| /* |
| * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef WTF_MathExtras_h |
| #define WTF_MathExtras_h |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <float.h> |
| #include <limits> |
| #include <stdlib.h> |
| |
| #if OS(SOLARIS) |
| #include <ieeefp.h> |
| #endif |
| |
| #if OS(OPENBSD) |
| #include <sys/types.h> |
| #include <machine/ieee.h> |
| #endif |
| |
| #if COMPILER(MSVC) |
| #if OS(WINCE) |
| #include <stdlib.h> |
| #endif |
| #include <limits> |
| #endif |
| |
| #ifndef M_PI |
| const double piDouble = 3.14159265358979323846; |
| const float piFloat = 3.14159265358979323846f; |
| #else |
| const double piDouble = M_PI; |
| const float piFloat = static_cast<float>(M_PI); |
| #endif |
| |
| #ifndef M_PI_2 |
| const double piOverTwoDouble = 1.57079632679489661923; |
| const float piOverTwoFloat = 1.57079632679489661923f; |
| #else |
| const double piOverTwoDouble = M_PI_2; |
| const float piOverTwoFloat = static_cast<float>(M_PI_2); |
| #endif |
| |
| #ifndef M_PI_4 |
| const double piOverFourDouble = 0.785398163397448309616; |
| const float piOverFourFloat = 0.785398163397448309616f; |
| #else |
| const double piOverFourDouble = M_PI_4; |
| const float piOverFourFloat = static_cast<float>(M_PI_4); |
| #endif |
| |
| #if OS(DARWIN) |
| |
| // Work around a bug in the Mac OS X libc where ceil(-0.1) return +0. |
| inline double wtf_ceil(double x) { return copysign(ceil(x), x); } |
| |
| #define ceil(x) wtf_ceil(x) |
| |
| #endif |
| |
| #if OS(SOLARIS) |
| |
| #ifndef isfinite |
| inline bool isfinite(double x) { return finite(x) && !isnand(x); } |
| #endif |
| #ifndef isinf |
| inline bool isinf(double x) { return !finite(x) && !isnand(x); } |
| #endif |
| #ifndef signbit |
| inline bool signbit(double x) { return copysign(1.0, x) < 0; } |
| #endif |
| |
| #endif |
| |
| #if OS(OPENBSD) |
| |
| #ifndef isfinite |
| inline bool isfinite(double x) { return finite(x); } |
| #endif |
| #ifndef signbit |
| inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; } |
| #endif |
| |
| #endif |
| |
| #if COMPILER(MSVC) || (COMPILER(RVCT) && !(RVCT_VERSION_AT_LEAST(3, 0, 0, 0))) |
| |
| // We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss. |
| static double round(double num) |
| { |
| double integer = ceil(num); |
| if (num > 0) |
| return integer - num > 0.5 ? integer - 1.0 : integer; |
| return integer - num >= 0.5 ? integer - 1.0 : integer; |
| } |
| static float roundf(float num) |
| { |
| float integer = ceilf(num); |
| if (num > 0) |
| return integer - num > 0.5f ? integer - 1.0f : integer; |
| return integer - num >= 0.5f ? integer - 1.0f : integer; |
| } |
| inline long long llround(double num) { return static_cast<long long>(round(num)); } |
| inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); } |
| inline long lround(double num) { return static_cast<long>(round(num)); } |
| inline long lroundf(float num) { return static_cast<long>(roundf(num)); } |
| inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); } |
| |
| #endif |
| |
| #if COMPILER(MSVC) |
| // The 64bit version of abs() is already defined in stdlib.h which comes with VC10 |
| #if COMPILER(MSVC9_OR_LOWER) |
| inline long long abs(long long num) { return _abs64(num); } |
| #endif |
| |
| inline bool isinf(double num) { return !_finite(num) && !_isnan(num); } |
| inline bool isnan(double num) { return !!_isnan(num); } |
| inline bool signbit(double num) { return _copysign(1.0, num) < 0; } |
| |
| inline double nextafter(double x, double y) { return _nextafter(x, y); } |
| inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; } |
| |
| inline double copysign(double x, double y) { return _copysign(x, y); } |
| inline int isfinite(double x) { return _finite(x); } |
| |
| // MSVC's math.h does not currently supply log2. |
| inline double log2(double num) |
| { |
| // This constant is roughly M_LN2, which is not provided by default on Windows. |
| return log(num) / 0.693147180559945309417232121458176568; |
| } |
| |
| // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values. |
| inline double wtf_atan2(double x, double y) |
| { |
| double posInf = std::numeric_limits<double>::infinity(); |
| double negInf = -std::numeric_limits<double>::infinity(); |
| double nan = std::numeric_limits<double>::quiet_NaN(); |
| |
| double result = nan; |
| |
| if (x == posInf && y == posInf) |
| result = piOverFourDouble; |
| else if (x == posInf && y == negInf) |
| result = 3 * piOverFourDouble; |
| else if (x == negInf && y == posInf) |
| result = -piOverFourDouble; |
| else if (x == negInf && y == negInf) |
| result = -3 * piOverFourDouble; |
| else |
| result = ::atan2(x, y); |
| |
| return result; |
| } |
| |
| // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x. |
| inline double wtf_fmod(double x, double y) { return (!isinf(x) && isinf(y)) ? x : fmod(x, y); } |
| |
| // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1. |
| inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); } |
| |
| #define atan2(x, y) wtf_atan2(x, y) |
| #define fmod(x, y) wtf_fmod(x, y) |
| #define pow(x, y) wtf_pow(x, y) |
| |
| #endif // COMPILER(MSVC) |
| |
| inline double deg2rad(double d) { return d * piDouble / 180.0; } |
| inline double rad2deg(double r) { return r * 180.0 / piDouble; } |
| inline double deg2grad(double d) { return d * 400.0 / 360.0; } |
| inline double grad2deg(double g) { return g * 360.0 / 400.0; } |
| inline double turn2deg(double t) { return t * 360.0; } |
| inline double deg2turn(double d) { return d / 360.0; } |
| inline double rad2grad(double r) { return r * 200.0 / piDouble; } |
| inline double grad2rad(double g) { return g * piDouble / 200.0; } |
| |
| inline float deg2rad(float d) { return d * piFloat / 180.0f; } |
| inline float rad2deg(float r) { return r * 180.0f / piFloat; } |
| inline float deg2grad(float d) { return d * 400.0f / 360.0f; } |
| inline float grad2deg(float g) { return g * 360.0f / 400.0f; } |
| inline float turn2deg(float t) { return t * 360.0f; } |
| inline float deg2turn(float d) { return d / 360.0f; } |
| inline float rad2grad(float r) { return r * 200.0f / piFloat; } |
| inline float grad2rad(float g) { return g * piFloat / 200.0f; } |
| |
| inline int clampToInteger(double d) |
| { |
| const double minIntAsDouble = std::numeric_limits<int>::min(); |
| const double maxIntAsDouble = std::numeric_limits<int>::max(); |
| return static_cast<int>(std::max(std::min(d, maxIntAsDouble), minIntAsDouble)); |
| } |
| |
| inline int clampToPositiveInteger(double d) |
| { |
| const double maxIntAsDouble = std::numeric_limits<int>::max(); |
| return static_cast<int>(std::max<double>(std::min(d, maxIntAsDouble), 0)); |
| } |
| |
| inline int clampToInteger(float d) |
| { |
| const float minIntAsFloat = static_cast<float>(std::numeric_limits<int>::min()); |
| const float maxIntAsFloat = static_cast<float>(std::numeric_limits<int>::max()); |
| return static_cast<int>(std::max(std::min(d, maxIntAsFloat), minIntAsFloat)); |
| } |
| |
| inline int clampToPositiveInteger(float d) |
| { |
| const float maxIntAsFloat = static_cast<float>(std::numeric_limits<int>::max()); |
| return static_cast<int>(std::max<float>(std::min(d, maxIntAsFloat), 0)); |
| } |
| |
| inline int clampToInteger(unsigned value) |
| { |
| return static_cast<int>(std::min(value, static_cast<unsigned>(std::numeric_limits<int>::max()))); |
| } |
| |
| #if !COMPILER(MSVC) && !COMPILER(WINSCW) && !(COMPILER(RVCT) && (OS(SYMBIAN) || PLATFORM(BREWMP))) && !OS(SOLARIS) |
| using std::isfinite; |
| using std::isinf; |
| using std::isnan; |
| using std::signbit; |
| #endif |
| |
| #endif // #ifndef WTF_MathExtras_h |