
| __ j(not_equal, &miss, not_taken); |
| |
| ASSERT(GetCondition() == equal); |
| __ sub(eax, Operand(edx)); |
| __ ret(0); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
| // Save the registers. |
| __ pop(ecx); |
| __ push(edx); |
| __ push(eax); |
| __ push(ecx); |
| |
| // Call the runtime system in a fresh internal frame. |
| ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss)); |
| __ EnterInternalFrame(); |
| __ push(edx); |
| __ push(eax); |
| __ push(Immediate(Smi::FromInt(op_))); |
| __ CallExternalReference(miss, 3); |
| __ LeaveInternalFrame(); |
| |
| // Compute the entry point of the rewritten stub. |
| __ lea(edi, FieldOperand(eax, Code::kHeaderSize)); |
| |
| // Restore registers. |
| __ pop(ecx); |
| __ pop(eax); |
| __ pop(edx); |
| __ push(ecx); |
| |
| // Do a tail call to the rewritten stub. |
| __ jmp(Operand(edi)); |
| } |
| |
| |
| // Loads a indexed element from a pixel array. |
| void GenerateFastPixelArrayLoad(MacroAssembler* masm, |
| Register receiver, |
| Register key, |
| Register elements, |
| Register untagged_key, |
| Register result, |
| Label* not_pixel_array, |
| Label* key_not_smi, |
| Label* out_of_range) { |
| // Register use: |
| // receiver - holds the receiver and is unchanged. |
| // key - holds the key and is unchanged (must be a smi). |
| // elements - is set to the the receiver's element if |
| // the receiver doesn't have a pixel array or the |
| // key is not a smi, otherwise it's the elements' |
| // external pointer. |
| // untagged_key - is set to the untagged key |
| |
| // Some callers already have verified that the key is a smi. key_not_smi is |
| // set to NULL as a sentinel for that case. Otherwise, add an explicit check |
| // to ensure the key is a smi must be added. |
| if (key_not_smi != NULL) { |
| __ JumpIfNotSmi(key, key_not_smi); |
| } else { |
| if (FLAG_debug_code) { |
| __ AbortIfNotSmi(key); |
| } |
| } |
| __ mov(untagged_key, key); |
| __ SmiUntag(untagged_key); |
| |
| __ mov(elements, FieldOperand(receiver, JSObject::kElementsOffset)); |
| // By passing NULL as not_pixel_array, callers signal that they have already |
| // verified that the receiver has pixel array elements. |
| if (not_pixel_array != NULL) { |
| __ CheckMap(elements, Factory::pixel_array_map(), not_pixel_array, true); |
| } else { |
| if (FLAG_debug_code) { |
| // Map check should have already made sure that elements is a pixel array. |
| __ cmp(FieldOperand(elements, HeapObject::kMapOffset), |
| Immediate(Factory::pixel_array_map())); |
| __ Assert(equal, "Elements isn't a pixel array"); |
| } |
| } |
| |
| // Key must be in range. |
| __ cmp(untagged_key, FieldOperand(elements, PixelArray::kLengthOffset)); |
| __ j(above_equal, out_of_range); // unsigned check handles negative keys. |
| |
| // Perform the indexed load and tag the result as a smi. |
| __ mov(elements, FieldOperand(elements, PixelArray::kExternalPointerOffset)); |
| __ movzx_b(result, Operand(elements, untagged_key, times_1, 0)); |
| __ SmiTag(result); |
| __ ret(0); |
| } |
| |
| |
| // Stores an indexed element into a pixel array, clamping the stored value. |
| void GenerateFastPixelArrayStore(MacroAssembler* masm, |
| Register receiver, |
| Register key, |
| Register value, |
| Register elements, |
| Register scratch1, |
| bool load_elements_from_receiver, |
| Label* key_not_smi, |
| Label* value_not_smi, |
| Label* not_pixel_array, |
| Label* out_of_range) { |
| // Register use: |
| // receiver - holds the receiver and is unchanged unless the |
| // store succeeds. |
| // key - holds the key (must be a smi) and is unchanged. |
| // value - holds the value (must be a smi) and is unchanged. |
| // elements - holds the element object of the receiver on entry if |
| // load_elements_from_receiver is false, otherwise used |
| // internally to store the pixel arrays elements and |
| // external array pointer. |
| // |
| // receiver, key and value remain unmodified until it's guaranteed that the |
| // store will succeed. |
| Register external_pointer = elements; |
| Register untagged_key = scratch1; |
| Register untagged_value = receiver; // Only set once success guaranteed. |
| |
| // Fetch the receiver's elements if the caller hasn't already done so. |
| if (load_elements_from_receiver) { |
| __ mov(elements, FieldOperand(receiver, JSObject::kElementsOffset)); |
| } |
| |
| // By passing NULL as not_pixel_array, callers signal that they have already |
| // verified that the receiver has pixel array elements. |
| if (not_pixel_array != NULL) { |
| __ CheckMap(elements, Factory::pixel_array_map(), not_pixel_array, true); |
| } else { |
| if (FLAG_debug_code) { |
| // Map check should have already made sure that elements is a pixel array. |
| __ cmp(FieldOperand(elements, HeapObject::kMapOffset), |
| Immediate(Factory::pixel_array_map())); |
| __ Assert(equal, "Elements isn't a pixel array"); |
| } |
| } |
| |
| // Some callers already have verified that the key is a smi. key_not_smi is |
| // set to NULL as a sentinel for that case. Otherwise, add an explicit check |
| // to ensure the key is a smi must be added. |
| if (key_not_smi != NULL) { |
| __ JumpIfNotSmi(key, key_not_smi); |
| } else { |
| if (FLAG_debug_code) { |
| __ AbortIfNotSmi(key); |
| } |
| } |
| |
| // Key must be a smi and it must be in range. |
| __ mov(untagged_key, key); |
| __ SmiUntag(untagged_key); |
| __ cmp(untagged_key, FieldOperand(elements, PixelArray::kLengthOffset)); |
| __ j(above_equal, out_of_range); // unsigned check handles negative keys. |
| |
| // Value must be a smi. |
| __ JumpIfNotSmi(value, value_not_smi); |
| __ mov(untagged_value, value); |
| __ SmiUntag(untagged_value); |
| |
| { // Clamp the value to [0..255]. |
| NearLabel done; |
| __ test(untagged_value, Immediate(0xFFFFFF00)); |
| __ j(zero, &done); |
| __ setcc(negative, untagged_value); // 1 if negative, 0 if positive. |
| __ dec_b(untagged_value); // 0 if negative, 255 if positive. |
| __ bind(&done); |
| } |
| |
| __ mov(external_pointer, |
| FieldOperand(elements, PixelArray::kExternalPointerOffset)); |
| __ mov_b(Operand(external_pointer, untagged_key, times_1, 0), untagged_value); |
| __ ret(0); // Return value in eax. |
| } |
| |
| |
| #undef __ |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_IA32 |