blob: 9afd1d2b1c958c25f9bcb012aaa96a83bc4eaff9 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller ( mueller@kde.org )
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "StringImpl.h"
#include "AtomicString.h"
#include "StringBuffer.h"
#include "StringHash.h"
#include <wtf/StdLibExtras.h>
#include <wtf/WTFThreadData.h>
using namespace std;
namespace WTF {
using namespace Unicode;
static const unsigned minLengthToShare = 20;
COMPILE_ASSERT(sizeof(StringImpl) == 2 * sizeof(int) + 3 * sizeof(void*), StringImpl_should_stay_small);
StringImpl::~StringImpl()
{
ASSERT(!isStatic());
if (isAtomic())
AtomicString::remove(this);
#if USE(JSC)
if (isIdentifier()) {
if (!wtfThreadData().currentIdentifierTable()->remove(this))
CRASH();
}
#endif
BufferOwnership ownership = bufferOwnership();
if (ownership != BufferInternal) {
if (ownership == BufferOwned) {
ASSERT(!m_sharedBuffer);
ASSERT(m_data);
fastFree(const_cast<UChar*>(m_data));
} else if (ownership == BufferSubstring) {
ASSERT(m_substringBuffer);
m_substringBuffer->deref();
} else {
ASSERT(ownership == BufferShared);
ASSERT(m_sharedBuffer);
m_sharedBuffer->deref();
}
}
}
PassRefPtr<StringImpl> StringImpl::createUninitialized(unsigned length, UChar*& data)
{
if (!length) {
data = 0;
return empty();
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
if (length > ((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(UChar)))
CRASH();
size_t size = sizeof(StringImpl) + length * sizeof(UChar);
StringImpl* string = static_cast<StringImpl*>(fastMalloc(size));
data = reinterpret_cast<UChar*>(string + 1);
return adoptRef(new (string) StringImpl(length));
}
PassRefPtr<StringImpl> StringImpl::create(const UChar* characters, unsigned length)
{
if (!characters || !length)
return empty();
UChar* data;
RefPtr<StringImpl> string = createUninitialized(length, data);
memcpy(data, characters, length * sizeof(UChar));
return string.release();
}
PassRefPtr<StringImpl> StringImpl::create(const char* characters, unsigned length)
{
if (!characters || !length)
return empty();
UChar* data;
RefPtr<StringImpl> string = createUninitialized(length, data);
for (unsigned i = 0; i != length; ++i) {
unsigned char c = characters[i];
data[i] = c;
}
return string.release();
}
PassRefPtr<StringImpl> StringImpl::create(const char* string)
{
if (!string)
return empty();
size_t length = strlen(string);
if (length > numeric_limits<unsigned>::max())
CRASH();
return create(string, length);
}
PassRefPtr<StringImpl> StringImpl::create(const UChar* characters, unsigned length, PassRefPtr<SharedUChar> sharedBuffer)
{
ASSERT(characters);
ASSERT(minLengthToShare && length >= minLengthToShare);
return adoptRef(new StringImpl(characters, length, sharedBuffer));
}
SharedUChar* StringImpl::sharedBuffer()
{
if (m_length < minLengthToShare)
return 0;
// All static strings are smaller that the minimim length to share.
ASSERT(!isStatic());
BufferOwnership ownership = bufferOwnership();
if (ownership == BufferInternal)
return 0;
if (ownership == BufferSubstring)
return m_substringBuffer->sharedBuffer();
if (ownership == BufferOwned) {
ASSERT(!m_sharedBuffer);
m_sharedBuffer = SharedUChar::create(new SharableUChar(m_data)).leakRef();
m_refCountAndFlags = (m_refCountAndFlags & ~s_refCountMaskBufferOwnership) | BufferShared;
}
ASSERT(bufferOwnership() == BufferShared);
ASSERT(m_sharedBuffer);
return m_sharedBuffer;
}
bool StringImpl::containsOnlyWhitespace()
{
// FIXME: The definition of whitespace here includes a number of characters
// that are not whitespace from the point of view of RenderText; I wonder if
// that's a problem in practice.
for (unsigned i = 0; i < m_length; i++)
if (!isASCIISpace(m_data[i]))
return false;
return true;
}
PassRefPtr<StringImpl> StringImpl::substring(unsigned start, unsigned length)
{
if (start >= m_length)
return empty();
unsigned maxLength = m_length - start;
if (length >= maxLength) {
if (!start)
return this;
length = maxLength;
}
return create(m_data + start, length);
}
UChar32 StringImpl::characterStartingAt(unsigned i)
{
if (U16_IS_SINGLE(m_data[i]))
return m_data[i];
if (i + 1 < m_length && U16_IS_LEAD(m_data[i]) && U16_IS_TRAIL(m_data[i + 1]))
return U16_GET_SUPPLEMENTARY(m_data[i], m_data[i + 1]);
return 0;
}
PassRefPtr<StringImpl> StringImpl::lower()
{
// Note: This is a hot function in the Dromaeo benchmark, specifically the
// no-op code path up through the first 'return' statement.
// First scan the string for uppercase and non-ASCII characters:
UChar ored = 0;
bool noUpper = true;
const UChar *end = m_data + m_length;
for (const UChar* chp = m_data; chp != end; chp++) {
if (UNLIKELY(isASCIIUpper(*chp)))
noUpper = false;
ored |= *chp;
}
// Nothing to do if the string is all ASCII with no uppercase.
if (noUpper && !(ored & ~0x7F))
return this;
if (m_length > static_cast<unsigned>(numeric_limits<int32_t>::max()))
CRASH();
int32_t length = m_length;
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
if (!(ored & ~0x7F)) {
// Do a faster loop for the case where all the characters are ASCII.
for (int i = 0; i < length; i++) {
UChar c = m_data[i];
data[i] = toASCIILower(c);
}
return newImpl;
}
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength = Unicode::toLower(data, length, m_data, m_length, &error);
if (!error && realLength == length)
return newImpl;
newImpl = createUninitialized(realLength, data);
Unicode::toLower(data, realLength, m_data, m_length, &error);
if (error)
return this;
return newImpl;
}
PassRefPtr<StringImpl> StringImpl::upper()
{
// This function could be optimized for no-op cases the way lower() is,
// but in empirical testing, few actual calls to upper() are no-ops, so
// it wouldn't be worth the extra time for pre-scanning.
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
if (m_length > static_cast<unsigned>(numeric_limits<int32_t>::max()))
CRASH();
int32_t length = m_length;
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
for (int i = 0; i < length; i++) {
UChar c = m_data[i];
ored |= c;
data[i] = toASCIIUpper(c);
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength = Unicode::toUpper(data, length, m_data, m_length, &error);
if (!error && realLength == length)
return newImpl;
newImpl = createUninitialized(realLength, data);
Unicode::toUpper(data, realLength, m_data, m_length, &error);
if (error)
return this;
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::secure(UChar character, LastCharacterBehavior behavior)
{
if (!m_length)
return this;
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
unsigned lastCharacterIndex = m_length - 1;
for (unsigned i = 0; i < lastCharacterIndex; ++i)
data[i] = character;
data[lastCharacterIndex] = (behavior == ObscureLastCharacter) ? character : m_data[lastCharacterIndex];
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::foldCase()
{
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
if (m_length > static_cast<unsigned>(numeric_limits<int32_t>::max()))
CRASH();
int32_t length = m_length;
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
for (int32_t i = 0; i < length; i++) {
UChar c = m_data[i];
ored |= c;
data[i] = toASCIILower(c);
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength = Unicode::foldCase(data, length, m_data, m_length, &error);
if (!error && realLength == length)
return newImpl.release();
newImpl = createUninitialized(realLength, data);
Unicode::foldCase(data, realLength, m_data, m_length, &error);
if (error)
return this;
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::stripWhiteSpace()
{
if (!m_length)
return empty();
unsigned start = 0;
unsigned end = m_length - 1;
// skip white space from start
while (start <= end && isSpaceOrNewline(m_data[start]))
start++;
// only white space
if (start > end)
return empty();
// skip white space from end
while (end && isSpaceOrNewline(m_data[end]))
end--;
if (!start && end == m_length - 1)
return this;
return create(m_data + start, end + 1 - start);
}
PassRefPtr<StringImpl> StringImpl::removeCharacters(CharacterMatchFunctionPtr findMatch)
{
const UChar* from = m_data;
const UChar* fromend = from + m_length;
// Assume the common case will not remove any characters
while (from != fromend && !findMatch(*from))
from++;
if (from == fromend)
return this;
StringBuffer data(m_length);
UChar* to = data.characters();
unsigned outc = from - m_data;
if (outc)
memcpy(to, m_data, outc * sizeof(UChar));
while (true) {
while (from != fromend && findMatch(*from))
from++;
while (from != fromend && !findMatch(*from))
to[outc++] = *from++;
if (from == fromend)
break;
}
data.shrink(outc);
return adopt(data);
}
PassRefPtr<StringImpl> StringImpl::simplifyWhiteSpace()
{
StringBuffer data(m_length);
const UChar* from = m_data;
const UChar* fromend = from + m_length;
int outc = 0;
bool changedToSpace = false;
UChar* to = data.characters();
while (true) {
while (from != fromend && isSpaceOrNewline(*from)) {
if (*from != ' ')
changedToSpace = true;
from++;
}
while (from != fromend && !isSpaceOrNewline(*from))
to[outc++] = *from++;
if (from != fromend)
to[outc++] = ' ';
else
break;
}
if (outc > 0 && to[outc - 1] == ' ')
outc--;
if (static_cast<unsigned>(outc) == m_length && !changedToSpace)
return this;
data.shrink(outc);
return adopt(data);
}
int StringImpl::toIntStrict(bool* ok, int base)
{
return charactersToIntStrict(m_data, m_length, ok, base);
}
unsigned StringImpl::toUIntStrict(bool* ok, int base)
{
return charactersToUIntStrict(m_data, m_length, ok, base);
}
int64_t StringImpl::toInt64Strict(bool* ok, int base)
{
return charactersToInt64Strict(m_data, m_length, ok, base);
}
uint64_t StringImpl::toUInt64Strict(bool* ok, int base)
{
return charactersToUInt64Strict(m_data, m_length, ok, base);
}
intptr_t StringImpl::toIntPtrStrict(bool* ok, int base)
{
return charactersToIntPtrStrict(m_data, m_length, ok, base);
}
int StringImpl::toInt(bool* ok)
{
return charactersToInt(m_data, m_length, ok);
}
unsigned StringImpl::toUInt(bool* ok)
{
return charactersToUInt(m_data, m_length, ok);
}
int64_t StringImpl::toInt64(bool* ok)
{
return charactersToInt64(m_data, m_length, ok);
}
uint64_t StringImpl::toUInt64(bool* ok)
{
return charactersToUInt64(m_data, m_length, ok);
}
intptr_t StringImpl::toIntPtr(bool* ok)
{
return charactersToIntPtr(m_data, m_length, ok);
}
double StringImpl::toDouble(bool* ok, bool* didReadNumber)
{
return charactersToDouble(m_data, m_length, ok, didReadNumber);
}
float StringImpl::toFloat(bool* ok, bool* didReadNumber)
{
return charactersToFloat(m_data, m_length, ok, didReadNumber);
}
static bool equal(const UChar* a, const char* b, int length)
{
ASSERT(length >= 0);
while (length--) {
unsigned char bc = *b++;
if (*a++ != bc)
return false;
}
return true;
}
bool equalIgnoringCase(const UChar* a, const char* b, unsigned length)
{
while (length--) {
unsigned char bc = *b++;
if (foldCase(*a++) != foldCase(bc))
return false;
}
return true;
}
static inline bool equalIgnoringCase(const UChar* a, const UChar* b, int length)
{
ASSERT(length >= 0);
return umemcasecmp(a, b, length) == 0;
}
int codePointCompare(const StringImpl* s1, const StringImpl* s2)
{
const unsigned l1 = s1 ? s1->length() : 0;
const unsigned l2 = s2 ? s2->length() : 0;
const unsigned lmin = l1 < l2 ? l1 : l2;
const UChar* c1 = s1 ? s1->characters() : 0;
const UChar* c2 = s2 ? s2->characters() : 0;
unsigned pos = 0;
while (pos < lmin && *c1 == *c2) {
c1++;
c2++;
pos++;
}
if (pos < lmin)
return (c1[0] > c2[0]) ? 1 : -1;
if (l1 == l2)
return 0;
return (l1 > l2) ? 1 : -1;
}
size_t StringImpl::find(UChar c, unsigned start)
{
return WTF::find(m_data, m_length, c, start);
}
size_t StringImpl::find(CharacterMatchFunctionPtr matchFunction, unsigned start)
{
return WTF::find(m_data, m_length, matchFunction, start);
}
size_t StringImpl::find(const char* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
size_t matchStringLength = strlen(matchString);
if (matchStringLength > numeric_limits<unsigned>::max())
CRASH();
unsigned matchLength = matchStringLength;
if (!matchLength)
return min(index, length());
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1)
return WTF::find(characters(), length(), *(const unsigned char*)matchString, index);
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
const UChar* searchCharacters = characters() + index;
const unsigned char* matchCharacters = (const unsigned char*)matchString;
// Optimization 2: keep a running hash of the strings,
// only call memcmp if the hashes match.
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[i];
matchHash += matchCharacters[i];
}
unsigned i = 0;
// keep looping until we match
while (searchHash != matchHash || !equal(searchCharacters + i, matchString, matchLength)) {
if (i == delta)
return notFound;
searchHash += searchCharacters[i + matchLength];
searchHash -= searchCharacters[i];
++i;
}
return index + i;
}
size_t StringImpl::findIgnoringCase(const char* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
size_t matchStringLength = strlen(matchString);
if (matchStringLength > numeric_limits<unsigned>::max())
CRASH();
unsigned matchLength = matchStringLength;
if (!matchLength)
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
const UChar* searchCharacters = characters() + index;
unsigned i = 0;
// keep looping until we match
while (!equalIgnoringCase(searchCharacters + i, matchString, matchLength)) {
if (i == delta)
return notFound;
++i;
}
return index + i;
}
size_t StringImpl::find(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
if (!matchLength)
return min(index, length());
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1)
return WTF::find(characters(), length(), matchString->characters()[0], index);
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
const UChar* searchCharacters = characters() + index;
const UChar* matchCharacters = matchString->characters();
// Optimization 2: keep a running hash of the strings,
// only call memcmp if the hashes match.
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[i];
matchHash += matchCharacters[i];
}
unsigned i = 0;
// keep looping until we match
while (searchHash != matchHash || memcmp(searchCharacters + i, matchCharacters, matchLength * sizeof(UChar))) {
if (i == delta)
return notFound;
searchHash += searchCharacters[i + matchLength];
searchHash -= searchCharacters[i];
++i;
}
return index + i;
}
size_t StringImpl::findIgnoringCase(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
if (!matchLength)
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
const UChar* searchCharacters = characters() + index;
const UChar* matchCharacters = matchString->characters();
unsigned i = 0;
// keep looping until we match
while (!equalIgnoringCase(searchCharacters + i, matchCharacters, matchLength)) {
if (i == delta)
return notFound;
++i;
}
return index + i;
}
size_t StringImpl::reverseFind(UChar c, unsigned index)
{
return WTF::reverseFind(m_data, m_length, c, index);
}
size_t StringImpl::reverseFind(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
if (!matchLength)
return min(index, length());
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1)
return WTF::reverseFind(characters(), length(), matchString->characters()[0], index);
// Check index & matchLength are in range.
if (matchLength > length())
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = min(index, length() - matchLength);
const UChar *searchCharacters = characters();
const UChar *matchCharacters = matchString->characters();
// Optimization 2: keep a running hash of the strings,
// only call memcmp if the hashes match.
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[delta + i];
matchHash += matchCharacters[i];
}
// keep looping until we match
while (searchHash != matchHash || memcmp(searchCharacters + delta, matchCharacters, matchLength * sizeof(UChar))) {
if (!delta)
return notFound;
delta--;
searchHash -= searchCharacters[delta + matchLength];
searchHash += searchCharacters[delta];
}
return delta;
}
size_t StringImpl::reverseFindIgnoringCase(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
if (!matchLength)
return min(index, length());
// Check index & matchLength are in range.
if (matchLength > length())
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = min(index, length() - matchLength);
const UChar *searchCharacters = characters();
const UChar *matchCharacters = matchString->characters();
// keep looping until we match
while (!equalIgnoringCase(searchCharacters + delta, matchCharacters, matchLength)) {
if (!delta)
return notFound;
delta--;
}
return delta;
}
bool StringImpl::endsWith(StringImpl* m_data, bool caseSensitive)
{
ASSERT(m_data);
if (m_length >= m_data->m_length) {
unsigned start = m_length - m_data->m_length;
return (caseSensitive ? find(m_data, start) : findIgnoringCase(m_data, start)) == start;
}
return false;
}
PassRefPtr<StringImpl> StringImpl::replace(UChar oldC, UChar newC)
{
if (oldC == newC)
return this;
unsigned i;
for (i = 0; i != m_length; ++i)
if (m_data[i] == oldC)
break;
if (i == m_length)
return this;
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (i = 0; i != m_length; ++i) {
UChar ch = m_data[i];
if (ch == oldC)
ch = newC;
data[i] = ch;
}
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(unsigned position, unsigned lengthToReplace, StringImpl* str)
{
position = min(position, length());
lengthToReplace = min(lengthToReplace, length() - position);
unsigned lengthToInsert = str ? str->length() : 0;
if (!lengthToReplace && !lengthToInsert)
return this;
UChar* data;
if ((length() - lengthToReplace) >= (numeric_limits<unsigned>::max() - lengthToInsert))
CRASH();
RefPtr<StringImpl> newImpl =
createUninitialized(length() - lengthToReplace + lengthToInsert, data);
memcpy(data, characters(), position * sizeof(UChar));
if (str)
memcpy(data + position, str->characters(), lengthToInsert * sizeof(UChar));
memcpy(data + position + lengthToInsert, characters() + position + lengthToReplace,
(length() - position - lengthToReplace) * sizeof(UChar));
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(UChar pattern, StringImpl* replacement)
{
if (!replacement)
return this;
unsigned repStrLength = replacement->length();
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return this;
if (repStrLength && matchCount > numeric_limits<unsigned>::max() / repStrLength)
CRASH();
unsigned replaceSize = matchCount * repStrLength;
unsigned newSize = m_length - matchCount;
if (newSize >= (numeric_limits<unsigned>::max() - replaceSize))
CRASH();
newSize += replaceSize;
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
// Construct the new data
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement->m_data, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(StringImpl* pattern, StringImpl* replacement)
{
if (!pattern || !replacement)
return this;
unsigned patternLength = pattern->length();
if (!patternLength)
return this;
unsigned repStrLength = replacement->length();
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) {
++matchCount;
srcSegmentStart += patternLength;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return this;
unsigned newSize = m_length - matchCount * patternLength;
if (repStrLength && matchCount > numeric_limits<unsigned>::max() / repStrLength)
CRASH();
if (newSize > (numeric_limits<unsigned>::max() - matchCount * repStrLength))
CRASH();
newSize += matchCount * repStrLength;
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
// Construct the new data
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement->m_data, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
bool equal(const StringImpl* a, const StringImpl* b)
{
return StringHash::equal(a, b);
}
bool equal(const StringImpl* a, const char* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
const UChar* as = a->characters();
for (unsigned i = 0; i != length; ++i) {
unsigned char bc = b[i];
if (!bc)
return false;
if (as[i] != bc)
return false;
}
return !b[length];
}
bool equalIgnoringCase(StringImpl* a, StringImpl* b)
{
return CaseFoldingHash::equal(a, b);
}
bool equalIgnoringCase(StringImpl* a, const char* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
const UChar* as = a->characters();
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
bool equal = true;
for (unsigned i = 0; i != length; ++i) {
char bc = b[i];
if (!bc)
return false;
UChar ac = as[i];
ored |= ac;
equal = equal && (toASCIILower(ac) == toASCIILower(bc));
}
// Do a slower implementation for cases that include non-ASCII characters.
if (ored & ~0x7F) {
equal = true;
for (unsigned i = 0; i != length; ++i) {
unsigned char bc = b[i];
equal = equal && (foldCase(as[i]) == foldCase(bc));
}
}
return equal && !b[length];
}
bool equalIgnoringNullity(StringImpl* a, StringImpl* b)
{
if (StringHash::equal(a, b))
return true;
if (!a && b && !b->length())
return true;
if (!b && a && !a->length())
return true;
return false;
}
WTF::Unicode::Direction StringImpl::defaultWritingDirection(bool* hasStrongDirectionality)
{
for (unsigned i = 0; i < m_length; ++i) {
WTF::Unicode::Direction charDirection = WTF::Unicode::direction(m_data[i]);
if (charDirection == WTF::Unicode::LeftToRight) {
if (hasStrongDirectionality)
*hasStrongDirectionality = true;
return WTF::Unicode::LeftToRight;
}
if (charDirection == WTF::Unicode::RightToLeft || charDirection == WTF::Unicode::RightToLeftArabic) {
if (hasStrongDirectionality)
*hasStrongDirectionality = true;
return WTF::Unicode::RightToLeft;
}
}
if (hasStrongDirectionality)
*hasStrongDirectionality = false;
return WTF::Unicode::LeftToRight;
}
// This is a hot function because it's used when parsing HTML.
PassRefPtr<StringImpl> StringImpl::createStrippingNullCharactersSlowCase(const UChar* characters, unsigned length)
{
StringBuffer strippedCopy(length);
unsigned strippedLength = 0;
for (unsigned i = 0; i < length; i++) {
if (int c = characters[i])
strippedCopy[strippedLength++] = c;
}
ASSERT(strippedLength < length); // Only take the slow case when stripping.
strippedCopy.shrink(strippedLength);
return adopt(strippedCopy);
}
PassRefPtr<StringImpl> StringImpl::adopt(StringBuffer& buffer)
{
unsigned length = buffer.length();
if (length == 0)
return empty();
return adoptRef(new StringImpl(buffer.release(), length));
}
PassRefPtr<StringImpl> StringImpl::createWithTerminatingNullCharacter(const StringImpl& string)
{
// Use createUninitialized instead of 'new StringImpl' so that the string and its buffer
// get allocated in a single memory block.
UChar* data;
unsigned length = string.m_length;
if (length >= numeric_limits<unsigned>::max())
CRASH();
RefPtr<StringImpl> terminatedString = createUninitialized(length + 1, data);
memcpy(data, string.m_data, length * sizeof(UChar));
data[length] = 0;
terminatedString->m_length--;
terminatedString->m_hash = string.m_hash;
terminatedString->m_refCountAndFlags |= s_refCountFlagHasTerminatingNullCharacter;
return terminatedString.release();
}
PassRefPtr<StringImpl> StringImpl::threadsafeCopy() const
{
return create(m_data, m_length);
}
PassRefPtr<StringImpl> StringImpl::crossThreadString()
{
if (SharedUChar* sharedBuffer = this->sharedBuffer())
return adoptRef(new StringImpl(m_data, m_length, sharedBuffer->crossThreadCopy()));
// If no shared buffer is available, create a copy.
return threadsafeCopy();
}
} // namespace WTF