| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_X64) |
| |
| #include "disasm.h" |
| |
| namespace disasm { |
| |
| enum OperandType { |
| UNSET_OP_ORDER = 0, |
| // Operand size decides between 16, 32 and 64 bit operands. |
| REG_OPER_OP_ORDER = 1, // Register destination, operand source. |
| OPER_REG_OP_ORDER = 2, // Operand destination, register source. |
| // Fixed 8-bit operands. |
| BYTE_SIZE_OPERAND_FLAG = 4, |
| BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG, |
| BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG |
| }; |
| |
| //------------------------------------------------------------------ |
| // Tables |
| //------------------------------------------------------------------ |
| struct ByteMnemonic { |
| int b; // -1 terminates, otherwise must be in range (0..255) |
| OperandType op_order_; |
| const char* mnem; |
| }; |
| |
| |
| static const ByteMnemonic two_operands_instr[] = { |
| { 0x00, BYTE_OPER_REG_OP_ORDER, "add" }, |
| { 0x01, OPER_REG_OP_ORDER, "add" }, |
| { 0x02, BYTE_REG_OPER_OP_ORDER, "add" }, |
| { 0x03, REG_OPER_OP_ORDER, "add" }, |
| { 0x08, BYTE_OPER_REG_OP_ORDER, "or" }, |
| { 0x09, OPER_REG_OP_ORDER, "or" }, |
| { 0x0A, BYTE_REG_OPER_OP_ORDER, "or" }, |
| { 0x0B, REG_OPER_OP_ORDER, "or" }, |
| { 0x10, BYTE_OPER_REG_OP_ORDER, "adc" }, |
| { 0x11, OPER_REG_OP_ORDER, "adc" }, |
| { 0x12, BYTE_REG_OPER_OP_ORDER, "adc" }, |
| { 0x13, REG_OPER_OP_ORDER, "adc" }, |
| { 0x18, BYTE_OPER_REG_OP_ORDER, "sbb" }, |
| { 0x19, OPER_REG_OP_ORDER, "sbb" }, |
| { 0x1A, BYTE_REG_OPER_OP_ORDER, "sbb" }, |
| { 0x1B, REG_OPER_OP_ORDER, "sbb" }, |
| { 0x20, BYTE_OPER_REG_OP_ORDER, "and" }, |
| { 0x21, OPER_REG_OP_ORDER, "and" }, |
| { 0x22, BYTE_REG_OPER_OP_ORDER, "and" }, |
| { 0x23, REG_OPER_OP_ORDER, "and" }, |
| { 0x28, BYTE_OPER_REG_OP_ORDER, "sub" }, |
| { 0x29, OPER_REG_OP_ORDER, "sub" }, |
| { 0x2A, BYTE_REG_OPER_OP_ORDER, "sub" }, |
| { 0x2B, REG_OPER_OP_ORDER, "sub" }, |
| { 0x30, BYTE_OPER_REG_OP_ORDER, "xor" }, |
| { 0x31, OPER_REG_OP_ORDER, "xor" }, |
| { 0x32, BYTE_REG_OPER_OP_ORDER, "xor" }, |
| { 0x33, REG_OPER_OP_ORDER, "xor" }, |
| { 0x38, BYTE_OPER_REG_OP_ORDER, "cmp" }, |
| { 0x39, OPER_REG_OP_ORDER, "cmp" }, |
| { 0x3A, BYTE_REG_OPER_OP_ORDER, "cmp" }, |
| { 0x3B, REG_OPER_OP_ORDER, "cmp" }, |
| { 0x63, REG_OPER_OP_ORDER, "movsxlq" }, |
| { 0x84, BYTE_REG_OPER_OP_ORDER, "test" }, |
| { 0x85, REG_OPER_OP_ORDER, "test" }, |
| { 0x86, BYTE_REG_OPER_OP_ORDER, "xchg" }, |
| { 0x87, REG_OPER_OP_ORDER, "xchg" }, |
| { 0x88, BYTE_OPER_REG_OP_ORDER, "mov" }, |
| { 0x89, OPER_REG_OP_ORDER, "mov" }, |
| { 0x8A, BYTE_REG_OPER_OP_ORDER, "mov" }, |
| { 0x8B, REG_OPER_OP_ORDER, "mov" }, |
| { 0x8D, REG_OPER_OP_ORDER, "lea" }, |
| { -1, UNSET_OP_ORDER, "" } |
| }; |
| |
| |
| static const ByteMnemonic zero_operands_instr[] = { |
| { 0xC3, UNSET_OP_ORDER, "ret" }, |
| { 0xC9, UNSET_OP_ORDER, "leave" }, |
| { 0xF4, UNSET_OP_ORDER, "hlt" }, |
| { 0xCC, UNSET_OP_ORDER, "int3" }, |
| { 0x60, UNSET_OP_ORDER, "pushad" }, |
| { 0x61, UNSET_OP_ORDER, "popad" }, |
| { 0x9C, UNSET_OP_ORDER, "pushfd" }, |
| { 0x9D, UNSET_OP_ORDER, "popfd" }, |
| { 0x9E, UNSET_OP_ORDER, "sahf" }, |
| { 0x99, UNSET_OP_ORDER, "cdq" }, |
| { 0x9B, UNSET_OP_ORDER, "fwait" }, |
| { 0xA4, UNSET_OP_ORDER, "movs" }, |
| { 0xA5, UNSET_OP_ORDER, "movs" }, |
| { 0xA6, UNSET_OP_ORDER, "cmps" }, |
| { 0xA7, UNSET_OP_ORDER, "cmps" }, |
| { -1, UNSET_OP_ORDER, "" } |
| }; |
| |
| |
| static const ByteMnemonic call_jump_instr[] = { |
| { 0xE8, UNSET_OP_ORDER, "call" }, |
| { 0xE9, UNSET_OP_ORDER, "jmp" }, |
| { -1, UNSET_OP_ORDER, "" } |
| }; |
| |
| |
| static const ByteMnemonic short_immediate_instr[] = { |
| { 0x05, UNSET_OP_ORDER, "add" }, |
| { 0x0D, UNSET_OP_ORDER, "or" }, |
| { 0x15, UNSET_OP_ORDER, "adc" }, |
| { 0x1D, UNSET_OP_ORDER, "sbb" }, |
| { 0x25, UNSET_OP_ORDER, "and" }, |
| { 0x2D, UNSET_OP_ORDER, "sub" }, |
| { 0x35, UNSET_OP_ORDER, "xor" }, |
| { 0x3D, UNSET_OP_ORDER, "cmp" }, |
| { -1, UNSET_OP_ORDER, "" } |
| }; |
| |
| |
| static const char* const conditional_code_suffix[] = { |
| "o", "no", "c", "nc", "z", "nz", "na", "a", |
| "s", "ns", "pe", "po", "l", "ge", "le", "g" |
| }; |
| |
| |
| enum InstructionType { |
| NO_INSTR, |
| ZERO_OPERANDS_INSTR, |
| TWO_OPERANDS_INSTR, |
| JUMP_CONDITIONAL_SHORT_INSTR, |
| REGISTER_INSTR, |
| PUSHPOP_INSTR, // Has implicit 64-bit operand size. |
| MOVE_REG_INSTR, |
| CALL_JUMP_INSTR, |
| SHORT_IMMEDIATE_INSTR |
| }; |
| |
| |
| enum Prefixes { |
| ESCAPE_PREFIX = 0x0F, |
| OPERAND_SIZE_OVERRIDE_PREFIX = 0x66, |
| ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67, |
| REPNE_PREFIX = 0xF2, |
| REP_PREFIX = 0xF3, |
| REPEQ_PREFIX = REP_PREFIX |
| }; |
| |
| |
| struct InstructionDesc { |
| const char* mnem; |
| InstructionType type; |
| OperandType op_order_; |
| bool byte_size_operation; // Fixed 8-bit operation. |
| }; |
| |
| |
| class InstructionTable { |
| public: |
| InstructionTable(); |
| const InstructionDesc& Get(byte x) const { |
| return instructions_[x]; |
| } |
| |
| private: |
| InstructionDesc instructions_[256]; |
| void Clear(); |
| void Init(); |
| void CopyTable(const ByteMnemonic bm[], InstructionType type); |
| void SetTableRange(InstructionType type, byte start, byte end, bool byte_size, |
| const char* mnem); |
| void AddJumpConditionalShort(); |
| }; |
| |
| |
| InstructionTable::InstructionTable() { |
| Clear(); |
| Init(); |
| } |
| |
| |
| void InstructionTable::Clear() { |
| for (int i = 0; i < 256; i++) { |
| instructions_[i].mnem = "(bad)"; |
| instructions_[i].type = NO_INSTR; |
| instructions_[i].op_order_ = UNSET_OP_ORDER; |
| instructions_[i].byte_size_operation = false; |
| } |
| } |
| |
| |
| void InstructionTable::Init() { |
| CopyTable(two_operands_instr, TWO_OPERANDS_INSTR); |
| CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR); |
| CopyTable(call_jump_instr, CALL_JUMP_INSTR); |
| CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR); |
| AddJumpConditionalShort(); |
| SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push"); |
| SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop"); |
| SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov"); |
| } |
| |
| |
| void InstructionTable::CopyTable(const ByteMnemonic bm[], |
| InstructionType type) { |
| for (int i = 0; bm[i].b >= 0; i++) { |
| InstructionDesc* id = &instructions_[bm[i].b]; |
| id->mnem = bm[i].mnem; |
| OperandType op_order = bm[i].op_order_; |
| id->op_order_ = |
| static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG); |
| ASSERT_EQ(NO_INSTR, id->type); // Information not already entered |
| id->type = type; |
| id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0); |
| } |
| } |
| |
| |
| void InstructionTable::SetTableRange(InstructionType type, |
| byte start, |
| byte end, |
| bool byte_size, |
| const char* mnem) { |
| for (byte b = start; b <= end; b++) { |
| InstructionDesc* id = &instructions_[b]; |
| ASSERT_EQ(NO_INSTR, id->type); // Information not already entered |
| id->mnem = mnem; |
| id->type = type; |
| id->byte_size_operation = byte_size; |
| } |
| } |
| |
| |
| void InstructionTable::AddJumpConditionalShort() { |
| for (byte b = 0x70; b <= 0x7F; b++) { |
| InstructionDesc* id = &instructions_[b]; |
| ASSERT_EQ(NO_INSTR, id->type); // Information not already entered |
| id->mnem = NULL; // Computed depending on condition code. |
| id->type = JUMP_CONDITIONAL_SHORT_INSTR; |
| } |
| } |
| |
| |
| static InstructionTable instruction_table; |
| |
| |
| static InstructionDesc cmov_instructions[16] = { |
| {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false} |
| }; |
| |
| //------------------------------------------------------------------------------ |
| // DisassemblerX64 implementation. |
| |
| enum UnimplementedOpcodeAction { |
| CONTINUE_ON_UNIMPLEMENTED_OPCODE, |
| ABORT_ON_UNIMPLEMENTED_OPCODE |
| }; |
| |
| // A new DisassemblerX64 object is created to disassemble each instruction. |
| // The object can only disassemble a single instruction. |
| class DisassemblerX64 { |
| public: |
| DisassemblerX64(const NameConverter& converter, |
| UnimplementedOpcodeAction unimplemented_action = |
| ABORT_ON_UNIMPLEMENTED_OPCODE) |
| : converter_(converter), |
| tmp_buffer_pos_(0), |
| abort_on_unimplemented_( |
| unimplemented_action == ABORT_ON_UNIMPLEMENTED_OPCODE), |
| rex_(0), |
| operand_size_(0), |
| group_1_prefix_(0), |
| byte_size_operand_(false) { |
| tmp_buffer_[0] = '\0'; |
| } |
| |
| virtual ~DisassemblerX64() { |
| } |
| |
| // Writes one disassembled instruction into 'buffer' (0-terminated). |
| // Returns the length of the disassembled machine instruction in bytes. |
| int InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction); |
| |
| private: |
| enum OperandSize { |
| BYTE_SIZE = 0, |
| WORD_SIZE = 1, |
| DOUBLEWORD_SIZE = 2, |
| QUADWORD_SIZE = 3 |
| }; |
| |
| const NameConverter& converter_; |
| v8::internal::EmbeddedVector<char, 128> tmp_buffer_; |
| unsigned int tmp_buffer_pos_; |
| bool abort_on_unimplemented_; |
| // Prefixes parsed |
| byte rex_; |
| byte operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0. |
| byte group_1_prefix_; // 0xF2, 0xF3, or (if no group 1 prefix is present) 0. |
| // Byte size operand override. |
| bool byte_size_operand_; |
| |
| void setRex(byte rex) { |
| ASSERT_EQ(0x40, rex & 0xF0); |
| rex_ = rex; |
| } |
| |
| bool rex() { return rex_ != 0; } |
| |
| bool rex_b() { return (rex_ & 0x01) != 0; } |
| |
| // Actual number of base register given the low bits and the rex.b state. |
| int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); } |
| |
| bool rex_x() { return (rex_ & 0x02) != 0; } |
| |
| bool rex_r() { return (rex_ & 0x04) != 0; } |
| |
| bool rex_w() { return (rex_ & 0x08) != 0; } |
| |
| OperandSize operand_size() { |
| if (byte_size_operand_) return BYTE_SIZE; |
| if (rex_w()) return QUADWORD_SIZE; |
| if (operand_size_ != 0) return WORD_SIZE; |
| return DOUBLEWORD_SIZE; |
| } |
| |
| char operand_size_code() { |
| return "bwlq"[operand_size()]; |
| } |
| |
| const char* NameOfCPURegister(int reg) const { |
| return converter_.NameOfCPURegister(reg); |
| } |
| |
| const char* NameOfByteCPURegister(int reg) const { |
| return converter_.NameOfByteCPURegister(reg); |
| } |
| |
| const char* NameOfXMMRegister(int reg) const { |
| return converter_.NameOfXMMRegister(reg); |
| } |
| |
| const char* NameOfAddress(byte* addr) const { |
| return converter_.NameOfAddress(addr); |
| } |
| |
| // Disassembler helper functions. |
| void get_modrm(byte data, |
| int* mod, |
| int* regop, |
| int* rm) { |
| *mod = (data >> 6) & 3; |
| *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0); |
| *rm = (data & 7) | (rex_b() ? 8 : 0); |
| } |
| |
| void get_sib(byte data, |
| int* scale, |
| int* index, |
| int* base) { |
| *scale = (data >> 6) & 3; |
| *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0); |
| *base = (data & 7) | (rex_b() ? 8 : 0); |
| } |
| |
| typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const; |
| |
| int PrintRightOperandHelper(byte* modrmp, |
| RegisterNameMapping register_name); |
| int PrintRightOperand(byte* modrmp); |
| int PrintRightByteOperand(byte* modrmp); |
| int PrintRightXMMOperand(byte* modrmp); |
| int PrintOperands(const char* mnem, |
| OperandType op_order, |
| byte* data); |
| int PrintImmediate(byte* data, OperandSize size); |
| int PrintImmediateOp(byte* data); |
| const char* TwoByteMnemonic(byte opcode); |
| int TwoByteOpcodeInstruction(byte* data); |
| int F6F7Instruction(byte* data); |
| int ShiftInstruction(byte* data); |
| int JumpShort(byte* data); |
| int JumpConditional(byte* data); |
| int JumpConditionalShort(byte* data); |
| int SetCC(byte* data); |
| int FPUInstruction(byte* data); |
| int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start); |
| int RegisterFPUInstruction(int escape_opcode, byte modrm_byte); |
| void AppendToBuffer(const char* format, ...); |
| |
| void UnimplementedInstruction() { |
| if (abort_on_unimplemented_) { |
| CHECK(false); |
| } else { |
| AppendToBuffer("'Unimplemented Instruction'"); |
| } |
| } |
| }; |
| |
| |
| void DisassemblerX64::AppendToBuffer(const char* format, ...) { |
| v8::internal::Vector<char> buf = tmp_buffer_ + tmp_buffer_pos_; |
| va_list args; |
| va_start(args, format); |
| int result = v8::internal::OS::VSNPrintF(buf, format, args); |
| va_end(args); |
| tmp_buffer_pos_ += result; |
| } |
| |
| |
| int DisassemblerX64::PrintRightOperandHelper( |
| byte* modrmp, |
| RegisterNameMapping direct_register_name) { |
| int mod, regop, rm; |
| get_modrm(*modrmp, &mod, ®op, &rm); |
| RegisterNameMapping register_name = (mod == 3) ? direct_register_name : |
| &DisassemblerX64::NameOfCPURegister; |
| switch (mod) { |
| case 0: |
| if ((rm & 7) == 5) { |
| int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1); |
| AppendToBuffer("[0x%x]", disp); |
| return 5; |
| } else if ((rm & 7) == 4) { |
| // Codes for SIB byte. |
| byte sib = *(modrmp + 1); |
| int scale, index, base; |
| get_sib(sib, &scale, &index, &base); |
| if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) { |
| // index == rsp means no index. Only use sib byte with no index for |
| // rsp and r12 base. |
| AppendToBuffer("[%s]", NameOfCPURegister(base)); |
| return 2; |
| } else if (base == 5) { |
| // base == rbp means no base register (when mod == 0). |
| int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2); |
| AppendToBuffer("[%s*%d+0x%x]", |
| NameOfCPURegister(index), |
| 1 << scale, disp); |
| return 6; |
| } else if (index != 4 && base != 5) { |
| // [base+index*scale] |
| AppendToBuffer("[%s+%s*%d]", |
| NameOfCPURegister(base), |
| NameOfCPURegister(index), |
| 1 << scale); |
| return 2; |
| } else { |
| UnimplementedInstruction(); |
| return 1; |
| } |
| } else { |
| AppendToBuffer("[%s]", NameOfCPURegister(rm)); |
| return 1; |
| } |
| break; |
| case 1: // fall through |
| case 2: |
| if ((rm & 7) == 4) { |
| byte sib = *(modrmp + 1); |
| int scale, index, base; |
| get_sib(sib, &scale, &index, &base); |
| int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2) |
| : *reinterpret_cast<char*>(modrmp + 2); |
| if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) { |
| if (-disp > 0) { |
| AppendToBuffer("[%s-0x%x]", NameOfCPURegister(base), -disp); |
| } else { |
| AppendToBuffer("[%s+0x%x]", NameOfCPURegister(base), disp); |
| } |
| } else { |
| if (-disp > 0) { |
| AppendToBuffer("[%s+%s*%d-0x%x]", |
| NameOfCPURegister(base), |
| NameOfCPURegister(index), |
| 1 << scale, |
| -disp); |
| } else { |
| AppendToBuffer("[%s+%s*%d+0x%x]", |
| NameOfCPURegister(base), |
| NameOfCPURegister(index), |
| 1 << scale, |
| disp); |
| } |
| } |
| return mod == 2 ? 6 : 3; |
| } else { |
| // No sib. |
| int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1) |
| : *reinterpret_cast<char*>(modrmp + 1); |
| if (-disp > 0) { |
| AppendToBuffer("[%s-0x%x]", NameOfCPURegister(rm), -disp); |
| } else { |
| AppendToBuffer("[%s+0x%x]", NameOfCPURegister(rm), disp); |
| } |
| return (mod == 2) ? 5 : 2; |
| } |
| break; |
| case 3: |
| AppendToBuffer("%s", (this->*register_name)(rm)); |
| return 1; |
| default: |
| UnimplementedInstruction(); |
| return 1; |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| int DisassemblerX64::PrintImmediate(byte* data, OperandSize size) { |
| int64_t value; |
| int count; |
| switch (size) { |
| case BYTE_SIZE: |
| value = *data; |
| count = 1; |
| break; |
| case WORD_SIZE: |
| value = *reinterpret_cast<int16_t*>(data); |
| count = 2; |
| break; |
| case DOUBLEWORD_SIZE: |
| value = *reinterpret_cast<uint32_t*>(data); |
| count = 4; |
| break; |
| case QUADWORD_SIZE: |
| value = *reinterpret_cast<int32_t*>(data); |
| count = 4; |
| break; |
| default: |
| UNREACHABLE(); |
| value = 0; // Initialize variables on all paths to satisfy the compiler. |
| count = 0; |
| } |
| AppendToBuffer("%" V8_PTR_PREFIX "x", value); |
| return count; |
| } |
| |
| |
| int DisassemblerX64::PrintRightOperand(byte* modrmp) { |
| return PrintRightOperandHelper(modrmp, |
| &DisassemblerX64::NameOfCPURegister); |
| } |
| |
| |
| int DisassemblerX64::PrintRightByteOperand(byte* modrmp) { |
| return PrintRightOperandHelper(modrmp, |
| &DisassemblerX64::NameOfByteCPURegister); |
| } |
| |
| |
| int DisassemblerX64::PrintRightXMMOperand(byte* modrmp) { |
| return PrintRightOperandHelper(modrmp, |
| &DisassemblerX64::NameOfXMMRegister); |
| } |
| |
| |
| // Returns number of bytes used including the current *data. |
| // Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'. |
| int DisassemblerX64::PrintOperands(const char* mnem, |
| OperandType op_order, |
| byte* data) { |
| byte modrm = *data; |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| int advance = 0; |
| const char* register_name = |
| byte_size_operand_ ? NameOfByteCPURegister(regop) |
| : NameOfCPURegister(regop); |
| switch (op_order) { |
| case REG_OPER_OP_ORDER: { |
| AppendToBuffer("%s%c %s,", |
| mnem, |
| operand_size_code(), |
| register_name); |
| advance = byte_size_operand_ ? PrintRightByteOperand(data) |
| : PrintRightOperand(data); |
| break; |
| } |
| case OPER_REG_OP_ORDER: { |
| AppendToBuffer("%s%c ", mnem, operand_size_code()); |
| advance = byte_size_operand_ ? PrintRightByteOperand(data) |
| : PrintRightOperand(data); |
| AppendToBuffer(",%s", register_name); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| return advance; |
| } |
| |
| |
| // Returns number of bytes used by machine instruction, including *data byte. |
| // Writes immediate instructions to 'tmp_buffer_'. |
| int DisassemblerX64::PrintImmediateOp(byte* data) { |
| bool byte_size_immediate = (*data & 0x02) != 0; |
| byte modrm = *(data + 1); |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| const char* mnem = "Imm???"; |
| switch (regop) { |
| case 0: |
| mnem = "add"; |
| break; |
| case 1: |
| mnem = "or"; |
| break; |
| case 2: |
| mnem = "adc"; |
| break; |
| case 3: |
| mnem = "sbb"; |
| break; |
| case 4: |
| mnem = "and"; |
| break; |
| case 5: |
| mnem = "sub"; |
| break; |
| case 6: |
| mnem = "xor"; |
| break; |
| case 7: |
| mnem = "cmp"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| AppendToBuffer("%s%c ", mnem, operand_size_code()); |
| int count = PrintRightOperand(data + 1); |
| AppendToBuffer(",0x"); |
| OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size(); |
| count += PrintImmediate(data + 1 + count, immediate_size); |
| return 1 + count; |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::F6F7Instruction(byte* data) { |
| ASSERT(*data == 0xF7 || *data == 0xF6); |
| byte modrm = *(data + 1); |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| if (mod == 3 && regop != 0) { |
| const char* mnem = NULL; |
| switch (regop) { |
| case 2: |
| mnem = "not"; |
| break; |
| case 3: |
| mnem = "neg"; |
| break; |
| case 4: |
| mnem = "mul"; |
| break; |
| case 7: |
| mnem = "idiv"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| AppendToBuffer("%s%c %s", |
| mnem, |
| operand_size_code(), |
| NameOfCPURegister(rm)); |
| return 2; |
| } else if (regop == 0) { |
| AppendToBuffer("test%c ", operand_size_code()); |
| int count = PrintRightOperand(data + 1); // Use name of 64-bit register. |
| AppendToBuffer(",0x"); |
| count += PrintImmediate(data + 1 + count, operand_size()); |
| return 1 + count; |
| } else { |
| UnimplementedInstruction(); |
| return 2; |
| } |
| } |
| |
| |
| int DisassemblerX64::ShiftInstruction(byte* data) { |
| byte op = *data & (~1); |
| if (op != 0xD0 && op != 0xD2 && op != 0xC0) { |
| UnimplementedInstruction(); |
| return 1; |
| } |
| byte modrm = *(data + 1); |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| regop &= 0x7; // The REX.R bit does not affect the operation. |
| int imm8 = -1; |
| int num_bytes = 2; |
| if (mod != 3) { |
| UnimplementedInstruction(); |
| return num_bytes; |
| } |
| const char* mnem = NULL; |
| switch (regop) { |
| case 0: |
| mnem = "rol"; |
| break; |
| case 1: |
| mnem = "ror"; |
| break; |
| case 2: |
| mnem = "rcl"; |
| break; |
| case 3: |
| mnem = "rcr"; |
| break; |
| case 4: |
| mnem = "shl"; |
| break; |
| case 5: |
| mnem = "shr"; |
| break; |
| case 7: |
| mnem = "sar"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| return num_bytes; |
| } |
| ASSERT_NE(NULL, mnem); |
| if (op == 0xD0) { |
| imm8 = 1; |
| } else if (op == 0xC0) { |
| imm8 = *(data + 2); |
| num_bytes = 3; |
| } |
| AppendToBuffer("%s%c %s,", |
| mnem, |
| operand_size_code(), |
| byte_size_operand_ ? NameOfByteCPURegister(rm) |
| : NameOfCPURegister(rm)); |
| if (op == 0xD2) { |
| AppendToBuffer("cl"); |
| } else { |
| AppendToBuffer("%d", imm8); |
| } |
| return num_bytes; |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpShort(byte* data) { |
| ASSERT_EQ(0xEB, *data); |
| byte b = *(data + 1); |
| byte* dest = data + static_cast<int8_t>(b) + 2; |
| AppendToBuffer("jmp %s", NameOfAddress(dest)); |
| return 2; |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpConditional(byte* data) { |
| ASSERT_EQ(0x0F, *data); |
| byte cond = *(data + 1) & 0x0F; |
| byte* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6; |
| const char* mnem = conditional_code_suffix[cond]; |
| AppendToBuffer("j%s %s", mnem, NameOfAddress(dest)); |
| return 6; // includes 0x0F |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpConditionalShort(byte* data) { |
| byte cond = *data & 0x0F; |
| byte b = *(data + 1); |
| byte* dest = data + static_cast<int8_t>(b) + 2; |
| const char* mnem = conditional_code_suffix[cond]; |
| AppendToBuffer("j%s %s", mnem, NameOfAddress(dest)); |
| return 2; |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::SetCC(byte* data) { |
| ASSERT_EQ(0x0F, *data); |
| byte cond = *(data + 1) & 0x0F; |
| const char* mnem = conditional_code_suffix[cond]; |
| AppendToBuffer("set%s%c ", mnem, operand_size_code()); |
| PrintRightByteOperand(data + 2); |
| return 3; // includes 0x0F |
| } |
| |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::FPUInstruction(byte* data) { |
| byte escape_opcode = *data; |
| ASSERT_EQ(0xD8, escape_opcode & 0xF8); |
| byte modrm_byte = *(data+1); |
| |
| if (modrm_byte >= 0xC0) { |
| return RegisterFPUInstruction(escape_opcode, modrm_byte); |
| } else { |
| return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1); |
| } |
| } |
| |
| int DisassemblerX64::MemoryFPUInstruction(int escape_opcode, |
| int modrm_byte, |
| byte* modrm_start) { |
| const char* mnem = "?"; |
| int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte. |
| switch (escape_opcode) { |
| case 0xD9: switch (regop) { |
| case 0: mnem = "fld_s"; break; |
| case 3: mnem = "fstp_s"; break; |
| case 7: mnem = "fstcw"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDB: switch (regop) { |
| case 0: mnem = "fild_s"; break; |
| case 1: mnem = "fisttp_s"; break; |
| case 2: mnem = "fist_s"; break; |
| case 3: mnem = "fistp_s"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDD: switch (regop) { |
| case 0: mnem = "fld_d"; break; |
| case 3: mnem = "fstp_d"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDF: switch (regop) { |
| case 5: mnem = "fild_d"; break; |
| case 7: mnem = "fistp_d"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| default: UnimplementedInstruction(); |
| } |
| AppendToBuffer("%s ", mnem); |
| int count = PrintRightOperand(modrm_start); |
| return count + 1; |
| } |
| |
| int DisassemblerX64::RegisterFPUInstruction(int escape_opcode, |
| byte modrm_byte) { |
| bool has_register = false; // Is the FPU register encoded in modrm_byte? |
| const char* mnem = "?"; |
| |
| switch (escape_opcode) { |
| case 0xD8: |
| UnimplementedInstruction(); |
| break; |
| |
| case 0xD9: |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: |
| mnem = "fld"; |
| has_register = true; |
| break; |
| case 0xC8: |
| mnem = "fxch"; |
| has_register = true; |
| break; |
| default: |
| switch (modrm_byte) { |
| case 0xE0: mnem = "fchs"; break; |
| case 0xE1: mnem = "fabs"; break; |
| case 0xE4: mnem = "ftst"; break; |
| case 0xE8: mnem = "fld1"; break; |
| case 0xEB: mnem = "fldpi"; break; |
| case 0xED: mnem = "fldln2"; break; |
| case 0xEE: mnem = "fldz"; break; |
| case 0xF1: mnem = "fyl2x"; break; |
| case 0xF5: mnem = "fprem1"; break; |
| case 0xF7: mnem = "fincstp"; break; |
| case 0xF8: mnem = "fprem"; break; |
| case 0xFE: mnem = "fsin"; break; |
| case 0xFF: mnem = "fcos"; break; |
| default: UnimplementedInstruction(); |
| } |
| } |
| break; |
| |
| case 0xDA: |
| if (modrm_byte == 0xE9) { |
| mnem = "fucompp"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDB: |
| if ((modrm_byte & 0xF8) == 0xE8) { |
| mnem = "fucomi"; |
| has_register = true; |
| } else if (modrm_byte == 0xE2) { |
| mnem = "fclex"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDC: |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: mnem = "fadd"; break; |
| case 0xE8: mnem = "fsub"; break; |
| case 0xC8: mnem = "fmul"; break; |
| case 0xF8: mnem = "fdiv"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDD: |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: mnem = "ffree"; break; |
| case 0xD8: mnem = "fstp"; break; |
| default: UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDE: |
| if (modrm_byte == 0xD9) { |
| mnem = "fcompp"; |
| } else { |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: mnem = "faddp"; break; |
| case 0xE8: mnem = "fsubp"; break; |
| case 0xC8: mnem = "fmulp"; break; |
| case 0xF8: mnem = "fdivp"; break; |
| default: UnimplementedInstruction(); |
| } |
| } |
| break; |
| |
| case 0xDF: |
| if (modrm_byte == 0xE0) { |
| mnem = "fnstsw_ax"; |
| } else if ((modrm_byte & 0xF8) == 0xE8) { |
| mnem = "fucomip"; |
| has_register = true; |
| } |
| break; |
| |
| default: UnimplementedInstruction(); |
| } |
| |
| if (has_register) { |
| AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7); |
| } else { |
| AppendToBuffer("%s", mnem); |
| } |
| return 2; |
| } |
| |
| |
| |
| // Handle all two-byte opcodes, which start with 0x0F. |
| // These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix. |
| // We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A. |
| int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) { |
| byte opcode = *(data + 1); |
| byte* current = data + 2; |
| // At return, "current" points to the start of the next instruction. |
| const char* mnemonic = TwoByteMnemonic(opcode); |
| if (operand_size_ == 0x66) { |
| // 0x66 0x0F prefix. |
| int mod, regop, rm; |
| if (opcode == 0x3A) { |
| byte third_byte = *current; |
| current = data + 3; |
| if (third_byte == 0x17) { |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("extractps "); // reg/m32, xmm, imm8 |
| current += PrintRightOperand(current); |
| AppendToBuffer(", %s, %d", NameOfCPURegister(regop), (*current) & 3); |
| current += 1; |
| } else if (third_byte == 0x0b) { |
| get_modrm(*current, &mod, ®op, &rm); |
| // roundsd xmm, xmm/m64, imm8 |
| AppendToBuffer("roundsd %s, ", NameOfCPURegister(regop)); |
| current += PrintRightOperand(current); |
| AppendToBuffer(", %d", (*current) & 3); |
| current += 1; |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else { |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x28) { |
| AppendToBuffer("movapd %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x29) { |
| AppendToBuffer("movapd "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x6E) { |
| AppendToBuffer("mov%c %s,", |
| rex_w() ? 'q' : 'd', |
| NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x6F) { |
| AppendToBuffer("movdqa %s,", |
| NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x7E) { |
| AppendToBuffer("mov%c ", |
| rex_w() ? 'q' : 'd'); |
| current += PrintRightOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x7F) { |
| AppendToBuffer("movdqa "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0xD6) { |
| AppendToBuffer("movq "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x50) { |
| AppendToBuffer("movmskpd %s,", NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else { |
| const char* mnemonic = "?"; |
| if (opcode == 0x54) { |
| mnemonic = "andpd"; |
| } else if (opcode == 0x56) { |
| mnemonic = "orpd"; |
| } else if (opcode == 0x57) { |
| mnemonic = "xorpd"; |
| } else if (opcode == 0x2E) { |
| mnemonic = "ucomisd"; |
| } else if (opcode == 0x2F) { |
| mnemonic = "comisd"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } |
| } |
| } else if (group_1_prefix_ == 0xF2) { |
| // Beginning of instructions with prefix 0xF2. |
| |
| if (opcode == 0x11 || opcode == 0x10) { |
| // MOVSD: Move scalar double-precision fp to/from/between XMM registers. |
| AppendToBuffer("movsd "); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x11) { |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(",%s", NameOfXMMRegister(regop)); |
| } else { |
| AppendToBuffer("%s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } |
| } else if (opcode == 0x2A) { |
| // CVTSI2SD: integer to XMM double conversion. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("%sd %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x2C) { |
| // CVTTSD2SI: |
| // Convert with truncation scalar double-precision FP to integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("cvttsd2si%c %s,", |
| operand_size_code(), NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x2D) { |
| // CVTSD2SI: Convert scalar double-precision FP to integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("cvtsd2si%c %s,", |
| operand_size_code(), NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) { |
| // XMM arithmetic. Mnemonic was retrieved at the start of this function. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else if (group_1_prefix_ == 0xF3) { |
| // Instructions with prefix 0xF3. |
| if (opcode == 0x11 || opcode == 0x10) { |
| // MOVSS: Move scalar double-precision fp to/from/between XMM registers. |
| AppendToBuffer("movss "); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x11) { |
| current += PrintRightOperand(current); |
| AppendToBuffer(",%s", NameOfXMMRegister(regop)); |
| } else { |
| AppendToBuffer("%s,", NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } |
| } else if (opcode == 0x2A) { |
| // CVTSI2SS: integer to XMM single conversion. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("%ss %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x2C) { |
| // CVTTSS2SI: |
| // Convert with truncation scalar single-precision FP to dword integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("cvttss2si%c %s,", |
| operand_size_code(), NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x5A) { |
| // CVTSS2SD: |
| // Convert scalar single-precision FP to scalar double-precision FP. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("cvtss2sd %s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x7E) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("movq %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else if (opcode == 0x1F) { |
| // NOP |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| current++; |
| if (regop == 4) { // SIB byte present. |
| current++; |
| } |
| if (mod == 1) { // Byte displacement. |
| current += 1; |
| } else if (mod == 2) { // 32-bit displacement. |
| current += 4; |
| } // else no immediate displacement. |
| AppendToBuffer("nop"); |
| |
| } else if (opcode == 0x28) { |
| // movaps xmm, xmm/m128 |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("movaps %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| |
| } else if (opcode == 0x29) { |
| // movaps xmm/m128, xmm |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("movaps "); |
| current += PrintRightXMMOperand(current); |
| AppendToBuffer(", %s", NameOfXMMRegister(regop)); |
| |
| } else if (opcode == 0xA2 || opcode == 0x31) { |
| // RDTSC or CPUID |
| AppendToBuffer("%s", mnemonic); |
| |
| } else if ((opcode & 0xF0) == 0x40) { |
| // CMOVcc: conditional move. |
| int condition = opcode & 0x0F; |
| const InstructionDesc& idesc = cmov_instructions[condition]; |
| byte_size_operand_ = idesc.byte_size_operation; |
| current += PrintOperands(idesc.mnem, idesc.op_order_, current); |
| |
| } else if (opcode == 0x57) { |
| // xorps xmm, xmm/m128 |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| AppendToBuffer("xorps %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| |
| } else if ((opcode & 0xF0) == 0x80) { |
| // Jcc: Conditional jump (branch). |
| current = data + JumpConditional(data); |
| |
| } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 || |
| opcode == 0xB7 || opcode == 0xAF) { |
| // Size-extending moves, IMUL. |
| current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current); |
| |
| } else if ((opcode & 0xF0) == 0x90) { |
| // SETcc: Set byte on condition. Needs pointer to beginning of instruction. |
| current = data + SetCC(data); |
| |
| } else if (opcode == 0xAB || opcode == 0xA5 || opcode == 0xAD) { |
| // SHLD, SHRD (double-precision shift), BTS (bit set). |
| AppendToBuffer("%s ", mnemonic); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| current += PrintRightOperand(current); |
| if (opcode == 0xAB) { |
| AppendToBuffer(",%s", NameOfCPURegister(regop)); |
| } else { |
| AppendToBuffer(",%s,cl", NameOfCPURegister(regop)); |
| } |
| } else { |
| UnimplementedInstruction(); |
| } |
| return static_cast<int>(current - data); |
| } |
| |
| |
| // Mnemonics for two-byte opcode instructions starting with 0x0F. |
| // The argument is the second byte of the two-byte opcode. |
| // Returns NULL if the instruction is not handled here. |
| const char* DisassemblerX64::TwoByteMnemonic(byte opcode) { |
| switch (opcode) { |
| case 0x1F: |
| return "nop"; |
| case 0x2A: // F2/F3 prefix. |
| return "cvtsi2s"; |
| case 0x31: |
| return "rdtsc"; |
| case 0x51: // F2 prefix. |
| return "sqrtsd"; |
| case 0x58: // F2 prefix. |
| return "addsd"; |
| case 0x59: // F2 prefix. |
| return "mulsd"; |
| case 0x5C: // F2 prefix. |
| return "subsd"; |
| case 0x5E: // F2 prefix. |
| return "divsd"; |
| case 0xA2: |
| return "cpuid"; |
| case 0xA5: |
| return "shld"; |
| case 0xAB: |
| return "bts"; |
| case 0xAD: |
| return "shrd"; |
| case 0xAF: |
| return "imul"; |
| case 0xB6: |
| return "movzxb"; |
| case 0xB7: |
| return "movzxw"; |
| case 0xBE: |
| return "movsxb"; |
| case 0xBF: |
| return "movsxw"; |
| default: |
| return NULL; |
| } |
| } |
| |
| |
| // Disassembles the instruction at instr, and writes it into out_buffer. |
| int DisassemblerX64::InstructionDecode(v8::internal::Vector<char> out_buffer, |
| byte* instr) { |
| tmp_buffer_pos_ = 0; // starting to write as position 0 |
| byte* data = instr; |
| bool processed = true; // Will be set to false if the current instruction |
| // is not in 'instructions' table. |
| byte current; |
| |
| // Scan for prefixes. |
| while (true) { |
| current = *data; |
| if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix. |
| operand_size_ = current; |
| } else if ((current & 0xF0) == 0x40) { // REX prefix. |
| setRex(current); |
| if (rex_w()) AppendToBuffer("REX.W "); |
| } else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3). |
| group_1_prefix_ = current; |
| } else { // Not a prefix - an opcode. |
| break; |
| } |
| data++; |
| } |
| |
| const InstructionDesc& idesc = instruction_table.Get(current); |
| byte_size_operand_ = idesc.byte_size_operation; |
| switch (idesc.type) { |
| case ZERO_OPERANDS_INSTR: |
| if (current >= 0xA4 && current <= 0xA7) { |
| // String move or compare operations. |
| if (group_1_prefix_ == REP_PREFIX) { |
| // REP. |
| AppendToBuffer("rep "); |
| } |
| if (rex_w()) AppendToBuffer("REX.W "); |
| AppendToBuffer("%s%c", idesc.mnem, operand_size_code()); |
| } else { |
| AppendToBuffer("%s", idesc.mnem, operand_size_code()); |
| } |
| data++; |
| break; |
| |
| case TWO_OPERANDS_INSTR: |
| data++; |
| data += PrintOperands(idesc.mnem, idesc.op_order_, data); |
| break; |
| |
| case JUMP_CONDITIONAL_SHORT_INSTR: |
| data += JumpConditionalShort(data); |
| break; |
| |
| case REGISTER_INSTR: |
| AppendToBuffer("%s%c %s", |
| idesc.mnem, |
| operand_size_code(), |
| NameOfCPURegister(base_reg(current & 0x07))); |
| data++; |
| break; |
| case PUSHPOP_INSTR: |
| AppendToBuffer("%s %s", |
| idesc.mnem, |
| NameOfCPURegister(base_reg(current & 0x07))); |
| data++; |
| break; |
| case MOVE_REG_INSTR: { |
| byte* addr = NULL; |
| switch (operand_size()) { |
| case WORD_SIZE: |
| addr = reinterpret_cast<byte*>(*reinterpret_cast<int16_t*>(data + 1)); |
| data += 3; |
| break; |
| case DOUBLEWORD_SIZE: |
| addr = reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data + 1)); |
| data += 5; |
| break; |
| case QUADWORD_SIZE: |
| addr = reinterpret_cast<byte*>(*reinterpret_cast<int64_t*>(data + 1)); |
| data += 9; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| AppendToBuffer("mov%c %s,%s", |
| operand_size_code(), |
| NameOfCPURegister(base_reg(current & 0x07)), |
| NameOfAddress(addr)); |
| break; |
| } |
| |
| case CALL_JUMP_INSTR: { |
| byte* addr = data + *reinterpret_cast<int32_t*>(data + 1) + 5; |
| AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr)); |
| data += 5; |
| break; |
| } |
| |
| case SHORT_IMMEDIATE_INSTR: { |
| byte* addr = |
| reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data + 1)); |
| AppendToBuffer("%s rax, %s", idesc.mnem, NameOfAddress(addr)); |
| data += 5; |
| break; |
| } |
| |
| case NO_INSTR: |
| processed = false; |
| break; |
| |
| default: |
| UNIMPLEMENTED(); // This type is not implemented. |
| } |
| |
| // The first byte didn't match any of the simple opcodes, so we |
| // need to do special processing on it. |
| if (!processed) { |
| switch (*data) { |
| case 0xC2: |
| AppendToBuffer("ret 0x%x", *reinterpret_cast<uint16_t*>(data + 1)); |
| data += 3; |
| break; |
| |
| case 0x69: // fall through |
| case 0x6B: { |
| int mod, regop, rm; |
| get_modrm(*(data + 1), &mod, ®op, &rm); |
| int32_t imm = *data == 0x6B ? *(data + 2) |
| : *reinterpret_cast<int32_t*>(data + 2); |
| AppendToBuffer("imul%c %s,%s,0x%x", |
| operand_size_code(), |
| NameOfCPURegister(regop), |
| NameOfCPURegister(rm), imm); |
| data += 2 + (*data == 0x6B ? 1 : 4); |
| break; |
| } |
| |
| case 0x81: // fall through |
| case 0x83: // 0x81 with sign extension bit set |
| data += PrintImmediateOp(data); |
| break; |
| |
| case 0x0F: |
| data += TwoByteOpcodeInstruction(data); |
| break; |
| |
| case 0x8F: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (regop == 0) { |
| AppendToBuffer("pop "); |
| data += PrintRightOperand(data); |
| } |
| } |
| break; |
| |
| case 0xFF: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| const char* mnem = NULL; |
| switch (regop) { |
| case 0: |
| mnem = "inc"; |
| break; |
| case 1: |
| mnem = "dec"; |
| break; |
| case 2: |
| mnem = "call"; |
| break; |
| case 4: |
| mnem = "jmp"; |
| break; |
| case 6: |
| mnem = "push"; |
| break; |
| default: |
| mnem = "???"; |
| } |
| AppendToBuffer(((regop <= 1) ? "%s%c " : "%s "), |
| mnem, |
| operand_size_code()); |
| data += PrintRightOperand(data); |
| } |
| break; |
| |
| case 0xC7: // imm32, fall through |
| case 0xC6: // imm8 |
| { |
| bool is_byte = *data == 0xC6; |
| data++; |
| if (is_byte) { |
| AppendToBuffer("movb "); |
| data += PrintRightByteOperand(data); |
| int32_t imm = *data; |
| AppendToBuffer(",0x%x", imm); |
| data++; |
| } else { |
| AppendToBuffer("mov%c ", operand_size_code()); |
| data += PrintRightOperand(data); |
| int32_t imm = *reinterpret_cast<int32_t*>(data); |
| AppendToBuffer(",0x%x", imm); |
| data += 4; |
| } |
| } |
| break; |
| |
| case 0x80: { |
| data++; |
| AppendToBuffer("cmpb "); |
| data += PrintRightByteOperand(data); |
| int32_t imm = *data; |
| AppendToBuffer(",0x%x", imm); |
| data++; |
| } |
| break; |
| |
| case 0x88: // 8bit, fall through |
| case 0x89: // 32bit |
| { |
| bool is_byte = *data == 0x88; |
| int mod, regop, rm; |
| data++; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (is_byte) { |
| AppendToBuffer("movb "); |
| data += PrintRightByteOperand(data); |
| AppendToBuffer(",%s", NameOfByteCPURegister(regop)); |
| } else { |
| AppendToBuffer("mov%c ", operand_size_code()); |
| data += PrintRightOperand(data); |
| AppendToBuffer(",%s", NameOfCPURegister(regop)); |
| } |
| } |
| break; |
| |
| case 0x90: |
| case 0x91: |
| case 0x92: |
| case 0x93: |
| case 0x94: |
| case 0x95: |
| case 0x96: |
| case 0x97: { |
| int reg = (*data & 0x7) | (rex_b() ? 8 : 0); |
| if (reg == 0) { |
| AppendToBuffer("nop"); // Common name for xchg rax,rax. |
| } else { |
| AppendToBuffer("xchg%c rax, %s", |
| operand_size_code(), |
| NameOfCPURegister(reg)); |
| } |
| data++; |
| } |
| break; |
| case 0xB0: |
| case 0xB1: |
| case 0xB2: |
| case 0xB3: |
| case 0xB4: |
| case 0xB5: |
| case 0xB6: |
| case 0xB7: |
| case 0xB8: |
| case 0xB9: |
| case 0xBA: |
| case 0xBB: |
| case 0xBC: |
| case 0xBD: |
| case 0xBE: |
| case 0xBF: { |
| // mov reg8,imm8 or mov reg32,imm32 |
| byte opcode = *data; |
| data++; |
| bool is_32bit = (opcode >= 0xB8); |
| int reg = (opcode & 0x7) | (rex_b() ? 8 : 0); |
| if (is_32bit) { |
| AppendToBuffer("mov%c %s, ", |
| operand_size_code(), |
| NameOfCPURegister(reg)); |
| data += PrintImmediate(data, DOUBLEWORD_SIZE); |
| } else { |
| AppendToBuffer("movb %s, ", |
| NameOfByteCPURegister(reg)); |
| data += PrintImmediate(data, BYTE_SIZE); |
| } |
| break; |
| } |
| case 0xFE: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (regop == 1) { |
| AppendToBuffer("decb "); |
| data += PrintRightByteOperand(data); |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| } |
| case 0x68: |
| AppendToBuffer("push 0x%x", *reinterpret_cast<int32_t*>(data + 1)); |
| data += 5; |
| break; |
| |
| case 0x6A: |
| AppendToBuffer("push 0x%x", *reinterpret_cast<int8_t*>(data + 1)); |
| data += 2; |
| break; |
| |
| case 0xA1: // Fall through. |
| case 0xA3: |
| switch (operand_size()) { |
| case DOUBLEWORD_SIZE: { |
| const char* memory_location = NameOfAddress( |
| reinterpret_cast<byte*>( |
| *reinterpret_cast<int32_t*>(data + 1))); |
| if (*data == 0xA1) { // Opcode 0xA1 |
| AppendToBuffer("movzxlq rax,(%s)", memory_location); |
| } else { // Opcode 0xA3 |
| AppendToBuffer("movzxlq (%s),rax", memory_location); |
| } |
| data += 5; |
| break; |
| } |
| case QUADWORD_SIZE: { |
| // New x64 instruction mov rax,(imm_64). |
| const char* memory_location = NameOfAddress( |
| *reinterpret_cast<byte**>(data + 1)); |
| if (*data == 0xA1) { // Opcode 0xA1 |
| AppendToBuffer("movq rax,(%s)", memory_location); |
| } else { // Opcode 0xA3 |
| AppendToBuffer("movq (%s),rax", memory_location); |
| } |
| data += 9; |
| break; |
| } |
| default: |
| UnimplementedInstruction(); |
| data += 2; |
| } |
| break; |
| |
| case 0xA8: |
| AppendToBuffer("test al,0x%x", *reinterpret_cast<uint8_t*>(data + 1)); |
| data += 2; |
| break; |
| |
| case 0xA9: { |
| int64_t value = 0; |
| switch (operand_size()) { |
| case WORD_SIZE: |
| value = *reinterpret_cast<uint16_t*>(data + 1); |
| data += 3; |
| break; |
| case DOUBLEWORD_SIZE: |
| value = *reinterpret_cast<uint32_t*>(data + 1); |
| data += 5; |
| break; |
| case QUADWORD_SIZE: |
| value = *reinterpret_cast<int32_t*>(data + 1); |
| data += 5; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| AppendToBuffer("test%c rax,0x%"V8_PTR_PREFIX"x", |
| operand_size_code(), |
| value); |
| break; |
| } |
| case 0xD1: // fall through |
| case 0xD3: // fall through |
| case 0xC1: |
| data += ShiftInstruction(data); |
| break; |
| case 0xD0: // fall through |
| case 0xD2: // fall through |
| case 0xC0: |
| byte_size_operand_ = true; |
| data += ShiftInstruction(data); |
| break; |
| |
| case 0xD9: // fall through |
| case 0xDA: // fall through |
| case 0xDB: // fall through |
| case 0xDC: // fall through |
| case 0xDD: // fall through |
| case 0xDE: // fall through |
| case 0xDF: |
| data += FPUInstruction(data); |
| break; |
| |
| case 0xEB: |
| data += JumpShort(data); |
| break; |
| |
| case 0xF6: |
| byte_size_operand_ = true; // fall through |
| case 0xF7: |
| data += F6F7Instruction(data); |
| break; |
| |
| default: |
| UnimplementedInstruction(); |
| data += 1; |
| } |
| } // !processed |
| |
| if (tmp_buffer_pos_ < sizeof tmp_buffer_) { |
| tmp_buffer_[tmp_buffer_pos_] = '\0'; |
| } |
| |
| int instr_len = static_cast<int>(data - instr); |
| ASSERT(instr_len > 0); // Ensure progress. |
| |
| int outp = 0; |
| // Instruction bytes. |
| for (byte* bp = instr; bp < data; bp++) { |
| outp += v8::internal::OS::SNPrintF(out_buffer + outp, "%02x", *bp); |
| } |
| for (int i = 6 - instr_len; i >= 0; i--) { |
| outp += v8::internal::OS::SNPrintF(out_buffer + outp, " "); |
| } |
| |
| outp += v8::internal::OS::SNPrintF(out_buffer + outp, " %s", |
| tmp_buffer_.start()); |
| return instr_len; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| |
| static const char* cpu_regs[16] = { |
| "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| }; |
| |
| |
| static const char* byte_cpu_regs[16] = { |
| "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil", |
| "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l" |
| }; |
| |
| |
| static const char* xmm_regs[16] = { |
| "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", |
| "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15" |
| }; |
| |
| |
| const char* NameConverter::NameOfAddress(byte* addr) const { |
| v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr); |
| return tmp_buffer_.start(); |
| } |
| |
| |
| const char* NameConverter::NameOfConstant(byte* addr) const { |
| return NameOfAddress(addr); |
| } |
| |
| |
| const char* NameConverter::NameOfCPURegister(int reg) const { |
| if (0 <= reg && reg < 16) |
| return cpu_regs[reg]; |
| return "noreg"; |
| } |
| |
| |
| const char* NameConverter::NameOfByteCPURegister(int reg) const { |
| if (0 <= reg && reg < 16) |
| return byte_cpu_regs[reg]; |
| return "noreg"; |
| } |
| |
| |
| const char* NameConverter::NameOfXMMRegister(int reg) const { |
| if (0 <= reg && reg < 16) |
| return xmm_regs[reg]; |
| return "noxmmreg"; |
| } |
| |
| |
| const char* NameConverter::NameInCode(byte* addr) const { |
| // X64 does not embed debug strings at the moment. |
| UNREACHABLE(); |
| return ""; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| Disassembler::Disassembler(const NameConverter& converter) |
| : converter_(converter) { } |
| |
| Disassembler::~Disassembler() { } |
| |
| |
| int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer, |
| byte* instruction) { |
| DisassemblerX64 d(converter_, CONTINUE_ON_UNIMPLEMENTED_OPCODE); |
| return d.InstructionDecode(buffer, instruction); |
| } |
| |
| |
| // The X64 assembler does not use constant pools. |
| int Disassembler::ConstantPoolSizeAt(byte* instruction) { |
| return -1; |
| } |
| |
| |
| void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) { |
| NameConverter converter; |
| Disassembler d(converter); |
| for (byte* pc = begin; pc < end;) { |
| v8::internal::EmbeddedVector<char, 128> buffer; |
| buffer[0] = '\0'; |
| byte* prev_pc = pc; |
| pc += d.InstructionDecode(buffer, pc); |
| fprintf(f, "%p", prev_pc); |
| fprintf(f, " "); |
| |
| for (byte* bp = prev_pc; bp < pc; bp++) { |
| fprintf(f, "%02x", *bp); |
| } |
| for (int i = 6 - static_cast<int>(pc - prev_pc); i >= 0; i--) { |
| fprintf(f, " "); |
| } |
| fprintf(f, " %s\n", buffer.start()); |
| } |
| } |
| |
| } // namespace disasm |
| |
| #endif // V8_TARGET_ARCH_X64 |