| |
| /*--------------------------------------------------------------------*/ |
| /*--- x86- and AMD64-specific definitions. cg-x86-amd64.c ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of Cachegrind, a Valgrind tool for cache |
| profiling programs. |
| |
| Copyright (C) 2002-2011 Nicholas Nethercote |
| njn@valgrind.org |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| */ |
| |
| #if defined(VGA_x86) || defined(VGA_amd64) |
| |
| #include "pub_tool_basics.h" |
| #include "pub_tool_cpuid.h" |
| #include "pub_tool_libcbase.h" |
| #include "pub_tool_libcassert.h" |
| #include "pub_tool_libcprint.h" |
| |
| #include "cg_arch.h" |
| |
| // All CPUID info taken from sandpile.org/ia32/cpuid.htm */ |
| // Probably only works for Intel and AMD chips, and probably only for some of |
| // them. |
| |
| static void micro_ops_warn(Int actual_size, Int used_size, Int line_size) |
| { |
| VG_(dmsg)("warning: Pentium 4 with %d KB micro-op instruction trace cache\n", |
| actual_size); |
| VG_(dmsg)(" Simulating a %d KB I-cache with %d B lines\n", |
| used_size, line_size); |
| } |
| |
| /* Intel method is truly wretched. We have to do an insane indexing into an |
| * array of pre-defined configurations for various parts of the memory |
| * hierarchy. |
| * According to Intel Processor Identification, App Note 485. |
| * |
| * If a L3 cache is found, then data for it rather than the L2 |
| * is returned via *LLc. |
| */ |
| static |
| Int Intel_cache_info(Int level, cache_t* I1c, cache_t* D1c, cache_t* LLc) |
| { |
| Int cpuid1_eax; |
| Int cpuid1_ignore; |
| Int family; |
| Int model; |
| UChar info[16]; |
| Int i, j, trials; |
| Bool L2_found = False; |
| /* If we see L3 cache info, copy it into L3c. Then, at the end, |
| copy it into *LLc. Hence if a L3 cache is specified, *LLc will |
| eventually contain a description of it rather than the L2 cache. |
| The use of the L3c intermediary makes this process independent |
| of the order in which the cache specifications appear in |
| info[]. */ |
| Bool L3_found = False; |
| cache_t L3c = { 0, 0, 0 }; |
| |
| if (level < 2) { |
| VG_(dmsg)("warning: CPUID level < 2 for Intel processor (%d)\n", level); |
| return -1; |
| } |
| |
| /* family/model needed to distinguish code reuse (currently 0x49) */ |
| VG_(cpuid)(1, 0, &cpuid1_eax, &cpuid1_ignore, |
| &cpuid1_ignore, &cpuid1_ignore); |
| family = (((cpuid1_eax >> 20) & 0xff) << 4) + ((cpuid1_eax >> 8) & 0xf); |
| model = (((cpuid1_eax >> 16) & 0xf) << 4) + ((cpuid1_eax >> 4) & 0xf); |
| |
| VG_(cpuid)(2, 0, (Int*)&info[0], (Int*)&info[4], |
| (Int*)&info[8], (Int*)&info[12]); |
| trials = info[0] - 1; /* AL register - bits 0..7 of %eax */ |
| info[0] = 0x0; /* reset AL */ |
| |
| if (0 != trials) { |
| VG_(dmsg)("warning: non-zero CPUID trials for Intel processor (%d)\n", |
| trials); |
| return -1; |
| } |
| |
| for (i = 0; i < 16; i++) { |
| |
| switch (info[i]) { |
| |
| case 0x0: /* ignore zeros */ |
| break; |
| |
| /* TLB info, ignore */ |
| case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: |
| case 0x0b: |
| case 0x4f: case 0x50: case 0x51: case 0x52: case 0x55: |
| case 0x56: case 0x57: case 0x59: |
| case 0x5a: case 0x5b: case 0x5c: case 0x5d: |
| case 0x76: |
| case 0xb0: case 0xb1: case 0xb2: |
| case 0xb3: case 0xb4: case 0xba: case 0xc0: |
| case 0xca: |
| break; |
| |
| case 0x06: *I1c = (cache_t) { 8, 4, 32 }; break; |
| case 0x08: *I1c = (cache_t) { 16, 4, 32 }; break; |
| case 0x09: *I1c = (cache_t) { 32, 4, 64 }; break; |
| case 0x30: *I1c = (cache_t) { 32, 8, 64 }; break; |
| |
| case 0x0a: *D1c = (cache_t) { 8, 2, 32 }; break; |
| case 0x0c: *D1c = (cache_t) { 16, 4, 32 }; break; |
| case 0x0d: *D1c = (cache_t) { 16, 4, 64 }; break; |
| case 0x0e: *D1c = (cache_t) { 24, 6, 64 }; break; |
| case 0x2c: *D1c = (cache_t) { 32, 8, 64 }; break; |
| |
| /* IA-64 info -- panic! */ |
| case 0x10: case 0x15: case 0x1a: |
| case 0x88: case 0x89: case 0x8a: case 0x8d: |
| case 0x90: case 0x96: case 0x9b: |
| VG_(tool_panic)("IA-64 cache detected?!"); |
| |
| /* L3 cache info. */ |
| case 0x22: L3c = (cache_t) { 512, 4, 64 }; L3_found = True; break; |
| case 0x23: L3c = (cache_t) { 1024, 8, 64 }; L3_found = True; break; |
| case 0x25: L3c = (cache_t) { 2048, 8, 64 }; L3_found = True; break; |
| case 0x29: L3c = (cache_t) { 4096, 8, 64 }; L3_found = True; break; |
| case 0x46: L3c = (cache_t) { 4096, 4, 64 }; L3_found = True; break; |
| case 0x47: L3c = (cache_t) { 8192, 8, 64 }; L3_found = True; break; |
| case 0x4a: L3c = (cache_t) { 6144, 12, 64 }; L3_found = True; break; |
| case 0x4b: L3c = (cache_t) { 8192, 16, 64 }; L3_found = True; break; |
| case 0x4c: L3c = (cache_t) { 12288, 12, 64 }; L3_found = True; break; |
| case 0x4d: L3c = (cache_t) { 16384, 16, 64 }; L3_found = True; break; |
| case 0xd0: L3c = (cache_t) { 512, 4, 64 }; L3_found = True; break; |
| case 0xd1: L3c = (cache_t) { 1024, 4, 64 }; L3_found = True; break; |
| case 0xd2: L3c = (cache_t) { 2048, 4, 64 }; L3_found = True; break; |
| case 0xd6: L3c = (cache_t) { 1024, 8, 64 }; L3_found = True; break; |
| case 0xd7: L3c = (cache_t) { 2048, 8, 64 }; L3_found = True; break; |
| case 0xd8: L3c = (cache_t) { 4096, 8, 64 }; L3_found = True; break; |
| case 0xdc: L3c = (cache_t) { 1536, 12, 64 }; L3_found = True; break; |
| case 0xdd: L3c = (cache_t) { 3072, 12, 64 }; L3_found = True; break; |
| case 0xde: L3c = (cache_t) { 6144, 12, 64 }; L3_found = True; break; |
| case 0xe2: L3c = (cache_t) { 2048, 16, 64 }; L3_found = True; break; |
| case 0xe3: L3c = (cache_t) { 4096, 16, 64 }; L3_found = True; break; |
| case 0xe4: L3c = (cache_t) { 8192, 16, 64 }; L3_found = True; break; |
| case 0xea: L3c = (cache_t) { 12288, 24, 64 }; L3_found = True; break; |
| case 0xeb: L3c = (cache_t) { 18432, 24, 64 }; L3_found = True; break; |
| case 0xec: L3c = (cache_t) { 24576, 24, 64 }; L3_found = True; break; |
| |
| /* Described as "MLC" in Intel documentation */ |
| case 0x21: *LLc = (cache_t) { 256, 8, 64 }; L2_found = True; break; |
| |
| /* These are sectored, whatever that means */ |
| case 0x39: *LLc = (cache_t) { 128, 4, 64 }; L2_found = True; break; |
| case 0x3c: *LLc = (cache_t) { 256, 4, 64 }; L2_found = True; break; |
| |
| /* If a P6 core, this means "no L2 cache". |
| If a P4 core, this means "no L3 cache". |
| We don't know what core it is, so don't issue a warning. To detect |
| a missing L2 cache, we use 'L2_found'. */ |
| case 0x40: |
| break; |
| |
| case 0x41: *LLc = (cache_t) { 128, 4, 32 }; L2_found = True; break; |
| case 0x42: *LLc = (cache_t) { 256, 4, 32 }; L2_found = True; break; |
| case 0x43: *LLc = (cache_t) { 512, 4, 32 }; L2_found = True; break; |
| case 0x44: *LLc = (cache_t) { 1024, 4, 32 }; L2_found = True; break; |
| case 0x45: *LLc = (cache_t) { 2048, 4, 32 }; L2_found = True; break; |
| case 0x48: *LLc = (cache_t) { 3072, 12, 64 }; L2_found = True; break; |
| case 0x4e: *LLc = (cache_t) { 6144, 24, 64 }; L2_found = True; break; |
| case 0x49: |
| if (family == 15 && model == 6) { |
| /* On Xeon MP (family F, model 6), this is for L3 */ |
| L3c = (cache_t) { 4096, 16, 64 }; L3_found = True; |
| } else { |
| *LLc = (cache_t) { 4096, 16, 64 }; L2_found = True; |
| } |
| break; |
| |
| /* These are sectored, whatever that means */ |
| case 0x60: *D1c = (cache_t) { 16, 8, 64 }; break; /* sectored */ |
| case 0x66: *D1c = (cache_t) { 8, 4, 64 }; break; /* sectored */ |
| case 0x67: *D1c = (cache_t) { 16, 4, 64 }; break; /* sectored */ |
| case 0x68: *D1c = (cache_t) { 32, 4, 64 }; break; /* sectored */ |
| |
| /* HACK ALERT: Instruction trace cache -- capacity is micro-ops based. |
| * conversion to byte size is a total guess; treat the 12K and 16K |
| * cases the same since the cache byte size must be a power of two for |
| * everything to work!. Also guessing 32 bytes for the line size... |
| */ |
| case 0x70: /* 12K micro-ops, 8-way */ |
| *I1c = (cache_t) { 16, 8, 32 }; |
| micro_ops_warn(12, 16, 32); |
| break; |
| case 0x71: /* 16K micro-ops, 8-way */ |
| *I1c = (cache_t) { 16, 8, 32 }; |
| micro_ops_warn(16, 16, 32); |
| break; |
| case 0x72: /* 32K micro-ops, 8-way */ |
| *I1c = (cache_t) { 32, 8, 32 }; |
| micro_ops_warn(32, 32, 32); |
| break; |
| |
| /* not sectored, whatever that might mean */ |
| case 0x78: *LLc = (cache_t) { 1024, 4, 64 }; L2_found = True; break; |
| |
| /* These are sectored, whatever that means */ |
| case 0x79: *LLc = (cache_t) { 128, 8, 64 }; L2_found = True; break; |
| case 0x7a: *LLc = (cache_t) { 256, 8, 64 }; L2_found = True; break; |
| case 0x7b: *LLc = (cache_t) { 512, 8, 64 }; L2_found = True; break; |
| case 0x7c: *LLc = (cache_t) { 1024, 8, 64 }; L2_found = True; break; |
| case 0x7d: *LLc = (cache_t) { 2048, 8, 64 }; L2_found = True; break; |
| case 0x7e: *LLc = (cache_t) { 256, 8, 128 }; L2_found = True; break; |
| case 0x7f: *LLc = (cache_t) { 512, 2, 64 }; L2_found = True; break; |
| case 0x80: *LLc = (cache_t) { 512, 8, 64 }; L2_found = True; break; |
| case 0x81: *LLc = (cache_t) { 128, 8, 32 }; L2_found = True; break; |
| case 0x82: *LLc = (cache_t) { 256, 8, 32 }; L2_found = True; break; |
| case 0x83: *LLc = (cache_t) { 512, 8, 32 }; L2_found = True; break; |
| case 0x84: *LLc = (cache_t) { 1024, 8, 32 }; L2_found = True; break; |
| case 0x85: *LLc = (cache_t) { 2048, 8, 32 }; L2_found = True; break; |
| case 0x86: *LLc = (cache_t) { 512, 4, 64 }; L2_found = True; break; |
| case 0x87: *LLc = (cache_t) { 1024, 8, 64 }; L2_found = True; break; |
| |
| /* Ignore prefetch information */ |
| case 0xf0: case 0xf1: |
| break; |
| |
| case 0xff: |
| j = 0; |
| VG_(cpuid)(4, j++, (Int*)&info[0], (Int*)&info[4], |
| (Int*)&info[8], (Int*)&info[12]); |
| |
| while ((info[0] & 0x1f) != 0) { |
| UInt assoc = ((*(UInt *)&info[4] >> 22) & 0x3ff) + 1; |
| UInt parts = ((*(UInt *)&info[4] >> 12) & 0x3ff) + 1; |
| UInt line_size = (*(UInt *)&info[4] & 0x7ff) + 1; |
| UInt sets = *(UInt *)&info[8] + 1; |
| cache_t c; |
| |
| c.size = assoc * parts * line_size * sets / 1024; |
| c.assoc = assoc; |
| c.line_size = line_size; |
| |
| switch ((info[0] & 0xe0) >> 5) |
| { |
| case 1: |
| switch (info[0] & 0x1f) |
| { |
| case 1: *D1c = c; break; |
| case 2: *I1c = c; break; |
| case 3: VG_(dmsg)("warning: L1 unified cache ignored\n"); break; |
| default: VG_(dmsg)("warning: L1 cache of unknown type ignored\n"); break; |
| } |
| break; |
| case 2: |
| switch (info[0] & 0x1f) |
| { |
| case 1: VG_(dmsg)("warning: L2 data cache ignored\n"); break; |
| case 2: VG_(dmsg)("warning: L2 instruction cache ignored\n"); break; |
| case 3: *LLc = c; L2_found = True; break; |
| default: VG_(dmsg)("warning: L2 cache of unknown type ignored\n"); break; |
| } |
| break; |
| case 3: |
| switch (info[0] & 0x1f) |
| { |
| case 1: VG_(dmsg)("warning: L3 data cache ignored\n"); break; |
| case 2: VG_(dmsg)("warning: L3 instruction cache ignored\n"); break; |
| case 3: L3c = c; L3_found = True; break; |
| default: VG_(dmsg)("warning: L3 cache of unknown type ignored\n"); break; |
| } |
| break; |
| default: |
| VG_(dmsg)("warning: L%u cache ignored\n", (info[0] & 0xe0) >> 5); |
| break; |
| } |
| |
| VG_(cpuid)(4, j++, (Int*)&info[0], (Int*)&info[4], |
| (Int*)&info[8], (Int*)&info[12]); |
| } |
| break; |
| |
| default: |
| VG_(dmsg)("warning: Unknown Intel cache config value (0x%x), ignoring\n", |
| info[i]); |
| break; |
| } |
| } |
| |
| /* If we found a L3 cache, throw away the L2 data and use the L3's instead. */ |
| if (L3_found) { |
| VG_(dmsg)("warning: L3 cache found, using its data for the LL simulation.\n"); |
| *LLc = L3c; |
| L2_found = True; |
| } |
| |
| if (!L2_found) |
| VG_(dmsg)("warning: L2 cache not installed, ignore LL results.\n"); |
| |
| return 0; |
| } |
| |
| /* AMD method is straightforward, just extract appropriate bits from the |
| * result registers. |
| * |
| * Bits, for D1 and I1: |
| * 31..24 data L1 cache size in KBs |
| * 23..16 data L1 cache associativity (FFh=full) |
| * 15.. 8 data L1 cache lines per tag |
| * 7.. 0 data L1 cache line size in bytes |
| * |
| * Bits, for L2: |
| * 31..16 unified L2 cache size in KBs |
| * 15..12 unified L2 cache associativity (0=off, FFh=full) |
| * 11.. 8 unified L2 cache lines per tag |
| * 7.. 0 unified L2 cache line size in bytes |
| * |
| * #3 The AMD K7 processor's L2 cache must be configured prior to relying |
| * upon this information. (Whatever that means -- njn) |
| * |
| * Also, according to Cyrille Chepelov, Duron stepping A0 processors (model |
| * 0x630) have a bug and misreport their L2 size as 1KB (it's really 64KB), |
| * so we detect that. |
| * |
| * Returns 0 on success, non-zero on failure. As with the Intel code |
| * above, if a L3 cache is found, then data for it rather than the L2 |
| * is returned via *LLc. |
| */ |
| |
| /* A small helper */ |
| static Int decode_AMD_cache_L2_L3_assoc ( Int bits_15_12 ) |
| { |
| /* Decode a L2/L3 associativity indication. It is encoded |
| differently from the I1/D1 associativity. Returns 1 |
| (direct-map) as a safe but suboptimal result for unknown |
| encodings. */ |
| switch (bits_15_12 & 0xF) { |
| case 1: return 1; case 2: return 2; |
| case 4: return 4; case 6: return 8; |
| case 8: return 16; case 0xA: return 32; |
| case 0xB: return 48; case 0xC: return 64; |
| case 0xD: return 96; case 0xE: return 128; |
| case 0xF: /* fully associative */ |
| case 0: /* L2/L3 cache or TLB is disabled */ |
| default: |
| return 1; |
| } |
| } |
| |
| static |
| Int AMD_cache_info(cache_t* I1c, cache_t* D1c, cache_t* LLc) |
| { |
| UInt ext_level; |
| UInt dummy, model; |
| UInt I1i, D1i, L2i, L3i; |
| |
| VG_(cpuid)(0x80000000, 0, &ext_level, &dummy, &dummy, &dummy); |
| |
| if (0 == (ext_level & 0x80000000) || ext_level < 0x80000006) { |
| VG_(dmsg)("warning: ext_level < 0x80000006 for AMD processor (0x%x)\n", |
| ext_level); |
| return -1; |
| } |
| |
| VG_(cpuid)(0x80000005, 0, &dummy, &dummy, &D1i, &I1i); |
| VG_(cpuid)(0x80000006, 0, &dummy, &dummy, &L2i, &L3i); |
| |
| VG_(cpuid)(0x1, 0, &model, &dummy, &dummy, &dummy); |
| |
| /* Check for Duron bug */ |
| if (model == 0x630) { |
| VG_(dmsg)("warning: Buggy Duron stepping A0. Assuming L2 size=65536 bytes\n"); |
| L2i = (64 << 16) | (L2i & 0xffff); |
| } |
| |
| D1c->size = (D1i >> 24) & 0xff; |
| D1c->assoc = (D1i >> 16) & 0xff; |
| D1c->line_size = (D1i >> 0) & 0xff; |
| |
| I1c->size = (I1i >> 24) & 0xff; |
| I1c->assoc = (I1i >> 16) & 0xff; |
| I1c->line_size = (I1i >> 0) & 0xff; |
| |
| LLc->size = (L2i >> 16) & 0xffff; /* Nb: different bits used for L2 */ |
| LLc->assoc = decode_AMD_cache_L2_L3_assoc((L2i >> 12) & 0xf); |
| LLc->line_size = (L2i >> 0) & 0xff; |
| |
| if (((L3i >> 18) & 0x3fff) > 0) { |
| /* There's an L3 cache. Replace *LLc contents with this info. */ |
| /* NB: the test in the if is "if L3 size > 0 ". I don't know if |
| this is the right way to test presence-vs-absence of L3. I |
| can't see any guidance on this in the AMD documentation. */ |
| LLc->size = ((L3i >> 18) & 0x3fff) * 512; |
| LLc->assoc = decode_AMD_cache_L2_L3_assoc((L3i >> 12) & 0xf); |
| LLc->line_size = (L3i >> 0) & 0xff; |
| VG_(dmsg)("warning: L3 cache found, using its data for the L2 simulation.\n"); |
| } |
| |
| return 0; |
| } |
| |
| static |
| Int get_caches_from_CPUID(cache_t* I1c, cache_t* D1c, cache_t* LLc) |
| { |
| Int level, ret; |
| Char vendor_id[13]; |
| |
| if (!VG_(has_cpuid)()) { |
| VG_(dmsg)("CPUID instruction not supported\n"); |
| return -1; |
| } |
| |
| VG_(cpuid)(0, 0, &level, (int*)&vendor_id[0], |
| (int*)&vendor_id[8], (int*)&vendor_id[4]); |
| vendor_id[12] = '\0'; |
| |
| if (0 == level) { |
| VG_(dmsg)("CPUID level is 0, early Pentium?\n"); |
| return -1; |
| } |
| |
| /* Only handling Intel and AMD chips... no Cyrix, Transmeta, etc */ |
| if (0 == VG_(strcmp)(vendor_id, "GenuineIntel")) { |
| ret = Intel_cache_info(level, I1c, D1c, LLc); |
| |
| } else if (0 == VG_(strcmp)(vendor_id, "AuthenticAMD")) { |
| ret = AMD_cache_info(I1c, D1c, LLc); |
| |
| } else if (0 == VG_(strcmp)(vendor_id, "CentaurHauls")) { |
| /* Total kludge. Pretend to be a VIA Nehemiah. */ |
| D1c->size = 64; |
| D1c->assoc = 16; |
| D1c->line_size = 16; |
| I1c->size = 64; |
| I1c->assoc = 4; |
| I1c->line_size = 16; |
| LLc->size = 64; |
| LLc->assoc = 16; |
| LLc->line_size = 16; |
| ret = 0; |
| |
| } else { |
| VG_(dmsg)("CPU vendor ID not recognised (%s)\n", vendor_id); |
| return -1; |
| } |
| |
| /* Successful! Convert sizes from KB to bytes */ |
| I1c->size *= 1024; |
| D1c->size *= 1024; |
| LLc->size *= 1024; |
| |
| /* If the LL cache config isn't something the simulation functions |
| can handle, try to adjust it so it is. Caches are characterised |
| by (total size T, line size L, associativity A), and then we |
| have |
| |
| number of sets S = T / (L * A) |
| |
| The required constraints are: |
| |
| * L must be a power of 2, but it always is in practice, so |
| no problem there |
| |
| * A can be any value >= 1 |
| |
| * T can be any value, but .. |
| |
| * S must be a power of 2. |
| |
| That sometimes gives a problem. For example, some Core iX based |
| Intel CPUs have T = 12MB, A = 16, L = 64, which gives 12288 |
| sets. The "fix" in this case is to increase the associativity |
| by 50% to 24, which reduces the number of sets to 8192, making |
| it a power of 2. That's what the following code does (handing |
| the "3/2 rescaling case".) We might need to deal with other |
| ratios later (5/4 ?). |
| |
| The "fix" is "justified" (cough, cough) by alleging that |
| increases of associativity above about 4 have very little effect |
| on the actual miss rate. It would be far more inaccurate to |
| fudge this by changing the size of the simulated cache -- |
| changing the associativity is a much better option. |
| */ |
| if (LLc->size > 0 && LLc->assoc > 0 && LLc->line_size > 0) { |
| Long nSets = (Long)LLc->size / (Long)(LLc->line_size * LLc->assoc); |
| if (/* stay sane */ |
| nSets >= 4 |
| /* nSets is not a power of 2 */ |
| && VG_(log2_64)( (ULong)nSets ) == -1 |
| /* nSets is 50% above a power of 2 */ |
| && VG_(log2_64)( (ULong)((2 * nSets) / (Long)3) ) != -1 |
| /* associativity can be increased by exactly 50% */ |
| && (LLc->assoc % 2) == 0 |
| ) { |
| /* # sets is 1.5 * a power of two, but the associativity is |
| even, so we can increase that up by 50% and implicitly |
| scale the # sets down accordingly. */ |
| Int new_assoc = LLc->assoc + (LLc->assoc / 2); |
| VG_(dmsg)("warning: pretending that LL cache has associativity" |
| " %d instead of actual %d\n", new_assoc, LLc->assoc); |
| LLc->assoc = new_assoc; |
| } |
| } |
| |
| return ret; |
| } |
| |
| |
| void VG_(configure_caches)(cache_t* I1c, cache_t* D1c, cache_t* LLc, |
| Bool all_caches_clo_defined) |
| { |
| Int res; |
| |
| // Set caches to default. |
| *I1c = (cache_t) { 65536, 2, 64 }; |
| *D1c = (cache_t) { 65536, 2, 64 }; |
| *LLc = (cache_t) { 262144, 8, 64 }; |
| |
| // Then replace with any info we can get from CPUID. |
| res = get_caches_from_CPUID(I1c, D1c, LLc); |
| |
| // Warn if CPUID failed and config not completely specified from cmd line. |
| if (res != 0 && !all_caches_clo_defined) { |
| VG_(dmsg)("Warning: Couldn't auto-detect cache config, using one " |
| "or more defaults \n"); |
| } |
| } |
| |
| #endif // defined(VGA_x86) || defined(VGA_amd64) |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- end ---*/ |
| /*--------------------------------------------------------------------*/ |