blob: 5630ce3913fa888b6419298e299082ba6900108f [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "factory.h"
#include "hydrogen.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/lithium-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/lithium-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/lithium-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/lithium-mips.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \
return builder->Do##type(this); \
}
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
const char* Representation::Mnemonic() const {
switch (kind_) {
case kNone: return "v";
case kTagged: return "t";
case kDouble: return "d";
case kInteger32: return "i";
case kExternal: return "x";
default:
UNREACHABLE();
return NULL;
}
}
void HValue::AssumeRepresentation(Representation r) {
if (CheckFlag(kFlexibleRepresentation)) {
ChangeRepresentation(r);
// The representation of the value is dictated by type feedback and
// will not be changed later.
ClearFlag(kFlexibleRepresentation);
}
}
static int32_t ConvertAndSetOverflow(int64_t result, bool* overflow) {
if (result > kMaxInt) {
*overflow = true;
return kMaxInt;
}
if (result < kMinInt) {
*overflow = true;
return kMinInt;
}
return static_cast<int32_t>(result);
}
static int32_t AddWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
return ConvertAndSetOverflow(result, overflow);
}
static int32_t SubWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
return ConvertAndSetOverflow(result, overflow);
}
static int32_t MulWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
return ConvertAndSetOverflow(result, overflow);
}
int32_t Range::Mask() const {
if (lower_ == upper_) return lower_;
if (lower_ >= 0) {
int32_t res = 1;
while (res < upper_) {
res = (res << 1) | 1;
}
return res;
}
return 0xffffffff;
}
void Range::AddConstant(int32_t value) {
if (value == 0) return;
bool may_overflow = false; // Overflow is ignored here.
lower_ = AddWithoutOverflow(lower_, value, &may_overflow);
upper_ = AddWithoutOverflow(upper_, value, &may_overflow);
Verify();
}
void Range::Intersect(Range* other) {
upper_ = Min(upper_, other->upper_);
lower_ = Max(lower_, other->lower_);
bool b = CanBeMinusZero() && other->CanBeMinusZero();
set_can_be_minus_zero(b);
}
void Range::Union(Range* other) {
upper_ = Max(upper_, other->upper_);
lower_ = Min(lower_, other->lower_);
bool b = CanBeMinusZero() || other->CanBeMinusZero();
set_can_be_minus_zero(b);
}
void Range::Sar(int32_t value) {
int32_t bits = value & 0x1F;
lower_ = lower_ >> bits;
upper_ = upper_ >> bits;
set_can_be_minus_zero(false);
}
void Range::Shl(int32_t value) {
int32_t bits = value & 0x1F;
int old_lower = lower_;
int old_upper = upper_;
lower_ = lower_ << bits;
upper_ = upper_ << bits;
if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
upper_ = kMaxInt;
lower_ = kMinInt;
}
set_can_be_minus_zero(false);
}
bool Range::AddAndCheckOverflow(Range* other) {
bool may_overflow = false;
lower_ = AddWithoutOverflow(lower_, other->lower(), &may_overflow);
upper_ = AddWithoutOverflow(upper_, other->upper(), &may_overflow);
KeepOrder();
Verify();
return may_overflow;
}
bool Range::SubAndCheckOverflow(Range* other) {
bool may_overflow = false;
lower_ = SubWithoutOverflow(lower_, other->upper(), &may_overflow);
upper_ = SubWithoutOverflow(upper_, other->lower(), &may_overflow);
KeepOrder();
Verify();
return may_overflow;
}
void Range::KeepOrder() {
if (lower_ > upper_) {
int32_t tmp = lower_;
lower_ = upper_;
upper_ = tmp;
}
}
void Range::Verify() const {
ASSERT(lower_ <= upper_);
}
bool Range::MulAndCheckOverflow(Range* other) {
bool may_overflow = false;
int v1 = MulWithoutOverflow(lower_, other->lower(), &may_overflow);
int v2 = MulWithoutOverflow(lower_, other->upper(), &may_overflow);
int v3 = MulWithoutOverflow(upper_, other->lower(), &may_overflow);
int v4 = MulWithoutOverflow(upper_, other->upper(), &may_overflow);
lower_ = Min(Min(v1, v2), Min(v3, v4));
upper_ = Max(Max(v1, v2), Max(v3, v4));
Verify();
return may_overflow;
}
const char* HType::ToString() {
switch (type_) {
case kTagged: return "tagged";
case kTaggedPrimitive: return "primitive";
case kTaggedNumber: return "number";
case kSmi: return "smi";
case kHeapNumber: return "heap-number";
case kString: return "string";
case kBoolean: return "boolean";
case kNonPrimitive: return "non-primitive";
case kJSArray: return "array";
case kJSObject: return "object";
case kUninitialized: return "uninitialized";
}
UNREACHABLE();
return "Unreachable code";
}
const char* HType::ToShortString() {
switch (type_) {
case kTagged: return "t";
case kTaggedPrimitive: return "p";
case kTaggedNumber: return "n";
case kSmi: return "m";
case kHeapNumber: return "h";
case kString: return "s";
case kBoolean: return "b";
case kNonPrimitive: return "r";
case kJSArray: return "a";
case kJSObject: return "o";
case kUninitialized: return "z";
}
UNREACHABLE();
return "Unreachable code";
}
HType HType::TypeFromValue(Handle<Object> value) {
HType result = HType::Tagged();
if (value->IsSmi()) {
result = HType::Smi();
} else if (value->IsHeapNumber()) {
result = HType::HeapNumber();
} else if (value->IsString()) {
result = HType::String();
} else if (value->IsBoolean()) {
result = HType::Boolean();
} else if (value->IsJSObject()) {
result = HType::JSObject();
} else if (value->IsJSArray()) {
result = HType::JSArray();
}
return result;
}
bool HValue::IsDefinedAfter(HBasicBlock* other) const {
return block()->block_id() > other->block_id();
}
HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
Advance();
}
void HUseIterator::Advance() {
current_ = next_;
if (current_ != NULL) {
next_ = current_->tail();
value_ = current_->value();
index_ = current_->index();
}
}
int HValue::UseCount() const {
int count = 0;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
return count;
}
HUseListNode* HValue::RemoveUse(HValue* value, int index) {
HUseListNode* previous = NULL;
HUseListNode* current = use_list_;
while (current != NULL) {
if (current->value() == value && current->index() == index) {
if (previous == NULL) {
use_list_ = current->tail();
} else {
previous->set_tail(current->tail());
}
break;
}
previous = current;
current = current->tail();
}
#ifdef DEBUG
// Do not reuse use list nodes in debug mode, zap them.
if (current != NULL) {
HUseListNode* temp =
new HUseListNode(current->value(), current->index(), NULL);
current->Zap();
current = temp;
}
#endif
return current;
}
bool HValue::Equals(HValue* other) {
if (other->opcode() != opcode()) return false;
if (!other->representation().Equals(representation())) return false;
if (!other->type_.Equals(type_)) return false;
if (other->flags() != flags()) return false;
if (OperandCount() != other->OperandCount()) return false;
for (int i = 0; i < OperandCount(); ++i) {
if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
}
bool result = DataEquals(other);
ASSERT(!result || Hashcode() == other->Hashcode());
return result;
}
intptr_t HValue::Hashcode() {
intptr_t result = opcode();
int count = OperandCount();
for (int i = 0; i < count; ++i) {
result = result * 19 + OperandAt(i)->id() + (result >> 7);
}
return result;
}
const char* HValue::Mnemonic() const {
switch (opcode()) {
#define MAKE_CASE(type) case k##type: return #type;
HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
#undef MAKE_CASE
case kPhi: return "Phi";
default: return "";
}
}
void HValue::SetOperandAt(int index, HValue* value) {
RegisterUse(index, value);
InternalSetOperandAt(index, value);
}
void HValue::DeleteAndReplaceWith(HValue* other) {
// We replace all uses first, so Delete can assert that there are none.
if (other != NULL) ReplaceAllUsesWith(other);
ASSERT(HasNoUses());
ClearOperands();
DeleteFromGraph();
}
void HValue::ReplaceAllUsesWith(HValue* other) {
while (use_list_ != NULL) {
HUseListNode* list_node = use_list_;
HValue* value = list_node->value();
ASSERT(!value->block()->IsStartBlock());
value->InternalSetOperandAt(list_node->index(), other);
use_list_ = list_node->tail();
list_node->set_tail(other->use_list_);
other->use_list_ = list_node;
}
}
void HValue::ClearOperands() {
for (int i = 0; i < OperandCount(); ++i) {
SetOperandAt(i, NULL);
}
}
void HValue::SetBlock(HBasicBlock* block) {
ASSERT(block_ == NULL || block == NULL);
block_ = block;
if (id_ == kNoNumber && block != NULL) {
id_ = block->graph()->GetNextValueID(this);
}
}
void HValue::PrintTypeTo(StringStream* stream) {
if (!representation().IsTagged() || type().Equals(HType::Tagged())) return;
stream->Add(" type[%s]", type().ToString());
}
void HValue::PrintRangeTo(StringStream* stream) {
if (range() == NULL || range()->IsMostGeneric()) return;
stream->Add(" range[%d,%d,m0=%d]",
range()->lower(),
range()->upper(),
static_cast<int>(range()->CanBeMinusZero()));
}
void HValue::PrintChangesTo(StringStream* stream) {
int changes_flags = ChangesFlags();
if (changes_flags == 0) return;
stream->Add(" changes[");
if (changes_flags == AllSideEffects()) {
stream->Add("*");
} else {
bool add_comma = false;
#define PRINT_DO(type) \
if (changes_flags & (1 << kChanges##type)) { \
if (add_comma) stream->Add(","); \
add_comma = true; \
stream->Add(#type); \
}
GVN_FLAG_LIST(PRINT_DO);
#undef PRINT_DO
}
stream->Add("]");
}
void HValue::PrintNameTo(StringStream* stream) {
stream->Add("%s%d", representation_.Mnemonic(), id());
}
bool HValue::UpdateInferredType() {
HType type = CalculateInferredType();
bool result = (!type.Equals(type_));
type_ = type;
return result;
}
void HValue::RegisterUse(int index, HValue* new_value) {
HValue* old_value = OperandAt(index);
if (old_value == new_value) return;
HUseListNode* removed = NULL;
if (old_value != NULL) {
removed = old_value->RemoveUse(this, index);
}
if (new_value != NULL) {
if (removed == NULL) {
new_value->use_list_ =
new HUseListNode(this, index, new_value->use_list_);
} else {
removed->set_tail(new_value->use_list_);
new_value->use_list_ = removed;
}
}
}
void HValue::AddNewRange(Range* r) {
if (!HasRange()) ComputeInitialRange();
if (!HasRange()) range_ = new Range();
ASSERT(HasRange());
r->StackUpon(range_);
range_ = r;
}
void HValue::RemoveLastAddedRange() {
ASSERT(HasRange());
ASSERT(range_->next() != NULL);
range_ = range_->next();
}
void HValue::ComputeInitialRange() {
ASSERT(!HasRange());
range_ = InferRange();
ASSERT(HasRange());
}
void HInstruction::PrintTo(StringStream* stream) {
PrintMnemonicTo(stream);
PrintDataTo(stream);
PrintRangeTo(stream);
PrintChangesTo(stream);
PrintTypeTo(stream);
}
void HInstruction::PrintMnemonicTo(StringStream* stream) {
stream->Add("%s ", Mnemonic());
}
void HInstruction::Unlink() {
ASSERT(IsLinked());
ASSERT(!IsControlInstruction()); // Must never move control instructions.
ASSERT(!IsBlockEntry()); // Doesn't make sense to delete these.
ASSERT(previous_ != NULL);
previous_->next_ = next_;
if (next_ == NULL) {
ASSERT(block()->last() == this);
block()->set_last(previous_);
} else {
next_->previous_ = previous_;
}
clear_block();
}
void HInstruction::InsertBefore(HInstruction* next) {
ASSERT(!IsLinked());
ASSERT(!next->IsBlockEntry());
ASSERT(!IsControlInstruction());
ASSERT(!next->block()->IsStartBlock());
ASSERT(next->previous_ != NULL);
HInstruction* prev = next->previous();
prev->next_ = this;
next->previous_ = this;
next_ = next;
previous_ = prev;
SetBlock(next->block());
}
void HInstruction::InsertAfter(HInstruction* previous) {
ASSERT(!IsLinked());
ASSERT(!previous->IsControlInstruction());
ASSERT(!IsControlInstruction() || previous->next_ == NULL);
HBasicBlock* block = previous->block();
// Never insert anything except constants into the start block after finishing
// it.
if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
ASSERT(block->end()->SecondSuccessor() == NULL);
InsertAfter(block->end()->FirstSuccessor()->first());
return;
}
// If we're inserting after an instruction with side-effects that is
// followed by a simulate instruction, we need to insert after the
// simulate instruction instead.
HInstruction* next = previous->next_;
if (previous->HasSideEffects() && next != NULL) {
ASSERT(next->IsSimulate());
previous = next;
next = previous->next_;
}
previous_ = previous;
next_ = next;
SetBlock(block);
previous->next_ = this;
if (next != NULL) next->previous_ = this;
}
#ifdef DEBUG
void HInstruction::Verify() {
// Verify that input operands are defined before use.
HBasicBlock* cur_block = block();
for (int i = 0; i < OperandCount(); ++i) {
HValue* other_operand = OperandAt(i);
HBasicBlock* other_block = other_operand->block();
if (cur_block == other_block) {
if (!other_operand->IsPhi()) {
HInstruction* cur = cur_block->first();
while (cur != NULL) {
ASSERT(cur != this); // We should reach other_operand before!
if (cur == other_operand) break;
cur = cur->next();
}
// Must reach other operand in the same block!
ASSERT(cur == other_operand);
}
} else {
// If the following assert fires, you may have forgotten an
// AddInstruction.
ASSERT(other_block->Dominates(cur_block));
}
}
// Verify that instructions that may have side-effects are followed
// by a simulate instruction.
if (HasSideEffects() && !IsOsrEntry()) {
ASSERT(next()->IsSimulate());
}
// Verify that instructions that can be eliminated by GVN have overridden
// HValue::DataEquals. The default implementation is UNREACHABLE. We
// don't actually care whether DataEquals returns true or false here.
if (CheckFlag(kUseGVN)) DataEquals(this);
}
#endif
void HUnaryCall::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" ");
stream->Add("#%d", argument_count());
}
void HBinaryCall::PrintDataTo(StringStream* stream) {
first()->PrintNameTo(stream);
stream->Add(" ");
second()->PrintNameTo(stream);
stream->Add(" ");
stream->Add("#%d", argument_count());
}
void HBoundsCheck::PrintDataTo(StringStream* stream) {
index()->PrintNameTo(stream);
stream->Add(" ");
length()->PrintNameTo(stream);
}
void HCallConstantFunction::PrintDataTo(StringStream* stream) {
if (IsApplyFunction()) {
stream->Add("optimized apply ");
} else {
stream->Add("%o ", function()->shared()->DebugName());
}
stream->Add("#%d", argument_count());
}
void HCallNamed::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
HUnaryCall::PrintDataTo(stream);
}
void HCallGlobal::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
HUnaryCall::PrintDataTo(stream);
}
void HCallKnownGlobal::PrintDataTo(StringStream* stream) {
stream->Add("o ", target()->shared()->DebugName());
stream->Add("#%d", argument_count());
}
void HCallRuntime::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
stream->Add("#%d", argument_count());
}
void HClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("class_of_test(");
value()->PrintNameTo(stream);
stream->Add(", \"%o\")", *class_name());
}
void HAccessArgumentsAt::PrintDataTo(StringStream* stream) {
arguments()->PrintNameTo(stream);
stream->Add("[");
index()->PrintNameTo(stream);
stream->Add("], length ");
length()->PrintNameTo(stream);
}
void HControlInstruction::PrintDataTo(StringStream* stream) {
stream->Add(" goto (");
bool first_block = true;
for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
stream->Add(first_block ? "B%d" : ", B%d", it.Current()->block_id());
first_block = false;
}
stream->Add(")");
}
void HUnaryControlInstruction::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
HControlInstruction::PrintDataTo(stream);
}
void HReturn::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
}
void HCompareMap::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" (%p)", *map());
HControlInstruction::PrintDataTo(stream);
}
const char* HUnaryMathOperation::OpName() const {
switch (op()) {
case kMathFloor: return "floor";
case kMathRound: return "round";
case kMathCeil: return "ceil";
case kMathAbs: return "abs";
case kMathLog: return "log";
case kMathSin: return "sin";
case kMathCos: return "cos";
case kMathTan: return "tan";
case kMathASin: return "asin";
case kMathACos: return "acos";
case kMathATan: return "atan";
case kMathExp: return "exp";
case kMathSqrt: return "sqrt";
default: break;
}
return "(unknown operation)";
}
void HUnaryMathOperation::PrintDataTo(StringStream* stream) {
const char* name = OpName();
stream->Add("%s ", name);
value()->PrintNameTo(stream);
}
void HUnaryOperation::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
}
void HHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
switch (from_) {
case FIRST_JS_RECEIVER_TYPE:
if (to_ == LAST_TYPE) stream->Add(" spec_object");
break;
case JS_REGEXP_TYPE:
if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp");
break;
case JS_ARRAY_TYPE:
if (to_ == JS_ARRAY_TYPE) stream->Add(" array");
break;
case JS_FUNCTION_TYPE:
if (to_ == JS_FUNCTION_TYPE) stream->Add(" function");
break;
default:
break;
}
}
void HTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" == ");
stream->Add(type_literal_->GetFlatContent().ToAsciiVector());
}
void HChange::PrintDataTo(StringStream* stream) {
HUnaryOperation::PrintDataTo(stream);
stream->Add(" %s to %s", from_.Mnemonic(), to().Mnemonic());
if (CanTruncateToInt32()) stream->Add(" truncating-int32");
if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
}
void HJSArrayLength::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" ");
typecheck()->PrintNameTo(stream);
}
HValue* HCheckInstanceType::Canonicalize() {
if (check_ == IS_STRING &&
!value()->type().IsUninitialized() &&
value()->type().IsString()) {
return NULL;
}
if (check_ == IS_SYMBOL &&
value()->IsConstant() &&
HConstant::cast(value())->handle()->IsSymbol()) {
return NULL;
}
return this;
}
void HCheckInstanceType::GetCheckInterval(InstanceType* first,
InstanceType* last) {
ASSERT(is_interval_check());
switch (check_) {
case IS_SPEC_OBJECT:
*first = FIRST_SPEC_OBJECT_TYPE;
*last = LAST_SPEC_OBJECT_TYPE;
return;
case IS_JS_ARRAY:
*first = *last = JS_ARRAY_TYPE;
return;
default:
UNREACHABLE();
}
}
void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
ASSERT(!is_interval_check());
switch (check_) {
case IS_STRING:
*mask = kIsNotStringMask;
*tag = kStringTag;
return;
case IS_SYMBOL:
*mask = kIsSymbolMask;
*tag = kSymbolTag;
return;
default:
UNREACHABLE();
}
}
void HCheckMap::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" %p", *map());
}
void HCheckFunction::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add(" %p", *target());
}
void HCallStub::PrintDataTo(StringStream* stream) {
stream->Add("%s ",
CodeStub::MajorName(major_key_, false));
HUnaryCall::PrintDataTo(stream);
}
void HInstanceOf::PrintDataTo(StringStream* stream) {
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
stream->Add(" ");
context()->PrintNameTo(stream);
}
Range* HValue::InferRange() {
// Untagged integer32 cannot be -0, all other representations can.
Range* result = new Range();
result->set_can_be_minus_zero(!representation().IsInteger32());
return result;
}
Range* HChange::InferRange() {
Range* input_range = value()->range();
if (from().IsInteger32() &&
to().IsTagged() &&
input_range != NULL && input_range->IsInSmiRange()) {
set_type(HType::Smi());
}
Range* result = (input_range != NULL)
? input_range->Copy()
: HValue::InferRange();
if (to().IsInteger32()) result->set_can_be_minus_zero(false);
return result;
}
Range* HConstant::InferRange() {
if (has_int32_value_) {
Range* result = new Range(int32_value_, int32_value_);
result->set_can_be_minus_zero(false);
return result;
}
return HValue::InferRange();
}
Range* HPhi::InferRange() {
if (representation().IsInteger32()) {
if (block()->IsLoopHeader()) {
Range* range = new Range(kMinInt, kMaxInt);
return range;
} else {
Range* range = OperandAt(0)->range()->Copy();
for (int i = 1; i < OperandCount(); ++i) {
range->Union(OperandAt(i)->range());
}
return range;
}
} else {
return HValue::InferRange();
}
}
Range* HAdd::InferRange() {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy();
if (!res->AddAndCheckOverflow(b)) {
ClearFlag(kCanOverflow);
}
bool m0 = a->CanBeMinusZero() && b->CanBeMinusZero();
res->set_can_be_minus_zero(m0);
return res;
} else {
return HValue::InferRange();
}
}
Range* HSub::InferRange() {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy();
if (!res->SubAndCheckOverflow(b)) {
ClearFlag(kCanOverflow);
}
res->set_can_be_minus_zero(a->CanBeMinusZero() && b->CanBeZero());
return res;
} else {
return HValue::InferRange();
}
}
Range* HMul::InferRange() {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy();
if (!res->MulAndCheckOverflow(b)) {
ClearFlag(kCanOverflow);
}
bool m0 = (a->CanBeZero() && b->CanBeNegative()) ||
(a->CanBeNegative() && b->CanBeZero());
res->set_can_be_minus_zero(m0);
return res;
} else {
return HValue::InferRange();
}
}
Range* HDiv::InferRange() {
if (representation().IsInteger32()) {
Range* result = new Range();
if (left()->range()->CanBeMinusZero()) {
result->set_can_be_minus_zero(true);
}
if (left()->range()->CanBeZero() && right()->range()->CanBeNegative()) {
result->set_can_be_minus_zero(true);
}
if (right()->range()->Includes(-1) && left()->range()->Includes(kMinInt)) {
SetFlag(HValue::kCanOverflow);
}
if (!right()->range()->CanBeZero()) {
ClearFlag(HValue::kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange();
}
}
Range* HMod::InferRange() {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* result = new Range();
if (a->CanBeMinusZero() || a->CanBeNegative()) {
result->set_can_be_minus_zero(true);
}
if (!right()->range()->CanBeZero()) {
ClearFlag(HValue::kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange();
}
}
void HPhi::PrintTo(StringStream* stream) {
stream->Add("[");
for (int i = 0; i < OperandCount(); ++i) {
HValue* value = OperandAt(i);
stream->Add(" ");
value->PrintNameTo(stream);
stream->Add(" ");
}
stream->Add(" uses%d_%di_%dd_%dt",
UseCount(),
int32_non_phi_uses() + int32_indirect_uses(),
double_non_phi_uses() + double_indirect_uses(),
tagged_non_phi_uses() + tagged_indirect_uses());
stream->Add("%s%s]",
is_live() ? "_live" : "",
IsConvertibleToInteger() ? "" : "_ncti");
}
void HPhi::AddInput(HValue* value) {
inputs_.Add(NULL);
SetOperandAt(OperandCount() - 1, value);
// Mark phis that may have 'arguments' directly or indirectly as an operand.
if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
SetFlag(kIsArguments);
}
}
bool HPhi::HasRealUses() {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (!it.value()->IsPhi()) return true;
}
return false;
}
HValue* HPhi::GetRedundantReplacement() {
HValue* candidate = NULL;
int count = OperandCount();
int position = 0;
while (position < count && candidate == NULL) {
HValue* current = OperandAt(position++);
if (current != this) candidate = current;
}
while (position < count) {
HValue* current = OperandAt(position++);
if (current != this && current != candidate) return NULL;
}
ASSERT(candidate != this);
return candidate;
}
void HPhi::DeleteFromGraph() {
ASSERT(block() != NULL);
block()->RemovePhi(this);
ASSERT(block() == NULL);
}
void HPhi::InitRealUses(int phi_id) {
// Initialize real uses.
phi_id_ = phi_id;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* value = it.value();
if (!value->IsPhi()) {
Representation rep = value->RequiredInputRepresentation(it.index());
++non_phi_uses_[rep.kind()];
}
}
}
void HPhi::AddNonPhiUsesFrom(HPhi* other) {
for (int i = 0; i < Representation::kNumRepresentations; i++) {
indirect_uses_[i] += other->non_phi_uses_[i];
}
}
void HPhi::AddIndirectUsesTo(int* dest) {
for (int i = 0; i < Representation::kNumRepresentations; i++) {
dest[i] += indirect_uses_[i];
}
}
void HSimulate::PrintDataTo(StringStream* stream) {
stream->Add("id=%d ", ast_id());
if (pop_count_ > 0) stream->Add("pop %d", pop_count_);
if (values_.length() > 0) {
if (pop_count_ > 0) stream->Add(" /");
for (int i = 0; i < values_.length(); ++i) {
if (!HasAssignedIndexAt(i)) {
stream->Add(" push ");
} else {
stream->Add(" var[%d] = ", GetAssignedIndexAt(i));
}
values_[i]->PrintNameTo(stream);
}
}
}
void HDeoptimize::PrintDataTo(StringStream* stream) {
if (OperandCount() == 0) return;
OperandAt(0)->PrintNameTo(stream);
for (int i = 1; i < OperandCount(); ++i) {
stream->Add(" ");
OperandAt(i)->PrintNameTo(stream);
}
}
void HEnterInlined::PrintDataTo(StringStream* stream) {
SmartArrayPointer<char> name = function()->debug_name()->ToCString();
stream->Add("%s, id=%d", *name, function()->id());
}
HConstant::HConstant(Handle<Object> handle, Representation r)
: handle_(handle),
has_int32_value_(false),
has_double_value_(false),
int32_value_(0),
double_value_(0) {
set_representation(r);
SetFlag(kUseGVN);
if (handle_->IsNumber()) {
double n = handle_->Number();
double roundtrip_value = static_cast<double>(static_cast<int32_t>(n));
has_int32_value_ = BitCast<int64_t>(roundtrip_value) == BitCast<int64_t>(n);
if (has_int32_value_) int32_value_ = static_cast<int32_t>(n);
double_value_ = n;
has_double_value_ = true;
}
}
HConstant* HConstant::CopyToRepresentation(Representation r) const {
if (r.IsInteger32() && !has_int32_value_) return NULL;
if (r.IsDouble() && !has_double_value_) return NULL;
return new HConstant(handle_, r);
}
HConstant* HConstant::CopyToTruncatedInt32() const {
if (!has_double_value_) return NULL;
int32_t truncated = NumberToInt32(*handle_);
return new HConstant(FACTORY->NewNumberFromInt(truncated),
Representation::Integer32());
}
bool HConstant::ToBoolean() const {
// Converts the constant's boolean value according to
// ECMAScript section 9.2 ToBoolean conversion.
if (HasInteger32Value()) return Integer32Value() != 0;
if (HasDoubleValue()) {
double v = DoubleValue();
return v != 0 && !isnan(v);
}
if (handle()->IsTrue()) return true;
if (handle()->IsFalse()) return false;
if (handle()->IsUndefined()) return false;
if (handle()->IsNull()) return false;
if (handle()->IsString() &&
String::cast(*handle())->length() == 0) return false;
return true;
}
void HConstant::PrintDataTo(StringStream* stream) {
handle()->ShortPrint(stream);
}
bool HArrayLiteral::IsCopyOnWrite() const {
return constant_elements()->map() == HEAP->fixed_cow_array_map();
}
void HBinaryOperation::PrintDataTo(StringStream* stream) {
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
if (CheckFlag(kCanOverflow)) stream->Add(" !");
if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
}
Range* HBitAnd::InferRange() {
int32_t left_mask = (left()->range() != NULL)
? left()->range()->Mask()
: 0xffffffff;
int32_t right_mask = (right()->range() != NULL)
? right()->range()->Mask()
: 0xffffffff;
int32_t result_mask = left_mask & right_mask;
return (result_mask >= 0)
? new Range(0, result_mask)
: HValue::InferRange();
}
Range* HBitOr::InferRange() {
int32_t left_mask = (left()->range() != NULL)
? left()->range()->Mask()
: 0xffffffff;
int32_t right_mask = (right()->range() != NULL)
? right()->range()->Mask()
: 0xffffffff;
int32_t result_mask = left_mask | right_mask;
return (result_mask >= 0)
? new Range(0, result_mask)
: HValue::InferRange();
}
Range* HSar::InferRange() {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
Range* result = (left()->range() != NULL)
? left()->range()->Copy()
: new Range();
result->Sar(c->Integer32Value());
result->set_can_be_minus_zero(false);
return result;
}
}
return HValue::InferRange();
}
Range* HShr::InferRange() {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
int shift_count = c->Integer32Value() & 0x1f;
if (left()->range()->CanBeNegative()) {
// Only compute bounds if the result always fits into an int32.
return (shift_count >= 1)
? new Range(0, static_cast<uint32_t>(0xffffffff) >> shift_count)
: new Range();
} else {
// For positive inputs we can use the >> operator.
Range* result = (left()->range() != NULL)
? left()->range()->Copy()
: new Range();
result->Sar(c->Integer32Value());
result->set_can_be_minus_zero(false);
return result;
}
}
}
return HValue::InferRange();
}
Range* HShl::InferRange() {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
Range* result = (left()->range() != NULL)
? left()->range()->Copy()
: new Range();
result->Shl(c->Integer32Value());
result->set_can_be_minus_zero(false);
return result;
}
}
return HValue::InferRange();
}
void HCompareGeneric::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(token()));
stream->Add(" ");
HBinaryOperation::PrintDataTo(stream);
}
void HCompareIDAndBranch::PrintDataTo(StringStream* stream) {
stream->Add(Token::Name(token()));
stream->Add(" ");
left()->PrintNameTo(stream);
stream->Add(" ");
right()->PrintNameTo(stream);
HControlInstruction::PrintDataTo(stream);
}
void HGoto::PrintDataTo(StringStream* stream) {
stream->Add("B%d", SuccessorAt(0)->block_id());
}
void HCompareIDAndBranch::SetInputRepresentation(Representation r) {
input_representation_ = r;
if (r.IsDouble()) {
SetFlag(kDeoptimizeOnUndefined);
} else {
ASSERT(r.IsInteger32());
}
}
void HParameter::PrintDataTo(StringStream* stream) {
stream->Add("%u", index());
}
void HLoadNamedField::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(" @%d%s", offset(), is_in_object() ? "[in-object]" : "");
}
HLoadNamedFieldPolymorphic::HLoadNamedFieldPolymorphic(HValue* context,
HValue* object,
SmallMapList* types,
Handle<String> name)
: types_(Min(types->length(), kMaxLoadPolymorphism)),
name_(name),
need_generic_(false) {
SetOperandAt(0, context);
SetOperandAt(1, object);
set_representation(Representation::Tagged());
SetFlag(kDependsOnMaps);
for (int i = 0;
i < types->length() && types_.length() < kMaxLoadPolymorphism;
++i) {
Handle<Map> map = types->at(i);
LookupResult lookup;
map->LookupInDescriptors(NULL, *name, &lookup);
if (lookup.IsProperty()) {
switch (lookup.type()) {
case FIELD: {
int index = lookup.GetLocalFieldIndexFromMap(*map);
if (index < 0) {
SetFlag(kDependsOnInobjectFields);
} else {
SetFlag(kDependsOnBackingStoreFields);
}
types_.Add(types->at(i));
break;
}
case CONSTANT_FUNCTION:
types_.Add(types->at(i));
break;
default:
break;
}
}
}
if (types_.length() == types->length() && FLAG_deoptimize_uncommon_cases) {
SetFlag(kUseGVN);
} else {
SetAllSideEffects();
need_generic_ = true;
}
}
bool HLoadNamedFieldPolymorphic::DataEquals(HValue* value) {
HLoadNamedFieldPolymorphic* other = HLoadNamedFieldPolymorphic::cast(value);
if (types_.length() != other->types()->length()) return false;
if (!name_.is_identical_to(other->name())) return false;
if (need_generic_ != other->need_generic_) return false;
for (int i = 0; i < types_.length(); i++) {
bool found = false;
for (int j = 0; j < types_.length(); j++) {
if (types_.at(j).is_identical_to(other->types()->at(i))) {
found = true;
break;
}
}
if (!found) return false;
}
return true;
}
void HLoadNamedFieldPolymorphic::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(" .");
stream->Add(*String::cast(*name())->ToCString());
}
void HLoadNamedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(" .");
stream->Add(*String::cast(*name())->ToCString());
}
void HLoadKeyedFastElement::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
}
bool HLoadKeyedFastElement::RequiresHoleCheck() const {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!use->IsChange()) return true;
}
return false;
}
void HLoadKeyedFastDoubleElement::PrintDataTo(StringStream* stream) {
elements()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
}
bool HLoadKeyedFastDoubleElement::RequiresHoleCheck() const {
return true;
}
void HLoadKeyedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
}
void HLoadKeyedSpecializedArrayElement::PrintDataTo(
StringStream* stream) {
external_pointer()->PrintNameTo(stream);
stream->Add(".");
switch (elements_kind()) {
case EXTERNAL_BYTE_ELEMENTS:
stream->Add("byte");
break;
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
stream->Add("u_byte");
break;
case EXTERNAL_SHORT_ELEMENTS:
stream->Add("short");
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
stream->Add("u_short");
break;
case EXTERNAL_INT_ELEMENTS:
stream->Add("int");
break;
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
stream->Add("u_int");
break;
case EXTERNAL_FLOAT_ELEMENTS:
stream->Add("float");
break;
case EXTERNAL_DOUBLE_ELEMENTS:
stream->Add("double");
break;
case EXTERNAL_PIXEL_ELEMENTS:
stream->Add("pixel");
break;
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("]");
}
void HStoreNamedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(".");
ASSERT(name()->IsString());
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" = ");
value()->PrintNameTo(stream);
}
void HStoreNamedField::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add(".");
ASSERT(name()->IsString());
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" = ");
value()->PrintNameTo(stream);
if (!transition().is_null()) {
stream->Add(" (transition map %p)", *transition());
}
}
void HStoreKeyedFastElement::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HStoreKeyedFastDoubleElement::PrintDataTo(StringStream* stream) {
elements()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintNameTo(stream);
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HStoreKeyedSpecializedArrayElement::PrintDataTo(
StringStream* stream) {
external_pointer()->PrintNameTo(stream);
stream->Add(".");
switch (elements_kind()) {
case EXTERNAL_BYTE_ELEMENTS:
stream->Add("byte");
break;
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
stream->Add("u_byte");
break;
case EXTERNAL_SHORT_ELEMENTS:
stream->Add("short");
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
stream->Add("u_short");
break;
case EXTERNAL_INT_ELEMENTS:
stream->Add("int");
break;
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
stream->Add("u_int");
break;
case EXTERNAL_FLOAT_ELEMENTS:
stream->Add("float");
break;
case EXTERNAL_DOUBLE_ELEMENTS:
stream->Add("double");
break;
case EXTERNAL_PIXEL_ELEMENTS:
stream->Add("pixel");
break;
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
stream->Add("[");
key()->PrintNameTo(stream);
stream->Add("] = ");
value()->PrintNameTo(stream);
}
void HLoadGlobalCell::PrintDataTo(StringStream* stream) {
stream->Add("[%p]", *cell());
if (check_hole_value()) stream->Add(" (deleteable/read-only)");
}
void HLoadGlobalGeneric::PrintDataTo(StringStream* stream) {
stream->Add("%o ", *name());
}
void HStoreGlobalCell::PrintDataTo(StringStream* stream) {
stream->Add("[%p] = ", *cell());
value()->PrintNameTo(stream);
}
void HStoreGlobalGeneric::PrintDataTo(StringStream* stream) {
stream->Add("%o = ", *name());
value()->PrintNameTo(stream);
}
void HLoadContextSlot::PrintDataTo(StringStream* stream) {
value()->PrintNameTo(stream);
stream->Add("[%d]", slot_index());
}
void HStoreContextSlot::PrintDataTo(StringStream* stream) {
context()->PrintNameTo(stream);
stream->Add("[%d] = ", slot_index());
value()->PrintNameTo(stream);
}
// Implementation of type inference and type conversions. Calculates
// the inferred type of this instruction based on the input operands.
HType HValue::CalculateInferredType() {
return type_;
}
HType HCheckMap::CalculateInferredType() {
return value()->type();
}
HType HCheckFunction::CalculateInferredType() {
return value()->type();
}
HType HCheckNonSmi::CalculateInferredType() {
// TODO(kasperl): Is there any way to signal that this isn't a smi?
return HType::Tagged();
}
HType HCheckSmi::CalculateInferredType() {
return HType::Smi();
}
HType HPhi::CalculateInferredType() {
HType result = HType::Uninitialized();
for (int i = 0; i < OperandCount(); ++i) {
HType current = OperandAt(i)->type();
result = result.Combine(current);
}
return result;
}
HType HConstant::CalculateInferredType() {
return HType::TypeFromValue(handle_);
}
HType HCompareGeneric::CalculateInferredType() {
return HType::Boolean();
}
HType HInstanceOf::CalculateInferredType() {
return HType::Boolean();
}
HType HDeleteProperty::CalculateInferredType() {
return HType::Boolean();
}
HType HInstanceOfKnownGlobal::CalculateInferredType() {
return HType::Boolean();
}
HType HBitwiseBinaryOperation::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HArithmeticBinaryOperation::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HAdd::CalculateInferredType() {
return HType::Tagged();
}
HType HBitAnd::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HBitXor::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HBitOr::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HBitNot::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HUnaryMathOperation::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HShl::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HShr::CalculateInferredType() {
return HType::TaggedNumber();
}
HType HSar::CalculateInferredType() {
return HType::TaggedNumber();
}
HValue* HUnaryMathOperation::EnsureAndPropagateNotMinusZero(
BitVector* visited) {
visited->Add(id());
if (representation().IsInteger32() &&
!value()->representation().IsInteger32()) {
if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
}
if (RequiredInputRepresentation(0).IsInteger32() &&
representation().IsInteger32()) {
return value();
}
return NULL;
}
HValue* HChange::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (from().IsInteger32()) return NULL;
if (CanTruncateToInt32()) return NULL;
if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
ASSERT(!from().IsInteger32() || !to().IsInteger32());
return NULL;
}
HValue* HForceRepresentation::EnsureAndPropagateNotMinusZero(
BitVector* visited) {
visited->Add(id());
return value();
}
HValue* HMod::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
return left();
}
return NULL;
}
HValue* HDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
return NULL;
}
HValue* HMul::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
if (range() == NULL || range()->CanBeMinusZero()) {
SetFlag(kBailoutOnMinusZero);
}
return NULL;
}
HValue* HSub::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
// Propagate to the left argument. If the left argument cannot be -0, then
// the result of the add operation cannot be either.
if (range() == NULL || range()->CanBeMinusZero()) {
return left();
}
return NULL;
}
HValue* HAdd::EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
// Propagate to the left argument. If the left argument cannot be -0, then
// the result of the sub operation cannot be either.
if (range() == NULL || range()->CanBeMinusZero()) {
return left();
}
return NULL;
}
void HIn::PrintDataTo(StringStream* stream) {
key()->PrintNameTo(stream);
stream->Add(" ");
object()->PrintNameTo(stream);
}
// Node-specific verification code is only included in debug mode.
#ifdef DEBUG
void HPhi::Verify() {
ASSERT(OperandCount() == block()->predecessors()->length());
for (int i = 0; i < OperandCount(); ++i) {
HValue* value = OperandAt(i);
HBasicBlock* defining_block = value->block();
HBasicBlock* predecessor_block = block()->predecessors()->at(i);
ASSERT(defining_block == predecessor_block ||
defining_block->Dominates(predecessor_block));
}
}
void HSimulate::Verify() {
HInstruction::Verify();
ASSERT(HasAstId());
}
void HCheckSmi::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
void HCheckNonSmi::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
void HCheckFunction::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
void HCheckPrototypeMaps::Verify() {
HInstruction::Verify();
ASSERT(HasNoUses());
}
#endif
} } // namespace v8::internal