blob: a7cc5256f5f0d4f4f55015560d90df898cc00199 [file] [log] [blame]
// Copyright 2006-2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for Cygwin goes here. For the POSIX comaptible parts
// the implementation is in platform-posix.cc.
#include <errno.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdarg.h>
#include <strings.h> // index
#include <sys/time.h>
#include <sys/mman.h> // mmap & munmap
#include <unistd.h> // sysconf
#undef MAP_TYPE
#include "v8.h"
#include "platform.h"
#include "top.h"
#include "v8threads.h"
#include "vm-state-inl.h"
#include "win32-headers.h"
namespace v8 {
namespace internal {
// 0 is never a valid thread id
static const pthread_t kNoThread = (pthread_t) 0;
double ceiling(double x) {
return ceil(x);
}
void OS::Setup() {
// Seed the random number generator.
// Convert the current time to a 64-bit integer first, before converting it
// to an unsigned. Going directly can cause an overflow and the seed to be
// set to all ones. The seed will be identical for different instances that
// call this setup code within the same millisecond.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
srandom(static_cast<unsigned int>(seed));
}
uint64_t OS::CpuFeaturesImpliedByPlatform() {
return 0; // Nothing special about Cygwin.
}
int OS::ActivationFrameAlignment() {
// With gcc 4.4 the tree vectorization optimizer can generate code
// that requires 16 byte alignment such as movdqa on x86.
return 16;
}
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
__asm__ __volatile__("" : : : "memory");
// An x86 store acts as a release barrier.
*ptr = value;
}
const char* OS::LocalTimezone(double time) {
if (isnan(time)) return "";
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return "";
return tzname[0]; // The location of the timezone string on Cygwin.
}
double OS::LocalTimeOffset() {
// On Cygwin, struct tm does not contain a tm_gmtoff field.
time_t utc = time(NULL);
ASSERT(utc != -1);
struct tm* loc = localtime(&utc);
ASSERT(loc != NULL);
// time - localtime includes any daylight savings offset, so subtract it.
return static_cast<double>((mktime(loc) - utc) * msPerSecond -
(loc->tm_isdst > 0 ? 3600 * msPerSecond : 0));
}
// We keep the lowest and highest addresses mapped as a quick way of
// determining that pointers are outside the heap (used mostly in assertions
// and verification). The estimate is conservative, ie, not all addresses in
// 'allocated' space are actually allocated to our heap. The range is
// [lowest, highest), inclusive on the low and and exclusive on the high end.
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
static void UpdateAllocatedSpaceLimits(void* address, int size) {
lowest_ever_allocated = Min(lowest_ever_allocated, address);
highest_ever_allocated =
Max(highest_ever_allocated,
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
}
bool OS::IsOutsideAllocatedSpace(void* address) {
return address < lowest_ever_allocated || address >= highest_ever_allocated;
}
size_t OS::AllocateAlignment() {
return sysconf(_SC_PAGESIZE);
}
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (mbase == MAP_FAILED) {
LOG(StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
UpdateAllocatedSpaceLimits(mbase, msize);
return mbase;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): munmap has a return value which is ignored here.
int result = munmap(address, size);
USE(result);
ASSERT(result == 0);
}
#ifdef ENABLE_HEAP_PROTECTION
void OS::Protect(void* address, size_t size) {
// TODO(1240712): mprotect has a return value which is ignored here.
mprotect(address, size, PROT_READ);
}
void OS::Unprotect(void* address, size_t size, bool is_executable) {
// TODO(1240712): mprotect has a return value which is ignored here.
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
mprotect(address, size, prot);
}
#endif
void OS::Sleep(int milliseconds) {
unsigned int ms = static_cast<unsigned int>(milliseconds);
usleep(1000 * ms);
}
void OS::Abort() {
// Redirect to std abort to signal abnormal program termination.
abort();
}
void OS::DebugBreak() {
asm("int $3");
}
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
public:
PosixMemoryMappedFile(FILE* file, void* memory, int size)
: file_(file), memory_(memory), size_(size) { }
virtual ~PosixMemoryMappedFile();
virtual void* memory() { return memory_; }
virtual int size() { return size_; }
private:
FILE* file_;
void* memory_;
int size_;
};
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
FILE* file = fopen(name, "r+");
if (file == NULL) return NULL;
fseek(file, 0, SEEK_END);
int size = ftell(file);
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
void* initial) {
FILE* file = fopen(name, "w+");
if (file == NULL) return NULL;
int result = fwrite(initial, size, 1, file);
if (result < 1) {
fclose(file);
return NULL;
}
void* memory =
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
return new PosixMemoryMappedFile(file, memory, size);
}
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
if (memory_) munmap(memory_, size_);
fclose(file_);
}
void OS::LogSharedLibraryAddresses() {
#ifdef ENABLE_LOGGING_AND_PROFILING
// This function assumes that the layout of the file is as follows:
// hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
// If we encounter an unexpected situation we abort scanning further entries.
FILE* fp = fopen("/proc/self/maps", "r");
if (fp == NULL) return;
// Allocate enough room to be able to store a full file name.
const int kLibNameLen = FILENAME_MAX + 1;
char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
// This loop will terminate once the scanning hits an EOF.
while (true) {
uintptr_t start, end;
char attr_r, attr_w, attr_x, attr_p;
// Parse the addresses and permission bits at the beginning of the line.
if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
int c;
if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
// Found a read-only executable entry. Skip characters until we reach
// the beginning of the filename or the end of the line.
do {
c = getc(fp);
} while ((c != EOF) && (c != '\n') && (c != '/'));
if (c == EOF) break; // EOF: Was unexpected, just exit.
// Process the filename if found.
if (c == '/') {
ungetc(c, fp); // Push the '/' back into the stream to be read below.
// Read to the end of the line. Exit if the read fails.
if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
// Drop the newline character read by fgets. We do not need to check
// for a zero-length string because we know that we at least read the
// '/' character.
lib_name[strlen(lib_name) - 1] = '\0';
} else {
// No library name found, just record the raw address range.
snprintf(lib_name, kLibNameLen,
"%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
}
LOG(SharedLibraryEvent(lib_name, start, end));
} else {
// Entry not describing executable data. Skip to end of line to setup
// reading the next entry.
do {
c = getc(fp);
} while ((c != EOF) && (c != '\n'));
if (c == EOF) break;
}
}
free(lib_name);
fclose(fp);
#endif
}
void OS::SignalCodeMovingGC() {
// Nothing to do on Cygwin.
}
int OS::StackWalk(Vector<OS::StackFrame> frames) {
// Not supported on Cygwin.
return 0;
}
// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;
VirtualMemory::VirtualMemory(size_t size) {
address_ = mmap(NULL, size, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd, kMmapFdOffset);
size_ = size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
if (0 == munmap(address(), size())) address_ = MAP_FAILED;
}
}
bool VirtualMemory::IsReserved() {
return address_ != MAP_FAILED;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
if (mprotect(address, size, prot) != 0) {
return false;
}
UpdateAllocatedSpaceLimits(address, size);
return true;
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return mmap(address, size, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd, kMmapFdOffset) != MAP_FAILED;
}
class ThreadHandle::PlatformData : public Malloced {
public:
explicit PlatformData(ThreadHandle::Kind kind) {
Initialize(kind);
}
void Initialize(ThreadHandle::Kind kind) {
switch (kind) {
case ThreadHandle::SELF: thread_ = pthread_self(); break;
case ThreadHandle::INVALID: thread_ = kNoThread; break;
}
}
pthread_t thread_; // Thread handle for pthread.
};
ThreadHandle::ThreadHandle(Kind kind) {
data_ = new PlatformData(kind);
}
void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
data_->Initialize(kind);
}
ThreadHandle::~ThreadHandle() {
delete data_;
}
bool ThreadHandle::IsSelf() const {
return pthread_equal(data_->thread_, pthread_self());
}
bool ThreadHandle::IsValid() const {
return data_->thread_ != kNoThread;
}
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
set_name("v8:<unknown>");
}
Thread::Thread(const char* name) : ThreadHandle(ThreadHandle::INVALID) {
set_name(name);
}
Thread::~Thread() {
}
static void* ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// This is also initialized by the first argument to pthread_create() but we
// don't know which thread will run first (the original thread or the new
// one) so we initialize it here too.
thread->thread_handle_data()->thread_ = pthread_self();
ASSERT(thread->IsValid());
thread->Run();
return NULL;
}
void Thread::set_name(const char* name) {
strncpy(name_, name, sizeof(name_));
name_[sizeof(name_) - 1] = '\0';
}
void Thread::Start() {
pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
ASSERT(IsValid());
}
void Thread::Join() {
pthread_join(thread_handle_data()->thread_, NULL);
}
static inline Thread::LocalStorageKey PthreadKeyToLocalKey(
pthread_key_t pthread_key) {
// We need to cast pthread_key_t to Thread::LocalStorageKey in two steps
// because pthread_key_t is a pointer type on Cygwin. This will probably not
// work on 64-bit platforms, but Cygwin doesn't support 64-bit anyway.
STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t));
intptr_t ptr_key = reinterpret_cast<intptr_t>(pthread_key);
return static_cast<Thread::LocalStorageKey>(ptr_key);
}
static inline pthread_key_t LocalKeyToPthreadKey(
Thread::LocalStorageKey local_key) {
STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t));
intptr_t ptr_key = static_cast<intptr_t>(local_key);
return reinterpret_cast<pthread_key_t>(ptr_key);
}
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
pthread_key_t key;
int result = pthread_key_create(&key, NULL);
USE(result);
ASSERT(result == 0);
return PthreadKeyToLocalKey(key);
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
int result = pthread_key_delete(pthread_key);
USE(result);
ASSERT(result == 0);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
return pthread_getspecific(pthread_key);
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
pthread_setspecific(pthread_key, value);
}
void Thread::YieldCPU() {
sched_yield();
}
class CygwinMutex : public Mutex {
public:
CygwinMutex() {
pthread_mutexattr_t attrs;
memset(&attrs, 0, sizeof(attrs));
int result = pthread_mutexattr_init(&attrs);
ASSERT(result == 0);
result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE);
ASSERT(result == 0);
result = pthread_mutex_init(&mutex_, &attrs);
ASSERT(result == 0);
}
virtual ~CygwinMutex() { pthread_mutex_destroy(&mutex_); }
virtual int Lock() {
int result = pthread_mutex_lock(&mutex_);
return result;
}
virtual int Unlock() {
int result = pthread_mutex_unlock(&mutex_);
return result;
}
virtual bool TryLock() {
int result = pthread_mutex_trylock(&mutex_);
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT(result == 0); // Verify no other errors.
return true;
}
private:
pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
};
Mutex* OS::CreateMutex() {
return new CygwinMutex();
}
class CygwinSemaphore : public Semaphore {
public:
explicit CygwinSemaphore(int count) { sem_init(&sem_, 0, count); }
virtual ~CygwinSemaphore() { sem_destroy(&sem_); }
virtual void Wait();
virtual bool Wait(int timeout);
virtual void Signal() { sem_post(&sem_); }
private:
sem_t sem_;
};
void CygwinSemaphore::Wait() {
while (true) {
int result = sem_wait(&sem_);
if (result == 0) return; // Successfully got semaphore.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
#ifndef TIMEVAL_TO_TIMESPEC
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
(ts)->tv_sec = (tv)->tv_sec; \
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
} while (false)
#endif
bool CygwinSemaphore::Wait(int timeout) {
const long kOneSecondMicros = 1000000; // NOLINT
// Split timeout into second and nanosecond parts.
struct timeval delta;
delta.tv_usec = timeout % kOneSecondMicros;
delta.tv_sec = timeout / kOneSecondMicros;
struct timeval current_time;
// Get the current time.
if (gettimeofday(&current_time, NULL) == -1) {
return false;
}
// Calculate time for end of timeout.
struct timeval end_time;
timeradd(&current_time, &delta, &end_time);
struct timespec ts;
TIMEVAL_TO_TIMESPEC(&end_time, &ts);
// Wait for semaphore signalled or timeout.
while (true) {
int result = sem_timedwait(&sem_, &ts);
if (result == 0) return true; // Successfully got semaphore.
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
}
}
Semaphore* OS::CreateSemaphore(int count) {
return new CygwinSemaphore(count);
}
#ifdef ENABLE_LOGGING_AND_PROFILING
// ----------------------------------------------------------------------------
// Cygwin profiler support.
//
// On Cygwin we use the same sampler implementation as on win32.
class Sampler::PlatformData : public Malloced {
public:
explicit PlatformData(Sampler* sampler) {
sampler_ = sampler;
sampler_thread_ = INVALID_HANDLE_VALUE;
profiled_thread_ = INVALID_HANDLE_VALUE;
}
Sampler* sampler_;
HANDLE sampler_thread_;
HANDLE profiled_thread_;
RuntimeProfilerRateLimiter rate_limiter_;
// Sampler thread handler.
void Runner() {
while (sampler_->IsActive()) {
if (rate_limiter_.SuspendIfNecessary()) continue;
Sample();
Sleep(sampler_->interval_);
}
}
void Sample() {
if (sampler_->IsProfiling()) {
// Context used for sampling the register state of the profiled thread.
CONTEXT context;
memset(&context, 0, sizeof(context));
TickSample sample_obj;
TickSample* sample = CpuProfiler::TickSampleEvent();
if (sample == NULL) sample = &sample_obj;
static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
if (SuspendThread(profiled_thread_) == kSuspendFailed) return;
sample->state = Top::current_vm_state();
context.ContextFlags = CONTEXT_FULL;
if (GetThreadContext(profiled_thread_, &context) != 0) {
#if V8_HOST_ARCH_X64
sample->pc = reinterpret_cast<Address>(context.Rip);
sample->sp = reinterpret_cast<Address>(context.Rsp);
sample->fp = reinterpret_cast<Address>(context.Rbp);
#else
sample->pc = reinterpret_cast<Address>(context.Eip);
sample->sp = reinterpret_cast<Address>(context.Esp);
sample->fp = reinterpret_cast<Address>(context.Ebp);
#endif
sampler_->SampleStack(sample);
sampler_->Tick(sample);
}
ResumeThread(profiled_thread_);
}
if (RuntimeProfiler::IsEnabled()) RuntimeProfiler::NotifyTick();
}
};
// Entry point for sampler thread.
static DWORD __stdcall SamplerEntry(void* arg) {
Sampler::PlatformData* data =
reinterpret_cast<Sampler::PlatformData*>(arg);
data->Runner();
return 0;
}
// Initialize a profile sampler.
Sampler::Sampler(int interval)
: interval_(interval),
profiling_(false),
active_(false),
samples_taken_(0) {
data_ = new PlatformData(this);
}
Sampler::~Sampler() {
delete data_;
}
// Start profiling.
void Sampler::Start() {
// Do not start multiple threads for the same sampler.
ASSERT(!IsActive());
// Get a handle to the calling thread. This is the thread that we are
// going to profile. We need to make a copy of the handle because we are
// going to use it in the sampler thread. Using GetThreadHandle() will
// not work in this case. We're using OpenThread because DuplicateHandle
// for some reason doesn't work in Chrome's sandbox.
data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
THREAD_SUSPEND_RESUME |
THREAD_QUERY_INFORMATION,
false,
GetCurrentThreadId());
BOOL ok = data_->profiled_thread_ != NULL;
if (!ok) return;
// Start sampler thread.
DWORD tid;
SetActive(true);
data_->sampler_thread_ = CreateThread(NULL, 0, SamplerEntry, data_, 0, &tid);
// Set thread to high priority to increase sampling accuracy.
SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
}
// Stop profiling.
void Sampler::Stop() {
// Seting active to false triggers termination of the sampler
// thread.
SetActive(false);
// Wait for sampler thread to terminate.
Top::WakeUpRuntimeProfilerThreadBeforeShutdown();
WaitForSingleObject(data_->sampler_thread_, INFINITE);
// Release the thread handles
CloseHandle(data_->sampler_thread_);
CloseHandle(data_->profiled_thread_);
}
#endif // ENABLE_LOGGING_AND_PROFILING
} } // namespace v8::internal