blob: 8fcad232723a2e06287fec5a0e2b75ea2d104d31 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "bootstrapper.h"
#include "codegen.h"
#include "assembler-x64.h"
#include "macro-assembler-x64.h"
#include "serialize.h"
#include "debug.h"
#include "heap.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
allow_stub_calls_(true),
root_array_available_(true) {
if (isolate() != NULL) {
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
isolate());
}
}
static intptr_t RootRegisterDelta(ExternalReference other, Isolate* isolate) {
Address roots_register_value = kRootRegisterBias +
reinterpret_cast<Address>(isolate->heap()->roots_address());
intptr_t delta = other.address() - roots_register_value;
return delta;
}
Operand MacroAssembler::ExternalOperand(ExternalReference target,
Register scratch) {
if (root_array_available_ && !Serializer::enabled()) {
intptr_t delta = RootRegisterDelta(target, isolate());
if (is_int32(delta)) {
Serializer::TooLateToEnableNow();
return Operand(kRootRegister, static_cast<int32_t>(delta));
}
}
movq(scratch, target);
return Operand(scratch, 0);
}
void MacroAssembler::Load(Register destination, ExternalReference source) {
if (root_array_available_ && !Serializer::enabled()) {
intptr_t delta = RootRegisterDelta(source, isolate());
if (is_int32(delta)) {
Serializer::TooLateToEnableNow();
movq(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
if (destination.is(rax)) {
load_rax(source);
} else {
movq(kScratchRegister, source);
movq(destination, Operand(kScratchRegister, 0));
}
}
void MacroAssembler::Store(ExternalReference destination, Register source) {
if (root_array_available_ && !Serializer::enabled()) {
intptr_t delta = RootRegisterDelta(destination, isolate());
if (is_int32(delta)) {
Serializer::TooLateToEnableNow();
movq(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
return;
}
}
// Safe code.
if (source.is(rax)) {
store_rax(destination);
} else {
movq(kScratchRegister, destination);
movq(Operand(kScratchRegister, 0), source);
}
}
void MacroAssembler::LoadAddress(Register destination,
ExternalReference source) {
if (root_array_available_ && !Serializer::enabled()) {
intptr_t delta = RootRegisterDelta(source, isolate());
if (is_int32(delta)) {
Serializer::TooLateToEnableNow();
lea(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
movq(destination, source);
}
int MacroAssembler::LoadAddressSize(ExternalReference source) {
if (root_array_available_ && !Serializer::enabled()) {
// This calculation depends on the internals of LoadAddress.
// It's correctness is ensured by the asserts in the Call
// instruction below.
intptr_t delta = RootRegisterDelta(source, isolate());
if (is_int32(delta)) {
Serializer::TooLateToEnableNow();
// Operand is lea(scratch, Operand(kRootRegister, delta));
// Opcodes : REX.W 8D ModRM Disp8/Disp32 - 4 or 7.
int size = 4;
if (!is_int8(static_cast<int32_t>(delta))) {
size += 3; // Need full four-byte displacement in lea.
}
return size;
}
}
// Size of movq(destination, src);
return 10;
}
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
ASSERT(root_array_available_);
movq(destination, Operand(kRootRegister,
(index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::LoadRootIndexed(Register destination,
Register variable_offset,
int fixed_offset) {
ASSERT(root_array_available_);
movq(destination,
Operand(kRootRegister,
variable_offset, times_pointer_size,
(fixed_offset << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) {
ASSERT(root_array_available_);
movq(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias),
source);
}
void MacroAssembler::PushRoot(Heap::RootListIndex index) {
ASSERT(root_array_available_);
push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
ASSERT(root_array_available_);
cmpq(with, Operand(kRootRegister,
(index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::CompareRoot(const Operand& with,
Heap::RootListIndex index) {
ASSERT(root_array_available_);
ASSERT(!with.AddressUsesRegister(kScratchRegister));
LoadRoot(kScratchRegister, index);
cmpq(with, kScratchRegister);
}
void MacroAssembler::RecordWriteHelper(Register object,
Register addr,
Register scratch) {
if (emit_debug_code()) {
// Check that the object is not in new space.
Label not_in_new_space;
InNewSpace(object, scratch, not_equal, &not_in_new_space, Label::kNear);
Abort("new-space object passed to RecordWriteHelper");
bind(&not_in_new_space);
}
// Compute the page start address from the heap object pointer, and reuse
// the 'object' register for it.
and_(object, Immediate(~Page::kPageAlignmentMask));
// Compute number of region covering addr. See Page::GetRegionNumberForAddress
// method for more details.
shrl(addr, Immediate(Page::kRegionSizeLog2));
andl(addr, Immediate(Page::kPageAlignmentMask >> Page::kRegionSizeLog2));
// Set dirty mark for region.
bts(Operand(object, Page::kDirtyFlagOffset), addr);
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch,
Label::Distance near_jump) {
if (Serializer::enabled()) {
// Can't do arithmetic on external references if it might get serialized.
// The mask isn't really an address. We load it as an external reference in
// case the size of the new space is different between the snapshot maker
// and the running system.
if (scratch.is(object)) {
movq(kScratchRegister, ExternalReference::new_space_mask(isolate()));
and_(scratch, kScratchRegister);
} else {
movq(scratch, ExternalReference::new_space_mask(isolate()));
and_(scratch, object);
}
movq(kScratchRegister, ExternalReference::new_space_start(isolate()));
cmpq(scratch, kScratchRegister);
j(cc, branch, near_jump);
} else {
ASSERT(is_int32(static_cast<int64_t>(HEAP->NewSpaceMask())));
intptr_t new_space_start =
reinterpret_cast<intptr_t>(HEAP->NewSpaceStart());
movq(kScratchRegister, -new_space_start, RelocInfo::NONE);
if (scratch.is(object)) {
addq(scratch, kScratchRegister);
} else {
lea(scratch, Operand(object, kScratchRegister, times_1, 0));
}
and_(scratch, Immediate(static_cast<int32_t>(HEAP->NewSpaceMask())));
j(cc, branch, near_jump);
}
}
void MacroAssembler::RecordWrite(Register object,
int offset,
Register value,
Register index) {
// The compiled code assumes that record write doesn't change the
// context register, so we check that none of the clobbered
// registers are rsi.
ASSERT(!object.is(rsi) && !value.is(rsi) && !index.is(rsi));
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
JumpIfSmi(value, &done);
RecordWriteNonSmi(object, offset, value, index);
bind(&done);
// Clobber all input registers when running with the debug-code flag
// turned on to provoke errors. This clobbering repeats the
// clobbering done inside RecordWriteNonSmi but it's necessary to
// avoid having the fast case for smis leave the registers
// unchanged.
if (emit_debug_code()) {
movq(object, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
movq(index, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
}
}
void MacroAssembler::RecordWrite(Register object,
Register address,
Register value) {
// The compiled code assumes that record write doesn't change the
// context register, so we check that none of the clobbered
// registers are rsi.
ASSERT(!object.is(rsi) && !value.is(rsi) && !address.is(rsi));
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
JumpIfSmi(value, &done);
InNewSpace(object, value, equal, &done);
RecordWriteHelper(object, address, value);
bind(&done);
// Clobber all input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
movq(object, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
movq(address, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
}
}
void MacroAssembler::RecordWriteNonSmi(Register object,
int offset,
Register scratch,
Register index) {
Label done;
if (emit_debug_code()) {
Label okay;
JumpIfNotSmi(object, &okay, Label::kNear);
Abort("MacroAssembler::RecordWriteNonSmi cannot deal with smis");
bind(&okay);
if (offset == 0) {
// index must be int32.
Register tmp = index.is(rax) ? rbx : rax;
push(tmp);
movl(tmp, index);
cmpq(tmp, index);
Check(equal, "Index register for RecordWrite must be untagged int32.");
pop(tmp);
}
}
// Test that the object address is not in the new space. We cannot
// update page dirty marks for new space pages.
InNewSpace(object, scratch, equal, &done);
// The offset is relative to a tagged or untagged HeapObject pointer,
// so either offset or offset + kHeapObjectTag must be a
// multiple of kPointerSize.
ASSERT(IsAligned(offset, kPointerSize) ||
IsAligned(offset + kHeapObjectTag, kPointerSize));
Register dst = index;
if (offset != 0) {
lea(dst, Operand(object, offset));
} else {
// array access: calculate the destination address in the same manner as
// KeyedStoreIC::GenerateGeneric.
lea(dst, FieldOperand(object,
index,
times_pointer_size,
FixedArray::kHeaderSize));
}
RecordWriteHelper(object, dst, scratch);
bind(&done);
// Clobber all input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
movq(object, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
movq(scratch, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
movq(index, BitCast<int64_t>(kZapValue), RelocInfo::NONE);
}
}
void MacroAssembler::Assert(Condition cc, const char* msg) {
if (emit_debug_code()) Check(cc, msg);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
Label ok;
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedDoubleArrayMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedCOWArrayMapRootIndex);
j(equal, &ok, Label::kNear);
Abort("JSObject with fast elements map has slow elements");
bind(&ok);
}
}
void MacroAssembler::Check(Condition cc, const char* msg) {
Label L;
j(cc, &L, Label::kNear);
Abort(msg);
// will not return here
bind(&L);
}
void MacroAssembler::CheckStackAlignment() {
int frame_alignment = OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
ASSERT(IsPowerOf2(frame_alignment));
Label alignment_as_expected;
testq(rsp, Immediate(frame_alignment_mask));
j(zero, &alignment_as_expected, Label::kNear);
// Abort if stack is not aligned.
int3();
bind(&alignment_as_expected);
}
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op,
Label* then_label) {
Label ok;
testl(result, result);
j(not_zero, &ok, Label::kNear);
testl(op, op);
j(sign, then_label);
bind(&ok);
}
void MacroAssembler::Abort(const char* msg) {
// We want to pass the msg string like a smi to avoid GC
// problems, however msg is not guaranteed to be aligned
// properly. Instead, we pass an aligned pointer that is
// a proper v8 smi, but also pass the alignment difference
// from the real pointer as a smi.
intptr_t p1 = reinterpret_cast<intptr_t>(msg);
intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
// Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag.
ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
#endif
// Disable stub call restrictions to always allow calls to abort.
AllowStubCallsScope allow_scope(this, true);
push(rax);
movq(kScratchRegister, p0, RelocInfo::NONE);
push(kScratchRegister);
movq(kScratchRegister,
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))),
RelocInfo::NONE);
push(kScratchRegister);
CallRuntime(Runtime::kAbort, 2);
// will not return here
int3();
}
void MacroAssembler::CallStub(CodeStub* stub, unsigned ast_id) {
ASSERT(allow_stub_calls()); // calls are not allowed in some stubs
Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
}
MaybeObject* MacroAssembler::TryCallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
MaybeObject* result = stub->TryGetCode();
if (!result->IsFailure()) {
call(Handle<Code>(Code::cast(result->ToObjectUnchecked())),
RelocInfo::CODE_TARGET);
}
return result;
}
void MacroAssembler::TailCallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
}
MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
MaybeObject* result = stub->TryGetCode();
if (!result->IsFailure()) {
jmp(Handle<Code>(Code::cast(result->ToObjectUnchecked())),
RelocInfo::CODE_TARGET);
}
return result;
}
void MacroAssembler::StubReturn(int argc) {
ASSERT(argc >= 1 && generating_stub());
ret((argc - 1) * kPointerSize);
}
void MacroAssembler::IllegalOperation(int num_arguments) {
if (num_arguments > 0) {
addq(rsp, Immediate(num_arguments * kPointerSize));
}
LoadRoot(rax, Heap::kUndefinedValueRootIndex);
}
void MacroAssembler::IndexFromHash(Register hash, Register index) {
// The assert checks that the constants for the maximum number of digits
// for an array index cached in the hash field and the number of bits
// reserved for it does not conflict.
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
// We want the smi-tagged index in key. Even if we subsequently go to
// the slow case, converting the key to a smi is always valid.
// key: string key
// hash: key's hash field, including its array index value.
and_(hash, Immediate(String::kArrayIndexValueMask));
shr(hash, Immediate(String::kHashShift));
// Here we actually clobber the key which will be used if calling into
// runtime later. However as the new key is the numeric value of a string key
// there is no difference in using either key.
Integer32ToSmi(index, hash);
}
void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
CallRuntime(Runtime::FunctionForId(id), num_arguments);
}
void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
const Runtime::Function* function = Runtime::FunctionForId(id);
Set(rax, function->nargs);
LoadAddress(rbx, ExternalReference(function, isolate()));
CEntryStub ces(1);
ces.SaveDoubles();
CallStub(&ces);
}
MaybeObject* MacroAssembler::TryCallRuntime(Runtime::FunctionId id,
int num_arguments) {
return TryCallRuntime(Runtime::FunctionForId(id), num_arguments);
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments) {
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
return;
}
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(rax, num_arguments);
LoadAddress(rbx, ExternalReference(f, isolate()));
CEntryStub ces(f->result_size);
CallStub(&ces);
}
MaybeObject* MacroAssembler::TryCallRuntime(const Runtime::Function* f,
int num_arguments) {
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
// Since we did not call the stub, there was no allocation failure.
// Return some non-failure object.
return HEAP->undefined_value();
}
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(rax, num_arguments);
LoadAddress(rbx, ExternalReference(f, isolate()));
CEntryStub ces(f->result_size);
return TryCallStub(&ces);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
Set(rax, num_arguments);
LoadAddress(rbx, ext);
CEntryStub stub(1);
CallStub(&stub);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : argument num_arguments - 1
// ...
// -- rsp[8 * num_arguments] : argument 0 (receiver)
// -----------------------------------
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(rax, num_arguments);
JumpToExternalReference(ext, result_size);
}
MaybeObject* MacroAssembler::TryTailCallExternalReference(
const ExternalReference& ext, int num_arguments, int result_size) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : argument num_arguments - 1
// ...
// -- rsp[8 * num_arguments] : argument 0 (receiver)
// -----------------------------------
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(rax, num_arguments);
return TryJumpToExternalReference(ext, result_size);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
MaybeObject* MacroAssembler::TryTailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
return TryTailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
static int Offset(ExternalReference ref0, ExternalReference ref1) {
int64_t offset = (ref0.address() - ref1.address());
// Check that fits into int.
ASSERT(static_cast<int>(offset) == offset);
return static_cast<int>(offset);
}
void MacroAssembler::PrepareCallApiFunction(int arg_stack_space) {
#ifdef _WIN64
// We need to prepare a slot for result handle on stack and put
// a pointer to it into 1st arg register.
EnterApiExitFrame(arg_stack_space + 1);
// rcx must be used to pass the pointer to the return value slot.
lea(rcx, StackSpaceOperand(arg_stack_space));
#else
EnterApiExitFrame(arg_stack_space);
#endif
}
MaybeObject* MacroAssembler::TryCallApiFunctionAndReturn(
ApiFunction* function, int stack_space) {
Label empty_result;
Label prologue;
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label write_back;
Factory* factory = isolate()->factory();
ExternalReference next_address =
ExternalReference::handle_scope_next_address();
const int kNextOffset = 0;
const int kLimitOffset = Offset(
ExternalReference::handle_scope_limit_address(),
next_address);
const int kLevelOffset = Offset(
ExternalReference::handle_scope_level_address(),
next_address);
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate());
// Allocate HandleScope in callee-save registers.
Register prev_next_address_reg = r14;
Register prev_limit_reg = rbx;
Register base_reg = r15;
movq(base_reg, next_address);
movq(prev_next_address_reg, Operand(base_reg, kNextOffset));
movq(prev_limit_reg, Operand(base_reg, kLimitOffset));
addl(Operand(base_reg, kLevelOffset), Immediate(1));
// Call the api function!
movq(rax,
reinterpret_cast<int64_t>(function->address()),
RelocInfo::RUNTIME_ENTRY);
call(rax);
#ifdef _WIN64
// rax keeps a pointer to v8::Handle, unpack it.
movq(rax, Operand(rax, 0));
#endif
// Check if the result handle holds 0.
testq(rax, rax);
j(zero, &empty_result);
// It was non-zero. Dereference to get the result value.
movq(rax, Operand(rax, 0));
bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
subl(Operand(base_reg, kLevelOffset), Immediate(1));
movq(Operand(base_reg, kNextOffset), prev_next_address_reg);
cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset));
j(not_equal, &delete_allocated_handles);
bind(&leave_exit_frame);
// Check if the function scheduled an exception.
movq(rsi, scheduled_exception_address);
Cmp(Operand(rsi, 0), factory->the_hole_value());
j(not_equal, &promote_scheduled_exception);
LeaveApiExitFrame();
ret(stack_space * kPointerSize);
bind(&promote_scheduled_exception);
MaybeObject* result = TryTailCallRuntime(Runtime::kPromoteScheduledException,
0, 1);
if (result->IsFailure()) {
return result;
}
bind(&empty_result);
// It was zero; the result is undefined.
Move(rax, factory->undefined_value());
jmp(&prologue);
// HandleScope limit has changed. Delete allocated extensions.
bind(&delete_allocated_handles);
movq(Operand(base_reg, kLimitOffset), prev_limit_reg);
movq(prev_limit_reg, rax);
#ifdef _WIN64
LoadAddress(rcx, ExternalReference::isolate_address());
#else
LoadAddress(rdi, ExternalReference::isolate_address());
#endif
LoadAddress(rax,
ExternalReference::delete_handle_scope_extensions(isolate()));
call(rax);
movq(rax, prev_limit_reg);
jmp(&leave_exit_frame);
return result;
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext,
int result_size) {
// Set the entry point and jump to the C entry runtime stub.
LoadAddress(rbx, ext);
CEntryStub ces(result_size);
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
}
MaybeObject* MacroAssembler::TryJumpToExternalReference(
const ExternalReference& ext, int result_size) {
// Set the entry point and jump to the C entry runtime stub.
LoadAddress(rbx, ext);
CEntryStub ces(result_size);
return TryTailCallStub(&ces);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// Calls are not allowed in some stubs.
ASSERT(flag == JUMP_FUNCTION || allow_stub_calls());
// Rely on the assertion to check that the number of provided
// arguments match the expected number of arguments. Fake a
// parameter count to avoid emitting code to do the check.
ParameterCount expected(0);
GetBuiltinEntry(rdx, id);
InvokeCode(rdx, expected, expected, flag, call_wrapper, CALL_AS_METHOD);
}
void MacroAssembler::GetBuiltinFunction(Register target,
Builtins::JavaScript id) {
// Load the builtins object into target register.
movq(target, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
movq(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
movq(target, FieldOperand(target,
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
ASSERT(!target.is(rdi));
// Load the JavaScript builtin function from the builtins object.
GetBuiltinFunction(rdi, id);
movq(target, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
}
void MacroAssembler::Set(Register dst, int64_t x) {
if (x == 0) {
xorl(dst, dst);
} else if (is_uint32(x)) {
movl(dst, Immediate(static_cast<uint32_t>(x)));
} else if (is_int32(x)) {
movq(dst, Immediate(static_cast<int32_t>(x)));
} else {
movq(dst, x, RelocInfo::NONE);
}
}
void MacroAssembler::Set(const Operand& dst, int64_t x) {
if (is_int32(x)) {
movq(dst, Immediate(static_cast<int32_t>(x)));
} else {
Set(kScratchRegister, x);
movq(dst, kScratchRegister);
}
}
// ----------------------------------------------------------------------------
// Smi tagging, untagging and tag detection.
Register MacroAssembler::GetSmiConstant(Smi* source) {
int value = source->value();
if (value == 0) {
xorl(kScratchRegister, kScratchRegister);
return kScratchRegister;
}
if (value == 1) {
return kSmiConstantRegister;
}
LoadSmiConstant(kScratchRegister, source);
return kScratchRegister;
}
void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) {
if (emit_debug_code()) {
movq(dst,
reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
RelocInfo::NONE);
cmpq(dst, kSmiConstantRegister);
if (allow_stub_calls()) {
Assert(equal, "Uninitialized kSmiConstantRegister");
} else {
Label ok;
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
}
int value = source->value();
if (value == 0) {
xorl(dst, dst);
return;
}
bool negative = value < 0;
unsigned int uvalue = negative ? -value : value;
switch (uvalue) {
case 9:
lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_8, 0));
break;
case 8:
xorl(dst, dst);
lea(dst, Operand(dst, kSmiConstantRegister, times_8, 0));
break;
case 4:
xorl(dst, dst);
lea(dst, Operand(dst, kSmiConstantRegister, times_4, 0));
break;
case 5:
lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_4, 0));
break;
case 3:
lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_2, 0));
break;
case 2:
lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_1, 0));
break;
case 1:
movq(dst, kSmiConstantRegister);
break;
case 0:
UNREACHABLE();
return;
default:
movq(dst, reinterpret_cast<uint64_t>(source), RelocInfo::NONE);
return;
}
if (negative) {
neg(dst);
}
}
void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movl(dst, src);
}
shl(dst, Immediate(kSmiShift));
}
void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) {
if (emit_debug_code()) {
testb(dst, Immediate(0x01));
Label ok;
j(zero, &ok, Label::kNear);
if (allow_stub_calls()) {
Abort("Integer32ToSmiField writing to non-smi location");
} else {
int3();
}
bind(&ok);
}
ASSERT(kSmiShift % kBitsPerByte == 0);
movl(Operand(dst, kSmiShift / kBitsPerByte), src);
}
void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
Register src,
int constant) {
if (dst.is(src)) {
addl(dst, Immediate(constant));
} else {
leal(dst, Operand(src, constant));
}
shl(dst, Immediate(kSmiShift));
}
void MacroAssembler::SmiToInteger32(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movq(dst, src);
}
shr(dst, Immediate(kSmiShift));
}
void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) {
movl(dst, Operand(src, kSmiShift / kBitsPerByte));
}
void MacroAssembler::SmiToInteger64(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movq(dst, src);
}
sar(dst, Immediate(kSmiShift));
}
void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) {
movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte));
}
void MacroAssembler::SmiTest(Register src) {
testq(src, src);
}
void MacroAssembler::SmiCompare(Register smi1, Register smi2) {
if (emit_debug_code()) {
AbortIfNotSmi(smi1);
AbortIfNotSmi(smi2);
}
cmpq(smi1, smi2);
}
void MacroAssembler::SmiCompare(Register dst, Smi* src) {
if (emit_debug_code()) {
AbortIfNotSmi(dst);
}
Cmp(dst, src);
}
void MacroAssembler::Cmp(Register dst, Smi* src) {
ASSERT(!dst.is(kScratchRegister));
if (src->value() == 0) {
testq(dst, dst);
} else {
Register constant_reg = GetSmiConstant(src);
cmpq(dst, constant_reg);
}
}
void MacroAssembler::SmiCompare(Register dst, const Operand& src) {
if (emit_debug_code()) {
AbortIfNotSmi(dst);
AbortIfNotSmi(src);
}
cmpq(dst, src);
}
void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
if (emit_debug_code()) {
AbortIfNotSmi(dst);
AbortIfNotSmi(src);
}
cmpq(dst, src);
}
void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
if (emit_debug_code()) {
AbortIfNotSmi(dst);
}
cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value()));
}
void MacroAssembler::Cmp(const Operand& dst, Smi* src) {
// The Operand cannot use the smi register.
Register smi_reg = GetSmiConstant(src);
ASSERT(!dst.AddressUsesRegister(smi_reg));
cmpq(dst, smi_reg);
}
void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) {
cmpl(Operand(dst, kSmiShift / kBitsPerByte), src);
}
void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
Register src,
int power) {
ASSERT(power >= 0);
ASSERT(power < 64);
if (power == 0) {
SmiToInteger64(dst, src);
return;
}
if (!dst.is(src)) {
movq(dst, src);
}
if (power < kSmiShift) {
sar(dst, Immediate(kSmiShift - power));
} else if (power > kSmiShift) {
shl(dst, Immediate(power - kSmiShift));
}
}
void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
Register src,
int power) {
ASSERT((0 <= power) && (power < 32));
if (dst.is(src)) {
shr(dst, Immediate(power + kSmiShift));
} else {
UNIMPLEMENTED(); // Not used.
}
}
void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
Label* on_not_smis,
Label::Distance near_jump) {
if (dst.is(src1) || dst.is(src2)) {
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
movq(kScratchRegister, src1);
or_(kScratchRegister, src2);
JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump);
movq(dst, kScratchRegister);
} else {
movq(dst, src1);
or_(dst, src2);
JumpIfNotSmi(dst, on_not_smis, near_jump);
}
}
Condition MacroAssembler::CheckSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckSmi(const Operand& src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckNonNegativeSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
// Test that both bits of the mask 0x8000000000000001 are zero.
movq(kScratchRegister, src);
rol(kScratchRegister, Immediate(1));
testb(kScratchRegister, Immediate(3));
return zero;
}
Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
if (first.is(second)) {
return CheckSmi(first);
}
STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3);
leal(kScratchRegister, Operand(first, second, times_1, 0));
testb(kScratchRegister, Immediate(0x03));
return zero;
}
Condition MacroAssembler::CheckBothNonNegativeSmi(Register first,
Register second) {
if (first.is(second)) {
return CheckNonNegativeSmi(first);
}
movq(kScratchRegister, first);
or_(kScratchRegister, second);
rol(kScratchRegister, Immediate(1));
testl(kScratchRegister, Immediate(3));
return zero;
}
Condition MacroAssembler::CheckEitherSmi(Register first,
Register second,
Register scratch) {
if (first.is(second)) {
return CheckSmi(first);
}
if (scratch.is(second)) {
andl(scratch, first);
} else {
if (!scratch.is(first)) {
movl(scratch, first);
}
andl(scratch, second);
}
testb(scratch, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckIsMinSmi(Register src) {
ASSERT(!src.is(kScratchRegister));
// If we overflow by subtracting one, it's the minimal smi value.
cmpq(src, kSmiConstantRegister);
return overflow;
}
Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
// A 32-bit integer value can always be converted to a smi.
return always;
}
Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
// An unsigned 32-bit integer value is valid as long as the high bit
// is not set.
testl(src, src);
return positive;
}
void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) {
if (dst.is(src)) {
andl(dst, Immediate(kSmiTagMask));
} else {
movl(dst, Immediate(kSmiTagMask));
andl(dst, src);
}
}
void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
if (!(src.AddressUsesRegister(dst))) {
movl(dst, Immediate(kSmiTagMask));
andl(dst, src);
} else {
movl(dst, src);
andl(dst, Immediate(kSmiTagMask));
}
}
void MacroAssembler::JumpIfNotValidSmiValue(Register src,
Label* on_invalid,
Label::Distance near_jump) {
Condition is_valid = CheckInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid, near_jump);
}
void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
Label* on_invalid,
Label::Distance near_jump) {
Condition is_valid = CheckUInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid, near_jump);
}
void MacroAssembler::JumpIfSmi(Register src,
Label* on_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(smi, on_smi, near_jump);
}
void MacroAssembler::JumpIfNotSmi(Register src,
Label* on_not_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(NegateCondition(smi), on_not_smi, near_jump);
}
void MacroAssembler::JumpUnlessNonNegativeSmi(
Register src, Label* on_not_smi_or_negative,
Label::Distance near_jump) {
Condition non_negative_smi = CheckNonNegativeSmi(src);
j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump);
}
void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
Smi* constant,
Label* on_equals,
Label::Distance near_jump) {
SmiCompare(src, constant);
j(equal, on_equals, near_jump);
}
void MacroAssembler::JumpIfNotBothSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump) {
Condition both_smi = CheckBothSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
}
void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump) {
Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
}
void MacroAssembler::SmiTryAddConstant(Register dst,
Register src,
Smi* constant,
Label* on_not_smi_result,
Label::Distance near_jump) {
// Does not assume that src is a smi.
ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask));
STATIC_ASSERT(kSmiTag == 0);
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src.is(kScratchRegister));
JumpIfNotSmi(src, on_not_smi_result, near_jump);
Register tmp = (dst.is(src) ? kScratchRegister : dst);
LoadSmiConstant(tmp, constant);
addq(tmp, src);
j(overflow, on_not_smi_result, near_jump);
if (dst.is(src)) {
movq(dst, tmp);
}
}
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movq(dst, src);
}
return;
} else if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
switch (constant->value()) {
case 1:
addq(dst, kSmiConstantRegister);
return;
case 2:
lea(dst, Operand(src, kSmiConstantRegister, times_2, 0));
return;
case 4:
lea(dst, Operand(src, kSmiConstantRegister, times_4, 0));
return;
case 8:
lea(dst, Operand(src, kSmiConstantRegister, times_8, 0));
return;
default:
Register constant_reg = GetSmiConstant(constant);
addq(dst, constant_reg);
return;
}
} else {
switch (constant->value()) {
case 1:
lea(dst, Operand(src, kSmiConstantRegister, times_1, 0));
return;
case 2:
lea(dst, Operand(src, kSmiConstantRegister, times_2, 0));
return;
case 4:
lea(dst, Operand(src, kSmiConstantRegister, times_4, 0));
return;
case 8:
lea(dst, Operand(src, kSmiConstantRegister, times_8, 0));
return;
default:
LoadSmiConstant(dst, constant);
addq(dst, src);
return;
}
}
}
void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
if (constant->value() != 0) {
addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant->value()));
}
}
void MacroAssembler::SmiAddConstant(Register dst,
Register src,
Smi* constant,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movq(dst, src);
}
} else if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
LoadSmiConstant(kScratchRegister, constant);
addq(kScratchRegister, src);
j(overflow, on_not_smi_result, near_jump);
movq(dst, kScratchRegister);
} else {
LoadSmiConstant(dst, constant);
addq(dst, src);
j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movq(dst, src);
}
} else if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
subq(dst, constant_reg);
} else {
if (constant->value() == Smi::kMinValue) {
LoadSmiConstant(dst, constant);
// Adding and subtracting the min-value gives the same result, it only
// differs on the overflow bit, which we don't check here.
addq(dst, src);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-constant->value()));
addq(dst, src);
}
}
}
void MacroAssembler::SmiSubConstant(Register dst,
Register src,
Smi* constant,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movq(dst, src);
}
} else if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
if (constant->value() == Smi::kMinValue) {
// Subtracting min-value from any non-negative value will overflow.
// We test the non-negativeness before doing the subtraction.
testq(src, src);
j(not_sign, on_not_smi_result, near_jump);
LoadSmiConstant(kScratchRegister, constant);
subq(dst, kScratchRegister);
} else {
// Subtract by adding the negation.
LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value()));
addq(kScratchRegister, dst);
j(overflow, on_not_smi_result, near_jump);
movq(dst, kScratchRegister);
}
} else {
if (constant->value() == Smi::kMinValue) {
// Subtracting min-value from any non-negative value will overflow.
// We test the non-negativeness before doing the subtraction.
testq(src, src);
j(not_sign, on_not_smi_result, near_jump);
LoadSmiConstant(dst, constant);
// Adding and subtracting the min-value gives the same result, it only
// differs on the overflow bit, which we don't check here.
addq(dst, src);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
addq(dst, src);
j(overflow, on_not_smi_result, near_jump);
}
}
}
void MacroAssembler::SmiNeg(Register dst,
Register src,
Label* on_smi_result,
Label::Distance near_jump) {
if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
movq(kScratchRegister, src);
neg(dst); // Low 32 bits are retained as zero by negation.
// Test if result is zero or Smi::kMinValue.
cmpq(dst, kScratchRegister);
j(not_equal, on_smi_result, near_jump);
movq(src, kScratchRegister);
} else {
movq(dst, src);
neg(dst);
cmpq(dst, src);
// If the result is zero or Smi::kMinValue, negation failed to create a smi.
j(not_equal, on_smi_result, near_jump);
}
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
ASSERT_NOT_NULL(on_not_smi_result);
ASSERT(!dst.is(src2));
if (dst.is(src1)) {
movq(kScratchRegister, src1);
addq(kScratchRegister, src2);
j(overflow, on_not_smi_result, near_jump);
movq(dst, kScratchRegister);
} else {
movq(dst, src1);
addq(dst, src2);
j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
ASSERT_NOT_NULL(on_not_smi_result);
if (dst.is(src1)) {
movq(kScratchRegister, src1);
addq(kScratchRegister, src2);
j(overflow, on_not_smi_result, near_jump);
movq(dst, kScratchRegister);
} else {
ASSERT(!src2.AddressUsesRegister(dst));
movq(dst, src1);
addq(dst, src2);
j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible.
if (!dst.is(src1)) {
if (emit_debug_code()) {
movq(kScratchRegister, src1);
addq(kScratchRegister, src2);
Check(no_overflow, "Smi addition overflow");
}
lea(dst, Operand(src1, src2, times_1, 0));
} else {
addq(dst, src2);
Assert(no_overflow, "Smi addition overflow");
}
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
ASSERT_NOT_NULL(on_not_smi_result);
ASSERT(!dst.is(src2));
if (dst.is(src1)) {
cmpq(dst, src2);
j(overflow, on_not_smi_result, near_jump);
subq(dst, src2);
} else {
movq(dst, src1);
subq(dst, src2);
j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible (e.g., subtracting two positive smis).
ASSERT(!dst.is(src2));
if (!dst.is(src1)) {
movq(dst, src1);
}
subq(dst, src2);
Assert(no_overflow, "Smi subtraction overflow");
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
ASSERT_NOT_NULL(on_not_smi_result);
if (dst.is(src1)) {
movq(kScratchRegister, src2);
cmpq(src1, kScratchRegister);
j(overflow, on_not_smi_result, near_jump);
subq(src1, kScratchRegister);
} else {
movq(dst, src1);
subq(dst, src2);
j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible (e.g., subtracting two positive smis).
if (!dst.is(src1)) {
movq(dst, src1);
}
subq(dst, src2);
Assert(no_overflow, "Smi subtraction overflow");
}
void MacroAssembler::SmiMul(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
ASSERT(!dst.is(src2));
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
if (dst.is(src1)) {
Label failure, zero_correct_result;
movq(kScratchRegister, src1); // Create backup for later testing.
SmiToInteger64(dst, src1);
imul(dst, src2);
j(overflow, &failure, Label::kNear);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
Label correct_result;
testq(dst, dst);
j(not_zero, &correct_result, Label::kNear);
movq(dst, kScratchRegister);
xor_(dst, src2);
// Result was positive zero.
j(positive, &zero_correct_result, Label::kNear);
bind(&failure); // Reused failure exit, restores src1.
movq(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
bind(&zero_correct_result);
Set(dst, 0);
bind(&correct_result);
} else {
SmiToInteger64(dst, src1);
imul(dst, src2);
j(overflow, on_not_smi_result, near_jump);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
Label correct_result;
testq(dst, dst);
j(not_zero, &correct_result, Label::kNear);
// One of src1 and src2 is zero, the check whether the other is
// negative.
movq(kScratchRegister, src1);
xor_(kScratchRegister, src2);
j(negative, on_not_smi_result, near_jump);
bind(&correct_result);
}
}
void MacroAssembler::SmiDiv(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src2.is(rax));
ASSERT(!src2.is(rdx));
ASSERT(!src1.is(rdx));
// Check for 0 divisor (result is +/-Infinity).
testq(src2, src2);
j(zero, on_not_smi_result, near_jump);
if (src1.is(rax)) {
movq(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
// We need to rule out dividing Smi::kMinValue by -1, since that would
// overflow in idiv and raise an exception.
// We combine this with negative zero test (negative zero only happens
// when dividing zero by a negative number).
// We overshoot a little and go to slow case if we divide min-value
// by any negative value, not just -1.
Label safe_div;
testl(rax, Immediate(0x7fffffff));
j(not_zero, &safe_div, Label::kNear);
testq(src2, src2);
if (src1.is(rax)) {
j(positive, &safe_div, Label::kNear);
movq(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
} else {
j(negative, on_not_smi_result, near_jump);
}
bind(&safe_div);
SmiToInteger32(src2, src2);
// Sign extend src1 into edx:eax.
cdq();
idivl(src2);
Integer32ToSmi(src2, src2);
// Check that the remainder is zero.
testl(rdx, rdx);
if (src1.is(rax)) {
Label smi_result;
j(zero, &smi_result, Label::kNear);
movq(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
bind(&smi_result);
} else {
j(not_zero, on_not_smi_result, near_jump);
}
if (!dst.is(src1) && src1.is(rax)) {
movq(src1, kScratchRegister);
}
Integer32ToSmi(dst, rax);
}
void MacroAssembler::SmiMod(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!src2.is(rax));
ASSERT(!src2.is(rdx));
ASSERT(!src1.is(rdx));
ASSERT(!src1.is(src2));
testq(src2, src2);
j(zero, on_not_smi_result, near_jump);
if (src1.is(rax)) {
movq(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
SmiToInteger32(src2, src2);
// Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
Label safe_div;
cmpl(rax, Immediate(Smi::kMinValue));
j(not_equal, &safe_div, Label::kNear);
cmpl(src2, Immediate(-1));
j(not_equal, &safe_div, Label::kNear);
// Retag inputs and go slow case.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movq(src1, kScratchRegister);
}
jmp(on_not_smi_result, near_jump);
bind(&safe_div);
// Sign extend eax into edx:eax.
cdq();
idivl(src2);
// Restore smi tags on inputs.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movq(src1, kScratchRegister);
}
// Check for a negative zero result. If the result is zero, and the
// dividend is negative, go slow to return a floating point negative zero.
Label smi_result;
testl(rdx, rdx);
j(not_zero, &smi_result, Label::kNear);
testq(src1, src1);
j(negative, on_not_smi_result, near_jump);
bind(&smi_result);
Integer32ToSmi(dst, rdx);
}
void MacroAssembler::SmiNot(Register dst, Register src) {
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src.is(kScratchRegister));
// Set tag and padding bits before negating, so that they are zero afterwards.
movl(kScratchRegister, Immediate(~0));
if (dst.is(src)) {
xor_(dst, kScratchRegister);
} else {
lea(dst, Operand(src, kScratchRegister, times_1, 0));
}
not_(dst);
}
void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
ASSERT(!dst.is(src2));
if (!dst.is(src1)) {
movq(dst, src1);
}
and_(dst, src2);
}
void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
Set(dst, 0);
} else if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
and_(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
and_(dst, src);
}
}
void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
if (!dst.is(src1)) {
ASSERT(!src1.is(src2));
movq(dst, src1);
}
or_(dst, src2);
}
void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
or_(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
or_(dst, src);
}
}
void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
if (!dst.is(src1)) {
ASSERT(!src1.is(src2));
movq(dst, src1);
}
xor_(dst, src2);
}
void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
if (dst.is(src)) {
ASSERT(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
xor_(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
xor_(dst, src);
}
}
void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
Register src,
int shift_value) {
ASSERT(is_uint5(shift_value));
if (shift_value > 0) {
if (dst.is(src)) {
sar(dst, Immediate(shift_value + kSmiShift));
shl(dst, Immediate(kSmiShift));
} else {
UNIMPLEMENTED(); // Not used.
}
}
}
void MacroAssembler::SmiShiftLeftConstant(Register dst,
Register src,
int shift_value) {
if (!dst.is(src)) {
movq(dst, src);
}
if (shift_value > 0) {
shl(dst, Immediate(shift_value));
}
}
void MacroAssembler::SmiShiftLogicalRightConstant(
Register dst, Register src, int shift_value,
Label* on_not_smi_result, Label::Distance near_jump) {
// Logic right shift interprets its result as an *unsigned* number.
if (dst.is(src)) {
UNIMPLEMENTED(); // Not used.
} else {
movq(dst, src);
if (shift_value == 0) {
testq(dst, dst);
j(negative, on_not_smi_result, near_jump);
}
shr(dst, Immediate(shift_value + kSmiShift));
shl(dst, Immediate(kSmiShift));
}
}
void MacroAssembler::SmiShiftLeft(Register dst,
Register src1,
Register src2) {
ASSERT(!dst.is(rcx));
// Untag shift amount.
if (!dst.is(src1)) {
movq(dst, src1);
}
SmiToInteger32(rcx, src2);
// Shift amount specified by lower 5 bits, not six as the shl opcode.
and_(rcx, Immediate(0x1f));
shl_cl(dst);
}
void MacroAssembler::SmiShiftLogicalRight(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!dst.is(rcx));
// dst and src1 can be the same, because the one case that bails out
// is a shift by 0, which leaves dst, and therefore src1, unchanged.
if (src1.is(rcx) || src2.is(rcx)) {
movq(kScratchRegister, rcx);
}
if (!dst.is(src1)) {
movq(dst, src1);
}
SmiToInteger32(rcx, src2);
orl(rcx, Immediate(kSmiShift));
shr_cl(dst); // Shift is rcx modulo 0x1f + 32.
shl(dst, Immediate(kSmiShift));
testq(dst, dst);
if (src1.is(rcx) || src2.is(rcx)) {
Label positive_result;
j(positive, &positive_result, Label::kNear);
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else {
movq(src2, kScratchRegister);
}
jmp(on_not_smi_result, near_jump);
bind(&positive_result);
} else {
// src2 was zero and src1 negative.
j(negative, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiShiftArithmeticRight(Register dst,
Register src1,
Register src2) {
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!dst.is(rcx));
if (src1.is(rcx)) {
movq(kScratchRegister, src1);
} else if (src2.is(rcx)) {
movq(kScratchRegister, src2);
}
if (!dst.is(src1)) {
movq(dst, src1);
}
SmiToInteger32(rcx, src2);
orl(rcx, Immediate(kSmiShift));
sar_cl(dst); // Shift 32 + original rcx & 0x1f.
shl(dst, Immediate(kSmiShift));
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else if (src2.is(rcx)) {
movq(src2, kScratchRegister);
}
}
void MacroAssembler::SelectNonSmi(Register dst,
Register src1,
Register src2,
Label* on_not_smis,
Label::Distance near_jump) {
ASSERT(!dst.is(kScratchRegister));
ASSERT(!src1.is(kScratchRegister));
ASSERT(!src2.is(kScratchRegister));
ASSERT(!dst.is(src1));
ASSERT(!dst.is(src2));
// Both operands must not be smis.
#ifdef DEBUG
if (allow_stub_calls()) { // Check contains a stub call.
Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
Check(not_both_smis, "Both registers were smis in SelectNonSmi.");
}
#endif
STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(0, Smi::FromInt(0));
movl(kScratchRegister, Immediate(kSmiTagMask));
and_(kScratchRegister, src1);
testl(kScratchRegister, src2);
// If non-zero then both are smis.
j(not_zero, on_not_smis, near_jump);
// Exactly one operand is a smi.
ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
// kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
subq(kScratchRegister, Immediate(1));
// If src1 is a smi, then scratch register all 1s, else it is all 0s.
movq(dst, src1);
xor_(dst, src2);
and_(dst, kScratchRegister);
// If src1 is a smi, dst holds src1 ^ src2, else it is zero.
xor_(dst, src1);
// If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
}
SmiIndex MacroAssembler::SmiToIndex(Register dst,
Register src,
int shift) {
ASSERT(is_uint6(shift));
// There is a possible optimization if shift is in the range 60-63, but that
// will (and must) never happen.
if (!dst.is(src)) {
movq(dst, src);
}
if (shift < kSmiShift) {
sar(dst, Immediate(kSmiShift - shift));
} else {
shl(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
}
SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
Register src,
int shift) {
// Register src holds a positive smi.
ASSERT(is_uint6(shift));
if (!dst.is(src)) {
movq(dst, src);
}
neg(dst);
if (shift < kSmiShift) {
sar(dst, Immediate(kSmiShift - shift));
} else {
shl(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
}
void MacroAssembler::AddSmiField(Register dst, const Operand& src) {
ASSERT_EQ(0, kSmiShift % kBitsPerByte);
addl(dst, Operand(src, kSmiShift / kBitsPerByte));
}
void MacroAssembler::JumpIfNotString(Register object,
Register object_map,
Label* not_string,
Label::Distance near_jump) {
Condition is_smi = CheckSmi(object);
j(is_smi, not_string, near_jump);
CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
j(above_equal, not_string, near_jump);
}
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(
Register first_object,
Register second_object,
Register scratch1,
Register scratch2,
Label* on_fail,
Label::Distance near_jump) {
// Check that both objects are not smis.
Condition either_smi = CheckEitherSmi(first_object, second_object);
j(either_smi, on_fail, near_jump);
// Load instance type for both strings.
movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
// Check that both are flat ascii strings.
ASSERT(kNotStringTag != 0);
const int kFlatAsciiStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
andl(scratch1, Immediate(kFlatAsciiStringMask));
andl(scratch2, Immediate(kFlatAsciiStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
j(not_equal, on_fail, near_jump);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
Register instance_type,
Register scratch,
Label* failure,
Label::Distance near_jump) {
if (!scratch.is(instance_type)) {
movl(scratch, instance_type);
}
const int kFlatAsciiStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
andl(scratch, Immediate(kFlatAsciiStringMask));
cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
j(not_equal, failure, near_jump);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first_object_instance_type,
Register second_object_instance_type,
Register scratch1,
Register scratch2,
Label* on_fail,
Label::Distance near_jump) {
// Load instance type for both strings.
movq(scratch1, first_object_instance_type);
movq(scratch2, second_object_instance_type);
// Check that both are flat ascii strings.
ASSERT(kNotStringTag != 0);
const int kFlatAsciiStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
andl(scratch1, Immediate(kFlatAsciiStringMask));
andl(scratch2, Immediate(kFlatAsciiStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3)));
j(not_equal, on_fail, near_jump);
}
void MacroAssembler::Move(Register dst, Register src) {
if (!dst.is(src)) {
movq(dst, src);
}
}
void MacroAssembler::Move(Register dst, Handle<Object> source) {
ASSERT(!source->IsFailure());
if (source->IsSmi()) {
Move(dst, Smi::cast(*source));
} else {
movq(dst, source, RelocInfo::EMBEDDED_OBJECT);
}
}
void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
ASSERT(!source->IsFailure());
if (source->IsSmi()) {
Move(dst, Smi::cast(*source));
} else {
movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
movq(dst, kScratchRegister);
}
}
void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
if (source->IsSmi()) {
Cmp(dst, Smi::cast(*source));
} else {
Move(kScratchRegister, source);
cmpq(dst, kScratchRegister);
}
}
void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
if (source->IsSmi()) {
Cmp(dst, Smi::cast(*source));
} else {
ASSERT(source->IsHeapObject());
movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
cmpq(dst, kScratchRegister);
}
}
void MacroAssembler::Push(Handle<Object> source) {
if (source->IsSmi()) {
Push(Smi::cast(*source));
} else {
ASSERT(source->IsHeapObject());
movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
push(kScratchRegister);
}
}
void MacroAssembler::Push(Smi* source) {
intptr_t smi = reinterpret_cast<intptr_t>(source);
if (is_int32(smi)) {
push(Immediate(static_cast<int32_t>(smi)));
} else {
Register constant = GetSmiConstant(source);
push(constant);
}
}
void MacroAssembler::Drop(int stack_elements) {
if (stack_elements > 0) {
addq(rsp, Immediate(stack_elements * kPointerSize));
}
}
void MacroAssembler::Test(const Operand& src, Smi* source) {
testl(Operand(src, kIntSize), Immediate(source->value()));
}
void MacroAssembler::Jump(ExternalReference ext) {
LoadAddress(kScratchRegister, ext);
jmp(kScratchRegister);
}
void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
movq(kScratchRegister, destination, rmode);
jmp(kScratchRegister);
}
void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
// TODO(X64): Inline this
jmp(code_object, rmode);
}
int MacroAssembler::CallSize(ExternalReference ext) {
// Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes).
const int kCallInstructionSize = 3;
return LoadAddressSize(ext) + kCallInstructionSize;
}
void MacroAssembler::Call(ExternalReference ext) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(ext);
#endif
LoadAddress(kScratchRegister, ext);
call(kScratchRegister);
#ifdef DEBUG
CHECK_EQ(end_position, pc_offset());
#endif
}
void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(destination, rmode);
#endif
movq(kScratchRegister, destination, rmode);
call(kScratchRegister);
#ifdef DEBUG
CHECK_EQ(pc_offset(), end_position);
#endif
}
void MacroAssembler::Call(Handle<Code> code_object,
RelocInfo::Mode rmode,
unsigned ast_id) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(code_object);
#endif
ASSERT(RelocInfo::IsCodeTarget(rmode));
call(code_object, rmode, ast_id);
#ifdef DEBUG
CHECK_EQ(end_position, pc_offset());
#endif
}
void MacroAssembler::Pushad() {
push(rax);
push(rcx);
push(rdx);
push(rbx);
// Not pushing rsp or rbp.
push(rsi);
push(rdi);
push(r8);
push(r9);
// r10 is kScratchRegister.
push(r11);
// r12 is kSmiConstantRegister.
// r13 is kRootRegister.
push(r14);
push(r15);
STATIC_ASSERT(11 == kNumSafepointSavedRegisters);
// Use lea for symmetry with Popad.
int sp_delta =
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
lea(rsp, Operand(rsp, -sp_delta));
}
void MacroAssembler::Popad() {
// Popad must not change the flags, so use lea instead of addq.
int sp_delta =
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
lea(rsp, Operand(rsp, sp_delta));
pop(r15);
pop(r14);
pop(r11);
pop(r9);
pop(r8);
pop(rdi);
pop(rsi);
pop(rbx);
pop(rdx);
pop(rcx);
pop(rax);
}
void MacroAssembler::Dropad() {
addq(rsp, Immediate(kNumSafepointRegisters * kPointerSize));
}
// Order general registers are pushed by Pushad:
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
int MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = {
0,
1,
2,
3,
-1,
-1,
4,
5,
6,
7,
-1,
8,
-1,
-1,
9,
10
};
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
movq(SafepointRegisterSlot(dst), src);
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
movq(dst, SafepointRegisterSlot(src));
}
Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
void MacroAssembler::PushTryHandler(CodeLocation try_location,
HandlerType type) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kPCOffset == 4 * kPointerSize);
// The pc (return address) is already on TOS. This code pushes state,
// frame pointer, context, and current handler.
if (try_location == IN_JAVASCRIPT) {
if (type == TRY_CATCH_HANDLER) {
push(Immediate(StackHandler::TRY_CATCH));
} else {
push(Immediate(StackHandler::TRY_FINALLY));
}
push(rbp);
push(rsi);
} else {
ASSERT(try_location == IN_JS_ENTRY);
// The frame pointer does not point to a JS frame so we save NULL
// for rbp. We expect the code throwing an exception to check rbp
// before dereferencing it to restore the context.
push(Immediate(StackHandler::ENTRY));
push(Immediate(0)); // NULL frame pointer.
Push(Smi::FromInt(0)); // No context.
}
// Save the current handler.
Operand handler_operand =
ExternalOperand(ExternalReference(Isolate::kHandlerAddress, isolate()));
push(handler_operand);
// Link this handler.
movq(handler_operand, rsp);
}
void MacroAssembler::PopTryHandler() {
ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
// Unlink this handler.
Operand handler_operand =
ExternalOperand(ExternalReference(Isolate::kHandlerAddress, isolate()));
pop(handler_operand);
// Remove the remaining fields.
addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
}
void MacroAssembler::Throw(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kPCOffset == 4 * kPointerSize);
// Keep thrown value in rax.
if (!value.is(rax)) {
movq(rax, value);
}
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
Operand handler_operand = ExternalOperand(handler_address);
movq(rsp, handler_operand);
// get next in chain
pop(handler_operand);
pop(rsi); // Context.
pop(rbp); // Frame pointer.
pop(rdx); // State.
// If the handler is a JS frame, restore the context to the frame.
// (rdx == ENTRY) == (rbp == 0) == (rsi == 0), so we could test any
// of them.
Label skip;
cmpq(rdx, Immediate(StackHandler::ENTRY));
j(equal, &skip, Label::kNear);
movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
bind(&skip);
ret(0);
}
void MacroAssembler::ThrowUncatchable(UncatchableExceptionType type,
Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kPCOffset == 4 * kPointerSize);
// Keep thrown value in rax.
if (!value.is(rax)) {
movq(rax, value);
}
// Fetch top stack handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
Load(rsp, handler_address);
// Unwind the handlers until the ENTRY handler is found.
Label loop, done;
bind(&loop);
// Load the type of the current stack handler.
const int kStateOffset = StackHandlerConstants::kStateOffset;
cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
j(equal, &done, Label::kNear);
// Fetch the next handler in the list.
const int kNextOffset = StackHandlerConstants::kNextOffset;
movq(rsp, Operand(rsp, kNextOffset));
jmp(&loop);
bind(&done);
// Set the top handler address to next handler past the current ENTRY handler.
Operand handler_operand = ExternalOperand(handler_address);
pop(handler_operand);
if (type == OUT_OF_MEMORY) {
// Set external caught exception to false.
ExternalReference external_caught(
Isolate::kExternalCaughtExceptionAddress, isolate());
Set(rax, static_cast<int64_t>(false));
Store(external_caught, rax);
// Set pending exception and rax to out of memory exception.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
isolate());
movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
Store(pending_exception, rax);
}
// Discard the context saved in the handler and clear the context pointer.
pop(rdx);
Set(rsi, 0);
pop(rbp); // Restore frame pointer.
pop(rdx); // Discard state.
ret(0);
}
void MacroAssembler::Ret() {
ret(0);
}
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
if (is_uint16(bytes_dropped)) {
ret(bytes_dropped);
} else {
pop(scratch);
addq(rsp, Immediate(bytes_dropped));
push(scratch);
ret(0);
}
}
void MacroAssembler::FCmp() {
fucomip();
fstp(0);
}
void MacroAssembler::CmpObjectType(Register heap_object,
InstanceType type,
Register map) {
movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
CmpInstanceType(map, type);
}
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
Immediate(static_cast<int8_t>(type)));
}
void MacroAssembler::CheckFastElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_ELEMENTS == 0);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastElementValue));
j(above, fail, distance);
}
void MacroAssembler::CheckMap(Register obj,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
j(not_equal, fail);
}
void MacroAssembler::ClampUint8(Register reg) {
Label done;
testl(reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
setcc(negative, reg); // 1 if negative, 0 if positive.
decb(reg); // 0 if negative, 255 if positive.
bind(&done);
}
void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
XMMRegister temp_xmm_reg,
Register result_reg,
Register temp_reg) {
Label done;
Set(result_reg, 0);
xorps(temp_xmm_reg, temp_xmm_reg);
ucomisd(input_reg, temp_xmm_reg);
j(below, &done, Label::kNear);
uint64_t one_half = BitCast<uint64_t, double>(0.5);
Set(temp_reg, one_half);
movq(temp_xmm_reg, temp_reg);
addsd(temp_xmm_reg, input_reg);
cvttsd2si(result_reg, temp_xmm_reg);
testl(result_reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
Set(result_reg, 255);
bind(&done);
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
movq(descriptors, FieldOperand(map,
Map::kInstanceDescriptorsOrBitField3Offset));
Label not_smi;
JumpIfNotSmi(descriptors, &not_smi, Label::kNear);
Move(descriptors, isolate()->factory()->empty_descriptor_array());
bind(&not_smi);
}
void MacroAssembler::DispatchMap(Register obj,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
j(equal, success, RelocInfo::CODE_TARGET);
bind(&fail);
}
void MacroAssembler::AbortIfNotNumber(Register object) {
Label ok;
Condition is_smi = CheckSmi(object);
j(is_smi, &ok, Label::kNear);
Cmp(FieldOperand(object, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
Assert(equal, "Operand not a number");
bind(&ok);
}
void MacroAssembler::AbortIfSmi(Register object) {
Condition is_smi = CheckSmi(object);
Assert(NegateCondition(is_smi), "Operand is a smi");
}
void MacroAssembler::AbortIfNotSmi(Register object) {
Condition is_smi = CheckSmi(object);
Assert(is_smi, "Operand is not a smi");
}
void MacroAssembler::AbortIfNotSmi(const Operand& object) {
Condition is_smi = CheckSmi(object);
Assert(is_smi, "Operand is not a smi");
}
void MacroAssembler::AbortIfNotString(Register object) {
testb(object, Immediate(kSmiTagMask));
Assert(not_equal, "Operand is not a string");
push(object);
movq(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, FIRST_NONSTRING_TYPE);
pop(object);
Assert(below, "Operand is not a string");
}
void MacroAssembler::AbortIfNotRootValue(Register src,
Heap::RootListIndex root_value_index,
const char* message) {
ASSERT(!src.is(kScratchRegister));
LoadRoot(kScratchRegister, root_value_index);
cmpq(src, kScratchRegister);
Check(equal, message);
}
Condition MacroAssembler::IsObjectStringType(Register heap_object,
Register map,
Register instance_type) {
movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
testb(instance_type, Immediate(kIsNotStringMask));
return zero;
}
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Label* miss) {
// Check that the receiver isn't a smi.
testl(function, Immediate(kSmiTagMask));
j(zero, miss);
// Check that the function really is a function.
CmpObjectType(function, JS_FUNCTION_TYPE, result);
j(not_equal, miss);
// Make sure that the function has an instance prototype.
Label non_instance;
testb(FieldOperand(result, Map::kBitFieldOffset),
Immediate(1 << Map::kHasNonInstancePrototype));
j(not_zero, &non_instance, Label::kNear);
// Get the prototype or initial map from the function.
movq(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
CompareRoot(result, Heap::kTheHoleValueRootIndex);
j(equal, miss);
// If the function does not have an initial map, we're done.
Label done;
CmpObjectType(result, MAP_TYPE, kScratchRegister);
j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
movq(result, FieldOperand(result, Map::kPrototypeOffset));
jmp(&done, Label::kNear);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
movq(result, FieldOperand(result, Map::kConstructorOffset));
// All done.
bind(&done);
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
movl(counter_operand, Immediate(value));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
if (value == 1) {
incl(counter_operand);
} else {
addl(counter_operand, Immediate(value));
}
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
if (value == 1) {
decl(counter_operand);
} else {
subl(counter_operand, Immediate(value));
}
}
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void MacroAssembler::DebugBreak() {
ASSERT(allow_stub_calls());
Set(rax, 0); // No arguments.
LoadAddress(rbx, ExternalReference(Runtime::kDebugBreak, isolate()));
CEntryStub ces(1);
Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
#endif // ENABLE_DEBUGGER_SUPPORT
void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
// This macro takes the dst register to make the code more readable
// at the call sites. However, the dst register has to be rcx to
// follow the calling convention which requires the call type to be
// in rcx.
ASSERT(dst.is(rcx));
if (call_kind == CALL_AS_FUNCTION) {
LoadSmiConstant(dst, Smi::FromInt(1));
} else {
LoadSmiConstant(dst, Smi::FromInt(0));
}
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
Label done;
InvokePrologue(expected,
actual,
Handle<Code>::null(),
code,
&done,
flag,
Label::kNear,
call_wrapper,
call_kind);
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
SetCallKind(rcx, call_kind);
call(code);
call_wrapper.AfterCall();
} else {
ASSERT(flag == JUMP_FUNCTION);
SetCallKind(rcx, call_kind);
jmp(code);
}
bind(&done);
}
void MacroAssembler::InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
Label done;
Register dummy = rax;
InvokePrologue(expected,
actual,
code,
dummy,
&done,
flag,
Label::kNear,
call_wrapper,
call_kind);
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
SetCallKind(rcx, call_kind);
Call(code, rmode);
call_wrapper.AfterCall();
} else {
ASSERT(flag == JUMP_FUNCTION);
SetCallKind(rcx, call_kind);
Jump(code, rmode);
}
bind(&done);
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
ASSERT(function.is(rdi));
movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
movq(rsi, FieldOperand(function, JSFunction::kContextOffset));
movsxlq(rbx,
FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
// Advances rdx to the end of the Code object header, to the start of
// the executable code.
movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
ParameterCount expected(rbx);
InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind);
}
void MacroAssembler::InvokeFunction(JSFunction* function,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper,
CallKind call_kind) {
ASSERT(function->is_compiled());
// Get the function and setup the context.
Move(rdi, Handle<JSFunction>(function));
movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
if (V8::UseCrankshaft()) {
// Since Crankshaft can recompile a function, we need to load
// the Code object every time we call the function.
movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
ParameterCount expected(function->shared()->formal_parameter_count());
InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind);
} else {
// Invoke the cached code.
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
InvokeCode(code,
expected,
actual,
RelocInfo::CODE_TARGET,
flag,
call_wrapper,
call_kind);
}
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_register,
Label* done,
InvokeFlag flag,
Label::Distance near_jump,
const CallWrapper& call_wrapper,
CallKind call_kind) {
bool definitely_matches = false;
Label invoke;
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
Set(rax, actual.immediate());
if (expected.immediate() ==
SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
// Don't worry about adapting arguments for built-ins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
Set(rbx, expected.immediate());
}
}
} else {
if (actual.is_immediate()) {
// Expected is in register, actual is immediate. This is the
// case when we invoke function values without going through the
// IC mechanism.
cmpq(expected.reg(), Immediate(actual.immediate()));
j(equal, &invoke, Label::kNear);
ASSERT(expected.reg().is(rbx));
Set(rax, actual.immediate());
} else if (!expected.reg().is(actual.reg())) {
// Both expected and actual are in (different) registers. This
// is the case when we invoke functions using call and apply.
cmpq(expected.reg(), actual.reg());
j(equal, &invoke, Label::kNear);
ASSERT(actual.reg().is(rax));
ASSERT(expected.reg().is(rbx));
}
}
if (!definitely_matches) {
Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (!code_constant.is_null()) {
movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
} else if (!code_register.is(rdx)) {
movq(rdx, code_register);
}
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
SetCallKind(rcx, call_kind);
Call(adaptor, RelocInfo::CODE_TARGET);
call_wrapper.AfterCall();
jmp(done, near_jump);
} else {
SetCallKind(rcx, call_kind);
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&invoke);
}
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
push(rbp);
movq(rbp, rsp);
push(rsi); // Context.
Push(Smi::FromInt(type));
movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
push(kScratchRegister);
if (emit_debug_code()) {
movq(kScratchRegister,
isolate()->factory()->undefined_value(),
RelocInfo::EMBEDDED_OBJECT);
cmpq(Operand(rsp, 0), kScratchRegister);
Check(not_equal, "code object not properly patched");
}
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
if (emit_debug_code()) {
Move(kScratchRegister, Smi::FromInt(type));
cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister);
Check(equal, "stack frame types must match");
}
movq(rsp, rbp);
pop(rbp);
}
void MacroAssembler::EnterExitFramePrologue(bool save_rax) {
// Setup the frame structure on the stack.
// All constants are relative to the frame pointer of the exit frame.
ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
push(rbp);
movq(rbp, rsp);
// Reserve room for entry stack pointer and push the code object.
ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
push(Immediate(0)); // Saved entry sp, patched before call.
movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
push(kScratchRegister); // Accessed from EditFrame::code_slot.
// Save the frame pointer and the context in top.
if (save_rax) {
movq(r14, rax); // Backup rax in callee-save register.
}
Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp);
Store(ExternalReference(Isolate::kContextAddress, isolate()), rsi);
}
void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
bool save_doubles) {
#ifdef _WIN64
const int kShadowSpace = 4;
arg_stack_space += kShadowSpace;
#endif
// Optionally save all XMM registers.
if (save_doubles) {
int space = XMMRegister::kNumRegisters * kDoubleSize +
arg_stack_space * kPointerSize;
subq(rsp, Immediate(space));
int offset = -2 * kPointerSize;
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) {
XMMRegister reg = XMMRegister::FromAllocationIndex(i);
movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
}
} else if (arg_stack_space > 0) {
subq(rsp, Immediate(arg_stack_space * kPointerSize));
}
// Get the required frame alignment for the OS.
const int kFrameAlignment = OS::ActivationFrameAlignment();
if (kFrameAlignment > 0) {
ASSERT(IsPowerOf2(kFrameAlignment));
ASSERT(is_int8(kFrameAlignment));
and_(rsp, Immediate(-kFrameAlignment));
}
// Patch the saved entry sp.
movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
}
void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) {
EnterExitFramePrologue(true);
// Setup argv in callee-saved register r15. It is reused in LeaveExitFrame,
// so it must be retained across the C-call.
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
lea(r15, Operand(rbp, r14, times_pointer_size, offset));
EnterExitFrameEpilogue(arg_stack_space, save_doubles);
}
void MacroAssembler::EnterApiExitFrame(int arg_stack_space) {
EnterExitFramePrologue(false);
EnterExitFrameEpilogue(arg_stack_space, false);
}
void MacroAssembler::LeaveExitFrame(bool save_doubles) {
// Registers:
// r15 : argv
if (save_doubles) {
int offset = -2 * kPointerSize;
for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) {
XMMRegister reg = XMMRegister::FromAllocationIndex(i);
movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize)));
}
}
// Get the return address from the stack and restore the frame pointer.
movq(rcx, Operand(rbp, 1 * kPointerSize));
movq(rbp, Operand(rbp, 0 * kPointerSize));
// Drop everything up to and including the arguments and the receiver
// from the caller stack.
lea(rsp, Operand(r15, 1 * kPointerSize));
// Push the return address to get ready to return.
push(rcx);
LeaveExitFrameEpilogue();
}
void MacroAssembler::LeaveApiExitFrame() {
movq(rsp, rbp);
pop(rbp);
LeaveExitFrameEpilogue();
}
void MacroAssembler::LeaveExitFrameEpilogue() {
// Restore current context from top and clear it in debug mode.
ExternalReference context_address(Isolate::kContextAddress, isolate());
Operand context_operand = ExternalOperand(context_address);
movq(rsi, context_operand);
#ifdef DEBUG
movq(context_operand, Immediate(0));
#endif
// Clear the top frame.
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
isolate());
Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address);
movq(c_entry_fp_operand, Immediate(0));
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
ASSERT(!holder_reg.is(scratch));
ASSERT(!scratch.is(kScratchRegister));
// Load current lexical context from the stack frame.
movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset));
// When generating debug code, make sure the lexical context is set.
if (emit_debug_code()) {
cmpq(scratch, Immediate(0));
Check(not_equal, "we should not have an empty lexical context");
}
// Load the global context of the current context.
int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
movq(scratch, FieldOperand(scratch, offset));
movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
// Check the context is a global context.
if (emit_debug_code()) {
Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
isolate()->factory()->global_context_map());
Check(equal, "JSGlobalObject::global_context should be a global context.");
}
// Check if both contexts are the same.
cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
j(equal, &same_contexts);
// Compare security tokens.
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
// Check the context is a global context.
if (emit_debug_code()) {
// Preserve original value of holder_reg.
push(holder_reg);
movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
CompareRoot(holder_reg, Heap::kNullValueRootIndex);
Check(not_equal, "JSGlobalProxy::context() should not be null.");
// Read the first word and compare to global_context_map(),
movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex);
Check(equal, "JSGlobalObject::global_context should be a global context.");
pop(holder_reg);
}
movq(kScratchRegister,
FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
int token_offset =
Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
movq(scratch, FieldOperand(scratch, token_offset));
cmpq(scratch, FieldOperand(kScratchRegister, token_offset));
j(not_equal, miss);
bind(&same_contexts);
}
void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiToInteger32(scratch, scratch);
// Xor original key with a seed.
xorl(r0, scratch);
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
movl(scratch, r0);
notl(r0);
shll(scratch, Immediate(15));
addl(r0, scratch);
// hash = hash ^ (hash >> 12);
movl(scratch, r0);
shrl(scratch, Immediate(12));
xorl(r0, scratch);
// hash = hash + (hash << 2);
leal(r0, Operand(r0, r0, times_4, 0));
// hash = hash ^ (hash >> 4);
movl(scratch, r0);
shrl(scratch, Immediate(4));
xorl(r0, scratch);
// hash = hash * 2057;
imull(r0, r0, Immediate(2057));
// hash = hash ^ (hash >> 16);
movl(scratch, r0);
shrl(scratch, Immediate(16));
xorl(r0, scratch);
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register r0,
Register r1,
Register r2,
Register result) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// Scratch registers:
//
// r0 - holds the untagged key on entry and holds the hash once computed.
//
// r1 - used to hold the capacity mask of the dictionary
//
// r2 - used for the index into the dictionary.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
Label done;
GetNumberHash(r0, r1);
// Compute capacity mask.
SmiToInteger32(r1, FieldOperand(elements,
SeededNumberDictionary::kCapacityOffset));
decl(r1);
// Generate an unrolled loop that performs a few probes before giving up.
const int kProbes = 4;
for (int i = 0; i < kProbes; i++) {
// Use r2 for index calculations and keep the hash intact in r0.
movq(r2, r0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
addl(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
}
and_(r2, r1);
// Scale the index by multiplying by the entry size.
ASSERT(SeededNumberDictionary::kEntrySize == 3);
lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
// Check if the key matches.
cmpq(key, FieldOperand(elements,
r2,
times_pointer_size,
SeededNumberDictionary::kElementsStartOffset));
if (i != (kProbes - 1)) {
j(equal, &done);
} else {
j(not_equal, miss);
}
}
bind(&done);
// Check that the value is a normal propety.
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
ASSERT_EQ(NORMAL, 0);
Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
Smi::FromInt(PropertyDetails::TypeField::kMask));
j(not_zero, miss);
// Get the value at the masked, scaled index.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
movq(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
}
void MacroAssembler::LoadAllocationTopHelper(Register result,
Register scratch,
AllocationFlags flags) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Just return if allocation top is already known.
if ((flags & RESULT_CONTAINS_TOP) != 0) {
// No use of scratch if allocation top is provided.
ASSERT(!scratch.is_valid());
#ifdef DEBUG
// Assert that result actually contains top on entry.
Operand top_operand = ExternalOperand(new_space_allocation_top);
cmpq(result, top_operand);
Check(equal, "Unexpected allocation top");
#endif
return;
}
// Move address of new object to result. Use scratch register if available,
// and keep address in scratch until call to UpdateAllocationTopHelper.
if (scratch.is_valid()) {
LoadAddress(scratch, new_space_allocation_top);
movq(result, Operand(scratch, 0));
} else {
Load(result, new_space_allocation_top);
}
}
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
Register scratch) {
if (emit_debug_code()) {
testq(result_end, Immediate(kObjectAlignmentMask));
Check(zero, "Unaligned allocation in new space");
}
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Update new top.
if (scratch.is_valid()) {
// Scratch already contains address of allocation top.
movq(Operand(scratch, 0), result_end);
} else {
Store(new_space_allocation_top, result_end);
}
}
void MacroAssembler::AllocateInNewSpace(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
movl(result, Immediate(0x7091));
if (result_end.is_valid()) {
movl(result_end, Immediate(0x7191));
}
if (scratch.is_valid()) {
movl(scratch, Immediate(0x7291));
}
}
jmp(gc_required);
return;
}
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
// Calculate new top and bail out if new space is exhausted.
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
Register top_reg = result_end.is_valid() ? result_end : result;
if (!top_reg.is(result)) {
movq(top_reg, result);
}
addq(top_reg, Immediate(object_size));
j(carry, gc_required);
Operand limit_operand = ExternalOperand(new_space_allocation_limit);
cmpq(top_reg, limit_operand);
j(above, gc_required);
// Update allocation top.
UpdateAllocationTopHelper(top_reg, scratch);
if (top_reg.is(result)) {
if ((flags & TAG_OBJECT) != 0) {
subq(result, Immediate(object_size - kHeapObjectTag));
} else {
subq(result, Immediate(object_size));
}
} else if ((flags & TAG_OBJECT) != 0) {
// Tag the result if requested.
addq(result, Immediate(kHeapObjectTag));
}
}
void MacroAssembler::AllocateInNewSpace(int header_size,
ScaleFactor element_size,
Register element_count,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
movl(result, Immediate(0x7091));
movl(result_end, Immediate(0x7191));
if (scratch.is_valid()) {
movl(scratch, Immediate(0x7291));
}
// Register element_count is not modified by the function.
}
jmp(gc_required);
return;
}
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
// Calculate new top and bail out if new space is exhausted.
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
// We assume that element_count*element_size + header_size does not
// overflow.
lea(result_end, Operand(element_count, element_size, header_size));
addq(result_end, result);
j(carry, gc_required);
Operand limit_operand = ExternalOperand(new_space_allocation_limit);
cmpq(result_end, limit_operand);
j(above, gc_required);
// Update allocation top.
UpdateAllocationTopHelper(result_end, scratch);
// Tag the result if requested.
if ((flags & TAG_OBJECT) != 0) {
addq(result, Immediate(kHeapObjectTag));
}
}
void MacroAssembler::AllocateInNewSpace(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
movl(result, Immediate(0x7091));
movl(result_end, Immediate(0x7191));
if (scratch.is_valid()) {
movl(scratch, Immediate(0x7291));
}
// object_size is left unchanged by this function.
}
jmp(gc_required);
return;
}
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
// Calculate new top and bail out if new space is exhausted.
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
if (!object_size.is(result_end)) {
movq(result_end, object_size);
}
addq(result_end, result);
j(carry, gc_required);
Operand limit_operand = ExternalOperand(new_space_allocation_limit);
cmpq(result_end, limit_operand);
j(above, gc_required);
// Update allocation top.
UpdateAllocationTopHelper(result_end, scratch);
// Tag the result if requested.
if ((flags & TAG_OBJECT) != 0) {
addq(result, Immediate(kHeapObjectTag));
}
}
void MacroAssembler::UndoAllocationInNewSpace(Register object) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Make sure the object has no tag before resetting top.
and_(object, Immediate(~kHeapObjectTagMask));
Operand top_operand = ExternalOperand(new_space_allocation_top);
#ifdef DEBUG
cmpq(object, top_operand);
Check(below, "Undo allocation of non allocated memory");
#endif
movq(top_operand, object);
}
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch,
Label* gc_required) {
// Allocate heap number in new space.
AllocateInNewSpace(HeapNumber::kSize,
result,
scratch,
no_reg,
gc_required,
TAG_OBJECT);
// Set the map.
LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
const int kHeaderAlignment = SeqTwoByteString::kHeaderSize &
kObjectAlignmentMask;
ASSERT(kShortSize == 2);
// scratch1 = length * 2 + kObjectAlignmentMask.
lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask +
kHeaderAlignment));
and_(scratch1, Immediate(~kObjectAlignmentMask));
if (kHeaderAlignment > 0) {
subq(scratch1, Immediate(kHeaderAlignment));
}
// Allocate two byte string in new space.
AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
times_1,
scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
LoadRoot(kScratchRegister, Heap::kStringMapRootIndex);
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
Integer32ToSmi(scratch1, length);
movq(FieldOperand(result, String::kLengthOffset), scratch1);
movq(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
const int kHeaderAlignment = SeqAsciiString::kHeaderSize &
kObjectAlignmentMask;
movl(scratch1, length);
ASSERT(kCharSize == 1);
addq(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment));
and_(scratch1, Immediate(~kObjectAlignmentMask));
if (kHeaderAlignment > 0) {
subq(scratch1, Immediate(kHeaderAlignment));
}
// Allocate ascii string in new space.
AllocateInNewSpace(SeqAsciiString::kHeaderSize,
times_1,
scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex);
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
Integer32ToSmi(scratch1, length);
movq(FieldOperand(result, String::kLengthOffset), scratch1);
movq(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
AllocateInNewSpace(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex);
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateAsciiConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
AllocateInNewSpace(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex);
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
AllocateInNewSpace(SlicedString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kSlicedStringMapRootIndex);
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateAsciiSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
AllocateInNewSpace(SlicedString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kSlicedAsciiStringMapRootIndex);
movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
// Copy memory, byte-by-byte, from source to destination. Not optimized for
// long or aligned copies. The contents of scratch and length are destroyed.
// Destination is incremented by length, source, length and scratch are
// clobbered.
// A simpler loop is faster on small copies, but slower on large ones.
// The cld() instruction must have been emitted, to set the direction flag(),
// before calling this function.
void MacroAssembler::CopyBytes(Register destination,
Register source,
Register length,
int min_length,
Register scratch) {
ASSERT(min_length >= 0);
if (FLAG_debug_code) {
cmpl(length, Immediate(min_length));
Assert(greater_equal, "Invalid min_length");
}
Label loop, done, short_string, short_loop;
const int kLongStringLimit = 20;
if (min_length <= kLongStringLimit) {
cmpl(length, Immediate(kLongStringLimit));
j(less_equal, &short_string);
}
ASSERT(source.is(rsi));
ASSERT(destination.is(rdi));
ASSERT(length.is(rcx));
// Because source is 8-byte aligned in our uses of this function,
// we keep source aligned for the rep movs operation by copying the odd bytes
// at the end of the ranges.
movq(scratch, length);
shrl(length, Immediate(3));
repmovsq();
// Move remaining bytes of length.
andl(scratch, Immediate(0x7));
movq(length, Operand(source, scratch, times_1, -8));
movq(Operand(destination, scratch, times_1, -8), length);
addq(destination, scratch);
if (min_length <= kLongStringLimit) {
jmp(&done);
bind(&short_string);
if (min_length == 0) {
testl(length, length);
j(zero, &done);
}
lea(scratch, Operand(destination, length, times_1, 0));
bind(&short_loop);
movb(length, Operand(source, 0));
movb(Operand(destination, 0), length);
incq(source);
incq(destination);
cmpq(destination, scratch);
j(not_equal, &short_loop);
bind(&done);
}
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
movq(dst, Operand(rsi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
movq(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in rsi).
movq(dst, rsi);
}
// We should not have found a with context by walking the context
// chain (i.e., the static scope chain and runtime context chain do
// not agree). A variable occurring in such a scope should have
// slot type LOOKUP and not CONTEXT.
if (emit_debug_code()) {
CompareRoot(FieldOperand(dst, HeapObject::kMapOffset),
Heap::kWithContextMapRootIndex);
Check(not_equal, "Variable resolved to with context.");
}
}
#ifdef _WIN64
static const int kRegisterPassedArguments = 4;
#else
static const int kRegisterPassedArguments = 6;
#endif
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
movq(function, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
movq(function, FieldOperand(function, GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
movq(function, Operand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map) {
// Load the initial map. The global functions all have initial maps.
movq(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
jmp(&ok);
bind(&fail);
Abort("Global functions must have initial map");
bind(&ok);
}
}
int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
// On Windows 64 stack slots are reserved by the caller for all arguments
// including the ones passed in registers, and space is always allocated for
// the four register arguments even if the function takes fewer than four
// arguments.
// On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers
// and the caller does not reserve stack slots for them.
ASSERT(num_arguments >= 0);
#ifdef _WIN64
const int kMinimumStackSlots = kRegisterPassedArguments;
if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots;
return num_arguments;
#else
if (num_arguments < kRegisterPassedArguments) return 0;
return num_arguments - kRegisterPassedArguments;
#endif
}
void MacroAssembler::PrepareCallCFunction(int num_arguments) {
int frame_alignment = OS::ActivationFrameAlignment();
ASSERT(frame_alignment != 0);
ASSERT(num_arguments >= 0);
// Make stack end at alignment and allocate space for arguments and old rsp.
movq(kScratchRegister, rsp);
ASSERT(IsPowerOf2(frame_alignment));
int argument_slots_on_stack =
ArgumentStackSlotsForCFunctionCall(num_arguments);
subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize));
and_(rsp, Immediate(-frame_alignment));
movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
LoadAddress(rax, function);
CallCFunction(rax, num_arguments);
}
void MacroAssembler::CallCFunction(Register function, int num_arguments) {
// Check stack alignment.
if (emit_debug_code()) {
CheckStackAlignment();
}
call(function);
ASSERT(OS::ActivationFrameAlignment() != 0);
ASSERT(num_arguments >= 0);
int argument_slots_on_stack =
ArgumentStackSlotsForCFunctionCall(num_arguments);
movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize));
}
CodePatcher::CodePatcher(byte* address, int size)
: address_(address),
size_(size),
masm_(Isolate::Current(), address, size + Assembler::kGap) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
CPU::FlushICache(address_, size_);
// Check that the code was patched as expected.
ASSERT(masm_.pc_ == address_ + size_);
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64