blob: 310ea3d1234826012e0a324214db648ab0d758f7 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_IA32)
#include "codegen.h"
#include "deoptimizer.h"
#include "full-codegen.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- eax : number of arguments excluding receiver
// -- edi : called function (only guaranteed when
// extra_args requires it)
// -- esi : context
// -- esp[0] : return address
// -- esp[4] : last argument
// -- ...
// -- esp[4 * argc] : first argument (argc == eax)
// -- esp[4 * (argc +1)] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
Register scratch = ebx;
__ pop(scratch); // Save return address.
__ push(edi);
__ push(scratch); // Restore return address.
} else {
ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects eax to contain the number of arguments
// including the receiver and the extra arguments.
__ add(Operand(eax), Immediate(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- edi: constructor function
// -----------------------------------
Label non_function_call;
// Check that function is not a smi.
__ JumpIfSmi(edi, &non_function_call);
// Check that function is a JSFunction.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &non_function_call);
// Jump to the function-specific construct stub.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kConstructStubOffset));
__ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
__ jmp(Operand(ebx));
// edi: called object
// eax: number of arguments
__ bind(&non_function_call);
// Set expected number of arguments to zero (not changing eax).
__ Set(ebx, Immediate(0));
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
Handle<Code> arguments_adaptor =
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
__ SetCallKind(ecx, CALL_AS_METHOD);
__ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool count_constructions) {
// Should never count constructions for api objects.
ASSERT(!is_api_function || !count_constructions);
// Enter a construct frame.
__ EnterConstructFrame();
// Store a smi-tagged arguments count on the stack.
__ SmiTag(eax);
__ push(eax);
// Push the function to invoke on the stack.
__ push(edi);
// Try to allocate the object without transitioning into C code. If any of the
// preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
__ j(not_equal, &rt_call);
#endif
// Verified that the constructor is a JSFunction.
// Load the initial map and verify that it is in fact a map.
// edi: constructor
__ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
__ JumpIfSmi(eax, &rt_call);
// edi: constructor
// eax: initial map (if proven valid below)
__ CmpObjectType(eax, MAP_TYPE, ebx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see comments
// in Runtime_NewObject in runtime.cc). In which case the initial map's
// instance type would be JS_FUNCTION_TYPE.
// edi: constructor
// eax: initial map
__ CmpInstanceType(eax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
if (count_constructions) {
Label allocate;
// Decrease generous allocation count.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ dec_b(FieldOperand(ecx, SharedFunctionInfo::kConstructionCountOffset));
__ j(not_zero, &allocate);
__ push(eax);
__ push(edi);
__ push(edi); // constructor
// The call will replace the stub, so the countdown is only done once.
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ pop(edi);
__ pop(eax);
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
// edi: constructor
// eax: initial map
__ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
__ shl(edi, kPointerSizeLog2);
__ AllocateInNewSpace(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields.
// eax: initial map
// ebx: JSObject
// edi: start of next object
__ mov(Operand(ebx, JSObject::kMapOffset), eax);
Factory* factory = masm->isolate()->factory();
__ mov(ecx, factory->empty_fixed_array());
__ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
__ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
// Set extra fields in the newly allocated object.
// eax: initial map
// ebx: JSObject
// edi: start of next object
{ Label loop, entry;
// To allow for truncation.
if (count_constructions) {
__ mov(edx, factory->one_pointer_filler_map());
} else {
__ mov(edx, factory->undefined_value());
}
__ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(ecx, 0), edx);
__ add(Operand(ecx), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(ecx, Operand(edi));
__ j(less, &loop);
}
// Add the object tag to make the JSObject real, so that we can continue and
// jump into the continuation code at any time from now on. Any failures
// need to undo the allocation, so that the heap is in a consistent state
// and verifiable.
// eax: initial map
// ebx: JSObject
// edi: start of next object
__ or_(Operand(ebx), Immediate(kHeapObjectTag));
// Check if a non-empty properties array is needed.
// Allocate and initialize a FixedArray if it is.
// eax: initial map
// ebx: JSObject
// edi: start of next object
// Calculate the total number of properties described by the map.
__ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
__ movzx_b(ecx, FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
__ add(edx, Operand(ecx));
// Calculate unused properties past the end of the in-object properties.
__ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
__ sub(edx, Operand(ecx));
// Done if no extra properties are to be allocated.
__ j(zero, &allocated);
__ Assert(positive, "Property allocation count failed.");
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// ebx: JSObject
// edi: start of next object (will be start of FixedArray)
// edx: number of elements in properties array
__ AllocateInNewSpace(FixedArray::kHeaderSize,
times_pointer_size,
edx,
edi,
ecx,
no_reg,
&undo_allocation,
RESULT_CONTAINS_TOP);
// Initialize the FixedArray.
// ebx: JSObject
// edi: FixedArray
// edx: number of elements
// ecx: start of next object
__ mov(eax, factory->fixed_array_map());
__ mov(Operand(edi, FixedArray::kMapOffset), eax); // setup the map
__ SmiTag(edx);
__ mov(Operand(edi, FixedArray::kLengthOffset), edx); // and length
// Initialize the fields to undefined.
// ebx: JSObject
// edi: FixedArray
// ecx: start of next object
{ Label loop, entry;
__ mov(edx, factory->undefined_value());
__ lea(eax, Operand(edi, FixedArray::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(eax, 0), edx);
__ add(Operand(eax), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(eax, Operand(ecx));
__ j(below, &loop);
}
// Store the initialized FixedArray into the properties field of
// the JSObject
// ebx: JSObject
// edi: FixedArray
__ or_(Operand(edi), Immediate(kHeapObjectTag)); // add the heap tag
__ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
// Continue with JSObject being successfully allocated
// ebx: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// ebx: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(ebx);
}
// Allocate the new receiver object using the runtime call.
__ bind(&rt_call);
// Must restore edi (constructor) before calling runtime.
__ mov(edi, Operand(esp, 0));
// edi: function (constructor)
__ push(edi);
__ CallRuntime(Runtime::kNewObject, 1);
__ mov(ebx, Operand(eax)); // store result in ebx
// New object allocated.
// ebx: newly allocated object
__ bind(&allocated);
// Retrieve the function from the stack.
__ pop(edi);
// Retrieve smi-tagged arguments count from the stack.
__ mov(eax, Operand(esp, 0));
__ SmiUntag(eax);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(ebx);
__ push(ebx);
// Setup pointer to last argument.
__ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(ecx, Operand(eax));
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(ebx, ecx, times_4, 0));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Call the function.
if (is_api_function) {
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
ParameterCount expected(0);
__ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET,
CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
} else {
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
// Restore context from the frame.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(eax, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
__ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0));
// Restore the arguments count and leave the construct frame.
__ bind(&exit);
__ mov(ebx, Operand(esp, kPointerSize)); // get arguments count
__ LeaveConstructFrame();
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
__ ret(0);
}
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Clear the context before we push it when entering the JS frame.
__ Set(esi, Immediate(0));
// Enter an internal frame.
__ EnterInternalFrame();
// Load the previous frame pointer (ebx) to access C arguments
__ mov(ebx, Operand(ebp, 0));
// Get the function from the frame and setup the context.
__ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
__ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ push(ecx);
__ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
// Load the number of arguments and setup pointer to the arguments.
__ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
__ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
// Copy arguments to the stack in a loop.
Label loop, entry;
__ Set(ecx, Immediate(0));
__ jmp(&entry);
__ bind(&loop);
__ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
__ push(Operand(edx, 0)); // dereference handle
__ inc(Operand(ecx));
__ bind(&entry);
__ cmp(ecx, Operand(eax));
__ j(not_equal, &loop);
// Get the function from the stack and call it.
__ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize)); // +1 ~ receiver
// Invoke the code.
if (is_construct) {
__ call(masm->isolate()->builtins()->JSConstructCall(),
RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(eax);
__ InvokeFunction(edi, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
// Exit the JS frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
__ LeaveInternalFrame();
__ ret(1 * kPointerSize); // remove receiver
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function.
__ push(edi);
// Push call kind information.
__ push(ecx);
__ push(edi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyCompile, 1);
// Restore call kind information.
__ pop(ecx);
// Restore receiver.
__ pop(edi);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(eax, FieldOperand(eax, Code::kHeaderSize));
__ jmp(Operand(eax));
}
void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function onto the stack.
__ push(edi);
// Push call kind information.
__ push(ecx);
__ push(edi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyRecompile, 1);
// Restore call kind information.
__ pop(ecx);
// Restore receiver.
__ pop(edi);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(eax, FieldOperand(eax, Code::kHeaderSize));
__ jmp(Operand(eax));
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
// Enter an internal frame.
__ EnterInternalFrame();
// Pass the function and deoptimization type to the runtime system.
__ push(Immediate(Smi::FromInt(static_cast<int>(type))));
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Get the full codegen state from the stack and untag it.
__ mov(ecx, Operand(esp, 1 * kPointerSize));
__ SmiUntag(ecx);
// Switch on the state.
Label not_no_registers, not_tos_eax;
__ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
__ j(not_equal, &not_no_registers, Label::kNear);
__ ret(1 * kPointerSize); // Remove state.
__ bind(&not_no_registers);
__ mov(eax, Operand(esp, 2 * kPointerSize));
__ cmp(ecx, FullCodeGenerator::TOS_REG);
__ j(not_equal, &not_tos_eax, Label::kNear);
__ ret(2 * kPointerSize); // Remove state, eax.
__ bind(&not_tos_eax);
__ Abort("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
// TODO(kasperl): Do we need to save/restore the XMM registers too?
// For now, we are relying on the fact that Runtime::NotifyOSR
// doesn't do any garbage collection which allows us to save/restore
// the registers without worrying about which of them contain
// pointers. This seems a bit fragile.
__ pushad();
__ EnterInternalFrame();
__ CallRuntime(Runtime::kNotifyOSR, 0);
__ LeaveInternalFrame();
__ popad();
__ ret(0);
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
Factory* factory = masm->isolate()->factory();
// 1. Make sure we have at least one argument.
{ Label done;
__ test(eax, Operand(eax));
__ j(not_zero, &done);
__ pop(ebx);
__ push(Immediate(factory->undefined_value()));
__ push(ebx);
__ inc(eax);
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
Label slow, non_function;
// 1 ~ return address.
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
__ JumpIfSmi(edi, &non_function);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &slow);
// 3a. Patch the first argument if necessary when calling a function.
Label shift_arguments;
__ Set(edx, Immediate(0)); // indicate regular JS_FUNCTION
{ Label convert_to_object, use_global_receiver, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
__ j(not_equal, &shift_arguments);
// Do not transform the receiver for natives (shared already in ebx).
__ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset),
1 << SharedFunctionInfo::kNativeBitWithinByte);
__ j(not_equal, &shift_arguments);
// Compute the receiver in non-strict mode.
__ mov(ebx, Operand(esp, eax, times_4, 0)); // First argument.
// Call ToObject on the receiver if it is not an object, or use the
// global object if it is null or undefined.
__ JumpIfSmi(ebx, &convert_to_object);
__ cmp(ebx, factory->null_value());
__ j(equal, &use_global_receiver);
__ cmp(ebx, factory->undefined_value());
__ j(equal, &use_global_receiver);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(above_equal, &shift_arguments);
__ bind(&convert_to_object);
__ EnterInternalFrame(); // In order to preserve argument count.
__ SmiTag(eax);
__ push(eax);
__ push(ebx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(ebx, eax);
__ Set(edx, Immediate(0)); // restore
__ pop(eax);
__ SmiUntag(eax);
__ LeaveInternalFrame();
// Restore the function to edi.
__ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
__ jmp(&patch_receiver);
// Use the global receiver object from the called function as the
// receiver.
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ mov(ebx, FieldOperand(esi, kGlobalIndex));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
__ mov(ebx, FieldOperand(ebx, kGlobalIndex));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ mov(Operand(esp, eax, times_4, 0), ebx);
__ jmp(&shift_arguments);
}
// 3b. Check for function proxy.
__ bind(&slow);
__ Set(edx, Immediate(1)); // indicate function proxy
__ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
__ j(equal, &shift_arguments);
__ bind(&non_function);
__ Set(edx, Immediate(2)); // indicate non-function
// 3c. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
__ mov(Operand(esp, eax, times_4, 0), edi);
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
__ bind(&shift_arguments);
{ Label loop;
__ mov(ecx, eax);
__ bind(&loop);
__ mov(ebx, Operand(esp, ecx, times_4, 0));
__ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
__ dec(ecx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(ebx); // Discard copy of return address.
__ dec(eax); // One fewer argument (first argument is new receiver).
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
// or a function proxy via CALL_FUNCTION_PROXY.
{ Label function, non_proxy;
__ test(edx, Operand(edx));
__ j(zero, &function);
__ Set(ebx, Immediate(0));
__ SetCallKind(ecx, CALL_AS_METHOD);
__ cmp(Operand(edx), Immediate(1));
__ j(not_equal, &non_proxy);
__ pop(edx); // return address
__ push(edi); // re-add proxy object as additional argument
__ push(edx);
__ inc(eax);
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&non_proxy);
__ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx,
FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
__ SmiUntag(ebx);
__ SetCallKind(ecx, CALL_AS_METHOD);
__ cmp(eax, Operand(ebx));
__ j(not_equal,
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
ParameterCount expected(0);
__ InvokeCode(Operand(edx), expected, expected, JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
static const int kArgumentsOffset = 2 * kPointerSize;
static const int kReceiverOffset = 3 * kPointerSize;
static const int kFunctionOffset = 4 * kPointerSize;
__ EnterInternalFrame();
__ push(Operand(ebp, kFunctionOffset)); // push this
__ push(Operand(ebp, kArgumentsOffset)); // push arguments
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
ExternalReference real_stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ mov(edi, Operand::StaticVariable(real_stack_limit));
// Make ecx the space we have left. The stack might already be overflowed
// here which will cause ecx to become negative.
__ mov(ecx, Operand(esp));
__ sub(ecx, Operand(edi));
// Make edx the space we need for the array when it is unrolled onto the
// stack.
__ mov(edx, Operand(eax));
__ shl(edx, kPointerSizeLog2 - kSmiTagSize);
// Check if the arguments will overflow the stack.
__ cmp(ecx, Operand(edx));
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ push(Operand(ebp, 4 * kPointerSize)); // push this
__ push(eax);
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
__ bind(&okay);
// End of stack check.
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ push(eax); // limit
__ push(Immediate(0)); // index
// Get the receiver.
__ mov(ebx, Operand(ebp, kReceiverOffset));
// Check that the function is a JS function (otherwise it must be a proxy).
Label push_receiver;
__ mov(edi, Operand(ebp, kFunctionOffset));
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &push_receiver);
// Change context eagerly to get the right global object if necessary.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Compute the receiver.
// Do not transform the receiver for strict mode functions.
Label call_to_object, use_global_receiver;
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
__ j(not_equal, &push_receiver);
Factory* factory = masm->isolate()->factory();
// Do not transform the receiver for natives (shared already in ecx).
__ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
1 << SharedFunctionInfo::kNativeBitWithinByte);
__ j(not_equal, &push_receiver);
// Compute the receiver in non-strict mode.
// Call ToObject on the receiver if it is not an object, or use the
// global object if it is null or undefined.
__ JumpIfSmi(ebx, &call_to_object);
__ cmp(ebx, factory->null_value());
__ j(equal, &use_global_receiver);
__ cmp(ebx, factory->undefined_value());
__ j(equal, &use_global_receiver);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
__ j(above_equal, &push_receiver);
__ bind(&call_to_object);
__ push(ebx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(ebx, Operand(eax));
__ jmp(&push_receiver);
// Use the current global receiver object as the receiver.
__ bind(&use_global_receiver);
const int kGlobalOffset =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ mov(ebx, FieldOperand(esi, kGlobalOffset));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
__ mov(ebx, FieldOperand(ebx, kGlobalOffset));
__ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
__ bind(&push_receiver);
__ push(ebx);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ mov(eax, Operand(ebp, kIndexOffset));
__ jmp(&entry);
__ bind(&loop);
__ mov(edx, Operand(ebp, kArgumentsOffset)); // load arguments
// Use inline caching to speed up access to arguments.
Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize();
__ call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Push the nth argument.
__ push(eax);
// Update the index on the stack and in register eax.
__ mov(eax, Operand(ebp, kIndexOffset));
__ add(Operand(eax), Immediate(1 << kSmiTagSize));
__ mov(Operand(ebp, kIndexOffset), eax);
__ bind(&entry);
__ cmp(eax, Operand(ebp, kLimitOffset));
__ j(not_equal, &loop);
// Invoke the function.
Label call_proxy;
ParameterCount actual(eax);
__ SmiUntag(eax);
__ mov(edi, Operand(ebp, kFunctionOffset));
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(not_equal, &call_proxy);
__ InvokeFunction(edi, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
__ LeaveInternalFrame();
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
// Invoke the function proxy.
__ bind(&call_proxy);
__ push(edi); // add function proxy as last argument
__ inc(eax);
__ Set(ebx, Immediate(0));
__ SetCallKind(ecx, CALL_AS_METHOD);
__ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
__ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ LeaveInternalFrame();
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
}
// Number of empty elements to allocate for an empty array.
static const int kPreallocatedArrayElements = 4;
// Allocate an empty JSArray. The allocated array is put into the result
// register. If the parameter initial_capacity is larger than zero an elements
// backing store is allocated with this size and filled with the hole values.
// Otherwise the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
int initial_capacity,
Label* gc_required) {
ASSERT(initial_capacity >= 0);
// Load the initial map from the array function.
__ mov(scratch1, FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Allocate the JSArray object together with space for a fixed array with the
// requested elements.
int size = JSArray::kSize;
if (initial_capacity > 0) {
size += FixedArray::SizeFor(initial_capacity);
}
__ AllocateInNewSpace(size,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// scratch1: initial map
// scratch2: start of next object
__ mov(FieldOperand(result, JSObject::kMapOffset), scratch1);
Factory* factory = masm->isolate()->factory();
__ mov(FieldOperand(result, JSArray::kPropertiesOffset),
factory->empty_fixed_array());
// Field JSArray::kElementsOffset is initialized later.
__ mov(FieldOperand(result, JSArray::kLengthOffset), Immediate(0));
// If no storage is requested for the elements array just set the empty
// fixed array.
if (initial_capacity == 0) {
__ mov(FieldOperand(result, JSArray::kElementsOffset),
factory->empty_fixed_array());
return;
}
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// scratch2: start of next object
__ lea(scratch1, Operand(result, JSArray::kSize));
__ mov(FieldOperand(result, JSArray::kElementsOffset), scratch1);
// Initialize the FixedArray and fill it with holes. FixedArray length is
// stored as a smi.
// result: JSObject
// scratch1: elements array
// scratch2: start of next object
__ mov(FieldOperand(scratch1, FixedArray::kMapOffset),
factory->fixed_array_map());
__ mov(FieldOperand(scratch1, FixedArray::kLengthOffset),
Immediate(Smi::FromInt(initial_capacity)));
// Fill the FixedArray with the hole value. Inline the code if short.
// Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
static const int kLoopUnfoldLimit = 4;
STATIC_ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit);
if (initial_capacity <= kLoopUnfoldLimit) {
// Use a scratch register here to have only one reloc info when unfolding
// the loop.
__ mov(scratch3, factory->the_hole_value());
for (int i = 0; i < initial_capacity; i++) {
__ mov(FieldOperand(scratch1,
FixedArray::kHeaderSize + i * kPointerSize),
scratch3);
}
} else {
Label loop, entry;
__ jmp(&entry);
__ bind(&loop);
__ mov(Operand(scratch1, 0), factory->the_hole_value());
__ add(Operand(scratch1), Immediate(kPointerSize));
__ bind(&entry);
__ cmp(scratch1, Operand(scratch2));
__ j(below, &loop);
}
}
// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi, cannot be 0.
Register result,
Register elements_array,
Register elements_array_end,
Register scratch,
bool fill_with_hole,
Label* gc_required) {
ASSERT(scratch.is(edi)); // rep stos destination
ASSERT(!fill_with_hole || array_size.is(ecx)); // rep stos count
ASSERT(!fill_with_hole || !result.is(eax)); // result is never eax
// Load the initial map from the array function.
__ mov(elements_array,
FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Allocate the JSArray object together with space for a FixedArray with the
// requested elements.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
times_half_pointer_size, // array_size is a smi.
array_size,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array: initial map
// elements_array_end: start of next object
// array_size: size of array (smi)
__ mov(FieldOperand(result, JSObject::kMapOffset), elements_array);
Factory* factory = masm->isolate()->factory();
__ mov(elements_array, factory->empty_fixed_array());
__ mov(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
// Field JSArray::kElementsOffset is initialized later.
__ mov(FieldOperand(result, JSArray::kLengthOffset), array_size);
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// elements_array_end: start of next object
// array_size: size of array (smi)
__ lea(elements_array, Operand(result, JSArray::kSize));
__ mov(FieldOperand(result, JSArray::kElementsOffset), elements_array);
// Initialize the fixed array. FixedArray length is stored as a smi.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
// array_size: size of array (smi)
__ mov(FieldOperand(elements_array, FixedArray::kMapOffset),
factory->fixed_array_map());
// For non-empty JSArrays the length of the FixedArray and the JSArray is the
// same.
__ mov(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
// Fill the allocated FixedArray with the hole value if requested.
// result: JSObject
// elements_array: elements array
if (fill_with_hole) {
__ SmiUntag(array_size);
__ lea(edi, Operand(elements_array,
FixedArray::kHeaderSize - kHeapObjectTag));
__ mov(eax, factory->the_hole_value());
__ cld();
// Do not use rep stos when filling less than kRepStosThreshold
// words.
const int kRepStosThreshold = 16;
Label loop, entry, done;
__ cmp(ecx, kRepStosThreshold);
__ j(below, &loop); // Note: ecx > 0.
__ rep_stos();
__ jmp(&done);
__ bind(&loop);
__ stos();
__ bind(&entry);
__ cmp(edi, Operand(elements_array_end));
__ j(below, &loop);
__ bind(&done);
}
}
// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
// edi: constructor (built-in Array function)
// eax: argc
// esp[0]: return address
// esp[4]: last argument
// This function is used for both construct and normal calls of Array. Whether
// it is a construct call or not is indicated by the construct_call parameter.
// The only difference between handling a construct call and a normal call is
// that for a construct call the constructor function in edi needs to be
// preserved for entering the generic code. In both cases argc in eax needs to
// be preserved.
static void ArrayNativeCode(MacroAssembler* masm,
bool construct_call,
Label* call_generic_code) {
Label argc_one_or_more, argc_two_or_more, prepare_generic_code_call,
empty_array, not_empty_array;
// Push the constructor and argc. No need to tag argc as a smi, as there will
// be no garbage collection with this on the stack.
int push_count = 0;
if (construct_call) {
push_count++;
__ push(edi);
}
push_count++;
__ push(eax);
// Check for array construction with zero arguments.
__ test(eax, Operand(eax));
__ j(not_zero, &argc_one_or_more);
__ bind(&empty_array);
// Handle construction of an empty array.
AllocateEmptyJSArray(masm,
edi,
eax,
ebx,
ecx,
edi,
kPreallocatedArrayElements,
&prepare_generic_code_call);
__ IncrementCounter(masm->isolate()->counters()->array_function_native(), 1);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ ret(kPointerSize);
// Check for one argument. Bail out if argument is not smi or if it is
// negative.
__ bind(&argc_one_or_more);
__ cmp(eax, 1);
__ j(not_equal, &argc_two_or_more);
STATIC_ASSERT(kSmiTag == 0);
__ mov(ecx, Operand(esp, (push_count + 1) * kPointerSize));
__ test(ecx, Operand(ecx));
__ j(not_zero, &not_empty_array);
// The single argument passed is zero, so we jump to the code above used to
// handle the case of no arguments passed. To adapt the stack for that we move
// the return address and the pushed constructor (if pushed) one stack slot up
// thereby removing the passed argument. Argc is also on the stack - at the
// bottom - and it needs to be changed from 1 to 0 to have the call into the
// runtime system work in case a GC is required.
for (int i = push_count; i > 0; i--) {
__ mov(eax, Operand(esp, i * kPointerSize));
__ mov(Operand(esp, (i + 1) * kPointerSize), eax);
}
__ add(Operand(esp), Immediate(2 * kPointerSize)); // Drop two stack slots.
__ push(Immediate(0)); // Treat this as a call with argc of zero.
__ jmp(&empty_array);
__ bind(&not_empty_array);
__ test(ecx, Immediate(kIntptrSignBit | kSmiTagMask));
__ j(not_zero, &prepare_generic_code_call);
// Handle construction of an empty array of a certain size. Get the size from
// the stack and bail out if size is to large to actually allocate an elements
// array.
__ cmp(ecx, JSObject::kInitialMaxFastElementArray << kSmiTagSize);
__ j(greater_equal, &prepare_generic_code_call);
// edx: array_size (smi)
// edi: constructor
// esp[0]: argc (cannot be 0 here)
// esp[4]: constructor (only if construct_call)
// esp[8]: return address
// esp[C]: argument
AllocateJSArray(masm,
edi,
ecx,
ebx,
eax,
edx,
edi,
true,
&prepare_generic_code_call);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->array_function_native(), 1);
__ mov(eax, ebx);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ ret(2 * kPointerSize);
// Handle construction of an array from a list of arguments.
__ bind(&argc_two_or_more);
STATIC_ASSERT(kSmiTag == 0);
__ SmiTag(eax); // Convet argc to a smi.
// eax: array_size (smi)
// edi: constructor
// esp[0] : argc
// esp[4]: constructor (only if construct_call)
// esp[8] : return address
// esp[C] : last argument
AllocateJSArray(masm,
edi,
eax,
ebx,
ecx,
edx,
edi,
false,
&prepare_generic_code_call);
__ IncrementCounter(counters->array_function_native(), 1);
__ mov(eax, ebx);
__ pop(ebx);
if (construct_call) {
__ pop(edi);
}
__ push(eax);
// eax: JSArray
// ebx: argc
// edx: elements_array_end (untagged)
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
// Location of the last argument
__ lea(edi, Operand(esp, 2 * kPointerSize));
// Location of the first array element (Parameter fill_with_holes to
// AllocateJSArrayis false, so the FixedArray is returned in ecx).
__ lea(edx, Operand(ecx, FixedArray::kHeaderSize - kHeapObjectTag));
// ebx: argc
// edx: location of the first array element
// edi: location of the last argument
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
Label loop, entry;
__ mov(ecx, ebx);
__ jmp(&entry);
__ bind(&loop);
__ mov(eax, Operand(edi, ecx, times_pointer_size, 0));
__ mov(Operand(edx, 0), eax);
__ add(Operand(edx), Immediate(kPointerSize));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Remove caller arguments from the stack and return.
// ebx: argc
// esp[0]: JSArray
// esp[4]: return address
// esp[8]: last argument
__ pop(eax);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize));
__ push(ecx);
__ ret(0);
// Restore argc and constructor before running the generic code.
__ bind(&prepare_generic_code_call);
__ pop(eax);
if (construct_call) {
__ pop(edi);
}
__ jmp(call_generic_code);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
if (FLAG_debug_code) {
// Initial map for the builtin Array function shoud be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, "Unexpected initial map for Array function");
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as a normal function.
ArrayNativeCode(masm, false, &generic_array_code);
// Jump to the generic array code in case the specialized code cannot handle
// the construction.
__ bind(&generic_array_code);
Handle<Code> array_code =
masm->isolate()->builtins()->ArrayCodeGeneric();
__ jmp(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_constructor;
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, "Unexpected initial map for Array function");
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as constructor.
ArrayNativeCode(masm, true, &generic_constructor);
// Jump to the generic construct code in case the specialized code cannot
// handle the construction.
__ bind(&generic_constructor);
Handle<Code> generic_construct_stub =
masm->isolate()->builtins()->JSConstructStubGeneric();
__ jmp(generic_construct_stub, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : number of arguments
// -- edi : constructor function
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_ctor_calls(), 1);
if (FLAG_debug_code) {
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
__ cmp(edi, Operand(ecx));
__ Assert(equal, "Unexpected String function");
}
// Load the first argument into eax and get rid of the rest
// (including the receiver).
Label no_arguments;
__ test(eax, Operand(eax));
__ j(zero, &no_arguments);
__ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
__ pop(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ push(ecx);
__ mov(eax, ebx);
// Lookup the argument in the number to string cache.
Label not_cached, argument_is_string;
NumberToStringStub::GenerateLookupNumberStringCache(
masm,
eax, // Input.
ebx, // Result.
ecx, // Scratch 1.
edx, // Scratch 2.
false, // Input is known to be smi?
&not_cached);
__ IncrementCounter(counters->string_ctor_cached_number(), 1);
__ bind(&argument_is_string);
// ----------- S t a t e -------------
// -- ebx : argument converted to string
// -- edi : constructor function
// -- esp[0] : return address
// -----------------------------------
// Allocate a JSValue and put the tagged pointer into eax.
Label gc_required;
__ AllocateInNewSpace(JSValue::kSize,
eax, // Result.
ecx, // New allocation top (we ignore it).
no_reg,
&gc_required,
TAG_OBJECT);
// Set the map.
__ LoadGlobalFunctionInitialMap(edi, ecx);
if (FLAG_debug_code) {
__ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
JSValue::kSize >> kPointerSizeLog2);
__ Assert(equal, "Unexpected string wrapper instance size");
__ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
__ Assert(equal, "Unexpected unused properties of string wrapper");
}
__ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
// Set properties and elements.
Factory* factory = masm->isolate()->factory();
__ Set(ecx, Immediate(factory->empty_fixed_array()));
__ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
__ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
// Set the value.
__ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
// Ensure the object is fully initialized.
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
// We're done. Return.
__ ret(0);
// The argument was not found in the number to string cache. Check
// if it's a string already before calling the conversion builtin.
Label convert_argument;
__ bind(&not_cached);
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(eax, &convert_argument);
Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
__ j(NegateCondition(is_string), &convert_argument);
__ mov(ebx, eax);
__ IncrementCounter(counters->string_ctor_string_value(), 1);
__ jmp(&argument_is_string);
// Invoke the conversion builtin and put the result into ebx.
__ bind(&convert_argument);
__ IncrementCounter(counters->string_ctor_conversions(), 1);
__ EnterInternalFrame();
__ push(edi); // Preserve the function.
__ push(eax);
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
__ pop(edi);
__ LeaveInternalFrame();
__ mov(ebx, eax);
__ jmp(&argument_is_string);
// Load the empty string into ebx, remove the receiver from the
// stack, and jump back to the case where the argument is a string.
__ bind(&no_arguments);
__ Set(ebx, Immediate(factory->empty_string()));
__ pop(ecx);
__ lea(esp, Operand(esp, kPointerSize));
__ push(ecx);
__ jmp(&argument_is_string);
// At this point the argument is already a string. Call runtime to
// create a string wrapper.
__ bind(&gc_required);
__ IncrementCounter(counters->string_ctor_gc_required(), 1);
__ EnterInternalFrame();
__ push(ebx);
__ CallRuntime(Runtime::kNewStringWrapper, 1);
__ LeaveInternalFrame();
__ ret(0);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(ebp);
__ mov(ebp, Operand(esp));
// Store the arguments adaptor context sentinel.
__ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Push the function on the stack.
__ push(edi);
// Preserve the number of arguments on the stack. Must preserve eax,
// ebx and ecx because these registers are used when copying the
// arguments and the receiver.
STATIC_ASSERT(kSmiTagSize == 1);
__ lea(edi, Operand(eax, eax, times_1, kSmiTag));
__ push(edi);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack.
__ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ leave();
// Remove caller arguments from the stack.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : actual number of arguments
// -- ebx : expected number of arguments
// -- ecx : call kind information
// -- edx : code entry to call
// -----------------------------------
Label invoke, dont_adapt_arguments;
__ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
Label enough, too_few;
__ cmp(eax, Operand(ebx));
__ j(less, &too_few);
__ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(eax, Operand(ebp, eax, times_4, offset));
__ mov(edi, -1); // account for receiver
Label copy;
__ bind(&copy);
__ inc(edi);
__ push(Operand(eax, 0));
__ sub(Operand(eax), Immediate(kPointerSize));
__ cmp(edi, Operand(ebx));
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_4, offset));
// ebx = expected - actual.
__ sub(ebx, Operand(eax));
// eax = -actual - 1
__ neg(eax);
__ sub(Operand(eax), Immediate(1));
Label copy;
__ bind(&copy);
__ inc(eax);
__ push(Operand(edi, 0));
__ sub(Operand(edi), Immediate(kPointerSize));
__ test(eax, Operand(eax));
__ j(not_zero, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ bind(&fill);
__ inc(eax);
__ push(Immediate(masm->isolate()->factory()->undefined_value()));
__ cmp(eax, Operand(ebx));
__ j(less, &fill);
}
// Call the entry point.
__ bind(&invoke);
// Restore function pointer.
__ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ call(Operand(edx));
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(Operand(edx));
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
CpuFeatures::TryForceFeatureScope scope(SSE2);
if (!CpuFeatures::IsSupported(SSE2)) {
__ Abort("Unreachable code: Cannot optimize without SSE2 support.");
return;
}
// Get the loop depth of the stack guard check. This is recorded in
// a test(eax, depth) instruction right after the call.
Label stack_check;
__ mov(ebx, Operand(esp, 0)); // return address
if (FLAG_debug_code) {
__ cmpb(Operand(ebx, 0), Assembler::kTestAlByte);
__ Assert(equal, "test eax instruction not found after loop stack check");
}
__ movzx_b(ebx, Operand(ebx, 1)); // depth
// Get the loop nesting level at which we allow OSR from the
// unoptimized code and check if we want to do OSR yet. If not we
// should perform a stack guard check so we can get interrupts while
// waiting for on-stack replacement.
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset));
__ cmpb(ebx, FieldOperand(ecx, Code::kAllowOSRAtLoopNestingLevelOffset));
__ j(greater, &stack_check);
// Pass the function to optimize as the argument to the on-stack
// replacement runtime function.
__ EnterInternalFrame();
__ push(eax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
__ LeaveInternalFrame();
// If the result was -1 it means that we couldn't optimize the
// function. Just return and continue in the unoptimized version.
Label skip;
__ cmp(Operand(eax), Immediate(Smi::FromInt(-1)));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
// If we decide not to perform on-stack replacement we perform a
// stack guard check to enable interrupts.
__ bind(&stack_check);
Label ok;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(masm->isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok, Label::kNear);
StackCheckStub stub;
__ TailCallStub(&stub);
__ Abort("Unreachable code: returned from tail call.");
__ bind(&ok);
__ ret(0);
__ bind(&skip);
// Untag the AST id and push it on the stack.
__ SmiUntag(eax);
__ push(eax);
// Generate the code for doing the frame-to-frame translation using
// the deoptimizer infrastructure.
Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
generator.Generate();
}
#undef __
}
} // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32