| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "api.h" |
| #include "arguments.h" |
| #include "bootstrapper.h" |
| #include "codegen.h" |
| #include "debug.h" |
| #include "deoptimizer.h" |
| #include "elements.h" |
| #include "execution.h" |
| #include "full-codegen.h" |
| #include "hydrogen.h" |
| #include "objects-inl.h" |
| #include "objects-visiting.h" |
| #include "macro-assembler.h" |
| #include "safepoint-table.h" |
| #include "string-stream.h" |
| #include "utils.h" |
| #include "vm-state-inl.h" |
| |
| #ifdef ENABLE_DISASSEMBLER |
| #include "disasm.h" |
| #include "disassembler.h" |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Getters and setters are stored in a fixed array property. These are |
| // constants for their indices. |
| const int kGetterIndex = 0; |
| const int kSetterIndex = 1; |
| |
| MUST_USE_RESULT static MaybeObject* CreateJSValue(JSFunction* constructor, |
| Object* value) { |
| Object* result; |
| { MaybeObject* maybe_result = |
| constructor->GetHeap()->AllocateJSObject(constructor); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| JSValue::cast(result)->set_value(value); |
| return result; |
| } |
| |
| |
| MaybeObject* Object::ToObject(Context* global_context) { |
| if (IsNumber()) { |
| return CreateJSValue(global_context->number_function(), this); |
| } else if (IsBoolean()) { |
| return CreateJSValue(global_context->boolean_function(), this); |
| } else if (IsString()) { |
| return CreateJSValue(global_context->string_function(), this); |
| } |
| ASSERT(IsJSObject()); |
| return this; |
| } |
| |
| |
| MaybeObject* Object::ToObject() { |
| if (IsJSReceiver()) { |
| return this; |
| } else if (IsNumber()) { |
| Isolate* isolate = Isolate::Current(); |
| Context* global_context = isolate->context()->global_context(); |
| return CreateJSValue(global_context->number_function(), this); |
| } else if (IsBoolean()) { |
| Isolate* isolate = HeapObject::cast(this)->GetIsolate(); |
| Context* global_context = isolate->context()->global_context(); |
| return CreateJSValue(global_context->boolean_function(), this); |
| } else if (IsString()) { |
| Isolate* isolate = HeapObject::cast(this)->GetIsolate(); |
| Context* global_context = isolate->context()->global_context(); |
| return CreateJSValue(global_context->string_function(), this); |
| } |
| |
| // Throw a type error. |
| return Failure::InternalError(); |
| } |
| |
| |
| Object* Object::ToBoolean() { |
| if (IsTrue()) return this; |
| if (IsFalse()) return this; |
| if (IsSmi()) { |
| return Isolate::Current()->heap()->ToBoolean(Smi::cast(this)->value() != 0); |
| } |
| HeapObject* heap_object = HeapObject::cast(this); |
| if (heap_object->IsUndefined() || heap_object->IsNull()) { |
| return heap_object->GetHeap()->false_value(); |
| } |
| // Undetectable object is false |
| if (heap_object->IsUndetectableObject()) { |
| return heap_object->GetHeap()->false_value(); |
| } |
| if (heap_object->IsString()) { |
| return heap_object->GetHeap()->ToBoolean( |
| String::cast(this)->length() != 0); |
| } |
| if (heap_object->IsHeapNumber()) { |
| return HeapNumber::cast(this)->HeapNumberToBoolean(); |
| } |
| return heap_object->GetHeap()->true_value(); |
| } |
| |
| |
| void Object::Lookup(String* name, LookupResult* result) { |
| Object* holder = NULL; |
| if (IsSmi()) { |
| Context* global_context = Isolate::Current()->context()->global_context(); |
| holder = global_context->number_function()->instance_prototype(); |
| } else { |
| HeapObject* heap_object = HeapObject::cast(this); |
| if (heap_object->IsJSObject()) { |
| return JSObject::cast(this)->Lookup(name, result); |
| } else if (heap_object->IsJSProxy()) { |
| return result->HandlerResult(); |
| } |
| Context* global_context = Isolate::Current()->context()->global_context(); |
| if (heap_object->IsString()) { |
| holder = global_context->string_function()->instance_prototype(); |
| } else if (heap_object->IsHeapNumber()) { |
| holder = global_context->number_function()->instance_prototype(); |
| } else if (heap_object->IsBoolean()) { |
| holder = global_context->boolean_function()->instance_prototype(); |
| } |
| } |
| ASSERT(holder != NULL); // Cannot handle null or undefined. |
| JSObject::cast(holder)->Lookup(name, result); |
| } |
| |
| |
| MaybeObject* Object::GetPropertyWithReceiver(Object* receiver, |
| String* name, |
| PropertyAttributes* attributes) { |
| LookupResult result; |
| Lookup(name, &result); |
| MaybeObject* value = GetProperty(receiver, &result, name, attributes); |
| ASSERT(*attributes <= ABSENT); |
| return value; |
| } |
| |
| |
| MaybeObject* Object::GetPropertyWithCallback(Object* receiver, |
| Object* structure, |
| String* name, |
| Object* holder) { |
| Isolate* isolate = name->GetIsolate(); |
| // To accommodate both the old and the new api we switch on the |
| // data structure used to store the callbacks. Eventually foreign |
| // callbacks should be phased out. |
| if (structure->IsForeign()) { |
| AccessorDescriptor* callback = |
| reinterpret_cast<AccessorDescriptor*>( |
| Foreign::cast(structure)->address()); |
| MaybeObject* value = (callback->getter)(receiver, callback->data); |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return value; |
| } |
| |
| // api style callbacks. |
| if (structure->IsAccessorInfo()) { |
| AccessorInfo* data = AccessorInfo::cast(structure); |
| Object* fun_obj = data->getter(); |
| v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj); |
| HandleScope scope(isolate); |
| JSObject* self = JSObject::cast(receiver); |
| JSObject* holder_handle = JSObject::cast(holder); |
| Handle<String> key(name); |
| LOG(isolate, ApiNamedPropertyAccess("load", self, name)); |
| CustomArguments args(isolate, data->data(), self, holder_handle); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Value> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = call_fun(v8::Utils::ToLocal(key), info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (result.IsEmpty()) { |
| return isolate->heap()->undefined_value(); |
| } |
| return *v8::Utils::OpenHandle(*result); |
| } |
| |
| // __defineGetter__ callback |
| if (structure->IsFixedArray()) { |
| Object* getter = FixedArray::cast(structure)->get(kGetterIndex); |
| if (getter->IsJSFunction()) { |
| return Object::GetPropertyWithDefinedGetter(receiver, |
| JSFunction::cast(getter)); |
| } |
| // Getter is not a function. |
| return isolate->heap()->undefined_value(); |
| } |
| |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| MaybeObject* Object::GetPropertyWithHandler(Object* receiver_raw, |
| String* name_raw, |
| Object* handler_raw) { |
| Isolate* isolate = name_raw->GetIsolate(); |
| HandleScope scope(isolate); |
| Handle<Object> receiver(receiver_raw); |
| Handle<Object> name(name_raw); |
| Handle<Object> handler(handler_raw); |
| |
| // Extract trap function. |
| Handle<String> trap_name = isolate->factory()->LookupAsciiSymbol("get"); |
| Handle<Object> trap(v8::internal::GetProperty(handler, trap_name)); |
| if (isolate->has_pending_exception()) return Failure::Exception(); |
| if (trap->IsUndefined()) { |
| // Get the derived `get' property. |
| trap = isolate->derived_get_trap(); |
| } |
| |
| // Call trap function. |
| Object** args[] = { receiver.location(), name.location() }; |
| bool has_exception; |
| Handle<Object> result = |
| Execution::Call(trap, handler, ARRAY_SIZE(args), args, &has_exception); |
| if (has_exception) return Failure::Exception(); |
| |
| return *result; |
| } |
| |
| |
| MaybeObject* Object::GetPropertyWithDefinedGetter(Object* receiver, |
| JSFunction* getter) { |
| HandleScope scope; |
| Handle<JSFunction> fun(JSFunction::cast(getter)); |
| Handle<Object> self(receiver); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| Debug* debug = fun->GetHeap()->isolate()->debug(); |
| // Handle stepping into a getter if step into is active. |
| if (debug->StepInActive()) { |
| debug->HandleStepIn(fun, Handle<Object>::null(), 0, false); |
| } |
| #endif |
| bool has_pending_exception; |
| Handle<Object> result = |
| Execution::Call(fun, self, 0, NULL, &has_pending_exception); |
| // Check for pending exception and return the result. |
| if (has_pending_exception) return Failure::Exception(); |
| return *result; |
| } |
| |
| |
| // Only deal with CALLBACKS and INTERCEPTOR |
| MaybeObject* JSObject::GetPropertyWithFailedAccessCheck( |
| Object* receiver, |
| LookupResult* result, |
| String* name, |
| PropertyAttributes* attributes) { |
| if (result->IsProperty()) { |
| switch (result->type()) { |
| case CALLBACKS: { |
| // Only allow API accessors. |
| Object* obj = result->GetCallbackObject(); |
| if (obj->IsAccessorInfo()) { |
| AccessorInfo* info = AccessorInfo::cast(obj); |
| if (info->all_can_read()) { |
| *attributes = result->GetAttributes(); |
| return GetPropertyWithCallback(receiver, |
| result->GetCallbackObject(), |
| name, |
| result->holder()); |
| } |
| } |
| break; |
| } |
| case NORMAL: |
| case FIELD: |
| case CONSTANT_FUNCTION: { |
| // Search ALL_CAN_READ accessors in prototype chain. |
| LookupResult r; |
| result->holder()->LookupRealNamedPropertyInPrototypes(name, &r); |
| if (r.IsProperty()) { |
| return GetPropertyWithFailedAccessCheck(receiver, |
| &r, |
| name, |
| attributes); |
| } |
| break; |
| } |
| case INTERCEPTOR: { |
| // If the object has an interceptor, try real named properties. |
| // No access check in GetPropertyAttributeWithInterceptor. |
| LookupResult r; |
| result->holder()->LookupRealNamedProperty(name, &r); |
| if (r.IsProperty()) { |
| return GetPropertyWithFailedAccessCheck(receiver, |
| &r, |
| name, |
| attributes); |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| // No accessible property found. |
| *attributes = ABSENT; |
| Heap* heap = name->GetHeap(); |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_GET); |
| return heap->undefined_value(); |
| } |
| |
| |
| PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck( |
| Object* receiver, |
| LookupResult* result, |
| String* name, |
| bool continue_search) { |
| if (result->IsProperty()) { |
| switch (result->type()) { |
| case CALLBACKS: { |
| // Only allow API accessors. |
| Object* obj = result->GetCallbackObject(); |
| if (obj->IsAccessorInfo()) { |
| AccessorInfo* info = AccessorInfo::cast(obj); |
| if (info->all_can_read()) { |
| return result->GetAttributes(); |
| } |
| } |
| break; |
| } |
| |
| case NORMAL: |
| case FIELD: |
| case CONSTANT_FUNCTION: { |
| if (!continue_search) break; |
| // Search ALL_CAN_READ accessors in prototype chain. |
| LookupResult r; |
| result->holder()->LookupRealNamedPropertyInPrototypes(name, &r); |
| if (r.IsProperty()) { |
| return GetPropertyAttributeWithFailedAccessCheck(receiver, |
| &r, |
| name, |
| continue_search); |
| } |
| break; |
| } |
| |
| case INTERCEPTOR: { |
| // If the object has an interceptor, try real named properties. |
| // No access check in GetPropertyAttributeWithInterceptor. |
| LookupResult r; |
| if (continue_search) { |
| result->holder()->LookupRealNamedProperty(name, &r); |
| } else { |
| result->holder()->LocalLookupRealNamedProperty(name, &r); |
| } |
| if (r.IsProperty()) { |
| return GetPropertyAttributeWithFailedAccessCheck(receiver, |
| &r, |
| name, |
| continue_search); |
| } |
| break; |
| } |
| |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| GetHeap()->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); |
| return ABSENT; |
| } |
| |
| |
| Object* JSObject::GetNormalizedProperty(LookupResult* result) { |
| ASSERT(!HasFastProperties()); |
| Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry()); |
| if (IsGlobalObject()) { |
| value = JSGlobalPropertyCell::cast(value)->value(); |
| } |
| ASSERT(!value->IsJSGlobalPropertyCell()); |
| return value; |
| } |
| |
| |
| Object* JSObject::SetNormalizedProperty(LookupResult* result, Object* value) { |
| ASSERT(!HasFastProperties()); |
| if (IsGlobalObject()) { |
| JSGlobalPropertyCell* cell = |
| JSGlobalPropertyCell::cast( |
| property_dictionary()->ValueAt(result->GetDictionaryEntry())); |
| cell->set_value(value); |
| } else { |
| property_dictionary()->ValueAtPut(result->GetDictionaryEntry(), value); |
| } |
| return value; |
| } |
| |
| |
| MaybeObject* JSObject::SetNormalizedProperty(String* name, |
| Object* value, |
| PropertyDetails details) { |
| ASSERT(!HasFastProperties()); |
| int entry = property_dictionary()->FindEntry(name); |
| if (entry == StringDictionary::kNotFound) { |
| Object* store_value = value; |
| if (IsGlobalObject()) { |
| Heap* heap = name->GetHeap(); |
| MaybeObject* maybe_store_value = |
| heap->AllocateJSGlobalPropertyCell(value); |
| if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value; |
| } |
| Object* dict; |
| { MaybeObject* maybe_dict = |
| property_dictionary()->Add(name, store_value, details); |
| if (!maybe_dict->ToObject(&dict)) return maybe_dict; |
| } |
| set_properties(StringDictionary::cast(dict)); |
| return value; |
| } |
| // Preserve enumeration index. |
| details = PropertyDetails(details.attributes(), |
| details.type(), |
| property_dictionary()->DetailsAt(entry).index()); |
| if (IsGlobalObject()) { |
| JSGlobalPropertyCell* cell = |
| JSGlobalPropertyCell::cast(property_dictionary()->ValueAt(entry)); |
| cell->set_value(value); |
| // Please note we have to update the property details. |
| property_dictionary()->DetailsAtPut(entry, details); |
| } else { |
| property_dictionary()->SetEntry(entry, name, value, details); |
| } |
| return value; |
| } |
| |
| |
| MaybeObject* JSObject::DeleteNormalizedProperty(String* name, DeleteMode mode) { |
| ASSERT(!HasFastProperties()); |
| StringDictionary* dictionary = property_dictionary(); |
| int entry = dictionary->FindEntry(name); |
| if (entry != StringDictionary::kNotFound) { |
| // If we have a global object set the cell to the hole. |
| if (IsGlobalObject()) { |
| PropertyDetails details = dictionary->DetailsAt(entry); |
| if (details.IsDontDelete()) { |
| if (mode != FORCE_DELETION) return GetHeap()->false_value(); |
| // When forced to delete global properties, we have to make a |
| // map change to invalidate any ICs that think they can load |
| // from the DontDelete cell without checking if it contains |
| // the hole value. |
| Object* new_map; |
| { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| } |
| set_map(Map::cast(new_map)); |
| } |
| JSGlobalPropertyCell* cell = |
| JSGlobalPropertyCell::cast(dictionary->ValueAt(entry)); |
| cell->set_value(cell->heap()->the_hole_value()); |
| dictionary->DetailsAtPut(entry, details.AsDeleted()); |
| } else { |
| Object* deleted = dictionary->DeleteProperty(entry, mode); |
| if (deleted == GetHeap()->true_value()) { |
| FixedArray* new_properties = NULL; |
| MaybeObject* maybe_properties = dictionary->Shrink(name); |
| if (!maybe_properties->To(&new_properties)) { |
| return maybe_properties; |
| } |
| set_properties(new_properties); |
| } |
| return deleted; |
| } |
| } |
| return GetHeap()->true_value(); |
| } |
| |
| |
| bool JSObject::IsDirty() { |
| Object* cons_obj = map()->constructor(); |
| if (!cons_obj->IsJSFunction()) |
| return true; |
| JSFunction* fun = JSFunction::cast(cons_obj); |
| if (!fun->shared()->IsApiFunction()) |
| return true; |
| // If the object is fully fast case and has the same map it was |
| // created with then no changes can have been made to it. |
| return map() != fun->initial_map() |
| || !HasFastElements() |
| || !HasFastProperties(); |
| } |
| |
| |
| MaybeObject* Object::GetProperty(Object* receiver, |
| LookupResult* result, |
| String* name, |
| PropertyAttributes* attributes) { |
| // Make sure that the top context does not change when doing |
| // callbacks or interceptor calls. |
| AssertNoContextChange ncc; |
| Heap* heap = name->GetHeap(); |
| |
| // Traverse the prototype chain from the current object (this) to |
| // the holder and check for access rights. This avoids traversing the |
| // objects more than once in case of interceptors, because the |
| // holder will always be the interceptor holder and the search may |
| // only continue with a current object just after the interceptor |
| // holder in the prototype chain. |
| // Proxy handlers do not use the proxy's prototype, so we can skip this. |
| if (!result->IsHandler()) { |
| Object* last = result->IsProperty() ? result->holder() : heap->null_value(); |
| ASSERT(this != this->GetPrototype()); |
| for (Object* current = this; true; current = current->GetPrototype()) { |
| if (current->IsAccessCheckNeeded()) { |
| // Check if we're allowed to read from the current object. Note |
| // that even though we may not actually end up loading the named |
| // property from the current object, we still check that we have |
| // access to it. |
| JSObject* checked = JSObject::cast(current); |
| if (!heap->isolate()->MayNamedAccess(checked, name, v8::ACCESS_GET)) { |
| return checked->GetPropertyWithFailedAccessCheck(receiver, |
| result, |
| name, |
| attributes); |
| } |
| } |
| // Stop traversing the chain once we reach the last object in the |
| // chain; either the holder of the result or null in case of an |
| // absent property. |
| if (current == last) break; |
| } |
| } |
| |
| if (!result->IsProperty()) { |
| *attributes = ABSENT; |
| return heap->undefined_value(); |
| } |
| *attributes = result->GetAttributes(); |
| Object* value; |
| JSObject* holder = result->holder(); |
| switch (result->type()) { |
| case NORMAL: |
| value = holder->GetNormalizedProperty(result); |
| ASSERT(!value->IsTheHole() || result->IsReadOnly()); |
| return value->IsTheHole() ? heap->undefined_value() : value; |
| case FIELD: |
| value = holder->FastPropertyAt(result->GetFieldIndex()); |
| ASSERT(!value->IsTheHole() || result->IsReadOnly()); |
| return value->IsTheHole() ? heap->undefined_value() : value; |
| case CONSTANT_FUNCTION: |
| return result->GetConstantFunction(); |
| case CALLBACKS: |
| return GetPropertyWithCallback(receiver, |
| result->GetCallbackObject(), |
| name, |
| holder); |
| case HANDLER: { |
| JSProxy* proxy = JSProxy::cast(this); |
| return GetPropertyWithHandler(receiver, name, proxy->handler()); |
| } |
| case INTERCEPTOR: { |
| JSObject* recvr = JSObject::cast(receiver); |
| return holder->GetPropertyWithInterceptor(recvr, name, attributes); |
| } |
| case MAP_TRANSITION: |
| case ELEMENTS_TRANSITION: |
| case CONSTANT_TRANSITION: |
| case NULL_DESCRIPTOR: |
| break; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| MaybeObject* Object::GetElementWithReceiver(Object* receiver, uint32_t index) { |
| Heap* heap = IsSmi() |
| ? Isolate::Current()->heap() |
| : HeapObject::cast(this)->GetHeap(); |
| Object* holder = this; |
| |
| // Iterate up the prototype chain until an element is found or the null |
| // prototype is encountered. |
| for (holder = this; |
| holder != heap->null_value(); |
| holder = holder->GetPrototype()) { |
| if (holder->IsSmi()) { |
| Context* global_context = Isolate::Current()->context()->global_context(); |
| holder = global_context->number_function()->instance_prototype(); |
| } else { |
| HeapObject* heap_object = HeapObject::cast(holder); |
| if (!heap_object->IsJSObject()) { |
| Isolate* isolate = heap->isolate(); |
| Context* global_context = isolate->context()->global_context(); |
| if (heap_object->IsString()) { |
| holder = global_context->string_function()->instance_prototype(); |
| } else if (heap_object->IsHeapNumber()) { |
| holder = global_context->number_function()->instance_prototype(); |
| } else if (heap_object->IsBoolean()) { |
| holder = global_context->boolean_function()->instance_prototype(); |
| } else if (heap_object->IsJSProxy()) { |
| // TODO(rossberg): do something |
| return heap->undefined_value(); // For now... |
| } else { |
| // Undefined and null have no indexed properties. |
| ASSERT(heap_object->IsUndefined() || heap_object->IsNull()); |
| return heap->undefined_value(); |
| } |
| } |
| } |
| |
| // Inline the case for JSObjects. Doing so significantly improves the |
| // performance of fetching elements where checking the prototype chain is |
| // necessary. |
| JSObject* js_object = JSObject::cast(holder); |
| |
| // Check access rights if needed. |
| if (js_object->IsAccessCheckNeeded()) { |
| Isolate* isolate = heap->isolate(); |
| if (!isolate->MayIndexedAccess(js_object, index, v8::ACCESS_GET)) { |
| isolate->ReportFailedAccessCheck(js_object, v8::ACCESS_GET); |
| return heap->undefined_value(); |
| } |
| } |
| |
| if (js_object->HasIndexedInterceptor()) { |
| return js_object->GetElementWithInterceptor(receiver, index); |
| } |
| |
| if (js_object->elements() != heap->empty_fixed_array()) { |
| MaybeObject* result = js_object->GetElementsAccessor()->Get( |
| js_object->elements(), |
| index, |
| js_object, |
| receiver); |
| if (result != heap->the_hole_value()) return result; |
| } |
| } |
| |
| return heap->undefined_value(); |
| } |
| |
| |
| Object* Object::GetPrototype() { |
| if (IsSmi()) { |
| Heap* heap = Isolate::Current()->heap(); |
| Context* context = heap->isolate()->context()->global_context(); |
| return context->number_function()->instance_prototype(); |
| } |
| |
| HeapObject* heap_object = HeapObject::cast(this); |
| |
| // The object is either a number, a string, a boolean, |
| // a real JS object, or a Harmony proxy. |
| if (heap_object->IsJSReceiver()) { |
| return heap_object->map()->prototype(); |
| } |
| Heap* heap = heap_object->GetHeap(); |
| Context* context = heap->isolate()->context()->global_context(); |
| |
| if (heap_object->IsHeapNumber()) { |
| return context->number_function()->instance_prototype(); |
| } |
| if (heap_object->IsString()) { |
| return context->string_function()->instance_prototype(); |
| } |
| if (heap_object->IsBoolean()) { |
| return context->boolean_function()->instance_prototype(); |
| } else { |
| return heap->null_value(); |
| } |
| } |
| |
| |
| void Object::ShortPrint(FILE* out) { |
| HeapStringAllocator allocator; |
| StringStream accumulator(&allocator); |
| ShortPrint(&accumulator); |
| accumulator.OutputToFile(out); |
| } |
| |
| |
| void Object::ShortPrint(StringStream* accumulator) { |
| if (IsSmi()) { |
| Smi::cast(this)->SmiPrint(accumulator); |
| } else if (IsFailure()) { |
| Failure::cast(this)->FailurePrint(accumulator); |
| } else { |
| HeapObject::cast(this)->HeapObjectShortPrint(accumulator); |
| } |
| } |
| |
| |
| void Smi::SmiPrint(FILE* out) { |
| PrintF(out, "%d", value()); |
| } |
| |
| |
| void Smi::SmiPrint(StringStream* accumulator) { |
| accumulator->Add("%d", value()); |
| } |
| |
| |
| void Failure::FailurePrint(StringStream* accumulator) { |
| accumulator->Add("Failure(%p)", reinterpret_cast<void*>(value())); |
| } |
| |
| |
| void Failure::FailurePrint(FILE* out) { |
| PrintF(out, "Failure(%p)", reinterpret_cast<void*>(value())); |
| } |
| |
| |
| // Should a word be prefixed by 'a' or 'an' in order to read naturally in |
| // English? Returns false for non-ASCII or words that don't start with |
| // a capital letter. The a/an rule follows pronunciation in English. |
| // We don't use the BBC's overcorrect "an historic occasion" though if |
| // you speak a dialect you may well say "an 'istoric occasion". |
| static bool AnWord(String* str) { |
| if (str->length() == 0) return false; // A nothing. |
| int c0 = str->Get(0); |
| int c1 = str->length() > 1 ? str->Get(1) : 0; |
| if (c0 == 'U') { |
| if (c1 > 'Z') { |
| return true; // An Umpire, but a UTF8String, a U. |
| } |
| } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') { |
| return true; // An Ape, an ABCBook. |
| } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) && |
| (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' || |
| c0 == 'S' || c0 == 'X')) { |
| return true; // An MP3File, an M. |
| } |
| return false; |
| } |
| |
| |
| MaybeObject* String::SlowTryFlatten(PretenureFlag pretenure) { |
| #ifdef DEBUG |
| // Do not attempt to flatten in debug mode when allocation is not |
| // allowed. This is to avoid an assertion failure when allocating. |
| // Flattening strings is the only case where we always allow |
| // allocation because no GC is performed if the allocation fails. |
| if (!HEAP->IsAllocationAllowed()) return this; |
| #endif |
| |
| Heap* heap = GetHeap(); |
| switch (StringShape(this).representation_tag()) { |
| case kConsStringTag: { |
| ConsString* cs = ConsString::cast(this); |
| if (cs->second()->length() == 0) { |
| return cs->first(); |
| } |
| // There's little point in putting the flat string in new space if the |
| // cons string is in old space. It can never get GCed until there is |
| // an old space GC. |
| PretenureFlag tenure = heap->InNewSpace(this) ? pretenure : TENURED; |
| int len = length(); |
| Object* object; |
| String* result; |
| if (IsAsciiRepresentation()) { |
| { MaybeObject* maybe_object = heap->AllocateRawAsciiString(len, tenure); |
| if (!maybe_object->ToObject(&object)) return maybe_object; |
| } |
| result = String::cast(object); |
| String* first = cs->first(); |
| int first_length = first->length(); |
| char* dest = SeqAsciiString::cast(result)->GetChars(); |
| WriteToFlat(first, dest, 0, first_length); |
| String* second = cs->second(); |
| WriteToFlat(second, |
| dest + first_length, |
| 0, |
| len - first_length); |
| } else { |
| { MaybeObject* maybe_object = |
| heap->AllocateRawTwoByteString(len, tenure); |
| if (!maybe_object->ToObject(&object)) return maybe_object; |
| } |
| result = String::cast(object); |
| uc16* dest = SeqTwoByteString::cast(result)->GetChars(); |
| String* first = cs->first(); |
| int first_length = first->length(); |
| WriteToFlat(first, dest, 0, first_length); |
| String* second = cs->second(); |
| WriteToFlat(second, |
| dest + first_length, |
| 0, |
| len - first_length); |
| } |
| cs->set_first(result); |
| cs->set_second(heap->empty_string()); |
| return result; |
| } |
| default: |
| return this; |
| } |
| } |
| |
| |
| bool String::MakeExternal(v8::String::ExternalStringResource* resource) { |
| // Externalizing twice leaks the external resource, so it's |
| // prohibited by the API. |
| ASSERT(!this->IsExternalString()); |
| #ifdef DEBUG |
| if (FLAG_enable_slow_asserts) { |
| // Assert that the resource and the string are equivalent. |
| ASSERT(static_cast<size_t>(this->length()) == resource->length()); |
| ScopedVector<uc16> smart_chars(this->length()); |
| String::WriteToFlat(this, smart_chars.start(), 0, this->length()); |
| ASSERT(memcmp(smart_chars.start(), |
| resource->data(), |
| resource->length() * sizeof(smart_chars[0])) == 0); |
| } |
| #endif // DEBUG |
| Heap* heap = GetHeap(); |
| int size = this->Size(); // Byte size of the original string. |
| if (size < ExternalString::kSize) { |
| // The string is too small to fit an external String in its place. This can |
| // only happen for zero length strings. |
| return false; |
| } |
| ASSERT(size >= ExternalString::kSize); |
| bool is_ascii = this->IsAsciiRepresentation(); |
| bool is_symbol = this->IsSymbol(); |
| int length = this->length(); |
| int hash_field = this->hash_field(); |
| |
| // Morph the object to an external string by adjusting the map and |
| // reinitializing the fields. |
| this->set_map(is_ascii ? |
| heap->external_string_with_ascii_data_map() : |
| heap->external_string_map()); |
| ExternalTwoByteString* self = ExternalTwoByteString::cast(this); |
| self->set_length(length); |
| self->set_hash_field(hash_field); |
| self->set_resource(resource); |
| // Additionally make the object into an external symbol if the original string |
| // was a symbol to start with. |
| if (is_symbol) { |
| self->Hash(); // Force regeneration of the hash value. |
| // Now morph this external string into a external symbol. |
| this->set_map(is_ascii ? |
| heap->external_symbol_with_ascii_data_map() : |
| heap->external_symbol_map()); |
| } |
| |
| // Fill the remainder of the string with dead wood. |
| int new_size = this->Size(); // Byte size of the external String object. |
| heap->CreateFillerObjectAt(this->address() + new_size, size - new_size); |
| return true; |
| } |
| |
| |
| bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) { |
| #ifdef DEBUG |
| if (FLAG_enable_slow_asserts) { |
| // Assert that the resource and the string are equivalent. |
| ASSERT(static_cast<size_t>(this->length()) == resource->length()); |
| ScopedVector<char> smart_chars(this->length()); |
| String::WriteToFlat(this, smart_chars.start(), 0, this->length()); |
| ASSERT(memcmp(smart_chars.start(), |
| resource->data(), |
| resource->length() * sizeof(smart_chars[0])) == 0); |
| } |
| #endif // DEBUG |
| Heap* heap = GetHeap(); |
| int size = this->Size(); // Byte size of the original string. |
| if (size < ExternalString::kSize) { |
| // The string is too small to fit an external String in its place. This can |
| // only happen for zero length strings. |
| return false; |
| } |
| ASSERT(size >= ExternalString::kSize); |
| bool is_symbol = this->IsSymbol(); |
| int length = this->length(); |
| int hash_field = this->hash_field(); |
| |
| // Morph the object to an external string by adjusting the map and |
| // reinitializing the fields. |
| this->set_map(heap->external_ascii_string_map()); |
| ExternalAsciiString* self = ExternalAsciiString::cast(this); |
| self->set_length(length); |
| self->set_hash_field(hash_field); |
| self->set_resource(resource); |
| // Additionally make the object into an external symbol if the original string |
| // was a symbol to start with. |
| if (is_symbol) { |
| self->Hash(); // Force regeneration of the hash value. |
| // Now morph this external string into a external symbol. |
| this->set_map(heap->external_ascii_symbol_map()); |
| } |
| |
| // Fill the remainder of the string with dead wood. |
| int new_size = this->Size(); // Byte size of the external String object. |
| heap->CreateFillerObjectAt(this->address() + new_size, size - new_size); |
| return true; |
| } |
| |
| |
| void String::StringShortPrint(StringStream* accumulator) { |
| int len = length(); |
| if (len > kMaxShortPrintLength) { |
| accumulator->Add("<Very long string[%u]>", len); |
| return; |
| } |
| |
| if (!LooksValid()) { |
| accumulator->Add("<Invalid String>"); |
| return; |
| } |
| |
| StringInputBuffer buf(this); |
| |
| bool truncated = false; |
| if (len > kMaxShortPrintLength) { |
| len = kMaxShortPrintLength; |
| truncated = true; |
| } |
| bool ascii = true; |
| for (int i = 0; i < len; i++) { |
| int c = buf.GetNext(); |
| |
| if (c < 32 || c >= 127) { |
| ascii = false; |
| } |
| } |
| buf.Reset(this); |
| if (ascii) { |
| accumulator->Add("<String[%u]: ", length()); |
| for (int i = 0; i < len; i++) { |
| accumulator->Put(buf.GetNext()); |
| } |
| accumulator->Put('>'); |
| } else { |
| // Backslash indicates that the string contains control |
| // characters and that backslashes are therefore escaped. |
| accumulator->Add("<String[%u]\\: ", length()); |
| for (int i = 0; i < len; i++) { |
| int c = buf.GetNext(); |
| if (c == '\n') { |
| accumulator->Add("\\n"); |
| } else if (c == '\r') { |
| accumulator->Add("\\r"); |
| } else if (c == '\\') { |
| accumulator->Add("\\\\"); |
| } else if (c < 32 || c > 126) { |
| accumulator->Add("\\x%02x", c); |
| } else { |
| accumulator->Put(c); |
| } |
| } |
| if (truncated) { |
| accumulator->Put('.'); |
| accumulator->Put('.'); |
| accumulator->Put('.'); |
| } |
| accumulator->Put('>'); |
| } |
| return; |
| } |
| |
| |
| void JSObject::JSObjectShortPrint(StringStream* accumulator) { |
| switch (map()->instance_type()) { |
| case JS_ARRAY_TYPE: { |
| double length = JSArray::cast(this)->length()->Number(); |
| accumulator->Add("<JS array[%u]>", static_cast<uint32_t>(length)); |
| break; |
| } |
| case JS_WEAK_MAP_TYPE: { |
| int elements = JSWeakMap::cast(this)->table()->NumberOfElements(); |
| accumulator->Add("<JS WeakMap[%d]>", elements); |
| break; |
| } |
| case JS_REGEXP_TYPE: { |
| accumulator->Add("<JS RegExp>"); |
| break; |
| } |
| case JS_FUNCTION_TYPE: { |
| Object* fun_name = JSFunction::cast(this)->shared()->name(); |
| bool printed = false; |
| if (fun_name->IsString()) { |
| String* str = String::cast(fun_name); |
| if (str->length() > 0) { |
| accumulator->Add("<JS Function "); |
| accumulator->Put(str); |
| accumulator->Put('>'); |
| printed = true; |
| } |
| } |
| if (!printed) { |
| accumulator->Add("<JS Function>"); |
| } |
| break; |
| } |
| // All other JSObjects are rather similar to each other (JSObject, |
| // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue). |
| default: { |
| Map* map_of_this = map(); |
| Heap* heap = map_of_this->heap(); |
| Object* constructor = map_of_this->constructor(); |
| bool printed = false; |
| if (constructor->IsHeapObject() && |
| !heap->Contains(HeapObject::cast(constructor))) { |
| accumulator->Add("!!!INVALID CONSTRUCTOR!!!"); |
| } else { |
| bool global_object = IsJSGlobalProxy(); |
| if (constructor->IsJSFunction()) { |
| if (!heap->Contains(JSFunction::cast(constructor)->shared())) { |
| accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!"); |
| } else { |
| Object* constructor_name = |
| JSFunction::cast(constructor)->shared()->name(); |
| if (constructor_name->IsString()) { |
| String* str = String::cast(constructor_name); |
| if (str->length() > 0) { |
| bool vowel = AnWord(str); |
| accumulator->Add("<%sa%s ", |
| global_object ? "Global Object: " : "", |
| vowel ? "n" : ""); |
| accumulator->Put(str); |
| accumulator->Put('>'); |
| printed = true; |
| } |
| } |
| } |
| } |
| if (!printed) { |
| accumulator->Add("<JS %sObject", global_object ? "Global " : ""); |
| } |
| } |
| if (IsJSValue()) { |
| accumulator->Add(" value = "); |
| JSValue::cast(this)->value()->ShortPrint(accumulator); |
| } |
| accumulator->Put('>'); |
| break; |
| } |
| } |
| } |
| |
| |
| void HeapObject::HeapObjectShortPrint(StringStream* accumulator) { |
| // if (!HEAP->InNewSpace(this)) PrintF("*", this); |
| Heap* heap = GetHeap(); |
| if (!heap->Contains(this)) { |
| accumulator->Add("!!!INVALID POINTER!!!"); |
| return; |
| } |
| if (!heap->Contains(map())) { |
| accumulator->Add("!!!INVALID MAP!!!"); |
| return; |
| } |
| |
| accumulator->Add("%p ", this); |
| |
| if (IsString()) { |
| String::cast(this)->StringShortPrint(accumulator); |
| return; |
| } |
| if (IsJSObject()) { |
| JSObject::cast(this)->JSObjectShortPrint(accumulator); |
| return; |
| } |
| switch (map()->instance_type()) { |
| case MAP_TYPE: |
| accumulator->Add("<Map>"); |
| break; |
| case FIXED_ARRAY_TYPE: |
| accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length()); |
| break; |
| case BYTE_ARRAY_TYPE: |
| accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length()); |
| break; |
| case EXTERNAL_PIXEL_ARRAY_TYPE: |
| accumulator->Add("<ExternalPixelArray[%u]>", |
| ExternalPixelArray::cast(this)->length()); |
| break; |
| case EXTERNAL_BYTE_ARRAY_TYPE: |
| accumulator->Add("<ExternalByteArray[%u]>", |
| ExternalByteArray::cast(this)->length()); |
| break; |
| case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: |
| accumulator->Add("<ExternalUnsignedByteArray[%u]>", |
| ExternalUnsignedByteArray::cast(this)->length()); |
| break; |
| case EXTERNAL_SHORT_ARRAY_TYPE: |
| accumulator->Add("<ExternalShortArray[%u]>", |
| ExternalShortArray::cast(this)->length()); |
| break; |
| case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: |
| accumulator->Add("<ExternalUnsignedShortArray[%u]>", |
| ExternalUnsignedShortArray::cast(this)->length()); |
| break; |
| case EXTERNAL_INT_ARRAY_TYPE: |
| accumulator->Add("<ExternalIntArray[%u]>", |
| ExternalIntArray::cast(this)->length()); |
| break; |
| case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: |
| accumulator->Add("<ExternalUnsignedIntArray[%u]>", |
| ExternalUnsignedIntArray::cast(this)->length()); |
| break; |
| case EXTERNAL_FLOAT_ARRAY_TYPE: |
| accumulator->Add("<ExternalFloatArray[%u]>", |
| ExternalFloatArray::cast(this)->length()); |
| break; |
| case EXTERNAL_DOUBLE_ARRAY_TYPE: |
| accumulator->Add("<ExternalDoubleArray[%u]>", |
| ExternalDoubleArray::cast(this)->length()); |
| break; |
| case SHARED_FUNCTION_INFO_TYPE: |
| accumulator->Add("<SharedFunctionInfo>"); |
| break; |
| case JS_MESSAGE_OBJECT_TYPE: |
| accumulator->Add("<JSMessageObject>"); |
| break; |
| #define MAKE_STRUCT_CASE(NAME, Name, name) \ |
| case NAME##_TYPE: \ |
| accumulator->Put('<'); \ |
| accumulator->Add(#Name); \ |
| accumulator->Put('>'); \ |
| break; |
| STRUCT_LIST(MAKE_STRUCT_CASE) |
| #undef MAKE_STRUCT_CASE |
| case CODE_TYPE: |
| accumulator->Add("<Code>"); |
| break; |
| case ODDBALL_TYPE: { |
| if (IsUndefined()) |
| accumulator->Add("<undefined>"); |
| else if (IsTheHole()) |
| accumulator->Add("<the hole>"); |
| else if (IsNull()) |
| accumulator->Add("<null>"); |
| else if (IsTrue()) |
| accumulator->Add("<true>"); |
| else if (IsFalse()) |
| accumulator->Add("<false>"); |
| else |
| accumulator->Add("<Odd Oddball>"); |
| break; |
| } |
| case HEAP_NUMBER_TYPE: |
| accumulator->Add("<Number: "); |
| HeapNumber::cast(this)->HeapNumberPrint(accumulator); |
| accumulator->Put('>'); |
| break; |
| case JS_PROXY_TYPE: |
| accumulator->Add("<JSProxy>"); |
| break; |
| case JS_FUNCTION_PROXY_TYPE: |
| accumulator->Add("<JSFunctionProxy>"); |
| break; |
| case FOREIGN_TYPE: |
| accumulator->Add("<Foreign>"); |
| break; |
| case JS_GLOBAL_PROPERTY_CELL_TYPE: |
| accumulator->Add("Cell for "); |
| JSGlobalPropertyCell::cast(this)->value()->ShortPrint(accumulator); |
| break; |
| default: |
| accumulator->Add("<Other heap object (%d)>", map()->instance_type()); |
| break; |
| } |
| } |
| |
| |
| void HeapObject::Iterate(ObjectVisitor* v) { |
| // Handle header |
| IteratePointer(v, kMapOffset); |
| // Handle object body |
| Map* m = map(); |
| IterateBody(m->instance_type(), SizeFromMap(m), v); |
| } |
| |
| |
| void HeapObject::IterateBody(InstanceType type, int object_size, |
| ObjectVisitor* v) { |
| // Avoiding <Type>::cast(this) because it accesses the map pointer field. |
| // During GC, the map pointer field is encoded. |
| if (type < FIRST_NONSTRING_TYPE) { |
| switch (type & kStringRepresentationMask) { |
| case kSeqStringTag: |
| break; |
| case kConsStringTag: |
| ConsString::BodyDescriptor::IterateBody(this, v); |
| break; |
| case kSlicedStringTag: |
| SlicedString::BodyDescriptor::IterateBody(this, v); |
| break; |
| case kExternalStringTag: |
| if ((type & kStringEncodingMask) == kAsciiStringTag) { |
| reinterpret_cast<ExternalAsciiString*>(this)-> |
| ExternalAsciiStringIterateBody(v); |
| } else { |
| reinterpret_cast<ExternalTwoByteString*>(this)-> |
| ExternalTwoByteStringIterateBody(v); |
| } |
| break; |
| } |
| return; |
| } |
| |
| switch (type) { |
| case FIXED_ARRAY_TYPE: |
| FixedArray::BodyDescriptor::IterateBody(this, object_size, v); |
| break; |
| case FIXED_DOUBLE_ARRAY_TYPE: |
| break; |
| case JS_OBJECT_TYPE: |
| case JS_CONTEXT_EXTENSION_OBJECT_TYPE: |
| case JS_VALUE_TYPE: |
| case JS_ARRAY_TYPE: |
| case JS_WEAK_MAP_TYPE: |
| case JS_REGEXP_TYPE: |
| case JS_GLOBAL_PROXY_TYPE: |
| case JS_GLOBAL_OBJECT_TYPE: |
| case JS_BUILTINS_OBJECT_TYPE: |
| case JS_MESSAGE_OBJECT_TYPE: |
| JSObject::BodyDescriptor::IterateBody(this, object_size, v); |
| break; |
| case JS_FUNCTION_TYPE: |
| reinterpret_cast<JSFunction*>(this) |
| ->JSFunctionIterateBody(object_size, v); |
| break; |
| case ODDBALL_TYPE: |
| Oddball::BodyDescriptor::IterateBody(this, v); |
| break; |
| case JS_PROXY_TYPE: |
| JSProxy::BodyDescriptor::IterateBody(this, v); |
| break; |
| case JS_FUNCTION_PROXY_TYPE: |
| JSFunctionProxy::BodyDescriptor::IterateBody(this, v); |
| break; |
| case FOREIGN_TYPE: |
| reinterpret_cast<Foreign*>(this)->ForeignIterateBody(v); |
| break; |
| case MAP_TYPE: |
| Map::BodyDescriptor::IterateBody(this, v); |
| break; |
| case CODE_TYPE: |
| reinterpret_cast<Code*>(this)->CodeIterateBody(v); |
| break; |
| case JS_GLOBAL_PROPERTY_CELL_TYPE: |
| JSGlobalPropertyCell::BodyDescriptor::IterateBody(this, v); |
| break; |
| case HEAP_NUMBER_TYPE: |
| case FILLER_TYPE: |
| case BYTE_ARRAY_TYPE: |
| case EXTERNAL_PIXEL_ARRAY_TYPE: |
| case EXTERNAL_BYTE_ARRAY_TYPE: |
| case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: |
| case EXTERNAL_SHORT_ARRAY_TYPE: |
| case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: |
| case EXTERNAL_INT_ARRAY_TYPE: |
| case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: |
| case EXTERNAL_FLOAT_ARRAY_TYPE: |
| case EXTERNAL_DOUBLE_ARRAY_TYPE: |
| break; |
| case SHARED_FUNCTION_INFO_TYPE: |
| SharedFunctionInfo::BodyDescriptor::IterateBody(this, v); |
| break; |
| |
| #define MAKE_STRUCT_CASE(NAME, Name, name) \ |
| case NAME##_TYPE: |
| STRUCT_LIST(MAKE_STRUCT_CASE) |
| #undef MAKE_STRUCT_CASE |
| StructBodyDescriptor::IterateBody(this, object_size, v); |
| break; |
| default: |
| PrintF("Unknown type: %d\n", type); |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| Object* HeapNumber::HeapNumberToBoolean() { |
| // NaN, +0, and -0 should return the false object |
| #if __BYTE_ORDER == __LITTLE_ENDIAN |
| union IeeeDoubleLittleEndianArchType u; |
| #elif __BYTE_ORDER == __BIG_ENDIAN |
| union IeeeDoubleBigEndianArchType u; |
| #endif |
| u.d = value(); |
| if (u.bits.exp == 2047) { |
| // Detect NaN for IEEE double precision floating point. |
| if ((u.bits.man_low | u.bits.man_high) != 0) |
| return GetHeap()->false_value(); |
| } |
| if (u.bits.exp == 0) { |
| // Detect +0, and -0 for IEEE double precision floating point. |
| if ((u.bits.man_low | u.bits.man_high) == 0) |
| return GetHeap()->false_value(); |
| } |
| return GetHeap()->true_value(); |
| } |
| |
| |
| void HeapNumber::HeapNumberPrint(FILE* out) { |
| PrintF(out, "%.16g", Number()); |
| } |
| |
| |
| void HeapNumber::HeapNumberPrint(StringStream* accumulator) { |
| // The Windows version of vsnprintf can allocate when printing a %g string |
| // into a buffer that may not be big enough. We don't want random memory |
| // allocation when producing post-crash stack traces, so we print into a |
| // buffer that is plenty big enough for any floating point number, then |
| // print that using vsnprintf (which may truncate but never allocate if |
| // there is no more space in the buffer). |
| EmbeddedVector<char, 100> buffer; |
| OS::SNPrintF(buffer, "%.16g", Number()); |
| accumulator->Add("%s", buffer.start()); |
| } |
| |
| |
| String* JSReceiver::class_name() { |
| if (IsJSFunction() && IsJSFunctionProxy()) { |
| return GetHeap()->function_class_symbol(); |
| } |
| if (map()->constructor()->IsJSFunction()) { |
| JSFunction* constructor = JSFunction::cast(map()->constructor()); |
| return String::cast(constructor->shared()->instance_class_name()); |
| } |
| // If the constructor is not present, return "Object". |
| return GetHeap()->Object_symbol(); |
| } |
| |
| |
| String* JSReceiver::constructor_name() { |
| if (map()->constructor()->IsJSFunction()) { |
| JSFunction* constructor = JSFunction::cast(map()->constructor()); |
| String* name = String::cast(constructor->shared()->name()); |
| if (name->length() > 0) return name; |
| String* inferred_name = constructor->shared()->inferred_name(); |
| if (inferred_name->length() > 0) return inferred_name; |
| Object* proto = GetPrototype(); |
| if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name(); |
| } |
| // TODO(rossberg): what about proxies? |
| // If the constructor is not present, return "Object". |
| return GetHeap()->Object_symbol(); |
| } |
| |
| |
| MaybeObject* JSObject::AddFastPropertyUsingMap(Map* new_map, |
| String* name, |
| Object* value) { |
| int index = new_map->PropertyIndexFor(name); |
| if (map()->unused_property_fields() == 0) { |
| ASSERT(map()->unused_property_fields() == 0); |
| int new_unused = new_map->unused_property_fields(); |
| Object* values; |
| { MaybeObject* maybe_values = |
| properties()->CopySize(properties()->length() + new_unused + 1); |
| if (!maybe_values->ToObject(&values)) return maybe_values; |
| } |
| set_properties(FixedArray::cast(values)); |
| } |
| set_map(new_map); |
| return FastPropertyAtPut(index, value); |
| } |
| |
| |
| static bool IsIdentifier(UnicodeCache* cache, |
| unibrow::CharacterStream* buffer) { |
| // Checks whether the buffer contains an identifier (no escape). |
| if (!buffer->has_more()) return false; |
| if (!cache->IsIdentifierStart(buffer->GetNext())) { |
| return false; |
| } |
| while (buffer->has_more()) { |
| if (!cache->IsIdentifierPart(buffer->GetNext())) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| MaybeObject* JSObject::AddFastProperty(String* name, |
| Object* value, |
| PropertyAttributes attributes) { |
| ASSERT(!IsJSGlobalProxy()); |
| |
| // Normalize the object if the name is an actual string (not the |
| // hidden symbols) and is not a real identifier. |
| Isolate* isolate = GetHeap()->isolate(); |
| StringInputBuffer buffer(name); |
| if (!IsIdentifier(isolate->unicode_cache(), &buffer) |
| && name != isolate->heap()->hidden_symbol()) { |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| return AddSlowProperty(name, value, attributes); |
| } |
| |
| DescriptorArray* old_descriptors = map()->instance_descriptors(); |
| // Compute the new index for new field. |
| int index = map()->NextFreePropertyIndex(); |
| |
| // Allocate new instance descriptors with (name, index) added |
| FieldDescriptor new_field(name, index, attributes); |
| Object* new_descriptors; |
| { MaybeObject* maybe_new_descriptors = |
| old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS); |
| if (!maybe_new_descriptors->ToObject(&new_descriptors)) { |
| return maybe_new_descriptors; |
| } |
| } |
| |
| // Only allow map transition if the object isn't the global object and there |
| // is not a transition for the name, or there's a transition for the name but |
| // it's unrelated to properties. |
| int descriptor_index = old_descriptors->Search(name); |
| |
| // Element transitions are stored in the descriptor for property "", which is |
| // not a identifier and should have forced a switch to slow properties above. |
| ASSERT(descriptor_index == DescriptorArray::kNotFound || |
| old_descriptors->GetType(descriptor_index) != ELEMENTS_TRANSITION); |
| bool can_insert_transition = descriptor_index == DescriptorArray::kNotFound || |
| old_descriptors->GetType(descriptor_index) == ELEMENTS_TRANSITION; |
| bool allow_map_transition = |
| can_insert_transition && |
| (isolate->context()->global_context()->object_function()->map() != map()); |
| |
| ASSERT(index < map()->inobject_properties() || |
| (index - map()->inobject_properties()) < properties()->length() || |
| map()->unused_property_fields() == 0); |
| // Allocate a new map for the object. |
| Object* r; |
| { MaybeObject* maybe_r = map()->CopyDropDescriptors(); |
| if (!maybe_r->ToObject(&r)) return maybe_r; |
| } |
| Map* new_map = Map::cast(r); |
| if (allow_map_transition) { |
| // Allocate new instance descriptors for the old map with map transition. |
| MapTransitionDescriptor d(name, Map::cast(new_map), attributes); |
| Object* r; |
| { MaybeObject* maybe_r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS); |
| if (!maybe_r->ToObject(&r)) return maybe_r; |
| } |
| old_descriptors = DescriptorArray::cast(r); |
| } |
| |
| if (map()->unused_property_fields() == 0) { |
| if (properties()->length() > MaxFastProperties()) { |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| return AddSlowProperty(name, value, attributes); |
| } |
| // Make room for the new value |
| Object* values; |
| { MaybeObject* maybe_values = |
| properties()->CopySize(properties()->length() + kFieldsAdded); |
| if (!maybe_values->ToObject(&values)) return maybe_values; |
| } |
| set_properties(FixedArray::cast(values)); |
| new_map->set_unused_property_fields(kFieldsAdded - 1); |
| } else { |
| new_map->set_unused_property_fields(map()->unused_property_fields() - 1); |
| } |
| // We have now allocated all the necessary objects. |
| // All the changes can be applied at once, so they are atomic. |
| map()->set_instance_descriptors(old_descriptors); |
| new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); |
| set_map(new_map); |
| return FastPropertyAtPut(index, value); |
| } |
| |
| |
| MaybeObject* JSObject::AddConstantFunctionProperty( |
| String* name, |
| JSFunction* function, |
| PropertyAttributes attributes) { |
| ASSERT(!GetHeap()->InNewSpace(function)); |
| |
| // Allocate new instance descriptors with (name, function) added |
| ConstantFunctionDescriptor d(name, function, attributes); |
| Object* new_descriptors; |
| { MaybeObject* maybe_new_descriptors = |
| map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS); |
| if (!maybe_new_descriptors->ToObject(&new_descriptors)) { |
| return maybe_new_descriptors; |
| } |
| } |
| |
| // Allocate a new map for the object. |
| Object* new_map; |
| { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| } |
| |
| DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors); |
| Map::cast(new_map)->set_instance_descriptors(descriptors); |
| Map* old_map = map(); |
| set_map(Map::cast(new_map)); |
| |
| // If the old map is the global object map (from new Object()), |
| // then transitions are not added to it, so we are done. |
| Heap* heap = old_map->heap(); |
| if (old_map == heap->isolate()->context()->global_context()-> |
| object_function()->map()) { |
| return function; |
| } |
| |
| // Do not add CONSTANT_TRANSITIONS to global objects |
| if (IsGlobalObject()) { |
| return function; |
| } |
| |
| // Add a CONSTANT_TRANSITION descriptor to the old map, |
| // so future assignments to this property on other objects |
| // of the same type will create a normal field, not a constant function. |
| // Don't do this for special properties, with non-trival attributes. |
| if (attributes != NONE) { |
| return function; |
| } |
| ConstTransitionDescriptor mark(name, Map::cast(new_map)); |
| { MaybeObject* maybe_new_descriptors = |
| old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS); |
| if (!maybe_new_descriptors->ToObject(&new_descriptors)) { |
| // We have accomplished the main goal, so return success. |
| return function; |
| } |
| } |
| old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); |
| |
| return function; |
| } |
| |
| |
| // Add property in slow mode |
| MaybeObject* JSObject::AddSlowProperty(String* name, |
| Object* value, |
| PropertyAttributes attributes) { |
| ASSERT(!HasFastProperties()); |
| StringDictionary* dict = property_dictionary(); |
| Object* store_value = value; |
| if (IsGlobalObject()) { |
| // In case name is an orphaned property reuse the cell. |
| int entry = dict->FindEntry(name); |
| if (entry != StringDictionary::kNotFound) { |
| store_value = dict->ValueAt(entry); |
| JSGlobalPropertyCell::cast(store_value)->set_value(value); |
| // Assign an enumeration index to the property and update |
| // SetNextEnumerationIndex. |
| int index = dict->NextEnumerationIndex(); |
| PropertyDetails details = PropertyDetails(attributes, NORMAL, index); |
| dict->SetNextEnumerationIndex(index + 1); |
| dict->SetEntry(entry, name, store_value, details); |
| return value; |
| } |
| Heap* heap = GetHeap(); |
| { MaybeObject* maybe_store_value = |
| heap->AllocateJSGlobalPropertyCell(value); |
| if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value; |
| } |
| JSGlobalPropertyCell::cast(store_value)->set_value(value); |
| } |
| PropertyDetails details = PropertyDetails(attributes, NORMAL); |
| Object* result; |
| { MaybeObject* maybe_result = dict->Add(name, store_value, details); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| if (dict != result) set_properties(StringDictionary::cast(result)); |
| return value; |
| } |
| |
| |
| MaybeObject* JSObject::AddProperty(String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| ASSERT(!IsJSGlobalProxy()); |
| Map* map_of_this = map(); |
| Heap* heap = map_of_this->heap(); |
| if (!map_of_this->is_extensible()) { |
| if (strict_mode == kNonStrictMode) { |
| return heap->undefined_value(); |
| } else { |
| Handle<Object> args[1] = {Handle<String>(name)}; |
| return heap->isolate()->Throw( |
| *FACTORY->NewTypeError("object_not_extensible", |
| HandleVector(args, 1))); |
| } |
| } |
| if (HasFastProperties()) { |
| // Ensure the descriptor array does not get too big. |
| if (map_of_this->instance_descriptors()->number_of_descriptors() < |
| DescriptorArray::kMaxNumberOfDescriptors) { |
| if (value->IsJSFunction() && !heap->InNewSpace(value)) { |
| return AddConstantFunctionProperty(name, |
| JSFunction::cast(value), |
| attributes); |
| } else { |
| return AddFastProperty(name, value, attributes); |
| } |
| } else { |
| // Normalize the object to prevent very large instance descriptors. |
| // This eliminates unwanted N^2 allocation and lookup behavior. |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| } |
| } |
| return AddSlowProperty(name, value, attributes); |
| } |
| |
| |
| MaybeObject* JSObject::SetPropertyPostInterceptor( |
| String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| // Check local property, ignore interceptor. |
| LookupResult result; |
| LocalLookupRealNamedProperty(name, &result); |
| if (result.IsFound()) { |
| // An existing property, a map transition or a null descriptor was |
| // found. Use set property to handle all these cases. |
| return SetProperty(&result, name, value, attributes, strict_mode); |
| } |
| // Add a new real property. |
| return AddProperty(name, value, attributes, strict_mode); |
| } |
| |
| |
| MaybeObject* JSObject::ReplaceSlowProperty(String* name, |
| Object* value, |
| PropertyAttributes attributes) { |
| StringDictionary* dictionary = property_dictionary(); |
| int old_index = dictionary->FindEntry(name); |
| int new_enumeration_index = 0; // 0 means "Use the next available index." |
| if (old_index != -1) { |
| // All calls to ReplaceSlowProperty have had all transitions removed. |
| ASSERT(!dictionary->DetailsAt(old_index).IsTransition()); |
| new_enumeration_index = dictionary->DetailsAt(old_index).index(); |
| } |
| |
| PropertyDetails new_details(attributes, NORMAL, new_enumeration_index); |
| return SetNormalizedProperty(name, value, new_details); |
| } |
| |
| |
| MaybeObject* JSObject::ConvertDescriptorToFieldAndMapTransition( |
| String* name, |
| Object* new_value, |
| PropertyAttributes attributes) { |
| Map* old_map = map(); |
| Object* result; |
| { MaybeObject* maybe_result = |
| ConvertDescriptorToField(name, new_value, attributes); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| // If we get to this point we have succeeded - do not return failure |
| // after this point. Later stuff is optional. |
| if (!HasFastProperties()) { |
| return result; |
| } |
| // Do not add transitions to the map of "new Object()". |
| if (map() == old_map->heap()->isolate()->context()->global_context()-> |
| object_function()->map()) { |
| return result; |
| } |
| |
| MapTransitionDescriptor transition(name, |
| map(), |
| attributes); |
| Object* new_descriptors; |
| { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()-> |
| CopyInsert(&transition, KEEP_TRANSITIONS); |
| if (!maybe_new_descriptors->ToObject(&new_descriptors)) { |
| return result; // Yes, return _result_. |
| } |
| } |
| old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); |
| return result; |
| } |
| |
| |
| MaybeObject* JSObject::ConvertDescriptorToField(String* name, |
| Object* new_value, |
| PropertyAttributes attributes) { |
| if (map()->unused_property_fields() == 0 && |
| properties()->length() > MaxFastProperties()) { |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| return ReplaceSlowProperty(name, new_value, attributes); |
| } |
| |
| int index = map()->NextFreePropertyIndex(); |
| FieldDescriptor new_field(name, index, attributes); |
| // Make a new DescriptorArray replacing an entry with FieldDescriptor. |
| Object* descriptors_unchecked; |
| { MaybeObject* maybe_descriptors_unchecked = map()->instance_descriptors()-> |
| CopyInsert(&new_field, REMOVE_TRANSITIONS); |
| if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) { |
| return maybe_descriptors_unchecked; |
| } |
| } |
| DescriptorArray* new_descriptors = |
| DescriptorArray::cast(descriptors_unchecked); |
| |
| // Make a new map for the object. |
| Object* new_map_unchecked; |
| { MaybeObject* maybe_new_map_unchecked = map()->CopyDropDescriptors(); |
| if (!maybe_new_map_unchecked->ToObject(&new_map_unchecked)) { |
| return maybe_new_map_unchecked; |
| } |
| } |
| Map* new_map = Map::cast(new_map_unchecked); |
| new_map->set_instance_descriptors(new_descriptors); |
| |
| // Make new properties array if necessary. |
| FixedArray* new_properties = 0; // Will always be NULL or a valid pointer. |
| int new_unused_property_fields = map()->unused_property_fields() - 1; |
| if (map()->unused_property_fields() == 0) { |
| new_unused_property_fields = kFieldsAdded - 1; |
| Object* new_properties_object; |
| { MaybeObject* maybe_new_properties_object = |
| properties()->CopySize(properties()->length() + kFieldsAdded); |
| if (!maybe_new_properties_object->ToObject(&new_properties_object)) { |
| return maybe_new_properties_object; |
| } |
| } |
| new_properties = FixedArray::cast(new_properties_object); |
| } |
| |
| // Update pointers to commit changes. |
| // Object points to the new map. |
| new_map->set_unused_property_fields(new_unused_property_fields); |
| set_map(new_map); |
| if (new_properties) { |
| set_properties(FixedArray::cast(new_properties)); |
| } |
| return FastPropertyAtPut(index, new_value); |
| } |
| |
| |
| |
| MaybeObject* JSObject::SetPropertyWithInterceptor( |
| String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| Handle<JSObject> this_handle(this); |
| Handle<String> name_handle(name); |
| Handle<Object> value_handle(value, isolate); |
| Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); |
| if (!interceptor->setter()->IsUndefined()) { |
| LOG(isolate, ApiNamedPropertyAccess("interceptor-named-set", this, name)); |
| CustomArguments args(isolate, interceptor->data(), this, this); |
| v8::AccessorInfo info(args.end()); |
| v8::NamedPropertySetter setter = |
| v8::ToCData<v8::NamedPropertySetter>(interceptor->setter()); |
| v8::Handle<v8::Value> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| Handle<Object> value_unhole(value->IsTheHole() ? |
| isolate->heap()->undefined_value() : |
| value, |
| isolate); |
| result = setter(v8::Utils::ToLocal(name_handle), |
| v8::Utils::ToLocal(value_unhole), |
| info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (!result.IsEmpty()) return *value_handle; |
| } |
| MaybeObject* raw_result = |
| this_handle->SetPropertyPostInterceptor(*name_handle, |
| *value_handle, |
| attributes, |
| strict_mode); |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return raw_result; |
| } |
| |
| |
| MaybeObject* JSReceiver::SetProperty(String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| LookupResult result; |
| LocalLookup(name, &result); |
| return SetProperty(&result, name, value, attributes, strict_mode); |
| } |
| |
| |
| MaybeObject* JSObject::SetPropertyWithCallback(Object* structure, |
| String* name, |
| Object* value, |
| JSObject* holder, |
| StrictModeFlag strict_mode) { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| |
| // We should never get here to initialize a const with the hole |
| // value since a const declaration would conflict with the setter. |
| ASSERT(!value->IsTheHole()); |
| Handle<Object> value_handle(value, isolate); |
| |
| // To accommodate both the old and the new api we switch on the |
| // data structure used to store the callbacks. Eventually foreign |
| // callbacks should be phased out. |
| if (structure->IsForeign()) { |
| AccessorDescriptor* callback = |
| reinterpret_cast<AccessorDescriptor*>( |
| Foreign::cast(structure)->address()); |
| MaybeObject* obj = (callback->setter)(this, value, callback->data); |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (obj->IsFailure()) return obj; |
| return *value_handle; |
| } |
| |
| if (structure->IsAccessorInfo()) { |
| // api style callbacks |
| AccessorInfo* data = AccessorInfo::cast(structure); |
| Object* call_obj = data->setter(); |
| v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj); |
| if (call_fun == NULL) return value; |
| Handle<String> key(name); |
| LOG(isolate, ApiNamedPropertyAccess("store", this, name)); |
| CustomArguments args(isolate, data->data(), this, JSObject::cast(holder)); |
| v8::AccessorInfo info(args.end()); |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| call_fun(v8::Utils::ToLocal(key), |
| v8::Utils::ToLocal(value_handle), |
| info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return *value_handle; |
| } |
| |
| if (structure->IsFixedArray()) { |
| Object* setter = FixedArray::cast(structure)->get(kSetterIndex); |
| if (setter->IsJSFunction()) { |
| return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value); |
| } else { |
| if (strict_mode == kNonStrictMode) { |
| return value; |
| } |
| Handle<String> key(name); |
| Handle<Object> holder_handle(holder, isolate); |
| Handle<Object> args[2] = { key, holder_handle }; |
| return isolate->Throw( |
| *isolate->factory()->NewTypeError("no_setter_in_callback", |
| HandleVector(args, 2))); |
| } |
| } |
| |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| MaybeObject* JSObject::SetPropertyWithDefinedSetter(JSFunction* setter, |
| Object* value) { |
| Isolate* isolate = GetIsolate(); |
| Handle<Object> value_handle(value, isolate); |
| Handle<JSFunction> fun(JSFunction::cast(setter), isolate); |
| Handle<JSObject> self(this, isolate); |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| Debug* debug = isolate->debug(); |
| // Handle stepping into a setter if step into is active. |
| if (debug->StepInActive()) { |
| debug->HandleStepIn(fun, Handle<Object>::null(), 0, false); |
| } |
| #endif |
| bool has_pending_exception; |
| Object** argv[] = { value_handle.location() }; |
| Execution::Call(fun, self, 1, argv, &has_pending_exception); |
| // Check for pending exception and return the result. |
| if (has_pending_exception) return Failure::Exception(); |
| return *value_handle; |
| } |
| |
| |
| void JSObject::LookupCallbackSetterInPrototypes(String* name, |
| LookupResult* result) { |
| Heap* heap = GetHeap(); |
| for (Object* pt = GetPrototype(); |
| pt != heap->null_value(); |
| pt = pt->GetPrototype()) { |
| JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); |
| if (result->IsProperty()) { |
| if (result->type() == CALLBACKS && !result->IsReadOnly()) return; |
| // Found non-callback or read-only callback, stop looking. |
| break; |
| } |
| } |
| result->NotFound(); |
| } |
| |
| |
| MaybeObject* JSObject::SetElementWithCallbackSetterInPrototypes( |
| uint32_t index, |
| Object* value, |
| bool* found, |
| StrictModeFlag strict_mode) { |
| Heap* heap = GetHeap(); |
| for (Object* pt = GetPrototype(); |
| pt != heap->null_value(); |
| pt = pt->GetPrototype()) { |
| if (!JSObject::cast(pt)->HasDictionaryElements()) { |
| continue; |
| } |
| SeededNumberDictionary* dictionary = |
| JSObject::cast(pt)->element_dictionary(); |
| int entry = dictionary->FindEntry(index); |
| if (entry != SeededNumberDictionary::kNotFound) { |
| PropertyDetails details = dictionary->DetailsAt(entry); |
| if (details.type() == CALLBACKS) { |
| *found = true; |
| return SetElementWithCallback(dictionary->ValueAt(entry), |
| index, |
| value, |
| JSObject::cast(pt), |
| strict_mode); |
| } |
| } |
| } |
| *found = false; |
| return heap->the_hole_value(); |
| } |
| |
| |
| void JSObject::LookupInDescriptor(String* name, LookupResult* result) { |
| DescriptorArray* descriptors = map()->instance_descriptors(); |
| int number = descriptors->SearchWithCache(name); |
| if (number != DescriptorArray::kNotFound) { |
| result->DescriptorResult(this, descriptors->GetDetails(number), number); |
| } else { |
| result->NotFound(); |
| } |
| } |
| |
| |
| void Map::LookupInDescriptors(JSObject* holder, |
| String* name, |
| LookupResult* result) { |
| DescriptorArray* descriptors = instance_descriptors(); |
| DescriptorLookupCache* cache = heap()->isolate()->descriptor_lookup_cache(); |
| int number = cache->Lookup(descriptors, name); |
| if (number == DescriptorLookupCache::kAbsent) { |
| number = descriptors->Search(name); |
| cache->Update(descriptors, name, number); |
| } |
| if (number != DescriptorArray::kNotFound) { |
| result->DescriptorResult(holder, descriptors->GetDetails(number), number); |
| } else { |
| result->NotFound(); |
| } |
| } |
| |
| |
| MaybeObject* Map::GetElementsTransitionMap(ElementsKind elements_kind, |
| bool safe_to_add_transition) { |
| Heap* current_heap = heap(); |
| DescriptorArray* descriptors = instance_descriptors(); |
| String* elements_transition_sentinel_name = current_heap->empty_symbol(); |
| |
| if (safe_to_add_transition) { |
| // It's only safe to manipulate the descriptor array if it would be |
| // safe to add a transition. |
| |
| ASSERT(!is_shared()); // no transitions can be added to shared maps. |
| // Check if the elements transition already exists. |
| DescriptorLookupCache* cache = |
| current_heap->isolate()->descriptor_lookup_cache(); |
| int index = cache->Lookup(descriptors, elements_transition_sentinel_name); |
| if (index == DescriptorLookupCache::kAbsent) { |
| index = descriptors->Search(elements_transition_sentinel_name); |
| cache->Update(descriptors, |
| elements_transition_sentinel_name, |
| index); |
| } |
| |
| // If the transition already exists, check the type. If there is a match, |
| // return it. |
| if (index != DescriptorArray::kNotFound) { |
| PropertyDetails details(PropertyDetails(descriptors->GetDetails(index))); |
| if (details.type() == ELEMENTS_TRANSITION && |
| details.elements_kind() == elements_kind) { |
| return descriptors->GetValue(index); |
| } else { |
| safe_to_add_transition = false; |
| } |
| } |
| } |
| |
| // No transition to an existing map for the given ElementsKind. Make a new |
| // one. |
| Object* obj; |
| { MaybeObject* maybe_map = CopyDropTransitions(); |
| if (!maybe_map->ToObject(&obj)) return maybe_map; |
| } |
| Map* new_map = Map::cast(obj); |
| |
| new_map->set_elements_kind(elements_kind); |
| GetIsolate()->counters()->map_to_external_array_elements()->Increment(); |
| |
| // Only remember the map transition if the object's map is NOT equal to the |
| // global object_function's map and there is not an already existing |
| // non-matching element transition. |
| bool allow_map_transition = |
| safe_to_add_transition && |
| (GetIsolate()->context()->global_context()->object_function()->map() != |
| map()); |
| if (allow_map_transition) { |
| // Allocate new instance descriptors for the old map with map transition. |
| ElementsTransitionDescriptor desc(elements_transition_sentinel_name, |
| Map::cast(new_map), |
| elements_kind); |
| Object* new_descriptors; |
| MaybeObject* maybe_new_descriptors = descriptors->CopyInsert( |
| &desc, |
| KEEP_TRANSITIONS); |
| if (!maybe_new_descriptors->ToObject(&new_descriptors)) { |
| return maybe_new_descriptors; |
| } |
| descriptors = DescriptorArray::cast(new_descriptors); |
| set_instance_descriptors(descriptors); |
| } |
| |
| return new_map; |
| } |
| |
| |
| void JSObject::LocalLookupRealNamedProperty(String* name, |
| LookupResult* result) { |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return result->NotFound(); |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result); |
| } |
| |
| if (HasFastProperties()) { |
| LookupInDescriptor(name, result); |
| if (result->IsFound()) { |
| // A property, a map transition or a null descriptor was found. |
| // We return all of these result types because |
| // LocalLookupRealNamedProperty is used when setting properties |
| // where map transitions and null descriptors are handled. |
| ASSERT(result->holder() == this && result->type() != NORMAL); |
| // Disallow caching for uninitialized constants. These can only |
| // occur as fields. |
| if (result->IsReadOnly() && result->type() == FIELD && |
| FastPropertyAt(result->GetFieldIndex())->IsTheHole()) { |
| result->DisallowCaching(); |
| } |
| return; |
| } |
| } else { |
| int entry = property_dictionary()->FindEntry(name); |
| if (entry != StringDictionary::kNotFound) { |
| Object* value = property_dictionary()->ValueAt(entry); |
| if (IsGlobalObject()) { |
| PropertyDetails d = property_dictionary()->DetailsAt(entry); |
| if (d.IsDeleted()) { |
| result->NotFound(); |
| return; |
| } |
| value = JSGlobalPropertyCell::cast(value)->value(); |
| } |
| // Make sure to disallow caching for uninitialized constants |
| // found in the dictionary-mode objects. |
| if (value->IsTheHole()) result->DisallowCaching(); |
| result->DictionaryResult(this, entry); |
| return; |
| } |
| } |
| result->NotFound(); |
| } |
| |
| |
| void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) { |
| LocalLookupRealNamedProperty(name, result); |
| if (result->IsProperty()) return; |
| |
| LookupRealNamedPropertyInPrototypes(name, result); |
| } |
| |
| |
| void JSObject::LookupRealNamedPropertyInPrototypes(String* name, |
| LookupResult* result) { |
| Heap* heap = GetHeap(); |
| for (Object* pt = GetPrototype(); |
| pt != heap->null_value(); |
| pt = JSObject::cast(pt)->GetPrototype()) { |
| JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); |
| if (result->IsProperty() && (result->type() != INTERCEPTOR)) return; |
| } |
| result->NotFound(); |
| } |
| |
| |
| // We only need to deal with CALLBACKS and INTERCEPTORS |
| MaybeObject* JSObject::SetPropertyWithFailedAccessCheck( |
| LookupResult* result, |
| String* name, |
| Object* value, |
| bool check_prototype, |
| StrictModeFlag strict_mode) { |
| if (check_prototype && !result->IsProperty()) { |
| LookupCallbackSetterInPrototypes(name, result); |
| } |
| |
| if (result->IsProperty()) { |
| if (!result->IsReadOnly()) { |
| switch (result->type()) { |
| case CALLBACKS: { |
| Object* obj = result->GetCallbackObject(); |
| if (obj->IsAccessorInfo()) { |
| AccessorInfo* info = AccessorInfo::cast(obj); |
| if (info->all_can_write()) { |
| return SetPropertyWithCallback(result->GetCallbackObject(), |
| name, |
| value, |
| result->holder(), |
| strict_mode); |
| } |
| } |
| break; |
| } |
| case INTERCEPTOR: { |
| // Try lookup real named properties. Note that only property can be |
| // set is callbacks marked as ALL_CAN_WRITE on the prototype chain. |
| LookupResult r; |
| LookupRealNamedProperty(name, &r); |
| if (r.IsProperty()) { |
| return SetPropertyWithFailedAccessCheck(&r, |
| name, |
| value, |
| check_prototype, |
| strict_mode); |
| } |
| break; |
| } |
| default: { |
| break; |
| } |
| } |
| } |
| } |
| |
| Heap* heap = GetHeap(); |
| HandleScope scope(heap->isolate()); |
| Handle<Object> value_handle(value); |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_SET); |
| return *value_handle; |
| } |
| |
| |
| MaybeObject* JSReceiver::SetProperty(LookupResult* result, |
| String* key, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| if (result->IsFound() && result->type() == HANDLER) { |
| return JSProxy::cast(this)->SetPropertyWithHandler( |
| key, value, attributes, strict_mode); |
| } else { |
| return JSObject::cast(this)->SetPropertyForResult( |
| result, key, value, attributes, strict_mode); |
| } |
| } |
| |
| |
| bool JSProxy::HasPropertyWithHandler(String* name_raw) { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| Handle<Object> receiver(this); |
| Handle<Object> name(name_raw); |
| Handle<Object> handler(this->handler()); |
| |
| // Extract trap function. |
| Handle<String> trap_name = isolate->factory()->LookupAsciiSymbol("has"); |
| Handle<Object> trap(v8::internal::GetProperty(handler, trap_name)); |
| if (isolate->has_pending_exception()) return Failure::Exception(); |
| if (trap->IsUndefined()) { |
| trap = isolate->derived_has_trap(); |
| } |
| |
| // Call trap function. |
| Object** args[] = { name.location() }; |
| bool has_exception; |
| Handle<Object> result = |
| Execution::Call(trap, handler, ARRAY_SIZE(args), args, &has_exception); |
| if (has_exception) return Failure::Exception(); |
| |
| return result->ToBoolean()->IsTrue(); |
| } |
| |
| |
| MUST_USE_RESULT MaybeObject* JSProxy::SetPropertyWithHandler( |
| String* name_raw, |
| Object* value_raw, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| Handle<Object> receiver(this); |
| Handle<Object> name(name_raw); |
| Handle<Object> value(value_raw); |
| Handle<Object> handler(this->handler()); |
| |
| // Extract trap function. |
| Handle<String> trap_name = isolate->factory()->LookupAsciiSymbol("set"); |
| Handle<Object> trap(v8::internal::GetProperty(handler, trap_name)); |
| if (isolate->has_pending_exception()) return Failure::Exception(); |
| if (trap->IsUndefined()) { |
| trap = isolate->derived_set_trap(); |
| } |
| |
| // Call trap function. |
| Object** args[] = { |
| receiver.location(), name.location(), value.location() |
| }; |
| bool has_exception; |
| Execution::Call(trap, handler, ARRAY_SIZE(args), args, &has_exception); |
| if (has_exception) return Failure::Exception(); |
| |
| return *value; |
| } |
| |
| |
| MUST_USE_RESULT MaybeObject* JSProxy::DeletePropertyWithHandler( |
| String* name_raw, DeleteMode mode) { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| Handle<Object> receiver(this); |
| Handle<Object> name(name_raw); |
| Handle<Object> handler(this->handler()); |
| |
| // Extract trap function. |
| Handle<String> trap_name = isolate->factory()->LookupAsciiSymbol("delete"); |
| Handle<Object> trap(v8::internal::GetProperty(handler, trap_name)); |
| if (isolate->has_pending_exception()) return Failure::Exception(); |
| if (trap->IsUndefined()) { |
| Handle<Object> args[] = { handler, trap_name }; |
| Handle<Object> error = isolate->factory()->NewTypeError( |
| "handler_trap_missing", HandleVector(args, ARRAY_SIZE(args))); |
| isolate->Throw(*error); |
| return Failure::Exception(); |
| } |
| |
| // Call trap function. |
| Object** args[] = { name.location() }; |
| bool has_exception; |
| Handle<Object> result = |
| Execution::Call(trap, handler, ARRAY_SIZE(args), args, &has_exception); |
| if (has_exception) return Failure::Exception(); |
| |
| Object* bool_result = result->ToBoolean(); |
| if (mode == STRICT_DELETION && |
| bool_result == isolate->heap()->false_value()) { |
| Handle<Object> args[] = { handler, trap_name }; |
| Handle<Object> error = isolate->factory()->NewTypeError( |
| "handler_failed", HandleVector(args, ARRAY_SIZE(args))); |
| isolate->Throw(*error); |
| return Failure::Exception(); |
| } |
| return bool_result; |
| } |
| |
| |
| MUST_USE_RESULT PropertyAttributes JSProxy::GetPropertyAttributeWithHandler( |
| JSReceiver* receiver_raw, |
| String* name_raw, |
| bool* has_exception) { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| Handle<JSReceiver> receiver(receiver_raw); |
| Handle<Object> name(name_raw); |
| Handle<Object> handler(this->handler()); |
| |
| // Extract trap function. |
| Handle<String> trap_name = |
| isolate->factory()->LookupAsciiSymbol("getPropertyDescriptor"); |
| Handle<Object> trap(v8::internal::GetProperty(handler, trap_name)); |
| if (isolate->has_pending_exception()) return NONE; |
| if (trap->IsUndefined()) { |
| Handle<Object> args[] = { handler, trap_name }; |
| Handle<Object> error = isolate->factory()->NewTypeError( |
| "handler_trap_missing", HandleVector(args, ARRAY_SIZE(args))); |
| isolate->Throw(*error); |
| *has_exception = true; |
| return NONE; |
| } |
| |
| // Call trap function. |
| Object** args[] = { name.location() }; |
| Handle<Object> result = |
| Execution::Call(trap, handler, ARRAY_SIZE(args), args, has_exception); |
| if (has_exception) return NONE; |
| |
| // TODO(rossberg): convert result to PropertyAttributes |
| USE(result); |
| return NONE; |
| } |
| |
| |
| void JSProxy::Fix() { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| Handle<JSProxy> self(this); |
| |
| if (IsJSFunctionProxy()) { |
| isolate->factory()->BecomeJSFunction(self); |
| // Code will be set on the JavaScript side. |
| } else { |
| isolate->factory()->BecomeJSObject(self); |
| } |
| ASSERT(self->IsJSObject()); |
| } |
| |
| |
| |
| MaybeObject* JSObject::SetPropertyForResult(LookupResult* result, |
| String* name, |
| Object* value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| Heap* heap = GetHeap(); |
| // Make sure that the top context does not change when doing callbacks or |
| // interceptor calls. |
| AssertNoContextChange ncc; |
| |
| // Optimization for 2-byte strings often used as keys in a decompression |
| // dictionary. We make these short keys into symbols to avoid constantly |
| // reallocating them. |
| if (!name->IsSymbol() && name->length() <= 2) { |
| Object* symbol_version; |
| { MaybeObject* maybe_symbol_version = heap->LookupSymbol(name); |
| if (maybe_symbol_version->ToObject(&symbol_version)) { |
| name = String::cast(symbol_version); |
| } |
| } |
| } |
| |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded() |
| && !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) { |
| return SetPropertyWithFailedAccessCheck(result, |
| name, |
| value, |
| true, |
| strict_mode); |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return value; |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->SetProperty( |
| result, name, value, attributes, strict_mode); |
| } |
| |
| if (!result->IsProperty() && !IsJSContextExtensionObject()) { |
| // We could not find a local property so let's check whether there is an |
| // accessor that wants to handle the property. |
| LookupResult accessor_result; |
| LookupCallbackSetterInPrototypes(name, &accessor_result); |
| if (accessor_result.IsProperty()) { |
| return SetPropertyWithCallback(accessor_result.GetCallbackObject(), |
| name, |
| value, |
| accessor_result.holder(), |
| strict_mode); |
| } |
| } |
| if (!result->IsFound()) { |
| // Neither properties nor transitions found. |
| return AddProperty(name, value, attributes, strict_mode); |
| } |
| if (result->IsReadOnly() && result->IsProperty()) { |
| if (strict_mode == kStrictMode) { |
| HandleScope scope(heap->isolate()); |
| Handle<String> key(name); |
| Handle<Object> holder(this); |
| Handle<Object> args[2] = { key, holder }; |
| return heap->isolate()->Throw(*heap->isolate()->factory()->NewTypeError( |
| "strict_read_only_property", HandleVector(args, 2))); |
| } else { |
| return value; |
| } |
| } |
| // This is a real property that is not read-only, or it is a |
| // transition or null descriptor and there are no setters in the prototypes. |
| switch (result->type()) { |
| case NORMAL: |
| return SetNormalizedProperty(result, value); |
| case FIELD: |
| return FastPropertyAtPut(result->GetFieldIndex(), value); |
| case MAP_TRANSITION: |
| if (attributes == result->GetAttributes()) { |
| // Only use map transition if the attributes match. |
| return AddFastPropertyUsingMap(result->GetTransitionMap(), |
| name, |
| value); |
| } |
| return ConvertDescriptorToField(name, value, attributes); |
| case CONSTANT_FUNCTION: |
| // Only replace the function if necessary. |
| if (value == result->GetConstantFunction()) return value; |
| // Preserve the attributes of this existing property. |
| attributes = result->GetAttributes(); |
| return ConvertDescriptorToField(name, value, attributes); |
| case CALLBACKS: |
| return SetPropertyWithCallback(result->GetCallbackObject(), |
| name, |
| value, |
| result->holder(), |
| strict_mode); |
| case INTERCEPTOR: |
| return SetPropertyWithInterceptor(name, value, attributes, strict_mode); |
| case CONSTANT_TRANSITION: { |
| // If the same constant function is being added we can simply |
| // transition to the target map. |
| Map* target_map = result->GetTransitionMap(); |
| DescriptorArray* target_descriptors = target_map->instance_descriptors(); |
| int number = target_descriptors->SearchWithCache(name); |
| ASSERT(number != DescriptorArray::kNotFound); |
| ASSERT(target_descriptors->GetType(number) == CONSTANT_FUNCTION); |
| JSFunction* function = |
| JSFunction::cast(target_descriptors->GetValue(number)); |
| ASSERT(!HEAP->InNewSpace(function)); |
| if (value == function) { |
| set_map(target_map); |
| return value; |
| } |
| // Otherwise, replace with a MAP_TRANSITION to a new map with a |
| // FIELD, even if the value is a constant function. |
| return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); |
| } |
| case NULL_DESCRIPTOR: |
| case ELEMENTS_TRANSITION: |
| return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); |
| default: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| return value; |
| } |
| |
| |
| // Set a real local property, even if it is READ_ONLY. If the property is not |
| // present, add it with attributes NONE. This code is an exact clone of |
| // SetProperty, with the check for IsReadOnly and the check for a |
| // callback setter removed. The two lines looking up the LookupResult |
| // result are also added. If one of the functions is changed, the other |
| // should be. |
| // Note that this method cannot be used to set the prototype of a function |
| // because ConvertDescriptorToField() which is called in "case CALLBACKS:" |
| // doesn't handle function prototypes correctly. |
| MaybeObject* JSObject::SetLocalPropertyIgnoreAttributes( |
| String* name, |
| Object* value, |
| PropertyAttributes attributes) { |
| |
| // Make sure that the top context does not change when doing callbacks or |
| // interceptor calls. |
| AssertNoContextChange ncc; |
| LookupResult result; |
| LocalLookup(name, &result); |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded()) { |
| Heap* heap = GetHeap(); |
| if (!heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_SET)) { |
| return SetPropertyWithFailedAccessCheck(&result, |
| name, |
| value, |
| false, |
| kNonStrictMode); |
| } |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return value; |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->SetLocalPropertyIgnoreAttributes( |
| name, |
| value, |
| attributes); |
| } |
| |
| // Check for accessor in prototype chain removed here in clone. |
| if (!result.IsFound()) { |
| // Neither properties nor transitions found. |
| return AddProperty(name, value, attributes, kNonStrictMode); |
| } |
| |
| PropertyDetails details = PropertyDetails(attributes, NORMAL); |
| |
| // Check of IsReadOnly removed from here in clone. |
| switch (result.type()) { |
| case NORMAL: |
| return SetNormalizedProperty(name, value, details); |
| case FIELD: |
| return FastPropertyAtPut(result.GetFieldIndex(), value); |
| case MAP_TRANSITION: |
| if (attributes == result.GetAttributes()) { |
| // Only use map transition if the attributes match. |
| return AddFastPropertyUsingMap(result.GetTransitionMap(), |
| name, |
| value); |
| } |
| return ConvertDescriptorToField(name, value, attributes); |
| case CONSTANT_FUNCTION: |
| // Only replace the function if necessary. |
| if (value == result.GetConstantFunction()) return value; |
| // Preserve the attributes of this existing property. |
| attributes = result.GetAttributes(); |
| return ConvertDescriptorToField(name, value, attributes); |
| case CALLBACKS: |
| case INTERCEPTOR: |
| // Override callback in clone |
| return ConvertDescriptorToField(name, value, attributes); |
| case CONSTANT_TRANSITION: |
| // Replace with a MAP_TRANSITION to a new map with a FIELD, even |
| // if the value is a function. |
| return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); |
| case NULL_DESCRIPTOR: |
| case ELEMENTS_TRANSITION: |
| return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); |
| default: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| return value; |
| } |
| |
| |
| PropertyAttributes JSObject::GetPropertyAttributePostInterceptor( |
| JSObject* receiver, |
| String* name, |
| bool continue_search) { |
| // Check local property, ignore interceptor. |
| LookupResult result; |
| LocalLookupRealNamedProperty(name, &result); |
| if (result.IsProperty()) return result.GetAttributes(); |
| |
| if (continue_search) { |
| // Continue searching via the prototype chain. |
| Object* pt = GetPrototype(); |
| if (!pt->IsNull()) { |
| return JSObject::cast(pt)-> |
| GetPropertyAttributeWithReceiver(receiver, name); |
| } |
| } |
| return ABSENT; |
| } |
| |
| |
| PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor( |
| JSObject* receiver, |
| String* name, |
| bool continue_search) { |
| Isolate* isolate = GetIsolate(); |
| |
| // Make sure that the top context does not change when doing |
| // callbacks or interceptor calls. |
| AssertNoContextChange ncc; |
| |
| HandleScope scope(isolate); |
| Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); |
| Handle<JSObject> receiver_handle(receiver); |
| Handle<JSObject> holder_handle(this); |
| Handle<String> name_handle(name); |
| CustomArguments args(isolate, interceptor->data(), receiver, this); |
| v8::AccessorInfo info(args.end()); |
| if (!interceptor->query()->IsUndefined()) { |
| v8::NamedPropertyQuery query = |
| v8::ToCData<v8::NamedPropertyQuery>(interceptor->query()); |
| LOG(isolate, |
| ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name)); |
| v8::Handle<v8::Integer> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = query(v8::Utils::ToLocal(name_handle), info); |
| } |
| if (!result.IsEmpty()) { |
| ASSERT(result->IsInt32()); |
| return static_cast<PropertyAttributes>(result->Int32Value()); |
| } |
| } else if (!interceptor->getter()->IsUndefined()) { |
| v8::NamedPropertyGetter getter = |
| v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter()); |
| LOG(isolate, |
| ApiNamedPropertyAccess("interceptor-named-get-has", this, name)); |
| v8::Handle<v8::Value> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = getter(v8::Utils::ToLocal(name_handle), info); |
| } |
| if (!result.IsEmpty()) return DONT_ENUM; |
| } |
| return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle, |
| *name_handle, |
| continue_search); |
| } |
| |
| |
| PropertyAttributes JSReceiver::GetPropertyAttributeWithReceiver( |
| JSReceiver* receiver, |
| String* key) { |
| uint32_t index = 0; |
| if (IsJSObject() && key->AsArrayIndex(&index)) { |
| if (JSObject::cast(this)->HasElementWithReceiver(receiver, index)) |
| return NONE; |
| return ABSENT; |
| } |
| // Named property. |
| LookupResult result; |
| Lookup(key, &result); |
| return GetPropertyAttribute(receiver, &result, key, true); |
| } |
| |
| |
| PropertyAttributes JSReceiver::GetPropertyAttribute(JSReceiver* receiver, |
| LookupResult* result, |
| String* name, |
| bool continue_search) { |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded()) { |
| JSObject* this_obj = JSObject::cast(this); |
| Heap* heap = GetHeap(); |
| if (!heap->isolate()->MayNamedAccess(this_obj, name, v8::ACCESS_HAS)) { |
| return this_obj->GetPropertyAttributeWithFailedAccessCheck( |
| receiver, result, name, continue_search); |
| } |
| } |
| if (result->IsProperty()) { |
| switch (result->type()) { |
| case NORMAL: // fall through |
| case FIELD: |
| case CONSTANT_FUNCTION: |
| case CALLBACKS: |
| return result->GetAttributes(); |
| case HANDLER: { |
| // TODO(rossberg): propagate exceptions properly. |
| bool has_exception = false; |
| return JSProxy::cast(this)->GetPropertyAttributeWithHandler( |
| receiver, name, &has_exception); |
| } |
| case INTERCEPTOR: |
| return result->holder()->GetPropertyAttributeWithInterceptor( |
| JSObject::cast(receiver), name, continue_search); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| return ABSENT; |
| } |
| |
| |
| PropertyAttributes JSReceiver::GetLocalPropertyAttribute(String* name) { |
| // Check whether the name is an array index. |
| uint32_t index = 0; |
| if (IsJSObject() && name->AsArrayIndex(&index)) { |
| if (JSObject::cast(this)->HasLocalElement(index)) return NONE; |
| return ABSENT; |
| } |
| // Named property. |
| LookupResult result; |
| LocalLookup(name, &result); |
| return GetPropertyAttribute(this, &result, name, false); |
| } |
| |
| |
| MaybeObject* NormalizedMapCache::Get(JSObject* obj, |
| PropertyNormalizationMode mode) { |
| Isolate* isolate = obj->GetIsolate(); |
| Map* fast = obj->map(); |
| int index = fast->Hash() % kEntries; |
| Object* result = get(index); |
| if (result->IsMap() && |
| Map::cast(result)->EquivalentToForNormalization(fast, mode)) { |
| #ifdef DEBUG |
| Map::cast(result)->SharedMapVerify(); |
| if (FLAG_enable_slow_asserts) { |
| // The cached map should match newly created normalized map bit-by-bit. |
| Object* fresh; |
| { MaybeObject* maybe_fresh = |
| fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); |
| if (maybe_fresh->ToObject(&fresh)) { |
| ASSERT(memcmp(Map::cast(fresh)->address(), |
| Map::cast(result)->address(), |
| Map::kSize) == 0); |
| } |
| } |
| } |
| #endif |
| return result; |
| } |
| |
| { MaybeObject* maybe_result = |
| fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| set(index, result); |
| isolate->counters()->normalized_maps()->Increment(); |
| |
| return result; |
| } |
| |
| |
| void NormalizedMapCache::Clear() { |
| int entries = length(); |
| for (int i = 0; i != entries; i++) { |
| set_undefined(i); |
| } |
| } |
| |
| |
| MaybeObject* JSObject::UpdateMapCodeCache(String* name, Code* code) { |
| if (map()->is_shared()) { |
| // Fast case maps are never marked as shared. |
| ASSERT(!HasFastProperties()); |
| // Replace the map with an identical copy that can be safely modified. |
| Object* obj; |
| { MaybeObject* maybe_obj = map()->CopyNormalized(KEEP_INOBJECT_PROPERTIES, |
| UNIQUE_NORMALIZED_MAP); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| GetIsolate()->counters()->normalized_maps()->Increment(); |
| |
| set_map(Map::cast(obj)); |
| } |
| return map()->UpdateCodeCache(name, code); |
| } |
| |
| |
| MaybeObject* JSObject::NormalizeProperties(PropertyNormalizationMode mode, |
| int expected_additional_properties) { |
| if (!HasFastProperties()) return this; |
| |
| // The global object is always normalized. |
| ASSERT(!IsGlobalObject()); |
| // JSGlobalProxy must never be normalized |
| ASSERT(!IsJSGlobalProxy()); |
| |
| Map* map_of_this = map(); |
| |
| // Allocate new content. |
| int property_count = map_of_this->NumberOfDescribedProperties(); |
| if (expected_additional_properties > 0) { |
| property_count += expected_additional_properties; |
| } else { |
| property_count += 2; // Make space for two more properties. |
| } |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| StringDictionary::Allocate(property_count); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| StringDictionary* dictionary = StringDictionary::cast(obj); |
| |
| DescriptorArray* descs = map_of_this->instance_descriptors(); |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| PropertyDetails details(descs->GetDetails(i)); |
| switch (details.type()) { |
| case CONSTANT_FUNCTION: { |
| PropertyDetails d = |
| PropertyDetails(details.attributes(), NORMAL, details.index()); |
| Object* value = descs->GetConstantFunction(i); |
| Object* result; |
| { MaybeObject* maybe_result = |
| dictionary->Add(descs->GetKey(i), value, d); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| dictionary = StringDictionary::cast(result); |
| break; |
| } |
| case FIELD: { |
| PropertyDetails d = |
| PropertyDetails(details.attributes(), NORMAL, details.index()); |
| Object* value = FastPropertyAt(descs->GetFieldIndex(i)); |
| Object* result; |
| { MaybeObject* maybe_result = |
| dictionary->Add(descs->GetKey(i), value, d); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| dictionary = StringDictionary::cast(result); |
| break; |
| } |
| case CALLBACKS: { |
| PropertyDetails d = |
| PropertyDetails(details.attributes(), CALLBACKS, details.index()); |
| Object* value = descs->GetCallbacksObject(i); |
| Object* result; |
| { MaybeObject* maybe_result = |
| dictionary->Add(descs->GetKey(i), value, d); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| dictionary = StringDictionary::cast(result); |
| break; |
| } |
| case MAP_TRANSITION: |
| case CONSTANT_TRANSITION: |
| case NULL_DESCRIPTOR: |
| case INTERCEPTOR: |
| case ELEMENTS_TRANSITION: |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| Heap* current_heap = map_of_this->heap(); |
| |
| // Copy the next enumeration index from instance descriptor. |
| int index = map_of_this->instance_descriptors()->NextEnumerationIndex(); |
| dictionary->SetNextEnumerationIndex(index); |
| |
| { MaybeObject* maybe_obj = |
| current_heap->isolate()->context()->global_context()-> |
| normalized_map_cache()->Get(this, mode); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| Map* new_map = Map::cast(obj); |
| |
| // We have now successfully allocated all the necessary objects. |
| // Changes can now be made with the guarantee that all of them take effect. |
| |
| // Resize the object in the heap if necessary. |
| int new_instance_size = new_map->instance_size(); |
| int instance_size_delta = map_of_this->instance_size() - new_instance_size; |
| ASSERT(instance_size_delta >= 0); |
| current_heap->CreateFillerObjectAt(this->address() + new_instance_size, |
| instance_size_delta); |
| |
| set_map(new_map); |
| new_map->clear_instance_descriptors(); |
| |
| set_properties(dictionary); |
| |
| current_heap->isolate()->counters()->props_to_dictionary()->Increment(); |
| |
| #ifdef DEBUG |
| if (FLAG_trace_normalization) { |
| PrintF("Object properties have been normalized:\n"); |
| Print(); |
| } |
| #endif |
| return this; |
| } |
| |
| |
| MaybeObject* JSObject::TransformToFastProperties(int unused_property_fields) { |
| if (HasFastProperties()) return this; |
| ASSERT(!IsGlobalObject()); |
| return property_dictionary()-> |
| TransformPropertiesToFastFor(this, unused_property_fields); |
| } |
| |
| |
| MaybeObject* JSObject::NormalizeElements() { |
| ASSERT(!HasExternalArrayElements()); |
| |
| // Find the backing store. |
| FixedArrayBase* array = FixedArrayBase::cast(elements()); |
| Map* old_map = array->map(); |
| bool is_arguments = |
| (old_map == old_map->heap()->non_strict_arguments_elements_map()); |
| if (is_arguments) { |
| array = FixedArrayBase::cast(FixedArray::cast(array)->get(1)); |
| } |
| if (array->IsDictionary()) return array; |
| |
| ASSERT(HasFastElements() || |
| HasFastDoubleElements() || |
| HasFastArgumentsElements()); |
| // Compute the effective length and allocate a new backing store. |
| int length = IsJSArray() |
| ? Smi::cast(JSArray::cast(this)->length())->value() |
| : array->length(); |
| int old_capacity = 0; |
| int used_elements = 0; |
| GetElementsCapacityAndUsage(&old_capacity, &used_elements); |
| SeededNumberDictionary* dictionary = NULL; |
| { Object* object; |
| MaybeObject* maybe = SeededNumberDictionary::Allocate(used_elements); |
| if (!maybe->ToObject(&object)) return maybe; |
| dictionary = SeededNumberDictionary::cast(object); |
| } |
| |
| // Copy the elements to the new backing store. |
| bool has_double_elements = array->IsFixedDoubleArray(); |
| for (int i = 0; i < length; i++) { |
| Object* value = NULL; |
| if (has_double_elements) { |
| FixedDoubleArray* double_array = FixedDoubleArray::cast(array); |
| if (double_array->is_the_hole(i)) { |
| value = GetIsolate()->heap()->the_hole_value(); |
| } else { |
| // Objects must be allocated in the old object space, since the |
| // overall number of HeapNumbers needed for the conversion might |
| // exceed the capacity of new space, and we would fail repeatedly |
| // trying to convert the FixedDoubleArray. |
| MaybeObject* maybe_value_object = |
| GetHeap()->AllocateHeapNumber(double_array->get_scalar(i), TENURED); |
| if (!maybe_value_object->ToObject(&value)) return maybe_value_object; |
| } |
| } else { |
| ASSERT(old_map->has_fast_elements()); |
| value = FixedArray::cast(array)->get(i); |
| } |
| PropertyDetails details = PropertyDetails(NONE, NORMAL); |
| if (!value->IsTheHole()) { |
| Object* result; |
| MaybeObject* maybe_result = |
| dictionary->AddNumberEntry(i, value, details); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| dictionary = SeededNumberDictionary::cast(result); |
| } |
| } |
| |
| // Switch to using the dictionary as the backing storage for elements. |
| if (is_arguments) { |
| FixedArray::cast(elements())->set(1, dictionary); |
| } else { |
| // Set the new map first to satify the elements type assert in |
| // set_elements(). |
| Object* new_map; |
| MaybeObject* maybe = map()->GetSlowElementsMap(); |
| if (!maybe->ToObject(&new_map)) return maybe; |
| set_map(Map::cast(new_map)); |
| set_elements(dictionary); |
| } |
| |
| old_map->isolate()->counters()->elements_to_dictionary()->Increment(); |
| |
| #ifdef DEBUG |
| if (FLAG_trace_normalization) { |
| PrintF("Object elements have been normalized:\n"); |
| Print(); |
| } |
| #endif |
| |
| ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); |
| return dictionary; |
| } |
| |
| |
| MaybeObject* JSObject::GetHiddenProperties(HiddenPropertiesFlag flag) { |
| Isolate* isolate = GetIsolate(); |
| Heap* heap = isolate->heap(); |
| Object* holder = BypassGlobalProxy(); |
| if (holder->IsUndefined()) return heap->undefined_value(); |
| JSObject* obj = JSObject::cast(holder); |
| if (obj->HasFastProperties()) { |
| // If the object has fast properties, check whether the first slot |
| // in the descriptor array matches the hidden symbol. Since the |
| // hidden symbols hash code is zero (and no other string has hash |
| // code zero) it will always occupy the first entry if present. |
| DescriptorArray* descriptors = obj->map()->instance_descriptors(); |
| if ((descriptors->number_of_descriptors() > 0) && |
| (descriptors->GetKey(0) == heap->hidden_symbol()) && |
| descriptors->IsProperty(0)) { |
| ASSERT(descriptors->GetType(0) == FIELD); |
| return obj->FastPropertyAt(descriptors->GetFieldIndex(0)); |
| } |
| } |
| |
| // Only attempt to find the hidden properties in the local object and not |
| // in the prototype chain. |
| if (!obj->HasHiddenPropertiesObject()) { |
| // Hidden properties object not found. Allocate a new hidden properties |
| // object if requested. Otherwise return the undefined value. |
| if (flag == ALLOW_CREATION) { |
| Object* hidden_obj; |
| { MaybeObject* maybe_obj = heap->AllocateJSObject( |
| isolate->context()->global_context()->object_function()); |
| if (!maybe_obj->ToObject(&hidden_obj)) return maybe_obj; |
| } |
| // Don't allow leakage of the hidden object through accessors |
| // on Object.prototype. |
| { |
| MaybeObject* maybe_obj = |
| JSObject::cast(hidden_obj)->SetPrototype(heap->null_value(), false); |
| if (maybe_obj->IsFailure()) return maybe_obj; |
| } |
| return obj->SetHiddenPropertiesObject(hidden_obj); |
| } else { |
| return heap->undefined_value(); |
| } |
| } |
| return obj->GetHiddenPropertiesObject(); |
| } |
| |
| |
| MaybeObject* JSObject::GetIdentityHash(HiddenPropertiesFlag flag) { |
| Isolate* isolate = GetIsolate(); |
| Object* hidden_props_obj; |
| { MaybeObject* maybe_obj = GetHiddenProperties(flag); |
| if (!maybe_obj->ToObject(&hidden_props_obj)) return maybe_obj; |
| } |
| if (!hidden_props_obj->IsJSObject()) { |
| // We failed to create hidden properties. That's a detached |
| // global proxy. |
| ASSERT(hidden_props_obj->IsUndefined()); |
| return Smi::FromInt(0); |
| } |
| JSObject* hidden_props = JSObject::cast(hidden_props_obj); |
| String* hash_symbol = isolate->heap()->identity_hash_symbol(); |
| { |
| // Note that HasLocalProperty() can cause a GC in the general case in the |
| // presence of interceptors. |
| AssertNoAllocation no_alloc; |
| if (hidden_props->HasLocalProperty(hash_symbol)) { |
| MaybeObject* hash = hidden_props->GetProperty(hash_symbol); |
| return Smi::cast(hash->ToObjectChecked()); |
| } |
| } |
| |
| int hash_value; |
| int attempts = 0; |
| do { |
| // Generate a random 32-bit hash value but limit range to fit |
| // within a smi. |
| hash_value = V8::Random(isolate) & Smi::kMaxValue; |
| attempts++; |
| } while (hash_value == 0 && attempts < 30); |
| hash_value = hash_value != 0 ? hash_value : 1; // never return 0 |
| |
| Smi* hash = Smi::FromInt(hash_value); |
| { MaybeObject* result = hidden_props->SetLocalPropertyIgnoreAttributes( |
| hash_symbol, |
| hash, |
| static_cast<PropertyAttributes>(None)); |
| if (result->IsFailure()) return result; |
| } |
| return hash; |
| } |
| |
| |
| MaybeObject* JSObject::DeletePropertyPostInterceptor(String* name, |
| DeleteMode mode) { |
| // Check local property, ignore interceptor. |
| LookupResult result; |
| LocalLookupRealNamedProperty(name, &result); |
| if (!result.IsProperty()) return GetHeap()->true_value(); |
| |
| // Normalize object if needed. |
| Object* obj; |
| { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| return DeleteNormalizedProperty(name, mode); |
| } |
| |
| |
| MaybeObject* JSObject::DeletePropertyWithInterceptor(String* name) { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); |
| Handle<String> name_handle(name); |
| Handle<JSObject> this_handle(this); |
| if (!interceptor->deleter()->IsUndefined()) { |
| v8::NamedPropertyDeleter deleter = |
| v8::ToCData<v8::NamedPropertyDeleter>(interceptor->deleter()); |
| LOG(isolate, |
| ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name)); |
| CustomArguments args(isolate, interceptor->data(), this, this); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Boolean> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = deleter(v8::Utils::ToLocal(name_handle), info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (!result.IsEmpty()) { |
| ASSERT(result->IsBoolean()); |
| return *v8::Utils::OpenHandle(*result); |
| } |
| } |
| MaybeObject* raw_result = |
| this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION); |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return raw_result; |
| } |
| |
| |
| MaybeObject* JSObject::DeleteElementWithInterceptor(uint32_t index) { |
| Isolate* isolate = GetIsolate(); |
| Heap* heap = isolate->heap(); |
| // Make sure that the top context does not change when doing |
| // callbacks or interceptor calls. |
| AssertNoContextChange ncc; |
| HandleScope scope(isolate); |
| Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); |
| if (interceptor->deleter()->IsUndefined()) return heap->false_value(); |
| v8::IndexedPropertyDeleter deleter = |
| v8::ToCData<v8::IndexedPropertyDeleter>(interceptor->deleter()); |
| Handle<JSObject> this_handle(this); |
| LOG(isolate, |
| ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index)); |
| CustomArguments args(isolate, interceptor->data(), this, this); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Boolean> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = deleter(index, info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (!result.IsEmpty()) { |
| ASSERT(result->IsBoolean()); |
| return *v8::Utils::OpenHandle(*result); |
| } |
| MaybeObject* raw_result = this_handle->GetElementsAccessor()->Delete( |
| *this_handle, |
| index, |
| NORMAL_DELETION); |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return raw_result; |
| } |
| |
| |
| MaybeObject* JSObject::DeleteElement(uint32_t index, DeleteMode mode) { |
| Isolate* isolate = GetIsolate(); |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded() && |
| !isolate->MayIndexedAccess(this, index, v8::ACCESS_DELETE)) { |
| isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE); |
| return isolate->heap()->false_value(); |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return isolate->heap()->false_value(); |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSGlobalObject::cast(proto)->DeleteElement(index, mode); |
| } |
| |
| if (HasIndexedInterceptor()) { |
| // Skip interceptor if forcing deletion. |
| if (mode != FORCE_DELETION) { |
| return DeleteElementWithInterceptor(index); |
| } |
| mode = JSReceiver::FORCE_DELETION; |
| } |
| |
| return GetElementsAccessor()->Delete(this, index, mode); |
| } |
| |
| |
| MaybeObject* JSReceiver::DeleteProperty(String* name, DeleteMode mode) { |
| if (IsJSProxy()) { |
| return JSProxy::cast(this)->DeletePropertyWithHandler(name, mode); |
| } else { |
| return JSObject::cast(this)->DeleteProperty(name, mode); |
| } |
| } |
| |
| |
| MaybeObject* JSObject::DeleteProperty(String* name, DeleteMode mode) { |
| Isolate* isolate = GetIsolate(); |
| // ECMA-262, 3rd, 8.6.2.5 |
| ASSERT(name->IsString()); |
| |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(this, name, v8::ACCESS_DELETE)) { |
| isolate->ReportFailedAccessCheck(this, v8::ACCESS_DELETE); |
| return isolate->heap()->false_value(); |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return isolate->heap()->false_value(); |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSGlobalObject::cast(proto)->DeleteProperty(name, mode); |
| } |
| |
| uint32_t index = 0; |
| if (name->AsArrayIndex(&index)) { |
| return DeleteElement(index, mode); |
| } else { |
| LookupResult result; |
| LocalLookup(name, &result); |
| if (!result.IsProperty()) return isolate->heap()->true_value(); |
| // Ignore attributes if forcing a deletion. |
| if (result.IsDontDelete() && mode != FORCE_DELETION) { |
| if (mode == STRICT_DELETION) { |
| // Deleting a non-configurable property in strict mode. |
| HandleScope scope(isolate); |
| Handle<Object> args[2] = { Handle<Object>(name), Handle<Object>(this) }; |
| return isolate->Throw(*isolate->factory()->NewTypeError( |
| "strict_delete_property", HandleVector(args, 2))); |
| } |
| return isolate->heap()->false_value(); |
| } |
| // Check for interceptor. |
| if (result.type() == INTERCEPTOR) { |
| // Skip interceptor if forcing a deletion. |
| if (mode == FORCE_DELETION) { |
| return DeletePropertyPostInterceptor(name, mode); |
| } |
| return DeletePropertyWithInterceptor(name); |
| } |
| // Normalize object if needed. |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| // Make sure the properties are normalized before removing the entry. |
| return DeleteNormalizedProperty(name, mode); |
| } |
| } |
| |
| |
| bool JSObject::ReferencesObjectFromElements(FixedArray* elements, |
| ElementsKind kind, |
| Object* object) { |
| ASSERT(kind == FAST_ELEMENTS || kind == DICTIONARY_ELEMENTS); |
| if (kind == FAST_ELEMENTS) { |
| int length = IsJSArray() |
| ? Smi::cast(JSArray::cast(this)->length())->value() |
| : elements->length(); |
| for (int i = 0; i < length; ++i) { |
| Object* element = elements->get(i); |
| if (!element->IsTheHole() && element == object) return true; |
| } |
| } else { |
| Object* key = |
| SeededNumberDictionary::cast(elements)->SlowReverseLookup(object); |
| if (!key->IsUndefined()) return true; |
| } |
| return false; |
| } |
| |
| |
| // Check whether this object references another object. |
| bool JSObject::ReferencesObject(Object* obj) { |
| Map* map_of_this = map(); |
| Heap* heap = map_of_this->heap(); |
| AssertNoAllocation no_alloc; |
| |
| // Is the object the constructor for this object? |
| if (map_of_this->constructor() == obj) { |
| return true; |
| } |
| |
| // Is the object the prototype for this object? |
| if (map_of_this->prototype() == obj) { |
| return true; |
| } |
| |
| // Check if the object is among the named properties. |
| Object* key = SlowReverseLookup(obj); |
| if (!key->IsUndefined()) { |
| return true; |
| } |
| |
| // Check if the object is among the indexed properties. |
| ElementsKind kind = GetElementsKind(); |
| switch (kind) { |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| // Raw pixels and external arrays do not reference other |
| // objects. |
| break; |
| case FAST_ELEMENTS: |
| case DICTIONARY_ELEMENTS: { |
| FixedArray* elements = FixedArray::cast(this->elements()); |
| if (ReferencesObjectFromElements(elements, kind, obj)) return true; |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: { |
| FixedArray* parameter_map = FixedArray::cast(elements()); |
| // Check the mapped parameters. |
| int length = parameter_map->length(); |
| for (int i = 2; i < length; ++i) { |
| Object* value = parameter_map->get(i); |
| if (!value->IsTheHole() && value == obj) return true; |
| } |
| // Check the arguments. |
| FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); |
| kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS : FAST_ELEMENTS; |
| if (ReferencesObjectFromElements(arguments, kind, obj)) return true; |
| break; |
| } |
| } |
| |
| // For functions check the context. |
| if (IsJSFunction()) { |
| // Get the constructor function for arguments array. |
| JSObject* arguments_boilerplate = |
| heap->isolate()->context()->global_context()-> |
| arguments_boilerplate(); |
| JSFunction* arguments_function = |
| JSFunction::cast(arguments_boilerplate->map()->constructor()); |
| |
| // Get the context and don't check if it is the global context. |
| JSFunction* f = JSFunction::cast(this); |
| Context* context = f->context(); |
| if (context->IsGlobalContext()) { |
| return false; |
| } |
| |
| // Check the non-special context slots. |
| for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { |
| // Only check JS objects. |
| if (context->get(i)->IsJSObject()) { |
| JSObject* ctxobj = JSObject::cast(context->get(i)); |
| // If it is an arguments array check the content. |
| if (ctxobj->map()->constructor() == arguments_function) { |
| if (ctxobj->ReferencesObject(obj)) { |
| return true; |
| } |
| } else if (ctxobj == obj) { |
| return true; |
| } |
| } |
| } |
| |
| // Check the context extension (if any) if it can have references. |
| if (context->has_extension() && !context->IsCatchContext()) { |
| return JSObject::cast(context->extension())->ReferencesObject(obj); |
| } |
| } |
| |
| // No references to object. |
| return false; |
| } |
| |
| |
| MaybeObject* JSObject::PreventExtensions() { |
| Isolate* isolate = GetIsolate(); |
| if (IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(this, |
| isolate->heap()->undefined_value(), |
| v8::ACCESS_KEYS)) { |
| isolate->ReportFailedAccessCheck(this, v8::ACCESS_KEYS); |
| return isolate->heap()->false_value(); |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return this; |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->PreventExtensions(); |
| } |
| |
| // It's not possible to seal objects with external array elements |
| if (HasExternalArrayElements()) { |
| HandleScope scope(isolate); |
| Handle<Object> object(this); |
| Handle<Object> error = |
| isolate->factory()->NewTypeError( |
| "cant_prevent_ext_external_array_elements", |
| HandleVector(&object, 1)); |
| return isolate->Throw(*error); |
| } |
| |
| // If there are fast elements we normalize. |
| SeededNumberDictionary* dictionary = NULL; |
| { MaybeObject* maybe = NormalizeElements(); |
| if (!maybe->To<SeededNumberDictionary>(&dictionary)) return maybe; |
| } |
| ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); |
| // Make sure that we never go back to fast case. |
| dictionary->set_requires_slow_elements(); |
| |
| // Do a map transition, other objects with this map may still |
| // be extensible. |
| Map* new_map; |
| { MaybeObject* maybe = map()->CopyDropTransitions(); |
| if (!maybe->To<Map>(&new_map)) return maybe; |
| } |
| new_map->set_is_extensible(false); |
| set_map(new_map); |
| ASSERT(!map()->is_extensible()); |
| return new_map; |
| } |
| |
| |
| // Tests for the fast common case for property enumeration: |
| // - This object and all prototypes has an enum cache (which means that it has |
| // no interceptors and needs no access checks). |
| // - This object has no elements. |
| // - No prototype has enumerable properties/elements. |
| bool JSObject::IsSimpleEnum() { |
| Heap* heap = GetHeap(); |
| for (Object* o = this; |
| o != heap->null_value(); |
| o = JSObject::cast(o)->GetPrototype()) { |
| JSObject* curr = JSObject::cast(o); |
| if (!curr->map()->instance_descriptors()->HasEnumCache()) return false; |
| ASSERT(!curr->HasNamedInterceptor()); |
| ASSERT(!curr->HasIndexedInterceptor()); |
| ASSERT(!curr->IsAccessCheckNeeded()); |
| if (curr->NumberOfEnumElements() > 0) return false; |
| if (curr != this) { |
| FixedArray* curr_fixed_array = |
| FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache()); |
| if (curr_fixed_array->length() > 0) return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| int Map::NumberOfDescribedProperties() { |
| int result = 0; |
| DescriptorArray* descs = instance_descriptors(); |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| if (descs->IsProperty(i)) result++; |
| } |
| return result; |
| } |
| |
| |
| int Map::PropertyIndexFor(String* name) { |
| DescriptorArray* descs = instance_descriptors(); |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) { |
| return descs->GetFieldIndex(i); |
| } |
| } |
| return -1; |
| } |
| |
| |
| int Map::NextFreePropertyIndex() { |
| int max_index = -1; |
| DescriptorArray* descs = instance_descriptors(); |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| if (descs->GetType(i) == FIELD) { |
| int current_index = descs->GetFieldIndex(i); |
| if (current_index > max_index) max_index = current_index; |
| } |
| } |
| return max_index + 1; |
| } |
| |
| |
| AccessorDescriptor* Map::FindAccessor(String* name) { |
| DescriptorArray* descs = instance_descriptors(); |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) { |
| return descs->GetCallbacks(i); |
| } |
| } |
| return NULL; |
| } |
| |
| |
| void JSReceiver::LocalLookup(String* name, LookupResult* result) { |
| if (IsJSProxy()) { |
| result->HandlerResult(); |
| } else { |
| JSObject::cast(this)->LocalLookup(name, result); |
| } |
| } |
| |
| |
| void JSObject::LocalLookup(String* name, LookupResult* result) { |
| ASSERT(name->IsString()); |
| |
| Heap* heap = GetHeap(); |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return result->NotFound(); |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->LocalLookup(name, result); |
| } |
| |
| // Do not use inline caching if the object is a non-global object |
| // that requires access checks. |
| if (!IsJSGlobalProxy() && IsAccessCheckNeeded()) { |
| result->DisallowCaching(); |
| } |
| |
| // Check __proto__ before interceptor. |
| if (name->Equals(heap->Proto_symbol()) && !IsJSContextExtensionObject()) { |
| result->ConstantResult(this); |
| return; |
| } |
| |
| // Check for lookup interceptor except when bootstrapping. |
| if (HasNamedInterceptor() && !heap->isolate()->bootstrapper()->IsActive()) { |
| result->InterceptorResult(this); |
| return; |
| } |
| |
| LocalLookupRealNamedProperty(name, result); |
| } |
| |
| |
| void JSReceiver::Lookup(String* name, LookupResult* result) { |
| // Ecma-262 3rd 8.6.2.4 |
| Heap* heap = GetHeap(); |
| for (Object* current = this; |
| current != heap->null_value(); |
| current = JSObject::cast(current)->GetPrototype()) { |
| JSObject::cast(current)->LocalLookup(name, result); |
| if (result->IsProperty()) return; |
| } |
| result->NotFound(); |
| } |
| |
| |
| // Search object and it's prototype chain for callback properties. |
| void JSObject::LookupCallback(String* name, LookupResult* result) { |
| Heap* heap = GetHeap(); |
| for (Object* current = this; |
| current != heap->null_value(); |
| current = JSObject::cast(current)->GetPrototype()) { |
| JSObject::cast(current)->LocalLookupRealNamedProperty(name, result); |
| if (result->IsProperty() && result->type() == CALLBACKS) return; |
| } |
| result->NotFound(); |
| } |
| |
| |
| // Search for a getter or setter in an elements dictionary. Returns either |
| // undefined if the element is read-only, or the getter/setter pair (fixed |
| // array) if there is an existing one, or the hole value if the element does |
| // not exist or is a normal non-getter/setter data element. |
| static Object* FindGetterSetterInDictionary(SeededNumberDictionary* dictionary, |
| uint32_t index, |
| Heap* heap) { |
| int entry = dictionary->FindEntry(index); |
| if (entry != SeededNumberDictionary::kNotFound) { |
| Object* result = dictionary->ValueAt(entry); |
| PropertyDetails details = dictionary->DetailsAt(entry); |
| if (details.IsReadOnly()) return heap->undefined_value(); |
| if (details.type() == CALLBACKS && result->IsFixedArray()) return result; |
| } |
| return heap->the_hole_value(); |
| } |
| |
| |
| MaybeObject* JSObject::DefineGetterSetter(String* name, |
| PropertyAttributes attributes) { |
| Heap* heap = GetHeap(); |
| // Make sure that the top context does not change when doing callbacks or |
| // interceptor calls. |
| AssertNoContextChange ncc; |
| |
| // Try to flatten before operating on the string. |
| name->TryFlatten(); |
| |
| if (!CanSetCallback(name)) { |
| return heap->undefined_value(); |
| } |
| |
| uint32_t index = 0; |
| bool is_element = name->AsArrayIndex(&index); |
| |
| if (is_element) { |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| break; |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| // Ignore getters and setters on pixel and external array |
| // elements. |
| return heap->undefined_value(); |
| case DICTIONARY_ELEMENTS: { |
| Object* probe = |
| FindGetterSetterInDictionary(element_dictionary(), index, heap); |
| if (!probe->IsTheHole()) return probe; |
| // Otherwise allow to override it. |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: { |
| // Ascertain whether we have read-only properties or an existing |
| // getter/setter pair in an arguments elements dictionary backing |
| // store. |
| FixedArray* parameter_map = FixedArray::cast(elements()); |
| uint32_t length = parameter_map->length(); |
| Object* probe = |
| index < (length - 2) ? parameter_map->get(index + 2) : NULL; |
| if (probe == NULL || probe->IsTheHole()) { |
| FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); |
| if (arguments->IsDictionary()) { |
| SeededNumberDictionary* dictionary = |
| SeededNumberDictionary::cast(arguments); |
| probe = FindGetterSetterInDictionary(dictionary, index, heap); |
| if (!probe->IsTheHole()) return probe; |
| } |
| } |
| break; |
| } |
| } |
| } else { |
| // Lookup the name. |
| LookupResult result; |
| LocalLookup(name, &result); |
| if (result.IsProperty()) { |
| if (result.IsReadOnly()) return heap->undefined_value(); |
| if (result.type() == CALLBACKS) { |
| Object* obj = result.GetCallbackObject(); |
| // Need to preserve old getters/setters. |
| if (obj->IsFixedArray()) { |
| // Use set to update attributes. |
| return SetPropertyCallback(name, obj, attributes); |
| } |
| } |
| } |
| } |
| |
| // Allocate the fixed array to hold getter and setter. |
| Object* structure; |
| { MaybeObject* maybe_structure = heap->AllocateFixedArray(2, TENURED); |
| if (!maybe_structure->ToObject(&structure)) return maybe_structure; |
| } |
| |
| if (is_element) { |
| return SetElementCallback(index, structure, attributes); |
| } else { |
| return SetPropertyCallback(name, structure, attributes); |
| } |
| } |
| |
| |
| bool JSObject::CanSetCallback(String* name) { |
| ASSERT(!IsAccessCheckNeeded() |
| || Isolate::Current()->MayNamedAccess(this, name, v8::ACCESS_SET)); |
| |
| // Check if there is an API defined callback object which prohibits |
| // callback overwriting in this object or it's prototype chain. |
| // This mechanism is needed for instance in a browser setting, where |
| // certain accessors such as window.location should not be allowed |
| // to be overwritten because allowing overwriting could potentially |
| // cause security problems. |
| LookupResult callback_result; |
| LookupCallback(name, &callback_result); |
| if (callback_result.IsProperty()) { |
| Object* obj = callback_result.GetCallbackObject(); |
| if (obj->IsAccessorInfo() && |
| AccessorInfo::cast(obj)->prohibits_overwriting()) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| MaybeObject* JSObject::SetElementCallback(uint32_t index, |
| Object* structure, |
| PropertyAttributes attributes) { |
| PropertyDetails details = PropertyDetails(attributes, CALLBACKS); |
| |
| // Normalize elements to make this operation simple. |
| SeededNumberDictionary* dictionary = NULL; |
| { Object* result; |
| MaybeObject* maybe = NormalizeElements(); |
| if (!maybe->ToObject(&result)) return maybe; |
| dictionary = SeededNumberDictionary::cast(result); |
| } |
| ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); |
| |
| // Update the dictionary with the new CALLBACKS property. |
| { Object* result; |
| MaybeObject* maybe = dictionary->Set(index, structure, details); |
| if (!maybe->ToObject(&result)) return maybe; |
| dictionary = SeededNumberDictionary::cast(result); |
| } |
| |
| dictionary->set_requires_slow_elements(); |
| // Update the dictionary backing store on the object. |
| if (elements()->map() == GetHeap()->non_strict_arguments_elements_map()) { |
| // Also delete any parameter alias. |
| // |
| // TODO(kmillikin): when deleting the last parameter alias we could |
| // switch to a direct backing store without the parameter map. This |
| // would allow GC of the context. |
| FixedArray* parameter_map = FixedArray::cast(elements()); |
| uint32_t length = parameter_map->length(); |
| if (index < length - 2) { |
| parameter_map->set(index + 2, GetHeap()->the_hole_value()); |
| } |
| parameter_map->set(1, dictionary); |
| } else { |
| set_elements(dictionary); |
| } |
| |
| return structure; |
| } |
| |
| |
| MaybeObject* JSObject::SetPropertyCallback(String* name, |
| Object* structure, |
| PropertyAttributes attributes) { |
| PropertyDetails details = PropertyDetails(attributes, CALLBACKS); |
| |
| bool convert_back_to_fast = HasFastProperties() && |
| (map()->instance_descriptors()->number_of_descriptors() |
| < DescriptorArray::kMaxNumberOfDescriptors); |
| |
| // Normalize object to make this operation simple. |
| Object* ok; |
| { MaybeObject* maybe_ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); |
| if (!maybe_ok->ToObject(&ok)) return maybe_ok; |
| } |
| |
| // For the global object allocate a new map to invalidate the global inline |
| // caches which have a global property cell reference directly in the code. |
| if (IsGlobalObject()) { |
| Object* new_map; |
| { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| } |
| set_map(Map::cast(new_map)); |
| // When running crankshaft, changing the map is not enough. We |
| // need to deoptimize all functions that rely on this global |
| // object. |
| Deoptimizer::DeoptimizeGlobalObject(this); |
| } |
| |
| // Update the dictionary with the new CALLBACKS property. |
| Object* result; |
| { MaybeObject* maybe_result = SetNormalizedProperty(name, structure, details); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| |
| if (convert_back_to_fast) { |
| { MaybeObject* maybe_ok = TransformToFastProperties(0); |
| if (!maybe_ok->ToObject(&ok)) return maybe_ok; |
| } |
| } |
| return result; |
| } |
| |
| MaybeObject* JSObject::DefineAccessor(String* name, |
| bool is_getter, |
| Object* fun, |
| PropertyAttributes attributes) { |
| ASSERT(fun->IsJSFunction() || fun->IsUndefined()); |
| Isolate* isolate = GetIsolate(); |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { |
| isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return this; |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->DefineAccessor(name, is_getter, |
| fun, attributes); |
| } |
| |
| Object* array; |
| { MaybeObject* maybe_array = DefineGetterSetter(name, attributes); |
| if (!maybe_array->ToObject(&array)) return maybe_array; |
| } |
| if (array->IsUndefined()) return array; |
| FixedArray::cast(array)->set(is_getter ? 0 : 1, fun); |
| return this; |
| } |
| |
| |
| MaybeObject* JSObject::DefineAccessor(AccessorInfo* info) { |
| Isolate* isolate = GetIsolate(); |
| String* name = String::cast(info->name()); |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(this, name, v8::ACCESS_SET)) { |
| isolate->ReportFailedAccessCheck(this, v8::ACCESS_SET); |
| return isolate->heap()->undefined_value(); |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return this; |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->DefineAccessor(info); |
| } |
| |
| // Make sure that the top context does not change when doing callbacks or |
| // interceptor calls. |
| AssertNoContextChange ncc; |
| |
| // Try to flatten before operating on the string. |
| name->TryFlatten(); |
| |
| if (!CanSetCallback(name)) { |
| return isolate->heap()->undefined_value(); |
| } |
| |
| uint32_t index = 0; |
| bool is_element = name->AsArrayIndex(&index); |
| |
| if (is_element) { |
| if (IsJSArray()) return isolate->heap()->undefined_value(); |
| |
| // Accessors overwrite previous callbacks (cf. with getters/setters). |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| break; |
| case EXTERNAL_PIXEL_ELEMENTS: |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| // Ignore getters and setters on pixel and external array |
| // elements. |
| return isolate->heap()->undefined_value(); |
| case DICTIONARY_ELEMENTS: |
| break; |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNIMPLEMENTED(); |
| break; |
| } |
| |
| Object* ok; |
| { MaybeObject* maybe_ok = |
| SetElementCallback(index, info, info->property_attributes()); |
| if (!maybe_ok->ToObject(&ok)) return maybe_ok; |
| } |
| } else { |
| // Lookup the name. |
| LookupResult result; |
| LocalLookup(name, &result); |
| // ES5 forbids turning a property into an accessor if it's not |
| // configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5). |
| if (result.IsProperty() && (result.IsReadOnly() || result.IsDontDelete())) { |
| return isolate->heap()->undefined_value(); |
| } |
| Object* ok; |
| { MaybeObject* maybe_ok = |
| SetPropertyCallback(name, info, info->property_attributes()); |
| if (!maybe_ok->ToObject(&ok)) return maybe_ok; |
| } |
| } |
| |
| return this; |
| } |
| |
| |
| Object* JSObject::LookupAccessor(String* name, bool is_getter) { |
| Heap* heap = GetHeap(); |
| |
| // Make sure that the top context does not change when doing callbacks or |
| // interceptor calls. |
| AssertNoContextChange ncc; |
| |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded() && |
| !heap->isolate()->MayNamedAccess(this, name, v8::ACCESS_HAS)) { |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); |
| return heap->undefined_value(); |
| } |
| |
| // Make the lookup and include prototypes. |
| int accessor_index = is_getter ? kGetterIndex : kSetterIndex; |
| uint32_t index = 0; |
| if (name->AsArrayIndex(&index)) { |
| for (Object* obj = this; |
| obj != heap->null_value(); |
| obj = JSObject::cast(obj)->GetPrototype()) { |
| JSObject* js_object = JSObject::cast(obj); |
| if (js_object->HasDictionaryElements()) { |
| SeededNumberDictionary* dictionary = js_object->element_dictionary(); |
| int entry = dictionary->FindEntry(index); |
| if (entry != SeededNumberDictionary::kNotFound) { |
| Object* element = dictionary->ValueAt(entry); |
| PropertyDetails details = dictionary->DetailsAt(entry); |
| if (details.type() == CALLBACKS) { |
| if (element->IsFixedArray()) { |
| return FixedArray::cast(element)->get(accessor_index); |
| } |
| } |
| } |
| } |
| } |
| } else { |
| for (Object* obj = this; |
| obj != heap->null_value(); |
| obj = JSObject::cast(obj)->GetPrototype()) { |
| LookupResult result; |
| JSObject::cast(obj)->LocalLookup(name, &result); |
| if (result.IsProperty()) { |
| if (result.IsReadOnly()) return heap->undefined_value(); |
| if (result.type() == CALLBACKS) { |
| Object* obj = result.GetCallbackObject(); |
| if (obj->IsFixedArray()) { |
| return FixedArray::cast(obj)->get(accessor_index); |
| } |
| } |
| } |
| } |
| } |
| return heap->undefined_value(); |
| } |
| |
| |
| Object* JSObject::SlowReverseLookup(Object* value) { |
| if (HasFastProperties()) { |
| DescriptorArray* descs = map()->instance_descriptors(); |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| if (descs->GetType(i) == FIELD) { |
| if (FastPropertyAt(descs->GetFieldIndex(i)) == value) { |
| return descs->GetKey(i); |
| } |
| } else if (descs->GetType(i) == CONSTANT_FUNCTION) { |
| if (descs->GetConstantFunction(i) == value) { |
| return descs->GetKey(i); |
| } |
| } |
| } |
| return GetHeap()->undefined_value(); |
| } else { |
| return property_dictionary()->SlowReverseLookup(value); |
| } |
| } |
| |
| |
| MaybeObject* Map::CopyDropDescriptors() { |
| Heap* heap = GetHeap(); |
| Object* result; |
| { MaybeObject* maybe_result = |
| heap->AllocateMap(instance_type(), instance_size()); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| Map::cast(result)->set_prototype(prototype()); |
| Map::cast(result)->set_constructor(constructor()); |
| // Don't copy descriptors, so map transitions always remain a forest. |
| // If we retained the same descriptors we would have two maps |
| // pointing to the same transition which is bad because the garbage |
| // collector relies on being able to reverse pointers from transitions |
| // to maps. If properties need to be retained use CopyDropTransitions. |
| Map::cast(result)->clear_instance_descriptors(); |
| // Please note instance_type and instance_size are set when allocated. |
| Map::cast(result)->set_inobject_properties(inobject_properties()); |
| Map::cast(result)->set_unused_property_fields(unused_property_fields()); |
| |
| // If the map has pre-allocated properties always start out with a descriptor |
| // array describing these properties. |
| if (pre_allocated_property_fields() > 0) { |
| ASSERT(constructor()->IsJSFunction()); |
| JSFunction* ctor = JSFunction::cast(constructor()); |
| Object* descriptors; |
| { MaybeObject* maybe_descriptors = |
| ctor->initial_map()->instance_descriptors()->RemoveTransitions(); |
| if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; |
| } |
| Map::cast(result)->set_instance_descriptors( |
| DescriptorArray::cast(descriptors)); |
| Map::cast(result)->set_pre_allocated_property_fields( |
| pre_allocated_property_fields()); |
| } |
| Map::cast(result)->set_bit_field(bit_field()); |
| Map::cast(result)->set_bit_field2(bit_field2()); |
| Map::cast(result)->set_bit_field3(bit_field3()); |
| Map::cast(result)->set_is_shared(false); |
| Map::cast(result)->ClearCodeCache(heap); |
| return result; |
| } |
| |
| |
| MaybeObject* Map::CopyNormalized(PropertyNormalizationMode mode, |
| NormalizedMapSharingMode sharing) { |
| int new_instance_size = instance_size(); |
| if (mode == CLEAR_INOBJECT_PROPERTIES) { |
| new_instance_size -= inobject_properties() * kPointerSize; |
| } |
| |
| Object* result; |
| { MaybeObject* maybe_result = |
| GetHeap()->AllocateMap(instance_type(), new_instance_size); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| |
| if (mode != CLEAR_INOBJECT_PROPERTIES) { |
| Map::cast(result)->set_inobject_properties(inobject_properties()); |
| } |
| |
| Map::cast(result)->set_prototype(prototype()); |
| Map::cast(result)->set_constructor(constructor()); |
| |
| Map::cast(result)->set_bit_field(bit_field()); |
| Map::cast(result)->set_bit_field2(bit_field2()); |
| Map::cast(result)->set_bit_field3(bit_field3()); |
| |
| Map::cast(result)->set_is_shared(sharing == SHARED_NORMALIZED_MAP); |
| |
| #ifdef DEBUG |
| if (Map::cast(result)->is_shared()) { |
| Map::cast(result)->SharedMapVerify(); |
| } |
| #endif |
| |
| return result; |
| } |
| |
| |
| MaybeObject* Map::CopyDropTransitions() { |
| Object* new_map; |
| { MaybeObject* maybe_new_map = CopyDropDescriptors(); |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| } |
| Object* descriptors; |
| { MaybeObject* maybe_descriptors = |
| instance_descriptors()->RemoveTransitions(); |
| if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; |
| } |
| cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors)); |
| return new_map; |
| } |
| |
| |
| MaybeObject* Map::UpdateCodeCache(String* name, Code* code) { |
| // Allocate the code cache if not present. |
| if (code_cache()->IsFixedArray()) { |
| Object* result; |
| { MaybeObject* maybe_result = code->heap()->AllocateCodeCache(); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| set_code_cache(result); |
| } |
| |
| // Update the code cache. |
| return CodeCache::cast(code_cache())->Update(name, code); |
| } |
| |
| |
| Object* Map::FindInCodeCache(String* name, Code::Flags flags) { |
| // Do a lookup if a code cache exists. |
| if (!code_cache()->IsFixedArray()) { |
| return CodeCache::cast(code_cache())->Lookup(name, flags); |
| } else { |
| return GetHeap()->undefined_value(); |
| } |
| } |
| |
| |
| int Map::IndexInCodeCache(Object* name, Code* code) { |
| // Get the internal index if a code cache exists. |
| if (!code_cache()->IsFixedArray()) { |
| return CodeCache::cast(code_cache())->GetIndex(name, code); |
| } |
| return -1; |
| } |
| |
| |
| void Map::RemoveFromCodeCache(String* name, Code* code, int index) { |
| // No GC is supposed to happen between a call to IndexInCodeCache and |
| // RemoveFromCodeCache so the code cache must be there. |
| ASSERT(!code_cache()->IsFixedArray()); |
| CodeCache::cast(code_cache())->RemoveByIndex(name, code, index); |
| } |
| |
| |
| void Map::TraverseTransitionTree(TraverseCallback callback, void* data) { |
| // Traverse the transition tree without using a stack. We do this by |
| // reversing the pointers in the maps and descriptor arrays. |
| Map* current = this; |
| Map* meta_map = heap()->meta_map(); |
| Object** map_or_index_field = NULL; |
| while (current != meta_map) { |
| DescriptorArray* d = reinterpret_cast<DescriptorArray*>( |
| *RawField(current, Map::kInstanceDescriptorsOrBitField3Offset)); |
| if (!d->IsEmpty()) { |
| FixedArray* contents = reinterpret_cast<FixedArray*>( |
| d->get(DescriptorArray::kContentArrayIndex)); |
| map_or_index_field = RawField(contents, HeapObject::kMapOffset); |
| Object* map_or_index = *map_or_index_field; |
| bool map_done = true; // Controls a nested continue statement. |
| for (int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : 0; |
| i < contents->length(); |
| i += 2) { |
| PropertyDetails details(Smi::cast(contents->get(i + 1))); |
| if (details.IsTransition()) { |
| // Found a map in the transition array. We record our progress in |
| // the transition array by recording the current map in the map field |
| // of the next map and recording the index in the transition array in |
| // the map field of the array. |
| Map* next = Map::cast(contents->get(i)); |
| next->set_map(current); |
| *map_or_index_field = Smi::FromInt(i + 2); |
| current = next; |
| map_done = false; |
| break; |
| } |
| } |
| if (!map_done) continue; |
| } else { |
| map_or_index_field = NULL; |
| } |
| // That was the regular transitions, now for the prototype transitions. |
| FixedArray* prototype_transitions = |
| current->unchecked_prototype_transitions(); |
| Object** proto_map_or_index_field = |
| RawField(prototype_transitions, HeapObject::kMapOffset); |
| Object* map_or_index = *proto_map_or_index_field; |
| const int start = kProtoTransitionHeaderSize + kProtoTransitionMapOffset; |
| int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : start; |
| if (i < prototype_transitions->length()) { |
| // Found a map in the prototype transition array. Record progress in |
| // an analogous way to the regular transitions array above. |
| Object* perhaps_map = prototype_transitions->get(i); |
| if (perhaps_map->IsMap()) { |
| Map* next = Map::cast(perhaps_map); |
| next->set_map(current); |
| *proto_map_or_index_field = |
| Smi::FromInt(i + kProtoTransitionElementsPerEntry); |
| current = next; |
| continue; |
| } |
| } |
| *proto_map_or_index_field = heap()->fixed_array_map(); |
| if (map_or_index_field != NULL) { |
| *map_or_index_field = heap()->fixed_array_map(); |
| } |
| |
| // The callback expects a map to have a real map as its map, so we save |
| // the map field, which is being used to track the traversal and put the |
| // correct map (the meta_map) in place while we do the callback. |
| Map* prev = current->map(); |
| current->set_map(meta_map); |
| callback(current, data); |
| current = prev; |
| } |
| } |
| |
| |
| MaybeObject* CodeCache::Update(String* name, Code* code) { |
| // The number of monomorphic stubs for normal load/store/call IC's can grow to |
| // a large number and therefore they need to go into a hash table. They are |
| // used to load global properties from cells. |
| if (code->type() == NORMAL) { |
| // Make sure that a hash table is allocated for the normal load code cache. |
| if (normal_type_cache()->IsUndefined()) { |
| Object* result; |
| { MaybeObject* maybe_result = |
| CodeCacheHashTable::Allocate(CodeCacheHashTable::kInitialSize); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| set_normal_type_cache(result); |
| } |
| return UpdateNormalTypeCache(name, code); |
| } else { |
| ASSERT(default_cache()->IsFixedArray()); |
| return UpdateDefaultCache(name, code); |
| } |
| } |
| |
| |
| MaybeObject* CodeCache::UpdateDefaultCache(String* name, Code* code) { |
| // When updating the default code cache we disregard the type encoded in the |
| // flags. This allows call constant stubs to overwrite call field |
| // stubs, etc. |
| Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); |
| |
| // First check whether we can update existing code cache without |
| // extending it. |
| FixedArray* cache = default_cache(); |
| int length = cache->length(); |
| int deleted_index = -1; |
| for (int i = 0; i < length; i += kCodeCacheEntrySize) { |
| Object* key = cache->get(i); |
| if (key->IsNull()) { |
| if (deleted_index < 0) deleted_index = i; |
| continue; |
| } |
| if (key->IsUndefined()) { |
| if (deleted_index >= 0) i = deleted_index; |
| cache->set(i + kCodeCacheEntryNameOffset, name); |
| cache->set(i + kCodeCacheEntryCodeOffset, code); |
| return this; |
| } |
| if (name->Equals(String::cast(key))) { |
| Code::Flags found = |
| Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags(); |
| if (Code::RemoveTypeFromFlags(found) == flags) { |
| cache->set(i + kCodeCacheEntryCodeOffset, code); |
| return this; |
| } |
| } |
| } |
| |
| // Reached the end of the code cache. If there were deleted |
| // elements, reuse the space for the first of them. |
| if (deleted_index >= 0) { |
| cache->set(deleted_index + kCodeCacheEntryNameOffset, name); |
| cache->set(deleted_index + kCodeCacheEntryCodeOffset, code); |
| return this; |
| } |
| |
| // Extend the code cache with some new entries (at least one). Must be a |
| // multiple of the entry size. |
| int new_length = length + ((length >> 1)) + kCodeCacheEntrySize; |
| new_length = new_length - new_length % kCodeCacheEntrySize; |
| ASSERT((new_length % kCodeCacheEntrySize) == 0); |
| Object* result; |
| { MaybeObject* maybe_result = cache->CopySize(new_length); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| |
| // Add the (name, code) pair to the new cache. |
| cache = FixedArray::cast(result); |
| cache->set(length + kCodeCacheEntryNameOffset, name); |
| cache->set(length + kCodeCacheEntryCodeOffset, code); |
| set_default_cache(cache); |
| return this; |
| } |
| |
| |
| MaybeObject* CodeCache::UpdateNormalTypeCache(String* name, Code* code) { |
| // Adding a new entry can cause a new cache to be allocated. |
| CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); |
| Object* new_cache; |
| { MaybeObject* maybe_new_cache = cache->Put(name, code); |
| if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache; |
| } |
| set_normal_type_cache(new_cache); |
| return this; |
| } |
| |
| |
| Object* CodeCache::Lookup(String* name, Code::Flags flags) { |
| if (Code::ExtractTypeFromFlags(flags) == NORMAL) { |
| return LookupNormalTypeCache(name, flags); |
| } else { |
| return LookupDefaultCache(name, flags); |
| } |
| } |
| |
| |
| Object* CodeCache::LookupDefaultCache(String* name, Code::Flags flags) { |
| FixedArray* cache = default_cache(); |
| int length = cache->length(); |
| for (int i = 0; i < length; i += kCodeCacheEntrySize) { |
| Object* key = cache->get(i + kCodeCacheEntryNameOffset); |
| // Skip deleted elements. |
| if (key->IsNull()) continue; |
| if (key->IsUndefined()) return key; |
| if (name->Equals(String::cast(key))) { |
| Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset)); |
| if (code->flags() == flags) { |
| return code; |
| } |
| } |
| } |
| return GetHeap()->undefined_value(); |
| } |
| |
| |
| Object* CodeCache::LookupNormalTypeCache(String* name, Code::Flags flags) { |
| if (!normal_type_cache()->IsUndefined()) { |
| CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); |
| return cache->Lookup(name, flags); |
| } else { |
| return GetHeap()->undefined_value(); |
| } |
| } |
| |
| |
| int CodeCache::GetIndex(Object* name, Code* code) { |
| if (code->type() == NORMAL) { |
| if (normal_type_cache()->IsUndefined()) return -1; |
| CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); |
| return cache->GetIndex(String::cast(name), code->flags()); |
| } |
| |
| FixedArray* array = default_cache(); |
| int len = array->length(); |
| for (int i = 0; i < len; i += kCodeCacheEntrySize) { |
| if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1; |
| } |
| return -1; |
| } |
| |
| |
| void CodeCache::RemoveByIndex(Object* name, Code* code, int index) { |
| if (code->type() == NORMAL) { |
| ASSERT(!normal_type_cache()->IsUndefined()); |
| CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); |
| ASSERT(cache->GetIndex(String::cast(name), code->flags()) == index); |
| cache->RemoveByIndex(index); |
| } else { |
| FixedArray* array = default_cache(); |
| ASSERT(array->length() >= index && array->get(index)->IsCode()); |
| // Use null instead of undefined for deleted elements to distinguish |
| // deleted elements from unused elements. This distinction is used |
| // when looking up in the cache and when updating the cache. |
| ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset); |
| array->set_null(index - 1); // Name. |
| array->set_null(index); // Code. |
| } |
| } |
| |
| |
| // The key in the code cache hash table consists of the property name and the |
| // code object. The actual match is on the name and the code flags. If a key |
| // is created using the flags and not a code object it can only be used for |
| // lookup not to create a new entry. |
| class CodeCacheHashTableKey : public HashTableKey { |
| public: |
| CodeCacheHashTableKey(String* name, Code::Flags flags) |
| : name_(name), flags_(flags), code_(NULL) { } |
| |
| CodeCacheHashTableKey(String* name, Code* code) |
| : name_(name), |
| flags_(code->flags()), |
| code_(code) { } |
| |
| |
| bool IsMatch(Object* other) { |
| if (!other->IsFixedArray()) return false; |
| FixedArray* pair = FixedArray::cast(other); |
| String* name = String::cast(pair->get(0)); |
| Code::Flags flags = Code::cast(pair->get(1))->flags(); |
| if (flags != flags_) { |
| return false; |
| } |
| return name_->Equals(name); |
| } |
| |
| static uint32_t NameFlagsHashHelper(String* name, Code::Flags flags) { |
| return name->Hash() ^ flags; |
| } |
| |
| uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); } |
| |
| uint32_t HashForObject(Object* obj) { |
| FixedArray* pair = FixedArray::cast(obj); |
| String* name = String::cast(pair->get(0)); |
| Code* code = Code::cast(pair->get(1)); |
| return NameFlagsHashHelper(name, code->flags()); |
| } |
| |
| MUST_USE_RESULT MaybeObject* AsObject() { |
| ASSERT(code_ != NULL); |
| Object* obj; |
| { MaybeObject* maybe_obj = code_->heap()->AllocateFixedArray(2); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* pair = FixedArray::cast(obj); |
| pair->set(0, name_); |
| pair->set(1, code_); |
| return pair; |
| } |
| |
| private: |
| String* name_; |
| Code::Flags flags_; |
| // TODO(jkummerow): We should be able to get by without this. |
| Code* code_; |
| }; |
| |
| |
| Object* CodeCacheHashTable::Lookup(String* name, Code::Flags flags) { |
| CodeCacheHashTableKey key(name, flags); |
| int entry = FindEntry(&key); |
| if (entry == kNotFound) return GetHeap()->undefined_value(); |
| return get(EntryToIndex(entry) + 1); |
| } |
| |
| |
| MaybeObject* CodeCacheHashTable::Put(String* name, Code* code) { |
| CodeCacheHashTableKey key(name, code); |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, &key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| // Don't use |this|, as the table might have grown. |
| CodeCacheHashTable* cache = reinterpret_cast<CodeCacheHashTable*>(obj); |
| |
| int entry = cache->FindInsertionEntry(key.Hash()); |
| Object* k; |
| { MaybeObject* maybe_k = key.AsObject(); |
| if (!maybe_k->ToObject(&k)) return maybe_k; |
| } |
| |
| cache->set(EntryToIndex(entry), k); |
| cache->set(EntryToIndex(entry) + 1, code); |
| cache->ElementAdded(); |
| return cache; |
| } |
| |
| |
| int CodeCacheHashTable::GetIndex(String* name, Code::Flags flags) { |
| CodeCacheHashTableKey key(name, flags); |
| int entry = FindEntry(&key); |
| return (entry == kNotFound) ? -1 : entry; |
| } |
| |
| |
| void CodeCacheHashTable::RemoveByIndex(int index) { |
| ASSERT(index >= 0); |
| Heap* heap = GetHeap(); |
| set(EntryToIndex(index), heap->null_value()); |
| set(EntryToIndex(index) + 1, heap->null_value()); |
| ElementRemoved(); |
| } |
| |
| |
| MaybeObject* PolymorphicCodeCache::Update(MapList* maps, |
| Code::Flags flags, |
| Code* code) { |
| // Initialize cache if necessary. |
| if (cache()->IsUndefined()) { |
| Object* result; |
| { MaybeObject* maybe_result = |
| PolymorphicCodeCacheHashTable::Allocate( |
| PolymorphicCodeCacheHashTable::kInitialSize); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| set_cache(result); |
| } else { |
| // This entry shouldn't be contained in the cache yet. |
| ASSERT(PolymorphicCodeCacheHashTable::cast(cache()) |
| ->Lookup(maps, flags)->IsUndefined()); |
| } |
| PolymorphicCodeCacheHashTable* hash_table = |
| PolymorphicCodeCacheHashTable::cast(cache()); |
| Object* new_cache; |
| { MaybeObject* maybe_new_cache = hash_table->Put(maps, flags, code); |
| if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache; |
| } |
| set_cache(new_cache); |
| return this; |
| } |
| |
| |
| Object* PolymorphicCodeCache::Lookup(MapList* maps, Code::Flags flags) { |
| if (!cache()->IsUndefined()) { |
| PolymorphicCodeCacheHashTable* hash_table = |
| PolymorphicCodeCacheHashTable::cast(cache()); |
| return hash_table->Lookup(maps, flags); |
| } else { |
| return GetHeap()->undefined_value(); |
| } |
| } |
| |
| |
| // Despite their name, object of this class are not stored in the actual |
| // hash table; instead they're temporarily used for lookups. It is therefore |
| // safe to have a weak (non-owning) pointer to a MapList as a member field. |
| class PolymorphicCodeCacheHashTableKey : public HashTableKey { |
| public: |
| // Callers must ensure that |maps| outlives the newly constructed object. |
| PolymorphicCodeCacheHashTableKey(MapList* maps, int code_flags) |
| : maps_(maps), |
| code_flags_(code_flags) {} |
| |
| bool IsMatch(Object* other) { |
| MapList other_maps(kDefaultListAllocationSize); |
| int other_flags; |
| FromObject(other, &other_flags, &other_maps); |
| if (code_flags_ != other_flags) return false; |
| if (maps_->length() != other_maps.length()) return false; |
| // Compare just the hashes first because it's faster. |
| int this_hash = MapsHashHelper(maps_, code_flags_); |
| int other_hash = MapsHashHelper(&other_maps, other_flags); |
| if (this_hash != other_hash) return false; |
| |
| // Full comparison: for each map in maps_, look for an equivalent map in |
| // other_maps. This implementation is slow, but probably good enough for |
| // now because the lists are short (<= 4 elements currently). |
| for (int i = 0; i < maps_->length(); ++i) { |
| bool match_found = false; |
| for (int j = 0; j < other_maps.length(); ++j) { |
| if (maps_->at(i)->EquivalentTo(other_maps.at(j))) { |
| match_found = true; |
| break; |
| } |
| } |
| if (!match_found) return false; |
| } |
| return true; |
| } |
| |
| static uint32_t MapsHashHelper(MapList* maps, int code_flags) { |
| uint32_t hash = code_flags; |
| for (int i = 0; i < maps->length(); ++i) { |
| hash ^= maps->at(i)->Hash(); |
| } |
| return hash; |
| } |
| |
| uint32_t Hash() { |
| return MapsHashHelper(maps_, code_flags_); |
| } |
| |
| uint32_t HashForObject(Object* obj) { |
| MapList other_maps(kDefaultListAllocationSize); |
| int other_flags; |
| FromObject(obj, &other_flags, &other_maps); |
| return MapsHashHelper(&other_maps, other_flags); |
| } |
| |
| MUST_USE_RESULT MaybeObject* AsObject() { |
| Object* obj; |
| // The maps in |maps_| must be copied to a newly allocated FixedArray, |
| // both because the referenced MapList is short-lived, and because C++ |
| // objects can't be stored in the heap anyway. |
| { MaybeObject* maybe_obj = |
| HEAP->AllocateUninitializedFixedArray(maps_->length() + 1); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* list = FixedArray::cast(obj); |
| list->set(0, Smi::FromInt(code_flags_)); |
| for (int i = 0; i < maps_->length(); ++i) { |
| list->set(i + 1, maps_->at(i)); |
| } |
| return list; |
| } |
| |
| private: |
| static MapList* FromObject(Object* obj, int* code_flags, MapList* maps) { |
| FixedArray* list = FixedArray::cast(obj); |
| maps->Rewind(0); |
| *code_flags = Smi::cast(list->get(0))->value(); |
| for (int i = 1; i < list->length(); ++i) { |
| maps->Add(Map::cast(list->get(i))); |
| } |
| return maps; |
| } |
| |
| MapList* maps_; // weak. |
| int code_flags_; |
| static const int kDefaultListAllocationSize = kMaxKeyedPolymorphism + 1; |
| }; |
| |
| |
| Object* PolymorphicCodeCacheHashTable::Lookup(MapList* maps, int code_flags) { |
| PolymorphicCodeCacheHashTableKey key(maps, code_flags); |
| int entry = FindEntry(&key); |
| if (entry == kNotFound) return GetHeap()->undefined_value(); |
| return get(EntryToIndex(entry) + 1); |
| } |
| |
| |
| MaybeObject* PolymorphicCodeCacheHashTable::Put(MapList* maps, |
| int code_flags, |
| Code* code) { |
| PolymorphicCodeCacheHashTableKey key(maps, code_flags); |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, &key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| PolymorphicCodeCacheHashTable* cache = |
| reinterpret_cast<PolymorphicCodeCacheHashTable*>(obj); |
| int entry = cache->FindInsertionEntry(key.Hash()); |
| { MaybeObject* maybe_obj = key.AsObject(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| cache->set(EntryToIndex(entry), obj); |
| cache->set(EntryToIndex(entry) + 1, code); |
| cache->ElementAdded(); |
| return cache; |
| } |
| |
| |
| MaybeObject* FixedArray::AddKeysFromJSArray(JSArray* array) { |
| ElementsAccessor* accessor = array->GetElementsAccessor(); |
| MaybeObject* maybe_result = |
| accessor->AddElementsToFixedArray(array->elements(), this, array, array); |
| FixedArray* result; |
| if (!maybe_result->To<FixedArray>(&result)) return maybe_result; |
| #ifdef DEBUG |
| if (FLAG_enable_slow_asserts) { |
| for (int i = 0; i < result->length(); i++) { |
| Object* current = result->get(i); |
| ASSERT(current->IsNumber() || current->IsString()); |
| } |
| } |
| #endif |
| return result; |
| } |
| |
| |
| MaybeObject* FixedArray::UnionOfKeys(FixedArray* other) { |
| ElementsAccessor* accessor = ElementsAccessor::ForArray(other); |
| MaybeObject* maybe_result = |
| accessor->AddElementsToFixedArray(other, this, NULL, NULL); |
| FixedArray* result; |
| if (!maybe_result->To<FixedArray>(&result)) return maybe_result; |
| #ifdef DEBUG |
| if (FLAG_enable_slow_asserts) { |
| for (int i = 0; i < result->length(); i++) { |
| Object* current = result->get(i); |
| ASSERT(current->IsNumber() || current->IsString()); |
| } |
| } |
| #endif |
| return result; |
| } |
| |
| |
| MaybeObject* FixedArray::CopySize(int new_length) { |
| Heap* heap = GetHeap(); |
| if (new_length == 0) return heap->empty_fixed_array(); |
| Object* obj; |
| { MaybeObject* maybe_obj = heap->AllocateFixedArray(new_length); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* result = FixedArray::cast(obj); |
| // Copy the content |
| AssertNoAllocation no_gc; |
| int len = length(); |
| if (new_length < len) len = new_length; |
| result->set_map(map()); |
| WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| for (int i = 0; i < len; i++) { |
| result->set(i, get(i), mode); |
| } |
| return result; |
| } |
| |
| |
| void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); |
| for (int index = 0; index < len; index++) { |
| dest->set(dest_pos+index, get(pos+index), mode); |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| bool FixedArray::IsEqualTo(FixedArray* other) { |
| if (length() != other->length()) return false; |
| for (int i = 0 ; i < length(); ++i) { |
| if (get(i) != other->get(i)) return false; |
| } |
| return true; |
| } |
| #endif |
| |
| |
| MaybeObject* DescriptorArray::Allocate(int number_of_descriptors) { |
| Heap* heap = Isolate::Current()->heap(); |
| if (number_of_descriptors == 0) { |
| return heap->empty_descriptor_array(); |
| } |
| // Allocate the array of keys. |
| Object* array; |
| { MaybeObject* maybe_array = |
| heap->AllocateFixedArray(ToKeyIndex(number_of_descriptors)); |
| if (!maybe_array->ToObject(&array)) return maybe_array; |
| } |
| // Do not use DescriptorArray::cast on incomplete object. |
| FixedArray* result = FixedArray::cast(array); |
| |
| // Allocate the content array and set it in the descriptor array. |
| { MaybeObject* maybe_array = |
| heap->AllocateFixedArray(number_of_descriptors << 1); |
| if (!maybe_array->ToObject(&array)) return maybe_array; |
| } |
| result->set(kBitField3StorageIndex, Smi::FromInt(0)); |
| result->set(kContentArrayIndex, array); |
| result->set(kEnumerationIndexIndex, |
| Smi::FromInt(PropertyDetails::kInitialIndex)); |
| return result; |
| } |
| |
| |
| void DescriptorArray::SetEnumCache(FixedArray* bridge_storage, |
| FixedArray* new_cache) { |
| ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength); |
| if (HasEnumCache()) { |
| FixedArray::cast(get(kEnumerationIndexIndex))-> |
| set(kEnumCacheBridgeCacheIndex, new_cache); |
| } else { |
| if (IsEmpty()) return; // Do nothing for empty descriptor array. |
| FixedArray::cast(bridge_storage)-> |
| set(kEnumCacheBridgeCacheIndex, new_cache); |
| fast_set(FixedArray::cast(bridge_storage), |
| kEnumCacheBridgeEnumIndex, |
| get(kEnumerationIndexIndex)); |
| set(kEnumerationIndexIndex, bridge_storage); |
| } |
| } |
| |
| |
| MaybeObject* DescriptorArray::CopyInsert(Descriptor* descriptor, |
| TransitionFlag transition_flag) { |
| // Transitions are only kept when inserting another transition. |
| // This precondition is not required by this function's implementation, but |
| // is currently required by the semantics of maps, so we check it. |
| // Conversely, we filter after replacing, so replacing a transition and |
| // removing all other transitions is not supported. |
| bool remove_transitions = transition_flag == REMOVE_TRANSITIONS; |
| ASSERT(remove_transitions == !descriptor->GetDetails().IsTransition()); |
| ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR); |
| |
| // Ensure the key is a symbol. |
| Object* result; |
| { MaybeObject* maybe_result = descriptor->KeyToSymbol(); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| |
| int transitions = 0; |
| int null_descriptors = 0; |
| if (remove_transitions) { |
| for (int i = 0; i < number_of_descriptors(); i++) { |
| if (IsTransition(i)) transitions++; |
| if (IsNullDescriptor(i)) null_descriptors++; |
| } |
| } else { |
| for (int i = 0; i < number_of_descriptors(); i++) { |
| if (IsNullDescriptor(i)) null_descriptors++; |
| } |
| } |
| int new_size = number_of_descriptors() - transitions - null_descriptors; |
| |
| // If key is in descriptor, we replace it in-place when filtering. |
| // Count a null descriptor for key as inserted, not replaced. |
| int index = Search(descriptor->GetKey()); |
| const bool inserting = (index == kNotFound); |
| const bool replacing = !inserting; |
| bool keep_enumeration_index = false; |
| if (inserting) { |
| ++new_size; |
| } |
| if (replacing) { |
| // We are replacing an existing descriptor. We keep the enumeration |
| // index of a visible property. |
| PropertyType t = PropertyDetails(GetDetails(index)).type(); |
| if (t == CONSTANT_FUNCTION || |
| t == FIELD || |
| t == CALLBACKS || |
| t == INTERCEPTOR) { |
| keep_enumeration_index = true; |
| } else if (remove_transitions) { |
| // Replaced descriptor has been counted as removed if it is |
| // a transition that will be replaced. Adjust count in this case. |
| ++new_size; |
| } |
| } |
| { MaybeObject* maybe_result = Allocate(new_size); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| DescriptorArray* new_descriptors = DescriptorArray::cast(result); |
| // Set the enumeration index in the descriptors and set the enumeration index |
| // in the result. |
| int enumeration_index = NextEnumerationIndex(); |
| if (!descriptor->GetDetails().IsTransition()) { |
| if (keep_enumeration_index) { |
| descriptor->SetEnumerationIndex( |
| PropertyDetails(GetDetails(index)).index()); |
| } else { |
| descriptor->SetEnumerationIndex(enumeration_index); |
| ++enumeration_index; |
| } |
| } |
| new_descriptors->SetNextEnumerationIndex(enumeration_index); |
| |
| // Copy the descriptors, filtering out transitions and null descriptors, |
| // and inserting or replacing a descriptor. |
| uint32_t descriptor_hash = descriptor->GetKey()->Hash(); |
| int from_index = 0; |
| int to_index = 0; |
| |
| for (; from_index < number_of_descriptors(); from_index++) { |
| String* key = GetKey(from_index); |
| if (key->Hash() > descriptor_hash || key == descriptor->GetKey()) { |
| break; |
| } |
| if (IsNullDescriptor(from_index)) continue; |
| if (remove_transitions && IsTransition(from_index)) continue; |
| new_descriptors->CopyFrom(to_index++, this, from_index); |
| } |
| |
| new_descriptors->Set(to_index++, descriptor); |
| if (replacing) from_index++; |
| |
| for (; from_index < number_of_descriptors(); from_index++) { |
| if (IsNullDescriptor(from_index)) continue; |
| if (remove_transitions && IsTransition(from_index)) continue; |
| new_descriptors->CopyFrom(to_index++, this, from_index); |
| } |
| |
| ASSERT(to_index == new_descriptors->number_of_descriptors()); |
| SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates()); |
| |
| return new_descriptors; |
| } |
| |
| |
| MaybeObject* DescriptorArray::RemoveTransitions() { |
| // Remove all transitions and null descriptors. Return a copy of the array |
| // with all transitions removed, or a Failure object if the new array could |
| // not be allocated. |
| |
| // Compute the size of the map transition entries to be removed. |
| int num_removed = 0; |
| for (int i = 0; i < number_of_descriptors(); i++) { |
| if (!IsProperty(i)) num_removed++; |
| } |
| |
| // Allocate the new descriptor array. |
| Object* result; |
| { MaybeObject* maybe_result = Allocate(number_of_descriptors() - num_removed); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| DescriptorArray* new_descriptors = DescriptorArray::cast(result); |
| |
| // Copy the content. |
| int next_descriptor = 0; |
| for (int i = 0; i < number_of_descriptors(); i++) { |
| if (IsProperty(i)) new_descriptors->CopyFrom(next_descriptor++, this, i); |
| } |
| ASSERT(next_descriptor == new_descriptors->number_of_descriptors()); |
| |
| return new_descriptors; |
| } |
| |
| |
| void DescriptorArray::SortUnchecked() { |
| // In-place heap sort. |
| int len = number_of_descriptors(); |
| |
| // Bottom-up max-heap construction. |
| // Index of the last node with children |
| const int max_parent_index = (len / 2) - 1; |
| for (int i = max_parent_index; i >= 0; --i) { |
| int parent_index = i; |
| const uint32_t parent_hash = GetKey(i)->Hash(); |
| while (parent_index <= max_parent_index) { |
| int child_index = 2 * parent_index + 1; |
| uint32_t child_hash = GetKey(child_index)->Hash(); |
| if (child_index + 1 < len) { |
| uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); |
| if (right_child_hash > child_hash) { |
| child_index++; |
| child_hash = right_child_hash; |
| } |
| } |
| if (child_hash <= parent_hash) break; |
| Swap(parent_index, child_index); |
| // Now element at child_index could be < its children. |
| parent_index = child_index; // parent_hash remains correct. |
| } |
| } |
| |
| // Extract elements and create sorted array. |
| for (int i = len - 1; i > 0; --i) { |
| // Put max element at the back of the array. |
| Swap(0, i); |
| // Sift down the new top element. |
| int parent_index = 0; |
| const uint32_t parent_hash = GetKey(parent_index)->Hash(); |
| const int max_parent_index = (i / 2) - 1; |
| while (parent_index <= max_parent_index) { |
| int child_index = parent_index * 2 + 1; |
| uint32_t child_hash = GetKey(child_index)->Hash(); |
| if (child_index + 1 < i) { |
| uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); |
| if (right_child_hash > child_hash) { |
| child_index++; |
| child_hash = right_child_hash; |
| } |
| } |
| if (child_hash <= parent_hash) break; |
| Swap(parent_index, child_index); |
| parent_index = child_index; |
| } |
| } |
| } |
| |
| |
| void DescriptorArray::Sort() { |
| SortUnchecked(); |
| SLOW_ASSERT(IsSortedNoDuplicates()); |
| } |
| |
| |
| int DescriptorArray::BinarySearch(String* name, int low, int high) { |
| uint32_t hash = name->Hash(); |
| |
| while (low <= high) { |
| int mid = (low + high) / 2; |
| String* mid_name = GetKey(mid); |
| uint32_t mid_hash = mid_name->Hash(); |
| |
| if (mid_hash > hash) { |
| high = mid - 1; |
| continue; |
| } |
| if (mid_hash < hash) { |
| low = mid + 1; |
| continue; |
| } |
| // Found an element with the same hash-code. |
| ASSERT(hash == mid_hash); |
| // There might be more, so we find the first one and |
| // check them all to see if we have a match. |
| if (name == mid_name && !is_null_descriptor(mid)) return mid; |
| while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--; |
| for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) { |
| if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid; |
| } |
| break; |
| } |
| return kNotFound; |
| } |
| |
| |
| int DescriptorArray::LinearSearch(String* name, int len) { |
| uint32_t hash = name->Hash(); |
| for (int number = 0; number < len; number++) { |
| String* entry = GetKey(number); |
| if ((entry->Hash() == hash) && |
| name->Equals(entry) && |
| !is_null_descriptor(number)) { |
| return number; |
| } |
| } |
| return kNotFound; |
| } |
| |
| |
| MaybeObject* DeoptimizationInputData::Allocate(int deopt_entry_count, |
| PretenureFlag pretenure) { |
| ASSERT(deopt_entry_count > 0); |
| return HEAP->AllocateFixedArray(LengthFor(deopt_entry_count), |
| pretenure); |
| } |
| |
| |
| MaybeObject* DeoptimizationOutputData::Allocate(int number_of_deopt_points, |
| PretenureFlag pretenure) { |
| if (number_of_deopt_points == 0) return HEAP->empty_fixed_array(); |
| return HEAP->AllocateFixedArray(LengthOfFixedArray(number_of_deopt_points), |
| pretenure); |
| } |
| |
| |
| #ifdef DEBUG |
| bool DescriptorArray::IsEqualTo(DescriptorArray* other) { |
| if (IsEmpty()) return other->IsEmpty(); |
| if (other->IsEmpty()) return false; |
| if (length() != other->length()) return false; |
| for (int i = 0; i < length(); ++i) { |
| if (get(i) != other->get(i) && i != kContentArrayIndex) return false; |
| } |
| return GetContentArray()->IsEqualTo(other->GetContentArray()); |
| } |
| #endif |
| |
| |
| bool String::LooksValid() { |
| if (!Isolate::Current()->heap()->Contains(this)) return false; |
| return true; |
| } |
| |
| |
| int String::Utf8Length() { |
| if (IsAsciiRepresentation()) return length(); |
| // Attempt to flatten before accessing the string. It probably |
| // doesn't make Utf8Length faster, but it is very likely that |
| // the string will be accessed later (for example by WriteUtf8) |
| // so it's still a good idea. |
| Heap* heap = GetHeap(); |
| TryFlatten(); |
| Access<StringInputBuffer> buffer( |
| heap->isolate()->objects_string_input_buffer()); |
| buffer->Reset(0, this); |
| int result = 0; |
| while (buffer->has_more()) |
| result += unibrow::Utf8::Length(buffer->GetNext()); |
| return result; |
| } |
| |
| |
| String::FlatContent String::GetFlatContent() { |
| int length = this->length(); |
| StringShape shape(this); |
| String* string = this; |
| int offset = 0; |
| if (shape.representation_tag() == kConsStringTag) { |
| ConsString* cons = ConsString::cast(string); |
| if (cons->second()->length() != 0) { |
| return FlatContent(); |
| } |
| string = cons->first(); |
| shape = StringShape(string); |
| } |
| if (shape.representation_tag() == kSlicedStringTag) { |
| SlicedString* slice = SlicedString::cast(string); |
| offset = slice->offset(); |
| string = slice->parent(); |
| shape = StringShape(string); |
| ASSERT(shape.representation_tag() != kConsStringTag && |
| shape.representation_tag() != kSlicedStringTag); |
| } |
| if (shape.encoding_tag() == kAsciiStringTag) { |
| const char* start; |
| if (shape.representation_tag() == kSeqStringTag) { |
| start = SeqAsciiString::cast(string)->GetChars(); |
| } else { |
| start = ExternalAsciiString::cast(string)->resource()->data(); |
| } |
| return FlatContent(Vector<const char>(start + offset, length)); |
| } else { |
| ASSERT(shape.encoding_tag() == kTwoByteStringTag); |
| const uc16* start; |
| if (shape.representation_tag() == kSeqStringTag) { |
| start = SeqTwoByteString::cast(string)->GetChars(); |
| } else { |
| start = ExternalTwoByteString::cast(string)->resource()->data(); |
| } |
| return FlatContent(Vector<const uc16>(start + offset, length)); |
| } |
| } |
| |
| |
| SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls, |
| RobustnessFlag robust_flag, |
| int offset, |
| int length, |
| int* length_return) { |
| if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { |
| return SmartArrayPointer<char>(NULL); |
| } |
| Heap* heap = GetHeap(); |
| |
| // Negative length means the to the end of the string. |
| if (length < 0) length = kMaxInt - offset; |
| |
| // Compute the size of the UTF-8 string. Start at the specified offset. |
| Access<StringInputBuffer> buffer( |
| heap->isolate()->objects_string_input_buffer()); |
| buffer->Reset(offset, this); |
| int character_position = offset; |
| int utf8_bytes = 0; |
| while (buffer->has_more()) { |
| uint16_t character = buffer->GetNext(); |
| if (character_position < offset + length) { |
| utf8_bytes += unibrow::Utf8::Length(character); |
| } |
| character_position++; |
| } |
| |
| if (length_return) { |
| *length_return = utf8_bytes; |
| } |
| |
| char* result = NewArray<char>(utf8_bytes + 1); |
| |
| // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. |
| buffer->Rewind(); |
| buffer->Seek(offset); |
| character_position = offset; |
| int utf8_byte_position = 0; |
| while (buffer->has_more()) { |
| uint16_t character = buffer->GetNext(); |
| if (character_position < offset + length) { |
| if (allow_nulls == DISALLOW_NULLS && character == 0) { |
| character = ' '; |
| } |
| utf8_byte_position += |
| unibrow::Utf8::Encode(result + utf8_byte_position, character); |
| } |
| character_position++; |
| } |
| result[utf8_byte_position] = 0; |
| return SmartArrayPointer<char>(result); |
| } |
| |
| |
| SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls, |
| RobustnessFlag robust_flag, |
| int* length_return) { |
| return ToCString(allow_nulls, robust_flag, 0, -1, length_return); |
| } |
| |
| |
| const uc16* String::GetTwoByteData() { |
| return GetTwoByteData(0); |
| } |
| |
| |
| const uc16* String::GetTwoByteData(unsigned start) { |
| ASSERT(!IsAsciiRepresentationUnderneath()); |
| switch (StringShape(this).representation_tag()) { |
| case kSeqStringTag: |
| return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); |
| case kExternalStringTag: |
| return ExternalTwoByteString::cast(this)-> |
| ExternalTwoByteStringGetData(start); |
| case kSlicedStringTag: { |
| SlicedString* slice = SlicedString::cast(this); |
| return slice->parent()->GetTwoByteData(start + slice->offset()); |
| } |
| case kConsStringTag: |
| UNREACHABLE(); |
| return NULL; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| SmartArrayPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) { |
| if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { |
| return SmartArrayPointer<uc16>(); |
| } |
| Heap* heap = GetHeap(); |
| |
| Access<StringInputBuffer> buffer( |
| heap->isolate()->objects_string_input_buffer()); |
| buffer->Reset(this); |
| |
| uc16* result = NewArray<uc16>(length() + 1); |
| |
| int i = 0; |
| while (buffer->has_more()) { |
| uint16_t character = buffer->GetNext(); |
| result[i++] = character; |
| } |
| result[i] = 0; |
| return SmartArrayPointer<uc16>(result); |
| } |
| |
| |
| const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { |
| return reinterpret_cast<uc16*>( |
| reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start; |
| } |
| |
| |
| void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| unsigned chars_read = 0; |
| unsigned offset = *offset_ptr; |
| while (chars_read < max_chars) { |
| uint16_t c = *reinterpret_cast<uint16_t*>( |
| reinterpret_cast<char*>(this) - |
| kHeapObjectTag + kHeaderSize + offset * kShortSize); |
| if (c <= kMaxAsciiCharCode) { |
| // Fast case for ASCII characters. Cursor is an input output argument. |
| if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, |
| rbb->util_buffer, |
| rbb->capacity, |
| rbb->cursor)) { |
| break; |
| } |
| } else { |
| if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, |
| rbb->util_buffer, |
| rbb->capacity, |
| rbb->cursor)) { |
| break; |
| } |
| } |
| offset++; |
| chars_read++; |
| } |
| *offset_ptr = offset; |
| rbb->remaining += chars_read; |
| } |
| |
| |
| const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock( |
| unsigned* remaining, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| const unibrow::byte* b = reinterpret_cast<unibrow::byte*>(this) - |
| kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize; |
| *remaining = max_chars; |
| *offset_ptr += max_chars; |
| return b; |
| } |
| |
| |
| // This will iterate unless the block of string data spans two 'halves' of |
| // a ConsString, in which case it will recurse. Since the block of string |
| // data to be read has a maximum size this limits the maximum recursion |
| // depth to something sane. Since C++ does not have tail call recursion |
| // elimination, the iteration must be explicit. Since this is not an |
| // -IntoBuffer method it can delegate to one of the efficient |
| // *AsciiStringReadBlock routines. |
| const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| ConsString* current = this; |
| unsigned offset = *offset_ptr; |
| int offset_correction = 0; |
| |
| while (true) { |
| String* left = current->first(); |
| unsigned left_length = (unsigned)left->length(); |
| if (left_length > offset && |
| (max_chars <= left_length - offset || |
| (rbb->capacity <= left_length - offset && |
| (max_chars = left_length - offset, true)))) { // comma operator! |
| // Left hand side only - iterate unless we have reached the bottom of |
| // the cons tree. The assignment on the left of the comma operator is |
| // in order to make use of the fact that the -IntoBuffer routines can |
| // produce at most 'capacity' characters. This enables us to postpone |
| // the point where we switch to the -IntoBuffer routines (below) in order |
| // to maximize the chances of delegating a big chunk of work to the |
| // efficient *AsciiStringReadBlock routines. |
| if (StringShape(left).IsCons()) { |
| current = ConsString::cast(left); |
| continue; |
| } else { |
| const unibrow::byte* answer = |
| String::ReadBlock(left, rbb, &offset, max_chars); |
| *offset_ptr = offset + offset_correction; |
| return answer; |
| } |
| } else if (left_length <= offset) { |
| // Right hand side only - iterate unless we have reached the bottom of |
| // the cons tree. |
| String* right = current->second(); |
| offset -= left_length; |
| offset_correction += left_length; |
| if (StringShape(right).IsCons()) { |
| current = ConsString::cast(right); |
| continue; |
| } else { |
| const unibrow::byte* answer = |
| String::ReadBlock(right, rbb, &offset, max_chars); |
| *offset_ptr = offset + offset_correction; |
| return answer; |
| } |
| } else { |
| // The block to be read spans two sides of the ConsString, so we call the |
| // -IntoBuffer version, which will recurse. The -IntoBuffer methods |
| // are able to assemble data from several part strings because they use |
| // the util_buffer to store their data and never return direct pointers |
| // to their storage. We don't try to read more than the buffer capacity |
| // here or we can get too much recursion. |
| ASSERT(rbb->remaining == 0); |
| ASSERT(rbb->cursor == 0); |
| current->ConsStringReadBlockIntoBuffer( |
| rbb, |
| &offset, |
| max_chars > rbb->capacity ? rbb->capacity : max_chars); |
| *offset_ptr = offset + offset_correction; |
| return rbb->util_buffer; |
| } |
| } |
| } |
| |
| |
| uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) { |
| ASSERT(index >= 0 && index < length()); |
| return resource()->data()[index]; |
| } |
| |
| |
| const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock( |
| unsigned* remaining, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| // Cast const char* to unibrow::byte* (signedness difference). |
| const unibrow::byte* b = |
| reinterpret_cast<const unibrow::byte*>(resource()->data()) + *offset_ptr; |
| *remaining = max_chars; |
| *offset_ptr += max_chars; |
| return b; |
| } |
| |
| |
| const uc16* ExternalTwoByteString::ExternalTwoByteStringGetData( |
| unsigned start) { |
| return resource()->data() + start; |
| } |
| |
| |
| uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) { |
| ASSERT(index >= 0 && index < length()); |
| return resource()->data()[index]; |
| } |
| |
| |
| void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer( |
| ReadBlockBuffer* rbb, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| unsigned chars_read = 0; |
| unsigned offset = *offset_ptr; |
| const uint16_t* data = resource()->data(); |
| while (chars_read < max_chars) { |
| uint16_t c = data[offset]; |
| if (c <= kMaxAsciiCharCode) { |
| // Fast case for ASCII characters. Cursor is an input output argument. |
| if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, |
| rbb->util_buffer, |
| rbb->capacity, |
| rbb->cursor)) |
| break; |
| } else { |
| if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, |
| rbb->util_buffer, |
| rbb->capacity, |
| rbb->cursor)) |
| break; |
| } |
| offset++; |
| chars_read++; |
| } |
| *offset_ptr = offset; |
| rbb->remaining += chars_read; |
| } |
| |
| |
| void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| unsigned capacity = rbb->capacity - rbb->cursor; |
| if (max_chars > capacity) max_chars = capacity; |
| memcpy(rbb->util_buffer + rbb->cursor, |
| reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize + |
| *offset_ptr * kCharSize, |
| max_chars); |
| rbb->remaining += max_chars; |
| *offset_ptr += max_chars; |
| rbb->cursor += max_chars; |
| } |
| |
| |
| void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer( |
| ReadBlockBuffer* rbb, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| unsigned capacity = rbb->capacity - rbb->cursor; |
| if (max_chars > capacity) max_chars = capacity; |
| memcpy(rbb->util_buffer + rbb->cursor, |
| resource()->data() + *offset_ptr, |
| max_chars); |
| rbb->remaining += max_chars; |
| *offset_ptr += max_chars; |
| rbb->cursor += max_chars; |
| } |
| |
| |
| // This method determines the type of string involved and then copies |
| // a whole chunk of characters into a buffer, or returns a pointer to a buffer |
| // where they can be found. The pointer is not necessarily valid across a GC |
| // (see AsciiStringReadBlock). |
| const unibrow::byte* String::ReadBlock(String* input, |
| ReadBlockBuffer* rbb, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| ASSERT(*offset_ptr <= static_cast<unsigned>(input->length())); |
| if (max_chars == 0) { |
| rbb->remaining = 0; |
| return NULL; |
| } |
| switch (StringShape(input).representation_tag()) { |
| case kSeqStringTag: |
| if (input->IsAsciiRepresentation()) { |
| SeqAsciiString* str = SeqAsciiString::cast(input); |
| return str->SeqAsciiStringReadBlock(&rbb->remaining, |
| offset_ptr, |
| max_chars); |
| } else { |
| SeqTwoByteString* str = SeqTwoByteString::cast(input); |
| str->SeqTwoByteStringReadBlockIntoBuffer(rbb, |
| offset_ptr, |
| max_chars); |
| return rbb->util_buffer; |
| } |
| case kConsStringTag: |
| return ConsString::cast(input)->ConsStringReadBlock(rbb, |
| offset_ptr, |
| max_chars); |
| case kExternalStringTag: |
| if (input->IsAsciiRepresentation()) { |
| return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock( |
| &rbb->remaining, |
| offset_ptr, |
| max_chars); |
| } else { |
| ExternalTwoByteString::cast(input)-> |
| ExternalTwoByteStringReadBlockIntoBuffer(rbb, |
| offset_ptr, |
| max_chars); |
| return rbb->util_buffer; |
| } |
| case kSlicedStringTag: |
| return SlicedString::cast(input)->SlicedStringReadBlock(rbb, |
| offset_ptr, |
| max_chars); |
| default: |
| break; |
| } |
| |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| |
| void Relocatable::PostGarbageCollectionProcessing() { |
| Isolate* isolate = Isolate::Current(); |
| Relocatable* current = isolate->relocatable_top(); |
| while (current != NULL) { |
| current->PostGarbageCollection(); |
| current = current->prev_; |
| } |
| } |
| |
| |
| // Reserve space for statics needing saving and restoring. |
| int Relocatable::ArchiveSpacePerThread() { |
| return sizeof(Isolate::Current()->relocatable_top()); |
| } |
| |
| |
| // Archive statics that are thread local. |
| char* Relocatable::ArchiveState(Isolate* isolate, char* to) { |
| *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top(); |
| isolate->set_relocatable_top(NULL); |
| return to + ArchiveSpacePerThread(); |
| } |
| |
| |
| // Restore statics that are thread local. |
| char* Relocatable::RestoreState(Isolate* isolate, char* from) { |
| isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from)); |
| return from + ArchiveSpacePerThread(); |
| } |
| |
| |
| char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { |
| Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage); |
| Iterate(v, top); |
| return thread_storage + ArchiveSpacePerThread(); |
| } |
| |
| |
| void Relocatable::Iterate(ObjectVisitor* v) { |
| Isolate* isolate = Isolate::Current(); |
| Iterate(v, isolate->relocatable_top()); |
| } |
| |
| |
| void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { |
| Relocatable* current = top; |
| while (current != NULL) { |
| current->IterateInstance(v); |
| current = current->prev_; |
| } |
| } |
| |
| |
| FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str) |
| : Relocatable(isolate), |
| str_(str.location()), |
| length_(str->length()) { |
| PostGarbageCollection(); |
| } |
| |
| |
| FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input) |
| : Relocatable(isolate), |
| str_(0), |
| is_ascii_(true), |
| length_(input.length()), |
| start_(input.start()) { } |
| |
| |
| void FlatStringReader::PostGarbageCollection() { |
| if (str_ == NULL) return; |
| Handle<String> str(str_); |
| ASSERT(str->IsFlat()); |
| String::FlatContent content = str->GetFlatContent(); |
| ASSERT(content.IsFlat()); |
| is_ascii_ = content.IsAscii(); |
| if (is_ascii_) { |
| start_ = content.ToAsciiVector().start(); |
| } else { |
| start_ = content.ToUC16Vector().start(); |
| } |
| } |
| |
| |
| void StringInputBuffer::Seek(unsigned pos) { |
| Reset(pos, input_); |
| } |
| |
| |
| void SafeStringInputBuffer::Seek(unsigned pos) { |
| Reset(pos, input_); |
| } |
| |
| |
| // This method determines the type of string involved and then copies |
| // a whole chunk of characters into a buffer. It can be used with strings |
| // that have been glued together to form a ConsString and which must cooperate |
| // to fill up a buffer. |
| void String::ReadBlockIntoBuffer(String* input, |
| ReadBlockBuffer* rbb, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| ASSERT(*offset_ptr <= (unsigned)input->length()); |
| if (max_chars == 0) return; |
| |
| switch (StringShape(input).representation_tag()) { |
| case kSeqStringTag: |
| if (input->IsAsciiRepresentation()) { |
| SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb, |
| offset_ptr, |
| max_chars); |
| return; |
| } else { |
| SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb, |
| offset_ptr, |
| max_chars); |
| return; |
| } |
| case kConsStringTag: |
| ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb, |
| offset_ptr, |
| max_chars); |
| return; |
| case kExternalStringTag: |
| if (input->IsAsciiRepresentation()) { |
| ExternalAsciiString::cast(input)-> |
| ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); |
| } else { |
| ExternalTwoByteString::cast(input)-> |
| ExternalTwoByteStringReadBlockIntoBuffer(rbb, |
| offset_ptr, |
| max_chars); |
| } |
| return; |
| case kSlicedStringTag: |
| SlicedString::cast(input)->SlicedStringReadBlockIntoBuffer(rbb, |
| offset_ptr, |
| max_chars); |
| return; |
| default: |
| break; |
| } |
| |
| UNREACHABLE(); |
| return; |
| } |
| |
| |
| const unibrow::byte* String::ReadBlock(String* input, |
| unibrow::byte* util_buffer, |
| unsigned capacity, |
| unsigned* remaining, |
| unsigned* offset_ptr) { |
| ASSERT(*offset_ptr <= (unsigned)input->length()); |
| unsigned chars = input->length() - *offset_ptr; |
| ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); |
| const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars); |
| ASSERT(rbb.remaining <= static_cast<unsigned>(input->length())); |
| *remaining = rbb.remaining; |
| return answer; |
| } |
| |
| |
| const unibrow::byte* String::ReadBlock(String** raw_input, |
| unibrow::byte* util_buffer, |
| unsigned capacity, |
| unsigned* remaining, |
| unsigned* offset_ptr) { |
| Handle<String> input(raw_input); |
| ASSERT(*offset_ptr <= (unsigned)input->length()); |
| unsigned chars = input->length() - *offset_ptr; |
| if (chars > capacity) chars = capacity; |
| ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); |
| ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars); |
| ASSERT(rbb.remaining <= static_cast<unsigned>(input->length())); |
| *remaining = rbb.remaining; |
| return rbb.util_buffer; |
| } |
| |
| |
| // This will iterate unless the block of string data spans two 'halves' of |
| // a ConsString, in which case it will recurse. Since the block of string |
| // data to be read has a maximum size this limits the maximum recursion |
| // depth to something sane. Since C++ does not have tail call recursion |
| // elimination, the iteration must be explicit. |
| void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, |
| unsigned* offset_ptr, |
| unsigned max_chars) { |
| ConsString* current = this; |
| unsigned offset = *offset_ptr; |
| int offset_correction = 0; |
| |
| while (true) { |
| String* left = current->first(); |
| unsigned left_length = (unsigned)left->length(); |
| if (left_length > offset && |
| max_chars <= left_length - offset) { |
| // Left hand side only - iterate unless we have reached the bottom of |
| // the cons tree. |
| if (StringShape(left).IsCons()) { |
| current = ConsString::cast(left); |
| continue; |
| } else { |
| String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars); |
| *offset_ptr = offset + offset_correction; |
| return; |
| } |
| } else if (left_length <= offset) { |
| // Right hand side only - iterate unless we have reached the bottom of |
| // the cons tree. |
| offset -= left_length; |
| offset_correction += left_length; |
| String* right = current->second(); |
| if (StringShape(right).IsCons()) { |
| current = ConsString::cast(right); |
| continue; |
| } else { |
| String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); |
| *offset_ptr = offset + offset_correction; |
| return; |
| } |
| } else { |
| // The block to be read spans two sides of the ConsString, so we recurse. |
| // First recurse on the left. |
| max_chars -= left_length - offset; |
| String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset); |
| // We may have reached the max or there may not have been enough space |
| // in the buffer for the characters in the left hand side. |
| if (offset == left_length) { |
| // Recurse on the right. |
| String* right = String::cast(current->second()); |
| offset -= left_length; |
| offset_correction += left_length; |
| String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); |
| } |
| *offset_ptr = offset + offset_correction; |
| return; |
| } |
| } |
| } |
| |
| |
| uint16_t ConsString::ConsStringGet(int index) { |
| ASSERT(index >= 0 && index < this->length()); |
| |
| // Check for a flattened cons string |
| if (second()->length() == 0) { |
| String* left = first(); |
| return left->Get(index); |
| } |
| |
| String* string = String::cast(this); |
| |
| while (true) { |
| if (StringShape(string).IsCons()) { |
| ConsString* cons_string = ConsString::cast(string); |
| String* left = cons_string->first(); |
| if (left->length() > index) { |
| string = left; |
| } else { |
| index -= left->length(); |
| string = cons_string->second(); |
| } |
| } else { |
| return string->Get(index); |
| } |
| } |
| |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| |
| uint16_t SlicedString::SlicedStringGet(int index) { |
| return parent()->Get(offset() + index); |
| } |
| |
| |
| const unibrow::byte* SlicedString::SlicedStringReadBlock( |
| ReadBlockBuffer* buffer, unsigned* offset_ptr, unsigned chars) { |
| unsigned offset = this->offset(); |
| *offset_ptr += offset; |
| const unibrow::byte* answer = String::ReadBlock(String::cast(parent()), |
| buffer, offset_ptr, chars); |
| *offset_ptr -= offset; |
| return answer; |
| } |
| |
| |
| void SlicedString::SlicedStringReadBlockIntoBuffer( |
| ReadBlockBuffer* buffer, unsigned* offset_ptr, unsigned chars) { |
| unsigned offset = this->offset(); |
| *offset_ptr += offset; |
| String::ReadBlockIntoBuffer(String::cast(parent()), |
| buffer, offset_ptr, chars); |
| *offset_ptr -= offset; |
| } |
| |
| template <typename sinkchar> |
| void String::WriteToFlat(String* src, |
| sinkchar* sink, |
| int f, |
| int t) { |
| String* source = src; |
| int from = f; |
| int to = t; |
| while (true) { |
| ASSERT(0 <= from && from <= to && to <= source->length()); |
| switch (StringShape(source).full_representation_tag()) { |
| case kAsciiStringTag | kExternalStringTag: { |
| CopyChars(sink, |
| ExternalAsciiString::cast(source)->resource()->data() + from, |
| to - from); |
| return; |
| } |
| case kTwoByteStringTag | kExternalStringTag: { |
| const uc16* data = |
| ExternalTwoByteString::cast(source)->resource()->data(); |
| CopyChars(sink, |
| data + from, |
| to - from); |
| return; |
| } |
| case kAsciiStringTag | kSeqStringTag: { |
| CopyChars(sink, |
| SeqAsciiString::cast(source)->GetChars() + from, |
| to - from); |
| return; |
| } |
| case kTwoByteStringTag | kSeqStringTag: { |
| CopyChars(sink, |
| SeqTwoByteString::cast(source)->GetChars() + from, |
| to - from); |
| return; |
| } |
| case kAsciiStringTag | kConsStringTag: |
| case kTwoByteStringTag | kConsStringTag: { |
| ConsString* cons_string = ConsString::cast(source); |
| String* first = cons_string->first(); |
| int boundary = first->length(); |
| if (to - boundary >= boundary - from) { |
| // Right hand side is longer. Recurse over left. |
| if (from < boundary) { |
| WriteToFlat(first, sink, from, boundary); |
| sink += boundary - from; |
| from = 0; |
| } else { |
| from -= boundary; |
| } |
| to -= boundary; |
| source = cons_string->second(); |
| } else { |
| // Left hand side is longer. Recurse over right. |
| if (to > boundary) { |
| String* second = cons_string->second(); |
| WriteToFlat(second, |
| sink + boundary - from, |
| 0, |
| to - boundary); |
| to = boundary; |
| } |
| source = first; |
| } |
| break; |
| } |
| case kAsciiStringTag | kSlicedStringTag: |
| case kTwoByteStringTag | kSlicedStringTag: { |
| SlicedString* slice = SlicedString::cast(source); |
| unsigned offset = slice->offset(); |
| WriteToFlat(slice->parent(), sink, from + offset, to + offset); |
| return; |
| } |
| } |
| } |
| } |
| |
| |
| template <typename IteratorA, typename IteratorB> |
| static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) { |
| // General slow case check. We know that the ia and ib iterators |
| // have the same length. |
| while (ia->has_more()) { |
| uc32 ca = ia->GetNext(); |
| uc32 cb = ib->GetNext(); |
| if (ca != cb) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| // Compares the contents of two strings by reading and comparing |
| // int-sized blocks of characters. |
| template <typename Char> |
| static inline bool CompareRawStringContents(Vector<Char> a, Vector<Char> b) { |
| int length = a.length(); |
| ASSERT_EQ(length, b.length()); |
| const Char* pa = a.start(); |
| const Char* pb = b.start(); |
| int i = 0; |
| #ifndef V8_HOST_CAN_READ_UNALIGNED |
| // If this architecture isn't comfortable reading unaligned ints |
| // then we have to check that the strings are aligned before |
| // comparing them blockwise. |
| const int kAlignmentMask = sizeof(uint32_t) - 1; // NOLINT |
| uint32_t pa_addr = reinterpret_cast<uint32_t>(pa); |
| uint32_t pb_addr = reinterpret_cast<uint32_t>(pb); |
| if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) { |
| #endif |
| const int kStepSize = sizeof(int) / sizeof(Char); // NOLINT |
| int endpoint = length - kStepSize; |
| // Compare blocks until we reach near the end of the string. |
| for (; i <= endpoint; i += kStepSize) { |
| uint32_t wa = *reinterpret_cast<const uint32_t*>(pa + i); |
| uint32_t wb = *reinterpret_cast<const uint32_t*>(pb + i); |
| if (wa != wb) { |
| return false; |
| } |
| } |
| #ifndef V8_HOST_CAN_READ_UNALIGNED |
| } |
| #endif |
| // Compare the remaining characters that didn't fit into a block. |
| for (; i < length; i++) { |
| if (a[i] != b[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| template <typename IteratorA> |
| static inline bool CompareStringContentsPartial(Isolate* isolate, |
| IteratorA* ia, |
| String* b) { |
| String::FlatContent content = b->GetFlatContent(); |
| if (content.IsFlat()) { |
| if (content.IsAscii()) { |
| VectorIterator<char> ib(content.ToAsciiVector()); |
| return CompareStringContents(ia, &ib); |
| } else { |
| VectorIterator<uc16> ib(content.ToUC16Vector()); |
| return CompareStringContents(ia, &ib); |
| } |
| } else { |
| isolate->objects_string_compare_buffer_b()->Reset(0, b); |
| return CompareStringContents(ia, |
| isolate->objects_string_compare_buffer_b()); |
| } |
| } |
| |
| |
| bool String::SlowEquals(String* other) { |
| // Fast check: negative check with lengths. |
| int len = length(); |
| if (len != other->length()) return false; |
| if (len == 0) return true; |
| |
| // Fast check: if hash code is computed for both strings |
| // a fast negative check can be performed. |
| if (HasHashCode() && other->HasHashCode()) { |
| #ifdef DEBUG |
| if (FLAG_enable_slow_asserts) { |
| if (Hash() != other->Hash()) { |
| bool found_difference = false; |
| for (int i = 0; i < len; i++) { |
| if (Get(i) != other->Get(i)) { |
| found_difference = true; |
| break; |
| } |
| } |
| ASSERT(found_difference); |
| } |
| } |
| #endif |
| if (Hash() != other->Hash()) return false; |
| } |
| |
| // We know the strings are both non-empty. Compare the first chars |
| // before we try to flatten the strings. |
| if (this->Get(0) != other->Get(0)) return false; |
| |
| String* lhs = this->TryFlattenGetString(); |
| String* rhs = other->TryFlattenGetString(); |
| |
| if (StringShape(lhs).IsSequentialAscii() && |
| StringShape(rhs).IsSequentialAscii()) { |
| const char* str1 = SeqAsciiString::cast(lhs)->GetChars(); |
| const char* str2 = SeqAsciiString::cast(rhs)->GetChars(); |
| return CompareRawStringContents(Vector<const char>(str1, len), |
| Vector<const char>(str2, len)); |
| } |
| |
| Isolate* isolate = GetIsolate(); |
| String::FlatContent lhs_content = lhs->GetFlatContent(); |
| String::FlatContent rhs_content = rhs->GetFlatContent(); |
| if (lhs_content.IsFlat()) { |
| if (lhs_content.IsAscii()) { |
| Vector<const char> vec1 = lhs_content.ToAsciiVector(); |
| if (rhs_content.IsFlat()) { |
| if (rhs_content.IsAscii()) { |
| Vector<const char> vec2 = rhs_content.ToAsciiVector(); |
| return CompareRawStringContents(vec1, vec2); |
| } else { |
| VectorIterator<char> buf1(vec1); |
| VectorIterator<uc16> ib(rhs_content.ToUC16Vector()); |
| return CompareStringContents(&buf1, &ib); |
| } |
| } else { |
| VectorIterator<char> buf1(vec1); |
| isolate->objects_string_compare_buffer_b()->Reset(0, rhs); |
| return CompareStringContents(&buf1, |
| isolate->objects_string_compare_buffer_b()); |
| } |
| } else { |
| Vector<const uc16> vec1 = lhs_content.ToUC16Vector(); |
| if (rhs_content.IsFlat()) { |
| if (rhs_content.IsAscii()) { |
| VectorIterator<uc16> buf1(vec1); |
| VectorIterator<char> ib(rhs_content.ToAsciiVector()); |
| return CompareStringContents(&buf1, &ib); |
| } else { |
| Vector<const uc16> vec2(rhs_content.ToUC16Vector()); |
| return CompareRawStringContents(vec1, vec2); |
| } |
| } else { |
| VectorIterator<uc16> buf1(vec1); |
| isolate->objects_string_compare_buffer_b()->Reset(0, rhs); |
| return CompareStringContents(&buf1, |
| isolate->objects_string_compare_buffer_b()); |
| } |
| } |
| } else { |
| isolate->objects_string_compare_buffer_a()->Reset(0, lhs); |
| return CompareStringContentsPartial(isolate, |
| isolate->objects_string_compare_buffer_a(), rhs); |
| } |
| } |
| |
| |
| bool String::MarkAsUndetectable() { |
| if (StringShape(this).IsSymbol()) return false; |
| |
| Map* map = this->map(); |
| Heap* heap = map->heap(); |
| if (map == heap->string_map()) { |
| this->set_map(heap->undetectable_string_map()); |
| return true; |
| } else if (map == heap->ascii_string_map()) { |
| this->set_map(heap->undetectable_ascii_string_map()); |
| return true; |
| } |
| // Rest cannot be marked as undetectable |
| return false; |
| } |
| |
| |
| bool String::IsEqualTo(Vector<const char> str) { |
| Isolate* isolate = GetIsolate(); |
| int slen = length(); |
| Access<UnicodeCache::Utf8Decoder> |
| decoder(isolate->unicode_cache()->utf8_decoder()); |
| decoder->Reset(str.start(), str.length()); |
| int i; |
| for (i = 0; i < slen && decoder->has_more(); i++) { |
| uc32 r = decoder->GetNext(); |
| if (Get(i) != r) return false; |
| } |
| return i == slen && !decoder->has_more(); |
| } |
| |
| |
| bool String::IsAsciiEqualTo(Vector<const char> str) { |
| int slen = length(); |
| if (str.length() != slen) return false; |
| FlatContent content = GetFlatContent(); |
| if (content.IsAscii()) { |
| return CompareChars(content.ToAsciiVector().start(), |
| str.start(), slen) == 0; |
| } |
| for (int i = 0; i < slen; i++) { |
| if (Get(i) != static_cast<uint16_t>(str[i])) return false; |
| } |
| return true; |
| } |
| |
| |
| bool String::IsTwoByteEqualTo(Vector<const uc16> str) { |
| int slen = length(); |
| if (str.length() != slen) return false; |
| FlatContent content = GetFlatContent(); |
| if (content.IsTwoByte()) { |
| return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0; |
| } |
| for (int i = 0; i < slen; i++) { |
| if (Get(i) != str[i]) return false; |
| } |
| return true; |
| } |
| |
| |
| uint32_t String::ComputeAndSetHash() { |
| // Should only be called if hash code has not yet been computed. |
| ASSERT(!HasHashCode()); |
| |
| const int len = length(); |
| |
| // Compute the hash code. |
| uint32_t field = 0; |
| if (StringShape(this).IsSequentialAscii()) { |
| field = HashSequentialString(SeqAsciiString::cast(this)->GetChars(), |
| len, |
| GetHeap()->HashSeed()); |
| } else if (StringShape(this).IsSequentialTwoByte()) { |
| field = HashSequentialString(SeqTwoByteString::cast(this)->GetChars(), |
| len, |
| GetHeap()->HashSeed()); |
| } else { |
| StringInputBuffer buffer(this); |
| field = ComputeHashField(&buffer, len, GetHeap()->HashSeed()); |
| } |
| |
| // Store the hash code in the object. |
| set_hash_field(field); |
| |
| // Check the hash code is there. |
| ASSERT(HasHashCode()); |
| uint32_t result = field >> kHashShift; |
| ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. |
| return result; |
| } |
| |
| |
| bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer, |
| uint32_t* index, |
| int length) { |
| if (length == 0 || length > kMaxArrayIndexSize) return false; |
| uc32 ch = buffer->GetNext(); |
| |
| // If the string begins with a '0' character, it must only consist |
| // of it to be a legal array index. |
| if (ch == '0') { |
| *index = 0; |
| return length == 1; |
| } |
| |
| // Convert string to uint32 array index; character by character. |
| int d = ch - '0'; |
| if (d < 0 || d > 9) return false; |
| uint32_t result = d; |
| while (buffer->has_more()) { |
| d = buffer->GetNext() - '0'; |
| if (d < 0 || d > 9) return false; |
| // Check that the new result is below the 32 bit limit. |
| if (result > 429496729U - ((d > 5) ? 1 : 0)) return false; |
| result = (result * 10) + d; |
| } |
| |
| *index = result; |
| return true; |
| } |
| |
| |
| bool String::SlowAsArrayIndex(uint32_t* index) { |
| if (length() <= kMaxCachedArrayIndexLength) { |
| Hash(); // force computation of hash code |
| uint32_t field = hash_field(); |
| if ((field & kIsNotArrayIndexMask) != 0) return false; |
| // Isolate the array index form the full hash field. |
| *index = (kArrayIndexHashMask & field) >> kHashShift; |
| return true; |
| } else { |
| StringInputBuffer buffer(this); |
| return ComputeArrayIndex(&buffer, index, length()); |
| } |
| } |
| |
| |
| uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { |
| // For array indexes mix the length into the hash as an array index could |
| // be zero. |
| ASSERT(length > 0); |
| ASSERT(length <= String::kMaxArrayIndexSize); |
| ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < |
| (1 << String::kArrayIndexValueBits)); |
| |
| value <<= String::kHashShift; |
| value |= length << String::kArrayIndexHashLengthShift; |
| |
| ASSERT((value & String::kIsNotArrayIndexMask) == 0); |
| ASSERT((length > String::kMaxCachedArrayIndexLength) || |
| (value & String::kContainsCachedArrayIndexMask) == 0); |
| return value; |
| } |
| |
| |
| uint32_t StringHasher::GetHashField() { |
| ASSERT(is_valid()); |
| if (length_ <= String::kMaxHashCalcLength) { |
| if (is_array_index()) { |
| return MakeArrayIndexHash(array_index(), length_); |
| } |
| return (GetHash() << String::kHashShift) | String::kIsNotArrayIndexMask; |
| } else { |
| return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; |
| } |
| } |
| |
| |
| uint32_t String::ComputeHashField(unibrow::CharacterStream* buffer, |
| int length, |
| uint32_t seed) { |
| StringHasher hasher(length, seed); |
| |
| // Very long strings have a trivial hash that doesn't inspect the |
| // string contents. |
| if (hasher.has_trivial_hash()) { |
| return hasher.GetHashField(); |
| } |
| |
| // Do the iterative array index computation as long as there is a |
| // chance this is an array index. |
| while (buffer->has_more() && hasher.is_array_index()) { |
| hasher.AddCharacter(buffer->GetNext()); |
| } |
| |
| // Process the remaining characters without updating the array |
| // index. |
| while (buffer->has_more()) { |
| hasher.AddCharacterNoIndex(buffer->GetNext()); |
| } |
| |
| return hasher.GetHashField(); |
| } |
| |
| |
| MaybeObject* String::SubString(int start, int end, PretenureFlag pretenure) { |
| Heap* heap = GetHeap(); |
| if (start == 0 && end == length()) return this; |
| MaybeObject* result = heap->AllocateSubString(this, start, end, pretenure); |
| return result; |
| } |
| |
| |
| void String::PrintOn(FILE* file) { |
| int length = this->length(); |
| for (int i = 0; i < length; i++) { |
| fprintf(file, "%c", Get(i)); |
| } |
| } |
| |
| |
| void Map::CreateBackPointers() { |
| DescriptorArray* descriptors = instance_descriptors(); |
| for (int i = 0; i < descriptors->number_of_descriptors(); i++) { |
| if (descriptors->GetType(i) == MAP_TRANSITION || |
| descriptors->GetType(i) == ELEMENTS_TRANSITION || |
| descriptors->GetType(i) == CONSTANT_TRANSITION) { |
| // Get target. |
| Map* target = Map::cast(descriptors->GetValue(i)); |
| #ifdef DEBUG |
| // Verify target. |
| Object* source_prototype = prototype(); |
| Object* target_prototype = target->prototype(); |
| ASSERT(source_prototype->IsJSObject() || |
| source_prototype->IsMap() || |
| source_prototype->IsNull()); |
| ASSERT(target_prototype->IsJSObject() || |
| target_prototype->IsNull()); |
| ASSERT(source_prototype->IsMap() || |
| source_prototype == target_prototype); |
| #endif |
| // Point target back to source. set_prototype() will not let us set |
| // the prototype to a map, as we do here. |
| *RawField(target, kPrototypeOffset) = this; |
| } |
| } |
| } |
| |
| |
| void Map::ClearNonLiveTransitions(Heap* heap, Object* real_prototype) { |
| // Live DescriptorArray objects will be marked, so we must use |
| // low-level accessors to get and modify their data. |
| DescriptorArray* d = reinterpret_cast<DescriptorArray*>( |
| *RawField(this, Map::kInstanceDescriptorsOrBitField3Offset)); |
| if (d->IsEmpty()) return; |
| Smi* NullDescriptorDetails = |
| PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi(); |
| FixedArray* contents = reinterpret_cast<FixedArray*>( |
| d->get(DescriptorArray::kContentArrayIndex)); |
| ASSERT(contents->length() >= 2); |
| for (int i = 0; i < contents->length(); i += 2) { |
| // If the pair (value, details) is a map transition, |
| // check if the target is live. If not, null the descriptor. |
| // Also drop the back pointer for that map transition, so that this |
| // map is not reached again by following a back pointer from a |
| // non-live object. |
| PropertyDetails details(Smi::cast(contents->get(i + 1))); |
| if (details.type() == MAP_TRANSITION || |
| details.type() == ELEMENTS_TRANSITION || |
| details.type() == CONSTANT_TRANSITION) { |
| Map* target = reinterpret_cast<Map*>(contents->get(i)); |
| ASSERT(target->IsHeapObject()); |
| if (!target->IsMarked()) { |
| ASSERT(target->IsMap()); |
| contents->set_unchecked(i + 1, NullDescriptorDetails); |
| contents->set_null_unchecked(heap, i); |
| ASSERT(target->prototype() == this || |
| target->prototype() == real_prototype); |
| // Getter prototype() is read-only, set_prototype() has side effects. |
| *RawField(target, Map::kPrototypeOffset) = real_prototype; |
| } |
| } |
| } |
| } |
| |
| |
| int Map::Hash() { |
| // For performance reasons we only hash the 3 most variable fields of a map: |
| // constructor, prototype and bit_field2. |
| |
| // Shift away the tag. |
| int hash = (static_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(constructor())) >> 2); |
| |
| // XOR-ing the prototype and constructor directly yields too many zero bits |
| // when the two pointers are close (which is fairly common). |
| // To avoid this we shift the prototype 4 bits relatively to the constructor. |
| hash ^= (static_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(prototype())) << 2); |
| |
| return hash ^ (hash >> 16) ^ bit_field2(); |
| } |
| |
| |
| bool Map::EquivalentToForNormalization(Map* other, |
| PropertyNormalizationMode mode) { |
| return |
| constructor() == other->constructor() && |
| prototype() == other->prototype() && |
| inobject_properties() == ((mode == CLEAR_INOBJECT_PROPERTIES) ? |
| 0 : |
| other->inobject_properties()) && |
| instance_type() == other->instance_type() && |
| bit_field() == other->bit_field() && |
| bit_field2() == other->bit_field2() && |
| (bit_field3() & ~(1<<Map::kIsShared)) == |
| (other->bit_field3() & ~(1<<Map::kIsShared)); |
| } |
| |
| |
| void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) { |
| // Iterate over all fields in the body but take care in dealing with |
| // the code entry. |
| IteratePointers(v, kPropertiesOffset, kCodeEntryOffset); |
| v->VisitCodeEntry(this->address() + kCodeEntryOffset); |
| IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size); |
| } |
| |
| |
| void JSFunction::MarkForLazyRecompilation() { |
| ASSERT(is_compiled() && !IsOptimized()); |
| ASSERT(shared()->allows_lazy_compilation() || |
| code()->optimizable()); |
| Builtins* builtins = GetIsolate()->builtins(); |
| ReplaceCode(builtins->builtin(Builtins::kLazyRecompile)); |
| } |
| |
| |
| bool JSFunction::IsInlineable() { |
| if (IsBuiltin()) return false; |
| SharedFunctionInfo* shared_info = shared(); |
| // Check that the function has a script associated with it. |
| if (!shared_info->script()->IsScript()) return false; |
| if (shared_info->optimization_disabled()) return false; |
| Code* code = shared_info->code(); |
| if (code->kind() == Code::OPTIMIZED_FUNCTION) return true; |
| // If we never ran this (unlikely) then lets try to optimize it. |
| if (code->kind() != Code::FUNCTION) return true; |
| return code->optimizable(); |
| } |
| |
| |
| Object* JSFunction::SetInstancePrototype(Object* value) { |
| ASSERT(value->IsJSObject()); |
| Heap* heap = GetHeap(); |
| if (has_initial_map()) { |
| initial_map()->set_prototype(value); |
| } else { |
| // Put the value in the initial map field until an initial map is |
| // needed. At that point, a new initial map is created and the |
| // prototype is put into the initial map where it belongs. |
| set_prototype_or_initial_map(value); |
| } |
| heap->ClearInstanceofCache(); |
| return value; |
| } |
| |
| |
| MaybeObject* JSFunction::SetPrototype(Object* value) { |
| ASSERT(should_have_prototype()); |
| Object* construct_prototype = value; |
| |
| // If the value is not a JSObject, store the value in the map's |
| // constructor field so it can be accessed. Also, set the prototype |
| // used for constructing objects to the original object prototype. |
| // See ECMA-262 13.2.2. |
| if (!value->IsJSObject()) { |
| // Copy the map so this does not affect unrelated functions. |
| // Remove map transitions because they point to maps with a |
| // different prototype. |
| Object* new_object; |
| { MaybeObject* maybe_new_map = map()->CopyDropTransitions(); |
| if (!maybe_new_map->ToObject(&new_object)) return maybe_new_map; |
| } |
| Map* new_map = Map::cast(new_object); |
| Heap* heap = new_map->heap(); |
| set_map(new_map); |
| new_map->set_constructor(value); |
| new_map->set_non_instance_prototype(true); |
| construct_prototype = |
| heap->isolate()->context()->global_context()-> |
| initial_object_prototype(); |
| } else { |
| map()->set_non_instance_prototype(false); |
| } |
| |
| return SetInstancePrototype(construct_prototype); |
| } |
| |
| |
| Object* JSFunction::RemovePrototype() { |
| Context* global_context = context()->global_context(); |
| Map* no_prototype_map = shared()->strict_mode() |
| ? global_context->strict_mode_function_without_prototype_map() |
| : global_context->function_without_prototype_map(); |
| |
| if (map() == no_prototype_map) { |
| // Be idempotent. |
| return this; |
| } |
| |
| ASSERT(!shared()->strict_mode() || |
| map() == global_context->strict_mode_function_map()); |
| ASSERT(shared()->strict_mode() || map() == global_context->function_map()); |
| |
| set_map(no_prototype_map); |
| set_prototype_or_initial_map(no_prototype_map->heap()->the_hole_value()); |
| return this; |
| } |
| |
| |
| Object* JSFunction::SetInstanceClassName(String* name) { |
| shared()->set_instance_class_name(name); |
| return this; |
| } |
| |
| |
| void JSFunction::PrintName(FILE* out) { |
| SmartArrayPointer<char> name = shared()->DebugName()->ToCString(); |
| PrintF(out, "%s", *name); |
| } |
| |
| |
| Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) { |
| return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex)); |
| } |
| |
| |
| MaybeObject* Oddball::Initialize(const char* to_string, |
| Object* to_number, |
| byte kind) { |
| Object* symbol; |
| { MaybeObject* maybe_symbol = |
| Isolate::Current()->heap()->LookupAsciiSymbol(to_string); |
| if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol; |
| } |
| set_to_string(String::cast(symbol)); |
| set_to_number(to_number); |
| set_kind(kind); |
| return this; |
| } |
| |
| |
| String* SharedFunctionInfo::DebugName() { |
| Object* n = name(); |
| if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name(); |
| return String::cast(n); |
| } |
| |
| |
| bool SharedFunctionInfo::HasSourceCode() { |
| return !script()->IsUndefined() && |
| !reinterpret_cast<Script*>(script())->source()->IsUndefined(); |
| } |
| |
| |
| Object* SharedFunctionInfo::GetSourceCode() { |
| Isolate* isolate = GetIsolate(); |
| if (!HasSourceCode()) return isolate->heap()->undefined_value(); |
| HandleScope scope(isolate); |
| Object* source = Script::cast(script())->source(); |
| return *SubString(Handle<String>(String::cast(source), isolate), |
| start_position(), end_position()); |
| } |
| |
| |
| int SharedFunctionInfo::SourceSize() { |
| return end_position() - start_position(); |
| } |
| |
| |
| int SharedFunctionInfo::CalculateInstanceSize() { |
| int instance_size = |
| JSObject::kHeaderSize + |
| expected_nof_properties() * kPointerSize; |
| if (instance_size > JSObject::kMaxInstanceSize) { |
| instance_size = JSObject::kMaxInstanceSize; |
| } |
| return instance_size; |
| } |
| |
| |
| int SharedFunctionInfo::CalculateInObjectProperties() { |
| return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize; |
| } |
| |
| |
| bool SharedFunctionInfo::CanGenerateInlineConstructor(Object* prototype) { |
| // Check the basic conditions for generating inline constructor code. |
| if (!FLAG_inline_new |
| || !has_only_simple_this_property_assignments() |
| || this_property_assignments_count() == 0) { |
| return false; |
| } |
| |
| // If the prototype is null inline constructors cause no problems. |
| if (!prototype->IsJSObject()) { |
| ASSERT(prototype->IsNull()); |
| return true; |
| } |
| |
| Heap* heap = GetHeap(); |
| |
| // Traverse the proposed prototype chain looking for setters for properties of |
| // the same names as are set by the inline constructor. |
| for (Object* obj = prototype; |
| obj != heap->null_value(); |
| obj = obj->GetPrototype()) { |
| JSObject* js_object = JSObject::cast(obj); |
| for (int i = 0; i < this_property_assignments_count(); i++) { |
| LookupResult result; |
| String* name = GetThisPropertyAssignmentName(i); |
| js_object->LocalLookupRealNamedProperty(name, &result); |
| if (result.IsProperty() && result.type() == CALLBACKS) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| void SharedFunctionInfo::ForbidInlineConstructor() { |
| set_compiler_hints(BooleanBit::set(compiler_hints(), |
| kHasOnlySimpleThisPropertyAssignments, |
| false)); |
| } |
| |
| |
| void SharedFunctionInfo::SetThisPropertyAssignmentsInfo( |
| bool only_simple_this_property_assignments, |
| FixedArray* assignments) { |
| set_compiler_hints(BooleanBit::set(compiler_hints(), |
| kHasOnlySimpleThisPropertyAssignments, |
| only_simple_this_property_assignments)); |
| set_this_property_assignments(assignments); |
| set_this_property_assignments_count(assignments->length() / 3); |
| } |
| |
| |
| void SharedFunctionInfo::ClearThisPropertyAssignmentsInfo() { |
| Heap* heap = GetHeap(); |
| set_compiler_hints(BooleanBit::set(compiler_hints(), |
| kHasOnlySimpleThisPropertyAssignments, |
| false)); |
| set_this_property_assignments(heap->undefined_value()); |
| set_this_property_assignments_count(0); |
| } |
| |
| |
| String* SharedFunctionInfo::GetThisPropertyAssignmentName(int index) { |
| Object* obj = this_property_assignments(); |
| ASSERT(obj->IsFixedArray()); |
| ASSERT(index < this_property_assignments_count()); |
| obj = FixedArray::cast(obj)->get(index * 3); |
| ASSERT(obj->IsString()); |
| return String::cast(obj); |
| } |
| |
| |
| bool SharedFunctionInfo::IsThisPropertyAssignmentArgument(int index) { |
| Object* obj = this_property_assignments(); |
| ASSERT(obj->IsFixedArray()); |
| ASSERT(index < this_property_assignments_count()); |
| obj = FixedArray::cast(obj)->get(index * 3 + 1); |
| return Smi::cast(obj)->value() != -1; |
| } |
| |
| |
| int SharedFunctionInfo::GetThisPropertyAssignmentArgument(int index) { |
| ASSERT(IsThisPropertyAssignmentArgument(index)); |
| Object* obj = |
| FixedArray::cast(this_property_assignments())->get(index * 3 + 1); |
| return Smi::cast(obj)->value(); |
| } |
| |
| |
| Object* SharedFunctionInfo::GetThisPropertyAssignmentConstant(int index) { |
| ASSERT(!IsThisPropertyAssignmentArgument(index)); |
| Object* obj = |
| FixedArray::cast(this_property_assignments())->get(index * 3 + 2); |
| return obj; |
| } |
| |
| |
| // Support function for printing the source code to a StringStream |
| // without any allocation in the heap. |
| void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator, |
| int max_length) { |
| // For some native functions there is no source. |
| if (!HasSourceCode()) { |
| accumulator->Add("<No Source>"); |
| return; |
| } |
| |
| // Get the source for the script which this function came from. |
| // Don't use String::cast because we don't want more assertion errors while |
| // we are already creating a stack dump. |
| String* script_source = |
| reinterpret_cast<String*>(Script::cast(script())->source()); |
| |
| if (!script_source->LooksValid()) { |
| accumulator->Add("<Invalid Source>"); |
| return; |
| } |
| |
| if (!is_toplevel()) { |
| accumulator->Add("function "); |
| Object* name = this->name(); |
| if (name->IsString() && String::cast(name)->length() > 0) { |
| accumulator->PrintName(name); |
| } |
| } |
| |
| int len = end_position() - start_position(); |
| if (len <= max_length || max_length < 0) { |
| accumulator->Put(script_source, start_position(), end_position()); |
| } else { |
| accumulator->Put(script_source, |
| start_position(), |
| start_position() + max_length); |
| accumulator->Add("...\n"); |
| } |
| } |
| |
| |
| static bool IsCodeEquivalent(Code* code, Code* recompiled) { |
| if (code->instruction_size() != recompiled->instruction_size()) return false; |
| ByteArray* code_relocation = code->relocation_info(); |
| ByteArray* recompiled_relocation = recompiled->relocation_info(); |
| int length = code_relocation->length(); |
| if (length != recompiled_relocation->length()) return false; |
| int compare = memcmp(code_relocation->GetDataStartAddress(), |
| recompiled_relocation->GetDataStartAddress(), |
| length); |
| return compare == 0; |
| } |
| |
| |
| void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) { |
| ASSERT(!has_deoptimization_support()); |
| AssertNoAllocation no_allocation; |
| Code* code = this->code(); |
| if (IsCodeEquivalent(code, recompiled)) { |
| // Copy the deoptimization data from the recompiled code. |
| code->set_deoptimization_data(recompiled->deoptimization_data()); |
| code->set_has_deoptimization_support(true); |
| } else { |
| // TODO(3025757): In case the recompiled isn't equivalent to the |
| // old code, we have to replace it. We should try to avoid this |
| // altogether because it flushes valuable type feedback by |
| // effectively resetting all IC state. |
| set_code(recompiled); |
| } |
| ASSERT(has_deoptimization_support()); |
| } |
| |
| |
| void SharedFunctionInfo::DisableOptimization(JSFunction* function) { |
| // Disable optimization for the shared function info and mark the |
| // code as non-optimizable. The marker on the shared function info |
| // is there because we flush non-optimized code thereby loosing the |
| // non-optimizable information for the code. When the code is |
| // regenerated and set on the shared function info it is marked as |
| // non-optimizable if optimization is disabled for the shared |
| // function info. |
| set_optimization_disabled(true); |
| // Code should be the lazy compilation stub or else unoptimized. If the |
| // latter, disable optimization for the code too. |
| ASSERT(code()->kind() == Code::FUNCTION || code()->kind() == Code::BUILTIN); |
| if (code()->kind() == Code::FUNCTION) { |
| code()->set_optimizable(false); |
| } |
| if (FLAG_trace_opt) { |
| PrintF("[disabled optimization for: "); |
| function->PrintName(); |
| PrintF(" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function)); |
| } |
| } |
| |
| |
| bool SharedFunctionInfo::VerifyBailoutId(int id) { |
| // TODO(srdjan): debugging ARM crashes in hydrogen. OK to disable while |
| // we are always bailing out on ARM. |
| |
| ASSERT(id != AstNode::kNoNumber); |
| Code* unoptimized = code(); |
| DeoptimizationOutputData* data = |
| DeoptimizationOutputData::cast(unoptimized->deoptimization_data()); |
| unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this); |
| USE(ignore); |
| return true; // Return true if there was no ASSERT. |
| } |
| |
| |
| void SharedFunctionInfo::StartInobjectSlackTracking(Map* map) { |
| ASSERT(!IsInobjectSlackTrackingInProgress()); |
| |
| // Only initiate the tracking the first time. |
| if (live_objects_may_exist()) return; |
| set_live_objects_may_exist(true); |
| |
| // No tracking during the snapshot construction phase. |
| if (Serializer::enabled()) return; |
| |
| if (map->unused_property_fields() == 0) return; |
| |
| // Nonzero counter is a leftover from the previous attempt interrupted |
| // by GC, keep it. |
| if (construction_count() == 0) { |
| set_construction_count(kGenerousAllocationCount); |
| } |
| set_initial_map(map); |
| Builtins* builtins = map->heap()->isolate()->builtins(); |
| ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric), |
| construct_stub()); |
| set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown)); |
| } |
| |
| |
| // Called from GC, hence reinterpret_cast and unchecked accessors. |
| void SharedFunctionInfo::DetachInitialMap() { |
| Map* map = reinterpret_cast<Map*>(initial_map()); |
| |
| // Make the map remember to restore the link if it survives the GC. |
| map->set_bit_field2( |
| map->bit_field2() | (1 << Map::kAttachedToSharedFunctionInfo)); |
| |
| // Undo state changes made by StartInobjectTracking (except the |
| // construction_count). This way if the initial map does not survive the GC |
| // then StartInobjectTracking will be called again the next time the |
| // constructor is called. The countdown will continue and (possibly after |
| // several more GCs) CompleteInobjectSlackTracking will eventually be called. |
| set_initial_map(map->heap()->raw_unchecked_undefined_value()); |
| Builtins* builtins = map->heap()->isolate()->builtins(); |
| ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown), |
| *RawField(this, kConstructStubOffset)); |
| set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric)); |
| // It is safe to clear the flag: it will be set again if the map is live. |
| set_live_objects_may_exist(false); |
| } |
| |
| |
| // Called from GC, hence reinterpret_cast and unchecked accessors. |
| void SharedFunctionInfo::AttachInitialMap(Map* map) { |
| map->set_bit_field2( |
| map->bit_field2() & ~(1 << Map::kAttachedToSharedFunctionInfo)); |
| |
| // Resume inobject slack tracking. |
| set_initial_map(map); |
| Builtins* builtins = map->heap()->isolate()->builtins(); |
| ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubGeneric), |
| *RawField(this, kConstructStubOffset)); |
| set_construct_stub(builtins->builtin(Builtins::kJSConstructStubCountdown)); |
| // The map survived the gc, so there may be objects referencing it. |
| set_live_objects_may_exist(true); |
| } |
| |
| |
| static void GetMinInobjectSlack(Map* map, void* data) { |
| int slack = map->unused_property_fields(); |
| if (*reinterpret_cast<int*>(data) > slack) { |
| *reinterpret_cast<int*>(data) = slack; |
| } |
| } |
| |
| |
| static void ShrinkInstanceSize(Map* map, void* data) { |
| int slack = *reinterpret_cast<int*>(data); |
| map->set_inobject_properties(map->inobject_properties() - slack); |
| map->set_unused_property_fields(map->unused_property_fields() - slack); |
| map->set_instance_size(map->instance_size() - slack * kPointerSize); |
| |
| // Visitor id might depend on the instance size, recalculate it. |
| map->set_visitor_id(StaticVisitorBase::GetVisitorId(map)); |
| } |
| |
| |
| void SharedFunctionInfo::CompleteInobjectSlackTracking() { |
| ASSERT(live_objects_may_exist() && IsInobjectSlackTrackingInProgress()); |
| Map* map = Map::cast(initial_map()); |
| |
| Heap* heap = map->heap(); |
| set_initial_map(heap->undefined_value()); |
| Builtins* builtins = heap->isolate()->builtins(); |
| ASSERT_EQ(builtins->builtin(Builtins::kJSConstructStubCountdown), |
| construct_stub()); |
| set_construct_stub(builtins->builtin(Builtins::kJSConstructStubGeneric)); |
| |
| int slack = map->unused_property_fields(); |
| map->TraverseTransitionTree(&GetMinInobjectSlack, &slack); |
| if (slack != 0) { |
| // Resize the initial map and all maps in its transition tree. |
| map->TraverseTransitionTree(&ShrinkInstanceSize, &slack); |
| |
| // Give the correct expected_nof_properties to initial maps created later. |
| ASSERT(expected_nof_properties() >= slack); |
| set_expected_nof_properties(expected_nof_properties() - slack); |
| } |
| } |
| |
| |
| void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) { |
| ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); |
| Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); |
| Object* old_target = target; |
| VisitPointer(&target); |
| CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target. |
| } |
| |
| |
| void ObjectVisitor::VisitCodeEntry(Address entry_address) { |
| Object* code = Code::GetObjectFromEntryAddress(entry_address); |
| Object* old_code = code; |
| VisitPointer(&code); |
| if (code != old_code) { |
| Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry(); |
| } |
| } |
| |
| |
| void ObjectVisitor::VisitGlobalPropertyCell(RelocInfo* rinfo) { |
| ASSERT(rinfo->rmode() == RelocInfo::GLOBAL_PROPERTY_CELL); |
| Object* cell = rinfo->target_cell(); |
| Object* old_cell = cell; |
| VisitPointer(&cell); |
| if (cell != old_cell) { |
| rinfo->set_target_cell(reinterpret_cast<JSGlobalPropertyCell*>(cell)); |
| } |
| } |
| |
| |
| void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) { |
| ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && |
| rinfo->IsPatchedReturnSequence()) || |
| (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && |
| rinfo->IsPatchedDebugBreakSlotSequence())); |
| Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); |
| Object* old_target = target; |
| VisitPointer(&target); |
| CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target. |
| } |
| |
| |
| void Code::InvalidateRelocation() { |
| set_relocation_info(heap()->empty_byte_array()); |
| } |
| |
| |
| void Code::Relocate(intptr_t delta) { |
| for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) { |
| it.rinfo()->apply(delta); |
| } |
| CPU::FlushICache(instruction_start(), instruction_size()); |
| } |
| |
| |
| void Code::CopyFrom(const CodeDesc& desc) { |
| // copy code |
| memmove(instruction_start(), desc.buffer, desc.instr_size); |
| |
| // copy reloc info |
| memmove(relocation_start(), |
| desc.buffer + desc.buffer_size - desc.reloc_size, |
| desc.reloc_size); |
| |
| // unbox handles and relocate |
| intptr_t delta = instruction_start() - desc.buffer; |
| int mode_mask = RelocInfo::kCodeTargetMask | |
| RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | |
| RelocInfo::ModeMask(RelocInfo::GLOBAL_PROPERTY_CELL) | |
| RelocInfo::kApplyMask; |
| Assembler* origin = desc.origin; // Needed to find target_object on X64. |
| for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { |
| RelocInfo::Mode mode = it.rinfo()->rmode(); |
| if (mode == RelocInfo::EMBEDDED_OBJECT) { |
| Handle<Object> p = it.rinfo()->target_object_handle(origin); |
| it.rinfo()->set_target_object(*p); |
| } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) { |
| Handle<JSGlobalPropertyCell> cell = it.rinfo()->target_cell_handle(); |
| it.rinfo()->set_target_cell(*cell); |
| } else if (RelocInfo::IsCodeTarget(mode)) { |
| // rewrite code handles in inline cache targets to direct |
| // pointers to the first instruction in the code object |
| Handle<Object> p = it.rinfo()->target_object_handle(origin); |
| Code* code = Code::cast(*p); |
| it.rinfo()->set_target_address(code->instruction_start()); |
| } else { |
| it.rinfo()->apply(delta); |
| } |
| } |
| CPU::FlushICache(instruction_start(), instruction_size()); |
| } |
| |
| |
| // Locate the source position which is closest to the address in the code. This |
| // is using the source position information embedded in the relocation info. |
| // The position returned is relative to the beginning of the script where the |
| // source for this function is found. |
| int Code::SourcePosition(Address pc) { |
| int distance = kMaxInt; |
| int position = RelocInfo::kNoPosition; // Initially no position found. |
| // Run through all the relocation info to find the best matching source |
| // position. All the code needs to be considered as the sequence of the |
| // instructions in the code does not necessarily follow the same order as the |
| // source. |
| RelocIterator it(this, RelocInfo::kPositionMask); |
| while (!it.done()) { |
| // Only look at positions after the current pc. |
| if (it.rinfo()->pc() < pc) { |
| // Get position and distance. |
| |
| int dist = static_cast<int>(pc - it.rinfo()->pc()); |
| int pos = static_cast<int>(it.rinfo()->data()); |
| // If this position is closer than the current candidate or if it has the |
| // same distance as the current candidate and the position is higher then |
| // this position is the new candidate. |
| if ((dist < distance) || |
| (dist == distance && pos > position)) { |
| position = pos; |
| distance = dist; |
| } |
| } |
| it.next(); |
| } |
| return position; |
| } |
| |
| |
| // Same as Code::SourcePosition above except it only looks for statement |
| // positions. |
| int Code::SourceStatementPosition(Address pc) { |
| // First find the position as close as possible using all position |
| // information. |
| int position = SourcePosition(pc); |
| // Now find the closest statement position before the position. |
| int statement_position = 0; |
| RelocIterator it(this, RelocInfo::kPositionMask); |
| while (!it.done()) { |
| if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) { |
| int p = static_cast<int>(it.rinfo()->data()); |
| if (statement_position < p && p <= position) { |
| statement_position = p; |
| } |
| } |
| it.next(); |
| } |
| return statement_position; |
| } |
| |
| |
| SafepointEntry Code::GetSafepointEntry(Address pc) { |
| SafepointTable table(this); |
| return table.FindEntry(pc); |
| } |
| |
| |
| void Code::SetNoStackCheckTable() { |
| // Indicate the absence of a stack-check table by a table start after the |
| // end of the instructions. Table start must be aligned, so round up. |
| set_stack_check_table_offset(RoundUp(instruction_size(), kIntSize)); |
| } |
| |
| |
| Map* Code::FindFirstMap() { |
| ASSERT(is_inline_cache_stub()); |
| AssertNoAllocation no_allocation; |
| int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); |
| for (RelocIterator it(this, mask); !it.done(); it.next()) { |
| RelocInfo* info = it.rinfo(); |
| Object* object = info->target_object(); |
| if (object->IsMap()) return Map::cast(object); |
| } |
| return NULL; |
| } |
| |
| |
| #ifdef ENABLE_DISASSEMBLER |
| |
| void DeoptimizationInputData::DeoptimizationInputDataPrint(FILE* out) { |
| disasm::NameConverter converter; |
| int deopt_count = DeoptCount(); |
| PrintF(out, "Deoptimization Input Data (deopt points = %d)\n", deopt_count); |
| if (0 == deopt_count) return; |
| |
| PrintF(out, "%6s %6s %6s %6s %12s\n", "index", "ast id", "argc", "pc", |
| FLAG_print_code_verbose ? "commands" : ""); |
| for (int i = 0; i < deopt_count; i++) { |
| PrintF(out, "%6d %6d %6d %6d", |
| i, |
| AstId(i)->value(), |
| ArgumentsStackHeight(i)->value(), |
| Pc(i)->value()); |
| |
| if (!FLAG_print_code_verbose) { |
| PrintF(out, "\n"); |
| continue; |
| } |
| // Print details of the frame translation. |
| int translation_index = TranslationIndex(i)->value(); |
| TranslationIterator iterator(TranslationByteArray(), translation_index); |
| Translation::Opcode opcode = |
| static_cast<Translation::Opcode>(iterator.Next()); |
| ASSERT(Translation::BEGIN == opcode); |
| int frame_count = iterator.Next(); |
| PrintF(out, " %s {count=%d}\n", Translation::StringFor(opcode), |
| frame_count); |
| |
| while (iterator.HasNext() && |
| Translation::BEGIN != |
| (opcode = static_cast<Translation::Opcode>(iterator.Next()))) { |
| PrintF(out, "%24s %s ", "", Translation::StringFor(opcode)); |
| |
| switch (opcode) { |
| case Translation::BEGIN: |
| UNREACHABLE(); |
| break; |
| |
| case Translation::FRAME: { |
| int ast_id = iterator.Next(); |
| int function_id = iterator.Next(); |
| JSFunction* function = |
| JSFunction::cast(LiteralArray()->get(function_id)); |
| unsigned height = iterator.Next(); |
| PrintF(out, "{ast_id=%d, function=", ast_id); |
| function->PrintName(out); |
| PrintF(out, ", height=%u}", height); |
| break; |
| } |
| |
| case Translation::DUPLICATE: |
| break; |
| |
| case Translation::REGISTER: { |
| int reg_code = iterator.Next(); |
| PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code)); |
| break; |
| } |
| |
| case Translation::INT32_REGISTER: { |
| int reg_code = iterator.Next(); |
| PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code)); |
| break; |
| } |
| |
| case Translation::DOUBLE_REGISTER: { |
| int reg_code = iterator.Next(); |
| PrintF(out, "{input=%s}", |
| DoubleRegister::AllocationIndexToString(reg_code)); |
| break; |
| } |
| |
| case Translation::STACK_SLOT: { |
| int input_slot_index = iterator.Next(); |
| PrintF(out, "{input=%d}", input_slot_index); |
| break; |
| } |
| |
| case Translation::INT32_STACK_SLOT: { |
| int input_slot_index = iterator.Next(); |
| PrintF(out, "{input=%d}", input_slot_index); |
| break; |
| } |
| |
| case Translation::DOUBLE_STACK_SLOT: { |
| int input_slot_index = iterator.Next(); |
| PrintF(out, "{input=%d}", input_slot_index); |
| break; |
| } |
| |
| case Translation::LITERAL: { |
| unsigned literal_index = iterator.Next(); |
| PrintF(out, "{literal_id=%u}", literal_index); |
| break; |
| } |
| |
| case Translation::ARGUMENTS_OBJECT: |
| break; |
| } |
| PrintF(out, "\n"); |
| } |
| } |
| } |
| |
| |
| void DeoptimizationOutputData::DeoptimizationOutputDataPrint(FILE* out) { |
| PrintF(out, "Deoptimization Output Data (deopt points = %d)\n", |
| this->DeoptPoints()); |
| if (this->DeoptPoints() == 0) return; |
| |
| PrintF("%6s %8s %s\n", "ast id", "pc", "state"); |
| for (int i = 0; i < this->DeoptPoints(); i++) { |
| int pc_and_state = this->PcAndState(i)->value(); |
| PrintF("%6d %8d %s\n", |
| this->AstId(i)->value(), |
| FullCodeGenerator::PcField::decode(pc_and_state), |
| FullCodeGenerator::State2String( |
| FullCodeGenerator::StateField::decode(pc_and_state))); |
| } |
| } |
| |
| |
| // Identify kind of code. |
| const char* Code::Kind2String(Kind kind) { |
| switch (kind) { |
| case FUNCTION: return "FUNCTION"; |
| case OPTIMIZED_FUNCTION: return "OPTIMIZED_FUNCTION"; |
| case STUB: return "STUB"; |
| case BUILTIN: return "BUILTIN"; |
| case LOAD_IC: return "LOAD_IC"; |
| case KEYED_LOAD_IC: return "KEYED_LOAD_IC"; |
| case STORE_IC: return "STORE_IC"; |
| case KEYED_STORE_IC: return "KEYED_STORE_IC"; |
| case CALL_IC: return "CALL_IC"; |
| case KEYED_CALL_IC: return "KEYED_CALL_IC"; |
| case UNARY_OP_IC: return "UNARY_OP_IC"; |
| case BINARY_OP_IC: return "BINARY_OP_IC"; |
| case COMPARE_IC: return "COMPARE_IC"; |
| case TO_BOOLEAN_IC: return "TO_BOOLEAN_IC"; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| const char* Code::ICState2String(InlineCacheState state) { |
| switch (state) { |
| case UNINITIALIZED: return "UNINITIALIZED"; |
| case PREMONOMORPHIC: return "PREMONOMORPHIC"; |
| case MONOMORPHIC: return "MONOMORPHIC"; |
| case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE"; |
| case MEGAMORPHIC: return "MEGAMORPHIC"; |
| case DEBUG_BREAK: return "DEBUG_BREAK"; |
| case DEBUG_PREPARE_STEP_IN: return "DEBUG_PREPARE_STEP_IN"; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| const char* Code::PropertyType2String(PropertyType type) { |
| switch (type) { |
| case NORMAL: return "NORMAL"; |
| case FIELD: return "FIELD"; |
| case CONSTANT_FUNCTION: return "CONSTANT_FUNCTION"; |
| case CALLBACKS: return "CALLBACKS"; |
| case HANDLER: return "HANDLER"; |
| case INTERCEPTOR: return "INTERCEPTOR"; |
| case MAP_TRANSITION: return "MAP_TRANSITION"; |
| case ELEMENTS_TRANSITION: return "ELEMENTS_TRANSITION"; |
| case CONSTANT_TRANSITION: return "CONSTANT_TRANSITION"; |
| case NULL_DESCRIPTOR: return "NULL_DESCRIPTOR"; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| void Code::PrintExtraICState(FILE* out, Kind kind, ExtraICState extra) { |
| const char* name = NULL; |
| switch (kind) { |
| case CALL_IC: |
| if (extra == STRING_INDEX_OUT_OF_BOUNDS) { |
| name = "STRING_INDEX_OUT_OF_BOUNDS"; |
| } |
| break; |
| case STORE_IC: |
| case KEYED_STORE_IC: |
| if (extra == kStrictMode) { |
| name = "STRICT"; |
| } |
| break; |
| default: |
| break; |
| } |
| if (name != NULL) { |
| PrintF(out, "extra_ic_state = %s\n", name); |
| } else { |
| PrintF(out, "extra_ic_state = %d\n", extra); |
| } |
| } |
| |
| |
| void Code::Disassemble(const char* name, FILE* out) { |
| PrintF(out, "kind = %s\n", Kind2String(kind())); |
| if (is_inline_cache_stub()) { |
| PrintF(out, "ic_state = %s\n", ICState2String(ic_state())); |
| PrintExtraICState(out, kind(), extra_ic_state()); |
| if (ic_state() == MONOMORPHIC) { |
| PrintF(out, "type = %s\n", PropertyType2String(type())); |
| } |
| if (is_call_stub() || is_keyed_call_stub()) { |
| PrintF(out, "argc = %d\n", arguments_count()); |
| } |
| } |
| if ((name != NULL) && (name[0] != '\0')) { |
| PrintF(out, "name = %s\n", name); |
| } |
| if (kind() == OPTIMIZED_FUNCTION) { |
| PrintF(out, "stack_slots = %d\n", stack_slots()); |
| } |
| |
| PrintF(out, "Instructions (size = %d)\n", instruction_size()); |
| Disassembler::Decode(out, this); |
| PrintF(out, "\n"); |
| |
| if (kind() == FUNCTION) { |
| DeoptimizationOutputData* data = |
| DeoptimizationOutputData::cast(this->deoptimization_data()); |
| data->DeoptimizationOutputDataPrint(out); |
| } else if (kind() == OPTIMIZED_FUNCTION) { |
| DeoptimizationInputData* data = |
| DeoptimizationInputData::cast(this->deoptimization_data()); |
| data->DeoptimizationInputDataPrint(out); |
| } |
| PrintF("\n"); |
| |
| if (kind() == OPTIMIZED_FUNCTION) { |
| SafepointTable table(this); |
| PrintF(out, "Safepoints (size = %u)\n", table.size()); |
| for (unsigned i = 0; i < table.length(); i++) { |
| unsigned pc_offset = table.GetPcOffset(i); |
| PrintF(out, "%p %4d ", (instruction_start() + pc_offset), pc_offset); |
| table.PrintEntry(i); |
| PrintF(out, " (sp -> fp)"); |
| SafepointEntry entry = table.GetEntry(i); |
| if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) { |
| PrintF(out, " %6d", entry.deoptimization_index()); |
| } else { |
| PrintF(out, " <none>"); |
| } |
| if (entry.argument_count() > 0) { |
| PrintF(out, " argc: %d", entry.argument_count()); |
| } |
| PrintF(out, "\n"); |
| } |
| PrintF(out, "\n"); |
| } else if (kind() == FUNCTION) { |
| unsigned offset = stack_check_table_offset(); |
| // If there is no stack check table, the "table start" will at or after |
| // (due to alignment) the end of the instruction stream. |
| if (static_cast<int>(offset) < instruction_size()) { |
| unsigned* address = |
| reinterpret_cast<unsigned*>(instruction_start() + offset); |
| unsigned length = address[0]; |
| PrintF(out, "Stack checks (size = %u)\n", length); |
| PrintF(out, "ast_id pc_offset\n"); |
| for (unsigned i = 0; i < length; ++i) { |
| unsigned index = (2 * i) + 1; |
| PrintF(out, "%6u %9u\n", address[index], address[index + 1]); |
| } |
| PrintF(out, "\n"); |
| } |
| } |
| |
| PrintF("RelocInfo (size = %d)\n", relocation_size()); |
| for (RelocIterator it(this); !it.done(); it.next()) it.rinfo()->Print(out); |
| PrintF(out, "\n"); |
| } |
| #endif // ENABLE_DISASSEMBLER |
| |
| |
| static void CopyFastElementsToFast(FixedArray* source, |
| FixedArray* destination, |
| WriteBarrierMode mode) { |
| uint32_t count = static_cast<uint32_t>(source->length()); |
| for (uint32_t i = 0; i < count; ++i) { |
| destination->set(i, source->get(i), mode); |
| } |
| } |
| |
| |
| static void CopySlowElementsToFast(SeededNumberDictionary* source, |
| FixedArray* destination, |
| WriteBarrierMode mode) { |
| for (int i = 0; i < source->Capacity(); ++i) { |
| Object* key = source->KeyAt(i); |
| if (key->IsNumber()) { |
| uint32_t entry = static_cast<uint32_t>(key->Number()); |
| destination->set(entry, source->ValueAt(i), mode); |
| } |
| } |
| } |
| |
| |
| MaybeObject* JSObject::SetFastElementsCapacityAndLength(int capacity, |
| int length) { |
| Heap* heap = GetHeap(); |
| // We should never end in here with a pixel or external array. |
| ASSERT(!HasExternalArrayElements()); |
| |
| // Allocate a new fast elements backing store. |
| FixedArray* new_elements = NULL; |
| { Object* object; |
| MaybeObject* maybe = heap->AllocateFixedArrayWithHoles(capacity); |
| if (!maybe->ToObject(&object)) return maybe; |
| new_elements = FixedArray::cast(object); |
| } |
| |
| // Find the new map to use for this object if there is a map change. |
| Map* new_map = NULL; |
| if (elements()->map() != heap->non_strict_arguments_elements_map()) { |
| Object* object; |
| MaybeObject* maybe = map()->GetFastElementsMap(); |
| if (!maybe->ToObject(&object)) return maybe; |
| new_map = Map::cast(object); |
| } |
| |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: { |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = new_elements->GetWriteBarrierMode(no_gc); |
| CopyFastElementsToFast(FixedArray::cast(elements()), new_elements, mode); |
| set_map(new_map); |
| set_elements(new_elements); |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = new_elements->GetWriteBarrierMode(no_gc); |
| CopySlowElementsToFast(SeededNumberDictionary::cast(elements()), |
| new_elements, |
| mode); |
| set_map(new_map); |
| set_elements(new_elements); |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: { |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = new_elements->GetWriteBarrierMode(no_gc); |
| // The object's map and the parameter map are unchanged, the unaliased |
| // arguments are copied to the new backing store. |
| FixedArray* parameter_map = FixedArray::cast(elements()); |
| FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); |
| if (arguments->IsDictionary()) { |
| CopySlowElementsToFast(SeededNumberDictionary::cast(arguments), |
| new_elements, |
| mode); |
| } else { |
| CopyFastElementsToFast(arguments, new_elements, mode); |
| } |
| parameter_map->set(1, new_elements); |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| FixedDoubleArray* old_elements = FixedDoubleArray::cast(elements()); |
| uint32_t old_length = static_cast<uint32_t>(old_elements->length()); |
| // Fill out the new array with this content and array holes. |
| for (uint32_t i = 0; i < old_length; i++) { |
| if (!old_elements->is_the_hole(i)) { |
| Object* obj; |
| // Objects must be allocated in the old object space, since the |
| // overall number of HeapNumbers needed for the conversion might |
| // exceed the capacity of new space, and we would fail repeatedly |
| // trying to convert the FixedDoubleArray. |
| MaybeObject* maybe_value_object = |
| GetHeap()->AllocateHeapNumber(old_elements->get_scalar(i), |
| TENURED); |
| if (!maybe_value_object->ToObject(&obj)) return maybe_value_object; |
| // Force write barrier. It's not worth trying to exploit |
| // elems->GetWriteBarrierMode(), since it requires an |
| // AssertNoAllocation stack object that would have to be positioned |
| // after the HeapNumber allocation anyway. |
| new_elements->set(i, obj, UPDATE_WRITE_BARRIER); |
| } |
| } |
| set_map(new_map); |
| set_elements(new_elements); |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case EXTERNAL_PIXEL_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // Update the length if necessary. |
| if (IsJSArray()) { |
| JSArray::cast(this)->set_length(Smi::FromInt(length)); |
| } |
| |
| return new_elements; |
| } |
| |
| |
| MaybeObject* JSObject::SetFastDoubleElementsCapacityAndLength( |
| int capacity, |
| int length) { |
| Heap* heap = GetHeap(); |
| // We should never end in here with a pixel or external array. |
| ASSERT(!HasExternalArrayElements()); |
| |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| heap->AllocateUninitializedFixedDoubleArray(capacity); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedDoubleArray* elems = FixedDoubleArray::cast(obj); |
| |
| { MaybeObject* maybe_obj = map()->GetFastDoubleElementsMap(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| Map* new_map = Map::cast(obj); |
| |
| AssertNoAllocation no_gc; |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: { |
| elems->Initialize(FixedArray::cast(elements())); |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| elems->Initialize(FixedDoubleArray::cast(elements())); |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| elems->Initialize(SeededNumberDictionary::cast(elements())); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| ASSERT(new_map->has_fast_double_elements()); |
| set_map(new_map); |
| ASSERT(elems->IsFixedDoubleArray()); |
| set_elements(elems); |
| |
| if (IsJSArray()) { |
| JSArray::cast(this)->set_length(Smi::FromInt(length)); |
| } |
| |
| return this; |
| } |
| |
| |
| MaybeObject* JSObject::SetSlowElements(Object* len) { |
| // We should never end in here with a pixel or external array. |
| ASSERT(!HasExternalArrayElements()); |
| |
| uint32_t new_length = static_cast<uint32_t>(len->Number()); |
| |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: { |
| case FAST_DOUBLE_ELEMENTS: |
| // Make sure we never try to shrink dense arrays into sparse arrays. |
| ASSERT(static_cast<uint32_t>( |
| FixedArrayBase::cast(elements())->length()) <= new_length); |
| MaybeObject* result = NormalizeElements(); |
| if (result->IsFailure()) return result; |
| |
| // Update length for JSArrays. |
| if (IsJSArray()) JSArray::cast(this)->set_length(len); |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| if (IsJSArray()) { |
| uint32_t old_length = |
| static_cast<uint32_t>(JSArray::cast(this)->length()->Number()); |
| element_dictionary()->RemoveNumberEntries(new_length, old_length), |
| JSArray::cast(this)->set_length(len); |
| } |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNIMPLEMENTED(); |
| break; |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case EXTERNAL_PIXEL_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| return this; |
| } |
| |
| |
| MaybeObject* JSArray::Initialize(int capacity) { |
| Heap* heap = GetHeap(); |
| ASSERT(capacity >= 0); |
| set_length(Smi::FromInt(0)); |
| FixedArray* new_elements; |
| if (capacity == 0) { |
| new_elements = heap->empty_fixed_array(); |
| } else { |
| Object* obj; |
| { MaybeObject* maybe_obj = heap->AllocateFixedArrayWithHoles(capacity); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| new_elements = FixedArray::cast(obj); |
| } |
| set_elements(new_elements); |
| return this; |
| } |
| |
| |
| void JSArray::Expand(int required_size) { |
| Handle<JSArray> self(this); |
| Handle<FixedArray> old_backing(FixedArray::cast(elements())); |
| int old_size = old_backing->length(); |
| int new_size = required_size > old_size ? required_size : old_size; |
| Handle<FixedArray> new_backing = FACTORY->NewFixedArray(new_size); |
| // Can't use this any more now because we may have had a GC! |
| for (int i = 0; i < old_size; i++) new_backing->set(i, old_backing->get(i)); |
| self->SetContent(*new_backing); |
| } |
| |
| |
| static Failure* ArrayLengthRangeError(Heap* heap) { |
| HandleScope scope(heap->isolate()); |
| return heap->isolate()->Throw( |
| *FACTORY->NewRangeError("invalid_array_length", |
| HandleVector<Object>(NULL, 0))); |
| } |
| |
| |
| MaybeObject* JSObject::SetElementsLength(Object* len) { |
| // We should never end in here with a pixel or external array. |
| ASSERT(AllowsSetElementsLength()); |
| |
| MaybeObject* maybe_smi_length = len->ToSmi(); |
| Object* smi_length = Smi::FromInt(0); |
| if (maybe_smi_length->ToObject(&smi_length) && smi_length->IsSmi()) { |
| const int value = Smi::cast(smi_length)->value(); |
| if (value < 0) return ArrayLengthRangeError(GetHeap()); |
| ElementsKind elements_kind = GetElementsKind(); |
| switch (elements_kind) { |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: { |
| int old_capacity = FixedArrayBase::cast(elements())->length(); |
| if (value <= old_capacity) { |
| if (IsJSArray()) { |
| Object* obj; |
| if (elements_kind == FAST_ELEMENTS) { |
| MaybeObject* maybe_obj = EnsureWritableFastElements(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| if (2 * value <= old_capacity) { |
| // If more than half the elements won't be used, trim the array. |
| if (value == 0) { |
| initialize_elements(); |
| } else { |
| Address filler_start; |
| int filler_size; |
| if (GetElementsKind() == FAST_ELEMENTS) { |
| FixedArray* fast_elements = FixedArray::cast(elements()); |
| fast_elements->set_length(value); |
| filler_start = fast_elements->address() + |
| FixedArray::OffsetOfElementAt(value); |
| filler_size = (old_capacity - value) * kPointerSize; |
| } else { |
| ASSERT(GetElementsKind() == FAST_DOUBLE_ELEMENTS); |
| FixedDoubleArray* fast_double_elements = |
| FixedDoubleArray::cast(elements()); |
| fast_double_elements->set_length(value); |
| filler_start = fast_double_elements->address() + |
| FixedDoubleArray::OffsetOfElementAt(value); |
| filler_size = (old_capacity - value) * kDoubleSize; |
| } |
| GetHeap()->CreateFillerObjectAt(filler_start, filler_size); |
| } |
| } else { |
| // Otherwise, fill the unused tail with holes. |
| int old_length = FastD2I(JSArray::cast(this)->length()->Number()); |
| if (GetElementsKind() == FAST_ELEMENTS) { |
| FixedArray* fast_elements = FixedArray::cast(elements()); |
| for (int i = value; i < old_length; i++) { |
| fast_elements->set_the_hole(i); |
| } |
| } else { |
| ASSERT(GetElementsKind() == FAST_DOUBLE_ELEMENTS); |
| FixedDoubleArray* fast_double_elements = |
| FixedDoubleArray::cast(elements()); |
| for (int i = value; i < old_length; i++) { |
| fast_double_elements->set_the_hole(i); |
| } |
| } |
| } |
| JSArray::cast(this)->set_length(Smi::cast(smi_length)); |
| } |
| return this; |
| } |
| int min = NewElementsCapacity(old_capacity); |
| int new_capacity = value > min ? value : min; |
| if (!ShouldConvertToSlowElements(new_capacity)) { |
| MaybeObject* result; |
| if (GetElementsKind() == FAST_ELEMENTS) { |
| result = SetFastElementsCapacityAndLength(new_capacity, value); |
| } else { |
| ASSERT(GetElementsKind() == FAST_DOUBLE_ELEMENTS); |
| result = SetFastDoubleElementsCapacityAndLength(new_capacity, |
| value); |
| } |
| if (result->IsFailure()) return result; |
| return this; |
| } |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| if (IsJSArray()) { |
| if (value == 0) { |
| // If the length of a slow array is reset to zero, we clear |
| // the array and flush backing storage. This has the added |
| // benefit that the array returns to fast mode. |
| Object* obj; |
| { MaybeObject* maybe_obj = ResetElements(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| } else { |
| // Remove deleted elements. |
| uint32_t old_length = |
| static_cast<uint32_t>(JSArray::cast(this)->length()->Number()); |
| element_dictionary()->RemoveNumberEntries(value, old_length); |
| } |
| JSArray::cast(this)->set_length(Smi::cast(smi_length)); |
| } |
| return this; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case EXTERNAL_PIXEL_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| // General slow case. |
| if (len->IsNumber()) { |
| uint32_t length; |
| if (len->ToArrayIndex(&length)) { |
| return SetSlowElements(len); |
| } else { |
| return ArrayLengthRangeError(GetHeap()); |
| } |
| } |
| |
| // len is not a number so make the array size one and |
| // set only element to len. |
| Object* obj; |
| { MaybeObject* maybe_obj = GetHeap()->AllocateFixedArray(1); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray::cast(obj)->set(0, len); |
| if (IsJSArray()) JSArray::cast(this)->set_length(Smi::FromInt(1)); |
| set_elements(FixedArray::cast(obj)); |
| return this; |
| } |
| |
| |
| Object* Map::GetPrototypeTransition(Object* prototype) { |
| FixedArray* cache = prototype_transitions(); |
| int number_of_transitions = NumberOfProtoTransitions(); |
| const int proto_offset = |
| kProtoTransitionHeaderSize + kProtoTransitionPrototypeOffset; |
| const int map_offset = kProtoTransitionHeaderSize + kProtoTransitionMapOffset; |
| const int step = kProtoTransitionElementsPerEntry; |
| for (int i = 0; i < number_of_transitions; i++) { |
| if (cache->get(proto_offset + i * step) == prototype) { |
| Object* map = cache->get(map_offset + i * step); |
| ASSERT(map->IsMap()); |
| return map; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| MaybeObject* Map::PutPrototypeTransition(Object* prototype, Map* map) { |
| ASSERT(map->IsMap()); |
| ASSERT(HeapObject::cast(prototype)->map()->IsMap()); |
| // Don't cache prototype transition if this map is shared. |
| if (is_shared() || !FLAG_cache_prototype_transitions) return this; |
| |
| FixedArray* cache = prototype_transitions(); |
| |
| const int step = kProtoTransitionElementsPerEntry; |
| const int header = kProtoTransitionHeaderSize; |
| |
| int capacity = (cache->length() - header) / step; |
| |
| int transitions = NumberOfProtoTransitions() + 1; |
| |
| if (transitions > capacity) { |
| if (capacity > kMaxCachedPrototypeTransitions) return this; |
| |
| FixedArray* new_cache; |
| // Grow array by factor 2 over and above what we need. |
| { MaybeObject* maybe_cache = |
| heap()->AllocateFixedArray(transitions * 2 * step + header); |
| if (!maybe_cache->To<FixedArray>(&new_cache)) return maybe_cache; |
| } |
| |
| for (int i = 0; i < capacity * step; i++) { |
| new_cache->set(i + header, cache->get(i + header)); |
| } |
| cache = new_cache; |
| set_prototype_transitions(cache); |
| } |
| |
| int last = transitions - 1; |
| |
| cache->set(header + last * step + kProtoTransitionPrototypeOffset, prototype); |
| cache->set(header + last * step + kProtoTransitionMapOffset, map); |
| SetNumberOfProtoTransitions(transitions); |
| |
| return cache; |
| } |
| |
| |
| MaybeObject* JSReceiver::SetPrototype(Object* value, |
| bool skip_hidden_prototypes) { |
| #ifdef DEBUG |
| int size = Size(); |
| #endif |
| |
| Heap* heap = GetHeap(); |
| // Silently ignore the change if value is not a JSObject or null. |
| // SpiderMonkey behaves this way. |
| if (!value->IsJSReceiver() && !value->IsNull()) return value; |
| |
| // From 8.6.2 Object Internal Methods |
| // ... |
| // In addition, if [[Extensible]] is false the value of the [[Class]] and |
| // [[Prototype]] internal properties of the object may not be modified. |
| // ... |
| // Implementation specific extensions that modify [[Class]], [[Prototype]] |
| // or [[Extensible]] must not violate the invariants defined in the preceding |
| // paragraph. |
| if (!this->map()->is_extensible()) { |
| HandleScope scope(heap->isolate()); |
| Handle<Object> handle(this, heap->isolate()); |
| return heap->isolate()->Throw( |
| *FACTORY->NewTypeError("non_extensible_proto", |
| HandleVector<Object>(&handle, 1))); |
| } |
| |
| // Before we can set the prototype we need to be sure |
| // prototype cycles are prevented. |
| // It is sufficient to validate that the receiver is not in the new prototype |
| // chain. |
| for (Object* pt = value; pt != heap->null_value(); pt = pt->GetPrototype()) { |
| if (JSObject::cast(pt) == this) { |
| // Cycle detected. |
| HandleScope scope(heap->isolate()); |
| return heap->isolate()->Throw( |
| *FACTORY->NewError("cyclic_proto", HandleVector<Object>(NULL, 0))); |
| } |
| } |
| |
| JSReceiver* real_receiver = this; |
| |
| if (skip_hidden_prototypes) { |
| // Find the first object in the chain whose prototype object is not |
| // hidden and set the new prototype on that object. |
| Object* current_proto = real_receiver->GetPrototype(); |
| while (current_proto->IsJSObject() && |
| JSObject::cast(current_proto)->map()->is_hidden_prototype()) { |
| real_receiver = JSObject::cast(current_proto); |
| current_proto = current_proto->GetPrototype(); |
| } |
| } |
| |
| // Set the new prototype of the object. |
| Map* map = real_receiver->map(); |
| |
| // Nothing to do if prototype is already set. |
| if (map->prototype() == value) return value; |
| |
| Object* new_map = map->GetPrototypeTransition(value); |
| if (new_map == NULL) { |
| { MaybeObject* maybe_new_map = map->CopyDropTransitions(); |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| } |
| |
| { MaybeObject* maybe_new_cache = |
| map->PutPrototypeTransition(value, Map::cast(new_map)); |
| if (maybe_new_cache->IsFailure()) return maybe_new_cache; |
| } |
| |
| Map::cast(new_map)->set_prototype(value); |
| } |
| ASSERT(Map::cast(new_map)->prototype() == value); |
| real_receiver->set_map(Map::cast(new_map)); |
| |
| heap->ClearInstanceofCache(); |
| ASSERT(size == Size()); |
| return value; |
| } |
| |
| |
| bool JSObject::HasElementPostInterceptor(JSReceiver* receiver, uint32_t index) { |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t> |
| (Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedArray::cast(elements())->length()); |
| if ((index < length) && |
| !FixedArray::cast(elements())->get(index)->IsTheHole()) { |
| return true; |
| } |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t> |
| (Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedDoubleArray::cast(elements())->length()); |
| if ((index < length) && |
| !FixedDoubleArray::cast(elements())->is_the_hole(index)) { |
| return true; |
| } |
| break; |
| } |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| ExternalPixelArray* pixels = ExternalPixelArray::cast(elements()); |
| if (index < static_cast<uint32_t>(pixels->length())) { |
| return true; |
| } |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: { |
| ExternalArray* array = ExternalArray::cast(elements()); |
| if (index < static_cast<uint32_t>(array->length())) { |
| return true; |
| } |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| if (element_dictionary()->FindEntry(index) |
| != SeededNumberDictionary::kNotFound) { |
| return true; |
| } |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // Handle [] on String objects. |
| if (this->IsStringObjectWithCharacterAt(index)) return true; |
| |
| Object* pt = GetPrototype(); |
| if (pt->IsNull()) return false; |
| return JSObject::cast(pt)->HasElementWithReceiver(receiver, index); |
| } |
| |
| |
| bool JSObject::HasElementWithInterceptor(JSReceiver* receiver, uint32_t index) { |
| Isolate* isolate = GetIsolate(); |
| // Make sure that the top context does not change when doing |
| // callbacks or interceptor calls. |
| AssertNoContextChange ncc; |
| HandleScope scope(isolate); |
| Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); |
| Handle<JSReceiver> receiver_handle(receiver); |
| Handle<JSObject> holder_handle(this); |
| CustomArguments args(isolate, interceptor->data(), receiver, this); |
| v8::AccessorInfo info(args.end()); |
| if (!interceptor->query()->IsUndefined()) { |
| v8::IndexedPropertyQuery query = |
| v8::ToCData<v8::IndexedPropertyQuery>(interceptor->query()); |
| LOG(isolate, |
| ApiIndexedPropertyAccess("interceptor-indexed-has", this, index)); |
| v8::Handle<v8::Integer> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = query(index, info); |
| } |
| if (!result.IsEmpty()) { |
| ASSERT(result->IsInt32()); |
| return true; // absence of property is signaled by empty handle. |
| } |
| } else if (!interceptor->getter()->IsUndefined()) { |
| v8::IndexedPropertyGetter getter = |
| v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter()); |
| LOG(isolate, |
| ApiIndexedPropertyAccess("interceptor-indexed-has-get", this, index)); |
| v8::Handle<v8::Value> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = getter(index, info); |
| } |
| if (!result.IsEmpty()) return true; |
| } |
| return holder_handle->HasElementPostInterceptor(*receiver_handle, index); |
| } |
| |
| |
| JSObject::LocalElementType JSObject::HasLocalElement(uint32_t index) { |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded()) { |
| Heap* heap = GetHeap(); |
| if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) { |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); |
| return UNDEFINED_ELEMENT; |
| } |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return UNDEFINED_ELEMENT; |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->HasLocalElement(index); |
| } |
| |
| // Check for lookup interceptor |
| if (HasIndexedInterceptor()) { |
| return HasElementWithInterceptor(this, index) ? INTERCEPTED_ELEMENT |
| : UNDEFINED_ELEMENT; |
| } |
| |
| // Handle [] on String objects. |
| if (this->IsStringObjectWithCharacterAt(index)) { |
| return STRING_CHARACTER_ELEMENT; |
| } |
| |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t> |
| (Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedArray::cast(elements())->length()); |
| if ((index < length) && |
| !FixedArray::cast(elements())->get(index)->IsTheHole()) { |
| return FAST_ELEMENT; |
| } |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t> |
| (Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedDoubleArray::cast(elements())->length()); |
| if ((index < length) && |
| !FixedDoubleArray::cast(elements())->is_the_hole(index)) { |
| return FAST_ELEMENT; |
| } |
| break; |
| } |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| ExternalPixelArray* pixels = ExternalPixelArray::cast(elements()); |
| if (index < static_cast<uint32_t>(pixels->length())) return FAST_ELEMENT; |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: { |
| ExternalArray* array = ExternalArray::cast(elements()); |
| if (index < static_cast<uint32_t>(array->length())) return FAST_ELEMENT; |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| if (element_dictionary()->FindEntry(index) != |
| SeededNumberDictionary::kNotFound) { |
| return DICTIONARY_ELEMENT; |
| } |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: { |
| // Aliased parameters and non-aliased elements in a fast backing store |
| // behave as FAST_ELEMENT. Non-aliased elements in a dictionary |
| // backing store behave as DICTIONARY_ELEMENT. |
| FixedArray* parameter_map = FixedArray::cast(elements()); |
| uint32_t length = parameter_map->length(); |
| Object* probe = |
| index < (length - 2) ? parameter_map->get(index + 2) : NULL; |
| if (probe != NULL && !probe->IsTheHole()) return FAST_ELEMENT; |
| // If not aliased, check the arguments. |
| FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); |
| if (arguments->IsDictionary()) { |
| SeededNumberDictionary* dictionary = |
| SeededNumberDictionary::cast(arguments); |
| if (dictionary->FindEntry(index) != SeededNumberDictionary::kNotFound) { |
| return DICTIONARY_ELEMENT; |
| } |
| } else { |
| length = arguments->length(); |
| probe = (index < length) ? arguments->get(index) : NULL; |
| if (probe != NULL && !probe->IsTheHole()) return FAST_ELEMENT; |
| } |
| break; |
| } |
| } |
| |
| return UNDEFINED_ELEMENT; |
| } |
| |
| |
| bool JSObject::HasElementInElements(FixedArray* elements, |
| ElementsKind kind, |
| uint32_t index) { |
| ASSERT(kind == FAST_ELEMENTS || kind == DICTIONARY_ELEMENTS); |
| if (kind == FAST_ELEMENTS) { |
| int length = IsJSArray() |
| ? Smi::cast(JSArray::cast(this)->length())->value() |
| : elements->length(); |
| if (index < static_cast<uint32_t>(length) && |
| !elements->get(index)->IsTheHole()) { |
| return true; |
| } |
| } else { |
| if (SeededNumberDictionary::cast(elements)->FindEntry(index) != |
| SeededNumberDictionary::kNotFound) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| bool JSObject::HasElementWithReceiver(JSReceiver* receiver, uint32_t index) { |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded()) { |
| Heap* heap = GetHeap(); |
| if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) { |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); |
| return false; |
| } |
| } |
| |
| // Check for lookup interceptor |
| if (HasIndexedInterceptor()) { |
| return HasElementWithInterceptor(receiver, index); |
| } |
| |
| ElementsKind kind = GetElementsKind(); |
| switch (kind) { |
| case FAST_ELEMENTS: { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t> |
| (Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedArray::cast(elements())->length()); |
| if ((index < length) && |
| !FixedArray::cast(elements())->get(index)->IsTheHole()) return true; |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t> |
| (Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedDoubleArray::cast(elements())->length()); |
| if ((index < length) && |
| !FixedDoubleArray::cast(elements())->is_the_hole(index)) return true; |
| break; |
| } |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| ExternalPixelArray* pixels = ExternalPixelArray::cast(elements()); |
| if (index < static_cast<uint32_t>(pixels->length())) { |
| return true; |
| } |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: { |
| ExternalArray* array = ExternalArray::cast(elements()); |
| if (index < static_cast<uint32_t>(array->length())) { |
| return true; |
| } |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| if (element_dictionary()->FindEntry(index) |
| != SeededNumberDictionary::kNotFound) { |
| return true; |
| } |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: { |
| FixedArray* parameter_map = FixedArray::cast(elements()); |
| uint32_t length = parameter_map->length(); |
| Object* probe = |
| (index < length - 2) ? parameter_map->get(index + 2) : NULL; |
| if (probe != NULL && !probe->IsTheHole()) return true; |
| |
| // Not a mapped parameter, check the arguments. |
| FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); |
| kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS : FAST_ELEMENTS; |
| if (HasElementInElements(arguments, kind, index)) return true; |
| break; |
| } |
| } |
| |
| // Handle [] on String objects. |
| if (this->IsStringObjectWithCharacterAt(index)) return true; |
| |
| Object* pt = GetPrototype(); |
| if (pt->IsNull()) return false; |
| return JSObject::cast(pt)->HasElementWithReceiver(receiver, index); |
| } |
| |
| |
| MaybeObject* JSObject::SetElementWithInterceptor(uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype) { |
| Isolate* isolate = GetIsolate(); |
| // Make sure that the top context does not change when doing |
| // callbacks or interceptor calls. |
| AssertNoContextChange ncc; |
| HandleScope scope(isolate); |
| Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); |
| Handle<JSObject> this_handle(this); |
| Handle<Object> value_handle(value, isolate); |
| if (!interceptor->setter()->IsUndefined()) { |
| v8::IndexedPropertySetter setter = |
| v8::ToCData<v8::IndexedPropertySetter>(interceptor->setter()); |
| LOG(isolate, |
| ApiIndexedPropertyAccess("interceptor-indexed-set", this, index)); |
| CustomArguments args(isolate, interceptor->data(), this, this); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Value> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = setter(index, v8::Utils::ToLocal(value_handle), info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (!result.IsEmpty()) return *value_handle; |
| } |
| MaybeObject* raw_result = |
| this_handle->SetElementWithoutInterceptor(index, |
| *value_handle, |
| strict_mode, |
| check_prototype); |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return raw_result; |
| } |
| |
| |
| MaybeObject* JSObject::GetElementWithCallback(Object* receiver, |
| Object* structure, |
| uint32_t index, |
| Object* holder) { |
| Isolate* isolate = GetIsolate(); |
| ASSERT(!structure->IsForeign()); |
| |
| // api style callbacks. |
| if (structure->IsAccessorInfo()) { |
| Handle<AccessorInfo> data(AccessorInfo::cast(structure)); |
| Object* fun_obj = data->getter(); |
| v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj); |
| HandleScope scope(isolate); |
| Handle<JSObject> self(JSObject::cast(receiver)); |
| Handle<JSObject> holder_handle(JSObject::cast(holder)); |
| Handle<Object> number = isolate->factory()->NewNumberFromUint(index); |
| Handle<String> key = isolate->factory()->NumberToString(number); |
| LOG(isolate, ApiNamedPropertyAccess("load", *self, *key)); |
| CustomArguments args(isolate, data->data(), *self, *holder_handle); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Value> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = call_fun(v8::Utils::ToLocal(key), info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (result.IsEmpty()) return isolate->heap()->undefined_value(); |
| return *v8::Utils::OpenHandle(*result); |
| } |
| |
| // __defineGetter__ callback |
| if (structure->IsFixedArray()) { |
| Object* getter = FixedArray::cast(structure)->get(kGetterIndex); |
| if (getter->IsJSFunction()) { |
| return Object::GetPropertyWithDefinedGetter(receiver, |
| JSFunction::cast(getter)); |
| } |
| // Getter is not a function. |
| return isolate->heap()->undefined_value(); |
| } |
| |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| MaybeObject* JSObject::SetElementWithCallback(Object* structure, |
| uint32_t index, |
| Object* value, |
| JSObject* holder, |
| StrictModeFlag strict_mode) { |
| Isolate* isolate = GetIsolate(); |
| HandleScope scope(isolate); |
| |
| // We should never get here to initialize a const with the hole |
| // value since a const declaration would conflict with the setter. |
| ASSERT(!value->IsTheHole()); |
| Handle<Object> value_handle(value, isolate); |
| |
| // To accommodate both the old and the new api we switch on the |
| // data structure used to store the callbacks. Eventually foreign |
| // callbacks should be phased out. |
| ASSERT(!structure->IsForeign()); |
| |
| if (structure->IsAccessorInfo()) { |
| // api style callbacks |
| Handle<JSObject> self(this); |
| Handle<JSObject> holder_handle(JSObject::cast(holder)); |
| Handle<AccessorInfo> data(AccessorInfo::cast(structure)); |
| Object* call_obj = data->setter(); |
| v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj); |
| if (call_fun == NULL) return value; |
| Handle<Object> number = isolate->factory()->NewNumberFromUint(index); |
| Handle<String> key(isolate->factory()->NumberToString(number)); |
| LOG(isolate, ApiNamedPropertyAccess("store", *self, *key)); |
| CustomArguments args(isolate, data->data(), *self, *holder_handle); |
| v8::AccessorInfo info(args.end()); |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| call_fun(v8::Utils::ToLocal(key), |
| v8::Utils::ToLocal(value_handle), |
| info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return *value_handle; |
| } |
| |
| if (structure->IsFixedArray()) { |
| Handle<Object> setter(FixedArray::cast(structure)->get(kSetterIndex)); |
| if (setter->IsJSFunction()) { |
| return SetPropertyWithDefinedSetter(JSFunction::cast(*setter), value); |
| } else { |
| if (strict_mode == kNonStrictMode) { |
| return value; |
| } |
| Handle<Object> holder_handle(holder, isolate); |
| Handle<Object> key(isolate->factory()->NewNumberFromUint(index)); |
| Handle<Object> args[2] = { key, holder_handle }; |
| return isolate->Throw( |
| *isolate->factory()->NewTypeError("no_setter_in_callback", |
| HandleVector(args, 2))); |
| } |
| } |
| |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| bool JSObject::HasFastArgumentsElements() { |
| Heap* heap = GetHeap(); |
| if (!elements()->IsFixedArray()) return false; |
| FixedArray* elements = FixedArray::cast(this->elements()); |
| if (elements->map() != heap->non_strict_arguments_elements_map()) { |
| return false; |
| } |
| FixedArray* arguments = FixedArray::cast(elements->get(1)); |
| return !arguments->IsDictionary(); |
| } |
| |
| |
| bool JSObject::HasDictionaryArgumentsElements() { |
| Heap* heap = GetHeap(); |
| if (!elements()->IsFixedArray()) return false; |
| FixedArray* elements = FixedArray::cast(this->elements()); |
| if (elements->map() != heap->non_strict_arguments_elements_map()) { |
| return false; |
| } |
| FixedArray* arguments = FixedArray::cast(elements->get(1)); |
| return arguments->IsDictionary(); |
| } |
| |
| |
| // Adding n elements in fast case is O(n*n). |
| // Note: revisit design to have dual undefined values to capture absent |
| // elements. |
| MaybeObject* JSObject::SetFastElement(uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype) { |
| ASSERT(HasFastElements() || HasFastArgumentsElements()); |
| |
| FixedArray* backing_store = FixedArray::cast(elements()); |
| if (backing_store->map() == GetHeap()->non_strict_arguments_elements_map()) { |
| backing_store = FixedArray::cast(backing_store->get(1)); |
| } else { |
| Object* writable; |
| MaybeObject* maybe = EnsureWritableFastElements(); |
| if (!maybe->ToObject(&writable)) return maybe; |
| backing_store = FixedArray::cast(writable); |
| } |
| uint32_t length = static_cast<uint32_t>(backing_store->length()); |
| |
| if (check_prototype && |
| (index >= length || backing_store->get(index)->IsTheHole())) { |
| bool found; |
| MaybeObject* result = SetElementWithCallbackSetterInPrototypes(index, |
| value, |
| &found, |
| strict_mode); |
| if (found) return result; |
| } |
| |
| // Check whether there is extra space in fixed array. |
| if (index < length) { |
| backing_store->set(index, value); |
| if (IsJSArray()) { |
| // Update the length of the array if needed. |
| uint32_t array_length = 0; |
| CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length)); |
| if (index >= array_length) { |
| JSArray::cast(this)->set_length(Smi::FromInt(index + 1)); |
| } |
| } |
| return value; |
| } |
| |
| // Allow gap in fast case. |
| if ((index - length) < kMaxGap) { |
| // Try allocating extra space. |
| int new_capacity = NewElementsCapacity(index + 1); |
| if (!ShouldConvertToSlowElements(new_capacity)) { |
| ASSERT(static_cast<uint32_t>(new_capacity) > index); |
| Object* new_elements; |
| MaybeObject* maybe = |
| SetFastElementsCapacityAndLength(new_capacity, index + 1); |
| if (!maybe->ToObject(&new_elements)) return maybe; |
| FixedArray::cast(new_elements)->set(index, value); |
| return value; |
| } |
| } |
| |
| // Otherwise default to slow case. |
| MaybeObject* result = NormalizeElements(); |
| if (result->IsFailure()) return result; |
| return SetDictionaryElement(index, value, strict_mode, check_prototype); |
| } |
| |
| |
| MaybeObject* JSObject::SetDictionaryElement(uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype) { |
| ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); |
| Isolate* isolate = GetIsolate(); |
| Heap* heap = isolate->heap(); |
| |
| // Insert element in the dictionary. |
| FixedArray* elements = FixedArray::cast(this->elements()); |
| bool is_arguments = |
| (elements->map() == heap->non_strict_arguments_elements_map()); |
| SeededNumberDictionary* dictionary = NULL; |
| if (is_arguments) { |
| dictionary = SeededNumberDictionary::cast(elements->get(1)); |
| } else { |
| dictionary = SeededNumberDictionary::cast(elements); |
| } |
| |
| int entry = dictionary->FindEntry(index); |
| if (entry != SeededNumberDictionary::kNotFound) { |
| Object* element = dictionary->ValueAt(entry); |
| PropertyDetails details = dictionary->DetailsAt(entry); |
| if (details.type() == CALLBACKS) { |
| return SetElementWithCallback(element, index, value, this, strict_mode); |
| } else { |
| dictionary->UpdateMaxNumberKey(index); |
| // If put fails in strict mode, throw an exception. |
| if (!dictionary->ValueAtPut(entry, value) && strict_mode == kStrictMode) { |
| Handle<Object> holder(this); |
| Handle<Object> number = isolate->factory()->NewNumberFromUint(index); |
| Handle<Object> args[2] = { number, holder }; |
| Handle<Object> error = |
| isolate->factory()->NewTypeError("strict_read_only_property", |
| HandleVector(args, 2)); |
| return isolate->Throw(*error); |
| } |
| } |
| } else { |
| // Index not already used. Look for an accessor in the prototype chain. |
| if (check_prototype) { |
| bool found; |
| MaybeObject* result = |
| SetElementWithCallbackSetterInPrototypes( |
| index, value, &found, strict_mode); |
| if (found) return result; |
| } |
| // When we set the is_extensible flag to false we always force the |
| // element into dictionary mode (and force them to stay there). |
| if (!map()->is_extensible()) { |
| if (strict_mode == kNonStrictMode) { |
| return isolate->heap()->undefined_value(); |
| } else { |
| Handle<Object> number = isolate->factory()->NewNumberFromUint(index); |
| Handle<String> name = isolate->factory()->NumberToString(number); |
| Handle<Object> args[1] = { name }; |
| Handle<Object> error = |
| isolate->factory()->NewTypeError("object_not_extensible", |
| HandleVector(args, 1)); |
| return isolate->Throw(*error); |
| } |
| } |
| FixedArrayBase* new_dictionary; |
| MaybeObject* maybe = dictionary->AtNumberPut(index, value); |
| if (!maybe->To<FixedArrayBase>(&new_dictionary)) return maybe; |
| if (dictionary != SeededNumberDictionary::cast(new_dictionary)) { |
| if (is_arguments) { |
| elements->set(1, new_dictionary); |
| } else { |
| set_elements(new_dictionary); |
| } |
| dictionary = SeededNumberDictionary::cast(new_dictionary); |
| } |
| } |
| |
| // Update the array length if this JSObject is an array. |
| if (IsJSArray()) { |
| MaybeObject* result = |
| JSArray::cast(this)->JSArrayUpdateLengthFromIndex(index, value); |
| if (result->IsFailure()) return result; |
| } |
| |
| // Attempt to put this object back in fast case. |
| if (ShouldConvertToFastElements()) { |
| uint32_t new_length = 0; |
| if (IsJSArray()) { |
| CHECK(JSArray::cast(this)->length()->ToArrayIndex(&new_length)); |
| } else { |
| new_length = dictionary->max_number_key() + 1; |
| } |
| MaybeObject* result = CanConvertToFastDoubleElements() |
| ? SetFastDoubleElementsCapacityAndLength(new_length, new_length) |
| : SetFastElementsCapacityAndLength(new_length, new_length); |
| if (result->IsFailure()) return result; |
| #ifdef DEBUG |
| if (FLAG_trace_normalization) { |
| PrintF("Object elements are fast case again:\n"); |
| Print(); |
| } |
| #endif |
| } |
| return value; |
| } |
| |
| |
| MUST_USE_RESULT MaybeObject* JSObject::SetFastDoubleElement( |
| uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype) { |
| ASSERT(HasFastDoubleElements()); |
| |
| FixedDoubleArray* elms = FixedDoubleArray::cast(elements()); |
| uint32_t elms_length = static_cast<uint32_t>(elms->length()); |
| |
| // If storing to an element that isn't in the array, pass the store request |
| // up the prototype chain before storing in the receiver's elements. |
| if (check_prototype && |
| (index >= elms_length || elms->is_the_hole(index))) { |
| bool found; |
| MaybeObject* result = SetElementWithCallbackSetterInPrototypes(index, |
| value, |
| &found, |
| strict_mode); |
| if (found) return result; |
| } |
| |
| // If the value object is not a heap number, switch to fast elements and try |
| // again. |
| bool value_is_smi = value->IsSmi(); |
| if (!value->IsNumber()) { |
| Object* obj; |
| uint32_t length = elms_length; |
| if (IsJSArray()) { |
| CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length)); |
| } |
| MaybeObject* maybe_obj = |
| SetFastElementsCapacityAndLength(elms_length, length); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| return SetFastElement(index, value, strict_mode, check_prototype); |
| } |
| |
| double double_value = value_is_smi |
| ? static_cast<double>(Smi::cast(value)->value()) |
| : HeapNumber::cast(value)->value(); |
| |
| // Check whether there is extra space in the fixed array. |
| if (index < elms_length) { |
| elms->set(index, double_value); |
| if (IsJSArray()) { |
| // Update the length of the array if needed. |
| uint32_t array_length = 0; |
| CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length)); |
| if (index >= array_length) { |
| JSArray::cast(this)->set_length(Smi::FromInt(index + 1)); |
| } |
| } |
| return value; |
| } |
| |
| // Allow gap in fast case. |
| if ((index - elms_length) < kMaxGap) { |
| // Try allocating extra space. |
| int new_capacity = NewElementsCapacity(index+1); |
| if (!ShouldConvertToSlowElements(new_capacity)) { |
| ASSERT(static_cast<uint32_t>(new_capacity) > index); |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| SetFastDoubleElementsCapacityAndLength(new_capacity, |
| index + 1); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedDoubleArray::cast(elements())->set(index, double_value); |
| return value; |
| } |
| } |
| |
| // Otherwise default to slow case. |
| ASSERT(HasFastDoubleElements()); |
| ASSERT(map()->has_fast_double_elements()); |
| ASSERT(elements()->IsFixedDoubleArray()); |
| Object* obj; |
| { MaybeObject* maybe_obj = NormalizeElements(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| ASSERT(HasDictionaryElements()); |
| return SetElement(index, value, strict_mode, check_prototype); |
| } |
| |
| |
| MaybeObject* JSObject::SetElement(uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype) { |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded()) { |
| Heap* heap = GetHeap(); |
| if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_SET)) { |
| HandleScope scope(heap->isolate()); |
| Handle<Object> value_handle(value); |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_SET); |
| return *value_handle; |
| } |
| } |
| |
| if (IsJSGlobalProxy()) { |
| Object* proto = GetPrototype(); |
| if (proto->IsNull()) return value; |
| ASSERT(proto->IsJSGlobalObject()); |
| return JSObject::cast(proto)->SetElement(index, |
| value, |
| strict_mode, |
| check_prototype); |
| } |
| |
| // Check for lookup interceptor |
| if (HasIndexedInterceptor()) { |
| return SetElementWithInterceptor(index, |
| value, |
| strict_mode, |
| check_prototype); |
| } |
| |
| return SetElementWithoutInterceptor(index, |
| value, |
| strict_mode, |
| check_prototype); |
| } |
| |
| |
| MaybeObject* JSObject::SetElementWithoutInterceptor(uint32_t index, |
| Object* value, |
| StrictModeFlag strict_mode, |
| bool check_prototype) { |
| Isolate* isolate = GetIsolate(); |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: |
| return SetFastElement(index, value, strict_mode, check_prototype); |
| case FAST_DOUBLE_ELEMENTS: |
| return SetFastDoubleElement(index, value, strict_mode, check_prototype); |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| ExternalPixelArray* pixels = ExternalPixelArray::cast(elements()); |
| return pixels->SetValue(index, value); |
| } |
| case EXTERNAL_BYTE_ELEMENTS: { |
| ExternalByteArray* array = ExternalByteArray::cast(elements()); |
| return array->SetValue(index, value); |
| } |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { |
| ExternalUnsignedByteArray* array = |
| ExternalUnsignedByteArray::cast(elements()); |
| return array->SetValue(index, value); |
| } |
| case EXTERNAL_SHORT_ELEMENTS: { |
| ExternalShortArray* array = ExternalShortArray::cast(elements()); |
| return array->SetValue(index, value); |
| } |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { |
| ExternalUnsignedShortArray* array = |
| ExternalUnsignedShortArray::cast(elements()); |
| return array->SetValue(index, value); |
| } |
| case EXTERNAL_INT_ELEMENTS: { |
| ExternalIntArray* array = ExternalIntArray::cast(elements()); |
| return array->SetValue(index, value); |
| } |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: { |
| ExternalUnsignedIntArray* array = |
| ExternalUnsignedIntArray::cast(elements()); |
| return array->SetValue(index, value); |
| } |
| case EXTERNAL_FLOAT_ELEMENTS: { |
| ExternalFloatArray* array = ExternalFloatArray::cast(elements()); |
| return array->SetValue(index, value); |
| } |
| case EXTERNAL_DOUBLE_ELEMENTS: { |
| ExternalDoubleArray* array = ExternalDoubleArray::cast(elements()); |
| return array->SetValue(index, value); |
| } |
| case DICTIONARY_ELEMENTS: |
| return SetDictionaryElement(index, value, strict_mode, check_prototype); |
| case NON_STRICT_ARGUMENTS_ELEMENTS: { |
| FixedArray* parameter_map = FixedArray::cast(elements()); |
| uint32_t length = parameter_map->length(); |
| Object* probe = |
| (index < length - 2) ? parameter_map->get(index + 2) : NULL; |
| if (probe != NULL && !probe->IsTheHole()) { |
| Context* context = Context::cast(parameter_map->get(0)); |
| int context_index = Smi::cast(probe)->value(); |
| ASSERT(!context->get(context_index)->IsTheHole()); |
| context->set(context_index, value); |
| return value; |
| } else { |
| // Object is not mapped, defer to the arguments. |
| FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); |
| if (arguments->IsDictionary()) { |
| return SetDictionaryElement(index, value, strict_mode, |
| check_prototype); |
| } else { |
| return SetFastElement(index, value, strict_mode, check_prototype); |
| } |
| } |
| } |
| } |
| // All possible cases have been handled above. Add a return to avoid the |
| // complaints from the compiler. |
| UNREACHABLE(); |
| return isolate->heap()->null_value(); |
| } |
| |
| |
| MaybeObject* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index, |
| Object* value) { |
| uint32_t old_len = 0; |
| CHECK(length()->ToArrayIndex(&old_len)); |
| // Check to see if we need to update the length. For now, we make |
| // sure that the length stays within 32-bits (unsigned). |
| if (index >= old_len && index != 0xffffffff) { |
| Object* len; |
| { MaybeObject* maybe_len = |
| GetHeap()->NumberFromDouble(static_cast<double>(index) + 1); |
| if (!maybe_len->ToObject(&len)) return maybe_len; |
| } |
| set_length(len); |
| } |
| return value; |
| } |
| |
| |
| MaybeObject* JSObject::GetElementWithInterceptor(Object* receiver, |
| uint32_t index) { |
| Isolate* isolate = GetIsolate(); |
| // Make sure that the top context does not change when doing |
| // callbacks or interceptor calls. |
| AssertNoContextChange ncc; |
| HandleScope scope(isolate); |
| Handle<InterceptorInfo> interceptor(GetIndexedInterceptor(), isolate); |
| Handle<Object> this_handle(receiver, isolate); |
| Handle<JSObject> holder_handle(this, isolate); |
| if (!interceptor->getter()->IsUndefined()) { |
| v8::IndexedPropertyGetter getter = |
| v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter()); |
| LOG(isolate, |
| ApiIndexedPropertyAccess("interceptor-indexed-get", this, index)); |
| CustomArguments args(isolate, interceptor->data(), receiver, this); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Value> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = getter(index, info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); |
| } |
| |
| Heap* heap = holder_handle->GetHeap(); |
| ElementsAccessor* handler = holder_handle->GetElementsAccessor(); |
| MaybeObject* raw_result = handler->Get(holder_handle->elements(), |
| index, |
| *holder_handle, |
| *this_handle); |
| if (raw_result != heap->the_hole_value()) return raw_result; |
| |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| |
| Object* pt = holder_handle->GetPrototype(); |
| if (pt == heap->null_value()) return heap->undefined_value(); |
| return pt->GetElementWithReceiver(*this_handle, index); |
| } |
| |
| |
| bool JSObject::HasDenseElements() { |
| int capacity = 0; |
| int used = 0; |
| GetElementsCapacityAndUsage(&capacity, &used); |
| return (capacity == 0) || (used > (capacity / 2)); |
| } |
| |
| |
| void JSObject::GetElementsCapacityAndUsage(int* capacity, int* used) { |
| *capacity = 0; |
| *used = 0; |
| |
| FixedArrayBase* backing_store_base = FixedArrayBase::cast(elements()); |
| FixedArray* backing_store = NULL; |
| switch (GetElementsKind()) { |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| backing_store_base = |
| FixedArray::cast(FixedArray::cast(backing_store_base)->get(1)); |
| backing_store = FixedArray::cast(backing_store_base); |
| if (backing_store->IsDictionary()) { |
| SeededNumberDictionary* dictionary = |
| SeededNumberDictionary::cast(backing_store); |
| *capacity = dictionary->Capacity(); |
| *used = dictionary->NumberOfElements(); |
| break; |
| } |
| // Fall through. |
| case FAST_ELEMENTS: |
| backing_store = FixedArray::cast(backing_store_base); |
| *capacity = backing_store->length(); |
| for (int i = 0; i < *capacity; ++i) { |
| if (!backing_store->get(i)->IsTheHole()) ++(*used); |
| } |
| break; |
| case DICTIONARY_ELEMENTS: { |
| SeededNumberDictionary* dictionary = |
| SeededNumberDictionary::cast(FixedArray::cast(elements())); |
| *capacity = dictionary->Capacity(); |
| *used = dictionary->NumberOfElements(); |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| FixedDoubleArray* elms = FixedDoubleArray::cast(elements()); |
| *capacity = elms->length(); |
| for (int i = 0; i < *capacity; i++) { |
| if (!elms->is_the_hole(i)) ++(*used); |
| } |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| case EXTERNAL_PIXEL_ELEMENTS: |
| // External arrays are considered 100% used. |
| ExternalArray* external_array = ExternalArray::cast(elements()); |
| *capacity = external_array->length(); |
| *used = external_array->length(); |
| break; |
| } |
| } |
| |
| |
| bool JSObject::ShouldConvertToSlowElements(int new_capacity) { |
| STATIC_ASSERT(kMaxUncheckedOldFastElementsLength <= |
| kMaxUncheckedFastElementsLength); |
| if (new_capacity <= kMaxUncheckedOldFastElementsLength || |
| (new_capacity <= kMaxUncheckedFastElementsLength && |
| GetHeap()->InNewSpace(this))) { |
| return false; |
| } |
| // If the fast-case backing storage takes up roughly three times as |
| // much space (in machine words) as a dictionary backing storage |
| // would, the object should have slow elements. |
| int old_capacity = 0; |
| int used_elements = 0; |
| GetElementsCapacityAndUsage(&old_capacity, &used_elements); |
| int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) * |
| SeededNumberDictionary::kEntrySize; |
| return 3 * dictionary_size <= new_capacity; |
| } |
| |
| |
| bool JSObject::ShouldConvertToFastElements() { |
| ASSERT(HasDictionaryElements() || HasDictionaryArgumentsElements()); |
| // If the elements are sparse, we should not go back to fast case. |
| if (!HasDenseElements()) return false; |
| // An object requiring access checks is never allowed to have fast |
| // elements. If it had fast elements we would skip security checks. |
| if (IsAccessCheckNeeded()) return false; |
| |
| FixedArray* elements = FixedArray::cast(this->elements()); |
| SeededNumberDictionary* dictionary = NULL; |
| if (elements->map() == GetHeap()->non_strict_arguments_elements_map()) { |
| dictionary = SeededNumberDictionary::cast(elements->get(1)); |
| } else { |
| dictionary = SeededNumberDictionary::cast(elements); |
| } |
| // If an element has been added at a very high index in the elements |
| // dictionary, we cannot go back to fast case. |
| if (dictionary->requires_slow_elements()) return false; |
| // If the dictionary backing storage takes up roughly half as much |
| // space (in machine words) as a fast-case backing storage would, |
| // the object should have fast elements. |
| uint32_t array_size = 0; |
| if (IsJSArray()) { |
| CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_size)); |
| } else { |
| array_size = dictionary->max_number_key(); |
| } |
| uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) * |
| SeededNumberDictionary::kEntrySize; |
| return 2 * dictionary_size >= array_size; |
| } |
| |
| |
| bool JSObject::CanConvertToFastDoubleElements() { |
| if (FLAG_unbox_double_arrays) { |
| ASSERT(HasDictionaryElements()); |
| SeededNumberDictionary* dictionary = |
| SeededNumberDictionary::cast(elements()); |
| for (int i = 0; i < dictionary->Capacity(); i++) { |
| Object* key = dictionary->KeyAt(i); |
| if (key->IsNumber()) { |
| if (!dictionary->ValueAt(i)->IsNumber()) return false; |
| } |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| |
| // Certain compilers request function template instantiation when they |
| // see the definition of the other template functions in the |
| // class. This requires us to have the template functions put |
| // together, so even though this function belongs in objects-debug.cc, |
| // we keep it here instead to satisfy certain compilers. |
| #ifdef OBJECT_PRINT |
| template<typename Shape, typename Key> |
| void Dictionary<Shape, Key>::Print(FILE* out) { |
| int capacity = HashTable<Shape, Key>::Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Object* k = HashTable<Shape, Key>::KeyAt(i); |
| if (HashTable<Shape, Key>::IsKey(k)) { |
| PrintF(out, " "); |
| if (k->IsString()) { |
| String::cast(k)->StringPrint(out); |
| } else { |
| k->ShortPrint(out); |
| } |
| PrintF(out, ": "); |
| ValueAt(i)->ShortPrint(out); |
| PrintF(out, "\n"); |
| } |
| } |
| } |
| #endif |
| |
| |
| template<typename Shape, typename Key> |
| void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) { |
| int pos = 0; |
| int capacity = HashTable<Shape, Key>::Capacity(); |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); |
| for (int i = 0; i < capacity; i++) { |
| Object* k = Dictionary<Shape, Key>::KeyAt(i); |
| if (Dictionary<Shape, Key>::IsKey(k)) { |
| elements->set(pos++, ValueAt(i), mode); |
| } |
| } |
| ASSERT(pos == elements->length()); |
| } |
| |
| |
| InterceptorInfo* JSObject::GetNamedInterceptor() { |
| ASSERT(map()->has_named_interceptor()); |
| JSFunction* constructor = JSFunction::cast(map()->constructor()); |
| ASSERT(constructor->shared()->IsApiFunction()); |
| Object* result = |
| constructor->shared()->get_api_func_data()->named_property_handler(); |
| return InterceptorInfo::cast(result); |
| } |
| |
| |
| InterceptorInfo* JSObject::GetIndexedInterceptor() { |
| ASSERT(map()->has_indexed_interceptor()); |
| JSFunction* constructor = JSFunction::cast(map()->constructor()); |
| ASSERT(constructor->shared()->IsApiFunction()); |
| Object* result = |
| constructor->shared()->get_api_func_data()->indexed_property_handler(); |
| return InterceptorInfo::cast(result); |
| } |
| |
| |
| MaybeObject* JSObject::GetPropertyPostInterceptor( |
| JSReceiver* receiver, |
| String* name, |
| PropertyAttributes* attributes) { |
| // Check local property in holder, ignore interceptor. |
| LookupResult result; |
| LocalLookupRealNamedProperty(name, &result); |
| if (result.IsProperty()) { |
| return GetProperty(receiver, &result, name, attributes); |
| } |
| // Continue searching via the prototype chain. |
| Object* pt = GetPrototype(); |
| *attributes = ABSENT; |
| if (pt->IsNull()) return GetHeap()->undefined_value(); |
| return pt->GetPropertyWithReceiver(receiver, name, attributes); |
| } |
| |
| |
| MaybeObject* JSObject::GetLocalPropertyPostInterceptor( |
| JSReceiver* receiver, |
| String* name, |
| PropertyAttributes* attributes) { |
| // Check local property in holder, ignore interceptor. |
| LookupResult result; |
| LocalLookupRealNamedProperty(name, &result); |
| if (result.IsProperty()) { |
| return GetProperty(receiver, &result, name, attributes); |
| } |
| return GetHeap()->undefined_value(); |
| } |
| |
| |
| MaybeObject* JSObject::GetPropertyWithInterceptor( |
| JSReceiver* receiver, |
| String* name, |
| PropertyAttributes* attributes) { |
| Isolate* isolate = GetIsolate(); |
| InterceptorInfo* interceptor = GetNamedInterceptor(); |
| HandleScope scope(isolate); |
| Handle<JSReceiver> receiver_handle(receiver); |
| Handle<JSObject> holder_handle(this); |
| Handle<String> name_handle(name); |
| |
| if (!interceptor->getter()->IsUndefined()) { |
| v8::NamedPropertyGetter getter = |
| v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter()); |
| LOG(isolate, |
| ApiNamedPropertyAccess("interceptor-named-get", *holder_handle, name)); |
| CustomArguments args(isolate, interceptor->data(), receiver, this); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Value> result; |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = getter(v8::Utils::ToLocal(name_handle), info); |
| } |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| if (!result.IsEmpty()) { |
| *attributes = NONE; |
| return *v8::Utils::OpenHandle(*result); |
| } |
| } |
| |
| MaybeObject* result = holder_handle->GetPropertyPostInterceptor( |
| *receiver_handle, |
| *name_handle, |
| attributes); |
| RETURN_IF_SCHEDULED_EXCEPTION(isolate); |
| return result; |
| } |
| |
| |
| bool JSObject::HasRealNamedProperty(String* key) { |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded()) { |
| Heap* heap = GetHeap(); |
| if (!heap->isolate()->MayNamedAccess(this, key, v8::ACCESS_HAS)) { |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); |
| return false; |
| } |
| } |
| |
| LookupResult result; |
| LocalLookupRealNamedProperty(key, &result); |
| return result.IsProperty() && (result.type() != INTERCEPTOR); |
| } |
| |
| |
| bool JSObject::HasRealElementProperty(uint32_t index) { |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded()) { |
| Heap* heap = GetHeap(); |
| if (!heap->isolate()->MayIndexedAccess(this, index, v8::ACCESS_HAS)) { |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); |
| return false; |
| } |
| } |
| |
| // Handle [] on String objects. |
| if (this->IsStringObjectWithCharacterAt(index)) return true; |
| |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t>( |
| Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedArray::cast(elements())->length()); |
| return (index < length) && |
| !FixedArray::cast(elements())->get(index)->IsTheHole(); |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t>( |
| Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedDoubleArray::cast(elements())->length()); |
| return (index < length) && |
| !FixedDoubleArray::cast(elements())->is_the_hole(index); |
| break; |
| } |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| ExternalPixelArray* pixels = ExternalPixelArray::cast(elements()); |
| return index < static_cast<uint32_t>(pixels->length()); |
| } |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: { |
| ExternalArray* array = ExternalArray::cast(elements()); |
| return index < static_cast<uint32_t>(array->length()); |
| } |
| case DICTIONARY_ELEMENTS: { |
| return element_dictionary()->FindEntry(index) |
| != SeededNumberDictionary::kNotFound; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNIMPLEMENTED(); |
| break; |
| } |
| // All possibilities have been handled above already. |
| UNREACHABLE(); |
| return GetHeap()->null_value(); |
| } |
| |
| |
| bool JSObject::HasRealNamedCallbackProperty(String* key) { |
| // Check access rights if needed. |
| if (IsAccessCheckNeeded()) { |
| Heap* heap = GetHeap(); |
| if (!heap->isolate()->MayNamedAccess(this, key, v8::ACCESS_HAS)) { |
| heap->isolate()->ReportFailedAccessCheck(this, v8::ACCESS_HAS); |
| return false; |
| } |
| } |
| |
| LookupResult result; |
| LocalLookupRealNamedProperty(key, &result); |
| return result.IsProperty() && (result.type() == CALLBACKS); |
| } |
| |
| |
| int JSObject::NumberOfLocalProperties(PropertyAttributes filter) { |
| if (HasFastProperties()) { |
| DescriptorArray* descs = map()->instance_descriptors(); |
| int result = 0; |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| PropertyDetails details(descs->GetDetails(i)); |
| if (details.IsProperty() && (details.attributes() & filter) == 0) { |
| result++; |
| } |
| } |
| return result; |
| } else { |
| return property_dictionary()->NumberOfElementsFilterAttributes(filter); |
| } |
| } |
| |
| |
| int JSObject::NumberOfEnumProperties() { |
| return NumberOfLocalProperties(static_cast<PropertyAttributes>(DONT_ENUM)); |
| } |
| |
| |
| void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) { |
| Object* temp = get(i); |
| set(i, get(j)); |
| set(j, temp); |
| if (this != numbers) { |
| temp = numbers->get(i); |
| numbers->set(i, numbers->get(j)); |
| numbers->set(j, temp); |
| } |
| } |
| |
| |
| static void InsertionSortPairs(FixedArray* content, |
| FixedArray* numbers, |
| int len) { |
| for (int i = 1; i < len; i++) { |
| int j = i; |
| while (j > 0 && |
| (NumberToUint32(numbers->get(j - 1)) > |
| NumberToUint32(numbers->get(j)))) { |
| content->SwapPairs(numbers, j - 1, j); |
| j--; |
| } |
| } |
| } |
| |
| |
| void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) { |
| // In-place heap sort. |
| ASSERT(content->length() == numbers->length()); |
| |
| // Bottom-up max-heap construction. |
| for (int i = 1; i < len; ++i) { |
| int child_index = i; |
| while (child_index > 0) { |
| int parent_index = ((child_index + 1) >> 1) - 1; |
| uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); |
| uint32_t child_value = NumberToUint32(numbers->get(child_index)); |
| if (parent_value < child_value) { |
| content->SwapPairs(numbers, parent_index, child_index); |
| } else { |
| break; |
| } |
| child_index = parent_index; |
| } |
| } |
| |
| // Extract elements and create sorted array. |
| for (int i = len - 1; i > 0; --i) { |
| // Put max element at the back of the array. |
| content->SwapPairs(numbers, 0, i); |
| // Sift down the new top element. |
| int parent_index = 0; |
| while (true) { |
| int child_index = ((parent_index + 1) << 1) - 1; |
| if (child_index >= i) break; |
| uint32_t child1_value = NumberToUint32(numbers->get(child_index)); |
| uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1)); |
| uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); |
| if (child_index + 1 >= i || child1_value > child2_value) { |
| if (parent_value > child1_value) break; |
| content->SwapPairs(numbers, parent_index, child_index); |
| parent_index = child_index; |
| } else { |
| if (parent_value > child2_value) break; |
| content->SwapPairs(numbers, parent_index, child_index + 1); |
| parent_index = child_index + 1; |
| } |
| } |
| } |
| } |
| |
| |
| // Sort this array and the numbers as pairs wrt. the (distinct) numbers. |
| void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) { |
| ASSERT(this->length() == numbers->length()); |
| // For small arrays, simply use insertion sort. |
| if (len <= 10) { |
| InsertionSortPairs(this, numbers, len); |
| return; |
| } |
| // Check the range of indices. |
| uint32_t min_index = NumberToUint32(numbers->get(0)); |
| uint32_t max_index = min_index; |
| uint32_t i; |
| for (i = 1; i < len; i++) { |
| if (NumberToUint32(numbers->get(i)) < min_index) { |
| min_index = NumberToUint32(numbers->get(i)); |
| } else if (NumberToUint32(numbers->get(i)) > max_index) { |
| max_index = NumberToUint32(numbers->get(i)); |
| } |
| } |
| if (max_index - min_index + 1 == len) { |
| // Indices form a contiguous range, unless there are duplicates. |
| // Do an in-place linear time sort assuming distinct numbers, but |
| // avoid hanging in case they are not. |
| for (i = 0; i < len; i++) { |
| uint32_t p; |
| uint32_t j = 0; |
| // While the current element at i is not at its correct position p, |
| // swap the elements at these two positions. |
| while ((p = NumberToUint32(numbers->get(i)) - min_index) != i && |
| j++ < len) { |
| SwapPairs(numbers, i, p); |
| } |
| } |
| } else { |
| HeapSortPairs(this, numbers, len); |
| return; |
| } |
| } |
| |
| |
| // Fill in the names of local properties into the supplied storage. The main |
| // purpose of this function is to provide reflection information for the object |
| // mirrors. |
| void JSObject::GetLocalPropertyNames(FixedArray* storage, int index) { |
| ASSERT(storage->length() >= (NumberOfLocalProperties(NONE) - index)); |
| if (HasFastProperties()) { |
| DescriptorArray* descs = map()->instance_descriptors(); |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| if (descs->IsProperty(i)) storage->set(index++, descs->GetKey(i)); |
| } |
| ASSERT(storage->length() >= index); |
| } else { |
| property_dictionary()->CopyKeysTo(storage, |
| index, |
| StringDictionary::UNSORTED); |
| } |
| } |
| |
| |
| int JSObject::NumberOfLocalElements(PropertyAttributes filter) { |
| return GetLocalElementKeys(NULL, filter); |
| } |
| |
| |
| int JSObject::NumberOfEnumElements() { |
| // Fast case for objects with no elements. |
| if (!IsJSValue() && HasFastElements()) { |
| uint32_t length = IsJSArray() ? |
| static_cast<uint32_t>( |
| Smi::cast(JSArray::cast(this)->length())->value()) : |
| static_cast<uint32_t>(FixedArray::cast(elements())->length()); |
| if (length == 0) return 0; |
| } |
| // Compute the number of enumerable elements. |
| return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM)); |
| } |
| |
| |
| int JSObject::GetLocalElementKeys(FixedArray* storage, |
| PropertyAttributes filter) { |
| int counter = 0; |
| switch (GetElementsKind()) { |
| case FAST_ELEMENTS: { |
| int length = IsJSArray() ? |
| Smi::cast(JSArray::cast(this)->length())->value() : |
| FixedArray::cast(elements())->length(); |
| for (int i = 0; i < length; i++) { |
| if (!FixedArray::cast(elements())->get(i)->IsTheHole()) { |
| if (storage != NULL) { |
| storage->set(counter, Smi::FromInt(i)); |
| } |
| counter++; |
| } |
| } |
| ASSERT(!storage || storage->length() >= counter); |
| break; |
| } |
| case FAST_DOUBLE_ELEMENTS: { |
| int length = IsJSArray() ? |
| Smi::cast(JSArray::cast(this)->length())->value() : |
| FixedDoubleArray::cast(elements())->length(); |
| for (int i = 0; i < length; i++) { |
| if (!FixedDoubleArray::cast(elements())->is_the_hole(i)) { |
| if (storage != NULL) { |
| storage->set(counter, Smi::FromInt(i)); |
| } |
| counter++; |
| } |
| } |
| ASSERT(!storage || storage->length() >= counter); |
| break; |
| } |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| int length = ExternalPixelArray::cast(elements())->length(); |
| while (counter < length) { |
| if (storage != NULL) { |
| storage->set(counter, Smi::FromInt(counter)); |
| } |
| counter++; |
| } |
| ASSERT(!storage || storage->length() >= counter); |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: { |
| int length = ExternalArray::cast(elements())->length(); |
| while (counter < length) { |
| if (storage != NULL) { |
| storage->set(counter, Smi::FromInt(counter)); |
| } |
| counter++; |
| } |
| ASSERT(!storage || storage->length() >= counter); |
| break; |
| } |
| case DICTIONARY_ELEMENTS: { |
| if (storage != NULL) { |
| element_dictionary()->CopyKeysTo(storage, |
| filter, |
| SeededNumberDictionary::SORTED); |
| } |
| counter += element_dictionary()->NumberOfElementsFilterAttributes(filter); |
| break; |
| } |
| case NON_STRICT_ARGUMENTS_ELEMENTS: { |
| FixedArray* parameter_map = FixedArray::cast(elements()); |
| int mapped_length = parameter_map->length() - 2; |
| FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); |
| if (arguments->IsDictionary()) { |
| // Copy the keys from arguments first, because Dictionary::CopyKeysTo |
| // will insert in storage starting at index 0. |
| SeededNumberDictionary* dictionary = |
| SeededNumberDictionary::cast(arguments); |
| if (storage != NULL) { |
| dictionary->CopyKeysTo( |
| storage, filter, SeededNumberDictionary::UNSORTED); |
| } |
| counter += dictionary->NumberOfElementsFilterAttributes(filter); |
| for (int i = 0; i < mapped_length; ++i) { |
| if (!parameter_map->get(i + 2)->IsTheHole()) { |
| if (storage != NULL) storage->set(counter, Smi::FromInt(i)); |
| ++counter; |
| } |
| } |
| if (storage != NULL) storage->SortPairs(storage, counter); |
| |
| } else { |
| int backing_length = arguments->length(); |
| int i = 0; |
| for (; i < mapped_length; ++i) { |
| if (!parameter_map->get(i + 2)->IsTheHole()) { |
| if (storage != NULL) storage->set(counter, Smi::FromInt(i)); |
| ++counter; |
| } else if (i < backing_length && !arguments->get(i)->IsTheHole()) { |
| if (storage != NULL) storage->set(counter, Smi::FromInt(i)); |
| ++counter; |
| } |
| } |
| for (; i < backing_length; ++i) { |
| if (storage != NULL) storage->set(counter, Smi::FromInt(i)); |
| ++counter; |
| } |
| } |
| break; |
| } |
| } |
| |
| if (this->IsJSValue()) { |
| Object* val = JSValue::cast(this)->value(); |
| if (val->IsString()) { |
| String* str = String::cast(val); |
| if (storage) { |
| for (int i = 0; i < str->length(); i++) { |
| storage->set(counter + i, Smi::FromInt(i)); |
| } |
| } |
| counter += str->length(); |
| } |
| } |
| ASSERT(!storage || storage->length() == counter); |
| return counter; |
| } |
| |
| |
| int JSObject::GetEnumElementKeys(FixedArray* storage) { |
| return GetLocalElementKeys(storage, |
| static_cast<PropertyAttributes>(DONT_ENUM)); |
| } |
| |
| |
| // StringKey simply carries a string object as key. |
| class StringKey : public HashTableKey { |
| public: |
| explicit StringKey(String* string) : |
| string_(string), |
| hash_(HashForObject(string)) { } |
| |
| bool IsMatch(Object* string) { |
| // We know that all entries in a hash table had their hash keys created. |
| // Use that knowledge to have fast failure. |
| if (hash_ != HashForObject(string)) { |
| return false; |
| } |
| return string_->Equals(String::cast(string)); |
| } |
| |
| uint32_t Hash() { return hash_; } |
| |
| uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); } |
| |
| Object* AsObject() { return string_; } |
| |
| String* string_; |
| uint32_t hash_; |
| }; |
| |
| |
| // StringSharedKeys are used as keys in the eval cache. |
| class StringSharedKey : public HashTableKey { |
| public: |
| StringSharedKey(String* source, |
| SharedFunctionInfo* shared, |
| StrictModeFlag strict_mode) |
| : source_(source), |
| shared_(shared), |
| strict_mode_(strict_mode) { } |
| |
| bool IsMatch(Object* other) { |
| if (!other->IsFixedArray()) return false; |
| FixedArray* pair = FixedArray::cast(other); |
| SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0)); |
| if (shared != shared_) return false; |
| StrictModeFlag strict_mode = static_cast<StrictModeFlag>( |
| Smi::cast(pair->get(2))->value()); |
| if (strict_mode != strict_mode_) return false; |
| String* source = String::cast(pair->get(1)); |
| return source->Equals(source_); |
| } |
| |
| static uint32_t StringSharedHashHelper(String* source, |
| SharedFunctionInfo* shared, |
| StrictModeFlag strict_mode) { |
| uint32_t hash = source->Hash(); |
| if (shared->HasSourceCode()) { |
| // Instead of using the SharedFunctionInfo pointer in the hash |
| // code computation, we use a combination of the hash of the |
| // script source code and the start and end positions. We do |
| // this to ensure that the cache entries can survive garbage |
| // collection. |
| Script* script = Script::cast(shared->script()); |
| hash ^= String::cast(script->source())->Hash(); |
| if (strict_mode == kStrictMode) hash ^= 0x8000; |
| hash += shared->start_position(); |
| } |
| return hash; |
| } |
| |
| uint32_t Hash() { |
| return StringSharedHashHelper(source_, shared_, strict_mode_); |
| } |
| |
| uint32_t HashForObject(Object* obj) { |
| FixedArray* pair = FixedArray::cast(obj); |
| SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0)); |
| String* source = String::cast(pair->get(1)); |
| StrictModeFlag strict_mode = static_cast<StrictModeFlag>( |
| Smi::cast(pair->get(2))->value()); |
| return StringSharedHashHelper(source, shared, strict_mode); |
| } |
| |
| MUST_USE_RESULT MaybeObject* AsObject() { |
| Object* obj; |
| { MaybeObject* maybe_obj = source_->GetHeap()->AllocateFixedArray(3); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* pair = FixedArray::cast(obj); |
| pair->set(0, shared_); |
| pair->set(1, source_); |
| pair->set(2, Smi::FromInt(strict_mode_)); |
| return pair; |
| } |
| |
| private: |
| String* source_; |
| SharedFunctionInfo* shared_; |
| StrictModeFlag strict_mode_; |
| }; |
| |
| |
| // RegExpKey carries the source and flags of a regular expression as key. |
| class RegExpKey : public HashTableKey { |
| public: |
| RegExpKey(String* string, JSRegExp::Flags flags) |
| : string_(string), |
| flags_(Smi::FromInt(flags.value())) { } |
| |
| // Rather than storing the key in the hash table, a pointer to the |
| // stored value is stored where the key should be. IsMatch then |
| // compares the search key to the found object, rather than comparing |
| // a key to a key. |
| bool IsMatch(Object* obj) { |
| FixedArray* val = FixedArray::cast(obj); |
| return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex))) |
| && (flags_ == val->get(JSRegExp::kFlagsIndex)); |
| } |
| |
| uint32_t Hash() { return RegExpHash(string_, flags_); } |
| |
| Object* AsObject() { |
| // Plain hash maps, which is where regexp keys are used, don't |
| // use this function. |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| uint32_t HashForObject(Object* obj) { |
| FixedArray* val = FixedArray::cast(obj); |
| return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)), |
| Smi::cast(val->get(JSRegExp::kFlagsIndex))); |
| } |
| |
| static uint32_t RegExpHash(String* string, Smi* flags) { |
| return string->Hash() + flags->value(); |
| } |
| |
| String* string_; |
| Smi* flags_; |
| }; |
| |
| // Utf8SymbolKey carries a vector of chars as key. |
| class Utf8SymbolKey : public HashTableKey { |
| public: |
| explicit Utf8SymbolKey(Vector<const char> string, uint32_t seed) |
| : string_(string), hash_field_(0), seed_(seed) { } |
| |
| bool IsMatch(Object* string) { |
| return String::cast(string)->IsEqualTo(string_); |
| } |
| |
| uint32_t Hash() { |
| if (hash_field_ != 0) return hash_field_ >> String::kHashShift; |
| unibrow::Utf8InputBuffer<> buffer(string_.start(), |
| static_cast<unsigned>(string_.length())); |
| chars_ = buffer.Length(); |
| hash_field_ = String::ComputeHashField(&buffer, chars_, seed_); |
| uint32_t result = hash_field_ >> String::kHashShift; |
| ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. |
| return result; |
| } |
| |
| uint32_t HashForObject(Object* other) { |
| return String::cast(other)->Hash(); |
| } |
| |
| MaybeObject* AsObject() { |
| if (hash_field_ == 0) Hash(); |
| return Isolate::Current()->heap()->AllocateSymbol( |
| string_, chars_, hash_field_); |
| } |
| |
| Vector<const char> string_; |
| uint32_t hash_field_; |
| int chars_; // Caches the number of characters when computing the hash code. |
| uint32_t seed_; |
| }; |
| |
| |
| template <typename Char> |
| class SequentialSymbolKey : public HashTableKey { |
| public: |
| explicit SequentialSymbolKey(Vector<const Char> string, uint32_t seed) |
| : string_(string), hash_field_(0), seed_(seed) { } |
| |
| uint32_t Hash() { |
| StringHasher hasher(string_.length(), seed_); |
| |
| // Very long strings have a trivial hash that doesn't inspect the |
| // string contents. |
| if (hasher.has_trivial_hash()) { |
| hash_field_ = hasher.GetHashField(); |
| } else { |
| int i = 0; |
| // Do the iterative array index computation as long as there is a |
| // chance this is an array index. |
| while (i < string_.length() && hasher.is_array_index()) { |
| hasher.AddCharacter(static_cast<uc32>(string_[i])); |
| i++; |
| } |
| |
| // Process the remaining characters without updating the array |
| // index. |
| while (i < string_.length()) { |
| hasher.AddCharacterNoIndex(static_cast<uc32>(string_[i])); |
| i++; |
| } |
| hash_field_ = hasher.GetHashField(); |
| } |
| |
| uint32_t result = hash_field_ >> String::kHashShift; |
| ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. |
| return result; |
| } |
| |
| |
| uint32_t HashForObject(Object* other) { |
| return String::cast(other)->Hash(); |
| } |
| |
| Vector<const Char> string_; |
| uint32_t hash_field_; |
| uint32_t seed_; |
| }; |
| |
| |
| |
| class AsciiSymbolKey : public SequentialSymbolKey<char> { |
| public: |
| AsciiSymbolKey(Vector<const char> str, uint32_t seed) |
| : SequentialSymbolKey<char>(str, seed) { } |
| |
| bool IsMatch(Object* string) { |
| return String::cast(string)->IsAsciiEqualTo(string_); |
| } |
| |
| MaybeObject* AsObject() { |
| if (hash_field_ == 0) Hash(); |
| return HEAP->AllocateAsciiSymbol(string_, hash_field_); |
| } |
| }; |
| |
| |
| class SubStringAsciiSymbolKey : public HashTableKey { |
| public: |
| explicit SubStringAsciiSymbolKey(Handle<SeqAsciiString> string, |
| int from, |
| int length, |
| uint32_t seed) |
| : string_(string), from_(from), length_(length), seed_(seed) { } |
| |
| uint32_t Hash() { |
| ASSERT(length_ >= 0); |
| ASSERT(from_ + length_ <= string_->length()); |
| StringHasher hasher(length_, string_->GetHeap()->HashSeed()); |
| |
| // Very long strings have a trivial hash that doesn't inspect the |
| // string contents. |
| if (hasher.has_trivial_hash()) { |
| hash_field_ = hasher.GetHashField(); |
| } else { |
| int i = 0; |
| // Do the iterative array index computation as long as there is a |
| // chance this is an array index. |
| while (i < length_ && hasher.is_array_index()) { |
| hasher.AddCharacter(static_cast<uc32>( |
| string_->SeqAsciiStringGet(i + from_))); |
| i++; |
| } |
| |
| // Process the remaining characters without updating the array |
| // index. |
| while (i < length_) { |
| hasher.AddCharacterNoIndex(static_cast<uc32>( |
| string_->SeqAsciiStringGet(i + from_))); |
| i++; |
| } |
| hash_field_ = hasher.GetHashField(); |
| } |
| |
| uint32_t result = hash_field_ >> String::kHashShift; |
| ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. |
| return result; |
| } |
| |
| |
| uint32_t HashForObject(Object* other) { |
| return String::cast(other)->Hash(); |
| } |
| |
| bool IsMatch(Object* string) { |
| Vector<const char> chars(string_->GetChars() + from_, length_); |
| return String::cast(string)->IsAsciiEqualTo(chars); |
| } |
| |
| MaybeObject* AsObject() { |
| if (hash_field_ == 0) Hash(); |
| Vector<const char> chars(string_->GetChars() + from_, length_); |
| return HEAP->AllocateAsciiSymbol(chars, hash_field_); |
| } |
| |
| private: |
| Handle<SeqAsciiString> string_; |
| int from_; |
| int length_; |
| uint32_t hash_field_; |
| uint32_t seed_; |
| }; |
| |
| |
| class TwoByteSymbolKey : public SequentialSymbolKey<uc16> { |
| public: |
| explicit TwoByteSymbolKey(Vector<const uc16> str, uint32_t seed) |
| : SequentialSymbolKey<uc16>(str, seed) { } |
| |
| bool IsMatch(Object* string) { |
| return String::cast(string)->IsTwoByteEqualTo(string_); |
| } |
| |
| MaybeObject* AsObject() { |
| if (hash_field_ == 0) Hash(); |
| return HEAP->AllocateTwoByteSymbol(string_, hash_field_); |
| } |
| }; |
| |
| |
| // SymbolKey carries a string/symbol object as key. |
| class SymbolKey : public HashTableKey { |
| public: |
| explicit SymbolKey(String* string) |
| : string_(string) { } |
| |
| bool IsMatch(Object* string) { |
| return String::cast(string)->Equals(string_); |
| } |
| |
| uint32_t Hash() { return string_->Hash(); } |
| |
| uint32_t HashForObject(Object* other) { |
| return String::cast(other)->Hash(); |
| } |
| |
| MaybeObject* AsObject() { |
| // Attempt to flatten the string, so that symbols will most often |
| // be flat strings. |
| string_ = string_->TryFlattenGetString(); |
| Heap* heap = string_->GetHeap(); |
| // Transform string to symbol if possible. |
| Map* map = heap->SymbolMapForString(string_); |
| if (map != NULL) { |
| string_->set_map(map); |
| ASSERT(string_->IsSymbol()); |
| return string_; |
| } |
| // Otherwise allocate a new symbol. |
| StringInputBuffer buffer(string_); |
| return heap->AllocateInternalSymbol(&buffer, |
| string_->length(), |
| string_->hash_field()); |
| } |
| |
| static uint32_t StringHash(Object* obj) { |
| return String::cast(obj)->Hash(); |
| } |
| |
| String* string_; |
| }; |
| |
| |
| template<typename Shape, typename Key> |
| void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) { |
| IteratePointers(v, 0, kElementsStartOffset); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) { |
| IteratePointers(v, |
| kElementsStartOffset, |
| kHeaderSize + length() * kPointerSize); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* HashTable<Shape, Key>::Allocate(int at_least_space_for, |
| PretenureFlag pretenure) { |
| int capacity = ComputeCapacity(at_least_space_for); |
| if (capacity > HashTable::kMaxCapacity) { |
| return Failure::OutOfMemoryException(); |
| } |
| |
| Object* obj; |
| { MaybeObject* maybe_obj = Isolate::Current()->heap()-> |
| AllocateHashTable(EntryToIndex(capacity), pretenure); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| HashTable::cast(obj)->SetNumberOfElements(0); |
| HashTable::cast(obj)->SetNumberOfDeletedElements(0); |
| HashTable::cast(obj)->SetCapacity(capacity); |
| return obj; |
| } |
| |
| |
| // Find entry for key otherwise return kNotFound. |
| int StringDictionary::FindEntry(String* key) { |
| if (!key->IsSymbol()) { |
| return HashTable<StringDictionaryShape, String*>::FindEntry(key); |
| } |
| |
| // Optimized for symbol key. Knowledge of the key type allows: |
| // 1. Move the check if the key is a symbol out of the loop. |
| // 2. Avoid comparing hash codes in symbol to symbol comparision. |
| // 3. Detect a case when a dictionary key is not a symbol but the key is. |
| // In case of positive result the dictionary key may be replaced by |
| // the symbol with minimal performance penalty. It gives a chance to |
| // perform further lookups in code stubs (and significant performance boost |
| // a certain style of code). |
| |
| // EnsureCapacity will guarantee the hash table is never full. |
| uint32_t capacity = Capacity(); |
| uint32_t entry = FirstProbe(key->Hash(), capacity); |
| uint32_t count = 1; |
| |
| while (true) { |
| int index = EntryToIndex(entry); |
| Object* element = get(index); |
| if (element->IsUndefined()) break; // Empty entry. |
| if (key == element) return entry; |
| if (!element->IsSymbol() && |
| !element->IsNull() && |
| String::cast(element)->Equals(key)) { |
| // Replace a non-symbol key by the equivalent symbol for faster further |
| // lookups. |
| set(index, key); |
| return entry; |
| } |
| ASSERT(element->IsNull() || !String::cast(element)->Equals(key)); |
| entry = NextProbe(entry, count++, capacity); |
| } |
| return kNotFound; |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* HashTable<Shape, Key>::Rehash(HashTable* new_table, Key key) { |
| ASSERT(NumberOfElements() < new_table->Capacity()); |
| |
| AssertNoAllocation no_gc; |
| WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc); |
| |
| // Copy prefix to new array. |
| for (int i = kPrefixStartIndex; |
| i < kPrefixStartIndex + Shape::kPrefixSize; |
| i++) { |
| new_table->set(i, get(i), mode); |
| } |
| |
| // Rehash the elements. |
| int capacity = Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| uint32_t from_index = EntryToIndex(i); |
| Object* k = get(from_index); |
| if (IsKey(k)) { |
| uint32_t hash = HashTable<Shape, Key>::HashForObject(key, k); |
| uint32_t insertion_index = |
| EntryToIndex(new_table->FindInsertionEntry(hash)); |
| for (int j = 0; j < Shape::kEntrySize; j++) { |
| new_table->set(insertion_index + j, get(from_index + j), mode); |
| } |
| } |
| } |
| new_table->SetNumberOfElements(NumberOfElements()); |
| new_table->SetNumberOfDeletedElements(0); |
| return new_table; |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* HashTable<Shape, Key>::EnsureCapacity(int n, Key key) { |
| int capacity = Capacity(); |
| int nof = NumberOfElements() + n; |
| int nod = NumberOfDeletedElements(); |
| // Return if: |
| // 50% is still free after adding n elements and |
| // at most 50% of the free elements are deleted elements. |
| if (nod <= (capacity - nof) >> 1) { |
| int needed_free = nof >> 1; |
| if (nof + needed_free <= capacity) return this; |
| } |
| |
| const int kMinCapacityForPretenure = 256; |
| bool pretenure = |
| (capacity > kMinCapacityForPretenure) && !GetHeap()->InNewSpace(this); |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| Allocate(nof * 2, pretenure ? TENURED : NOT_TENURED); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| return Rehash(HashTable::cast(obj), key); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* HashTable<Shape, Key>::Shrink(Key key) { |
| int capacity = Capacity(); |
| int nof = NumberOfElements(); |
| |
| // Shrink to fit the number of elements if only a quarter of the |
| // capacity is filled with elements. |
| if (nof > (capacity >> 2)) return this; |
| // Allocate a new dictionary with room for at least the current |
| // number of elements. The allocation method will make sure that |
| // there is extra room in the dictionary for additions. Don't go |
| // lower than room for 16 elements. |
| int at_least_room_for = nof; |
| if (at_least_room_for < 16) return this; |
| |
| const int kMinCapacityForPretenure = 256; |
| bool pretenure = |
| (at_least_room_for > kMinCapacityForPretenure) && |
| !GetHeap()->InNewSpace(this); |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| Allocate(at_least_room_for, pretenure ? TENURED : NOT_TENURED); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| return Rehash(HashTable::cast(obj), key); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) { |
| uint32_t capacity = Capacity(); |
| uint32_t entry = FirstProbe(hash, capacity); |
| uint32_t count = 1; |
| // EnsureCapacity will guarantee the hash table is never full. |
| while (true) { |
| Object* element = KeyAt(entry); |
| if (element->IsUndefined() || element->IsNull()) break; |
| entry = NextProbe(entry, count++, capacity); |
| } |
| return entry; |
| } |
| |
| // Force instantiation of template instances class. |
| // Please note this list is compiler dependent. |
| |
| template class HashTable<SymbolTableShape, HashTableKey*>; |
| |
| template class HashTable<CompilationCacheShape, HashTableKey*>; |
| |
| template class HashTable<MapCacheShape, HashTableKey*>; |
| |
| template class HashTable<ObjectHashTableShape, JSObject*>; |
| |
| template class Dictionary<StringDictionaryShape, String*>; |
| |
| template class Dictionary<SeededNumberDictionaryShape, uint32_t>; |
| |
| template class Dictionary<UnseededNumberDictionaryShape, uint32_t>; |
| |
| template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>:: |
| Allocate(int at_least_space_for); |
| |
| template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: |
| Allocate(int at_least_space_for); |
| |
| template MaybeObject* Dictionary<StringDictionaryShape, String*>::Allocate( |
| int); |
| |
| template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::AtPut( |
| uint32_t, Object*); |
| |
| template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: |
| AtPut(uint32_t, Object*); |
| |
| template Object* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: |
| SlowReverseLookup(Object* value); |
| |
| template Object* Dictionary<StringDictionaryShape, String*>::SlowReverseLookup( |
| Object*); |
| |
| template void Dictionary<SeededNumberDictionaryShape, uint32_t>::CopyKeysTo( |
| FixedArray*, |
| PropertyAttributes, |
| Dictionary<SeededNumberDictionaryShape, uint32_t>::SortMode); |
| |
| template Object* Dictionary<StringDictionaryShape, String*>::DeleteProperty( |
| int, JSObject::DeleteMode); |
| |
| template Object* Dictionary<SeededNumberDictionaryShape, uint32_t>:: |
| DeleteProperty(int, JSObject::DeleteMode); |
| |
| template MaybeObject* Dictionary<StringDictionaryShape, String*>::Shrink( |
| String*); |
| |
| template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::Shrink( |
| uint32_t); |
| |
| template void Dictionary<StringDictionaryShape, String*>::CopyKeysTo( |
| FixedArray*, |
| int, |
| Dictionary<StringDictionaryShape, String*>::SortMode); |
| |
| template int |
| Dictionary<StringDictionaryShape, String*>::NumberOfElementsFilterAttributes( |
| PropertyAttributes); |
| |
| template MaybeObject* Dictionary<StringDictionaryShape, String*>::Add( |
| String*, Object*, PropertyDetails); |
| |
| template MaybeObject* |
| Dictionary<StringDictionaryShape, String*>::GenerateNewEnumerationIndices(); |
| |
| template int |
| Dictionary<SeededNumberDictionaryShape, uint32_t>:: |
| NumberOfElementsFilterAttributes(PropertyAttributes); |
| |
| template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>::Add( |
| uint32_t, Object*, PropertyDetails); |
| |
| template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>::Add( |
| uint32_t, Object*, PropertyDetails); |
| |
| template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>:: |
| EnsureCapacity(int, uint32_t); |
| |
| template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: |
| EnsureCapacity(int, uint32_t); |
| |
| template MaybeObject* Dictionary<StringDictionaryShape, String*>:: |
| EnsureCapacity(int, String*); |
| |
| template MaybeObject* Dictionary<SeededNumberDictionaryShape, uint32_t>:: |
| AddEntry(uint32_t, Object*, PropertyDetails, uint32_t); |
| |
| template MaybeObject* Dictionary<UnseededNumberDictionaryShape, uint32_t>:: |
| AddEntry(uint32_t, Object*, PropertyDetails, uint32_t); |
| |
| template MaybeObject* Dictionary<StringDictionaryShape, String*>::AddEntry( |
| String*, Object*, PropertyDetails, uint32_t); |
| |
| template |
| int Dictionary<SeededNumberDictionaryShape, uint32_t>::NumberOfEnumElements(); |
| |
| template |
| int Dictionary<StringDictionaryShape, String*>::NumberOfEnumElements(); |
| |
| template |
| int HashTable<SeededNumberDictionaryShape, uint32_t>::FindEntry(uint32_t); |
| |
| |
| // Collates undefined and unexisting elements below limit from position |
| // zero of the elements. The object stays in Dictionary mode. |
| MaybeObject* JSObject::PrepareSlowElementsForSort(uint32_t limit) { |
| ASSERT(HasDictionaryElements()); |
| // Must stay in dictionary mode, either because of requires_slow_elements, |
| // or because we are not going to sort (and therefore compact) all of the |
| // elements. |
| SeededNumberDictionary* dict = element_dictionary(); |
| HeapNumber* result_double = NULL; |
| if (limit > static_cast<uint32_t>(Smi::kMaxValue)) { |
| // Allocate space for result before we start mutating the object. |
| Object* new_double; |
| { MaybeObject* maybe_new_double = GetHeap()->AllocateHeapNumber(0.0); |
| if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double; |
| } |
| result_double = HeapNumber::cast(new_double); |
| } |
| |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| SeededNumberDictionary::Allocate(dict->NumberOfElements()); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| SeededNumberDictionary* new_dict = SeededNumberDictionary::cast(obj); |
| |
| AssertNoAllocation no_alloc; |
| |
| uint32_t pos = 0; |
| uint32_t undefs = 0; |
| int capacity = dict->Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Object* k = dict->KeyAt(i); |
| if (dict->IsKey(k)) { |
| ASSERT(k->IsNumber()); |
| ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0); |
| ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0); |
| ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32); |
| Object* value = dict->ValueAt(i); |
| PropertyDetails details = dict->DetailsAt(i); |
| if (details.type() == CALLBACKS) { |
| // Bail out and do the sorting of undefineds and array holes in JS. |
| return Smi::FromInt(-1); |
| } |
| uint32_t key = NumberToUint32(k); |
| // In the following we assert that adding the entry to the new dictionary |
| // does not cause GC. This is the case because we made sure to allocate |
| // the dictionary big enough above, so it need not grow. |
| if (key < limit) { |
| if (value->IsUndefined()) { |
| undefs++; |
| } else { |
| if (pos > static_cast<uint32_t>(Smi::kMaxValue)) { |
| // Adding an entry with the key beyond smi-range requires |
| // allocation. Bailout. |
| return Smi::FromInt(-1); |
| } |
| new_dict->AddNumberEntry(pos, value, details)->ToObjectUnchecked(); |
| pos++; |
| } |
| } else { |
| if (key > static_cast<uint32_t>(Smi::kMaxValue)) { |
| // Adding an entry with the key beyond smi-range requires |
| // allocation. Bailout. |
| return Smi::FromInt(-1); |
| } |
| new_dict->AddNumberEntry(key, value, details)->ToObjectUnchecked(); |
| } |
| } |
| } |
| |
| uint32_t result = pos; |
| PropertyDetails no_details = PropertyDetails(NONE, NORMAL); |
| Heap* heap = GetHeap(); |
| while (undefs > 0) { |
| if (pos > static_cast<uint32_t>(Smi::kMaxValue)) { |
| // Adding an entry with the key beyond smi-range requires |
| // allocation. Bailout. |
| return Smi::FromInt(-1); |
| } |
| new_dict->AddNumberEntry(pos, heap->undefined_value(), no_details)-> |
| ToObjectUnchecked(); |
| pos++; |
| undefs--; |
| } |
| |
| set_elements(new_dict); |
| |
| if (result <= static_cast<uint32_t>(Smi::kMaxValue)) { |
| return Smi::FromInt(static_cast<int>(result)); |
| } |
| |
| ASSERT_NE(NULL, result_double); |
| result_double->set_value(static_cast<double>(result)); |
| return result_double; |
| } |
| |
| |
| // Collects all defined (non-hole) and non-undefined (array) elements at |
| // the start of the elements array. |
| // If the object is in dictionary mode, it is converted to fast elements |
| // mode. |
| MaybeObject* JSObject::PrepareElementsForSort(uint32_t limit) { |
| ASSERT(!HasExternalArrayElements()); |
| |
| Heap* heap = GetHeap(); |
| |
| if (HasDictionaryElements()) { |
| // Convert to fast elements containing only the existing properties. |
| // Ordering is irrelevant, since we are going to sort anyway. |
| SeededNumberDictionary* dict = element_dictionary(); |
| if (IsJSArray() || dict->requires_slow_elements() || |
| dict->max_number_key() >= limit) { |
| return PrepareSlowElementsForSort(limit); |
| } |
| // Convert to fast elements. |
| |
| Object* obj; |
| { MaybeObject* maybe_obj = map()->GetFastElementsMap(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| Map* new_map = Map::cast(obj); |
| |
| PretenureFlag tenure = heap->InNewSpace(this) ? NOT_TENURED: TENURED; |
| Object* new_array; |
| { MaybeObject* maybe_new_array = |
| heap->AllocateFixedArray(dict->NumberOfElements(), tenure); |
| if (!maybe_new_array->ToObject(&new_array)) return maybe_new_array; |
| } |
| FixedArray* fast_elements = FixedArray::cast(new_array); |
| dict->CopyValuesTo(fast_elements); |
| |
| set_map(new_map); |
| set_elements(fast_elements); |
| } else if (!HasFastDoubleElements()) { |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureWritableFastElements(); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| } |
| ASSERT(HasFastElements() || HasFastDoubleElements()); |
| |
| // Collect holes at the end, undefined before that and the rest at the |
| // start, and return the number of non-hole, non-undefined values. |
| |
| FixedArrayBase* elements_base = FixedArrayBase::cast(this->elements()); |
| uint32_t elements_length = static_cast<uint32_t>(elements_base->length()); |
| if (limit > elements_length) { |
| limit = elements_length ; |
| } |
| if (limit == 0) { |
| return Smi::FromInt(0); |
| } |
| |
| HeapNumber* result_double = NULL; |
| if (limit > static_cast<uint32_t>(Smi::kMaxValue)) { |
| // Pessimistically allocate space for return value before |
| // we start mutating the array. |
| Object* new_double; |
| { MaybeObject* maybe_new_double = heap->AllocateHeapNumber(0.0); |
| if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double; |
| } |
| result_double = HeapNumber::cast(new_double); |
| } |
| |
| uint32_t result = 0; |
| if (elements_base->map() == heap->fixed_double_array_map()) { |
| FixedDoubleArray* elements = FixedDoubleArray::cast(elements_base); |
| // Split elements into defined and the_hole, in that order. |
| unsigned int holes = limit; |
| // Assume most arrays contain no holes and undefined values, so minimize the |
| // number of stores of non-undefined, non-the-hole values. |
| for (unsigned int i = 0; i < holes; i++) { |
| if (elements->is_the_hole(i)) { |
| holes--; |
| } else { |
| continue; |
| } |
| // Position i needs to be filled. |
| while (holes > i) { |
| if (elements->is_the_hole(holes)) { |
| holes--; |
| } else { |
| elements->set(i, elements->get_scalar(holes)); |
| break; |
| } |
| } |
| } |
| result = holes; |
| while (holes < limit) { |
| elements->set_the_hole(holes); |
| holes++; |
| } |
| } else { |
| FixedArray* elements = FixedArray::cast(elements_base); |
| AssertNoAllocation no_alloc; |
| |
| // Split elements into defined, undefined and the_hole, in that order. Only |
| // count locations for undefined and the hole, and fill them afterwards. |
| WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_alloc); |
| unsigned int undefs = limit; |
| unsigned int holes = limit; |
| // Assume most arrays contain no holes and undefined values, so minimize the |
| // number of stores of non-undefined, non-the-hole values. |
| for (unsigned int i = 0; i < undefs; i++) { |
| Object* current = elements->get(i); |
| if (current->IsTheHole()) { |
| holes--; |
| undefs--; |
| } else if (current->IsUndefined()) { |
| undefs--; |
| } else { |
| continue; |
| } |
| // Position i needs to be filled. |
| while (undefs > i) { |
| current = elements->get(undefs); |
| if (current->IsTheHole()) { |
| holes--; |
| undefs--; |
| } else if (current->IsUndefined()) { |
| undefs--; |
| } else { |
| elements->set(i, current, write_barrier); |
| break; |
| } |
| } |
| } |
| result = undefs; |
| while (undefs < holes) { |
| elements->set_undefined(undefs); |
| undefs++; |
| } |
| while (holes < limit) { |
| elements->set_the_hole(holes); |
| holes++; |
| } |
| } |
| |
| if (result <= static_cast<uint32_t>(Smi::kMaxValue)) { |
| return Smi::FromInt(static_cast<int>(result)); |
| } |
| ASSERT_NE(NULL, result_double); |
| result_double->set_value(static_cast<double>(result)); |
| return result_double; |
| } |
| |
| |
| Object* ExternalPixelArray::SetValue(uint32_t index, Object* value) { |
| uint8_t clamped_value = 0; |
| if (index < static_cast<uint32_t>(length())) { |
| if (value->IsSmi()) { |
| int int_value = Smi::cast(value)->value(); |
| if (int_value < 0) { |
| clamped_value = 0; |
| } else if (int_value > 255) { |
| clamped_value = 255; |
| } else { |
| clamped_value = static_cast<uint8_t>(int_value); |
| } |
| } else if (value->IsHeapNumber()) { |
| double double_value = HeapNumber::cast(value)->value(); |
| if (!(double_value > 0)) { |
| // NaN and less than zero clamp to zero. |
| clamped_value = 0; |
| } else if (double_value > 255) { |
| // Greater than 255 clamp to 255. |
| clamped_value = 255; |
| } else { |
| // Other doubles are rounded to the nearest integer. |
| clamped_value = static_cast<uint8_t>(double_value + 0.5); |
| } |
| } else { |
| // Clamp undefined to zero (default). All other types have been |
| // converted to a number type further up in the call chain. |
| ASSERT(value->IsUndefined()); |
| } |
| set(index, clamped_value); |
| } |
| return Smi::FromInt(clamped_value); |
| } |
| |
| |
| template<typename ExternalArrayClass, typename ValueType> |
| static MaybeObject* ExternalArrayIntSetter(Heap* heap, |
| ExternalArrayClass* receiver, |
| uint32_t index, |
| Object* value) { |
| ValueType cast_value = 0; |
| if (index < static_cast<uint32_t>(receiver->length())) { |
| if (value->IsSmi()) { |
| int int_value = Smi::cast(value)->value(); |
| cast_value = static_cast<ValueType>(int_value); |
| } else if (value->IsHeapNumber()) { |
| double double_value = HeapNumber::cast(value)->value(); |
| cast_value = static_cast<ValueType>(DoubleToInt32(double_value)); |
| } else { |
| // Clamp undefined to zero (default). All other types have been |
| // converted to a number type further up in the call chain. |
| ASSERT(value->IsUndefined()); |
| } |
| receiver->set(index, cast_value); |
| } |
| return heap->NumberFromInt32(cast_value); |
| } |
| |
| |
| MaybeObject* ExternalByteArray::SetValue(uint32_t index, Object* value) { |
| return ExternalArrayIntSetter<ExternalByteArray, int8_t> |
| (GetHeap(), this, index, value); |
| } |
| |
| |
| MaybeObject* ExternalUnsignedByteArray::SetValue(uint32_t index, |
| Object* value) { |
| return ExternalArrayIntSetter<ExternalUnsignedByteArray, uint8_t> |
| (GetHeap(), this, index, value); |
| } |
| |
| |
| MaybeObject* ExternalShortArray::SetValue(uint32_t index, |
| Object* value) { |
| return ExternalArrayIntSetter<ExternalShortArray, int16_t> |
| (GetHeap(), this, index, value); |
| } |
| |
| |
| MaybeObject* ExternalUnsignedShortArray::SetValue(uint32_t index, |
| Object* value) { |
| return ExternalArrayIntSetter<ExternalUnsignedShortArray, uint16_t> |
| (GetHeap(), this, index, value); |
| } |
| |
| |
| MaybeObject* ExternalIntArray::SetValue(uint32_t index, Object* value) { |
| return ExternalArrayIntSetter<ExternalIntArray, int32_t> |
| (GetHeap(), this, index, value); |
| } |
| |
| |
| MaybeObject* ExternalUnsignedIntArray::SetValue(uint32_t index, Object* value) { |
| uint32_t cast_value = 0; |
| Heap* heap = GetHeap(); |
| if (index < static_cast<uint32_t>(length())) { |
| if (value->IsSmi()) { |
| int int_value = Smi::cast(value)->value(); |
| cast_value = static_cast<uint32_t>(int_value); |
| } else if (value->IsHeapNumber()) { |
| double double_value = HeapNumber::cast(value)->value(); |
| cast_value = static_cast<uint32_t>(DoubleToUint32(double_value)); |
| } else { |
| // Clamp undefined to zero (default). All other types have been |
| // converted to a number type further up in the call chain. |
| ASSERT(value->IsUndefined()); |
| } |
| set(index, cast_value); |
| } |
| return heap->NumberFromUint32(cast_value); |
| } |
| |
| |
| MaybeObject* ExternalFloatArray::SetValue(uint32_t index, Object* value) { |
| float cast_value = 0; |
| Heap* heap = GetHeap(); |
| if (index < static_cast<uint32_t>(length())) { |
| if (value->IsSmi()) { |
| int int_value = Smi::cast(value)->value(); |
| cast_value = static_cast<float>(int_value); |
| } else if (value->IsHeapNumber()) { |
| double double_value = HeapNumber::cast(value)->value(); |
| cast_value = static_cast<float>(double_value); |
| } else { |
| // Clamp undefined to zero (default). All other types have been |
| // converted to a number type further up in the call chain. |
| ASSERT(value->IsUndefined()); |
| } |
| set(index, cast_value); |
| } |
| return heap->AllocateHeapNumber(cast_value); |
| } |
| |
| |
| MaybeObject* ExternalDoubleArray::SetValue(uint32_t index, Object* value) { |
| double double_value = 0; |
| Heap* heap = GetHeap(); |
| if (index < static_cast<uint32_t>(length())) { |
| if (value->IsSmi()) { |
| int int_value = Smi::cast(value)->value(); |
| double_value = static_cast<double>(int_value); |
| } else if (value->IsHeapNumber()) { |
| double_value = HeapNumber::cast(value)->value(); |
| } else { |
| // Clamp undefined to zero (default). All other types have been |
| // converted to a number type further up in the call chain. |
| ASSERT(value->IsUndefined()); |
| } |
| set(index, double_value); |
| } |
| return heap->AllocateHeapNumber(double_value); |
| } |
| |
| |
| JSGlobalPropertyCell* GlobalObject::GetPropertyCell(LookupResult* result) { |
| ASSERT(!HasFastProperties()); |
| Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry()); |
| return JSGlobalPropertyCell::cast(value); |
| } |
| |
| |
| MaybeObject* GlobalObject::EnsurePropertyCell(String* name) { |
| ASSERT(!HasFastProperties()); |
| int entry = property_dictionary()->FindEntry(name); |
| if (entry == StringDictionary::kNotFound) { |
| Heap* heap = GetHeap(); |
| Object* cell; |
| { MaybeObject* maybe_cell = |
| heap->AllocateJSGlobalPropertyCell(heap->the_hole_value()); |
| if (!maybe_cell->ToObject(&cell)) return maybe_cell; |
| } |
| PropertyDetails details(NONE, NORMAL); |
| details = details.AsDeleted(); |
| Object* dictionary; |
| { MaybeObject* maybe_dictionary = |
| property_dictionary()->Add(name, cell, details); |
| if (!maybe_dictionary->ToObject(&dictionary)) return maybe_dictionary; |
| } |
| set_properties(StringDictionary::cast(dictionary)); |
| return cell; |
| } else { |
| Object* value = property_dictionary()->ValueAt(entry); |
| ASSERT(value->IsJSGlobalPropertyCell()); |
| return value; |
| } |
| } |
| |
| |
| MaybeObject* SymbolTable::LookupString(String* string, Object** s) { |
| SymbolKey key(string); |
| return LookupKey(&key, s); |
| } |
| |
| |
| // This class is used for looking up two character strings in the symbol table. |
| // If we don't have a hit we don't want to waste much time so we unroll the |
| // string hash calculation loop here for speed. Doesn't work if the two |
| // characters form a decimal integer, since such strings have a different hash |
| // algorithm. |
| class TwoCharHashTableKey : public HashTableKey { |
| public: |
| TwoCharHashTableKey(uint32_t c1, uint32_t c2, uint32_t seed) |
| : c1_(c1), c2_(c2) { |
| // Char 1. |
| uint32_t hash = seed; |
| hash += c1; |
| hash += hash << 10; |
| hash ^= hash >> 6; |
| // Char 2. |
| hash += c2; |
| hash += hash << 10; |
| hash ^= hash >> 6; |
| // GetHash. |
| hash += hash << 3; |
| hash ^= hash >> 11; |
| hash += hash << 15; |
| if ((hash & String::kHashBitMask) == 0) hash = String::kZeroHash; |
| #ifdef DEBUG |
| StringHasher hasher(2, seed); |
| hasher.AddCharacter(c1); |
| hasher.AddCharacter(c2); |
| // If this assert fails then we failed to reproduce the two-character |
| // version of the string hashing algorithm above. One reason could be |
| // that we were passed two digits as characters, since the hash |
| // algorithm is different in that case. |
| ASSERT_EQ(static_cast<int>(hasher.GetHash()), static_cast<int>(hash)); |
| #endif |
| hash_ = hash; |
| } |
| |
| bool IsMatch(Object* o) { |
| if (!o->IsString()) return false; |
| String* other = String::cast(o); |
| if (other->length() != 2) return false; |
| if (other->Get(0) != c1_) return false; |
| return other->Get(1) == c2_; |
| } |
| |
| uint32_t Hash() { return hash_; } |
| uint32_t HashForObject(Object* key) { |
| if (!key->IsString()) return 0; |
| return String::cast(key)->Hash(); |
| } |
| |
| Object* AsObject() { |
| // The TwoCharHashTableKey is only used for looking in the symbol |
| // table, not for adding to it. |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| private: |
| uint32_t c1_; |
| uint32_t c2_; |
| uint32_t hash_; |
| }; |
| |
| |
| bool SymbolTable::LookupSymbolIfExists(String* string, String** symbol) { |
| SymbolKey key(string); |
| int entry = FindEntry(&key); |
| if (entry == kNotFound) { |
| return false; |
| } else { |
| String* result = String::cast(KeyAt(entry)); |
| ASSERT(StringShape(result).IsSymbol()); |
| *symbol = result; |
| return true; |
| } |
| } |
| |
| |
| bool SymbolTable::LookupTwoCharsSymbolIfExists(uint32_t c1, |
| uint32_t c2, |
| String** symbol) { |
| TwoCharHashTableKey key(c1, c2, GetHeap()->HashSeed()); |
| int entry = FindEntry(&key); |
| if (entry == kNotFound) { |
| return false; |
| } else { |
| String* result = String::cast(KeyAt(entry)); |
| ASSERT(StringShape(result).IsSymbol()); |
| *symbol = result; |
| return true; |
| } |
| } |
| |
| |
| MaybeObject* SymbolTable::LookupSymbol(Vector<const char> str, |
| Object** s) { |
| Utf8SymbolKey key(str, GetHeap()->HashSeed()); |
| return LookupKey(&key, s); |
| } |
| |
| |
| MaybeObject* SymbolTable::LookupAsciiSymbol(Vector<const char> str, |
| Object** s) { |
| AsciiSymbolKey key(str, GetHeap()->HashSeed()); |
| return LookupKey(&key, s); |
| } |
| |
| |
| MaybeObject* SymbolTable::LookupSubStringAsciiSymbol(Handle<SeqAsciiString> str, |
| int from, |
| int length, |
| Object** s) { |
| SubStringAsciiSymbolKey key(str, from, length, GetHeap()->HashSeed()); |
| return LookupKey(&key, s); |
| } |
| |
| |
| MaybeObject* SymbolTable::LookupTwoByteSymbol(Vector<const uc16> str, |
| Object** s) { |
| TwoByteSymbolKey key(str, GetHeap()->HashSeed()); |
| return LookupKey(&key, s); |
| } |
| |
| MaybeObject* SymbolTable::LookupKey(HashTableKey* key, Object** s) { |
| int entry = FindEntry(key); |
| |
| // Symbol already in table. |
| if (entry != kNotFound) { |
| *s = KeyAt(entry); |
| return this; |
| } |
| |
| // Adding new symbol. Grow table if needed. |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| // Create symbol object. |
| Object* symbol; |
| { MaybeObject* maybe_symbol = key->AsObject(); |
| if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol; |
| } |
| |
| // If the symbol table grew as part of EnsureCapacity, obj is not |
| // the current symbol table and therefore we cannot use |
| // SymbolTable::cast here. |
| SymbolTable* table = reinterpret_cast<SymbolTable*>(obj); |
| |
| // Add the new symbol and return it along with the symbol table. |
| entry = table->FindInsertionEntry(key->Hash()); |
| table->set(EntryToIndex(entry), symbol); |
| table->ElementAdded(); |
| *s = symbol; |
| return table; |
| } |
| |
| |
| Object* CompilationCacheTable::Lookup(String* src) { |
| StringKey key(src); |
| int entry = FindEntry(&key); |
| if (entry == kNotFound) return GetHeap()->undefined_value(); |
| return get(EntryToIndex(entry) + 1); |
| } |
| |
| |
| Object* CompilationCacheTable::LookupEval(String* src, |
| Context* context, |
| StrictModeFlag strict_mode) { |
| StringSharedKey key(src, context->closure()->shared(), strict_mode); |
| int entry = FindEntry(&key); |
| if (entry == kNotFound) return GetHeap()->undefined_value(); |
| return get(EntryToIndex(entry) + 1); |
| } |
| |
| |
| Object* CompilationCacheTable::LookupRegExp(String* src, |
| JSRegExp::Flags flags) { |
| RegExpKey key(src, flags); |
| int entry = FindEntry(&key); |
| if (entry == kNotFound) return GetHeap()->undefined_value(); |
| return get(EntryToIndex(entry) + 1); |
| } |
| |
| |
| MaybeObject* CompilationCacheTable::Put(String* src, Object* value) { |
| StringKey key(src); |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, &key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| CompilationCacheTable* cache = |
| reinterpret_cast<CompilationCacheTable*>(obj); |
| int entry = cache->FindInsertionEntry(key.Hash()); |
| cache->set(EntryToIndex(entry), src); |
| cache->set(EntryToIndex(entry) + 1, value); |
| cache->ElementAdded(); |
| return cache; |
| } |
| |
| |
| MaybeObject* CompilationCacheTable::PutEval(String* src, |
| Context* context, |
| SharedFunctionInfo* value) { |
| StringSharedKey key(src, |
| context->closure()->shared(), |
| value->strict_mode() ? kStrictMode : kNonStrictMode); |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, &key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| CompilationCacheTable* cache = |
| reinterpret_cast<CompilationCacheTable*>(obj); |
| int entry = cache->FindInsertionEntry(key.Hash()); |
| |
| Object* k; |
| { MaybeObject* maybe_k = key.AsObject(); |
| if (!maybe_k->ToObject(&k)) return maybe_k; |
| } |
| |
| cache->set(EntryToIndex(entry), k); |
| cache->set(EntryToIndex(entry) + 1, value); |
| cache->ElementAdded(); |
| return cache; |
| } |
| |
| |
| MaybeObject* CompilationCacheTable::PutRegExp(String* src, |
| JSRegExp::Flags flags, |
| FixedArray* value) { |
| RegExpKey key(src, flags); |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, &key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| CompilationCacheTable* cache = |
| reinterpret_cast<CompilationCacheTable*>(obj); |
| int entry = cache->FindInsertionEntry(key.Hash()); |
| // We store the value in the key slot, and compare the search key |
| // to the stored value with a custon IsMatch function during lookups. |
| cache->set(EntryToIndex(entry), value); |
| cache->set(EntryToIndex(entry) + 1, value); |
| cache->ElementAdded(); |
| return cache; |
| } |
| |
| |
| void CompilationCacheTable::Remove(Object* value) { |
| Object* null_value = GetHeap()->null_value(); |
| for (int entry = 0, size = Capacity(); entry < size; entry++) { |
| int entry_index = EntryToIndex(entry); |
| int value_index = entry_index + 1; |
| if (get(value_index) == value) { |
| fast_set(this, entry_index, null_value); |
| fast_set(this, value_index, null_value); |
| ElementRemoved(); |
| } |
| } |
| return; |
| } |
| |
| |
| // SymbolsKey used for HashTable where key is array of symbols. |
| class SymbolsKey : public HashTableKey { |
| public: |
| explicit SymbolsKey(FixedArray* symbols) : symbols_(symbols) { } |
| |
| bool IsMatch(Object* symbols) { |
| FixedArray* o = FixedArray::cast(symbols); |
| int len = symbols_->length(); |
| if (o->length() != len) return false; |
| for (int i = 0; i < len; i++) { |
| if (o->get(i) != symbols_->get(i)) return false; |
| } |
| return true; |
| } |
| |
| uint32_t Hash() { return HashForObject(symbols_); } |
| |
| uint32_t HashForObject(Object* obj) { |
| FixedArray* symbols = FixedArray::cast(obj); |
| int len = symbols->length(); |
| uint32_t hash = 0; |
| for (int i = 0; i < len; i++) { |
| hash ^= String::cast(symbols->get(i))->Hash(); |
| } |
| return hash; |
| } |
| |
| Object* AsObject() { return symbols_; } |
| |
| private: |
| FixedArray* symbols_; |
| }; |
| |
| |
| Object* MapCache::Lookup(FixedArray* array) { |
| SymbolsKey key(array); |
| int entry = FindEntry(&key); |
| if (entry == kNotFound) return GetHeap()->undefined_value(); |
| return get(EntryToIndex(entry) + 1); |
| } |
| |
| |
| MaybeObject* MapCache::Put(FixedArray* array, Map* value) { |
| SymbolsKey key(array); |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, &key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| MapCache* cache = reinterpret_cast<MapCache*>(obj); |
| int entry = cache->FindInsertionEntry(key.Hash()); |
| cache->set(EntryToIndex(entry), array); |
| cache->set(EntryToIndex(entry) + 1, value); |
| cache->ElementAdded(); |
| return cache; |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* Dictionary<Shape, Key>::Allocate(int at_least_space_for) { |
| Object* obj; |
| { MaybeObject* maybe_obj = |
| HashTable<Shape, Key>::Allocate(at_least_space_for); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| // Initialize the next enumeration index. |
| Dictionary<Shape, Key>::cast(obj)-> |
| SetNextEnumerationIndex(PropertyDetails::kInitialIndex); |
| return obj; |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() { |
| Heap* heap = Dictionary<Shape, Key>::GetHeap(); |
| int length = HashTable<Shape, Key>::NumberOfElements(); |
| |
| // Allocate and initialize iteration order array. |
| Object* obj; |
| { MaybeObject* maybe_obj = heap->AllocateFixedArray(length); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* iteration_order = FixedArray::cast(obj); |
| for (int i = 0; i < length; i++) { |
| iteration_order->set(i, Smi::FromInt(i)); |
| } |
| |
| // Allocate array with enumeration order. |
| { MaybeObject* maybe_obj = heap->AllocateFixedArray(length); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| FixedArray* enumeration_order = FixedArray::cast(obj); |
| |
| // Fill the enumeration order array with property details. |
| int capacity = HashTable<Shape, Key>::Capacity(); |
| int pos = 0; |
| for (int i = 0; i < capacity; i++) { |
| if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) { |
| enumeration_order->set(pos++, Smi::FromInt(DetailsAt(i).index())); |
| } |
| } |
| |
| // Sort the arrays wrt. enumeration order. |
| iteration_order->SortPairs(enumeration_order, enumeration_order->length()); |
| |
| // Overwrite the enumeration_order with the enumeration indices. |
| for (int i = 0; i < length; i++) { |
| int index = Smi::cast(iteration_order->get(i))->value(); |
| int enum_index = PropertyDetails::kInitialIndex + i; |
| enumeration_order->set(index, Smi::FromInt(enum_index)); |
| } |
| |
| // Update the dictionary with new indices. |
| capacity = HashTable<Shape, Key>::Capacity(); |
| pos = 0; |
| for (int i = 0; i < capacity; i++) { |
| if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) { |
| int enum_index = Smi::cast(enumeration_order->get(pos++))->value(); |
| PropertyDetails details = DetailsAt(i); |
| PropertyDetails new_details = |
| PropertyDetails(details.attributes(), details.type(), enum_index); |
| DetailsAtPut(i, new_details); |
| } |
| } |
| |
| // Set the next enumeration index. |
| SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length); |
| return this; |
| } |
| |
| template<typename Shape, typename Key> |
| MaybeObject* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) { |
| // Check whether there are enough enumeration indices to add n elements. |
| if (Shape::kIsEnumerable && |
| !PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) { |
| // If not, we generate new indices for the properties. |
| Object* result; |
| { MaybeObject* maybe_result = GenerateNewEnumerationIndices(); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| } |
| return HashTable<Shape, Key>::EnsureCapacity(n, key); |
| } |
| |
| |
| void SeededNumberDictionary::RemoveNumberEntries(uint32_t from, uint32_t to) { |
| // Do nothing if the interval [from, to) is empty. |
| if (from >= to) return; |
| |
| Heap* heap = GetHeap(); |
| int removed_entries = 0; |
| Object* sentinel = heap->null_value(); |
| int capacity = Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Object* key = KeyAt(i); |
| if (key->IsNumber()) { |
| uint32_t number = static_cast<uint32_t>(key->Number()); |
| if (from <= number && number < to) { |
| SetEntry(i, sentinel, sentinel); |
| removed_entries++; |
| } |
| } |
| } |
| |
| // Update the number of elements. |
| ElementsRemoved(removed_entries); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| Object* Dictionary<Shape, Key>::DeleteProperty(int entry, |
| JSReceiver::DeleteMode mode) { |
| Heap* heap = Dictionary<Shape, Key>::GetHeap(); |
| PropertyDetails details = DetailsAt(entry); |
| // Ignore attributes if forcing a deletion. |
| if (details.IsDontDelete() && mode != JSReceiver::FORCE_DELETION) { |
| return heap->false_value(); |
| } |
| SetEntry(entry, heap->null_value(), heap->null_value()); |
| HashTable<Shape, Key>::ElementRemoved(); |
| return heap->true_value(); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* Dictionary<Shape, Key>::Shrink(Key key) { |
| return HashTable<Shape, Key>::Shrink(key); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* Dictionary<Shape, Key>::AtPut(Key key, Object* value) { |
| int entry = this->FindEntry(key); |
| |
| // If the entry is present set the value; |
| if (entry != Dictionary<Shape, Key>::kNotFound) { |
| ValueAtPut(entry, value); |
| return this; |
| } |
| |
| // Check whether the dictionary should be extended. |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| Object* k; |
| { MaybeObject* maybe_k = Shape::AsObject(key); |
| if (!maybe_k->ToObject(&k)) return maybe_k; |
| } |
| PropertyDetails details = PropertyDetails(NONE, NORMAL); |
| |
| return Dictionary<Shape, Key>::cast(obj)->AddEntry(key, value, details, |
| Dictionary<Shape, Key>::Hash(key)); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| MaybeObject* Dictionary<Shape, Key>::Add(Key key, |
| Object* value, |
| PropertyDetails details) { |
| // Valdate key is absent. |
| SLOW_ASSERT((this->FindEntry(key) == Dictionary<Shape, Key>::kNotFound)); |
| // Check whether the dictionary should be extended. |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| |
| return Dictionary<Shape, Key>::cast(obj)->AddEntry(key, value, details, |
| Dictionary<Shape, Key>::Hash(key)); |
| } |
| |
| |
| // Add a key, value pair to the dictionary. |
| template<typename Shape, typename Key> |
| MaybeObject* Dictionary<Shape, Key>::AddEntry(Key key, |
| Object* value, |
| PropertyDetails details, |
| uint32_t hash) { |
| // Compute the key object. |
| Object* k; |
| { MaybeObject* maybe_k = Shape::AsObject(key); |
| if (!maybe_k->ToObject(&k)) return maybe_k; |
| } |
| |
| uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash); |
| // Insert element at empty or deleted entry |
| if (!details.IsDeleted() && details.index() == 0 && Shape::kIsEnumerable) { |
| // Assign an enumeration index to the property and update |
| // SetNextEnumerationIndex. |
| int index = NextEnumerationIndex(); |
| details = PropertyDetails(details.attributes(), details.type(), index); |
| SetNextEnumerationIndex(index + 1); |
| } |
| SetEntry(entry, k, value, details); |
| ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber() |
| || Dictionary<Shape, Key>::KeyAt(entry)->IsString())); |
| HashTable<Shape, Key>::ElementAdded(); |
| return this; |
| } |
| |
| |
| void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key) { |
| // If the dictionary requires slow elements an element has already |
| // been added at a high index. |
| if (requires_slow_elements()) return; |
| // Check if this index is high enough that we should require slow |
| // elements. |
| if (key > kRequiresSlowElementsLimit) { |
| set_requires_slow_elements(); |
| return; |
| } |
| // Update max key value. |
| Object* max_index_object = get(kMaxNumberKeyIndex); |
| if (!max_index_object->IsSmi() || max_number_key() < key) { |
| FixedArray::set(kMaxNumberKeyIndex, |
| Smi::FromInt(key << kRequiresSlowElementsTagSize)); |
| } |
| } |
| |
| |
| MaybeObject* SeededNumberDictionary::AddNumberEntry(uint32_t key, |
| Object* value, |
| PropertyDetails details) { |
| UpdateMaxNumberKey(key); |
| SLOW_ASSERT(this->FindEntry(key) == kNotFound); |
| return Add(key, value, details); |
| } |
| |
| |
| MaybeObject* UnseededNumberDictionary::AddNumberEntry(uint32_t key, |
| Object* value) { |
| SLOW_ASSERT(this->FindEntry(key) == kNotFound); |
| return Add(key, value, PropertyDetails(NONE, NORMAL)); |
| } |
| |
| |
| MaybeObject* SeededNumberDictionary::AtNumberPut(uint32_t key, Object* value) { |
| UpdateMaxNumberKey(key); |
| return AtPut(key, value); |
| } |
| |
| |
| MaybeObject* UnseededNumberDictionary::AtNumberPut(uint32_t key, |
| Object* value) { |
| return AtPut(key, value); |
| } |
| |
| |
| MaybeObject* SeededNumberDictionary::Set(uint32_t key, |
| Object* value, |
| PropertyDetails details) { |
| int entry = FindEntry(key); |
| if (entry == kNotFound) return AddNumberEntry(key, value, details); |
| // Preserve enumeration index. |
| details = PropertyDetails(details.attributes(), |
| details.type(), |
| DetailsAt(entry).index()); |
| MaybeObject* maybe_object_key = SeededNumberDictionaryShape::AsObject(key); |
| Object* object_key; |
| if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key; |
| SetEntry(entry, object_key, value, details); |
| return this; |
| } |
| |
| |
| MaybeObject* UnseededNumberDictionary::Set(uint32_t key, |
| Object* value) { |
| int entry = FindEntry(key); |
| if (entry == kNotFound) return AddNumberEntry(key, value); |
| MaybeObject* maybe_object_key = UnseededNumberDictionaryShape::AsObject(key); |
| Object* object_key; |
| if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key; |
| SetEntry(entry, object_key, value); |
| return this; |
| } |
| |
| |
| |
| template<typename Shape, typename Key> |
| int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes( |
| PropertyAttributes filter) { |
| int capacity = HashTable<Shape, Key>::Capacity(); |
| int result = 0; |
| for (int i = 0; i < capacity; i++) { |
| Object* k = HashTable<Shape, Key>::KeyAt(i); |
| if (HashTable<Shape, Key>::IsKey(k)) { |
| PropertyDetails details = DetailsAt(i); |
| if (details.IsDeleted()) continue; |
| PropertyAttributes attr = details.attributes(); |
| if ((attr & filter) == 0) result++; |
| } |
| } |
| return result; |
| } |
| |
| |
| template<typename Shape, typename Key> |
| int Dictionary<Shape, Key>::NumberOfEnumElements() { |
| return NumberOfElementsFilterAttributes( |
| static_cast<PropertyAttributes>(DONT_ENUM)); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| void Dictionary<Shape, Key>::CopyKeysTo( |
| FixedArray* storage, |
| PropertyAttributes filter, |
| typename Dictionary<Shape, Key>::SortMode sort_mode) { |
| ASSERT(storage->length() >= NumberOfEnumElements()); |
| int capacity = HashTable<Shape, Key>::Capacity(); |
| int index = 0; |
| for (int i = 0; i < capacity; i++) { |
| Object* k = HashTable<Shape, Key>::KeyAt(i); |
| if (HashTable<Shape, Key>::IsKey(k)) { |
| PropertyDetails details = DetailsAt(i); |
| if (details.IsDeleted()) continue; |
| PropertyAttributes attr = details.attributes(); |
| if ((attr & filter) == 0) storage->set(index++, k); |
| } |
| } |
| if (sort_mode == Dictionary<Shape, Key>::SORTED) { |
| storage->SortPairs(storage, index); |
| } |
| ASSERT(storage->length() >= index); |
| } |
| |
| |
| void StringDictionary::CopyEnumKeysTo(FixedArray* storage, |
| FixedArray* sort_array) { |
| ASSERT(storage->length() >= NumberOfEnumElements()); |
| int capacity = Capacity(); |
| int index = 0; |
| for (int i = 0; i < capacity; i++) { |
| Object* k = KeyAt(i); |
| if (IsKey(k)) { |
| PropertyDetails details = DetailsAt(i); |
| if (details.IsDeleted() || details.IsDontEnum()) continue; |
| storage->set(index, k); |
| sort_array->set(index, Smi::FromInt(details.index())); |
| index++; |
| } |
| } |
| storage->SortPairs(sort_array, sort_array->length()); |
| ASSERT(storage->length() >= index); |
| } |
| |
| |
| template<typename Shape, typename Key> |
| void Dictionary<Shape, Key>::CopyKeysTo( |
| FixedArray* storage, |
| int index, |
| typename Dictionary<Shape, Key>::SortMode sort_mode) { |
| ASSERT(storage->length() >= NumberOfElementsFilterAttributes( |
| static_cast<PropertyAttributes>(NONE))); |
| int capacity = HashTable<Shape, Key>::Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Object* k = HashTable<Shape, Key>::KeyAt(i); |
| if (HashTable<Shape, Key>::IsKey(k)) { |
| PropertyDetails details = DetailsAt(i); |
| if (details.IsDeleted()) continue; |
| storage->set(index++, k); |
| } |
| } |
| if (sort_mode == Dictionary<Shape, Key>::SORTED) { |
| storage->SortPairs(storage, index); |
| } |
| ASSERT(storage->length() >= index); |
| } |
| |
| |
| // Backwards lookup (slow). |
| template<typename Shape, typename Key> |
| Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) { |
| int capacity = HashTable<Shape, Key>::Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Object* k = HashTable<Shape, Key>::KeyAt(i); |
| if (Dictionary<Shape, Key>::IsKey(k)) { |
| Object* e = ValueAt(i); |
| if (e->IsJSGlobalPropertyCell()) { |
| e = JSGlobalPropertyCell::cast(e)->value(); |
| } |
| if (e == value) return k; |
| } |
| } |
| Heap* heap = Dictionary<Shape, Key>::GetHeap(); |
| return heap->undefined_value(); |
| } |
| |
| |
| MaybeObject* StringDictionary::TransformPropertiesToFastFor( |
| JSObject* obj, int unused_property_fields) { |
| // Make sure we preserve dictionary representation if there are too many |
| // descriptors. |
| if (NumberOfElements() > DescriptorArray::kMaxNumberOfDescriptors) return obj; |
| |
| // Figure out if it is necessary to generate new enumeration indices. |
| int max_enumeration_index = |
| NextEnumerationIndex() + |
| (DescriptorArray::kMaxNumberOfDescriptors - |
| NumberOfElements()); |
| if (!PropertyDetails::IsValidIndex(max_enumeration_index)) { |
| Object* result; |
| { MaybeObject* maybe_result = GenerateNewEnumerationIndices(); |
| if (!maybe_result->ToObject(&result)) return maybe_result; |
| } |
| } |
| |
| int instance_descriptor_length = 0; |
| int number_of_fields = 0; |
| |
| Heap* heap = GetHeap(); |
| |
| // Compute the length of the instance descriptor. |
| int capacity = Capacity(); |
| for (int i = 0; i < capacity; i++) { |
| Object* k = KeyAt(i); |
| if (IsKey(k)) { |
| Object* value = ValueAt(i); |
| PropertyType type = DetailsAt(i).type(); |
| ASSERT(type != FIELD); |
| instance_descriptor_length++; |
| if (type == NORMAL && |
| (!value->IsJSFunction() || heap->InNewSpace(value))) { |
| number_of_fields += 1; |
| } |
| } |
| } |
| |
| // Allocate the instance descriptor. |
| Object* descriptors_unchecked; |
| { MaybeObject* maybe_descriptors_unchecked = |
| DescriptorArray::Allocate(instance_descriptor_length); |
| if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) { |
| return maybe_descriptors_unchecked; |
| } |
| } |
| DescriptorArray* descriptors = DescriptorArray::cast(descriptors_unchecked); |
| |
| int inobject_props = obj->map()->inobject_properties(); |
| int number_of_allocated_fields = |
| number_of_fields + unused_property_fields - inobject_props; |
| if (number_of_allocated_fields < 0) { |
| // There is enough inobject space for all fields (including unused). |
| number_of_allocated_fields = 0; |
| unused_property_fields = inobject_props - number_of_fields; |
| } |
| |
| // Allocate the fixed array for the fields. |
| Object* fields; |
| { MaybeObject* maybe_fields = |
| heap->AllocateFixedArray(number_of_allocated_fields); |
| if (!maybe_fields->ToObject(&fields)) return maybe_fields; |
| } |
| |
| // Fill in the instance descriptor and the fields. |
| int next_descriptor = 0; |
| int current_offset = 0; |
| for (int i = 0; i < capacity; i++) { |
| Object* k = KeyAt(i); |
| if (IsKey(k)) { |
| Object* value = ValueAt(i); |
| // Ensure the key is a symbol before writing into the instance descriptor. |
| Object* key; |
| { MaybeObject* maybe_key = heap->LookupSymbol(String::cast(k)); |
| if (!maybe_key->ToObject(&key)) return maybe_key; |
| } |
| PropertyDetails details = DetailsAt(i); |
| PropertyType type = details.type(); |
| |
| if (value->IsJSFunction() && !heap->InNewSpace(value)) { |
| ConstantFunctionDescriptor d(String::cast(key), |
| JSFunction::cast(value), |
| details.attributes(), |
| details.index()); |
| descriptors->Set(next_descriptor++, &d); |
| } else if (type == NORMAL) { |
| if (current_offset < inobject_props) { |
| obj->InObjectPropertyAtPut(current_offset, |
| value, |
| UPDATE_WRITE_BARRIER); |
| } else { |
| int offset = current_offset - inobject_props; |
| FixedArray::cast(fields)->set(offset, value); |
| } |
| FieldDescriptor d(String::cast(key), |
| current_offset++, |
| details.attributes(), |
| details.index()); |
| descriptors->Set(next_descriptor++, &d); |
| } else if (type == CALLBACKS) { |
| CallbacksDescriptor d(String::cast(key), |
| value, |
| details.attributes(), |
| details.index()); |
| descriptors->Set(next_descriptor++, &d); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| } |
| ASSERT(current_offset == number_of_fields); |
| |
| descriptors->Sort(); |
| // Allocate new map. |
| Object* new_map; |
| { MaybeObject* maybe_new_map = obj->map()->CopyDropDescriptors(); |
| if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; |
| } |
| |
| // Transform the object. |
| obj->set_map(Map::cast(new_map)); |
| obj->map()->set_instance_descriptors(descriptors); |
| obj->map()->set_unused_property_fields(unused_property_fields); |
| |
| obj->set_properties(FixedArray::cast(fields)); |
| ASSERT(obj->IsJSObject()); |
| |
| descriptors->SetNextEnumerationIndex(NextEnumerationIndex()); |
| // Check that it really works. |
| ASSERT(obj->HasFastProperties()); |
| |
| return obj; |
| } |
| |
| |
| Object* ObjectHashTable::Lookup(JSObject* key) { |
| // If the object does not have an identity hash, it was never used as a key. |
| MaybeObject* maybe_hash = key->GetIdentityHash(JSObject::OMIT_CREATION); |
| if (maybe_hash->IsFailure()) return GetHeap()->undefined_value(); |
| int entry = FindEntry(key); |
| if (entry == kNotFound) return GetHeap()->undefined_value(); |
| return get(EntryToIndex(entry) + 1); |
| } |
| |
| |
| MaybeObject* ObjectHashTable::Put(JSObject* key, Object* value) { |
| // Make sure the key object has an identity hash code. |
| int hash; |
| { MaybeObject* maybe_hash = key->GetIdentityHash(JSObject::ALLOW_CREATION); |
| if (maybe_hash->IsFailure()) return maybe_hash; |
| hash = Smi::cast(maybe_hash->ToObjectUnchecked())->value(); |
| } |
| int entry = FindEntry(key); |
| |
| // Check whether to perform removal operation. |
| if (value->IsUndefined()) { |
| if (entry == kNotFound) return this; |
| RemoveEntry(entry); |
| return Shrink(key); |
| } |
| |
| // Key is already in table, just overwrite value. |
| if (entry != kNotFound) { |
| set(EntryToIndex(entry) + 1, value); |
| return this; |
| } |
| |
| // Check whether the hash table should be extended. |
| Object* obj; |
| { MaybeObject* maybe_obj = EnsureCapacity(1, key); |
| if (!maybe_obj->ToObject(&obj)) return maybe_obj; |
| } |
| ObjectHashTable* table = ObjectHashTable::cast(obj); |
| table->AddEntry(table->FindInsertionEntry(hash), key, value); |
| return table; |
| } |
| |
| |
| void ObjectHashTable::AddEntry(int entry, JSObject* key, Object* value) { |
| set(EntryToIndex(entry), key); |
| set(EntryToIndex(entry) + 1, value); |
| ElementAdded(); |
| } |
| |
| |
| void ObjectHashTable::RemoveEntry(int entry, Heap* heap) { |
| set_null(heap, EntryToIndex(entry)); |
| set_null(heap, EntryToIndex(entry) + 1); |
| ElementRemoved(); |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // Check if there is a break point at this code position. |
| bool DebugInfo::HasBreakPoint(int code_position) { |
| // Get the break point info object for this code position. |
| Object* break_point_info = GetBreakPointInfo(code_position); |
| |
| // If there is no break point info object or no break points in the break |
| // point info object there is no break point at this code position. |
| if (break_point_info->IsUndefined()) return false; |
| return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0; |
| } |
| |
| |
| // Get the break point info object for this code position. |
| Object* DebugInfo::GetBreakPointInfo(int code_position) { |
| // Find the index of the break point info object for this code position. |
| int index = GetBreakPointInfoIndex(code_position); |
| |
| // Return the break point info object if any. |
| if (index == kNoBreakPointInfo) return GetHeap()->undefined_value(); |
| return BreakPointInfo::cast(break_points()->get(index)); |
| } |
| |
| |
| // Clear a break point at the specified code position. |
| void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, |
| int code_position, |
| Handle<Object> break_point_object) { |
| Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position)); |
| if (break_point_info->IsUndefined()) return; |
| BreakPointInfo::ClearBreakPoint( |
| Handle<BreakPointInfo>::cast(break_point_info), |
| break_point_object); |
| } |
| |
| |
| void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, |
| int code_position, |
| int source_position, |
| int statement_position, |
| Handle<Object> break_point_object) { |
| Isolate* isolate = Isolate::Current(); |
| Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position)); |
| if (!break_point_info->IsUndefined()) { |
| BreakPointInfo::SetBreakPoint( |
| Handle<BreakPointInfo>::cast(break_point_info), |
| break_point_object); |
| return; |
| } |
| |
| // Adding a new break point for a code position which did not have any |
| // break points before. Try to find a free slot. |
| int index = kNoBreakPointInfo; |
| for (int i = 0; i < debug_info->break_points()->length(); i++) { |
| if (debug_info->break_points()->get(i)->IsUndefined()) { |
| index = i; |
| break; |
| } |
| } |
| if (index == kNoBreakPointInfo) { |
| // No free slot - extend break point info array. |
| Handle<FixedArray> old_break_points = |
| Handle<FixedArray>(FixedArray::cast(debug_info->break_points())); |
| Handle<FixedArray> new_break_points = |
| isolate->factory()->NewFixedArray( |
| old_break_points->length() + |
| Debug::kEstimatedNofBreakPointsInFunction); |
| |
| debug_info->set_break_points(*new_break_points); |
| for (int i = 0; i < old_break_points->length(); i++) { |
| new_break_points->set(i, old_break_points->get(i)); |
| } |
| index = old_break_points->length(); |
| } |
| ASSERT(index != kNoBreakPointInfo); |
| |
| // Allocate new BreakPointInfo object and set the break point. |
| Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast( |
| isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE)); |
| new_break_point_info->set_code_position(Smi::FromInt(code_position)); |
| new_break_point_info->set_source_position(Smi::FromInt(source_position)); |
| new_break_point_info-> |
| set_statement_position(Smi::FromInt(statement_position)); |
| new_break_point_info->set_break_point_objects( |
| isolate->heap()->undefined_value()); |
| BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object); |
| debug_info->break_points()->set(index, *new_break_point_info); |
| } |
| |
| |
| // Get the break point objects for a code position. |
| Object* DebugInfo::GetBreakPointObjects(int code_position) { |
| Object* break_point_info = GetBreakPointInfo(code_position); |
| if (break_point_info->IsUndefined()) { |
| return GetHeap()->undefined_value(); |
| } |
| return BreakPointInfo::cast(break_point_info)->break_point_objects(); |
| } |
| |
| |
| // Get the total number of break points. |
| int DebugInfo::GetBreakPointCount() { |
| if (break_points()->IsUndefined()) return 0; |
| int count = 0; |
| for (int i = 0; i < break_points()->length(); i++) { |
| if (!break_points()->get(i)->IsUndefined()) { |
| BreakPointInfo* break_point_info = |
| BreakPointInfo::cast(break_points()->get(i)); |
| count += break_point_info->GetBreakPointCount(); |
| } |
| } |
| return count; |
| } |
| |
| |
| Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info, |
| Handle<Object> break_point_object) { |
| Heap* heap = debug_info->GetHeap(); |
| if (debug_info->break_points()->IsUndefined()) return heap->undefined_value(); |
| for (int i = 0; i < debug_info->break_points()->length(); i++) { |
| if (!debug_info->break_points()->get(i)->IsUndefined()) { |
| Handle<BreakPointInfo> break_point_info = |
| Handle<BreakPointInfo>(BreakPointInfo::cast( |
| debug_info->break_points()->get(i))); |
| if (BreakPointInfo::HasBreakPointObject(break_point_info, |
| break_point_object)) { |
| return *break_point_info; |
| } |
| } |
| } |
| return heap->undefined_value(); |
| } |
| |
| |
| // Find the index of the break point info object for the specified code |
| // position. |
| int DebugInfo::GetBreakPointInfoIndex(int code_position) { |
| if (break_points()->IsUndefined()) return kNoBreakPointInfo; |
| for (int i = 0; i < break_points()->length(); i++) { |
| if (!break_points()->get(i)->IsUndefined()) { |
| BreakPointInfo* break_point_info = |
| BreakPointInfo::cast(break_points()->get(i)); |
| if (break_point_info->code_position()->value() == code_position) { |
| return i; |
| } |
| } |
| } |
| return kNoBreakPointInfo; |
| } |
| |
| |
| // Remove the specified break point object. |
| void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info, |
| Handle<Object> break_point_object) { |
| Isolate* isolate = Isolate::Current(); |
| // If there are no break points just ignore. |
| if (break_point_info->break_point_objects()->IsUndefined()) return; |
| // If there is a single break point clear it if it is the same. |
| if (!break_point_info->break_point_objects()->IsFixedArray()) { |
| if (break_point_info->break_point_objects() == *break_point_object) { |
| break_point_info->set_break_point_objects( |
| isolate->heap()->undefined_value()); |
| } |
| return; |
| } |
| // If there are multiple break points shrink the array |
| ASSERT(break_point_info->break_point_objects()->IsFixedArray()); |
| Handle<FixedArray> old_array = |
| Handle<FixedArray>( |
| FixedArray::cast(break_point_info->break_point_objects())); |
| Handle<FixedArray> new_array = |
| isolate->factory()->NewFixedArray(old_array->length() - 1); |
| int found_count = 0; |
| for (int i = 0; i < old_array->length(); i++) { |
| if (old_array->get(i) == *break_point_object) { |
| ASSERT(found_count == 0); |
| found_count++; |
| } else { |
| new_array->set(i - found_count, old_array->get(i)); |
| } |
| } |
| // If the break point was found in the list change it. |
| if (found_count > 0) break_point_info->set_break_point_objects(*new_array); |
| } |
| |
| |
| // Add the specified break point object. |
| void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info, |
| Handle<Object> break_point_object) { |
| // If there was no break point objects before just set it. |
| if (break_point_info->break_point_objects()->IsUndefined()) { |
| break_point_info->set_break_point_objects(*break_point_object); |
| return; |
| } |
| // If the break point object is the same as before just ignore. |
| if (break_point_info->break_point_objects() == *break_point_object) return; |
| // If there was one break point object before replace with array. |
| if (!break_point_info->break_point_objects()->IsFixedArray()) { |
| Handle<FixedArray> array = FACTORY->NewFixedArray(2); |
| array->set(0, break_point_info->break_point_objects()); |
| array->set(1, *break_point_object); |
| break_point_info->set_break_point_objects(*array); |
| return; |
| } |
| // If there was more than one break point before extend array. |
| Handle<FixedArray> old_array = |
| Handle<FixedArray>( |
| FixedArray::cast(break_point_info->break_point_objects())); |
| Handle<FixedArray> new_array = |
| FACTORY->NewFixedArray(old_array->length() + 1); |
| for (int i = 0; i < old_array->length(); i++) { |
| // If the break point was there before just ignore. |
| if (old_array->get(i) == *break_point_object) return; |
| new_array->set(i, old_array->get(i)); |
| } |
| // Add the new break point. |
| new_array->set(old_array->length(), *break_point_object); |
| break_point_info->set_break_point_objects(*new_array); |
| } |
| |
| |
| bool BreakPointInfo::HasBreakPointObject( |
| Handle<BreakPointInfo> break_point_info, |
| Handle<Object> break_point_object) { |
| // No break point. |
| if (break_point_info->break_point_objects()->IsUndefined()) return false; |
| // Single break point. |
| if (!break_point_info->break_point_objects()->IsFixedArray()) { |
| return break_point_info->break_point_objects() == *break_point_object; |
| } |
| // Multiple break points. |
| FixedArray* array = FixedArray::cast(break_point_info->break_point_objects()); |
| for (int i = 0; i < array->length(); i++) { |
| if (array->get(i) == *break_point_object) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| // Get the number of break points. |
| int BreakPointInfo::GetBreakPointCount() { |
| // No break point. |
| if (break_point_objects()->IsUndefined()) return 0; |
| // Single break point. |
| if (!break_point_objects()->IsFixedArray()) return 1; |
| // Multiple break points. |
| return FixedArray::cast(break_point_objects())->length(); |
| } |
| #endif |
| |
| |
| } } // namespace v8::internal |