blob: f8565924b196d094b544b290207fcf1bcdf8a105 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_ARM)
#include "ic-inl.h"
#include "codegen.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register offset,
Register scratch,
Register scratch2) {
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
uint32_t key_off_addr = reinterpret_cast<uint32_t>(key_offset.address());
uint32_t value_off_addr = reinterpret_cast<uint32_t>(value_offset.address());
// Check the relative positions of the address fields.
ASSERT(value_off_addr > key_off_addr);
ASSERT((value_off_addr - key_off_addr) % 4 == 0);
ASSERT((value_off_addr - key_off_addr) < (256 * 4));
Label miss;
Register offsets_base_addr = scratch;
// Check that the key in the entry matches the name.
__ mov(offsets_base_addr, Operand(key_offset));
__ ldr(ip, MemOperand(offsets_base_addr, offset, LSL, 1));
__ cmp(name, ip);
__ b(ne, &miss);
// Get the code entry from the cache.
__ add(offsets_base_addr, offsets_base_addr,
Operand(value_off_addr - key_off_addr));
__ ldr(scratch2, MemOperand(offsets_base_addr, offset, LSL, 1));
// Check that the flags match what we're looking for.
__ ldr(scratch2, FieldMemOperand(scratch2, Code::kFlagsOffset));
__ bic(scratch2, scratch2, Operand(Code::kFlagsNotUsedInLookup));
__ cmp(scratch2, Operand(flags));
__ b(ne, &miss);
// Re-load code entry from cache.
__ ldr(offset, MemOperand(offsets_base_addr, offset, LSL, 1));
// Jump to the first instruction in the code stub.
__ add(offset, offset, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(offset);
// Miss: fall through.
__ bind(&miss);
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
MUST_USE_RESULT static MaybeObject* GenerateDictionaryNegativeLookup(
MacroAssembler* masm,
Label* miss_label,
Register receiver,
String* name,
Register scratch0,
Register scratch1) {
ASSERT(name->IsSymbol());
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
__ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
Label done;
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
Register map = scratch1;
__ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
__ tst(scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
__ b(ne, miss_label);
// Check that receiver is a JSObject.
__ ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ cmp(scratch0, Operand(FIRST_SPEC_OBJECT_TYPE));
__ b(lt, miss_label);
// Load properties array.
Register properties = scratch0;
__ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset));
Register tmp = properties;
__ LoadRoot(tmp, Heap::kHashTableMapRootIndex);
__ cmp(map, tmp);
__ b(ne, miss_label);
// Restore the temporarily used register.
__ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
MaybeObject* result = StringDictionaryLookupStub::GenerateNegativeLookup(
masm,
miss_label,
&done,
receiver,
properties,
name,
scratch1);
if (result->IsFailure()) return result;
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
return result;
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2) {
Isolate* isolate = masm->isolate();
Label miss;
// Make sure that code is valid. The shifting code relies on the
// entry size being 8.
ASSERT(sizeof(Entry) == 8);
// Make sure the flags does not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
ASSERT(!extra.is(receiver));
ASSERT(!extra.is(name));
ASSERT(!extra.is(scratch));
ASSERT(!extra2.is(receiver));
ASSERT(!extra2.is(name));
ASSERT(!extra2.is(scratch));
ASSERT(!extra2.is(extra));
// Check scratch, extra and extra2 registers are valid.
ASSERT(!scratch.is(no_reg));
ASSERT(!extra.is(no_reg));
ASSERT(!extra2.is(no_reg));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ ldr(scratch, FieldMemOperand(name, String::kHashFieldOffset));
__ ldr(ip, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ add(scratch, scratch, Operand(ip));
__ eor(scratch, scratch, Operand(flags));
__ and_(scratch,
scratch,
Operand((kPrimaryTableSize - 1) << kHeapObjectTagSize));
// Probe the primary table.
ProbeTable(isolate, masm, flags, kPrimary, name, scratch, extra, extra2);
// Primary miss: Compute hash for secondary probe.
__ sub(scratch, scratch, Operand(name));
__ add(scratch, scratch, Operand(flags));
__ and_(scratch,
scratch,
Operand((kSecondaryTableSize - 1) << kHeapObjectTagSize));
// Probe the secondary table.
ProbeTable(isolate, masm, flags, kSecondary, name, scratch, extra, extra2);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
// Load the global or builtins object from the current context.
__ ldr(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
__ ldr(prototype,
FieldMemOperand(prototype, GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
__ ldr(prototype, MemOperand(prototype, Context::SlotOffset(index)));
// Load the initial map. The global functions all have initial maps.
__ ldr(prototype,
FieldMemOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm, int index, Register prototype, Label* miss) {
Isolate* isolate = masm->isolate();
// Check we're still in the same context.
__ ldr(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ Move(ip, isolate->global());
__ cmp(prototype, ip);
__ b(ne, miss);
// Get the global function with the given index.
JSFunction* function =
JSFunction::cast(isolate->global_context()->get(index));
// Load its initial map. The global functions all have initial maps.
__ Move(prototype, Handle<Map>(function->initial_map()));
// Load the prototype from the initial map.
__ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
}
// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst, Register src,
JSObject* holder, int index) {
// Adjust for the number of properties stored in the holder.
index -= holder->map()->inobject_properties();
if (index < 0) {
// Get the property straight out of the holder.
int offset = holder->map()->instance_size() + (index * kPointerSize);
__ ldr(dst, FieldMemOperand(src, offset));
} else {
// Calculate the offset into the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ ldr(dst, FieldMemOperand(src, JSObject::kPropertiesOffset));
__ ldr(dst, FieldMemOperand(dst, offset));
}
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE);
__ b(ne, miss_label);
// Load length directly from the JS array.
__ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Ret();
}
// Generate code to check if an object is a string. If the object is a
// heap object, its map's instance type is left in the scratch1 register.
// If this is not needed, scratch1 and scratch2 may be the same register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* smi,
Label* non_string_object) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, smi);
// Check that the object is a string.
__ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ and_(scratch2, scratch1, Operand(kIsNotStringMask));
// The cast is to resolve the overload for the argument of 0x0.
__ cmp(scratch2, Operand(static_cast<int32_t>(kStringTag)));
__ b(ne, non_string_object);
}
// Generate code to load the length from a string object and return the length.
// If the receiver object is not a string or a wrapped string object the
// execution continues at the miss label. The register containing the
// receiver is potentially clobbered.
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss,
bool support_wrappers) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch1 register.
GenerateStringCheck(masm, receiver, scratch1, scratch2, miss,
support_wrappers ? &check_wrapper : miss);
// Load length directly from the string.
__ ldr(r0, FieldMemOperand(receiver, String::kLengthOffset));
__ Ret();
if (support_wrappers) {
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmp(scratch1, Operand(JS_VALUE_TYPE));
__ b(ne, miss);
// Unwrap the value and check if the wrapped value is a string.
__ ldr(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss);
__ ldr(r0, FieldMemOperand(scratch1, String::kLengthOffset));
__ Ret();
}
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ mov(r0, scratch1);
__ Ret();
}
// Generate StoreField code, value is passed in r0 register.
// When leaving generated code after success, the receiver_reg and name_reg
// may be clobbered. Upon branch to miss_label, the receiver and name
// registers have their original values.
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
JSObject* object,
int index,
Map* transition,
Register receiver_reg,
Register name_reg,
Register scratch,
Label* miss_label) {
// r0 : value
Label exit;
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver_reg, miss_label);
// Check that the map of the receiver hasn't changed.
__ ldr(scratch, FieldMemOperand(receiver_reg, HeapObject::kMapOffset));
__ cmp(scratch, Operand(Handle<Map>(object->map())));
__ b(ne, miss_label);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if ((transition != NULL) && (object->map()->unused_property_fields() == 0)) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ push(receiver_reg);
__ mov(r2, Operand(Handle<Map>(transition)));
__ Push(r2, r0);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
masm->isolate()),
3,
1);
return;
}
if (transition != NULL) {
// Update the map of the object; no write barrier updating is
// needed because the map is never in new space.
__ mov(ip, Operand(Handle<Map>(transition)));
__ str(ip, FieldMemOperand(receiver_reg, HeapObject::kMapOffset));
}
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ str(r0, FieldMemOperand(receiver_reg, offset));
// Skip updating write barrier if storing a smi.
__ JumpIfSmi(r0, &exit);
// Update the write barrier for the array address.
// Pass the now unused name_reg as a scratch register.
__ RecordWrite(receiver_reg, Operand(offset), name_reg, scratch);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array
__ ldr(scratch, FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset));
__ str(r0, FieldMemOperand(scratch, offset));
// Skip updating write barrier if storing a smi.
__ JumpIfSmi(r0, &exit);
// Update the write barrier for the array address.
// Ok to clobber receiver_reg and name_reg, since we return.
__ RecordWrite(scratch, Operand(offset), name_reg, receiver_reg);
}
// Return the value (register r0).
__ bind(&exit);
__ Ret();
}
void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
Code* code = NULL;
if (kind == Code::LOAD_IC) {
code = masm->isolate()->builtins()->builtin(Builtins::kLoadIC_Miss);
} else {
code = masm->isolate()->builtins()->builtin(Builtins::kKeyedLoadIC_Miss);
}
Handle<Code> ic(code);
__ Jump(ic, RelocInfo::CODE_TARGET);
}
static void GenerateCallFunction(MacroAssembler* masm,
Object* object,
const ParameterCount& arguments,
Label* miss,
Code::ExtraICState extra_ic_state) {
// ----------- S t a t e -------------
// -- r0: receiver
// -- r1: function to call
// -----------------------------------
// Check that the function really is a function.
__ JumpIfSmi(r1, miss);
__ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
__ b(ne, miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ ldr(r3, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
__ str(r3, MemOperand(sp, arguments.immediate() * kPointerSize));
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(r1, arguments, JUMP_FUNCTION, NullCallWrapper(), call_kind);
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
JSObject* holder_obj) {
__ push(name);
InterceptorInfo* interceptor = holder_obj->GetNamedInterceptor();
ASSERT(!masm->isolate()->heap()->InNewSpace(interceptor));
Register scratch = name;
__ mov(scratch, Operand(Handle<Object>(interceptor)));
__ push(scratch);
__ push(receiver);
__ push(holder);
__ ldr(scratch, FieldMemOperand(scratch, InterceptorInfo::kDataOffset));
__ push(scratch);
}
static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
JSObject* holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly),
masm->isolate());
__ mov(r0, Operand(5));
__ mov(r1, Operand(ref));
CEntryStub stub(1);
__ CallStub(&stub);
}
static const int kFastApiCallArguments = 3;
// Reserves space for the extra arguments to FastHandleApiCall in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiDirectCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm,
Register scratch) {
__ mov(scratch, Operand(Smi::FromInt(0)));
for (int i = 0; i < kFastApiCallArguments; i++) {
__ push(scratch);
}
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm) {
__ Drop(kFastApiCallArguments);
}
static MaybeObject* GenerateFastApiDirectCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc) {
// ----------- S t a t e -------------
// -- sp[0] : holder (set by CheckPrototypes)
// -- sp[4] : callee js function
// -- sp[8] : call data
// -- sp[12] : last js argument
// -- ...
// -- sp[(argc + 3) * 4] : first js argument
// -- sp[(argc + 4) * 4] : receiver
// -----------------------------------
// Get the function and setup the context.
JSFunction* function = optimization.constant_function();
__ mov(r5, Operand(Handle<JSFunction>(function)));
__ ldr(cp, FieldMemOperand(r5, JSFunction::kContextOffset));
// Pass the additional arguments FastHandleApiCall expects.
Object* call_data = optimization.api_call_info()->data();
Handle<CallHandlerInfo> api_call_info_handle(optimization.api_call_info());
if (masm->isolate()->heap()->InNewSpace(call_data)) {
__ Move(r0, api_call_info_handle);
__ ldr(r6, FieldMemOperand(r0, CallHandlerInfo::kDataOffset));
} else {
__ Move(r6, Handle<Object>(call_data));
}
// Store js function and call data.
__ stm(ib, sp, r5.bit() | r6.bit());
// r2 points to call data as expected by Arguments
// (refer to layout above).
__ add(r2, sp, Operand(2 * kPointerSize));
Object* callback = optimization.api_call_info()->callback();
Address api_function_address = v8::ToCData<Address>(callback);
ApiFunction fun(api_function_address);
const int kApiStackSpace = 4;
__ EnterExitFrame(false, kApiStackSpace);
// r0 = v8::Arguments&
// Arguments is after the return address.
__ add(r0, sp, Operand(1 * kPointerSize));
// v8::Arguments::implicit_args = data
__ str(r2, MemOperand(r0, 0 * kPointerSize));
// v8::Arguments::values = last argument
__ add(ip, r2, Operand(argc * kPointerSize));
__ str(ip, MemOperand(r0, 1 * kPointerSize));
// v8::Arguments::length_ = argc
__ mov(ip, Operand(argc));
__ str(ip, MemOperand(r0, 2 * kPointerSize));
// v8::Arguments::is_construct_call = 0
__ mov(ip, Operand(0));
__ str(ip, MemOperand(r0, 3 * kPointerSize));
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
const int kStackUnwindSpace = argc + kFastApiCallArguments + 1;
ExternalReference ref = ExternalReference(&fun,
ExternalReference::DIRECT_API_CALL,
masm->isolate());
return masm->TryCallApiFunctionAndReturn(ref, kStackUnwindSpace);
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(StubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name,
Code::ExtraICState extra_ic_state)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name),
extra_ic_state_(extra_ic_state) {}
MaybeObject* Compile(MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
return CompileCacheable(masm,
object,
receiver,
scratch1,
scratch2,
scratch3,
holder,
lookup,
name,
optimization,
miss);
} else {
CompileRegular(masm,
object,
receiver,
scratch1,
scratch2,
scratch3,
name,
holder,
miss);
return masm->isolate()->heap()->undefined_value();
}
}
private:
MaybeObject* CompileCacheable(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
JSObject* interceptor_holder,
LookupResult* lookup,
String* name,
const CallOptimization& optimization,
Label* miss_label) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
Counters* counters = masm->isolate()->counters();
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 =
optimization.GetPrototypeDepthOfExpectedType(object,
interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 =
optimization.GetPrototypeDepthOfExpectedType(interceptor_holder,
lookup->holder());
}
can_do_fast_api_call = (depth1 != kInvalidProtoDepth) ||
(depth2 != kInvalidProtoDepth);
}
__ IncrementCounter(counters->call_const_interceptor(), 1,
scratch1, scratch2);
if (can_do_fast_api_call) {
__ IncrementCounter(counters->call_const_interceptor_fast_api(), 1,
scratch1, scratch2);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(object, receiver,
interceptor_holder, scratch1,
scratch2, scratch3, name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder, scratch2,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
lookup->holder(), scratch1,
scratch2, scratch3, name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
MaybeObject* result = GenerateFastApiDirectCall(masm,
optimization,
arguments_.immediate());
if (result->IsFailure()) return result;
} else {
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(optimization.constant_function(), arguments_,
JUMP_FUNCTION, call_kind);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm);
__ b(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm);
}
return masm->isolate()->heap()->undefined_value();
}
void CompileRegular(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
String* name,
JSObject* interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3, name,
miss_label);
// Call a runtime function to load the interceptor property.
__ EnterInternalFrame();
// Save the name_ register across the call.
__ push(name_);
PushInterceptorArguments(masm,
receiver,
holder,
name_,
interceptor_holder);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall),
masm->isolate()),
5);
// Restore the name_ register.
__ pop(name_);
__ LeaveInternalFrame();
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
JSObject* holder_obj,
Register scratch,
Label* interceptor_succeeded) {
__ EnterInternalFrame();
__ Push(holder, name_);
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
__ LeaveInternalFrame();
// If interceptor returns no-result sentinel, call the constant function.
__ LoadRoot(scratch, Heap::kNoInterceptorResultSentinelRootIndex);
__ cmp(r0, scratch);
__ b(ne, interceptor_succeeded);
}
StubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
Code::ExtraICState extra_ic_state_;
};
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCell(
MacroAssembler* masm,
GlobalObject* global,
String* name,
Register scratch,
Label* miss) {
Object* probe;
{ MaybeObject* maybe_probe = global->EnsurePropertyCell(name);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(probe);
ASSERT(cell->value()->IsTheHole());
__ mov(scratch, Operand(Handle<Object>(cell)));
__ ldr(scratch,
FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(scratch, ip);
__ b(ne, miss);
return cell;
}
// Calls GenerateCheckPropertyCell for each global object in the prototype chain
// from object to (but not including) holder.
MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCells(
MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
Register scratch,
Label* miss) {
JSObject* current = object;
while (current != holder) {
if (current->IsGlobalObject()) {
// Returns a cell or a failure.
MaybeObject* result = GenerateCheckPropertyCell(
masm,
GlobalObject::cast(current),
name,
scratch,
miss);
if (result->IsFailure()) return result;
}
ASSERT(current->IsJSObject());
current = JSObject::cast(current->GetPrototype());
}
return NULL;
}
// Convert and store int passed in register ival to IEEE 754 single precision
// floating point value at memory location (dst + 4 * wordoffset)
// If VFP3 is available use it for conversion.
static void StoreIntAsFloat(MacroAssembler* masm,
Register dst,
Register wordoffset,
Register ival,
Register fval,
Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ vmov(s0, ival);
__ add(scratch1, dst, Operand(wordoffset, LSL, 2));
__ vcvt_f32_s32(s0, s0);
__ vstr(s0, scratch1, 0);
} else {
Label not_special, done;
// Move sign bit from source to destination. This works because the sign
// bit in the exponent word of the double has the same position and polarity
// as the 2's complement sign bit in a Smi.
ASSERT(kBinary32SignMask == 0x80000000u);
__ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
// Negate value if it is negative.
__ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
// We have -1, 0 or 1, which we treat specially. Register ival contains
// absolute value: it is either equal to 1 (special case of -1 and 1),
// greater than 1 (not a special case) or less than 1 (special case of 0).
__ cmp(ival, Operand(1));
__ b(gt, &not_special);
// For 1 or -1 we need to or in the 0 exponent (biased).
static const uint32_t exponent_word_for_1 =
kBinary32ExponentBias << kBinary32ExponentShift;
__ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
__ b(&done);
__ bind(&not_special);
// Count leading zeros.
// Gets the wrong answer for 0, but we already checked for that case above.
Register zeros = scratch2;
__ CountLeadingZeros(zeros, ival, scratch1);
// Compute exponent and or it into the exponent register.
__ rsb(scratch1,
zeros,
Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
__ orr(fval,
fval,
Operand(scratch1, LSL, kBinary32ExponentShift));
// Shift up the source chopping the top bit off.
__ add(zeros, zeros, Operand(1));
// This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
__ mov(ival, Operand(ival, LSL, zeros));
// And the top (top 20 bits).
__ orr(fval,
fval,
Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
__ bind(&done);
__ str(fval, MemOperand(dst, wordoffset, LSL, 2));
}
}
// Convert unsigned integer with specified number of leading zeroes in binary
// representation to IEEE 754 double.
// Integer to convert is passed in register hiword.
// Resulting double is returned in registers hiword:loword.
// This functions does not work correctly for 0.
static void GenerateUInt2Double(MacroAssembler* masm,
Register hiword,
Register loword,
Register scratch,
int leading_zeroes) {
const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
const int mantissa_shift_for_hi_word =
meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
const int mantissa_shift_for_lo_word =
kBitsPerInt - mantissa_shift_for_hi_word;
__ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
if (mantissa_shift_for_hi_word > 0) {
__ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
__ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
} else {
__ mov(loword, Operand(0, RelocInfo::NONE));
__ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
}
// If least significant bit of biased exponent was not 1 it was corrupted
// by most significant bit of mantissa so we should fix that.
if (!(biased_exponent & 1)) {
__ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
}
}
#undef __
#define __ ACCESS_MASM(masm())
Register StubCompiler::CheckPrototypes(JSObject* object,
Register object_reg,
JSObject* holder,
Register holder_reg,
Register scratch1,
Register scratch2,
String* name,
int save_at_depth,
Label* miss) {
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg.
Register reg = object_reg;
int depth = 0;
if (save_at_depth == depth) {
__ str(reg, MemOperand(sp));
}
// Check the maps in the prototype chain.
// Traverse the prototype chain from the object and do map checks.
JSObject* current = object;
while (current != holder) {
depth++;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
ASSERT(current->GetPrototype()->IsJSObject());
JSObject* prototype = JSObject::cast(current->GetPrototype());
if (!current->HasFastProperties() &&
!current->IsJSGlobalObject() &&
!current->IsJSGlobalProxy()) {
if (!name->IsSymbol()) {
MaybeObject* maybe_lookup_result = heap()->LookupSymbol(name);
Object* lookup_result = NULL; // Initialization to please compiler.
if (!maybe_lookup_result->ToObject(&lookup_result)) {
set_failure(Failure::cast(maybe_lookup_result));
return reg;
}
name = String::cast(lookup_result);
}
ASSERT(current->property_dictionary()->FindEntry(name) ==
StringDictionary::kNotFound);
MaybeObject* negative_lookup = GenerateDictionaryNegativeLookup(masm(),
miss,
reg,
name,
scratch1,
scratch2);
if (negative_lookup->IsFailure()) {
set_failure(Failure::cast(negative_lookup));
return reg;
}
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // from now the object is in holder_reg
__ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
} else if (heap()->InNewSpace(prototype)) {
// Get the map of the current object.
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(scratch1, Operand(Handle<Map>(current->map())));
// Branch on the result of the map check.
__ b(ne, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
// Restore scratch register to be the map of the object. In the
// new space case below, we load the prototype from the map in
// the scratch register.
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
}
reg = holder_reg; // from now the object is in holder_reg
// The prototype is in new space; we cannot store a reference
// to it in the code. Load it from the map.
__ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
} else {
// Check the map of the current object.
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(scratch1, Operand(Handle<Map>(current->map())));
// Branch on the result of the map check.
__ b(ne, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// The prototype is in old space; load it directly.
reg = holder_reg; // from now the object is in holder_reg
__ mov(reg, Operand(Handle<JSObject>(prototype)));
}
if (save_at_depth == depth) {
__ str(reg, MemOperand(sp));
}
// Go to the next object in the prototype chain.
current = prototype;
}
// Check the holder map.
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(scratch1, Operand(Handle<Map>(current->map())));
__ b(ne, miss);
// Log the check depth.
LOG(masm()->isolate(), IntEvent("check-maps-depth", depth + 1));
// Perform security check for access to the global object.
ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded());
if (holder->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
};
// If we've skipped any global objects, it's not enough to verify
// that their maps haven't changed. We also need to check that the
// property cell for the property is still empty.
MaybeObject* result = GenerateCheckPropertyCells(masm(),
object,
holder,
name,
scratch1,
miss);
if (result->IsFailure()) set_failure(Failure::cast(result));
// Return the register containing the holder.
return reg;
}
void StubCompiler::GenerateLoadField(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
int index,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3,
name, miss);
GenerateFastPropertyLoad(masm(), r0, reg, holder, index);
__ Ret();
}
void StubCompiler::GenerateLoadConstant(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Object* value,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3, name,
miss);
// Return the constant value.
__ mov(r0, Operand(Handle<Object>(value)));
__ Ret();
}
MaybeObject* StubCompiler::GenerateLoadCallback(JSObject* object,
JSObject* holder,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
AccessorInfo* callback,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3,
name, miss);
// Build AccessorInfo::args_ list on the stack and push property name below
// the exit frame to make GC aware of them and store pointers to them.
__ push(receiver);
__ mov(scratch2, sp); // scratch2 = AccessorInfo::args_
Handle<AccessorInfo> callback_handle(callback);
if (heap()->InNewSpace(callback_handle->data())) {
__ Move(scratch3, callback_handle);
__ ldr(scratch3, FieldMemOperand(scratch3, AccessorInfo::kDataOffset));
} else {
__ Move(scratch3, Handle<Object>(callback_handle->data()));
}
__ Push(reg, scratch3, name_reg);
__ mov(r0, sp); // r0 = Handle<String>
Address getter_address = v8::ToCData<Address>(callback->getter());
ApiFunction fun(getter_address);
const int kApiStackSpace = 1;
__ EnterExitFrame(false, kApiStackSpace);
// Create AccessorInfo instance on the stack above the exit frame with
// scratch2 (internal::Object **args_) as the data.
__ str(scratch2, MemOperand(sp, 1 * kPointerSize));
__ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo&
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
const int kStackUnwindSpace = 4;
ExternalReference ref =
ExternalReference(&fun,
ExternalReference::DIRECT_GETTER_CALL,
masm()->isolate());
return masm()->TryCallApiFunctionAndReturn(ref, kStackUnwindSpace);
}
void StubCompiler::GenerateLoadInterceptor(JSObject* object,
JSObject* interceptor_holder,
LookupResult* lookup,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
String* name,
Label* miss) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsProperty() && lookup->IsCacheable()) {
if (lookup->type() == FIELD) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsAccessorInfo() &&
AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL) {
compile_followup_inline = true;
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1));
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
__ EnterInternalFrame();
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
// CALLBACKS case needs a receiver to be passed into C++ callback.
__ Push(receiver, holder_reg, name_reg);
} else {
__ Push(holder_reg, name_reg);
}
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(masm(),
receiver,
holder_reg,
name_reg,
interceptor_holder);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ LoadRoot(scratch1, Heap::kNoInterceptorResultSentinelRootIndex);
__ cmp(r0, scratch1);
__ b(eq, &interceptor_failed);
__ LeaveInternalFrame();
__ Ret();
__ bind(&interceptor_failed);
__ pop(name_reg);
__ pop(holder_reg);
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
__ pop(receiver);
}
__ LeaveInternalFrame();
// Check that the maps from interceptor's holder to lookup's holder
// haven't changed. And load lookup's holder into |holder| register.
if (interceptor_holder != lookup->holder()) {
holder_reg = CheckPrototypes(interceptor_holder,
holder_reg,
lookup->holder(),
scratch1,
scratch2,
scratch3,
name,
miss);
}
if (lookup->type() == FIELD) {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
GenerateFastPropertyLoad(masm(), r0, holder_reg,
lookup->holder(), lookup->GetFieldIndex());
__ Ret();
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
ASSERT(lookup->GetCallbackObject()->IsAccessorInfo());
AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject());
ASSERT(callback != NULL);
ASSERT(callback->getter() != NULL);
// Tail call to runtime.
// Important invariant in CALLBACKS case: the code above must be
// structured to never clobber |receiver| register.
__ Move(scratch2, Handle<AccessorInfo>(callback));
// holder_reg is either receiver or scratch1.
if (!receiver.is(holder_reg)) {
ASSERT(scratch1.is(holder_reg));
__ Push(receiver, holder_reg);
__ ldr(scratch3,
FieldMemOperand(scratch2, AccessorInfo::kDataOffset));
__ Push(scratch3, scratch2, name_reg);
} else {
__ push(receiver);
__ ldr(scratch3,
FieldMemOperand(scratch2, AccessorInfo::kDataOffset));
__ Push(holder_reg, scratch3, scratch2, name_reg);
}
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty),
masm()->isolate());
__ TailCallExternalReference(ref, 5, 1);
}
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
PushInterceptorArguments(masm(), receiver, holder_reg,
name_reg, interceptor_holder);
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForLoad),
masm()->isolate());
__ TailCallExternalReference(ref, 5, 1);
}
}
void CallStubCompiler::GenerateNameCheck(String* name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ cmp(r2, Operand(Handle<String>(name)));
__ b(ne, miss);
}
}
void CallStubCompiler::GenerateGlobalReceiverCheck(JSObject* object,
JSObject* holder,
String* name,
Label* miss) {
ASSERT(holder->IsGlobalObject());
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ ldr(r0, MemOperand(sp, argc * kPointerSize));
// If the object is the holder then we know that it's a global
// object which can only happen for contextual calls. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ JumpIfSmi(r0, miss);
}
// Check that the maps haven't changed.
CheckPrototypes(object, r0, holder, r3, r1, r4, name, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(JSGlobalPropertyCell* cell,
JSFunction* function,
Label* miss) {
// Get the value from the cell.
__ mov(r3, Operand(Handle<JSGlobalPropertyCell>(cell)));
__ ldr(r1, FieldMemOperand(r3, JSGlobalPropertyCell::kValueOffset));
// Check that the cell contains the same function.
if (heap()->InNewSpace(function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
__ JumpIfSmi(r1, miss);
__ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
__ b(ne, miss);
// Check the shared function info. Make sure it hasn't changed.
__ Move(r3, Handle<SharedFunctionInfo>(function->shared()));
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ cmp(r4, r3);
__ b(ne, miss);
} else {
__ cmp(r1, Operand(Handle<JSFunction>(function)));
__ b(ne, miss);
}
}
MaybeObject* CallStubCompiler::GenerateMissBranch() {
MaybeObject* maybe_obj =
isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(),
kind_,
extra_ic_state_);
Object* obj;
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
__ Jump(Handle<Code>(Code::cast(obj)), RelocInfo::CODE_TARGET);
return obj;
}
MaybeObject* CallStubCompiler::CompileCallField(JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
const int argc = arguments().immediate();
// Get the receiver of the function from the stack into r0.
__ ldr(r0, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(r0, &miss);
// Do the right check and compute the holder register.
Register reg = CheckPrototypes(object, r0, holder, r1, r3, r4, name, &miss);
GenerateFastPropertyLoad(masm(), r1, reg, holder, index);
GenerateCallFunction(masm(), object, arguments(), &miss, extra_ic_state_);
// Handle call cache miss.
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* CallStubCompiler::CompileArrayPushCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || cell != NULL) return heap()->undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
Register receiver = r1;
// Get the receiver from the stack
const int argc = arguments().immediate();
__ ldr(receiver, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object), receiver,
holder, r3, r0, r4, name, &miss);
if (argc == 0) {
// Nothing to do, just return the length.
__ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Drop(argc + 1);
__ Ret();
} else {
Label call_builtin;
Register elements = r3;
Register end_elements = r5;
// Get the elements array of the object.
__ ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CheckMap(elements,
r0,
Heap::kFixedArrayMapRootIndex,
&call_builtin,
DONT_DO_SMI_CHECK);
if (argc == 1) { // Otherwise fall through to call the builtin.
Label exit, with_write_barrier, attempt_to_grow_elements;
// Get the array's length into r0 and calculate new length.
__ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ add(r0, r0, Operand(Smi::FromInt(argc)));
// Get the element's length.
__ ldr(r4, FieldMemOperand(elements, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmp(r0, r4);
__ b(gt, &attempt_to_grow_elements);
// Save new length.
__ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
// Push the element.
__ ldr(r4, MemOperand(sp, (argc - 1) * kPointerSize));
// We may need a register containing the address end_elements below,
// so write back the value in end_elements.
__ add(end_elements, elements,
Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
const int kEndElementsOffset =
FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize;
__ str(r4, MemOperand(end_elements, kEndElementsOffset, PreIndex));
// Check for a smi.
__ JumpIfNotSmi(r4, &with_write_barrier);
__ bind(&exit);
__ Drop(argc + 1);
__ Ret();
__ bind(&with_write_barrier);
__ InNewSpace(elements, r4, eq, &exit);
__ RecordWriteHelper(elements, end_elements, r4);
__ Drop(argc + 1);
__ Ret();
__ bind(&attempt_to_grow_elements);
// r0: array's length + 1.
// r4: elements' length.
if (!FLAG_inline_new) {
__ b(&call_builtin);
}
Isolate* isolate = masm()->isolate();
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate);
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate);
const int kAllocationDelta = 4;
// Load top and check if it is the end of elements.
__ add(end_elements, elements,
Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(end_elements, end_elements, Operand(kEndElementsOffset));
__ mov(r7, Operand(new_space_allocation_top));
__ ldr(r6, MemOperand(r7));
__ cmp(end_elements, r6);
__ b(ne, &call_builtin);
__ mov(r9, Operand(new_space_allocation_limit));
__ ldr(r9, MemOperand(r9));
__ add(r6, r6, Operand(kAllocationDelta * kPointerSize));
__ cmp(r6, r9);
__ b(hi, &call_builtin);
// We fit and could grow elements.
// Update new_space_allocation_top.
__ str(r6, MemOperand(r7));
// Push the argument.
__ ldr(r6, MemOperand(sp, (argc - 1) * kPointerSize));
__ str(r6, MemOperand(end_elements));
// Fill the rest with holes.
__ LoadRoot(r6, Heap::kTheHoleValueRootIndex);
for (int i = 1; i < kAllocationDelta; i++) {
__ str(r6, MemOperand(end_elements, i * kPointerSize));
}
// Update elements' and array's sizes.
__ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ add(r4, r4, Operand(Smi::FromInt(kAllocationDelta)));
__ str(r4, FieldMemOperand(elements, FixedArray::kLengthOffset));
// Elements are in new space, so write barrier is not required.
__ Drop(argc + 1);
__ Ret();
}
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush,
masm()->isolate()),
argc + 1,
1);
}
// Handle call cache miss.
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileArrayPopCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || cell != NULL) return heap()->undefined_value();
Label miss, return_undefined, call_builtin;
Register receiver = r1;
Register elements = r3;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack
const int argc = arguments().immediate();
__ ldr(receiver, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object),
receiver, holder, elements, r4, r0, name, &miss);
// Get the elements array of the object.
__ ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CheckMap(elements,
r0,
Heap::kFixedArrayMapRootIndex,
&call_builtin,
DONT_DO_SMI_CHECK);
// Get the array's length into r4 and calculate new length.
__ ldr(r4, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ sub(r4, r4, Operand(Smi::FromInt(1)), SetCC);
__ b(lt, &return_undefined);
// Get the last element.
__ LoadRoot(r6, Heap::kTheHoleValueRootIndex);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
// We can't address the last element in one operation. Compute the more
// expensive shift first, and use an offset later on.
__ add(elements, elements, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(r0, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag));
__ cmp(r0, r6);
__ b(eq, &call_builtin);
// Set the array's length.
__ str(r4, FieldMemOperand(receiver, JSArray::kLengthOffset));
// Fill with the hole.
__ str(r6, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag));
__ Drop(argc + 1);
__ Ret();
__ bind(&return_undefined);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ Drop(argc + 1);
__ Ret();
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop,
masm()->isolate()),
argc + 1,
1);
// Handle call cache miss.
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringCharCodeAtCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || cell != NULL) return heap()->undefined_value();
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_ic_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
r0,
&miss);
ASSERT(object != holder);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder,
r1, r3, r4, name, &miss);
Register receiver = r1;
Register index = r4;
Register scratch = r3;
Register result = r0;
__ ldr(receiver, MemOperand(sp, argc * kPointerSize));
if (argc > 0) {
__ ldr(index, MemOperand(sp, (argc - 1) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharCodeAtGenerator char_code_at_generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
char_code_at_generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
char_code_at_generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(r0, Heap::kNanValueRootIndex);
__ Drop(argc + 1);
__ Ret();
}
__ bind(&miss);
// Restore function name in r2.
__ Move(r2, Handle<String>(name));
__ bind(&name_miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringCharAtCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || cell != NULL) return heap()->undefined_value();
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_ic_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
r0,
&miss);
ASSERT(object != holder);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder,
r1, r3, r4, name, &miss);
Register receiver = r0;
Register index = r4;
Register scratch1 = r1;
Register scratch2 = r3;
Register result = r0;
__ ldr(receiver, MemOperand(sp, argc * kPointerSize));
if (argc > 0) {
__ ldr(index, MemOperand(sp, (argc - 1) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharAtGenerator char_at_generator(receiver,
index,
scratch1,
scratch2,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
char_at_generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(r0, Heap::kEmptyStringRootIndex);
__ Drop(argc + 1);
__ Ret();
}
__ bind(&miss);
// Restore function name in r2.
__ Move(r2, Handle<String>(name));
__ bind(&name_miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringFromCharCodeCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return heap()->undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(r1, &miss);
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = r1;
__ ldr(code, MemOperand(sp, 0 * kPointerSize));
// Check the code is a smi.
Label slow;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(code, &slow);
// Convert the smi code to uint16.
__ and_(code, code, Operand(Smi::FromInt(0xffff)));
StringCharFromCodeGenerator char_from_code_generator(code, r0);
char_from_code_generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
char_from_code_generator.GenerateSlow(masm(), call_helper);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION, CALL_AS_METHOD);
__ bind(&miss);
// r2: function name.
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileMathFloorCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
if (!CpuFeatures::IsSupported(VFP3)) {
return heap()->undefined_value();
}
CpuFeatures::Scope scope_vfp3(VFP3);
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return heap()->undefined_value();
Label miss, slow;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(r1, &miss);
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into r0.
__ ldr(r0, MemOperand(sp, 0 * kPointerSize));
// If the argument is a smi, just return.
STATIC_ASSERT(kSmiTag == 0);
__ tst(r0, Operand(kSmiTagMask));
__ Drop(argc + 1, eq);
__ Ret(eq);
__ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK);
Label wont_fit_smi, no_vfp_exception, restore_fpscr_and_return;
// If vfp3 is enabled, we use the fpu rounding with the RM (round towards
// minus infinity) mode.
// Load the HeapNumber value.
// We will need access to the value in the core registers, so we load it
// with ldrd and move it to the fpu. It also spares a sub instruction for
// updating the HeapNumber value address, as vldr expects a multiple
// of 4 offset.
__ Ldrd(r4, r5, FieldMemOperand(r0, HeapNumber::kValueOffset));
__ vmov(d1, r4, r5);
// Backup FPSCR.
__ vmrs(r3);
// Set custom FPCSR:
// - Set rounding mode to "Round towards Minus Infinity"
// (ie bits [23:22] = 0b10).
// - Clear vfp cumulative exception flags (bits [3:0]).
// - Make sure Flush-to-zero mode control bit is unset (bit 22).
__ bic(r9, r3,
Operand(kVFPExceptionMask | kVFPRoundingModeMask | kVFPFlushToZeroMask));
__ orr(r9, r9, Operand(kRoundToMinusInf));
__ vmsr(r9);
// Convert the argument to an integer.
__ vcvt_s32_f64(s0, d1, kFPSCRRounding);
// Use vcvt latency to start checking for special cases.
// Get the argument exponent and clear the sign bit.
__ bic(r6, r5, Operand(HeapNumber::kSignMask));
__ mov(r6, Operand(r6, LSR, HeapNumber::kMantissaBitsInTopWord));
// Retrieve FPSCR and check for vfp exceptions.
__ vmrs(r9);
__ tst(r9, Operand(kVFPExceptionMask));
__ b(&no_vfp_exception, eq);
// Check for NaN, Infinity, and -Infinity.
// They are invariant through a Math.Floor call, so just
// return the original argument.
__ sub(r7, r6, Operand(HeapNumber::kExponentMask
>> HeapNumber::kMantissaBitsInTopWord), SetCC);
__ b(&restore_fpscr_and_return, eq);
// We had an overflow or underflow in the conversion. Check if we
// have a big exponent.
__ cmp(r7, Operand(HeapNumber::kMantissaBits));
// If greater or equal, the argument is already round and in r0.
__ b(&restore_fpscr_and_return, ge);
__ b(&wont_fit_smi);
__ bind(&no_vfp_exception);
// Move the result back to general purpose register r0.
__ vmov(r0, s0);
// Check if the result fits into a smi.
__ add(r1, r0, Operand(0x40000000), SetCC);
__ b(&wont_fit_smi, mi);
// Tag the result.
STATIC_ASSERT(kSmiTag == 0);
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
// Check for -0.
__ cmp(r0, Operand(0, RelocInfo::NONE));
__ b(&restore_fpscr_and_return, ne);
// r5 already holds the HeapNumber exponent.
__ tst(r5, Operand(HeapNumber::kSignMask));
// If our HeapNumber is negative it was -0, so load its address and return.
// Else r0 is loaded with 0, so we can also just return.
__ ldr(r0, MemOperand(sp, 0 * kPointerSize), ne);
__ bind(&restore_fpscr_and_return);
// Restore FPSCR and return.
__ vmsr(r3);
__ Drop(argc + 1);
__ Ret();
__ bind(&wont_fit_smi);
// Restore FPCSR and fall to slow case.
__ vmsr(r3);
__ bind(&slow);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ InvokeFunction(function, arguments(), JUMP_FUNCTION, CALL_AS_METHOD);
__ bind(&miss);
// r2: function name.
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileMathAbsCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return heap()->undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(r1, &miss);
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into r0.
__ ldr(r0, MemOperand(sp, 0 * kPointerSize));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(r0, &not_smi);
// Do bitwise not or do nothing depending on the sign of the
// argument.
__ eor(r1, r0, Operand(r0, ASR, kBitsPerInt - 1));
// Add 1 or do nothing depending on the sign of the argument.
__ sub(r0, r1, Operand(r0, ASR, kBitsPerInt - 1), SetCC);
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ b(mi, &slow);
// Smi case done.
__ Drop(argc + 1);
__ Ret();
// Check if the argument is a heap number and load its exponent and
// sign.
__ bind(&not_smi);
__ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, &slow, DONT_DO_SMI_CHECK);
__ ldr(r1, FieldMemOperand(r0, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
__ tst(r1, Operand(HeapNumber::kSignMask));
__ b(ne, &negative_sign);
__ Drop(argc + 1);
__ Ret();
// If the argument is negative, clear the sign, and return a new
// number.
__ bind(&negative_sign);
__ eor(r1, r1, Operand(HeapNumber::kSignMask));
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r0, r4, r5, r6, &slow);
__ str(r1, FieldMemOperand(r0, HeapNumber::kExponentOffset));
__ str(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ Drop(argc + 1);
__ Ret();
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION, CALL_AS_METHOD);
__ bind(&miss);
// r2: function name.
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileFastApiCall(
const CallOptimization& optimization,
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
Counters* counters = isolate()->counters();
ASSERT(optimization.is_simple_api_call());
// Bail out if object is a global object as we don't want to
// repatch it to global receiver.
if (object->IsGlobalObject()) return heap()->undefined_value();
if (cell != NULL) return heap()->undefined_value();
if (!object->IsJSObject()) return heap()->undefined_value();
int depth = optimization.GetPrototypeDepthOfExpectedType(
JSObject::cast(object), holder);
if (depth == kInvalidProtoDepth) return heap()->undefined_value();
Label miss, miss_before_stack_reserved;
GenerateNameCheck(name, &miss_before_stack_reserved);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(r1, &miss_before_stack_reserved);
__ IncrementCounter(counters->call_const(), 1, r0, r3);
__ IncrementCounter(counters->call_const_fast_api(), 1, r0, r3);
ReserveSpaceForFastApiCall(masm(), r0);
// Check that the maps haven't changed and find a Holder as a side effect.
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
depth, &miss);
MaybeObject* result = GenerateFastApiDirectCall(masm(), optimization, argc);
if (result->IsFailure()) return result;
__ bind(&miss);
FreeSpaceForFastApiCall(masm());
__ bind(&miss_before_stack_reserved);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileCallConstant(Object* object,
JSObject* holder,
JSFunction* function,
String* name,
CheckType check) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
if (HasCustomCallGenerator(function)) {
MaybeObject* maybe_result = CompileCustomCall(
object, holder, NULL, function, name);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// undefined means bail out to regular compiler.
if (!result->IsUndefined()) return result;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack
const int argc = arguments().immediate();
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ JumpIfSmi(r1, &miss);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
SharedFunctionInfo* function_info = function->shared();
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(masm()->isolate()->counters()->call_const(),
1, r0, r3);
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
&miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ ldr(r3, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset));
__ str(r3, MemOperand(sp, argc * kPointerSize));
}
break;
case STRING_CHECK:
if (!function->IsBuiltin() && !function_info->strict_mode()) {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
} else {
// Check that the object is a two-byte string or a symbol.
__ CompareObjectType(r1, r3, r3, FIRST_NONSTRING_TYPE);
__ b(ge, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, r0, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3,
r1, r4, name, &miss);
}
break;
case NUMBER_CHECK: {
if (!function->IsBuiltin() && !function_info->strict_mode()) {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
} else {
Label fast;
// Check that the object is a smi or a heap number.
__ JumpIfSmi(r1, &fast);
__ CompareObjectType(r1, r0, r0, HEAP_NUMBER_TYPE);
__ b(ne, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, r0, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3,
r1, r4, name, &miss);
}
break;
}
case BOOLEAN_CHECK: {
if (!function->IsBuiltin() && !function_info->strict_mode()) {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
} else {
Label fast;
// Check that the object is a boolean.
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r1, ip);
__ b(eq, &fast);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r1, ip);
__ b(ne, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, r0, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3,
r1, r4, name, &miss);
}
break;
}
default:
UNREACHABLE();
}
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(function, arguments(), JUMP_FUNCTION, call_kind);
// Handle call cache miss.
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileCallInterceptor(JSObject* object,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), r2, extra_ic_state_);
MaybeObject* result = compiler.Compile(masm(),
object,
holder,
name,
&lookup,
r1,
r3,
r4,
r0,
&miss);
if (result->IsFailure()) {
return result;
}
// Move returned value, the function to call, to r1.
__ mov(r1, r0);
// Restore receiver.
__ ldr(r0, MemOperand(sp, argc * kPointerSize));
GenerateCallFunction(masm(), object, arguments(), &miss, extra_ic_state_);
// Handle call cache miss.
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* CallStubCompiler::CompileCallGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
if (HasCustomCallGenerator(function)) {
MaybeObject* maybe_result = CompileCustomCall(
object, holder, cell, function, name);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// undefined means bail out to regular compiler.
if (!result->IsUndefined()) return result;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
GenerateGlobalReceiverCheck(object, holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ ldr(r3, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
__ str(r3, MemOperand(sp, argc * kPointerSize));
}
// Setup the context (function already in r1).
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->call_global_inline(), 1, r3, r4);
ASSERT(function->is_compiled());
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
if (V8::UseCrankshaft()) {
// TODO(kasperl): For now, we always call indirectly through the
// code field in the function to allow recompilation to take effect
// without changing any of the call sites.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ InvokeCode(r3, expected, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
} else {
__ InvokeCode(code, expected, arguments(), RelocInfo::CODE_TARGET,
JUMP_FUNCTION, call_kind);
}
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(counters->call_global_inline_miss(), 1, r1, r3);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* StoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateStoreField(masm(),
object,
index,
transition,
r1, r2, r3,
&miss);
__ bind(&miss);
Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
MaybeObject* StoreStubCompiler::CompileStoreCallback(JSObject* object,
AccessorInfo* callback,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ JumpIfSmi(r1, &miss);
// Check that the map of the object hasn't changed.
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r3, Operand(Handle<Map>(object->map())));
__ b(ne, &miss);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(r1, r3, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
__ push(r1); // receiver
__ mov(ip, Operand(Handle<AccessorInfo>(callback))); // callback info
__ Push(ip, r2, r0);
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty),
masm()->isolate());
__ TailCallExternalReference(store_callback_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* StoreStubCompiler::CompileStoreInterceptor(JSObject* receiver,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ JumpIfSmi(r1, &miss);
// Check that the map of the object hasn't changed.
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r3, Operand(Handle<Map>(receiver->map())));
__ b(ne, &miss);
// Perform global security token check if needed.
if (receiver->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(r1, r3, &miss);
}
// Stub is never generated for non-global objects that require access
// checks.
ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());
__ Push(r1, r2, r0); // Receiver, name, value.
__ mov(r0, Operand(Smi::FromInt(strict_mode_)));
__ push(r0); // strict mode
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty),
masm()->isolate());
__ TailCallExternalReference(store_ic_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* StoreStubCompiler::CompileStoreGlobal(GlobalObject* object,
JSGlobalPropertyCell* cell,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r3, Operand(Handle<Map>(object->map())));
__ b(ne, &miss);
// Check that the value in the cell is not the hole. If it is, this
// cell could have been deleted and reintroducing the global needs
// to update the property details in the property dictionary of the
// global object. We bail out to the runtime system to do that.
__ mov(r4, Operand(Handle<JSGlobalPropertyCell>(cell)));
__ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
__ ldr(r6, FieldMemOperand(r4, JSGlobalPropertyCell::kValueOffset));
__ cmp(r5, r6);
__ b(eq, &miss);
// Store the value in the cell.
__ str(r0, FieldMemOperand(r4, JSGlobalPropertyCell::kValueOffset));
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->named_store_global_inline(), 1, r4, r3);
__ Ret();
// Handle store cache miss.
__ bind(&miss);
__ IncrementCounter(counters->named_store_global_inline_miss(), 1, r4, r3);
Handle<Code> ic = masm()->isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* LoadStubCompiler::CompileLoadNonexistent(String* name,
JSObject* object,
JSObject* last) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- lr : return address
// -----------------------------------
Label miss;
// Check that receiver is not a smi.
__ JumpIfSmi(r0, &miss);
// Check the maps of the full prototype chain.
CheckPrototypes(object, r0, last, r3, r1, r4, name, &miss);
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last->IsGlobalObject()) {
MaybeObject* cell = GenerateCheckPropertyCell(masm(),
GlobalObject::cast(last),
name,
r1,
&miss);
if (cell->IsFailure()) {
miss.Unuse();
return cell;
}
}
// Return undefined if maps of the full prototype chain are still the
// same and no global property with this name contains a value.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ Ret();
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NONEXISTENT, heap()->empty_string());
}
MaybeObject* LoadStubCompiler::CompileLoadField(JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateLoadField(object, holder, r0, r3, r1, r4, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* LoadStubCompiler::CompileLoadCallback(String* name,
JSObject* object,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
MaybeObject* result = GenerateLoadCallback(object, holder, r0, r2, r3, r1, r4,
callback, name, &miss);
if (result->IsFailure()) {
miss.Unuse();
return result;
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* LoadStubCompiler::CompileLoadConstant(JSObject* object,
JSObject* holder,
Object* value,
String* name) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateLoadConstant(object, holder, r0, r3, r1, r4, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
MaybeObject* LoadStubCompiler::CompileLoadInterceptor(JSObject* object,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(object,
holder,
&lookup,
r0,
r2,
r3,
r1,
r4,
name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* LoadStubCompiler::CompileLoadGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
String* name,
bool is_dont_delete) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// If the object is the holder then we know that it's a global
// object which can only happen for contextual calls. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ JumpIfSmi(r0, &miss);
}
// Check that the map of the global has not changed.
CheckPrototypes(object, r0, holder, r3, r4, r1, name, &miss);
// Get the value from the cell.
__ mov(r3, Operand(Handle<JSGlobalPropertyCell>(cell)));
__ ldr(r4, FieldMemOperand(r3, JSGlobalPropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r4, ip);
__ b(eq, &miss);
}
__ mov(r0, r4);
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1, r1, r3);
__ Ret();
__ bind(&miss);
__ IncrementCounter(counters->named_load_global_stub_miss(), 1, r1, r3);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadField(String* name,
JSObject* receiver,
JSObject* holder,
int index) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadField(receiver, holder, r1, r2, r3, r4, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(FIELD, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadCallback(
String* name,
JSObject* receiver,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
MaybeObject* result = GenerateLoadCallback(receiver, holder, r1, r0, r2, r3,
r4, callback, name, &miss);
if (result->IsFailure()) {
miss.Unuse();
return result;
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadConstant(String* name,
JSObject* receiver,
JSObject* holder,
Object* value) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadConstant(receiver, holder, r1, r2, r3, r4, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadInterceptor(JSObject* receiver,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(receiver,
holder,
&lookup,
r1,
r0,
r2,
r3,
r4,
name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(INTERCEPTOR, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadArrayLength(String* name) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadArrayLength(masm(), r1, r2, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadStringLength(String* name) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->keyed_load_string_length(), 1, r2, r3);
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadStringLength(masm(), r1, r2, r3, &miss, true);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_string_length(), 1, r2, r3);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadFunctionPrototype(String* name) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->keyed_load_function_prototype(), 1, r2, r3);
// Check the name hasn't changed.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadFunctionPrototype(masm(), r1, r2, r3, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_function_prototype(), 1, r2, r3);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadElement(Map* receiver_map) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Code* stub;
ElementsKind elements_kind = receiver_map->elements_kind();
MaybeObject* maybe_stub = KeyedLoadElementStub(elements_kind).TryGetCode();
if (!maybe_stub->To(&stub)) return maybe_stub;
__ DispatchMap(r1,
r2,
Handle<Map>(receiver_map),
Handle<Code>(stub),
DO_SMI_CHECK);
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, NULL);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadMegamorphic(
MapList* receiver_maps,
CodeList* handler_ics) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
__ JumpIfSmi(r1, &miss);
int receiver_count = receiver_maps->length();
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map(receiver_maps->at(current));
Handle<Code> code(handler_ics->at(current));
__ mov(ip, Operand(map));
__ cmp(r2, ip);
__ Jump(code, RelocInfo::CODE_TARGET, eq);
}
__ bind(&miss);
Handle<Code> miss_ic = isolate()->builtins()->KeyedLoadIC_Miss();
__ Jump(miss_ic, RelocInfo::CODE_TARGET, al);
// Return the generated code.
return GetCode(NORMAL, NULL, MEGAMORPHIC);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : name
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label miss;
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->keyed_store_field(), 1, r3, r4);
// Check that the name has not changed.
__ cmp(r1, Operand(Handle<String>(name)));
__ b(ne, &miss);
// r3 is used as scratch register. r1 and r2 keep their values if a jump to
// the miss label is generated.
GenerateStoreField(masm(),
object,
index,
transition,
r2, r1, r3,
&miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_store_field(), 1, r3, r4);
Handle<Code> ic = masm()->isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreElement(Map* receiver_map) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -- r3 : scratch
// -----------------------------------
Code* stub;
ElementsKind elements_kind = receiver_map->elements_kind();
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
MaybeObject* maybe_stub =
KeyedStoreElementStub(is_js_array, elements_kind).TryGetCode();
if (!maybe_stub->To(&stub)) return maybe_stub;
__ DispatchMap(r2,
r3,
Handle<Map>(receiver_map),
Handle<Code>(stub),
DO_SMI_CHECK);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, NULL);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreMegamorphic(
MapList* receiver_maps,
CodeList* handler_ics) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -- r3 : scratch
// -----------------------------------
Label miss;
__ JumpIfSmi(r2, &miss);
int receiver_count = receiver_maps->length();
__ ldr(r3, FieldMemOperand(r2, HeapObject::kMapOffset));
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map(receiver_maps->at(current));
Handle<Code> code(handler_ics->at(current));
__ mov(ip, Operand(map));
__ cmp(r3, ip);
__ Jump(code, RelocInfo::CODE_TARGET, eq);
}
__ bind(&miss);
Handle<Code> miss_ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(miss_ic, RelocInfo::CODE_TARGET, al);
// Return the generated code.
return GetCode(NORMAL, NULL, MEGAMORPHIC);
}
MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- r1 : constructor
// -- lr : return address
// -- [sp] : last argument
// -----------------------------------
Label generic_stub_call;
// Use r7 for holding undefined which is used in several places below.
__ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check to see whether there are any break points in the function code. If
// there are jump to the generic constructor stub which calls the actual
// code for the function thereby hitting the break points.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kDebugInfoOffset));
__ cmp(r2, r7);
__ b(ne, &generic_stub_call);
#endif
// Load the initial map and verify that it is in fact a map.
// r1: constructor function
// r7: undefined
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(r2, &generic_stub_call);
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ b(ne, &generic_stub_call);
#ifdef DEBUG
// Cannot construct functions this way.
// r0: argc
// r1: constructor function
// r2: initial map
// r7: undefined
__ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
__ Check(ne, "Function constructed by construct stub.");
#endif
// Now allocate the JSObject in new space.
// r0: argc
// r1: constructor function
// r2: initial map
// r7: undefined
__ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
__ AllocateInNewSpace(r3,
r4,
r5,
r6,
&generic_stub_call,
SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to initial
// map and properties and elements are set to empty fixed array.
// r0: argc
// r1: constructor function
// r2: initial map
// r3: object size (in words)
// r4: JSObject (not tagged)
// r7: undefined
__ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
__ mov(r5, r4);
ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
__ str(r2, MemOperand(r5, kPointerSize, PostIndex));
ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
__ str(r6, MemOperand(r5, kPointerSize, PostIndex));
ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
__ str(r6, MemOperand(r5, kPointerSize, PostIndex));
// Calculate the location of the first argument. The stack contains only the
// argc arguments.
__ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
// Fill all the in-object properties with undefined.
// r0: argc
// r1: first argument
// r3: object size (in words)
// r4: JSObject (not tagged)
// r5: First in-object property of JSObject (not tagged)
// r7: undefined
// Fill the initialized properties with a constant value or a passed argument
// depending on the this.x = ...; assignment in the function.
SharedFunctionInfo* shared = function->shared();
for (int i = 0; i < shared->this_property_assignments_count(); i++) {
if (shared->IsThisPropertyAssignmentArgument(i)) {
Label not_passed, next;
// Check if the argument assigned to the property is actually passed.
int arg_number = shared->GetThisPropertyAssignmentArgument(i);
__ cmp(r0, Operand(arg_number));
__ b(le, &not_passed);
// Argument passed - find it on the stack.
__ ldr(r2, MemOperand(r1, (arg_number + 1) * -kPointerSize));
__ str(r2, MemOperand(r5, kPointerSize, PostIndex));
__ b(&next);
__ bind(&not_passed);
// Set the property to undefined.
__ str(r7, MemOperand(r5, kPointerSize, PostIndex));
__ bind(&next);
} else {
// Set the property to the constant value.
Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
__ mov(r2, Operand(constant));
__ str(r2, MemOperand(r5, kPointerSize, PostIndex));
}
}
// Fill the unused in-object property fields with undefined.
ASSERT(function->has_initial_map());
for (int i = shared->this_property_assignments_count();
i < function->initial_map()->inobject_properties();
i++) {
__ str(r7, MemOperand(r5, kPointerSize, PostIndex));
}
// r0: argc
// r4: JSObject (not tagged)
// Move argc to r1 and the JSObject to return to r0 and tag it.
__ mov(r1, r0);
__ mov(r0, r4);
__ orr(r0, r0, Operand(kHeapObjectTag));
// r0: JSObject
// r1: argc
// Remove caller arguments and receiver from the stack and return.
__ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2));
__ add(sp, sp, Operand(kPointerSize));
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1, r1, r2);
__ IncrementCounter(counters->constructed_objects_stub(), 1, r1, r2);
__ Jump(lr);
// Jump to the generic stub in case the specialized code cannot handle the
// construction.
__ bind(&generic_stub_call);
Handle<Code> code = masm()->isolate()->builtins()->JSConstructStubGeneric();
__ Jump(code, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode();
}
#undef __
#define __ ACCESS_MASM(masm)
void KeyedLoadStubCompiler::GenerateLoadDictionaryElement(
MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label slow, miss_force_generic;
Register key = r0;
Register receiver = r1;
__ JumpIfNotSmi(key, &miss_force_generic);
__ mov(r2, Operand(key, ASR, kSmiTagSize));
__ ldr(r4, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ LoadFromNumberDictionary(&slow, r4, key, r0, r2, r3, r5);
__ Ret();
__ bind(&slow);
__ IncrementCounter(
masm->isolate()->counters()->keyed_load_external_array_slow(),
1, r2, r3);
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ Jump(slow_ic, RelocInfo::CODE_TARGET);
// Miss case, call the runtime.
__ bind(&miss_force_generic);
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ Jump(miss_ic, RelocInfo::CODE_TARGET);
}
static bool IsElementTypeSigned(ElementsKind elements_kind) {
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
return true;
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
return false;
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
return false;
}
return false;
}
void KeyedLoadStubCompiler::GenerateLoadExternalArray(
MacroAssembler* masm,
ElementsKind elements_kind) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss_force_generic, slow, failed_allocation;
Register key = r0;
Register receiver = r1;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &miss_force_generic);
__ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
// r3: elements array
// Check that the index is in range.
__ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
__ cmp(key, ip);
// Unsigned comparison catches both negative and too-large values.
__ b(hs, &miss_force_generic);
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage
// We are not untagging smi key and instead work with it
// as if it was premultiplied by 2.
STATIC_ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
Register value = r2;
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
__ ldrsb(value, MemOperand(r3, key, LSR, 1));
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ ldrb(value, MemOperand(r3, key, LSR, 1));
break;
case EXTERNAL_SHORT_ELEMENTS:
__ ldrsh(value, MemOperand(r3, key, LSL, 0));
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ ldrh(value, MemOperand(r3, key, LSL, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ ldr(value, MemOperand(r3, key, LSL, 1));
break;
case EXTERNAL_FLOAT_ELEMENTS:
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ add(r2, r3, Operand(key, LSL, 1));
__ vldr(s0, r2, 0);
} else {
__ ldr(value, MemOperand(r3, key, LSL, 1));
}
break;
case EXTERNAL_DOUBLE_ELEMENTS:
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ add(r2, r3, Operand(key, LSL, 2));
__ vldr(d0, r2, 0);
} else {
__ add(r4, r3, Operand(key, LSL, 2));
// r4: pointer to the beginning of the double we want to load.
__ ldr(r2, MemOperand(r4, 0));
__ ldr(r3, MemOperand(r4, Register::kSizeInBytes));
}
break;
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
// For integer array types:
// r2: value
// For float array type:
// s0: value (if VFP3 is supported)
// r2: value (if VFP3 is not supported)
// For double array type:
// d0: value (if VFP3 is supported)
// r2/r3: value (if VFP3 is not supported)
if (elements_kind == EXTERNAL_INT_ELEMENTS) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
__ cmp(value, Operand(0xC0000000));
__ b(mi, &box_int);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
__ bind(&box_int);
// Allocate a HeapNumber for the result and perform int-to-double
// conversion. Don't touch r0 or r1 as they are needed if allocation
// fails.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r5, r3, r4, r6, &slow);
// Now we can use r0 for the result as key is not needed any more.
__ mov(r0, r5);
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ vmov(s0, value);
__ vcvt_f64_s32(d0, s0);
__ sub(r3, r0, Operand(kHeapObjectTag));
__ vstr(d0, r3, HeapNumber::kValueOffset);
__ Ret();
} else {
Register dst1 = r1;
Register dst2 = r3;
FloatingPointHelper::Destination dest =
FloatingPointHelper::kCoreRegisters;
FloatingPointHelper::ConvertIntToDouble(masm,
value,
dest,
d0,
dst1,
dst2,
r9,
s0);
__ str(dst1, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ str(dst2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
__ Ret();
}
} else if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle either of the top two bits being set in the value.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
Label box_int, done;
__ tst(value, Operand(0xC0000000));
__ b(ne, &box_int);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
__ bind(&box_int);
__ vmov(s0, value);
// Allocate a HeapNumber for the result and perform int-to-double
// conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
// registers - also when jumping due to exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r2, r3, r4, r6, &slow);
__ vcvt_f64_u32(d0, s0);
__ sub(r1, r2, Operand(kHeapObjectTag));
__ vstr(d0, r1, HeapNumber::kValueOffset);
__ mov(r0, r2);
__ Ret();
} else {
// Check whether unsigned integer fits into smi.
Label box_int_0, box_int_1, done;
__ tst(value, Operand(0x80000000));
__ b(ne, &box_int_0);
__ tst(value, Operand(0x40000000));
__ b(ne, &box_int_1);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
Register hiword = value; // r2.
Register loword = r3;
__ bind(&box_int_0);
// Integer does not have leading zeros.
GenerateUInt2Double(masm, hiword, loword, r4, 0);
__ b(&done);
__ bind(&box_int_1);
// Integer has one leading zero.
GenerateUInt2Double(masm, hiword, loword, r4, 1);
__ bind(&done);
// Integer was converted to double in registers hiword:loword.
// Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
// clobbers all registers - also when jumping due to exhausted young
// space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r4, r5, r7, r6, &slow);
__ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
__ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
__ mov(r0, r4);
__ Ret();
}
} else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
// Allocate a HeapNumber for the result. Don't use r0 and r1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r2, r3, r4, r6, &slow);
__ vcvt_f64_f32(d0, s0);
__ sub(r1, r2, Operand(kHeapObjectTag));
__ vstr(d0, r1, HeapNumber::kValueOffset);
__ mov(r0, r2);
__ Ret();
} else {
// Allocate a HeapNumber for the result. Don't use r0 and r1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r3, r4, r5, r6, &slow);
// VFP is not available, do manual single to double conversion.
// r2: floating point value (binary32)
// r3: heap number for result
// Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
// the slow case from here.
__ and_(r0, value, Operand(kBinary32MantissaMask));
// Extract exponent to r1. OK to clobber r1 now as there are no jumps to
// the slow case from here.
__ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
__ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
Label exponent_rebiased;
__ teq(r1, Operand(0x00));
__ b(eq, &exponent_rebiased);
__ teq(r1, Operand(0xff));
__ mov(r1, Operand(0x7ff), LeaveCC, eq);
__ b(eq, &exponent_rebiased);
// Rebias exponent.
__ add(r1,
r1,
Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
__ bind(&exponent_rebiased);
__ and_(r2, value, Operand(kBinary32SignMask));
value = no_reg;
__ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
// Shift mantissa.
static const int kMantissaShiftForHiWord =
kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
static const int kMantissaShiftForLoWord =
kBitsPerInt - kMantissaShiftForHiWord;
__ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
__ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
__ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
__ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
__ mov(r0, r3);
__ Ret();
}
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
// Allocate a HeapNumber for the result. Don't use r0 and r1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r2, r3, r4, r6, &slow);
__ sub(r1, r2, Operand(kHeapObjectTag));
__ vstr(d0, r1, HeapNumber::kValueOffset);
__ mov(r0, r2);
__ Ret();
} else {
// Allocate a HeapNumber for the result. Don't use r0 and r1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(r7, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r4, r5, r6, r7, &slow);
__ str(r2, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
__ str(r3, FieldMemOperand(r4, HeapNumber::kExponentOffset));
__ mov(r0, r4);
__ Ret();
}
} else {
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
}
// Slow case, key and receiver still in r0 and r1.
__ bind(&slow);
__ IncrementCounter(
masm->isolate()->counters()->keyed_load_external_array_slow(),
1, r2, r3);
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
__ Push(r1, r0);
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
__ bind(&miss_force_generic);
Code* stub = masm->isolate()->builtins()->builtin(
Builtins::kKeyedLoadIC_MissForceGeneric);
__ Jump(Handle<Code>(stub), RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreExternalArray(
MacroAssembler* masm,
ElementsKind elements_kind) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label slow, check_heap_number, miss_force_generic;
// Register usage.
Register value = r0;
Register key = r1;
Register receiver = r2;
// r3 mostly holds the elements array or the destination external array.
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &miss_force_generic);
__ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check that the index is in range
__ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
__ cmp(key, ip);
// Unsigned comparison catches both negative and too-large values.
__ b(hs, &miss_force_generic);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// r3: external array.
if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) {
// Double to pixel conversion is only implemented in the runtime for now.
__ JumpIfNotSmi(value, &slow);
} else {
__ JumpIfNotSmi(value, &check_heap_number);
}
__ SmiUntag(r5, value);
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage.
// r5: value (integer).
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS:
// Clamp the value to [0..255].
__ Usat(r5, 8, Operand(r5));
__ strb(r5, MemOperand(r3, key, LSR, 1));
break;
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ strb(r5, MemOperand(r3, key, LSR, 1));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ strh(r5, MemOperand(r3, key, LSL, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ str(r5, MemOperand(r3, key, LSL, 1));
break;
case EXTERNAL_FLOAT_ELEMENTS:
// Perform int-to-float conversion and store to memory.
__ SmiUntag(r4, key);
StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9);
break;
case EXTERNAL_DOUBLE_ELEMENTS:
__ add(r3, r3, Operand(key, LSL, 2));
// r3: effective address of the double element
FloatingPointHelper::Destination destination;
if (CpuFeatures::IsSupported(VFP3)) {
destination = FloatingPointHelper::kVFPRegisters;
} else {
destination = FloatingPointHelper::kCoreRegisters;
}
FloatingPointHelper::ConvertIntToDouble(
masm, r5, destination,
d0, r6, r7, // These are: double_dst, dst1, dst2.
r4, s2); // These are: scratch2, single_scratch.
if (destination == FloatingPointHelper::kVFPRegisters) {
CpuFeatures::Scope scope(VFP3);
__ vstr(d0, r3, 0);
} else {
__ str(r6, MemOperand(r3, 0));
__ str(r7, MemOperand(r3, Register::kSizeInBytes));
}
break;
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
// Entry registers are intact, r0 holds the value which is the return value.
__ Ret();
if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) {
// r3: external array.
__ bind(&check_heap_number);
__ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage.
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
// vldr requires offset to be a multiple of 4 so we can not
// include -kHeapObjectTag into it.
__ sub(r5, r0, Operand(kHeapObjectTag));
__ vldr(d0, r5, HeapNumber::kValueOffset);
__ add(r5, r3, Operand(key, LSL, 1));
__ vcvt_f32_f64(s0, d0);
__ vstr(s0, r5, 0);
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ sub(r5, r0, Operand(kHeapObjectTag));
__ vldr(d0, r5, HeapNumber::kValueOffset);
__ add(r5, r3, Operand(key, LSL, 2));
__ vstr(d0, r5, 0);
} else {
// Hoisted load. vldr requires offset to be a multiple of 4 so we can
// not include -kHeapObjectTag into it.
__ sub(r5, value, Operand(kHeapObjectTag));
__ vldr(d0, r5, HeapNumber::kValueOffset);
__ EmitECMATruncate(r5, d0, s2, r6, r7, r9);
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ strb(r5, MemOperand(r3, key, LSR, 1));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ strh(r5, MemOperand(r3, key, LSL, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ str(r5, MemOperand(r3, key, LSL, 1));
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
// Entry registers are intact, r0 holds the value which is the return
// value.
__ Ret();
} else {
// VFP3 is not available do manual conversions.
__ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
__ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
Label done, nan_or_infinity_or_zero;
static const int kMantissaInHiWordShift =
kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
static const int kMantissaInLoWordShift =
kBitsPerInt - kMantissaInHiWordShift;
// Test for all special exponent values: zeros, subnormal numbers, NaNs
// and infinities. All these should be converted to 0.
__ mov(r7, Operand(HeapNumber::kExponentMask));
__ and_(r9, r5, Operand(r7), SetCC);
__ b(eq, &nan_or_infinity_or_zero);
__ teq(r9, Operand(r7));
__ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
__ b(eq, &nan_or_infinity_or_zero);
// Rebias exponent.
__ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
__ add(r9,
r9,
Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
__ cmp(r9, Operand(kBinary32MaxExponent));
__ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
__ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
__ b(gt, &done);
__ cmp(r9, Operand(kBinary32MinExponent));
__ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
__ b(lt, &done);
__ and_(r7, r5, Operand(HeapNumber::kSignMask));
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
__ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
__ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
__ bind(&done);
__ str(r5, MemOperand(r3, key, LSL, 1));
// Entry registers are intact, r0 holds the value which is the return
// value.
__ Ret();
__ bind(&nan_or_infinity_or_zero);
__ and_(r7, r5, Operand(HeapNumber::kSignMask));
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r9, r9, r7);
__ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
__ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
__ b(&done);
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ add(r7, r3, Operand(key, LSL, 2));
// r7: effective address of destination element.
__ str(r6, MemOperand(r7, 0));
__ str(r5, MemOperand(r7, Register::kSizeInBytes));
__ Ret();
} else {
bool is_signed_type = IsElementTypeSigned(elements_kind);
int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
Label done, sign;
// Test for all special exponent values: zeros, subnormal numbers, NaNs
// and infinities. All these should be converted to 0.
__ mov(r7, Operand(HeapNumber::kExponentMask));
__ and_(r9, r5, Operand(r7), SetCC);
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
__ b(eq, &done);
__ teq(r9, Operand(r7));
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
__ b(eq, &done);
// Unbias exponent.
__ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
__ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
// If exponent is negative then result is 0.
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
__ b(mi, &done);
// If exponent is too big then result is minimal value.
__ cmp(r9, Operand(meaningfull_bits - 1));
__ mov(r5, Operand(min_value), LeaveCC, ge);
__ b(ge, &done);
__ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
__ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
__ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
__ b(pl, &sign);
__ rsb(r9, r9, Operand(0, RelocInfo::NONE));
__ mov(r5, Operand(r5, LSL, r9));
__ rsb(r9, r9, Operand(meaningfull_bits));
__ orr(r5, r5, Operand(r6, LSR, r9));
__ bind(&sign);
__ teq(r7, Operand(0, RelocInfo::NONE));
__ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
__ bind(&done);
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ strb(r5, MemOperand(r3, key, LSR, 1));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ strh(r5, MemOperand(r3, key, LSL, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ str(r5, MemOperand(r3, key, LSL, 1));
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
}
}
// Slow case, key and receiver still in r0 and r1.
__ bind(&slow);
__ IncrementCounter(
masm->isolate()->counters()->keyed_load_external_array_slow(),
1, r2, r3);
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ Jump(slow_ic, RelocInfo::CODE_TARGET);
// Miss case, call the runtime.
__ bind(&miss_force_generic);
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ Jump(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(r0, &miss_force_generic);
// Get the elements array.
__ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset));
__ AssertFastElements(r2);
// Check that the key is within bounds.
__ ldr(r3, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ cmp(r0, Operand(r3));
__ b(hs, &miss_force_generic);
// Load the result and make sure it's not the hole.
__ add(r3, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ ldr(r4,
MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r4, ip);
__ b(eq, &miss_force_generic);
__ mov(r0, r4);
__ Ret();
__ bind(&miss_force_generic);
Code* stub = masm->isolate()->builtins()->builtin(
Builtins::kKeyedLoadIC_MissForceGeneric);
__ Jump(Handle<Code>(stub), RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss_force_generic, slow_allocate_heapnumber;
Register key_reg = r0;
Register receiver_reg = r1;
Register elements_reg = r2;
Register heap_number_reg = r2;
Register indexed_double_offset = r3;
Register scratch = r4;
Register scratch2 = r5;
Register scratch3 = r6;
Register heap_number_map = r7;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(key_reg, &miss_force_generic);
// Get the elements array.
__ ldr(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
// Check that the key is within bounds.
__ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
__ cmp(key_reg, Operand(scratch));
__ b(hs, &miss_force_generic);
// Load the upper word of the double in the fixed array and test for NaN.
__ add(indexed_double_offset, elements_reg,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
uint32_t upper_32_offset = FixedArray::kHeaderSize + sizeof(kHoleNanLower32);
__ ldr(scratch, FieldMemOperand(indexed_double_offset, upper_32_offset));
__ cmp(scratch, Operand(kHoleNanUpper32));
__ b(&miss_force_generic, eq);
// Non-NaN. Allocate a new heap number and copy the double value into it.
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(heap_number_reg, scratch2, scratch3,
heap_number_map, &slow_allocate_heapnumber);
// Don't need to reload the upper 32 bits of the double, it's already in
// scratch.
__ str(scratch, FieldMemOperand(heap_number_reg,
HeapNumber::kExponentOffset));
__ ldr(scratch, FieldMemOperand(indexed_double_offset,
FixedArray::kHeaderSize));
__ str(scratch, FieldMemOperand(heap_number_reg,
HeapNumber::kMantissaOffset));
__ mov(r0, heap_number_reg);
__ Ret();
__ bind(&slow_allocate_heapnumber);
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ Jump(slow_ic, RelocInfo::CODE_TARGET);
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ Jump(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreFastElement(MacroAssembler* masm,
bool is_js_array) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -- r3 : scratch
// -- r4 : scratch (elements)
// -----------------------------------
Label miss_force_generic;
Register value_reg = r0;
Register key_reg = r1;
Register receiver_reg = r2;
Register scratch = r3;
Register elements_reg = r4;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(key_reg, &miss_force_generic);
// Get the elements array and make sure it is a fast element array, not 'cow'.
__ ldr(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
__ CheckMap(elements_reg,
scratch,
Heap::kFixedArrayMapRootIndex,
&miss_force_generic,
DONT_DO_SMI_CHECK);
// Check that the key is within bounds.
if (is_js_array) {
__ ldr(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
} else {
__ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
}
// Compare smis.
__ cmp(key_reg, scratch);
__ b(hs, &miss_force_generic);
__ add(scratch,
elements_reg, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ str(value_reg,
MemOperand(scratch, key_reg, LSL, kPointerSizeLog2 - kSmiTagSize));
__ RecordWrite(scratch,
Operand(key_reg, LSL, kPointerSizeLog2 - kSmiTagSize),
receiver_reg , elements_reg);
// value_reg (r0) is preserved.
// Done.
__ Ret();
__ bind(&miss_force_generic);
Handle<Code> ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ Jump(ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement(
MacroAssembler* masm,
bool is_js_array) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -- r3 : scratch
// -- r4 : scratch
// -- r5 : scratch
// -----------------------------------
Label miss_force_generic, smi_value, is_nan, maybe_nan, have_double_value;
Register value_reg = r0;
Register key_reg = r1;
Register receiver_reg = r2;
Register scratch = r3;
Register elements_reg = r4;
Register mantissa_reg = r5;
Register exponent_reg = r6;
Register scratch4 = r7;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
__ JumpIfNotSmi(key_reg, &miss_force_generic);
__ ldr(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
// Check that the key is within bounds.
if (is_js_array) {
__ ldr(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
} else {
__ ldr(scratch,
FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
}
// Compare smis, unsigned compare catches both negative and out-of-bound
// indexes.
__ cmp(key_reg, scratch);
__ b(hs, &miss_force_generic);
// Handle smi values specially.
__ JumpIfSmi(value_reg, &smi_value);
// Ensure that the object is a heap number
__ CheckMap(value_reg,
scratch,
masm->isolate()->factory()->heap_number_map(),
&miss_force_generic,
DONT_DO_SMI_CHECK);
// Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
// in the exponent.
__ mov(scratch, Operand(kNaNOrInfinityLowerBoundUpper32));
__ ldr(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
__ cmp(exponent_reg, scratch);
__ b(ge, &maybe_nan);
__ ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
__ bind(&have_double_value);
__ add(scratch, elements_reg,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
__ str(mantissa_reg, FieldMemOperand(scratch, FixedDoubleArray::kHeaderSize));
uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
__ str(exponent_reg, FieldMemOperand(scratch, offset));
__ Ret();
__ bind(&maybe_nan);
// Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
// it's an Infinity, and the non-NaN code path applies.
__ b(gt, &is_nan);
__ ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
__ cmp(mantissa_reg, Operand(0));
__ b(eq, &have_double_value);
__ bind(&is_nan);
// Load canonical NaN for storing into the double array.
uint64_t nan_int64 = BitCast<uint64_t>(
FixedDoubleArray::canonical_not_the_hole_nan_as_double());
__ mov(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64)));
__ mov(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32)));
__ jmp(&have_double_value);
__ bind(&smi_value);
__ add(scratch, elements_reg,
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
__ add(scratch, scratch,
Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize));
// scratch is now effective address of the double element
FloatingPointHelper::Destination destination;
if (CpuFeatures::IsSupported(VFP3)) {
destination = FloatingPointHelper::kVFPRegisters;
} else {
destination = FloatingPointHelper::kCoreRegisters;
}
Register untagged_value = receiver_reg;
__ SmiUntag(untagged_value, value_reg);
FloatingPointHelper::ConvertIntToDouble(
masm,
untagged_value,
destination,
d0,
mantissa_reg,
exponent_reg,
scratch4,
s2);
if (destination == FloatingPointHelper::kVFPRegisters) {
CpuFeatures::Scope scope(VFP3);
__ vstr(d0, scratch, 0);
} else {
__ str(mantissa_reg, MemOperand(scratch, 0));
__ str(exponent_reg, MemOperand(scratch, Register::kSizeInBytes));
}
__ Ret();
// Handle store cache miss, replacing the ic with the generic stub.
__ bind(&miss_force_generic);
Handle<Code> ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ Jump(ic, RelocInfo::CODE_TARGET);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM