| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "ast.h" |
| #include "parser.h" |
| #include "scopes.h" |
| #include "string-stream.h" |
| #include "type-info.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ---------------------------------------------------------------------------- |
| // All the Accept member functions for each syntax tree node type. |
| |
| #define DECL_ACCEPT(type) \ |
| void type::Accept(AstVisitor* v) { v->Visit##type(this); } |
| AST_NODE_LIST(DECL_ACCEPT) |
| #undef DECL_ACCEPT |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Implementation of other node functionality. |
| |
| Assignment* ExpressionStatement::StatementAsSimpleAssignment() { |
| return (expression()->AsAssignment() != NULL && |
| !expression()->AsAssignment()->is_compound()) |
| ? expression()->AsAssignment() |
| : NULL; |
| } |
| |
| |
| CountOperation* ExpressionStatement::StatementAsCountOperation() { |
| return expression()->AsCountOperation(); |
| } |
| |
| |
| VariableProxy::VariableProxy(Isolate* isolate, Variable* var) |
| : Expression(isolate), |
| name_(var->name()), |
| var_(NULL), // Will be set by the call to BindTo. |
| is_this_(var->is_this()), |
| inside_with_(false), |
| is_trivial_(false), |
| position_(RelocInfo::kNoPosition) { |
| BindTo(var); |
| } |
| |
| |
| VariableProxy::VariableProxy(Isolate* isolate, |
| Handle<String> name, |
| bool is_this, |
| bool inside_with, |
| int position) |
| : Expression(isolate), |
| name_(name), |
| var_(NULL), |
| is_this_(is_this), |
| inside_with_(inside_with), |
| is_trivial_(false), |
| position_(position) { |
| // Names must be canonicalized for fast equality checks. |
| ASSERT(name->IsSymbol()); |
| } |
| |
| |
| void VariableProxy::BindTo(Variable* var) { |
| ASSERT(var_ == NULL); // must be bound only once |
| ASSERT(var != NULL); // must bind |
| ASSERT((is_this() && var->is_this()) || name_.is_identical_to(var->name())); |
| // Ideally CONST-ness should match. However, this is very hard to achieve |
| // because we don't know the exact semantics of conflicting (const and |
| // non-const) multiple variable declarations, const vars introduced via |
| // eval() etc. Const-ness and variable declarations are a complete mess |
| // in JS. Sigh... |
| var_ = var; |
| var->set_is_used(true); |
| } |
| |
| |
| Assignment::Assignment(Isolate* isolate, |
| Token::Value op, |
| Expression* target, |
| Expression* value, |
| int pos) |
| : Expression(isolate), |
| op_(op), |
| target_(target), |
| value_(value), |
| pos_(pos), |
| binary_operation_(NULL), |
| compound_load_id_(kNoNumber), |
| assignment_id_(GetNextId(isolate)), |
| block_start_(false), |
| block_end_(false), |
| is_monomorphic_(false) { |
| ASSERT(Token::IsAssignmentOp(op)); |
| if (is_compound()) { |
| binary_operation_ = |
| new(isolate->zone()) BinaryOperation(isolate, |
| binary_op(), |
| target, |
| value, |
| pos + 1); |
| compound_load_id_ = GetNextId(isolate); |
| } |
| } |
| |
| |
| Token::Value Assignment::binary_op() const { |
| switch (op_) { |
| case Token::ASSIGN_BIT_OR: return Token::BIT_OR; |
| case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR; |
| case Token::ASSIGN_BIT_AND: return Token::BIT_AND; |
| case Token::ASSIGN_SHL: return Token::SHL; |
| case Token::ASSIGN_SAR: return Token::SAR; |
| case Token::ASSIGN_SHR: return Token::SHR; |
| case Token::ASSIGN_ADD: return Token::ADD; |
| case Token::ASSIGN_SUB: return Token::SUB; |
| case Token::ASSIGN_MUL: return Token::MUL; |
| case Token::ASSIGN_DIV: return Token::DIV; |
| case Token::ASSIGN_MOD: return Token::MOD; |
| default: UNREACHABLE(); |
| } |
| return Token::ILLEGAL; |
| } |
| |
| |
| bool FunctionLiteral::AllowsLazyCompilation() { |
| return scope()->AllowsLazyCompilation(); |
| } |
| |
| |
| ObjectLiteral::Property::Property(Literal* key, Expression* value) { |
| emit_store_ = true; |
| key_ = key; |
| value_ = value; |
| Object* k = *key->handle(); |
| if (k->IsSymbol() && HEAP->Proto_symbol()->Equals(String::cast(k))) { |
| kind_ = PROTOTYPE; |
| } else if (value_->AsMaterializedLiteral() != NULL) { |
| kind_ = MATERIALIZED_LITERAL; |
| } else if (value_->AsLiteral() != NULL) { |
| kind_ = CONSTANT; |
| } else { |
| kind_ = COMPUTED; |
| } |
| } |
| |
| |
| ObjectLiteral::Property::Property(bool is_getter, FunctionLiteral* value) { |
| Isolate* isolate = Isolate::Current(); |
| emit_store_ = true; |
| key_ = new(isolate->zone()) Literal(isolate, value->name()); |
| value_ = value; |
| kind_ = is_getter ? GETTER : SETTER; |
| } |
| |
| |
| bool ObjectLiteral::Property::IsCompileTimeValue() { |
| return kind_ == CONSTANT || |
| (kind_ == MATERIALIZED_LITERAL && |
| CompileTimeValue::IsCompileTimeValue(value_)); |
| } |
| |
| |
| void ObjectLiteral::Property::set_emit_store(bool emit_store) { |
| emit_store_ = emit_store; |
| } |
| |
| |
| bool ObjectLiteral::Property::emit_store() { |
| return emit_store_; |
| } |
| |
| |
| bool IsEqualString(void* first, void* second) { |
| ASSERT((*reinterpret_cast<String**>(first))->IsString()); |
| ASSERT((*reinterpret_cast<String**>(second))->IsString()); |
| Handle<String> h1(reinterpret_cast<String**>(first)); |
| Handle<String> h2(reinterpret_cast<String**>(second)); |
| return (*h1)->Equals(*h2); |
| } |
| |
| |
| bool IsEqualNumber(void* first, void* second) { |
| ASSERT((*reinterpret_cast<Object**>(first))->IsNumber()); |
| ASSERT((*reinterpret_cast<Object**>(second))->IsNumber()); |
| |
| Handle<Object> h1(reinterpret_cast<Object**>(first)); |
| Handle<Object> h2(reinterpret_cast<Object**>(second)); |
| if (h1->IsSmi()) { |
| return h2->IsSmi() && *h1 == *h2; |
| } |
| if (h2->IsSmi()) return false; |
| Handle<HeapNumber> n1 = Handle<HeapNumber>::cast(h1); |
| Handle<HeapNumber> n2 = Handle<HeapNumber>::cast(h2); |
| ASSERT(isfinite(n1->value())); |
| ASSERT(isfinite(n2->value())); |
| return n1->value() == n2->value(); |
| } |
| |
| |
| void ObjectLiteral::CalculateEmitStore() { |
| HashMap properties(&IsEqualString); |
| HashMap elements(&IsEqualNumber); |
| for (int i = this->properties()->length() - 1; i >= 0; i--) { |
| ObjectLiteral::Property* property = this->properties()->at(i); |
| Literal* literal = property->key(); |
| Handle<Object> handle = literal->handle(); |
| |
| if (handle->IsNull()) { |
| continue; |
| } |
| |
| uint32_t hash; |
| HashMap* table; |
| void* key; |
| Factory* factory = Isolate::Current()->factory(); |
| if (handle->IsSymbol()) { |
| Handle<String> name(String::cast(*handle)); |
| if (name->AsArrayIndex(&hash)) { |
| Handle<Object> key_handle = factory->NewNumberFromUint(hash); |
| key = key_handle.location(); |
| table = &elements; |
| } else { |
| key = name.location(); |
| hash = name->Hash(); |
| table = &properties; |
| } |
| } else if (handle->ToArrayIndex(&hash)) { |
| key = handle.location(); |
| table = &elements; |
| } else { |
| ASSERT(handle->IsNumber()); |
| double num = handle->Number(); |
| char arr[100]; |
| Vector<char> buffer(arr, ARRAY_SIZE(arr)); |
| const char* str = DoubleToCString(num, buffer); |
| Handle<String> name = factory->NewStringFromAscii(CStrVector(str)); |
| key = name.location(); |
| hash = name->Hash(); |
| table = &properties; |
| } |
| // If the key of a computed property is in the table, do not emit |
| // a store for the property later. |
| if (property->kind() == ObjectLiteral::Property::COMPUTED) { |
| if (table->Lookup(key, hash, false) != NULL) { |
| property->set_emit_store(false); |
| } |
| } |
| // Add key to the table. |
| table->Lookup(key, hash, true); |
| } |
| } |
| |
| |
| void TargetCollector::AddTarget(Label* target) { |
| // Add the label to the collector, but discard duplicates. |
| int length = targets_.length(); |
| for (int i = 0; i < length; i++) { |
| if (targets_[i] == target) return; |
| } |
| targets_.Add(target); |
| } |
| |
| |
| bool UnaryOperation::ResultOverwriteAllowed() { |
| switch (op_) { |
| case Token::BIT_NOT: |
| case Token::SUB: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| |
| bool BinaryOperation::ResultOverwriteAllowed() { |
| switch (op_) { |
| case Token::COMMA: |
| case Token::OR: |
| case Token::AND: |
| return false; |
| case Token::BIT_OR: |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| case Token::SHL: |
| case Token::SAR: |
| case Token::SHR: |
| case Token::ADD: |
| case Token::SUB: |
| case Token::MUL: |
| case Token::DIV: |
| case Token::MOD: |
| return true; |
| default: |
| UNREACHABLE(); |
| } |
| return false; |
| } |
| |
| |
| bool CompareOperation::IsLiteralCompareTypeof(Expression** expr, |
| Handle<String>* check) { |
| if (op_ != Token::EQ && op_ != Token::EQ_STRICT) return false; |
| |
| UnaryOperation* left_unary = left_->AsUnaryOperation(); |
| UnaryOperation* right_unary = right_->AsUnaryOperation(); |
| Literal* left_literal = left_->AsLiteral(); |
| Literal* right_literal = right_->AsLiteral(); |
| |
| // Check for the pattern: typeof <expression> == <string literal>. |
| if (left_unary != NULL && left_unary->op() == Token::TYPEOF && |
| right_literal != NULL && right_literal->handle()->IsString()) { |
| *expr = left_unary->expression(); |
| *check = Handle<String>::cast(right_literal->handle()); |
| return true; |
| } |
| |
| // Check for the pattern: <string literal> == typeof <expression>. |
| if (right_unary != NULL && right_unary->op() == Token::TYPEOF && |
| left_literal != NULL && left_literal->handle()->IsString()) { |
| *expr = right_unary->expression(); |
| *check = Handle<String>::cast(left_literal->handle()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| bool CompareOperation::IsLiteralCompareUndefined(Expression** expr) { |
| if (op_ != Token::EQ_STRICT) return false; |
| |
| UnaryOperation* left_unary = left_->AsUnaryOperation(); |
| UnaryOperation* right_unary = right_->AsUnaryOperation(); |
| |
| // Check for the pattern: <expression> === void <literal>. |
| if (right_unary != NULL && right_unary->op() == Token::VOID && |
| right_unary->expression()->AsLiteral() != NULL) { |
| *expr = left_; |
| return true; |
| } |
| |
| // Check for the pattern: void <literal> === <expression>. |
| if (left_unary != NULL && left_unary->op() == Token::VOID && |
| left_unary->expression()->AsLiteral() != NULL) { |
| *expr = right_; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Inlining support |
| |
| bool Declaration::IsInlineable() const { |
| return proxy()->var()->IsStackAllocated() && fun() == NULL; |
| } |
| |
| |
| bool TargetCollector::IsInlineable() const { |
| UNREACHABLE(); |
| return false; |
| } |
| |
| |
| bool ForInStatement::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool WithStatement::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool SwitchStatement::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool TryStatement::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool TryCatchStatement::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool TryFinallyStatement::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool DebuggerStatement::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool Throw::IsInlineable() const { |
| return exception()->IsInlineable(); |
| } |
| |
| |
| bool MaterializedLiteral::IsInlineable() const { |
| // TODO(1322): Allow materialized literals. |
| return false; |
| } |
| |
| |
| bool FunctionLiteral::IsInlineable() const { |
| // TODO(1322): Allow materialized literals. |
| return false; |
| } |
| |
| |
| bool ThisFunction::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool SharedFunctionInfoLiteral::IsInlineable() const { |
| return false; |
| } |
| |
| |
| bool ForStatement::IsInlineable() const { |
| return (init() == NULL || init()->IsInlineable()) |
| && (cond() == NULL || cond()->IsInlineable()) |
| && (next() == NULL || next()->IsInlineable()) |
| && body()->IsInlineable(); |
| } |
| |
| |
| bool WhileStatement::IsInlineable() const { |
| return cond()->IsInlineable() |
| && body()->IsInlineable(); |
| } |
| |
| |
| bool DoWhileStatement::IsInlineable() const { |
| return cond()->IsInlineable() |
| && body()->IsInlineable(); |
| } |
| |
| |
| bool ContinueStatement::IsInlineable() const { |
| return true; |
| } |
| |
| |
| bool BreakStatement::IsInlineable() const { |
| return true; |
| } |
| |
| |
| bool EmptyStatement::IsInlineable() const { |
| return true; |
| } |
| |
| |
| bool Literal::IsInlineable() const { |
| return true; |
| } |
| |
| |
| bool Block::IsInlineable() const { |
| const int count = statements_.length(); |
| for (int i = 0; i < count; ++i) { |
| if (!statements_[i]->IsInlineable()) return false; |
| } |
| return true; |
| } |
| |
| |
| bool ExpressionStatement::IsInlineable() const { |
| return expression()->IsInlineable(); |
| } |
| |
| |
| bool IfStatement::IsInlineable() const { |
| return condition()->IsInlineable() |
| && then_statement()->IsInlineable() |
| && else_statement()->IsInlineable(); |
| } |
| |
| |
| bool ReturnStatement::IsInlineable() const { |
| return expression()->IsInlineable(); |
| } |
| |
| |
| bool Conditional::IsInlineable() const { |
| return condition()->IsInlineable() && then_expression()->IsInlineable() && |
| else_expression()->IsInlineable(); |
| } |
| |
| |
| bool VariableProxy::IsInlineable() const { |
| return var()->IsUnallocated() || var()->IsStackAllocated(); |
| } |
| |
| |
| bool Assignment::IsInlineable() const { |
| return target()->IsInlineable() && value()->IsInlineable(); |
| } |
| |
| |
| bool Property::IsInlineable() const { |
| return obj()->IsInlineable() && key()->IsInlineable(); |
| } |
| |
| |
| bool Call::IsInlineable() const { |
| if (!expression()->IsInlineable()) return false; |
| const int count = arguments()->length(); |
| for (int i = 0; i < count; ++i) { |
| if (!arguments()->at(i)->IsInlineable()) return false; |
| } |
| return true; |
| } |
| |
| |
| bool CallNew::IsInlineable() const { |
| if (!expression()->IsInlineable()) return false; |
| const int count = arguments()->length(); |
| for (int i = 0; i < count; ++i) { |
| if (!arguments()->at(i)->IsInlineable()) return false; |
| } |
| return true; |
| } |
| |
| |
| bool CallRuntime::IsInlineable() const { |
| // Don't try to inline JS runtime calls because we don't (currently) even |
| // optimize them. |
| if (is_jsruntime()) return false; |
| // Don't inline the %_ArgumentsLength or %_Arguments because their |
| // implementation will not work. There is no stack frame to get them |
| // from. |
| if (function()->intrinsic_type == Runtime::INLINE && |
| (name()->IsEqualTo(CStrVector("_ArgumentsLength")) || |
| name()->IsEqualTo(CStrVector("_Arguments")))) { |
| return false; |
| } |
| const int count = arguments()->length(); |
| for (int i = 0; i < count; ++i) { |
| if (!arguments()->at(i)->IsInlineable()) return false; |
| } |
| return true; |
| } |
| |
| |
| bool UnaryOperation::IsInlineable() const { |
| return expression()->IsInlineable(); |
| } |
| |
| |
| bool BinaryOperation::IsInlineable() const { |
| return left()->IsInlineable() && right()->IsInlineable(); |
| } |
| |
| |
| bool CompareOperation::IsInlineable() const { |
| return left()->IsInlineable() && right()->IsInlineable(); |
| } |
| |
| |
| bool CompareToNull::IsInlineable() const { |
| return expression()->IsInlineable(); |
| } |
| |
| |
| bool CountOperation::IsInlineable() const { |
| return expression()->IsInlineable(); |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Recording of type feedback |
| |
| void Property::RecordTypeFeedback(TypeFeedbackOracle* oracle) { |
| // Record type feedback from the oracle in the AST. |
| is_monomorphic_ = oracle->LoadIsMonomorphicNormal(this); |
| receiver_types_.Clear(); |
| if (key()->IsPropertyName()) { |
| if (oracle->LoadIsBuiltin(this, Builtins::kLoadIC_ArrayLength)) { |
| is_array_length_ = true; |
| } else if (oracle->LoadIsBuiltin(this, Builtins::kLoadIC_StringLength)) { |
| is_string_length_ = true; |
| } else if (oracle->LoadIsBuiltin(this, |
| Builtins::kLoadIC_FunctionPrototype)) { |
| is_function_prototype_ = true; |
| } else { |
| Literal* lit_key = key()->AsLiteral(); |
| ASSERT(lit_key != NULL && lit_key->handle()->IsString()); |
| Handle<String> name = Handle<String>::cast(lit_key->handle()); |
| oracle->LoadReceiverTypes(this, name, &receiver_types_); |
| } |
| } else if (oracle->LoadIsBuiltin(this, Builtins::kKeyedLoadIC_String)) { |
| is_string_access_ = true; |
| } else if (is_monomorphic_) { |
| receiver_types_.Add(oracle->LoadMonomorphicReceiverType(this)); |
| } else if (oracle->LoadIsMegamorphicWithTypeInfo(this)) { |
| receiver_types_.Reserve(kMaxKeyedPolymorphism); |
| oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_); |
| } |
| } |
| |
| |
| void Assignment::RecordTypeFeedback(TypeFeedbackOracle* oracle) { |
| Property* prop = target()->AsProperty(); |
| ASSERT(prop != NULL); |
| is_monomorphic_ = oracle->StoreIsMonomorphicNormal(this); |
| receiver_types_.Clear(); |
| if (prop->key()->IsPropertyName()) { |
| Literal* lit_key = prop->key()->AsLiteral(); |
| ASSERT(lit_key != NULL && lit_key->handle()->IsString()); |
| Handle<String> name = Handle<String>::cast(lit_key->handle()); |
| oracle->StoreReceiverTypes(this, name, &receiver_types_); |
| } else if (is_monomorphic_) { |
| // Record receiver type for monomorphic keyed stores. |
| receiver_types_.Add(oracle->StoreMonomorphicReceiverType(this)); |
| } else if (oracle->StoreIsMegamorphicWithTypeInfo(this)) { |
| receiver_types_.Reserve(kMaxKeyedPolymorphism); |
| oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_); |
| } |
| } |
| |
| |
| void CountOperation::RecordTypeFeedback(TypeFeedbackOracle* oracle) { |
| is_monomorphic_ = oracle->StoreIsMonomorphicNormal(this); |
| receiver_types_.Clear(); |
| if (is_monomorphic_) { |
| // Record receiver type for monomorphic keyed stores. |
| receiver_types_.Add(oracle->StoreMonomorphicReceiverType(this)); |
| } else if (oracle->StoreIsMegamorphicWithTypeInfo(this)) { |
| receiver_types_.Reserve(kMaxKeyedPolymorphism); |
| oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_); |
| } |
| } |
| |
| |
| void CaseClause::RecordTypeFeedback(TypeFeedbackOracle* oracle) { |
| TypeInfo info = oracle->SwitchType(this); |
| if (info.IsSmi()) { |
| compare_type_ = SMI_ONLY; |
| } else if (info.IsNonPrimitive()) { |
| compare_type_ = OBJECT_ONLY; |
| } else { |
| ASSERT(compare_type_ == NONE); |
| } |
| } |
| |
| |
| static bool CanCallWithoutIC(Handle<JSFunction> target, int arity) { |
| SharedFunctionInfo* info = target->shared(); |
| // If the number of formal parameters of the target function does |
| // not match the number of arguments we're passing, we don't want to |
| // deal with it. Otherwise, we can call it directly. |
| return !target->NeedsArgumentsAdaption() || |
| info->formal_parameter_count() == arity; |
| } |
| |
| |
| bool Call::ComputeTarget(Handle<Map> type, Handle<String> name) { |
| if (check_type_ == RECEIVER_MAP_CHECK) { |
| // For primitive checks the holder is set up to point to the |
| // corresponding prototype object, i.e. one step of the algorithm |
| // below has been already performed. |
| // For non-primitive checks we clear it to allow computing targets |
| // for polymorphic calls. |
| holder_ = Handle<JSObject>::null(); |
| } |
| while (true) { |
| LookupResult lookup; |
| type->LookupInDescriptors(NULL, *name, &lookup); |
| // If the function wasn't found directly in the map, we start |
| // looking upwards through the prototype chain. |
| if (!lookup.IsFound() && type->prototype()->IsJSObject()) { |
| holder_ = Handle<JSObject>(JSObject::cast(type->prototype())); |
| type = Handle<Map>(holder()->map()); |
| } else if (lookup.IsProperty() && lookup.type() == CONSTANT_FUNCTION) { |
| target_ = Handle<JSFunction>(lookup.GetConstantFunctionFromMap(*type)); |
| return CanCallWithoutIC(target_, arguments()->length()); |
| } else { |
| return false; |
| } |
| } |
| } |
| |
| |
| bool Call::ComputeGlobalTarget(Handle<GlobalObject> global, |
| LookupResult* lookup) { |
| target_ = Handle<JSFunction>::null(); |
| cell_ = Handle<JSGlobalPropertyCell>::null(); |
| ASSERT(lookup->IsProperty() && |
| lookup->type() == NORMAL && |
| lookup->holder() == *global); |
| cell_ = Handle<JSGlobalPropertyCell>(global->GetPropertyCell(lookup)); |
| if (cell_->value()->IsJSFunction()) { |
| Handle<JSFunction> candidate(JSFunction::cast(cell_->value())); |
| // If the function is in new space we assume it's more likely to |
| // change and thus prefer the general IC code. |
| if (!HEAP->InNewSpace(*candidate) && |
| CanCallWithoutIC(candidate, arguments()->length())) { |
| target_ = candidate; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| void Call::RecordTypeFeedback(TypeFeedbackOracle* oracle, |
| CallKind call_kind) { |
| Property* property = expression()->AsProperty(); |
| ASSERT(property != NULL); |
| // Specialize for the receiver types seen at runtime. |
| Literal* key = property->key()->AsLiteral(); |
| ASSERT(key != NULL && key->handle()->IsString()); |
| Handle<String> name = Handle<String>::cast(key->handle()); |
| receiver_types_.Clear(); |
| oracle->CallReceiverTypes(this, name, call_kind, &receiver_types_); |
| #ifdef DEBUG |
| if (FLAG_enable_slow_asserts) { |
| int length = receiver_types_.length(); |
| for (int i = 0; i < length; i++) { |
| Handle<Map> map = receiver_types_.at(i); |
| ASSERT(!map.is_null() && *map != NULL); |
| } |
| } |
| #endif |
| is_monomorphic_ = oracle->CallIsMonomorphic(this); |
| check_type_ = oracle->GetCallCheckType(this); |
| if (is_monomorphic_) { |
| Handle<Map> map; |
| if (receiver_types_.length() > 0) { |
| ASSERT(check_type_ == RECEIVER_MAP_CHECK); |
| map = receiver_types_.at(0); |
| } else { |
| ASSERT(check_type_ != RECEIVER_MAP_CHECK); |
| holder_ = Handle<JSObject>( |
| oracle->GetPrototypeForPrimitiveCheck(check_type_)); |
| map = Handle<Map>(holder_->map()); |
| } |
| is_monomorphic_ = ComputeTarget(map, name); |
| } |
| } |
| |
| |
| void CompareOperation::RecordTypeFeedback(TypeFeedbackOracle* oracle) { |
| TypeInfo info = oracle->CompareType(this); |
| if (info.IsSmi()) { |
| compare_type_ = SMI_ONLY; |
| } else if (info.IsNonPrimitive()) { |
| compare_type_ = OBJECT_ONLY; |
| } else { |
| ASSERT(compare_type_ == NONE); |
| } |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Implementation of AstVisitor |
| |
| bool AstVisitor::CheckStackOverflow() { |
| if (stack_overflow_) return true; |
| StackLimitCheck check(isolate_); |
| if (!check.HasOverflowed()) return false; |
| return (stack_overflow_ = true); |
| } |
| |
| |
| void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) { |
| for (int i = 0; i < declarations->length(); i++) { |
| Visit(declarations->at(i)); |
| } |
| } |
| |
| |
| void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) { |
| for (int i = 0; i < statements->length(); i++) { |
| Visit(statements->at(i)); |
| } |
| } |
| |
| |
| void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) { |
| for (int i = 0; i < expressions->length(); i++) { |
| // The variable statement visiting code may pass NULL expressions |
| // to this code. Maybe this should be handled by introducing an |
| // undefined expression or literal? Revisit this code if this |
| // changes |
| Expression* expression = expressions->at(i); |
| if (expression != NULL) Visit(expression); |
| } |
| } |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Regular expressions |
| |
| #define MAKE_ACCEPT(Name) \ |
| void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \ |
| return visitor->Visit##Name(this, data); \ |
| } |
| FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT) |
| #undef MAKE_ACCEPT |
| |
| #define MAKE_TYPE_CASE(Name) \ |
| RegExp##Name* RegExpTree::As##Name() { \ |
| return NULL; \ |
| } \ |
| bool RegExpTree::Is##Name() { return false; } |
| FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE) |
| #undef MAKE_TYPE_CASE |
| |
| #define MAKE_TYPE_CASE(Name) \ |
| RegExp##Name* RegExp##Name::As##Name() { \ |
| return this; \ |
| } \ |
| bool RegExp##Name::Is##Name() { return true; } |
| FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE) |
| #undef MAKE_TYPE_CASE |
| |
| RegExpEmpty RegExpEmpty::kInstance; |
| |
| |
| static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) { |
| Interval result = Interval::Empty(); |
| for (int i = 0; i < children->length(); i++) |
| result = result.Union(children->at(i)->CaptureRegisters()); |
| return result; |
| } |
| |
| |
| Interval RegExpAlternative::CaptureRegisters() { |
| return ListCaptureRegisters(nodes()); |
| } |
| |
| |
| Interval RegExpDisjunction::CaptureRegisters() { |
| return ListCaptureRegisters(alternatives()); |
| } |
| |
| |
| Interval RegExpLookahead::CaptureRegisters() { |
| return body()->CaptureRegisters(); |
| } |
| |
| |
| Interval RegExpCapture::CaptureRegisters() { |
| Interval self(StartRegister(index()), EndRegister(index())); |
| return self.Union(body()->CaptureRegisters()); |
| } |
| |
| |
| Interval RegExpQuantifier::CaptureRegisters() { |
| return body()->CaptureRegisters(); |
| } |
| |
| |
| bool RegExpAssertion::IsAnchoredAtStart() { |
| return type() == RegExpAssertion::START_OF_INPUT; |
| } |
| |
| |
| bool RegExpAssertion::IsAnchoredAtEnd() { |
| return type() == RegExpAssertion::END_OF_INPUT; |
| } |
| |
| |
| bool RegExpAlternative::IsAnchoredAtStart() { |
| ZoneList<RegExpTree*>* nodes = this->nodes(); |
| for (int i = 0; i < nodes->length(); i++) { |
| RegExpTree* node = nodes->at(i); |
| if (node->IsAnchoredAtStart()) { return true; } |
| if (node->max_match() > 0) { return false; } |
| } |
| return false; |
| } |
| |
| |
| bool RegExpAlternative::IsAnchoredAtEnd() { |
| ZoneList<RegExpTree*>* nodes = this->nodes(); |
| for (int i = nodes->length() - 1; i >= 0; i--) { |
| RegExpTree* node = nodes->at(i); |
| if (node->IsAnchoredAtEnd()) { return true; } |
| if (node->max_match() > 0) { return false; } |
| } |
| return false; |
| } |
| |
| |
| bool RegExpDisjunction::IsAnchoredAtStart() { |
| ZoneList<RegExpTree*>* alternatives = this->alternatives(); |
| for (int i = 0; i < alternatives->length(); i++) { |
| if (!alternatives->at(i)->IsAnchoredAtStart()) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| bool RegExpDisjunction::IsAnchoredAtEnd() { |
| ZoneList<RegExpTree*>* alternatives = this->alternatives(); |
| for (int i = 0; i < alternatives->length(); i++) { |
| if (!alternatives->at(i)->IsAnchoredAtEnd()) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| bool RegExpLookahead::IsAnchoredAtStart() { |
| return is_positive() && body()->IsAnchoredAtStart(); |
| } |
| |
| |
| bool RegExpCapture::IsAnchoredAtStart() { |
| return body()->IsAnchoredAtStart(); |
| } |
| |
| |
| bool RegExpCapture::IsAnchoredAtEnd() { |
| return body()->IsAnchoredAtEnd(); |
| } |
| |
| |
| // Convert regular expression trees to a simple sexp representation. |
| // This representation should be different from the input grammar |
| // in as many cases as possible, to make it more difficult for incorrect |
| // parses to look as correct ones which is likely if the input and |
| // output formats are alike. |
| class RegExpUnparser: public RegExpVisitor { |
| public: |
| RegExpUnparser(); |
| void VisitCharacterRange(CharacterRange that); |
| SmartArrayPointer<const char> ToString() { return stream_.ToCString(); } |
| #define MAKE_CASE(Name) virtual void* Visit##Name(RegExp##Name*, void* data); |
| FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE) |
| #undef MAKE_CASE |
| private: |
| StringStream* stream() { return &stream_; } |
| HeapStringAllocator alloc_; |
| StringStream stream_; |
| }; |
| |
| |
| RegExpUnparser::RegExpUnparser() : stream_(&alloc_) { |
| } |
| |
| |
| void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) { |
| stream()->Add("(|"); |
| for (int i = 0; i < that->alternatives()->length(); i++) { |
| stream()->Add(" "); |
| that->alternatives()->at(i)->Accept(this, data); |
| } |
| stream()->Add(")"); |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) { |
| stream()->Add("(:"); |
| for (int i = 0; i < that->nodes()->length(); i++) { |
| stream()->Add(" "); |
| that->nodes()->at(i)->Accept(this, data); |
| } |
| stream()->Add(")"); |
| return NULL; |
| } |
| |
| |
| void RegExpUnparser::VisitCharacterRange(CharacterRange that) { |
| stream()->Add("%k", that.from()); |
| if (!that.IsSingleton()) { |
| stream()->Add("-%k", that.to()); |
| } |
| } |
| |
| |
| |
| void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that, |
| void* data) { |
| if (that->is_negated()) |
| stream()->Add("^"); |
| stream()->Add("["); |
| for (int i = 0; i < that->ranges()->length(); i++) { |
| if (i > 0) stream()->Add(" "); |
| VisitCharacterRange(that->ranges()->at(i)); |
| } |
| stream()->Add("]"); |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) { |
| switch (that->type()) { |
| case RegExpAssertion::START_OF_INPUT: |
| stream()->Add("@^i"); |
| break; |
| case RegExpAssertion::END_OF_INPUT: |
| stream()->Add("@$i"); |
| break; |
| case RegExpAssertion::START_OF_LINE: |
| stream()->Add("@^l"); |
| break; |
| case RegExpAssertion::END_OF_LINE: |
| stream()->Add("@$l"); |
| break; |
| case RegExpAssertion::BOUNDARY: |
| stream()->Add("@b"); |
| break; |
| case RegExpAssertion::NON_BOUNDARY: |
| stream()->Add("@B"); |
| break; |
| } |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) { |
| stream()->Add("'"); |
| Vector<const uc16> chardata = that->data(); |
| for (int i = 0; i < chardata.length(); i++) { |
| stream()->Add("%k", chardata[i]); |
| } |
| stream()->Add("'"); |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitText(RegExpText* that, void* data) { |
| if (that->elements()->length() == 1) { |
| that->elements()->at(0).data.u_atom->Accept(this, data); |
| } else { |
| stream()->Add("(!"); |
| for (int i = 0; i < that->elements()->length(); i++) { |
| stream()->Add(" "); |
| that->elements()->at(i).data.u_atom->Accept(this, data); |
| } |
| stream()->Add(")"); |
| } |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) { |
| stream()->Add("(# %i ", that->min()); |
| if (that->max() == RegExpTree::kInfinity) { |
| stream()->Add("- "); |
| } else { |
| stream()->Add("%i ", that->max()); |
| } |
| stream()->Add(that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n "); |
| that->body()->Accept(this, data); |
| stream()->Add(")"); |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) { |
| stream()->Add("(^ "); |
| that->body()->Accept(this, data); |
| stream()->Add(")"); |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitLookahead(RegExpLookahead* that, void* data) { |
| stream()->Add("(-> "); |
| stream()->Add(that->is_positive() ? "+ " : "- "); |
| that->body()->Accept(this, data); |
| stream()->Add(")"); |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitBackReference(RegExpBackReference* that, |
| void* data) { |
| stream()->Add("(<- %i)", that->index()); |
| return NULL; |
| } |
| |
| |
| void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) { |
| stream()->Put('%'); |
| return NULL; |
| } |
| |
| |
| SmartArrayPointer<const char> RegExpTree::ToString() { |
| RegExpUnparser unparser; |
| Accept(&unparser, NULL); |
| return unparser.ToString(); |
| } |
| |
| |
| RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives) |
| : alternatives_(alternatives) { |
| ASSERT(alternatives->length() > 1); |
| RegExpTree* first_alternative = alternatives->at(0); |
| min_match_ = first_alternative->min_match(); |
| max_match_ = first_alternative->max_match(); |
| for (int i = 1; i < alternatives->length(); i++) { |
| RegExpTree* alternative = alternatives->at(i); |
| min_match_ = Min(min_match_, alternative->min_match()); |
| max_match_ = Max(max_match_, alternative->max_match()); |
| } |
| } |
| |
| |
| RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes) |
| : nodes_(nodes) { |
| ASSERT(nodes->length() > 1); |
| min_match_ = 0; |
| max_match_ = 0; |
| for (int i = 0; i < nodes->length(); i++) { |
| RegExpTree* node = nodes->at(i); |
| min_match_ += node->min_match(); |
| int node_max_match = node->max_match(); |
| if (kInfinity - max_match_ < node_max_match) { |
| max_match_ = kInfinity; |
| } else { |
| max_match_ += node->max_match(); |
| } |
| } |
| } |
| |
| |
| CaseClause::CaseClause(Isolate* isolate, |
| Expression* label, |
| ZoneList<Statement*>* statements, |
| int pos) |
| : label_(label), |
| statements_(statements), |
| position_(pos), |
| compare_type_(NONE), |
| compare_id_(AstNode::GetNextId(isolate)), |
| entry_id_(AstNode::GetNextId(isolate)) { |
| } |
| |
| } } // namespace v8::internal |