| /* |
| * Copyright (C) 1999 Lars Knoll (knoll@kde.org) |
| * (C) 1999 Antti Koivisto (koivisto@kde.org) |
| * (C) 2007 David Smith (catfish.man@gmail.com) |
| * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. |
| * Copyright (C) Research In Motion Limited 2010. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| |
| #include "config.h" |
| #include "RenderBlock.h" |
| |
| #include "ColumnInfo.h" |
| #include "Document.h" |
| #include "Element.h" |
| #include "FloatQuad.h" |
| #include "Frame.h" |
| #include "FrameView.h" |
| #include "GraphicsContext.h" |
| #include "HTMLFormElement.h" |
| #include "HTMLNames.h" |
| #include "HitTestResult.h" |
| #include "InlineIterator.h" |
| #include "InlineTextBox.h" |
| #include "PaintInfo.h" |
| #include "RenderCombineText.h" |
| #include "RenderFlexibleBox.h" |
| #include "RenderImage.h" |
| #include "RenderInline.h" |
| #include "RenderLayer.h" |
| #include "RenderMarquee.h" |
| #include "RenderReplica.h" |
| #include "RenderTableCell.h" |
| #include "RenderTextFragment.h" |
| #include "RenderTheme.h" |
| #include "RenderView.h" |
| #include "SelectionController.h" |
| #include "Settings.h" |
| #include "TextRun.h" |
| #include "TransformState.h" |
| #include "visible_units.h" |
| #include <wtf/StdLibExtras.h> |
| |
| #ifdef ANDROID_LAYOUT |
| #include "Settings.h" |
| #endif |
| |
| using namespace std; |
| using namespace WTF; |
| using namespace Unicode; |
| |
| namespace WebCore { |
| |
| using namespace HTMLNames; |
| |
| typedef WTF::HashMap<const RenderBox*, ColumnInfo*> ColumnInfoMap; |
| static ColumnInfoMap* gColumnInfoMap = 0; |
| |
| typedef WTF::HashMap<const RenderBlock*, HashSet<RenderBox*>*> PercentHeightDescendantsMap; |
| static PercentHeightDescendantsMap* gPercentHeightDescendantsMap = 0; |
| |
| typedef WTF::HashMap<const RenderBox*, HashSet<RenderBlock*>*> PercentHeightContainerMap; |
| static PercentHeightContainerMap* gPercentHeightContainerMap = 0; |
| |
| typedef WTF::HashMap<RenderBlock*, ListHashSet<RenderInline*>*> ContinuationOutlineTableMap; |
| |
| typedef WTF::HashSet<RenderBlock*> DelayedUpdateScrollInfoSet; |
| static int gDelayUpdateScrollInfo = 0; |
| static DelayedUpdateScrollInfoSet* gDelayedUpdateScrollInfoSet = 0; |
| |
| // Our MarginInfo state used when laying out block children. |
| RenderBlock::MarginInfo::MarginInfo(RenderBlock* block, int beforeBorderPadding, int afterBorderPadding) |
| : m_atBeforeSideOfBlock(true) |
| , m_atAfterSideOfBlock(false) |
| , m_marginBeforeQuirk(false) |
| , m_marginAfterQuirk(false) |
| , m_determinedMarginBeforeQuirk(false) |
| { |
| // Whether or not we can collapse our own margins with our children. We don't do this |
| // if we had any border/padding (obviously), if we're the root or HTML elements, or if |
| // we're positioned, floating, a table cell. |
| m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot() && !block->isPositioned() |
| && !block->isFloating() && !block->isTableCell() && !block->hasOverflowClip() && !block->isInlineBlockOrInlineTable() |
| && !block->isWritingModeRoot(); |
| |
| m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && (beforeBorderPadding == 0) && block->style()->marginBeforeCollapse() != MSEPARATE; |
| |
| // If any height other than auto is specified in CSS, then we don't collapse our bottom |
| // margins with our children's margins. To do otherwise would be to risk odd visual |
| // effects when the children overflow out of the parent block and yet still collapse |
| // with it. We also don't collapse if we have any bottom border/padding. |
| m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && (afterBorderPadding == 0) && |
| (block->style()->logicalHeight().isAuto() && block->style()->logicalHeight().value() == 0) && block->style()->marginAfterCollapse() != MSEPARATE; |
| |
| m_quirkContainer = block->isTableCell() || block->isBody() || block->style()->marginBeforeCollapse() == MDISCARD || |
| block->style()->marginAfterCollapse() == MDISCARD; |
| |
| m_positiveMargin = m_canCollapseMarginBeforeWithChildren ? block->maxPositiveMarginBefore() : 0; |
| m_negativeMargin = m_canCollapseMarginBeforeWithChildren ? block->maxNegativeMarginBefore() : 0; |
| } |
| |
| // ------------------------------------------------------------------------------------------------------- |
| |
| RenderBlock::RenderBlock(Node* node) |
| : RenderBox(node) |
| , m_floatingObjects(0) |
| , m_positionedObjects(0) |
| , m_rareData(0) |
| , m_lineHeight(-1) |
| , m_beingDestroyed(false) |
| { |
| setChildrenInline(true); |
| } |
| |
| RenderBlock::~RenderBlock() |
| { |
| if (m_floatingObjects) |
| deleteAllValues(m_floatingObjects->set()); |
| |
| if (hasColumns()) |
| delete gColumnInfoMap->take(this); |
| |
| if (gPercentHeightDescendantsMap) { |
| if (HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->take(this)) { |
| HashSet<RenderBox*>::iterator end = descendantSet->end(); |
| for (HashSet<RenderBox*>::iterator descendant = descendantSet->begin(); descendant != end; ++descendant) { |
| HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->get(*descendant); |
| ASSERT(containerSet); |
| if (!containerSet) |
| continue; |
| ASSERT(containerSet->contains(this)); |
| containerSet->remove(this); |
| if (containerSet->isEmpty()) { |
| gPercentHeightContainerMap->remove(*descendant); |
| delete containerSet; |
| } |
| } |
| delete descendantSet; |
| } |
| } |
| } |
| |
| void RenderBlock::destroy() |
| { |
| // Mark as being destroyed to avoid trouble with merges in removeChild(). |
| m_beingDestroyed = true; |
| |
| // Make sure to destroy anonymous children first while they are still connected to the rest of the tree, so that they will |
| // properly dirty line boxes that they are removed from. Effects that do :before/:after only on hover could crash otherwise. |
| children()->destroyLeftoverChildren(); |
| |
| // Destroy our continuation before anything other than anonymous children. |
| // The reason we don't destroy it before anonymous children is that they may |
| // have continuations of their own that are anonymous children of our continuation. |
| RenderBoxModelObject* continuation = this->continuation(); |
| if (continuation) { |
| continuation->destroy(); |
| setContinuation(0); |
| } |
| |
| if (!documentBeingDestroyed()) { |
| if (firstLineBox()) { |
| // We can't wait for RenderBox::destroy to clear the selection, |
| // because by then we will have nuked the line boxes. |
| // FIXME: The SelectionController should be responsible for this when it |
| // is notified of DOM mutations. |
| if (isSelectionBorder()) |
| view()->clearSelection(); |
| |
| // If we are an anonymous block, then our line boxes might have children |
| // that will outlast this block. In the non-anonymous block case those |
| // children will be destroyed by the time we return from this function. |
| if (isAnonymousBlock()) { |
| for (InlineFlowBox* box = firstLineBox(); box; box = box->nextLineBox()) { |
| while (InlineBox* childBox = box->firstChild()) |
| childBox->remove(); |
| } |
| } |
| } else if (isInline() && parent()) |
| parent()->dirtyLinesFromChangedChild(this); |
| } |
| |
| m_lineBoxes.deleteLineBoxes(renderArena()); |
| |
| RenderBox::destroy(); |
| } |
| |
| void RenderBlock::styleWillChange(StyleDifference diff, const RenderStyle* newStyle) |
| { |
| setReplaced(newStyle->isDisplayInlineType()); |
| |
| if (style() && parent() && diff == StyleDifferenceLayout && style()->position() != newStyle->position()) { |
| if (newStyle->position() == StaticPosition) |
| // Clear our positioned objects list. Our absolutely positioned descendants will be |
| // inserted into our containing block's positioned objects list during layout. |
| removePositionedObjects(0); |
| else if (style()->position() == StaticPosition) { |
| // Remove our absolutely positioned descendants from their current containing block. |
| // They will be inserted into our positioned objects list during layout. |
| RenderObject* cb = parent(); |
| while (cb && (cb->style()->position() == StaticPosition || (cb->isInline() && !cb->isReplaced())) && !cb->isRenderView()) { |
| if (cb->style()->position() == RelativePosition && cb->isInline() && !cb->isReplaced()) { |
| cb = cb->containingBlock(); |
| break; |
| } |
| cb = cb->parent(); |
| } |
| |
| if (cb->isRenderBlock()) |
| toRenderBlock(cb)->removePositionedObjects(this); |
| } |
| } |
| |
| RenderBox::styleWillChange(diff, newStyle); |
| } |
| |
| void RenderBlock::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) |
| { |
| RenderBox::styleDidChange(diff, oldStyle); |
| |
| if (!isAnonymousBlock()) { |
| // Ensure that all of our continuation blocks pick up the new style. |
| for (RenderBlock* currCont = blockElementContinuation(); currCont; currCont = currCont->blockElementContinuation()) { |
| RenderBoxModelObject* nextCont = currCont->continuation(); |
| currCont->setContinuation(0); |
| currCont->setStyle(style()); |
| currCont->setContinuation(nextCont); |
| } |
| } |
| |
| // FIXME: We could save this call when the change only affected non-inherited properties |
| for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { |
| if (child->isAnonymousBlock()) { |
| RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style()); |
| if (style()->specifiesColumns()) { |
| if (child->style()->specifiesColumns()) |
| newStyle->inheritColumnPropertiesFrom(style()); |
| if (child->style()->columnSpan()) |
| newStyle->setColumnSpan(true); |
| } |
| newStyle->setDisplay(BLOCK); |
| child->setStyle(newStyle.release()); |
| } |
| } |
| |
| m_lineHeight = -1; |
| |
| // Update pseudos for :before and :after now. |
| if (!isAnonymous() && document()->usesBeforeAfterRules() && canHaveChildren()) { |
| updateBeforeAfterContent(BEFORE); |
| updateBeforeAfterContent(AFTER); |
| } |
| } |
| |
| void RenderBlock::updateBeforeAfterContent(PseudoId pseudoId) |
| { |
| // If this is an anonymous wrapper, then the parent applies its own pseudo-element style to it. |
| if (parent() && parent()->createsAnonymousWrapper()) |
| return; |
| return children()->updateBeforeAfterContent(this, pseudoId); |
| } |
| |
| RenderBlock* RenderBlock::continuationBefore(RenderObject* beforeChild) |
| { |
| if (beforeChild && beforeChild->parent() == this) |
| return this; |
| |
| RenderBlock* curr = toRenderBlock(continuation()); |
| RenderBlock* nextToLast = this; |
| RenderBlock* last = this; |
| while (curr) { |
| if (beforeChild && beforeChild->parent() == curr) { |
| if (curr->firstChild() == beforeChild) |
| return last; |
| return curr; |
| } |
| |
| nextToLast = last; |
| last = curr; |
| curr = toRenderBlock(curr->continuation()); |
| } |
| |
| if (!beforeChild && !last->firstChild()) |
| return nextToLast; |
| return last; |
| } |
| |
| void RenderBlock::addChildToContinuation(RenderObject* newChild, RenderObject* beforeChild) |
| { |
| RenderBlock* flow = continuationBefore(beforeChild); |
| ASSERT(!beforeChild || beforeChild->parent()->isAnonymousColumnSpanBlock() || beforeChild->parent()->isRenderBlock()); |
| RenderBoxModelObject* beforeChildParent = 0; |
| if (beforeChild) |
| beforeChildParent = toRenderBoxModelObject(beforeChild->parent()); |
| else { |
| RenderBoxModelObject* cont = flow->continuation(); |
| if (cont) |
| beforeChildParent = cont; |
| else |
| beforeChildParent = flow; |
| } |
| |
| if (newChild->isFloatingOrPositioned()) |
| return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); |
| |
| // A continuation always consists of two potential candidates: a block or an anonymous |
| // column span box holding column span children. |
| bool childIsNormal = newChild->isInline() || !newChild->style()->columnSpan(); |
| bool bcpIsNormal = beforeChildParent->isInline() || !beforeChildParent->style()->columnSpan(); |
| bool flowIsNormal = flow->isInline() || !flow->style()->columnSpan(); |
| |
| if (flow == beforeChildParent) |
| return flow->addChildIgnoringContinuation(newChild, beforeChild); |
| |
| // The goal here is to match up if we can, so that we can coalesce and create the |
| // minimal # of continuations needed for the inline. |
| if (childIsNormal == bcpIsNormal) |
| return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); |
| if (flowIsNormal == childIsNormal) |
| return flow->addChildIgnoringContinuation(newChild, 0); // Just treat like an append. |
| return beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); |
| } |
| |
| |
| void RenderBlock::addChildToAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild) |
| { |
| ASSERT(!continuation()); // We don't yet support column spans that aren't immediate children of the multi-column block. |
| |
| // The goal is to locate a suitable box in which to place our child. |
| RenderBlock* beforeChildParent = toRenderBlock(beforeChild && beforeChild->parent()->isRenderBlock() ? beforeChild->parent() : lastChild()); |
| |
| // If the new child is floating or positioned it can just go in that block. |
| if (newChild->isFloatingOrPositioned()) |
| return beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); |
| |
| // See if the child can be placed in the box. |
| bool newChildHasColumnSpan = newChild->style()->columnSpan() && !newChild->isInline(); |
| bool beforeChildParentHoldsColumnSpans = beforeChildParent->isAnonymousColumnSpanBlock(); |
| |
| if (newChildHasColumnSpan == beforeChildParentHoldsColumnSpans) |
| return beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); |
| |
| if (!beforeChild) { |
| // Create a new block of the correct type. |
| RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock(); |
| children()->appendChildNode(this, newBox); |
| newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0); |
| return; |
| } |
| |
| RenderObject* immediateChild = beforeChild; |
| bool isPreviousBlockViable = true; |
| while (immediateChild->parent() != this) { |
| if (isPreviousBlockViable) |
| isPreviousBlockViable = !immediateChild->previousSibling(); |
| immediateChild = immediateChild->parent(); |
| } |
| if (isPreviousBlockViable && immediateChild->previousSibling()) |
| return toRenderBlock(immediateChild->previousSibling())->addChildIgnoringAnonymousColumnBlocks(newChild, 0); // Treat like an append. |
| |
| // Split our anonymous blocks. |
| RenderObject* newBeforeChild = splitAnonymousBlocksAroundChild(beforeChild); |
| |
| // Create a new anonymous box of the appropriate type. |
| RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock(); |
| children()->insertChildNode(this, newBox, newBeforeChild); |
| newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0); |
| return; |
| } |
| |
| RenderBlock* RenderBlock::containingColumnsBlock(bool allowAnonymousColumnBlock) |
| { |
| for (RenderObject* curr = this; curr; curr = curr->parent()) { |
| if (!curr->isRenderBlock() || curr->isFloatingOrPositioned() || curr->isTableCell() || curr->isRoot() || curr->isRenderView() || curr->hasOverflowClip() |
| || curr->isInlineBlockOrInlineTable()) |
| return 0; |
| |
| RenderBlock* currBlock = toRenderBlock(curr); |
| if (currBlock->style()->specifiesColumns() && (allowAnonymousColumnBlock || !currBlock->isAnonymousColumnsBlock())) |
| return currBlock; |
| |
| if (currBlock->isAnonymousColumnSpanBlock()) |
| return 0; |
| } |
| return 0; |
| } |
| |
| RenderBlock* RenderBlock::clone() const |
| { |
| RenderBlock* cloneBlock; |
| if (isAnonymousBlock()) |
| cloneBlock = createAnonymousBlock(); |
| else { |
| cloneBlock = new (renderArena()) RenderBlock(node()); |
| cloneBlock->setStyle(style()); |
| } |
| cloneBlock->setChildrenInline(childrenInline()); |
| return cloneBlock; |
| } |
| |
| void RenderBlock::splitBlocks(RenderBlock* fromBlock, RenderBlock* toBlock, |
| RenderBlock* middleBlock, |
| RenderObject* beforeChild, RenderBoxModelObject* oldCont) |
| { |
| // Create a clone of this inline. |
| RenderBlock* cloneBlock = clone(); |
| if (!isAnonymousBlock()) |
| cloneBlock->setContinuation(oldCont); |
| |
| // Now take all of the children from beforeChild to the end and remove |
| // them from |this| and place them in the clone. |
| if (!beforeChild && isAfterContent(lastChild())) |
| beforeChild = lastChild(); |
| moveChildrenTo(cloneBlock, beforeChild, 0); |
| |
| // Hook |clone| up as the continuation of the middle block. |
| if (!cloneBlock->isAnonymousBlock()) |
| middleBlock->setContinuation(cloneBlock); |
| |
| // We have been reparented and are now under the fromBlock. We need |
| // to walk up our block parent chain until we hit the containing anonymous columns block. |
| // Once we hit the anonymous columns block we're done. |
| RenderBoxModelObject* curr = toRenderBoxModelObject(parent()); |
| RenderBoxModelObject* currChild = this; |
| |
| while (curr && curr != fromBlock) { |
| ASSERT(curr->isRenderBlock()); |
| |
| RenderBlock* blockCurr = toRenderBlock(curr); |
| |
| // Create a new clone. |
| RenderBlock* cloneChild = cloneBlock; |
| cloneBlock = blockCurr->clone(); |
| |
| // Insert our child clone as the first child. |
| cloneBlock->children()->appendChildNode(cloneBlock, cloneChild); |
| |
| // Hook the clone up as a continuation of |curr|. Note we do encounter |
| // anonymous blocks possibly as we walk up the block chain. When we split an |
| // anonymous block, there's no need to do any continuation hookup, since we haven't |
| // actually split a real element. |
| if (!blockCurr->isAnonymousBlock()) { |
| oldCont = blockCurr->continuation(); |
| blockCurr->setContinuation(cloneBlock); |
| cloneBlock->setContinuation(oldCont); |
| } |
| |
| // Someone may have indirectly caused a <q> to split. When this happens, the :after content |
| // has to move into the inline continuation. Call updateBeforeAfterContent to ensure that the inline's :after |
| // content gets properly destroyed. |
| if (document()->usesBeforeAfterRules()) |
| blockCurr->children()->updateBeforeAfterContent(blockCurr, AFTER); |
| |
| // Now we need to take all of the children starting from the first child |
| // *after* currChild and append them all to the clone. |
| RenderObject* afterContent = isAfterContent(cloneBlock->lastChild()) ? cloneBlock->lastChild() : 0; |
| blockCurr->moveChildrenTo(cloneBlock, currChild->nextSibling(), 0, afterContent); |
| |
| // Keep walking up the chain. |
| currChild = curr; |
| curr = toRenderBoxModelObject(curr->parent()); |
| } |
| |
| // Now we are at the columns block level. We need to put the clone into the toBlock. |
| toBlock->children()->appendChildNode(toBlock, cloneBlock); |
| |
| // Now take all the children after currChild and remove them from the fromBlock |
| // and put them in the toBlock. |
| fromBlock->moveChildrenTo(toBlock, currChild->nextSibling(), 0); |
| } |
| |
| void RenderBlock::splitFlow(RenderObject* beforeChild, RenderBlock* newBlockBox, |
| RenderObject* newChild, RenderBoxModelObject* oldCont) |
| { |
| RenderBlock* pre = 0; |
| RenderBlock* block = containingColumnsBlock(); |
| |
| // Delete our line boxes before we do the inline split into continuations. |
| block->deleteLineBoxTree(); |
| |
| bool madeNewBeforeBlock = false; |
| if (block->isAnonymousColumnsBlock()) { |
| // We can reuse this block and make it the preBlock of the next continuation. |
| pre = block; |
| pre->removePositionedObjects(0); |
| block = toRenderBlock(block->parent()); |
| } else { |
| // No anonymous block available for use. Make one. |
| pre = block->createAnonymousColumnsBlock(); |
| pre->setChildrenInline(false); |
| madeNewBeforeBlock = true; |
| } |
| |
| RenderBlock* post = block->createAnonymousColumnsBlock(); |
| post->setChildrenInline(false); |
| |
| RenderObject* boxFirst = madeNewBeforeBlock ? block->firstChild() : pre->nextSibling(); |
| if (madeNewBeforeBlock) |
| block->children()->insertChildNode(block, pre, boxFirst); |
| block->children()->insertChildNode(block, newBlockBox, boxFirst); |
| block->children()->insertChildNode(block, post, boxFirst); |
| block->setChildrenInline(false); |
| |
| if (madeNewBeforeBlock) |
| block->moveChildrenTo(pre, boxFirst, 0); |
| |
| splitBlocks(pre, post, newBlockBox, beforeChild, oldCont); |
| |
| // We already know the newBlockBox isn't going to contain inline kids, so avoid wasting |
| // time in makeChildrenNonInline by just setting this explicitly up front. |
| newBlockBox->setChildrenInline(false); |
| |
| // We delayed adding the newChild until now so that the |newBlockBox| would be fully |
| // connected, thus allowing newChild access to a renderArena should it need |
| // to wrap itself in additional boxes (e.g., table construction). |
| newBlockBox->addChild(newChild); |
| |
| // Always just do a full layout in order to ensure that line boxes (especially wrappers for images) |
| // get deleted properly. Because objects moves from the pre block into the post block, we want to |
| // make new line boxes instead of leaving the old line boxes around. |
| pre->setNeedsLayoutAndPrefWidthsRecalc(); |
| block->setNeedsLayoutAndPrefWidthsRecalc(); |
| post->setNeedsLayoutAndPrefWidthsRecalc(); |
| } |
| |
| RenderObject* RenderBlock::splitAnonymousBlocksAroundChild(RenderObject* beforeChild) |
| { |
| while (beforeChild->parent() != this) { |
| RenderBlock* blockToSplit = toRenderBlock(beforeChild->parent()); |
| if (blockToSplit->firstChild() != beforeChild) { |
| // We have to split the parentBlock into two blocks. |
| RenderBlock* post = createAnonymousBlockWithSameTypeAs(blockToSplit); |
| post->setChildrenInline(blockToSplit->childrenInline()); |
| RenderBlock* parentBlock = toRenderBlock(blockToSplit->parent()); |
| parentBlock->children()->insertChildNode(parentBlock, post, blockToSplit->nextSibling()); |
| blockToSplit->moveChildrenTo(post, beforeChild, 0, blockToSplit->hasLayer()); |
| post->setNeedsLayoutAndPrefWidthsRecalc(); |
| blockToSplit->setNeedsLayoutAndPrefWidthsRecalc(); |
| beforeChild = post; |
| } else |
| beforeChild = blockToSplit; |
| } |
| return beforeChild; |
| } |
| |
| void RenderBlock::makeChildrenAnonymousColumnBlocks(RenderObject* beforeChild, RenderBlock* newBlockBox, RenderObject* newChild) |
| { |
| RenderBlock* pre = 0; |
| RenderBlock* post = 0; |
| RenderBlock* block = this; // Eventually block will not just be |this|, but will also be a block nested inside |this|. Assign to a variable |
| // so that we don't have to patch all of the rest of the code later on. |
| |
| // Delete the block's line boxes before we do the split. |
| block->deleteLineBoxTree(); |
| |
| if (beforeChild && beforeChild->parent() != this) |
| beforeChild = splitAnonymousBlocksAroundChild(beforeChild); |
| |
| if (beforeChild != firstChild()) { |
| pre = block->createAnonymousColumnsBlock(); |
| pre->setChildrenInline(block->childrenInline()); |
| } |
| |
| if (beforeChild) { |
| post = block->createAnonymousColumnsBlock(); |
| post->setChildrenInline(block->childrenInline()); |
| } |
| |
| RenderObject* boxFirst = block->firstChild(); |
| if (pre) |
| block->children()->insertChildNode(block, pre, boxFirst); |
| block->children()->insertChildNode(block, newBlockBox, boxFirst); |
| if (post) |
| block->children()->insertChildNode(block, post, boxFirst); |
| block->setChildrenInline(false); |
| |
| // The pre/post blocks always have layers, so we know to always do a full insert/remove (so we pass true as the last argument). |
| block->moveChildrenTo(pre, boxFirst, beforeChild, true); |
| block->moveChildrenTo(post, beforeChild, 0, true); |
| |
| // We already know the newBlockBox isn't going to contain inline kids, so avoid wasting |
| // time in makeChildrenNonInline by just setting this explicitly up front. |
| newBlockBox->setChildrenInline(false); |
| |
| // We delayed adding the newChild until now so that the |newBlockBox| would be fully |
| // connected, thus allowing newChild access to a renderArena should it need |
| // to wrap itself in additional boxes (e.g., table construction). |
| newBlockBox->addChild(newChild); |
| |
| // Always just do a full layout in order to ensure that line boxes (especially wrappers for images) |
| // get deleted properly. Because objects moved from the pre block into the post block, we want to |
| // make new line boxes instead of leaving the old line boxes around. |
| if (pre) |
| pre->setNeedsLayoutAndPrefWidthsRecalc(); |
| block->setNeedsLayoutAndPrefWidthsRecalc(); |
| if (post) |
| post->setNeedsLayoutAndPrefWidthsRecalc(); |
| } |
| |
| RenderBlock* RenderBlock::columnsBlockForSpanningElement(RenderObject* newChild) |
| { |
| // FIXME: This function is the gateway for the addition of column-span support. It will |
| // be added to in three stages: |
| // (1) Immediate children of a multi-column block can span. |
| // (2) Nested block-level children with only block-level ancestors between them and the multi-column block can span. |
| // (3) Nested children with block or inline ancestors between them and the multi-column block can span (this is when we |
| // cross the streams and have to cope with both types of continuations mixed together). |
| // This function currently supports (1) and (2). |
| RenderBlock* columnsBlockAncestor = 0; |
| if (!newChild->isText() && newChild->style()->columnSpan() && !newChild->isFloatingOrPositioned() |
| && !newChild->isInline() && !isAnonymousColumnSpanBlock()) { |
| if (style()->specifiesColumns()) |
| columnsBlockAncestor = this; |
| else if (parent() && parent()->isRenderBlock()) |
| columnsBlockAncestor = toRenderBlock(parent())->containingColumnsBlock(false); |
| } |
| return columnsBlockAncestor; |
| } |
| |
| void RenderBlock::addChildIgnoringAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild) |
| { |
| // Make sure we don't append things after :after-generated content if we have it. |
| if (!beforeChild) { |
| RenderObject* lastRenderer = lastChild(); |
| if (isAfterContent(lastRenderer)) |
| beforeChild = lastRenderer; |
| else if (lastRenderer && lastRenderer->isAnonymousBlock() && isAfterContent(lastRenderer->lastChild())) |
| beforeChild = lastRenderer->lastChild(); |
| } |
| |
| // If the requested beforeChild is not one of our children, then this is because |
| // there is an anonymous container within this object that contains the beforeChild. |
| if (beforeChild && beforeChild->parent() != this) { |
| RenderObject* anonymousChild = beforeChild->parent(); |
| ASSERT(anonymousChild); |
| |
| while (anonymousChild->parent() != this) |
| anonymousChild = anonymousChild->parent(); |
| |
| ASSERT(anonymousChild->isAnonymous()); |
| |
| if (anonymousChild->isAnonymousBlock()) { |
| // Insert the child into the anonymous block box instead of here. |
| if (newChild->isInline() || beforeChild->parent()->firstChild() != beforeChild) |
| beforeChild->parent()->addChild(newChild, beforeChild); |
| else |
| addChild(newChild, beforeChild->parent()); |
| return; |
| } |
| |
| ASSERT(anonymousChild->isTable()); |
| if ((newChild->isTableCol() && newChild->style()->display() == TABLE_COLUMN_GROUP) |
| || (newChild->isRenderBlock() && newChild->style()->display() == TABLE_CAPTION) |
| || newChild->isTableSection() |
| || newChild->isTableRow() |
| || newChild->isTableCell()) { |
| // Insert into the anonymous table. |
| anonymousChild->addChild(newChild, beforeChild); |
| return; |
| } |
| |
| // Go on to insert before the anonymous table. |
| beforeChild = anonymousChild; |
| } |
| |
| // Check for a spanning element in columns. |
| RenderBlock* columnsBlockAncestor = columnsBlockForSpanningElement(newChild); |
| if (columnsBlockAncestor) { |
| // We are placing a column-span element inside a block. |
| RenderBlock* newBox = createAnonymousColumnSpanBlock(); |
| |
| if (columnsBlockAncestor != this) { |
| // We are nested inside a multi-column element and are being split by the span. We have to break up |
| // our block into continuations. |
| RenderBoxModelObject* oldContinuation = continuation(); |
| setContinuation(newBox); |
| |
| // Someone may have put a <p> inside a <q>, causing a split. When this happens, the :after content |
| // has to move into the inline continuation. Call updateBeforeAfterContent to ensure that our :after |
| // content gets properly destroyed. |
| bool isLastChild = (beforeChild == lastChild()); |
| if (document()->usesBeforeAfterRules()) |
| children()->updateBeforeAfterContent(this, AFTER); |
| if (isLastChild && beforeChild != lastChild()) |
| beforeChild = 0; // We destroyed the last child, so now we need to update our insertion |
| // point to be 0. It's just a straight append now. |
| |
| splitFlow(beforeChild, newBox, newChild, oldContinuation); |
| return; |
| } |
| |
| // We have to perform a split of this block's children. This involves creating an anonymous block box to hold |
| // the column-spanning |newChild|. We take all of the children from before |newChild| and put them into |
| // one anonymous columns block, and all of the children after |newChild| go into another anonymous block. |
| makeChildrenAnonymousColumnBlocks(beforeChild, newBox, newChild); |
| return; |
| } |
| |
| bool madeBoxesNonInline = false; |
| |
| // A block has to either have all of its children inline, or all of its children as blocks. |
| // So, if our children are currently inline and a block child has to be inserted, we move all our |
| // inline children into anonymous block boxes. |
| if (childrenInline() && !newChild->isInline() && !newChild->isFloatingOrPositioned()) { |
| // This is a block with inline content. Wrap the inline content in anonymous blocks. |
| makeChildrenNonInline(beforeChild); |
| madeBoxesNonInline = true; |
| |
| if (beforeChild && beforeChild->parent() != this) { |
| beforeChild = beforeChild->parent(); |
| ASSERT(beforeChild->isAnonymousBlock()); |
| ASSERT(beforeChild->parent() == this); |
| } |
| } else if (!childrenInline() && (newChild->isFloatingOrPositioned() || newChild->isInline())) { |
| // If we're inserting an inline child but all of our children are blocks, then we have to make sure |
| // it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise |
| // a new one is created and inserted into our list of children in the appropriate position. |
| RenderObject* afterChild = beforeChild ? beforeChild->previousSibling() : lastChild(); |
| |
| if (afterChild && afterChild->isAnonymousBlock()) { |
| afterChild->addChild(newChild); |
| return; |
| } |
| |
| if (newChild->isInline()) { |
| // No suitable existing anonymous box - create a new one. |
| RenderBlock* newBox = createAnonymousBlock(); |
| RenderBox::addChild(newBox, beforeChild); |
| newBox->addChild(newChild); |
| return; |
| } |
| } |
| |
| RenderBox::addChild(newChild, beforeChild); |
| |
| if (madeBoxesNonInline && parent() && isAnonymousBlock() && parent()->isRenderBlock()) |
| toRenderBlock(parent())->removeLeftoverAnonymousBlock(this); |
| // this object may be dead here |
| } |
| |
| void RenderBlock::addChild(RenderObject* newChild, RenderObject* beforeChild) |
| { |
| if (continuation() && !isAnonymousBlock()) |
| return addChildToContinuation(newChild, beforeChild); |
| return addChildIgnoringContinuation(newChild, beforeChild); |
| } |
| |
| void RenderBlock::addChildIgnoringContinuation(RenderObject* newChild, RenderObject* beforeChild) |
| { |
| if (!isAnonymousBlock() && firstChild() && (firstChild()->isAnonymousColumnsBlock() || firstChild()->isAnonymousColumnSpanBlock())) |
| return addChildToAnonymousColumnBlocks(newChild, beforeChild); |
| return addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); |
| } |
| |
| static void getInlineRun(RenderObject* start, RenderObject* boundary, |
| RenderObject*& inlineRunStart, |
| RenderObject*& inlineRunEnd) |
| { |
| // Beginning at |start| we find the largest contiguous run of inlines that |
| // we can. We denote the run with start and end points, |inlineRunStart| |
| // and |inlineRunEnd|. Note that these two values may be the same if |
| // we encounter only one inline. |
| // |
| // We skip any non-inlines we encounter as long as we haven't found any |
| // inlines yet. |
| // |
| // |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary| |
| // is inline or not, we will not include it in a run with inlines before it. It's as though we encountered |
| // a non-inline. |
| |
| // Start by skipping as many non-inlines as we can. |
| RenderObject * curr = start; |
| bool sawInline; |
| do { |
| while (curr && !(curr->isInline() || curr->isFloatingOrPositioned())) |
| curr = curr->nextSibling(); |
| |
| inlineRunStart = inlineRunEnd = curr; |
| |
| if (!curr) |
| return; // No more inline children to be found. |
| |
| sawInline = curr->isInline(); |
| |
| curr = curr->nextSibling(); |
| while (curr && (curr->isInline() || curr->isFloatingOrPositioned()) && (curr != boundary)) { |
| inlineRunEnd = curr; |
| if (curr->isInline()) |
| sawInline = true; |
| curr = curr->nextSibling(); |
| } |
| } while (!sawInline); |
| } |
| |
| void RenderBlock::deleteLineBoxTree() |
| { |
| m_lineBoxes.deleteLineBoxTree(renderArena()); |
| } |
| |
| RootInlineBox* RenderBlock::createRootInlineBox() |
| { |
| return new (renderArena()) RootInlineBox(this); |
| } |
| |
| RootInlineBox* RenderBlock::createAndAppendRootInlineBox() |
| { |
| RootInlineBox* rootBox = createRootInlineBox(); |
| m_lineBoxes.appendLineBox(rootBox); |
| return rootBox; |
| } |
| |
| void RenderBlock::moveChildTo(RenderBlock* to, RenderObject* child, RenderObject* beforeChild, bool fullRemoveInsert) |
| { |
| ASSERT(this == child->parent()); |
| ASSERT(!beforeChild || to == beforeChild->parent()); |
| to->children()->insertChildNode(to, children()->removeChildNode(this, child, fullRemoveInsert), beforeChild, fullRemoveInsert); |
| } |
| |
| void RenderBlock::moveChildrenTo(RenderBlock* to, RenderObject* startChild, RenderObject* endChild, RenderObject* beforeChild, bool fullRemoveInsert) |
| { |
| ASSERT(!beforeChild || to == beforeChild->parent()); |
| RenderObject* nextChild = startChild; |
| while (nextChild && nextChild != endChild) { |
| RenderObject* child = nextChild; |
| nextChild = child->nextSibling(); |
| to->children()->insertChildNode(to, children()->removeChildNode(this, child, fullRemoveInsert), beforeChild, fullRemoveInsert); |
| if (child == endChild) |
| return; |
| } |
| } |
| |
| void RenderBlock::makeChildrenNonInline(RenderObject *insertionPoint) |
| { |
| // makeChildrenNonInline takes a block whose children are *all* inline and it |
| // makes sure that inline children are coalesced under anonymous |
| // blocks. If |insertionPoint| is defined, then it represents the insertion point for |
| // the new block child that is causing us to have to wrap all the inlines. This |
| // means that we cannot coalesce inlines before |insertionPoint| with inlines following |
| // |insertionPoint|, because the new child is going to be inserted in between the inlines, |
| // splitting them. |
| ASSERT(isInlineBlockOrInlineTable() || !isInline()); |
| ASSERT(!insertionPoint || insertionPoint->parent() == this); |
| |
| setChildrenInline(false); |
| |
| RenderObject *child = firstChild(); |
| if (!child) |
| return; |
| |
| deleteLineBoxTree(); |
| |
| while (child) { |
| RenderObject *inlineRunStart, *inlineRunEnd; |
| getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd); |
| |
| if (!inlineRunStart) |
| break; |
| |
| child = inlineRunEnd->nextSibling(); |
| |
| RenderBlock* block = createAnonymousBlock(); |
| children()->insertChildNode(this, block, inlineRunStart); |
| moveChildrenTo(block, inlineRunStart, child); |
| } |
| |
| #ifndef NDEBUG |
| for (RenderObject *c = firstChild(); c; c = c->nextSibling()) |
| ASSERT(!c->isInline()); |
| #endif |
| |
| repaint(); |
| } |
| |
| void RenderBlock::removeLeftoverAnonymousBlock(RenderBlock* child) |
| { |
| ASSERT(child->isAnonymousBlock()); |
| ASSERT(!child->childrenInline()); |
| |
| if (child->continuation() || (child->firstChild() && (child->isAnonymousColumnSpanBlock() || child->isAnonymousColumnsBlock()))) |
| return; |
| |
| RenderObject* firstAnChild = child->m_children.firstChild(); |
| RenderObject* lastAnChild = child->m_children.lastChild(); |
| if (firstAnChild) { |
| RenderObject* o = firstAnChild; |
| while (o) { |
| o->setParent(this); |
| o = o->nextSibling(); |
| } |
| firstAnChild->setPreviousSibling(child->previousSibling()); |
| lastAnChild->setNextSibling(child->nextSibling()); |
| if (child->previousSibling()) |
| child->previousSibling()->setNextSibling(firstAnChild); |
| if (child->nextSibling()) |
| child->nextSibling()->setPreviousSibling(lastAnChild); |
| |
| if (child == m_children.firstChild()) |
| m_children.setFirstChild(firstAnChild); |
| if (child == m_children.lastChild()) |
| m_children.setLastChild(lastAnChild); |
| } else { |
| if (child == m_children.firstChild()) |
| m_children.setFirstChild(child->nextSibling()); |
| if (child == m_children.lastChild()) |
| m_children.setLastChild(child->previousSibling()); |
| |
| if (child->previousSibling()) |
| child->previousSibling()->setNextSibling(child->nextSibling()); |
| if (child->nextSibling()) |
| child->nextSibling()->setPreviousSibling(child->previousSibling()); |
| } |
| child->setParent(0); |
| child->setPreviousSibling(0); |
| child->setNextSibling(0); |
| |
| child->children()->setFirstChild(0); |
| child->m_next = 0; |
| |
| child->destroy(); |
| } |
| |
| static bool canMergeContiguousAnonymousBlocks(RenderObject* oldChild, RenderObject* prev, RenderObject* next) |
| { |
| if (oldChild->documentBeingDestroyed() || oldChild->isInline() || oldChild->virtualContinuation()) |
| return false; |
| |
| if (oldChild->parent() && oldChild->parent()->isDetails()) |
| return false; |
| |
| if ((prev && (!prev->isAnonymousBlock() || toRenderBlock(prev)->continuation() || toRenderBlock(prev)->beingDestroyed())) |
| || (next && (!next->isAnonymousBlock() || toRenderBlock(next)->continuation() || toRenderBlock(next)->beingDestroyed()))) |
| return false; |
| |
| // FIXME: This check isn't required when inline run-ins can't be split into continuations. |
| if (prev && prev->firstChild() && prev->firstChild()->isInline() && prev->firstChild()->isRunIn()) |
| return false; |
| |
| if ((prev && (prev->isRubyRun() || prev->isRubyBase())) |
| || (next && (next->isRubyRun() || next->isRubyBase()))) |
| return false; |
| |
| if (!prev || !next) |
| return true; |
| |
| // Make sure the types of the anonymous blocks match up. |
| return prev->isAnonymousColumnsBlock() == next->isAnonymousColumnsBlock() |
| && prev->isAnonymousColumnSpanBlock() == next->isAnonymousColumnSpanBlock(); |
| } |
| |
| void RenderBlock::removeChild(RenderObject* oldChild) |
| { |
| // If this child is a block, and if our previous and next siblings are |
| // both anonymous blocks with inline content, then we can go ahead and |
| // fold the inline content back together. |
| RenderObject* prev = oldChild->previousSibling(); |
| RenderObject* next = oldChild->nextSibling(); |
| bool canMergeAnonymousBlocks = canMergeContiguousAnonymousBlocks(oldChild, prev, next); |
| if (canMergeAnonymousBlocks && prev && next) { |
| prev->setNeedsLayoutAndPrefWidthsRecalc(); |
| RenderBlock* nextBlock = toRenderBlock(next); |
| RenderBlock* prevBlock = toRenderBlock(prev); |
| |
| if (prev->childrenInline() != next->childrenInline()) { |
| RenderBlock* inlineChildrenBlock = prev->childrenInline() ? prevBlock : nextBlock; |
| RenderBlock* blockChildrenBlock = prev->childrenInline() ? nextBlock : prevBlock; |
| |
| // Place the inline children block inside of the block children block instead of deleting it. |
| // In order to reuse it, we have to reset it to just be a generic anonymous block. Make sure |
| // to clear out inherited column properties by just making a new style, and to also clear the |
| // column span flag if it is set. |
| ASSERT(!inlineChildrenBlock->continuation()); |
| RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style()); |
| children()->removeChildNode(this, inlineChildrenBlock, inlineChildrenBlock->hasLayer()); |
| inlineChildrenBlock->setStyle(newStyle); |
| |
| // Now just put the inlineChildrenBlock inside the blockChildrenBlock. |
| blockChildrenBlock->children()->insertChildNode(blockChildrenBlock, inlineChildrenBlock, prev == inlineChildrenBlock ? blockChildrenBlock->firstChild() : 0, |
| inlineChildrenBlock->hasLayer() || blockChildrenBlock->hasLayer()); |
| next->setNeedsLayoutAndPrefWidthsRecalc(); |
| |
| // inlineChildrenBlock got reparented to blockChildrenBlock, so it is no longer a child |
| // of "this". we null out prev or next so that is not used later in the function. |
| if (inlineChildrenBlock == prevBlock) |
| prev = 0; |
| else |
| next = 0; |
| } else { |
| // Take all the children out of the |next| block and put them in |
| // the |prev| block. |
| nextBlock->moveAllChildrenTo(prevBlock, nextBlock->hasLayer() || prevBlock->hasLayer()); |
| |
| // Delete the now-empty block's lines and nuke it. |
| nextBlock->deleteLineBoxTree(); |
| nextBlock->destroy(); |
| next = 0; |
| } |
| } |
| |
| RenderBox::removeChild(oldChild); |
| |
| RenderObject* child = prev ? prev : next; |
| if (canMergeAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && !isFlexibleBox()) { |
| // The removal has knocked us down to containing only a single anonymous |
| // box. We can go ahead and pull the content right back up into our |
| // box. |
| setNeedsLayoutAndPrefWidthsRecalc(); |
| setChildrenInline(child->childrenInline()); |
| RenderBlock* anonBlock = toRenderBlock(children()->removeChildNode(this, child, child->hasLayer())); |
| anonBlock->moveAllChildrenTo(this, child->hasLayer()); |
| // Delete the now-empty block's lines and nuke it. |
| anonBlock->deleteLineBoxTree(); |
| anonBlock->destroy(); |
| } |
| |
| if (!firstChild() && !documentBeingDestroyed()) { |
| // If this was our last child be sure to clear out our line boxes. |
| if (childrenInline()) |
| lineBoxes()->deleteLineBoxes(renderArena()); |
| } |
| } |
| |
| bool RenderBlock::isSelfCollapsingBlock() const |
| { |
| // We are not self-collapsing if we |
| // (a) have a non-zero height according to layout (an optimization to avoid wasting time) |
| // (b) are a table, |
| // (c) have border/padding, |
| // (d) have a min-height |
| // (e) have specified that one of our margins can't collapse using a CSS extension |
| if (logicalHeight() > 0 |
| || isTable() || borderAndPaddingLogicalHeight() |
| || style()->logicalMinHeight().isPositive() |
| || style()->marginBeforeCollapse() == MSEPARATE || style()->marginAfterCollapse() == MSEPARATE) |
| return false; |
| |
| Length logicalHeightLength = style()->logicalHeight(); |
| bool hasAutoHeight = logicalHeightLength.isAuto(); |
| if (logicalHeightLength.isPercent() && !document()->inQuirksMode()) { |
| hasAutoHeight = true; |
| for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) { |
| if (cb->style()->logicalHeight().isFixed() || cb->isTableCell()) |
| hasAutoHeight = false; |
| } |
| } |
| |
| // If the height is 0 or auto, then whether or not we are a self-collapsing block depends |
| // on whether we have content that is all self-collapsing or not. |
| if (hasAutoHeight || ((logicalHeightLength.isFixed() || logicalHeightLength.isPercent()) && logicalHeightLength.isZero())) { |
| // If the block has inline children, see if we generated any line boxes. If we have any |
| // line boxes, then we can't be self-collapsing, since we have content. |
| if (childrenInline()) |
| return !firstLineBox(); |
| |
| // Whether or not we collapse is dependent on whether all our normal flow children |
| // are also self-collapsing. |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isFloatingOrPositioned()) |
| continue; |
| if (!child->isSelfCollapsingBlock()) |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| void RenderBlock::startDelayUpdateScrollInfo() |
| { |
| if (gDelayUpdateScrollInfo == 0) { |
| ASSERT(!gDelayedUpdateScrollInfoSet); |
| gDelayedUpdateScrollInfoSet = new DelayedUpdateScrollInfoSet; |
| } |
| ASSERT(gDelayedUpdateScrollInfoSet); |
| ++gDelayUpdateScrollInfo; |
| } |
| |
| void RenderBlock::finishDelayUpdateScrollInfo() |
| { |
| --gDelayUpdateScrollInfo; |
| ASSERT(gDelayUpdateScrollInfo >= 0); |
| if (gDelayUpdateScrollInfo == 0) { |
| ASSERT(gDelayedUpdateScrollInfoSet); |
| |
| OwnPtr<DelayedUpdateScrollInfoSet> infoSet(gDelayedUpdateScrollInfoSet); |
| gDelayedUpdateScrollInfoSet = 0; |
| |
| for (DelayedUpdateScrollInfoSet::iterator it = infoSet->begin(); it != infoSet->end(); ++it) { |
| RenderBlock* block = *it; |
| if (block->hasOverflowClip()) { |
| block->layer()->updateScrollInfoAfterLayout(); |
| } |
| } |
| } |
| } |
| |
| void RenderBlock::updateScrollInfoAfterLayout() |
| { |
| if (hasOverflowClip()) { |
| if (gDelayUpdateScrollInfo) |
| gDelayedUpdateScrollInfoSet->add(this); |
| else |
| layer()->updateScrollInfoAfterLayout(); |
| } |
| } |
| |
| void RenderBlock::layout() |
| { |
| // Update our first letter info now. |
| updateFirstLetter(); |
| |
| // Table cells call layoutBlock directly, so don't add any logic here. Put code into |
| // layoutBlock(). |
| layoutBlock(false); |
| |
| // It's safe to check for control clip here, since controls can never be table cells. |
| // If we have a lightweight clip, there can never be any overflow from children. |
| if (hasControlClip() && m_overflow) |
| clearLayoutOverflow(); |
| } |
| |
| void RenderBlock::layoutBlock(bool relayoutChildren, int pageLogicalHeight) |
| { |
| ASSERT(needsLayout()); |
| |
| if (isInline() && !isInlineBlockOrInlineTable()) // Inline <form>s inside various table elements can |
| return; // cause us to come in here. Just bail. |
| |
| if (!relayoutChildren && simplifiedLayout()) |
| return; |
| |
| LayoutRepainter repainter(*this, m_everHadLayout && checkForRepaintDuringLayout()); |
| |
| int oldWidth = logicalWidth(); |
| int oldColumnWidth = desiredColumnWidth(); |
| |
| computeLogicalWidth(); |
| calcColumnWidth(); |
| |
| m_overflow.clear(); |
| |
| if (oldWidth != logicalWidth() || oldColumnWidth != desiredColumnWidth()) |
| relayoutChildren = true; |
| |
| #ifdef ANDROID_LAYOUT |
| checkAndSetRelayoutChildren(&relayoutChildren); |
| #endif |
| |
| clearFloats(); |
| |
| int previousHeight = logicalHeight(); |
| setLogicalHeight(0); |
| bool hasSpecifiedPageLogicalHeight = false; |
| bool pageLogicalHeightChanged = false; |
| ColumnInfo* colInfo = columnInfo(); |
| if (hasColumns()) { |
| if (!pageLogicalHeight) { |
| // We need to go ahead and set our explicit page height if one exists, so that we can |
| // avoid doing two layout passes. |
| computeLogicalHeight(); |
| int columnHeight = contentLogicalHeight(); |
| if (columnHeight > 0) { |
| pageLogicalHeight = columnHeight; |
| hasSpecifiedPageLogicalHeight = true; |
| } |
| setLogicalHeight(0); |
| } |
| if (colInfo->columnHeight() != pageLogicalHeight && m_everHadLayout) { |
| colInfo->setColumnHeight(pageLogicalHeight); |
| pageLogicalHeightChanged = true; |
| } |
| |
| if (!hasSpecifiedPageLogicalHeight && !pageLogicalHeight) |
| colInfo->clearForcedBreaks(); |
| } |
| |
| LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasColumns() || hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode(), pageLogicalHeight, pageLogicalHeightChanged, colInfo); |
| |
| // We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track |
| // our current maximal positive and negative margins. These values are used when we |
| // are collapsed with adjacent blocks, so for example, if you have block A and B |
| // collapsing together, then you'd take the maximal positive margin from both A and B |
| // and subtract it from the maximal negative margin from both A and B to get the |
| // true collapsed margin. This algorithm is recursive, so when we finish layout() |
| // our block knows its current maximal positive/negative values. |
| // |
| // Start out by setting our margin values to our current margins. Table cells have |
| // no margins, so we don't fill in the values for table cells. |
| bool isCell = isTableCell(); |
| if (!isCell) { |
| initMaxMarginValues(); |
| |
| setMarginBeforeQuirk(style()->marginBefore().quirk()); |
| setMarginAfterQuirk(style()->marginAfter().quirk()); |
| |
| Node* n = node(); |
| if (n && n->hasTagName(formTag) && static_cast<HTMLFormElement*>(n)->isMalformed()) { |
| // See if this form is malformed (i.e., unclosed). If so, don't give the form |
| // a bottom margin. |
| setMaxMarginAfterValues(0, 0); |
| } |
| |
| setPaginationStrut(0); |
| } |
| |
| // For overflow:scroll blocks, ensure we have both scrollbars in place always. |
| if (scrollsOverflow()) { |
| if (style()->overflowX() == OSCROLL) |
| layer()->setHasHorizontalScrollbar(true); |
| if (style()->overflowY() == OSCROLL) |
| layer()->setHasVerticalScrollbar(true); |
| } |
| |
| int repaintLogicalTop = 0; |
| int repaintLogicalBottom = 0; |
| int maxFloatLogicalBottom = 0; |
| if (!firstChild() && !isAnonymousBlock()) |
| setChildrenInline(true); |
| if (childrenInline()) |
| layoutInlineChildren(relayoutChildren, repaintLogicalTop, repaintLogicalBottom); |
| else |
| layoutBlockChildren(relayoutChildren, maxFloatLogicalBottom); |
| |
| // Expand our intrinsic height to encompass floats. |
| int toAdd = borderAfter() + paddingAfter() + scrollbarLogicalHeight(); |
| if (lowestFloatLogicalBottom() > (logicalHeight() - toAdd) && expandsToEncloseOverhangingFloats()) |
| setLogicalHeight(lowestFloatLogicalBottom() + toAdd); |
| |
| if (layoutColumns(hasSpecifiedPageLogicalHeight, pageLogicalHeight, statePusher)) |
| return; |
| |
| // Calculate our new height. |
| int oldHeight = logicalHeight(); |
| int oldClientAfterEdge = clientLogicalBottom(); |
| computeLogicalHeight(); |
| int newHeight = logicalHeight(); |
| if (oldHeight != newHeight) { |
| if (oldHeight > newHeight && maxFloatLogicalBottom > newHeight && !childrenInline()) { |
| // One of our children's floats may have become an overhanging float for us. We need to look for it. |
| for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { |
| if (child->isBlockFlow() && !child->isFloatingOrPositioned()) { |
| RenderBlock* block = toRenderBlock(child); |
| if (block->lowestFloatLogicalBottom() + block->logicalTop() > newHeight) |
| addOverhangingFloats(block, -block->logicalLeft(), -block->logicalTop(), false); |
| } |
| } |
| } |
| } |
| |
| if (previousHeight != newHeight) |
| relayoutChildren = true; |
| |
| layoutPositionedObjects(relayoutChildren || isRoot()); |
| |
| // Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway). |
| computeOverflow(oldClientAfterEdge); |
| |
| statePusher.pop(); |
| |
| if (view()->layoutState()->m_pageLogicalHeight) |
| setPageLogicalOffset(view()->layoutState()->pageLogicalOffset(logicalTop())); |
| |
| updateLayerTransform(); |
| |
| // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
| // we overflow or not. |
| updateScrollInfoAfterLayout(); |
| |
| // Repaint with our new bounds if they are different from our old bounds. |
| bool didFullRepaint = repainter.repaintAfterLayout(); |
| if (!didFullRepaint && repaintLogicalTop != repaintLogicalBottom && (style()->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) { |
| // FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines |
| // it had to lay out. We wouldn't need the hasOverflowClip() hack in that case either. |
| int repaintLogicalLeft = logicalLeftVisualOverflow(); |
| int repaintLogicalRight = logicalRightVisualOverflow(); |
| if (hasOverflowClip()) { |
| // If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow. |
| // Note the old code did this as well but even for overflow:visible. The addition of hasOverflowClip() at least tightens up the hack a bit. |
| // layoutInlineChildren should be patched to compute the entire repaint rect. |
| repaintLogicalLeft = min(repaintLogicalLeft, logicalLeftLayoutOverflow()); |
| repaintLogicalRight = max(repaintLogicalRight, logicalRightLayoutOverflow()); |
| } |
| |
| IntRect repaintRect; |
| if (isHorizontalWritingMode()) |
| repaintRect = IntRect(repaintLogicalLeft, repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop); |
| else |
| repaintRect = IntRect(repaintLogicalTop, repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft); |
| |
| // The repaint rect may be split across columns, in which case adjustRectForColumns() will return the union. |
| adjustRectForColumns(repaintRect); |
| |
| repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline)); |
| |
| if (hasOverflowClip()) { |
| // Adjust repaint rect for scroll offset |
| repaintRect.move(-layer()->scrolledContentOffset()); |
| |
| // Don't allow this rect to spill out of our overflow box. |
| repaintRect.intersect(IntRect(0, 0, width(), height())); |
| } |
| |
| // Make sure the rect is still non-empty after intersecting for overflow above |
| if (!repaintRect.isEmpty()) { |
| repaintRectangle(repaintRect); // We need to do a partial repaint of our content. |
| if (hasReflection()) |
| repaintRectangle(reflectedRect(repaintRect)); |
| } |
| } |
| setNeedsLayout(false); |
| } |
| |
| void RenderBlock::addOverflowFromChildren() |
| { |
| if (!hasColumns()) { |
| if (childrenInline()) |
| addOverflowFromInlineChildren(); |
| else |
| addOverflowFromBlockChildren(); |
| } else { |
| ColumnInfo* colInfo = columnInfo(); |
| if (columnCount(colInfo)) { |
| IntRect lastRect = columnRectAt(colInfo, columnCount(colInfo) - 1); |
| if (isHorizontalWritingMode()) { |
| int overflowLeft = !style()->isLeftToRightDirection() ? min(0, lastRect.x()) : 0; |
| int overflowRight = style()->isLeftToRightDirection() ? max(width(), lastRect.maxX()) : 0; |
| int overflowHeight = borderBefore() + paddingBefore() + colInfo->columnHeight(); |
| addLayoutOverflow(IntRect(overflowLeft, 0, overflowRight - overflowLeft, overflowHeight)); |
| if (!hasOverflowClip()) |
| addVisualOverflow(IntRect(overflowLeft, 0, overflowRight - overflowLeft, overflowHeight)); |
| } else { |
| IntRect lastRect = columnRectAt(colInfo, columnCount(colInfo) - 1); |
| int overflowTop = !style()->isLeftToRightDirection() ? min(0, lastRect.y()) : 0; |
| int overflowBottom = style()->isLeftToRightDirection() ? max(height(), lastRect.maxY()) : 0; |
| int overflowWidth = borderBefore() + paddingBefore() + colInfo->columnHeight(); |
| addLayoutOverflow(IntRect(0, overflowTop, overflowWidth, overflowBottom - overflowTop)); |
| if (!hasOverflowClip()) |
| addVisualOverflow(IntRect(0, overflowTop, overflowWidth, overflowBottom - overflowTop)); |
| } |
| } |
| } |
| } |
| |
| void RenderBlock::computeOverflow(int oldClientAfterEdge, bool recomputeFloats) |
| { |
| // Add overflow from children. |
| addOverflowFromChildren(); |
| |
| if (!hasColumns() && (recomputeFloats || isRoot() || expandsToEncloseOverhangingFloats() || hasSelfPaintingLayer())) |
| addOverflowFromFloats(); |
| |
| // Add in the overflow from positioned objects. |
| addOverflowFromPositionedObjects(); |
| |
| if (hasOverflowClip()) { |
| // When we have overflow clip, propagate the original spillout since it will include collapsed bottom margins |
| // and bottom padding. Set the axis we don't care about to be 1, since we want this overflow to always |
| // be considered reachable. |
| IntRect clientRect(clientBoxRect()); |
| IntRect rectToApply; |
| if (isHorizontalWritingMode()) |
| rectToApply = IntRect(clientRect.x(), clientRect.y(), 1, max(0, oldClientAfterEdge - clientRect.y())); |
| else |
| rectToApply = IntRect(clientRect.x(), clientRect.y(), max(0, oldClientAfterEdge - clientRect.x()), 1); |
| addLayoutOverflow(rectToApply); |
| } |
| |
| // Add visual overflow from box-shadow and reflections. |
| addShadowOverflow(); |
| } |
| |
| void RenderBlock::addOverflowFromBlockChildren() |
| { |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (!child->isFloatingOrPositioned()) |
| addOverflowFromChild(child); |
| } |
| } |
| |
| void RenderBlock::addOverflowFromFloats() |
| { |
| if (!m_floatingObjects) |
| return; |
| |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* r = *it; |
| if (r->m_isDescendant) |
| addOverflowFromChild(r->m_renderer, IntSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r))); |
| } |
| return; |
| } |
| |
| void RenderBlock::addOverflowFromPositionedObjects() |
| { |
| if (!m_positionedObjects) |
| return; |
| |
| RenderBox* positionedObject; |
| Iterator end = m_positionedObjects->end(); |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| positionedObject = *it; |
| |
| // Fixed positioned elements don't contribute to layout overflow, since they don't scroll with the content. |
| if (positionedObject->style()->position() != FixedPosition) |
| addOverflowFromChild(positionedObject); |
| } |
| } |
| |
| bool RenderBlock::expandsToEncloseOverhangingFloats() const |
| { |
| return isInlineBlockOrInlineTable() || isFloatingOrPositioned() || hasOverflowClip() || (parent() && parent()->isFlexibleBox()) |
| || hasColumns() || isTableCell() || isFieldset() || isWritingModeRoot(); |
| } |
| |
| void RenderBlock::adjustPositionedBlock(RenderBox* child, const MarginInfo& marginInfo) |
| { |
| bool isHorizontal = isHorizontalWritingMode(); |
| bool hasStaticBlockPosition = child->style()->hasStaticBlockPosition(isHorizontal); |
| RenderLayer* childLayer = child->layer(); |
| |
| childLayer->setStaticInlinePosition(borderAndPaddingStart()); |
| |
| int logicalTop = logicalHeight(); |
| if (!marginInfo.canCollapseWithMarginBefore()) { |
| child->computeBlockDirectionMargins(this); |
| int marginBefore = marginBeforeForChild(child); |
| int collapsedBeforePos = marginInfo.positiveMargin(); |
| int collapsedBeforeNeg = marginInfo.negativeMargin(); |
| if (marginBefore > 0) { |
| if (marginBefore > collapsedBeforePos) |
| collapsedBeforePos = marginBefore; |
| } else { |
| if (-marginBefore > collapsedBeforeNeg) |
| collapsedBeforeNeg = -marginBefore; |
| } |
| logicalTop += (collapsedBeforePos - collapsedBeforeNeg) - marginBefore; |
| } |
| if (childLayer->staticBlockPosition() != logicalTop) { |
| childLayer->setStaticBlockPosition(logicalTop); |
| if (hasStaticBlockPosition) |
| child->setChildNeedsLayout(true, false); |
| } |
| } |
| |
| void RenderBlock::adjustFloatingBlock(const MarginInfo& marginInfo) |
| { |
| // The float should be positioned taking into account the bottom margin |
| // of the previous flow. We add that margin into the height, get the |
| // float positioned properly, and then subtract the margin out of the |
| // height again. In the case of self-collapsing blocks, we always just |
| // use the top margins, since the self-collapsing block collapsed its |
| // own bottom margin into its top margin. |
| // |
| // Note also that the previous flow may collapse its margin into the top of |
| // our block. If this is the case, then we do not add the margin in to our |
| // height when computing the position of the float. This condition can be tested |
| // for by simply calling canCollapseWithMarginBefore. See |
| // http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for |
| // an example of this scenario. |
| int marginOffset = marginInfo.canCollapseWithMarginBefore() ? 0 : marginInfo.margin(); |
| setLogicalHeight(logicalHeight() + marginOffset); |
| positionNewFloats(); |
| setLogicalHeight(logicalHeight() - marginOffset); |
| } |
| |
| bool RenderBlock::handleSpecialChild(RenderBox* child, const MarginInfo& marginInfo) |
| { |
| // Handle in the given order |
| return handlePositionedChild(child, marginInfo) |
| || handleFloatingChild(child, marginInfo) |
| || handleRunInChild(child); |
| } |
| |
| |
| bool RenderBlock::handlePositionedChild(RenderBox* child, const MarginInfo& marginInfo) |
| { |
| if (child->isPositioned()) { |
| child->containingBlock()->insertPositionedObject(child); |
| adjustPositionedBlock(child, marginInfo); |
| return true; |
| } |
| return false; |
| } |
| |
| bool RenderBlock::handleFloatingChild(RenderBox* child, const MarginInfo& marginInfo) |
| { |
| if (child->isFloating()) { |
| insertFloatingObject(child); |
| adjustFloatingBlock(marginInfo); |
| return true; |
| } |
| return false; |
| } |
| |
| bool RenderBlock::handleRunInChild(RenderBox* child) |
| { |
| // See if we have a run-in element with inline children. If the |
| // children aren't inline, then just treat the run-in as a normal |
| // block. |
| if (!child->isRunIn() || !child->childrenInline()) |
| return false; |
| // FIXME: We don't handle non-block elements with run-in for now. |
| if (!child->isRenderBlock()) |
| return false; |
| |
| // Get the next non-positioned/non-floating RenderBlock. |
| RenderBlock* blockRunIn = toRenderBlock(child); |
| RenderObject* curr = blockRunIn->nextSibling(); |
| while (curr && curr->isFloatingOrPositioned()) |
| curr = curr->nextSibling(); |
| |
| if (!curr || !curr->isRenderBlock() || !curr->childrenInline() || curr->isRunIn() || curr->isAnonymous()) |
| return false; |
| |
| RenderBlock* currBlock = toRenderBlock(curr); |
| |
| // Remove the old child. |
| children()->removeChildNode(this, blockRunIn); |
| |
| // Create an inline. |
| Node* runInNode = blockRunIn->node(); |
| RenderInline* inlineRunIn = new (renderArena()) RenderInline(runInNode ? runInNode : document()); |
| inlineRunIn->setStyle(blockRunIn->style()); |
| |
| bool runInIsGenerated = child->style()->styleType() == BEFORE || child->style()->styleType() == AFTER; |
| |
| // Move the nodes from the old child to the new child, but skip any :before/:after content. It has already |
| // been regenerated by the new inline. |
| for (RenderObject* runInChild = blockRunIn->firstChild(); runInChild;) { |
| RenderObject* nextSibling = runInChild->nextSibling(); |
| if (runInIsGenerated || (runInChild->style()->styleType() != BEFORE && runInChild->style()->styleType() != AFTER)) { |
| blockRunIn->children()->removeChildNode(blockRunIn, runInChild, false); |
| inlineRunIn->addChild(runInChild); // Use addChild instead of appendChildNode since it handles correct placement of the children relative to :after-generated content. |
| } |
| runInChild = nextSibling; |
| } |
| |
| // Now insert the new child under |currBlock|. |
| currBlock->children()->insertChildNode(currBlock, inlineRunIn, currBlock->firstChild()); |
| |
| // If the run-in had an element, we need to set the new renderer. |
| if (runInNode) |
| runInNode->setRenderer(inlineRunIn); |
| |
| // Destroy the block run-in, which includes deleting its line box tree. |
| blockRunIn->deleteLineBoxTree(); |
| blockRunIn->destroy(); |
| |
| // The block acts like an inline, so just null out its |
| // position. |
| |
| return true; |
| } |
| |
| int RenderBlock::collapseMargins(RenderBox* child, MarginInfo& marginInfo) |
| { |
| // Get the four margin values for the child and cache them. |
| const MarginValues childMargins = marginValuesForChild(child); |
| |
| // Get our max pos and neg top margins. |
| int posTop = childMargins.positiveMarginBefore(); |
| int negTop = childMargins.negativeMarginBefore(); |
| |
| // For self-collapsing blocks, collapse our bottom margins into our |
| // top to get new posTop and negTop values. |
| if (child->isSelfCollapsingBlock()) { |
| posTop = max(posTop, childMargins.positiveMarginAfter()); |
| negTop = max(negTop, childMargins.negativeMarginAfter()); |
| } |
| |
| // See if the top margin is quirky. We only care if this child has |
| // margins that will collapse with us. |
| bool topQuirk = child->isMarginBeforeQuirk() || style()->marginBeforeCollapse() == MDISCARD; |
| |
| if (marginInfo.canCollapseWithMarginBefore()) { |
| // This child is collapsing with the top of the |
| // block. If it has larger margin values, then we need to update |
| // our own maximal values. |
| if (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !topQuirk) |
| setMaxMarginBeforeValues(max(posTop, maxPositiveMarginBefore()), max(negTop, maxNegativeMarginBefore())); |
| |
| // The minute any of the margins involved isn't a quirk, don't |
| // collapse it away, even if the margin is smaller (www.webreference.com |
| // has an example of this, a <dt> with 0.8em author-specified inside |
| // a <dl> inside a <td>. |
| if (!marginInfo.determinedMarginBeforeQuirk() && !topQuirk && (posTop - negTop)) { |
| setMarginBeforeQuirk(false); |
| marginInfo.setDeterminedMarginBeforeQuirk(true); |
| } |
| |
| if (!marginInfo.determinedMarginBeforeQuirk() && topQuirk && !marginBefore()) |
| // We have no top margin and our top child has a quirky margin. |
| // We will pick up this quirky margin and pass it through. |
| // This deals with the <td><div><p> case. |
| // Don't do this for a block that split two inlines though. You do |
| // still apply margins in this case. |
| setMarginBeforeQuirk(true); |
| } |
| |
| if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop)) |
| marginInfo.setMarginBeforeQuirk(topQuirk); |
| |
| int beforeCollapseLogicalTop = logicalHeight(); |
| int logicalTop = beforeCollapseLogicalTop; |
| if (child->isSelfCollapsingBlock()) { |
| // This child has no height. We need to compute our |
| // position before we collapse the child's margins together, |
| // so that we can get an accurate position for the zero-height block. |
| int collapsedBeforePos = max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore()); |
| int collapsedBeforeNeg = max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore()); |
| marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg); |
| |
| // Now collapse the child's margins together, which means examining our |
| // bottom margin values as well. |
| marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter()); |
| marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter()); |
| |
| if (!marginInfo.canCollapseWithMarginBefore()) |
| // We need to make sure that the position of the self-collapsing block |
| // is correct, since it could have overflowing content |
| // that needs to be positioned correctly (e.g., a block that |
| // had a specified height of 0 but that actually had subcontent). |
| logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg; |
| } |
| else { |
| if (child->style()->marginBeforeCollapse() == MSEPARATE) { |
| setLogicalHeight(logicalHeight() + marginInfo.margin() + marginBeforeForChild(child)); |
| logicalTop = logicalHeight(); |
| } |
| else if (!marginInfo.atBeforeSideOfBlock() || |
| (!marginInfo.canCollapseMarginBeforeWithChildren() |
| && (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.marginBeforeQuirk()))) { |
| // We're collapsing with a previous sibling's margins and not |
| // with the top of the block. |
| setLogicalHeight(logicalHeight() + max(marginInfo.positiveMargin(), posTop) - max(marginInfo.negativeMargin(), negTop)); |
| logicalTop = logicalHeight(); |
| } |
| |
| marginInfo.setPositiveMargin(childMargins.positiveMarginAfter()); |
| marginInfo.setNegativeMargin(childMargins.negativeMarginAfter()); |
| |
| if (marginInfo.margin()) |
| marginInfo.setMarginAfterQuirk(child->isMarginAfterQuirk() || style()->marginAfterCollapse() == MDISCARD); |
| } |
| |
| // If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins |
| // collapsed into the page edge. |
| bool paginated = view()->layoutState()->isPaginated(); |
| if (paginated && logicalTop > beforeCollapseLogicalTop) { |
| int oldLogicalTop = logicalTop; |
| logicalTop = min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop)); |
| setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop)); |
| } |
| return logicalTop; |
| } |
| |
| int RenderBlock::clearFloatsIfNeeded(RenderBox* child, MarginInfo& marginInfo, int oldTopPosMargin, int oldTopNegMargin, int yPos) |
| { |
| int heightIncrease = getClearDelta(child, yPos); |
| if (!heightIncrease) |
| return yPos; |
| |
| if (child->isSelfCollapsingBlock()) { |
| // For self-collapsing blocks that clear, they can still collapse their |
| // margins with following siblings. Reset the current margins to represent |
| // the self-collapsing block's margins only. |
| // CSS2.1 states: |
| // "An element that has had clearance applied to it never collapses its top margin with its parent block's bottom margin. |
| // Therefore if we are at the bottom of the block, let's go ahead and reset margins to only include the |
| // self-collapsing block's bottom margin. |
| bool atBottomOfBlock = true; |
| for (RenderBox* curr = child->nextSiblingBox(); curr && atBottomOfBlock; curr = curr->nextSiblingBox()) { |
| if (!curr->isFloatingOrPositioned()) |
| atBottomOfBlock = false; |
| } |
| |
| MarginValues childMargins = marginValuesForChild(child); |
| if (atBottomOfBlock) { |
| marginInfo.setPositiveMargin(childMargins.positiveMarginAfter()); |
| marginInfo.setNegativeMargin(childMargins.negativeMarginAfter()); |
| } else { |
| marginInfo.setPositiveMargin(max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter())); |
| marginInfo.setNegativeMargin(max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter())); |
| } |
| |
| // Adjust our height such that we are ready to be collapsed with subsequent siblings (or the bottom |
| // of the parent block). |
| setLogicalHeight(child->y() - max(0, marginInfo.margin())); |
| } else |
| // Increase our height by the amount we had to clear. |
| setLogicalHeight(height() + heightIncrease); |
| |
| if (marginInfo.canCollapseWithMarginBefore()) { |
| // We can no longer collapse with the top of the block since a clear |
| // occurred. The empty blocks collapse into the cleared block. |
| // FIXME: This isn't quite correct. Need clarification for what to do |
| // if the height the cleared block is offset by is smaller than the |
| // margins involved. |
| setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin); |
| marginInfo.setAtBeforeSideOfBlock(false); |
| } |
| |
| return yPos + heightIncrease; |
| } |
| |
| int RenderBlock::estimateLogicalTopPosition(RenderBox* child, const MarginInfo& marginInfo) |
| { |
| // FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological |
| // relayout if there are intruding floats. |
| int logicalTopEstimate = logicalHeight(); |
| if (!marginInfo.canCollapseWithMarginBefore()) { |
| int childMarginBefore = child->selfNeedsLayout() ? marginBeforeForChild(child) : collapsedMarginBeforeForChild(child); |
| logicalTopEstimate += max(marginInfo.margin(), childMarginBefore); |
| } |
| |
| bool paginated = view()->layoutState()->isPaginated(); |
| |
| // Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current |
| // page. |
| if (paginated && logicalTopEstimate > logicalHeight()) |
| logicalTopEstimate = min(logicalTopEstimate, nextPageLogicalTop(logicalHeight())); |
| |
| logicalTopEstimate += getClearDelta(child, logicalTopEstimate); |
| |
| if (paginated) { |
| // If the object has a page or column break value of "before", then we should shift to the top of the next page. |
| logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate); |
| |
| // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one. |
| logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate); |
| |
| if (!child->selfNeedsLayout() && child->isRenderBlock()) |
| logicalTopEstimate += toRenderBlock(child)->paginationStrut(); |
| } |
| |
| return logicalTopEstimate; |
| } |
| |
| void RenderBlock::determineLogicalLeftPositionForChild(RenderBox* child) |
| { |
| int startPosition = borderStart() + paddingStart(); |
| int totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth(); |
| |
| // Add in our start margin. |
| int childMarginStart = marginStartForChild(child); |
| int newPosition = startPosition + childMarginStart; |
| |
| // Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need |
| // to shift over as necessary to dodge any floats that might get in the way. |
| if (child->avoidsFloats()) { |
| int startOff = style()->isLeftToRightDirection() ? logicalLeftOffsetForLine(logicalHeight(), false) : totalAvailableLogicalWidth - logicalRightOffsetForLine(logicalHeight(), false); |
| if (style()->textAlign() != WEBKIT_CENTER && !child->style()->marginStartUsing(style()).isAuto()) { |
| if (childMarginStart < 0) |
| startOff += childMarginStart; |
| newPosition = max(newPosition, startOff); // Let the float sit in the child's margin if it can fit. |
| } else if (startOff != startPosition) { |
| // The object is shifting to the "end" side of the block. The object might be centered, so we need to |
| // recalculate our inline direction margins. Note that the containing block content |
| // width computation will take into account the delta between |startOff| and |startPosition| |
| // so that we can just pass the content width in directly to the |computeMarginsInContainingBlockInlineDirection| |
| // function. |
| child->computeInlineDirectionMargins(this, availableLogicalWidthForLine(logicalTopForChild(child), false), logicalWidthForChild(child)); |
| newPosition = startOff + marginStartForChild(child); |
| } |
| } |
| |
| setLogicalLeftForChild(child, style()->isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child), ApplyLayoutDelta); |
| } |
| |
| void RenderBlock::setCollapsedBottomMargin(const MarginInfo& marginInfo) |
| { |
| if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) { |
| // Update our max pos/neg bottom margins, since we collapsed our bottom margins |
| // with our children. |
| setMaxMarginAfterValues(max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), max(maxNegativeMarginAfter(), marginInfo.negativeMargin())); |
| |
| if (!marginInfo.marginAfterQuirk()) |
| setMarginAfterQuirk(false); |
| |
| if (marginInfo.marginAfterQuirk() && marginAfter() == 0) |
| // We have no bottom margin and our last child has a quirky margin. |
| // We will pick up this quirky margin and pass it through. |
| // This deals with the <td><div><p> case. |
| setMarginAfterQuirk(true); |
| } |
| } |
| |
| void RenderBlock::handleAfterSideOfBlock(int beforeSide, int afterSide, MarginInfo& marginInfo) |
| { |
| marginInfo.setAtAfterSideOfBlock(true); |
| |
| // If we can't collapse with children then go ahead and add in the bottom margin. |
| if (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore() |
| && (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.marginAfterQuirk())) |
| setLogicalHeight(logicalHeight() + marginInfo.margin()); |
| |
| // Now add in our bottom border/padding. |
| setLogicalHeight(logicalHeight() + afterSide); |
| |
| // Negative margins can cause our height to shrink below our minimal height (border/padding). |
| // If this happens, ensure that the computed height is increased to the minimal height. |
| setLogicalHeight(max(logicalHeight(), beforeSide + afterSide)); |
| |
| // Update our bottom collapsed margin info. |
| setCollapsedBottomMargin(marginInfo); |
| } |
| |
| void RenderBlock::setLogicalLeftForChild(RenderBox* child, int logicalLeft, ApplyLayoutDeltaMode applyDelta) |
| { |
| if (isHorizontalWritingMode()) { |
| if (applyDelta == ApplyLayoutDelta) |
| view()->addLayoutDelta(IntSize(child->x() - logicalLeft, 0)); |
| child->setX(logicalLeft); |
| } else { |
| if (applyDelta == ApplyLayoutDelta) |
| view()->addLayoutDelta(IntSize(0, child->y() - logicalLeft)); |
| child->setY(logicalLeft); |
| } |
| } |
| |
| void RenderBlock::setLogicalTopForChild(RenderBox* child, int logicalTop, ApplyLayoutDeltaMode applyDelta) |
| { |
| if (isHorizontalWritingMode()) { |
| if (applyDelta == ApplyLayoutDelta) |
| view()->addLayoutDelta(IntSize(0, child->y() - logicalTop)); |
| child->setY(logicalTop); |
| } else { |
| if (applyDelta == ApplyLayoutDelta) |
| view()->addLayoutDelta(IntSize(child->x() - logicalTop, 0)); |
| child->setX(logicalTop); |
| } |
| } |
| |
| void RenderBlock::layoutBlockChildren(bool relayoutChildren, int& maxFloatLogicalBottom) |
| { |
| if (gPercentHeightDescendantsMap) { |
| if (HashSet<RenderBox*>* descendants = gPercentHeightDescendantsMap->get(this)) { |
| HashSet<RenderBox*>::iterator end = descendants->end(); |
| for (HashSet<RenderBox*>::iterator it = descendants->begin(); it != end; ++it) { |
| RenderBox* box = *it; |
| while (box != this) { |
| if (box->normalChildNeedsLayout()) |
| break; |
| box->setChildNeedsLayout(true, false); |
| box = box->containingBlock(); |
| ASSERT(box); |
| if (!box) |
| break; |
| } |
| } |
| } |
| } |
| |
| int beforeEdge = borderBefore() + paddingBefore(); |
| int afterEdge = borderAfter() + paddingAfter() + scrollbarLogicalHeight(); |
| |
| setLogicalHeight(beforeEdge); |
| |
| // The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts, |
| MarginInfo marginInfo(this, beforeEdge, afterEdge); |
| |
| // Fieldsets need to find their legend and position it inside the border of the object. |
| // The legend then gets skipped during normal layout. The same is true for ruby text. |
| // It doesn't get included in the normal layout process but is instead skipped. |
| RenderObject* childToExclude = layoutSpecialExcludedChild(relayoutChildren); |
| |
| int previousFloatLogicalBottom = 0; |
| maxFloatLogicalBottom = 0; |
| |
| RenderBox* next = firstChildBox(); |
| |
| while (next) { |
| RenderBox* child = next; |
| next = child->nextSiblingBox(); |
| |
| if (childToExclude == child) |
| continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs). |
| |
| // Make sure we layout children if they need it. |
| // FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into |
| // an auto value. Add a method to determine this, so that we can avoid the relayout. |
| if (relayoutChildren || ((child->style()->logicalHeight().isPercent() || child->style()->logicalMinHeight().isPercent() || child->style()->logicalMaxHeight().isPercent()) && !isRenderView())) |
| child->setChildNeedsLayout(true, false); |
| |
| // If relayoutChildren is set and the child has percentage padding, we also need to invalidate the child's pref widths. |
| if (relayoutChildren && (child->style()->paddingStart().isPercent() || child->style()->paddingEnd().isPercent())) |
| child->setPreferredLogicalWidthsDirty(true, false); |
| |
| // Handle the four types of special elements first. These include positioned content, floating content, compacts and |
| // run-ins. When we encounter these four types of objects, we don't actually lay them out as normal flow blocks. |
| if (handleSpecialChild(child, marginInfo)) |
| continue; |
| |
| // Lay out the child. |
| layoutBlockChild(child, marginInfo, previousFloatLogicalBottom, maxFloatLogicalBottom); |
| } |
| |
| // Now do the handling of the bottom of the block, adding in our bottom border/padding and |
| // determining the correct collapsed bottom margin information. |
| handleAfterSideOfBlock(beforeEdge, afterEdge, marginInfo); |
| } |
| |
| void RenderBlock::layoutBlockChild(RenderBox* child, MarginInfo& marginInfo, int& previousFloatLogicalBottom, int& maxFloatLogicalBottom) |
| { |
| int oldPosMarginBefore = maxPositiveMarginBefore(); |
| int oldNegMarginBefore = maxNegativeMarginBefore(); |
| |
| // The child is a normal flow object. Compute the margins we will use for collapsing now. |
| child->computeBlockDirectionMargins(this); |
| |
| // Do not allow a collapse if the margin-before-collapse style is set to SEPARATE. |
| if (child->style()->marginBeforeCollapse() == MSEPARATE) { |
| marginInfo.setAtBeforeSideOfBlock(false); |
| marginInfo.clearMargin(); |
| } |
| |
| // Try to guess our correct logical top position. In most cases this guess will |
| // be correct. Only if we're wrong (when we compute the real logical top position) |
| // will we have to potentially relayout. |
| int logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo); |
| |
| // Cache our old rect so that we can dirty the proper repaint rects if the child moves. |
| IntRect oldRect(child->x(), child->y() , child->width(), child->height()); |
| int oldLogicalTop = logicalTopForChild(child); |
| |
| #ifndef NDEBUG |
| IntSize oldLayoutDelta = view()->layoutDelta(); |
| #endif |
| // Go ahead and position the child as though it didn't collapse with the top. |
| setLogicalTopForChild(child, logicalTopEstimate, ApplyLayoutDelta); |
| |
| RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0; |
| bool markDescendantsWithFloats = false; |
| if (logicalTopEstimate != oldLogicalTop && !child->avoidsFloats() && childRenderBlock && childRenderBlock->containsFloats()) |
| markDescendantsWithFloats = true; |
| else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) { |
| // If an element might be affected by the presence of floats, then always mark it for |
| // layout. |
| int fb = max(previousFloatLogicalBottom, lowestFloatLogicalBottom()); |
| if (fb > logicalTopEstimate) |
| markDescendantsWithFloats = true; |
| } |
| |
| if (childRenderBlock) { |
| if (markDescendantsWithFloats) |
| childRenderBlock->markAllDescendantsWithFloatsForLayout(); |
| if (!child->isWritingModeRoot()) |
| previousFloatLogicalBottom = max(previousFloatLogicalBottom, oldLogicalTop + childRenderBlock->lowestFloatLogicalBottom()); |
| } |
| |
| if (!child->needsLayout()) |
| child->markForPaginationRelayoutIfNeeded(); |
| |
| bool childHadLayout = child->m_everHadLayout; |
| bool childNeededLayout = child->needsLayout(); |
| if (childNeededLayout) |
| child->layout(); |
| |
| // Cache if we are at the top of the block right now. |
| bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock(); |
| |
| // Now determine the correct ypos based off examination of collapsing margin |
| // values. |
| int logicalTopBeforeClear = collapseMargins(child, marginInfo); |
| |
| // Now check for clear. |
| int logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear); |
| |
| bool paginated = view()->layoutState()->isPaginated(); |
| if (paginated) { |
| int oldTop = logicalTopAfterClear; |
| |
| // If the object has a page or column break value of "before", then we should shift to the top of the next page. |
| logicalTopAfterClear = applyBeforeBreak(child, logicalTopAfterClear); |
| |
| // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one. |
| int logicalTopBeforeUnsplittableAdjustment = logicalTopAfterClear; |
| int logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, logicalTopAfterClear); |
| |
| int paginationStrut = 0; |
| int unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment; |
| if (unsplittableAdjustmentDelta) |
| paginationStrut = unsplittableAdjustmentDelta; |
| else if (childRenderBlock && childRenderBlock->paginationStrut()) |
| paginationStrut = childRenderBlock->paginationStrut(); |
| |
| if (paginationStrut) { |
| // We are willing to propagate out to our parent block as long as we were at the top of the block prior |
| // to collapsing our margins, and as long as we didn't clear or move as a result of other pagination. |
| if (atBeforeSideOfBlock && oldTop == logicalTopBeforeClear && !isPositioned() && !isTableCell()) { |
| // FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't |
| // have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too |
| // and pushes to the next page anyway, so not too concerned about it. |
| setPaginationStrut(logicalTopAfterClear + paginationStrut); |
| if (childRenderBlock) |
| childRenderBlock->setPaginationStrut(0); |
| } else |
| logicalTopAfterClear += paginationStrut; |
| } |
| |
| // Similar to how we apply clearance. Go ahead and boost height() to be the place where we're going to position the child. |
| setLogicalHeight(logicalHeight() + (logicalTopAfterClear - oldTop)); |
| } |
| |
| setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta); |
| |
| // Now we have a final top position. See if it really does end up being different from our estimate. |
| if (logicalTopAfterClear != logicalTopEstimate) { |
| if (child->shrinkToAvoidFloats()) { |
| // The child's width depends on the line width. |
| // When the child shifts to clear an item, its width can |
| // change (because it has more available line width). |
| // So go ahead and mark the item as dirty. |
| child->setChildNeedsLayout(true, false); |
| } |
| if (childRenderBlock) { |
| if (!child->avoidsFloats() && childRenderBlock->containsFloats()) |
| childRenderBlock->markAllDescendantsWithFloatsForLayout(); |
| if (!child->needsLayout()) |
| child->markForPaginationRelayoutIfNeeded(); |
| } |
| |
| // Our guess was wrong. Make the child lay itself out again. |
| child->layoutIfNeeded(); |
| } |
| |
| // We are no longer at the top of the block if we encounter a non-empty child. |
| // This has to be done after checking for clear, so that margins can be reset if a clear occurred. |
| if (marginInfo.atBeforeSideOfBlock() && !child->isSelfCollapsingBlock()) |
| marginInfo.setAtBeforeSideOfBlock(false); |
| |
| // Now place the child in the correct left position |
| determineLogicalLeftPositionForChild(child); |
| |
| // Update our height now that the child has been placed in the correct position. |
| setLogicalHeight(logicalHeight() + logicalHeightForChild(child)); |
| if (child->style()->marginAfterCollapse() == MSEPARATE) { |
| setLogicalHeight(logicalHeight() + marginAfterForChild(child)); |
| marginInfo.clearMargin(); |
| } |
| // If the child has overhanging floats that intrude into following siblings (or possibly out |
| // of this block), then the parent gets notified of the floats now. |
| if (childRenderBlock && childRenderBlock->containsFloats()) |
| maxFloatLogicalBottom = max(maxFloatLogicalBottom, addOverhangingFloats(toRenderBlock(child), -child->logicalLeft(), -child->logicalTop(), !childNeededLayout)); |
| |
| IntSize childOffset(child->x() - oldRect.x(), child->y() - oldRect.y()); |
| if (childOffset.width() || childOffset.height()) { |
| view()->addLayoutDelta(childOffset); |
| |
| // If the child moved, we have to repaint it as well as any floating/positioned |
| // descendants. An exception is if we need a layout. In this case, we know we're going to |
| // repaint ourselves (and the child) anyway. |
| if (childHadLayout && !selfNeedsLayout() && child->checkForRepaintDuringLayout()) |
| child->repaintDuringLayoutIfMoved(oldRect); |
| } |
| |
| if (!childHadLayout && child->checkForRepaintDuringLayout()) { |
| child->repaint(); |
| child->repaintOverhangingFloats(true); |
| } |
| |
| if (paginated) { |
| // Check for an after page/column break. |
| int newHeight = applyAfterBreak(child, logicalHeight(), marginInfo); |
| if (newHeight != height()) |
| setLogicalHeight(newHeight); |
| } |
| |
| ASSERT(oldLayoutDelta == view()->layoutDelta()); |
| } |
| |
| void RenderBlock::simplifiedNormalFlowLayout() |
| { |
| if (childrenInline()) { |
| ListHashSet<RootInlineBox*> lineBoxes; |
| bool endOfInline = false; |
| RenderObject* o = bidiFirst(this, 0, false); |
| while (o) { |
| if (!o->isPositioned() && (o->isReplaced() || o->isFloating())) { |
| o->layoutIfNeeded(); |
| if (toRenderBox(o)->inlineBoxWrapper()) { |
| RootInlineBox* box = toRenderBox(o)->inlineBoxWrapper()->root(); |
| lineBoxes.add(box); |
| } |
| } else if (o->isText() || (o->isRenderInline() && !endOfInline)) |
| o->setNeedsLayout(false); |
| o = bidiNext(this, o, 0, false, &endOfInline); |
| } |
| |
| // FIXME: Glyph overflow will get lost in this case, but not really a big deal. |
| GlyphOverflowAndFallbackFontsMap textBoxDataMap; |
| for (ListHashSet<RootInlineBox*>::const_iterator it = lineBoxes.begin(); it != lineBoxes.end(); ++it) { |
| RootInlineBox* box = *it; |
| box->computeOverflow(box->lineTop(), box->lineBottom(), document()->inNoQuirksMode(), textBoxDataMap); |
| } |
| } else { |
| for (RenderBox* box = firstChildBox(); box; box = box->nextSiblingBox()) { |
| if (!box->isPositioned()) |
| box->layoutIfNeeded(); |
| } |
| } |
| } |
| |
| bool RenderBlock::simplifiedLayout() |
| { |
| if ((!posChildNeedsLayout() && !needsSimplifiedNormalFlowLayout()) || normalChildNeedsLayout() || selfNeedsLayout()) |
| return false; |
| |
| LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasColumns() || hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode()); |
| |
| if (needsPositionedMovementLayout()) { |
| tryLayoutDoingPositionedMovementOnly(); |
| if (needsLayout()) |
| return false; |
| } |
| |
| // Lay out positioned descendants or objects that just need to recompute overflow. |
| if (needsSimplifiedNormalFlowLayout()) |
| simplifiedNormalFlowLayout(); |
| |
| // Lay out our positioned objects if our positioned child bit is set. |
| if (posChildNeedsLayout()) |
| layoutPositionedObjects(false); |
| |
| // Recompute our overflow information. |
| // FIXME: We could do better here by computing a temporary overflow object from layoutPositionedObjects and only |
| // updating our overflow if we either used to have overflow or if the new temporary object has overflow. |
| // For now just always recompute overflow. This is no worse performance-wise than the old code that called rightmostPosition and |
| // lowestPosition on every relayout so it's not a regression. |
| m_overflow.clear(); |
| computeOverflow(clientLogicalBottom(), true); |
| |
| statePusher.pop(); |
| |
| updateLayerTransform(); |
| |
| updateScrollInfoAfterLayout(); |
| |
| #ifdef ANDROID_FIX |
| // iframe flatten will call FrameView::layout() which calls performPostLayoutTasks, |
| // which may make us need to layout again |
| if (!posChildNeedsLayout() || normalChildNeedsLayout() || selfNeedsLayout()) |
| return false; |
| #endif |
| |
| setNeedsLayout(false); |
| return true; |
| } |
| |
| void RenderBlock::layoutPositionedObjects(bool relayoutChildren) |
| { |
| if (!m_positionedObjects) |
| return; |
| |
| if (hasColumns()) |
| view()->layoutState()->clearPaginationInformation(); // Positioned objects are not part of the column flow, so they don't paginate with the columns. |
| |
| RenderBox* r; |
| Iterator end = m_positionedObjects->end(); |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| r = *it; |
| // When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the |
| // non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned |
| // objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is |
| // positioned explicitly) this should not incur a performance penalty. |
| if (relayoutChildren || (r->style()->hasStaticBlockPosition(isHorizontalWritingMode()) && r->parent() != this && r->parent()->isBlockFlow())) |
| r->setChildNeedsLayout(true, false); |
| |
| // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. |
| if (relayoutChildren && (r->style()->paddingStart().isPercent() || r->style()->paddingEnd().isPercent())) |
| r->setPreferredLogicalWidthsDirty(true, false); |
| |
| if (!r->needsLayout()) |
| r->markForPaginationRelayoutIfNeeded(); |
| |
| // We don't have to do a full layout. We just have to update our position. Try that first. If we have shrink-to-fit width |
| // and we hit the available width constraint, the layoutIfNeeded() will catch it and do a full layout. |
| if (r->needsPositionedMovementLayoutOnly()) |
| r->tryLayoutDoingPositionedMovementOnly(); |
| r->layoutIfNeeded(); |
| } |
| |
| if (hasColumns()) |
| view()->layoutState()->m_columnInfo = columnInfo(); // FIXME: Kind of gross. We just put this back into the layout state so that pop() will work. |
| } |
| |
| void RenderBlock::markPositionedObjectsForLayout() |
| { |
| if (m_positionedObjects) { |
| RenderBox* r; |
| Iterator end = m_positionedObjects->end(); |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| r = *it; |
| r->setChildNeedsLayout(true); |
| } |
| } |
| } |
| |
| void RenderBlock::markForPaginationRelayoutIfNeeded() |
| { |
| ASSERT(!needsLayout()); |
| if (needsLayout()) |
| return; |
| |
| if (view()->layoutState()->pageLogicalHeightChanged() || (view()->layoutState()->pageLogicalHeight() && view()->layoutState()->pageLogicalOffset(logicalTop()) != pageLogicalOffset())) |
| setChildNeedsLayout(true, false); |
| } |
| |
| void RenderBlock::repaintOverhangingFloats(bool paintAllDescendants) |
| { |
| // Repaint any overhanging floats (if we know we're the one to paint them). |
| if (hasOverhangingFloats()) { |
| // We think that we must be in a bad state if m_floatingObjects is nil at this point, so |
| // we assert on Debug builds and nil-check Release builds. |
| ASSERT(m_floatingObjects); |
| if (!m_floatingObjects) |
| return; |
| |
| // FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating |
| // in this block. Better yet would be to push extra state for the containers of other floats. |
| view()->disableLayoutState(); |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* r = *it; |
| // Only repaint the object if it is overhanging, is not in its own layer, and |
| // is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter |
| // condition is replaced with being a descendant of us. |
| if (logicalBottomForFloat(r) > logicalHeight() && ((paintAllDescendants && r->m_renderer->isDescendantOf(this)) || r->m_shouldPaint) && !r->m_renderer->hasSelfPaintingLayer()) { |
| r->m_renderer->repaint(); |
| r->m_renderer->repaintOverhangingFloats(); |
| } |
| } |
| view()->enableLayoutState(); |
| } |
| } |
| |
| void RenderBlock::paint(PaintInfo& paintInfo, int tx, int ty) |
| { |
| tx += x(); |
| ty += y(); |
| |
| PaintPhase phase = paintInfo.phase; |
| |
| // Check if we need to do anything at all. |
| // FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView |
| // paints the root's background. |
| if (!isRoot()) { |
| IntRect overflowBox = visualOverflowRect(); |
| flipForWritingMode(overflowBox); |
| overflowBox.inflate(maximalOutlineSize(paintInfo.phase)); |
| overflowBox.move(tx, ty); |
| if (!overflowBox.intersects(paintInfo.rect)) |
| return; |
| } |
| |
| bool pushedClip = pushContentsClip(paintInfo, tx, ty); |
| paintObject(paintInfo, tx, ty); |
| if (pushedClip) |
| popContentsClip(paintInfo, phase, tx, ty); |
| |
| // Our scrollbar widgets paint exactly when we tell them to, so that they work properly with |
| // z-index. We paint after we painted the background/border, so that the scrollbars will |
| // sit above the background/border. |
| if (hasOverflowClip() && style()->visibility() == VISIBLE && (phase == PaintPhaseBlockBackground || phase == PaintPhaseChildBlockBackground) && paintInfo.shouldPaintWithinRoot(this)) |
| layer()->paintOverflowControls(paintInfo.context, tx, ty, paintInfo.rect); |
| } |
| |
| void RenderBlock::paintColumnRules(PaintInfo& paintInfo, int tx, int ty) |
| { |
| const Color& ruleColor = style()->visitedDependentColor(CSSPropertyWebkitColumnRuleColor); |
| bool ruleTransparent = style()->columnRuleIsTransparent(); |
| EBorderStyle ruleStyle = style()->columnRuleStyle(); |
| int ruleWidth = style()->columnRuleWidth(); |
| int colGap = columnGap(); |
| bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent && ruleWidth <= colGap; |
| if (!renderRule) |
| return; |
| |
| // We need to do multiple passes, breaking up our child painting into strips. |
| ColumnInfo* colInfo = columnInfo(); |
| unsigned colCount = columnCount(colInfo); |
| int currLogicalLeftOffset = style()->isLeftToRightDirection() ? 0 : contentLogicalWidth(); |
| int ruleAdd = logicalLeftOffsetForContent(); |
| int ruleLogicalLeft = style()->isLeftToRightDirection() ? 0 : contentLogicalWidth(); |
| for (unsigned i = 0; i < colCount; i++) { |
| IntRect colRect = columnRectAt(colInfo, i); |
| |
| int inlineDirectionSize = isHorizontalWritingMode() ? colRect.width() : colRect.height(); |
| |
| // Move to the next position. |
| if (style()->isLeftToRightDirection()) { |
| ruleLogicalLeft += inlineDirectionSize + colGap / 2; |
| currLogicalLeftOffset += inlineDirectionSize + colGap; |
| } else { |
| ruleLogicalLeft -= (inlineDirectionSize + colGap / 2); |
| currLogicalLeftOffset -= (inlineDirectionSize + colGap); |
| } |
| |
| // Now paint the column rule. |
| if (i < colCount - 1) { |
| int ruleLeft = isHorizontalWritingMode() ? tx + ruleLogicalLeft - ruleWidth / 2 + ruleAdd : tx + borderBefore() + paddingBefore(); |
| int ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleWidth : ruleLeft + contentWidth(); |
| int ruleTop = isHorizontalWritingMode() ? ty + borderTop() + paddingTop() : ty + ruleLogicalLeft - ruleWidth / 2 + ruleAdd; |
| int ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleWidth; |
| drawLineForBoxSide(paintInfo.context, ruleLeft, ruleTop, ruleRight, ruleBottom, |
| style()->isLeftToRightDirection() ? BSLeft : BSRight, ruleColor, ruleStyle, 0, 0); |
| } |
| |
| ruleLogicalLeft = currLogicalLeftOffset; |
| } |
| } |
| |
| void RenderBlock::paintColumnContents(PaintInfo& paintInfo, int tx, int ty, bool paintingFloats) |
| { |
| // We need to do multiple passes, breaking up our child painting into strips. |
| GraphicsContext* context = paintInfo.context; |
| ColumnInfo* colInfo = columnInfo(); |
| unsigned colCount = columnCount(colInfo); |
| if (!colCount) |
| return; |
| int currLogicalTopOffset = 0; |
| for (unsigned i = 0; i < colCount; i++) { |
| // For each rect, we clip to the rect, and then we adjust our coords. |
| IntRect colRect = columnRectAt(colInfo, i); |
| flipForWritingMode(colRect); |
| int logicalLeftOffset = (isHorizontalWritingMode() ? colRect.x() : colRect.y()) - logicalLeftOffsetForContent(); |
| IntSize offset = isHorizontalWritingMode() ? IntSize(logicalLeftOffset, currLogicalTopOffset) : IntSize(currLogicalTopOffset, logicalLeftOffset); |
| colRect.move(tx, ty); |
| PaintInfo info(paintInfo); |
| info.rect.intersect(colRect); |
| |
| if (!info.rect.isEmpty()) { |
| context->save(); |
| |
| // Each strip pushes a clip, since column boxes are specified as being |
| // like overflow:hidden. |
| context->clip(colRect); |
| |
| // Adjust our x and y when painting. |
| int finalX = tx + offset.width(); |
| int finalY = ty + offset.height(); |
| if (paintingFloats) |
| paintFloats(info, finalX, finalY, paintInfo.phase == PaintPhaseSelection || paintInfo.phase == PaintPhaseTextClip); |
| else |
| paintContents(info, finalX, finalY); |
| |
| context->restore(); |
| } |
| |
| int blockDelta = (isHorizontalWritingMode() ? colRect.height() : colRect.width()); |
| if (style()->isFlippedBlocksWritingMode()) |
| currLogicalTopOffset += blockDelta; |
| else |
| currLogicalTopOffset -= blockDelta; |
| } |
| } |
| |
| void RenderBlock::paintContents(PaintInfo& paintInfo, int tx, int ty) |
| { |
| // Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC. |
| // It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document |
| // will do a full repaint(). |
| if (document()->mayCauseFlashOfUnstyledContent() && !isRenderView()) |
| return; |
| |
| if (childrenInline()) |
| m_lineBoxes.paint(this, paintInfo, tx, ty); |
| else |
| paintChildren(paintInfo, tx, ty); |
| } |
| |
| void RenderBlock::paintChildren(PaintInfo& paintInfo, int tx, int ty) |
| { |
| PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase; |
| newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase; |
| |
| // We don't paint our own background, but we do let the kids paint their backgrounds. |
| PaintInfo info(paintInfo); |
| info.phase = newPhase; |
| info.updatePaintingRootForChildren(this); |
| |
| // FIXME: Paint-time pagination is obsolete and is now only used by embedded WebViews inside AppKit |
| // NSViews. Do not add any more code for this. |
| RenderView* renderView = view(); |
| bool usePrintRect = !renderView->printRect().isEmpty(); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| // Check for page-break-before: always, and if it's set, break and bail. |
| bool checkBeforeAlways = !childrenInline() && (usePrintRect && child->style()->pageBreakBefore() == PBALWAYS); |
| if (checkBeforeAlways |
| && (ty + child->y()) > paintInfo.rect.y() |
| && (ty + child->y()) < paintInfo.rect.maxY()) { |
| view()->setBestTruncatedAt(ty + child->y(), this, true); |
| return; |
| } |
| |
| if (!child->isFloating() && child->isReplaced() && usePrintRect && child->height() <= renderView->printRect().height()) { |
| // Paginate block-level replaced elements. |
| if (ty + child->y() + child->height() > renderView->printRect().maxY()) { |
| if (ty + child->y() < renderView->truncatedAt()) |
| renderView->setBestTruncatedAt(ty + child->y(), child); |
| // If we were able to truncate, don't paint. |
| if (ty + child->y() >= renderView->truncatedAt()) |
| break; |
| } |
| } |
| |
| IntPoint childPoint = flipForWritingMode(child, IntPoint(tx, ty), ParentToChildFlippingAdjustment); |
| if (!child->hasSelfPaintingLayer() && !child->isFloating()) |
| child->paint(info, childPoint.x(), childPoint.y()); |
| |
| // Check for page-break-after: always, and if it's set, break and bail. |
| bool checkAfterAlways = !childrenInline() && (usePrintRect && child->style()->pageBreakAfter() == PBALWAYS); |
| if (checkAfterAlways |
| && (ty + child->y() + child->height()) > paintInfo.rect.y() |
| && (ty + child->y() + child->height()) < paintInfo.rect.maxY()) { |
| view()->setBestTruncatedAt(ty + child->y() + child->height() + max(0, child->collapsedMarginAfter()), this, true); |
| return; |
| } |
| } |
| } |
| |
| void RenderBlock::paintCaret(PaintInfo& paintInfo, int tx, int ty, CaretType type) |
| { |
| SelectionController* selection = type == CursorCaret ? frame()->selection() : frame()->page()->dragCaretController(); |
| |
| // Paint the caret if the SelectionController says so or if caret browsing is enabled |
| bool caretBrowsing = frame()->settings() && frame()->settings()->caretBrowsingEnabled(); |
| RenderObject* caretPainter = selection->caretRenderer(); |
| if (caretPainter == this && (selection->isContentEditable() || caretBrowsing)) { |
| // Convert the painting offset into the local coordinate system of this renderer, |
| // to match the localCaretRect computed by the SelectionController |
| offsetForContents(tx, ty); |
| |
| if (type == CursorCaret) |
| frame()->selection()->paintCaret(paintInfo.context, tx, ty, paintInfo.rect); |
| else |
| frame()->selection()->paintDragCaret(paintInfo.context, tx, ty, paintInfo.rect); |
| } |
| } |
| |
| void RenderBlock::paintObject(PaintInfo& paintInfo, int tx, int ty) |
| { |
| PaintPhase paintPhase = paintInfo.phase; |
| |
| // 1. paint background, borders etc |
| if ((paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) && style()->visibility() == VISIBLE) { |
| if (hasBoxDecorations()) |
| paintBoxDecorations(paintInfo, tx, ty); |
| if (hasColumns()) |
| paintColumnRules(paintInfo, tx, ty); |
| } |
| |
| if (paintPhase == PaintPhaseMask && style()->visibility() == VISIBLE) { |
| paintMask(paintInfo, tx, ty); |
| return; |
| } |
| |
| // We're done. We don't bother painting any children. |
| if (paintPhase == PaintPhaseBlockBackground) |
| return; |
| |
| // Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div). |
| int scrolledX = tx; |
| int scrolledY = ty; |
| if (hasOverflowClip()) { |
| IntSize offset = layer()->scrolledContentOffset(); |
| scrolledX -= offset.width(); |
| scrolledY -= offset.height(); |
| } |
| |
| // 2. paint contents |
| if (paintPhase != PaintPhaseSelfOutline) { |
| if (hasColumns()) |
| paintColumnContents(paintInfo, scrolledX, scrolledY); |
| else |
| paintContents(paintInfo, scrolledX, scrolledY); |
| } |
| |
| // 3. paint selection |
| // FIXME: Make this work with multi column layouts. For now don't fill gaps. |
| bool isPrinting = document()->printing(); |
| if (!isPrinting && !hasColumns()) |
| paintSelection(paintInfo, scrolledX, scrolledY); // Fill in gaps in selection on lines and between blocks. |
| |
| // 4. paint floats. |
| if (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip) { |
| if (hasColumns()) |
| paintColumnContents(paintInfo, scrolledX, scrolledY, true); |
| else |
| paintFloats(paintInfo, scrolledX, scrolledY, paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip); |
| } |
| |
| // 5. paint outline. |
| if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style()->visibility() == VISIBLE) |
| paintOutline(paintInfo.context, tx, ty, width(), height()); |
| |
| // 6. paint continuation outlines. |
| if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) { |
| RenderInline* inlineCont = inlineElementContinuation(); |
| if (inlineCont && inlineCont->hasOutline() && inlineCont->style()->visibility() == VISIBLE) { |
| RenderInline* inlineRenderer = toRenderInline(inlineCont->node()->renderer()); |
| RenderBlock* cb = containingBlock(); |
| |
| bool inlineEnclosedInSelfPaintingLayer = false; |
| for (RenderBoxModelObject* box = inlineRenderer; box != cb; box = box->parent()->enclosingBoxModelObject()) { |
| if (box->hasSelfPaintingLayer()) { |
| inlineEnclosedInSelfPaintingLayer = true; |
| break; |
| } |
| } |
| |
| if (!inlineEnclosedInSelfPaintingLayer) |
| cb->addContinuationWithOutline(inlineRenderer); |
| else if (!inlineRenderer->firstLineBox()) |
| inlineRenderer->paintOutline(paintInfo.context, tx - x() + inlineRenderer->containingBlock()->x(), |
| ty - y() + inlineRenderer->containingBlock()->y()); |
| } |
| paintContinuationOutlines(paintInfo, tx, ty); |
| } |
| |
| // 7. paint caret. |
| // If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground, |
| // then paint the caret. |
| if (paintPhase == PaintPhaseForeground) { |
| paintCaret(paintInfo, scrolledX, scrolledY, CursorCaret); |
| paintCaret(paintInfo, scrolledX, scrolledY, DragCaret); |
| } |
| } |
| |
| IntPoint RenderBlock::flipFloatForWritingMode(const FloatingObject* child, const IntPoint& point) const |
| { |
| if (!style()->isFlippedBlocksWritingMode()) |
| return point; |
| |
| // This is similar to the ParentToChildFlippingAdjustment in RenderBox::flipForWritingMode. We have to subtract out our left/top offsets twice, since |
| // it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped |
| // case. |
| if (isHorizontalWritingMode()) |
| return IntPoint(point.x(), point.y() + height() - child->renderer()->height() - 2 * yPositionForFloatIncludingMargin(child)); |
| return IntPoint(point.x() + width() - child->width() - 2 * xPositionForFloatIncludingMargin(child), point.y()); |
| } |
| |
| void RenderBlock::paintFloats(PaintInfo& paintInfo, int tx, int ty, bool preservePhase) |
| { |
| if (!m_floatingObjects) |
| return; |
| |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* r = *it; |
| // Only paint the object if our m_shouldPaint flag is set. |
| if (r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer()) { |
| PaintInfo currentPaintInfo(paintInfo); |
| currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground; |
| IntPoint childPoint = flipFloatForWritingMode(r, IntPoint(tx + xPositionForFloatIncludingMargin(r) - r->m_renderer->x(), ty + yPositionForFloatIncludingMargin(r) - r->m_renderer->y())); |
| r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); |
| if (!preservePhase) { |
| currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds; |
| r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); |
| currentPaintInfo.phase = PaintPhaseFloat; |
| r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); |
| currentPaintInfo.phase = PaintPhaseForeground; |
| r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); |
| currentPaintInfo.phase = PaintPhaseOutline; |
| r->m_renderer->paint(currentPaintInfo, childPoint.x(), childPoint.y()); |
| } |
| } |
| } |
| } |
| |
| void RenderBlock::paintEllipsisBoxes(PaintInfo& paintInfo, int tx, int ty) |
| { |
| if (!paintInfo.shouldPaintWithinRoot(this) || !firstLineBox()) |
| return; |
| |
| if (style()->visibility() == VISIBLE && paintInfo.phase == PaintPhaseForeground) { |
| // We can check the first box and last box and avoid painting if we don't |
| // intersect. |
| int yPos = ty + firstLineBox()->y(); |
| int h = lastLineBox()->y() + lastLineBox()->logicalHeight() - firstLineBox()->y(); |
| if (yPos >= paintInfo.rect.maxY() || yPos + h <= paintInfo.rect.y()) |
| return; |
| |
| // See if our boxes intersect with the dirty rect. If so, then we paint |
| // them. Note that boxes can easily overlap, so we can't make any assumptions |
| // based off positions of our first line box or our last line box. |
| for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { |
| yPos = ty + curr->y(); |
| h = curr->logicalHeight(); |
| if (curr->ellipsisBox() && yPos < paintInfo.rect.maxY() && yPos + h > paintInfo.rect.y()) |
| curr->paintEllipsisBox(paintInfo, tx, ty); |
| } |
| } |
| } |
| |
| RenderInline* RenderBlock::inlineElementContinuation() const |
| { |
| RenderBoxModelObject* continuation = this->continuation(); |
| return continuation && continuation->isInline() ? toRenderInline(continuation) : 0; |
| } |
| |
| RenderBlock* RenderBlock::blockElementContinuation() const |
| { |
| RenderBoxModelObject* currentContinuation = continuation(); |
| if (!currentContinuation || currentContinuation->isInline()) |
| return 0; |
| RenderBlock* nextContinuation = toRenderBlock(currentContinuation); |
| if (nextContinuation->isAnonymousBlock()) |
| return nextContinuation->blockElementContinuation(); |
| return nextContinuation; |
| } |
| |
| static ContinuationOutlineTableMap* continuationOutlineTable() |
| { |
| DEFINE_STATIC_LOCAL(ContinuationOutlineTableMap, table, ()); |
| return &table; |
| } |
| |
| void RenderBlock::addContinuationWithOutline(RenderInline* flow) |
| { |
| // We can't make this work if the inline is in a layer. We'll just rely on the broken |
| // way of painting. |
| ASSERT(!flow->layer() && !flow->isInlineElementContinuation()); |
| |
| ContinuationOutlineTableMap* table = continuationOutlineTable(); |
| ListHashSet<RenderInline*>* continuations = table->get(this); |
| if (!continuations) { |
| continuations = new ListHashSet<RenderInline*>; |
| table->set(this, continuations); |
| } |
| |
| continuations->add(flow); |
| } |
| |
| bool RenderBlock::paintsContinuationOutline(RenderInline* flow) |
| { |
| ContinuationOutlineTableMap* table = continuationOutlineTable(); |
| if (table->isEmpty()) |
| return false; |
| |
| ListHashSet<RenderInline*>* continuations = table->get(this); |
| if (!continuations) |
| return false; |
| |
| return continuations->contains(flow); |
| } |
| |
| void RenderBlock::paintContinuationOutlines(PaintInfo& info, int tx, int ty) |
| { |
| ContinuationOutlineTableMap* table = continuationOutlineTable(); |
| if (table->isEmpty()) |
| return; |
| |
| ListHashSet<RenderInline*>* continuations = table->get(this); |
| if (!continuations) |
| return; |
| |
| // Paint each continuation outline. |
| ListHashSet<RenderInline*>::iterator end = continuations->end(); |
| for (ListHashSet<RenderInline*>::iterator it = continuations->begin(); it != end; ++it) { |
| // Need to add in the coordinates of the intervening blocks. |
| RenderInline* flow = *it; |
| RenderBlock* block = flow->containingBlock(); |
| for ( ; block && block != this; block = block->containingBlock()) { |
| tx += block->x(); |
| ty += block->y(); |
| } |
| ASSERT(block); |
| flow->paintOutline(info.context, tx, ty); |
| } |
| |
| // Delete |
| delete continuations; |
| table->remove(this); |
| } |
| |
| bool RenderBlock::shouldPaintSelectionGaps() const |
| { |
| return selectionState() != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot(); |
| } |
| |
| bool RenderBlock::isSelectionRoot() const |
| { |
| if (!node()) |
| return false; |
| |
| // FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases. |
| if (isTable()) |
| return false; |
| |
| if (isBody() || isRoot() || hasOverflowClip() || isRelPositioned() || |
| isFloatingOrPositioned() || isTableCell() || isInlineBlockOrInlineTable() || hasTransform() || |
| hasReflection() || hasMask() || isWritingModeRoot()) |
| return true; |
| |
| if (view() && view()->selectionStart()) { |
| Node* startElement = view()->selectionStart()->node(); |
| if (startElement && startElement->rootEditableElement() == node()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| GapRects RenderBlock::selectionGapRectsForRepaint(RenderBoxModelObject* repaintContainer) |
| { |
| ASSERT(!needsLayout()); |
| |
| if (!shouldPaintSelectionGaps()) |
| return GapRects(); |
| |
| // FIXME: this is broken with transforms |
| TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint()); |
| mapLocalToContainer(repaintContainer, false, false, transformState); |
| IntPoint offsetFromRepaintContainer = roundedIntPoint(transformState.mappedPoint()); |
| |
| if (hasOverflowClip()) |
| offsetFromRepaintContainer -= layer()->scrolledContentOffset(); |
| |
| int lastTop = 0; |
| int lastLeft = logicalLeftSelectionOffset(this, lastTop); |
| int lastRight = logicalRightSelectionOffset(this, lastTop); |
| |
| return selectionGaps(this, offsetFromRepaintContainer, IntSize(), lastTop, lastLeft, lastRight); |
| } |
| |
| void RenderBlock::paintSelection(PaintInfo& paintInfo, int tx, int ty) |
| { |
| if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) { |
| int lastTop = 0; |
| int lastLeft = logicalLeftSelectionOffset(this, lastTop); |
| int lastRight = logicalRightSelectionOffset(this, lastTop); |
| paintInfo.context->save(); |
| IntRect gapRectsBounds = selectionGaps(this, IntPoint(tx, ty), IntSize(), lastTop, lastLeft, lastRight, &paintInfo); |
| if (!gapRectsBounds.isEmpty()) { |
| if (RenderLayer* layer = enclosingLayer()) { |
| gapRectsBounds.move(IntSize(-tx, -ty)); |
| if (!hasLayer()) { |
| IntRect localBounds(gapRectsBounds); |
| flipForWritingMode(localBounds); |
| gapRectsBounds = localToContainerQuad(FloatRect(localBounds), layer->renderer()).enclosingBoundingBox(); |
| gapRectsBounds.move(layer->scrolledContentOffset()); |
| } |
| layer->addBlockSelectionGapsBounds(gapRectsBounds); |
| } |
| } |
| paintInfo.context->restore(); |
| } |
| } |
| |
| static void clipOutPositionedObjects(const PaintInfo* paintInfo, const IntPoint& offset, RenderBlock::PositionedObjectsListHashSet* positionedObjects) |
| { |
| if (!positionedObjects) |
| return; |
| |
| RenderBlock::PositionedObjectsListHashSet::const_iterator end = positionedObjects->end(); |
| for (RenderBlock::PositionedObjectsListHashSet::const_iterator it = positionedObjects->begin(); it != end; ++it) { |
| RenderBox* r = *it; |
| paintInfo->context->clipOut(IntRect(offset.x() + r->x(), offset.y() + r->y(), r->width(), r->height())); |
| } |
| } |
| |
| static int blockDirectionOffset(RenderBlock* rootBlock, const IntSize& offsetFromRootBlock) |
| { |
| return rootBlock->isHorizontalWritingMode() ? offsetFromRootBlock.height() : offsetFromRootBlock.width(); |
| } |
| |
| static int inlineDirectionOffset(RenderBlock* rootBlock, const IntSize& offsetFromRootBlock) |
| { |
| return rootBlock->isHorizontalWritingMode() ? offsetFromRootBlock.width() : offsetFromRootBlock.height(); |
| } |
| |
| IntRect RenderBlock::logicalRectToPhysicalRect(const IntPoint& rootBlockPhysicalPosition, const IntRect& logicalRect) |
| { |
| IntRect result; |
| if (isHorizontalWritingMode()) |
| result = logicalRect; |
| else |
| result = IntRect(logicalRect.y(), logicalRect.x(), logicalRect.height(), logicalRect.width()); |
| flipForWritingMode(result); |
| result.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y()); |
| return result; |
| } |
| |
| GapRects RenderBlock::selectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, |
| int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo) |
| { |
| // IMPORTANT: Callers of this method that intend for painting to happen need to do a save/restore. |
| // Clip out floating and positioned objects when painting selection gaps. |
| if (paintInfo) { |
| // Note that we don't clip out overflow for positioned objects. We just stick to the border box. |
| IntRect flippedBlockRect = IntRect(offsetFromRootBlock.width(), offsetFromRootBlock.height(), width(), height()); |
| rootBlock->flipForWritingMode(flippedBlockRect); |
| flippedBlockRect.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y()); |
| clipOutPositionedObjects(paintInfo, flippedBlockRect.location(), m_positionedObjects.get()); |
| if (isBody() || isRoot()) // The <body> must make sure to examine its containingBlock's positioned objects. |
| for (RenderBlock* cb = containingBlock(); cb && !cb->isRenderView(); cb = cb->containingBlock()) |
| clipOutPositionedObjects(paintInfo, IntPoint(cb->x(), cb->y()), cb->m_positionedObjects.get()); // FIXME: Not right for flipped writing modes. |
| if (m_floatingObjects) { |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* r = *it; |
| IntRect floatBox = IntRect(offsetFromRootBlock.width() + xPositionForFloatIncludingMargin(r), |
| offsetFromRootBlock.height() + yPositionForFloatIncludingMargin(r), |
| r->m_renderer->width(), r->m_renderer->height()); |
| rootBlock->flipForWritingMode(floatBox); |
| floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y()); |
| paintInfo->context->clipOut(floatBox); |
| } |
| } |
| } |
| |
| // FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is |
| // fixed). |
| GapRects result; |
| if (!isBlockFlow()) // FIXME: Make multi-column selection gap filling work someday. |
| return result; |
| |
| if (hasColumns() || hasTransform() || style()->columnSpan()) { |
| // FIXME: We should learn how to gap fill multiple columns and transforms eventually. |
| lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight(); |
| lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight()); |
| lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight()); |
| return result; |
| } |
| |
| if (childrenInline()) |
| result = inlineSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo); |
| else |
| result = blockSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo); |
| |
| // Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block. |
| if (rootBlock == this && (selectionState() != SelectionBoth && selectionState() != SelectionEnd)) |
| result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, |
| logicalHeight(), paintInfo)); |
| return result; |
| } |
| |
| GapRects RenderBlock::inlineSelectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, |
| int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo) |
| { |
| GapRects result; |
| |
| bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth; |
| |
| if (!firstLineBox()) { |
| if (containsStart) { |
| // Go ahead and update our lastLogicalTop to be the bottom of the block. <hr>s or empty blocks with height can trip this |
| // case. |
| lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight(); |
| lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight()); |
| lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight()); |
| } |
| return result; |
| } |
| |
| RootInlineBox* lastSelectedLine = 0; |
| RootInlineBox* curr; |
| for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { } |
| |
| // Now paint the gaps for the lines. |
| for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) { |
| int selTop = curr->selectionTop(); |
| int selHeight = curr->selectionHeight(); |
| |
| if (!containsStart && !lastSelectedLine && |
| selectionState() != SelectionStart && selectionState() != SelectionBoth) |
| result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, |
| selTop, paintInfo)); |
| |
| IntRect logicalRect(curr->logicalLeft(), selTop, curr->logicalWidth(), selTop + selHeight); |
| logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : IntSize(offsetFromRootBlock.height(), offsetFromRootBlock.width())); |
| IntRect physicalRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect); |
| if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y()) |
| || (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x())) |
| result.unite(curr->lineSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, selTop, selHeight, paintInfo)); |
| |
| lastSelectedLine = curr; |
| } |
| |
| if (containsStart && !lastSelectedLine) |
| // VisibleSelection must start just after our last line. |
| lastSelectedLine = lastRootBox(); |
| |
| if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) { |
| // Go ahead and update our lastY to be the bottom of the last selected line. |
| lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + lastSelectedLine->selectionBottom(); |
| lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom()); |
| lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom()); |
| } |
| return result; |
| } |
| |
| GapRects RenderBlock::blockSelectionGaps(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, |
| int& lastLogicalTop, int& lastLogicalLeft, int& lastLogicalRight, const PaintInfo* paintInfo) |
| { |
| GapRects result; |
| |
| // Go ahead and jump right to the first block child that contains some selected objects. |
| RenderBox* curr; |
| for (curr = firstChildBox(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSiblingBox()) { } |
| |
| for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSiblingBox()) { |
| SelectionState childState = curr->selectionState(); |
| if (childState == SelectionBoth || childState == SelectionEnd) |
| sawSelectionEnd = true; |
| |
| if (curr->isFloatingOrPositioned()) |
| continue; // We must be a normal flow object in order to even be considered. |
| |
| if (curr->isRelPositioned() && curr->hasLayer()) { |
| // If the relposition offset is anything other than 0, then treat this just like an absolute positioned element. |
| // Just disregard it completely. |
| IntSize relOffset = curr->layer()->relativePositionOffset(); |
| if (relOffset.width() || relOffset.height()) |
| continue; |
| } |
| |
| bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this. |
| bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone); |
| if (fillBlockGaps) { |
| // We need to fill the vertical gap above this object. |
| if (childState == SelectionEnd || childState == SelectionInside) |
| // Fill the gap above the object. |
| result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, |
| curr->logicalTop(), paintInfo)); |
| |
| // Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past* |
| // our object. We know this if the selection did not end inside our object. |
| if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd)) |
| childState = SelectionNone; |
| |
| // Fill side gaps on this object based off its state. |
| bool leftGap, rightGap; |
| getSelectionGapInfo(childState, leftGap, rightGap); |
| |
| if (leftGap) |
| result.uniteLeft(logicalLeftSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalLeft(), curr->logicalTop(), curr->logicalHeight(), paintInfo)); |
| if (rightGap) |
| result.uniteRight(logicalRightSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalRight(), curr->logicalTop(), curr->logicalHeight(), paintInfo)); |
| |
| // Update lastLogicalTop to be just underneath the object. lastLogicalLeft and lastLogicalRight extend as far as |
| // they can without bumping into floating or positioned objects. Ideally they will go right up |
| // to the border of the root selection block. |
| lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + curr->logicalBottom(); |
| lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, curr->logicalBottom()); |
| lastLogicalRight = logicalRightSelectionOffset(rootBlock, curr->logicalBottom()); |
| } else if (childState != SelectionNone) |
| // We must be a block that has some selected object inside it. Go ahead and recur. |
| result.unite(toRenderBlock(curr)->selectionGaps(rootBlock, rootBlockPhysicalPosition, IntSize(offsetFromRootBlock.width() + curr->x(), offsetFromRootBlock.height() + curr->y()), |
| lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo)); |
| } |
| return result; |
| } |
| |
| IntRect RenderBlock::blockSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, |
| int lastLogicalTop, int lastLogicalLeft, int lastLogicalRight, int logicalBottom, const PaintInfo* paintInfo) |
| { |
| int logicalTop = lastLogicalTop; |
| int logicalHeight = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalBottom - logicalTop; |
| if (logicalHeight <= 0) |
| return IntRect(); |
| |
| // Get the selection offsets for the bottom of the gap |
| int logicalLeft = max(lastLogicalLeft, logicalLeftSelectionOffset(rootBlock, logicalBottom)); |
| int logicalRight = min(lastLogicalRight, logicalRightSelectionOffset(rootBlock, logicalBottom)); |
| int logicalWidth = logicalRight - logicalLeft; |
| if (logicalWidth <= 0) |
| return IntRect(); |
| |
| IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(logicalLeft, logicalTop, logicalWidth, logicalHeight)); |
| if (paintInfo) |
| paintInfo->context->fillRect(gapRect, selectionBackgroundColor(), style()->colorSpace()); |
| return gapRect; |
| } |
| |
| IntRect RenderBlock::logicalLeftSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, |
| RenderObject* selObj, int logicalLeft, int logicalTop, int logicalHeight, const PaintInfo* paintInfo) |
| { |
| int rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop; |
| int rootBlockLogicalLeft = max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight)); |
| int rootBlockLogicalRight = min(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + logicalLeft, min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight))); |
| int rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft; |
| if (rootBlockLogicalWidth <= 0) |
| return IntRect(); |
| |
| IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight)); |
| if (paintInfo) |
| paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); |
| return gapRect; |
| } |
| |
| IntRect RenderBlock::logicalRightSelectionGap(RenderBlock* rootBlock, const IntPoint& rootBlockPhysicalPosition, const IntSize& offsetFromRootBlock, |
| RenderObject* selObj, int logicalRight, int logicalTop, int logicalHeight, const PaintInfo* paintInfo) |
| { |
| int rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop; |
| int rootBlockLogicalLeft = max(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + logicalRight, max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight))); |
| int rootBlockLogicalRight = min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight)); |
| int rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft; |
| if (rootBlockLogicalWidth <= 0) |
| return IntRect(); |
| |
| IntRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, IntRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight)); |
| if (paintInfo) |
| paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); |
| return gapRect; |
| } |
| |
| void RenderBlock::getSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap) |
| { |
| bool ltr = style()->isLeftToRightDirection(); |
| leftGap = (state == RenderObject::SelectionInside) || |
| (state == RenderObject::SelectionEnd && ltr) || |
| (state == RenderObject::SelectionStart && !ltr); |
| rightGap = (state == RenderObject::SelectionInside) || |
| (state == RenderObject::SelectionStart && ltr) || |
| (state == RenderObject::SelectionEnd && !ltr); |
| } |
| |
| int RenderBlock::logicalLeftSelectionOffset(RenderBlock* rootBlock, int position) |
| { |
| int logicalLeft = logicalLeftOffsetForLine(position, false); |
| if (logicalLeft == logicalLeftOffsetForContent()) { |
| if (rootBlock != this) |
| // The border can potentially be further extended by our containingBlock(). |
| return containingBlock()->logicalLeftSelectionOffset(rootBlock, position + logicalTop()); |
| return logicalLeft; |
| } else { |
| RenderBlock* cb = this; |
| while (cb != rootBlock) { |
| logicalLeft += cb->logicalLeft(); |
| cb = cb->containingBlock(); |
| } |
| } |
| return logicalLeft; |
| } |
| |
| int RenderBlock::logicalRightSelectionOffset(RenderBlock* rootBlock, int position) |
| { |
| int logicalRight = logicalRightOffsetForLine(position, false); |
| if (logicalRight == logicalRightOffsetForContent()) { |
| if (rootBlock != this) |
| // The border can potentially be further extended by our containingBlock(). |
| return containingBlock()->logicalRightSelectionOffset(rootBlock, position + logicalTop()); |
| return logicalRight; |
| } else { |
| RenderBlock* cb = this; |
| while (cb != rootBlock) { |
| logicalRight += cb->logicalLeft(); |
| cb = cb->containingBlock(); |
| } |
| } |
| return logicalRight; |
| } |
| |
| void RenderBlock::insertPositionedObject(RenderBox* o) |
| { |
| // Create the list of special objects if we don't aleady have one |
| if (!m_positionedObjects) |
| m_positionedObjects = adoptPtr(new PositionedObjectsListHashSet); |
| |
| m_positionedObjects->add(o); |
| } |
| |
| void RenderBlock::removePositionedObject(RenderBox* o) |
| { |
| if (m_positionedObjects) |
| m_positionedObjects->remove(o); |
| } |
| |
| void RenderBlock::removePositionedObjects(RenderBlock* o) |
| { |
| if (!m_positionedObjects) |
| return; |
| |
| RenderBox* r; |
| |
| Iterator end = m_positionedObjects->end(); |
| |
| Vector<RenderBox*, 16> deadObjects; |
| |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| r = *it; |
| if (!o || r->isDescendantOf(o)) { |
| if (o) |
| r->setChildNeedsLayout(true, false); |
| |
| // It is parent blocks job to add positioned child to positioned objects list of its containing block |
| // Parent layout needs to be invalidated to ensure this happens. |
| RenderObject* p = r->parent(); |
| while (p && !p->isRenderBlock()) |
| p = p->parent(); |
| if (p) |
| p->setChildNeedsLayout(true); |
| |
| deadObjects.append(r); |
| } |
| } |
| |
| for (unsigned i = 0; i < deadObjects.size(); i++) |
| m_positionedObjects->remove(deadObjects.at(i)); |
| } |
| |
| RenderBlock::FloatingObject* RenderBlock::insertFloatingObject(RenderBox* o) |
| { |
| ASSERT(o->isFloating()); |
| |
| // Create the list of special objects if we don't aleady have one |
| if (!m_floatingObjects) |
| m_floatingObjects = adoptPtr(new FloatingObjects); |
| else { |
| // Don't insert the object again if it's already in the list |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator it = floatingObjectSet.find<RenderBox*, FloatingObjectHashTranslator>(o); |
| if (it != floatingObjectSet.end()) |
| return *it; |
| } |
| |
| // Create the special object entry & append it to the list |
| |
| FloatingObject* newObj = new FloatingObject(o->style()->floating() == FLEFT ? FloatingObject::FloatLeft : FloatingObject::FloatRight); |
| |
| // Our location is irrelevant if we're unsplittable or no pagination is in effect. |
| // Just go ahead and lay out the float. |
| bool isChildRenderBlock = o->isRenderBlock(); |
| if (isChildRenderBlock && !o->needsLayout() && view()->layoutState()->pageLogicalHeightChanged()) |
| o->setChildNeedsLayout(true, false); |
| |
| bool affectedByPagination = isChildRenderBlock && view()->layoutState()->m_pageLogicalHeight; |
| if (!affectedByPagination || isWritingModeRoot()) // We are unsplittable if we're a block flow root. |
| o->layoutIfNeeded(); |
| else { |
| o->computeLogicalWidth(); |
| o->computeBlockDirectionMargins(this); |
| } |
| setLogicalWidthForFloat(newObj, logicalWidthForChild(o) + marginStartForChild(o) + marginEndForChild(o)); |
| |
| newObj->m_shouldPaint = !o->hasSelfPaintingLayer(); // If a layer exists, the float will paint itself. Otherwise someone else will. |
| newObj->m_isDescendant = true; |
| newObj->m_renderer = o; |
| |
| m_floatingObjects->increaseObjectsCount(newObj->type()); |
| m_floatingObjects->set().add(newObj); |
| |
| return newObj; |
| } |
| |
| void RenderBlock::removeFloatingObject(RenderBox* o) |
| { |
| if (m_floatingObjects) { |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSet::iterator it = floatingObjectSet.find<RenderBox*, FloatingObjectHashTranslator>(o); |
| if (it != floatingObjectSet.end()) { |
| FloatingObject* r = *it; |
| if (childrenInline()) { |
| int logicalTop = logicalTopForFloat(r); |
| int logicalBottom = logicalBottomForFloat(r); |
| |
| // Fix for https://bugs.webkit.org/show_bug.cgi?id=54995. |
| if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == numeric_limits<int>::max()) |
| logicalBottom = numeric_limits<int>::max(); |
| else { |
| // Special-case zero- and less-than-zero-height floats: those don't touch |
| // the line that they're on, but it still needs to be dirtied. This is |
| // accomplished by pretending they have a height of 1. |
| logicalBottom = max(logicalBottom, logicalTop + 1); |
| } |
| markLinesDirtyInBlockRange(0, logicalBottom); |
| } |
| m_floatingObjects->decreaseObjectsCount(r->type()); |
| floatingObjectSet.remove(it); |
| delete r; |
| } |
| } |
| } |
| |
| void RenderBlock::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset) |
| { |
| if (!m_floatingObjects) |
| return; |
| |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObject* curr = floatingObjectSet.last(); |
| while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(curr) >= logicalOffset)) { |
| m_floatingObjects->decreaseObjectsCount(curr->type()); |
| floatingObjectSet.removeLast(); |
| delete curr; |
| curr = floatingObjectSet.last(); |
| } |
| } |
| |
| bool RenderBlock::positionNewFloats() |
| { |
| if (!m_floatingObjects) |
| return false; |
| |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| if (floatingObjectSet.isEmpty()) |
| return false; |
| |
| // If all floats have already been positioned, then we have no work to do. |
| if (floatingObjectSet.last()->isPlaced()) |
| return false; |
| |
| // Move backwards through our floating object list until we find a float that has |
| // already been positioned. Then we'll be able to move forward, positioning all of |
| // the new floats that need it. |
| FloatingObjectSetIterator it = floatingObjectSet.end(); |
| --it; // Go to last item. |
| FloatingObjectSetIterator begin = floatingObjectSet.begin(); |
| FloatingObject* lastPlacedFloatingObject = 0; |
| while (it != begin) { |
| --it; |
| if ((*it)->isPlaced()) { |
| lastPlacedFloatingObject = *it; |
| ++it; |
| break; |
| } |
| } |
| |
| int logicalTop = logicalHeight(); |
| |
| // The float cannot start above the top position of the last positioned float. |
| if (lastPlacedFloatingObject) |
| logicalTop = max(logicalTopForFloat(lastPlacedFloatingObject), logicalTop); |
| |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| // Now walk through the set of unpositioned floats and place them. |
| for (; it != end; ++it) { |
| FloatingObject* floatingObject = *it; |
| // The containing block is responsible for positioning floats, so if we have floats in our |
| // list that come from somewhere else, do not attempt to position them. |
| if (floatingObject->renderer()->containingBlock() != this) |
| continue; |
| |
| RenderBox* childBox = floatingObject->renderer(); |
| int childLogicalLeftMargin = style()->isLeftToRightDirection() ? marginStartForChild(childBox) : marginEndForChild(childBox); |
| |
| int rightOffset = logicalRightOffsetForContent(); // Constant part of right offset. |
| int leftOffset = logicalLeftOffsetForContent(); // Constant part of left offset. |
| int floatLogicalWidth = logicalWidthForFloat(floatingObject); // The width we look for. |
| if (rightOffset - leftOffset < floatLogicalWidth) |
| floatLogicalWidth = rightOffset - leftOffset; // Never look for more than what will be available. |
| |
| IntRect oldRect(childBox->x(), childBox->y() , childBox->width(), childBox->height()); |
| |
| if (childBox->style()->clear() & CLEFT) |
| logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop); |
| if (childBox->style()->clear() & CRIGHT) |
| logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop); |
| |
| int floatLogicalLeft; |
| if (childBox->style()->floating() == FLEFT) { |
| int heightRemainingLeft = 1; |
| int heightRemainingRight = 1; |
| floatLogicalLeft = logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft); |
| while (logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) { |
| logicalTop += min(heightRemainingLeft, heightRemainingRight); |
| floatLogicalLeft = logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft); |
| } |
| floatLogicalLeft = max(0, floatLogicalLeft); |
| } else { |
| int heightRemainingLeft = 1; |
| int heightRemainingRight = 1; |
| floatLogicalLeft = logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight); |
| while (floatLogicalLeft - logicalLeftOffsetForLine(logicalTop, leftOffset, false, &heightRemainingLeft) < floatLogicalWidth) { |
| logicalTop += min(heightRemainingLeft, heightRemainingRight); |
| floatLogicalLeft = logicalRightOffsetForLine(logicalTop, rightOffset, false, &heightRemainingRight); |
| } |
| floatLogicalLeft -= logicalWidthForFloat(floatingObject); // Use the original width of the float here, since the local variable |
| // |floatLogicalWidth| was capped to the available line width. |
| // See fast/block/float/clamped-right-float.html. |
| } |
| |
| setLogicalLeftForFloat(floatingObject, floatLogicalLeft); |
| setLogicalLeftForChild(childBox, floatLogicalLeft + childLogicalLeftMargin); |
| setLogicalTopForChild(childBox, logicalTop + marginBeforeForChild(childBox)); |
| |
| if (view()->layoutState()->isPaginated()) { |
| RenderBlock* childBlock = childBox->isRenderBlock() ? toRenderBlock(childBox) : 0; |
| |
| if (!childBox->needsLayout()) |
| childBox->markForPaginationRelayoutIfNeeded();; |
| childBox->layoutIfNeeded(); |
| |
| // If we are unsplittable and don't fit, then we need to move down. |
| // We include our margins as part of the unsplittable area. |
| int newLogicalTop = adjustForUnsplittableChild(childBox, logicalTop, true); |
| |
| // See if we have a pagination strut that is making us move down further. |
| // Note that an unsplittable child can't also have a pagination strut, so this is |
| // exclusive with the case above. |
| if (childBlock && childBlock->paginationStrut()) { |
| newLogicalTop += childBlock->paginationStrut(); |
| childBlock->setPaginationStrut(0); |
| } |
| |
| if (newLogicalTop != logicalTop) { |
| floatingObject->m_paginationStrut = newLogicalTop - logicalTop; |
| logicalTop = newLogicalTop; |
| setLogicalTopForChild(childBox, logicalTop + marginBeforeForChild(childBox)); |
| if (childBlock) |
| childBlock->setChildNeedsLayout(true, false); |
| childBox->layoutIfNeeded(); |
| } |
| } |
| |
| setLogicalTopForFloat(floatingObject, logicalTop); |
| setLogicalHeightForFloat(floatingObject, logicalHeightForChild(childBox) + marginBeforeForChild(childBox) + marginAfterForChild(childBox)); |
| |
| floatingObject->setIsPlaced(); |
| |
| // If the child moved, we have to repaint it. |
| if (childBox->checkForRepaintDuringLayout()) |
| childBox->repaintDuringLayoutIfMoved(oldRect); |
| } |
| return true; |
| } |
| |
| bool RenderBlock::positionNewFloatOnLine(FloatingObject* newFloat, FloatingObject* lastFloatFromPreviousLine, bool firstLine, int& lineLeftOffset, int& lineRightOffset) |
| { |
| bool didPosition = positionNewFloats(); |
| if (!didPosition) |
| return didPosition; |
| |
| int blockOffset = logicalHeight(); |
| if (blockOffset >= logicalTopForFloat(newFloat) && blockOffset < logicalBottomForFloat(newFloat)) { |
| if (newFloat->type() == FloatingObject::FloatLeft) |
| lineLeftOffset = logicalRightForFloat(newFloat); |
| else |
| lineRightOffset = logicalLeftForFloat(newFloat); |
| } |
| |
| if (!newFloat->m_paginationStrut) |
| return didPosition; |
| |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| ASSERT(floatingObjectSet.last() == newFloat); |
| |
| int floatLogicalTop = logicalTopForFloat(newFloat); |
| int paginationStrut = newFloat->m_paginationStrut; |
| |
| if (floatLogicalTop - paginationStrut != logicalHeight()) |
| return didPosition; |
| |
| FloatingObjectSetIterator it = floatingObjectSet.end(); |
| --it; // Last float is newFloat, skip that one. |
| FloatingObjectSetIterator begin = floatingObjectSet.begin(); |
| while (it != begin) { |
| --it; |
| FloatingObject* f = *it; |
| if (f == lastFloatFromPreviousLine) |
| break; |
| if (logicalTopForFloat(f) == logicalHeight()) { |
| ASSERT(!f->m_paginationStrut); |
| f->m_paginationStrut = paginationStrut; |
| RenderBox* o = f->m_renderer; |
| setLogicalTopForChild(o, logicalTopForChild(o) + marginBeforeForChild(o) + paginationStrut); |
| if (o->isRenderBlock()) |
| toRenderBlock(o)->setChildNeedsLayout(true, false); |
| o->layoutIfNeeded(); |
| setLogicalTopForFloat(f, logicalTopForFloat(f) + f->m_paginationStrut); |
| } |
| } |
| |
| setLogicalHeight(blockOffset + paginationStrut); |
| lineLeftOffset = logicalLeftOffsetForLine(logicalHeight(), firstLine); |
| lineRightOffset = logicalRightOffsetForLine(logicalHeight(), firstLine); |
| |
| return didPosition; |
| } |
| |
| void RenderBlock::newLine(EClear clear) |
| { |
| positionNewFloats(); |
| // set y position |
| int newY = 0; |
| switch (clear) |
| { |
| case CLEFT: |
| newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft); |
| break; |
| case CRIGHT: |
| newY = lowestFloatLogicalBottom(FloatingObject::FloatRight); |
| break; |
| case CBOTH: |
| newY = lowestFloatLogicalBottom(); |
| default: |
| break; |
| } |
| if (height() < newY) |
| setLogicalHeight(newY); |
| } |
| |
| void RenderBlock::addPercentHeightDescendant(RenderBox* descendant) |
| { |
| if (!gPercentHeightDescendantsMap) { |
| gPercentHeightDescendantsMap = new PercentHeightDescendantsMap; |
| gPercentHeightContainerMap = new PercentHeightContainerMap; |
| } |
| |
| HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->get(this); |
| if (!descendantSet) { |
| descendantSet = new HashSet<RenderBox*>; |
| gPercentHeightDescendantsMap->set(this, descendantSet); |
| } |
| bool added = descendantSet->add(descendant).second; |
| if (!added) { |
| ASSERT(gPercentHeightContainerMap->get(descendant)); |
| ASSERT(gPercentHeightContainerMap->get(descendant)->contains(this)); |
| return; |
| } |
| |
| HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->get(descendant); |
| if (!containerSet) { |
| containerSet = new HashSet<RenderBlock*>; |
| gPercentHeightContainerMap->set(descendant, containerSet); |
| } |
| ASSERT(!containerSet->contains(this)); |
| containerSet->add(this); |
| } |
| |
| void RenderBlock::removePercentHeightDescendant(RenderBox* descendant) |
| { |
| if (!gPercentHeightContainerMap) |
| return; |
| |
| HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->take(descendant); |
| if (!containerSet) |
| return; |
| |
| HashSet<RenderBlock*>::iterator end = containerSet->end(); |
| for (HashSet<RenderBlock*>::iterator it = containerSet->begin(); it != end; ++it) { |
| RenderBlock* container = *it; |
| HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->get(container); |
| ASSERT(descendantSet); |
| if (!descendantSet) |
| continue; |
| ASSERT(descendantSet->contains(descendant)); |
| descendantSet->remove(descendant); |
| if (descendantSet->isEmpty()) { |
| gPercentHeightDescendantsMap->remove(container); |
| delete descendantSet; |
| } |
| } |
| |
| delete containerSet; |
| } |
| |
| HashSet<RenderBox*>* RenderBlock::percentHeightDescendants() const |
| { |
| return gPercentHeightDescendantsMap ? gPercentHeightDescendantsMap->get(this) : 0; |
| } |
| |
| // FIXME: The logicalLeftOffsetForLine/logicalRightOffsetForLine functions are very slow if there are many floats |
| // present. We need to add a structure to floating objects to represent "lines" of floats. Then instead of checking |
| // each float individually, we'd just walk backwards through the "lines" and stop when we hit a line that is fully above |
| // the vertical offset that we'd like to check. Computing the "lines" would be rather complicated, but could replace the left |
| // objects and right objects count hack that is currently used here. |
| int RenderBlock::logicalLeftOffsetForLine(int logicalTop, int fixedOffset, bool applyTextIndent, int* heightRemaining) const |
| { |
| int left = fixedOffset; |
| if (m_floatingObjects && m_floatingObjects->hasLeftObjects()) { |
| if (heightRemaining) |
| *heightRemaining = 1; |
| |
| // We know the list is non-empty, since we have "left" objects to search for. |
| // Therefore we can assume that begin != end, and that we can do at least one |
| // decrement. |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator begin = floatingObjectSet.begin(); |
| FloatingObjectSetIterator it = floatingObjectSet.end(); |
| do { |
| --it; |
| FloatingObject* r = *it; |
| if (r->isPlaced() && logicalTopForFloat(r) <= logicalTop && logicalBottomForFloat(r) > logicalTop |
| && r->type() == FloatingObject::FloatLeft |
| && logicalRightForFloat(r) > left) { |
| left = max(left, logicalRightForFloat(r)); |
| if (heightRemaining) |
| *heightRemaining = logicalBottomForFloat(r) - logicalTop; |
| } |
| } while (it != begin); |
| } |
| |
| if (applyTextIndent && style()->isLeftToRightDirection()) { |
| int cw = 0; |
| if (style()->textIndent().isPercent()) |
| cw = containingBlock()->availableLogicalWidth(); |
| left += style()->textIndent().calcMinValue(cw); |
| } |
| |
| return left; |
| } |
| |
| int RenderBlock::logicalRightOffsetForLine(int logicalTop, int fixedOffset, bool applyTextIndent, int* heightRemaining) const |
| { |
| int right = fixedOffset; |
| |
| if (m_floatingObjects && m_floatingObjects->hasRightObjects()) { |
| if (heightRemaining) |
| *heightRemaining = 1; |
| |
| // We know the list is non-empty, since we have "right" objects to search for. |
| // Therefore we can assume that begin != end, and that we can do at least one |
| // decrement. |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator begin = floatingObjectSet.begin(); |
| FloatingObjectSetIterator it = floatingObjectSet.end(); |
| do { |
| --it; |
| FloatingObject* r = *it; |
| if (r->isPlaced() && logicalTopForFloat(r) <= logicalTop && logicalBottomForFloat(r) > logicalTop |
| && r->type() == FloatingObject::FloatRight |
| && logicalLeftForFloat(r) < right) { |
| right = min(right, logicalLeftForFloat(r)); |
| if (heightRemaining) |
| *heightRemaining = logicalBottomForFloat(r) - logicalTop; |
| } |
| } while (it != begin); |
| } |
| |
| if (applyTextIndent && !style()->isLeftToRightDirection()) { |
| int cw = 0; |
| if (style()->textIndent().isPercent()) |
| cw = containingBlock()->availableLogicalWidth(); |
| right -= style()->textIndent().calcMinValue(cw); |
| } |
| |
| return right; |
| } |
| |
| int RenderBlock::availableLogicalWidthForLine(int position, bool firstLine) const |
| { |
| int result = logicalRightOffsetForLine(position, firstLine) - logicalLeftOffsetForLine(position, firstLine); |
| return (result < 0) ? 0 : result; |
| } |
| |
| int RenderBlock::nextFloatLogicalBottomBelow(int logicalHeight) const |
| { |
| if (!m_floatingObjects) |
| return 0; |
| |
| int bottom = INT_MAX; |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* r = *it; |
| int floatBottom = logicalBottomForFloat(r); |
| if (floatBottom > logicalHeight) |
| bottom = min(floatBottom, bottom); |
| } |
| |
| return bottom == INT_MAX ? 0 : bottom; |
| } |
| |
| int RenderBlock::lowestFloatLogicalBottom(FloatingObject::Type floatType) const |
| { |
| if (!m_floatingObjects) |
| return 0; |
| int lowestFloatBottom = 0; |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* r = *it; |
| if (r->isPlaced() && r->type() & floatType) |
| lowestFloatBottom = max(lowestFloatBottom, logicalBottomForFloat(r)); |
| } |
| return lowestFloatBottom; |
| } |
| |
| void RenderBlock::markLinesDirtyInBlockRange(int logicalTop, int logicalBottom, RootInlineBox* highest) |
| { |
| if (logicalTop >= logicalBottom) |
| return; |
| |
| RootInlineBox* lowestDirtyLine = lastRootBox(); |
| RootInlineBox* afterLowest = lowestDirtyLine; |
| while (lowestDirtyLine && lowestDirtyLine->blockLogicalHeight() >= logicalBottom && logicalBottom < numeric_limits<int>::max()) { |
| afterLowest = lowestDirtyLine; |
| lowestDirtyLine = lowestDirtyLine->prevRootBox(); |
| } |
| |
| while (afterLowest && afterLowest != highest && (afterLowest->blockLogicalHeight() >= logicalTop || afterLowest->blockLogicalHeight() < 0)) { |
| afterLowest->markDirty(); |
| afterLowest = afterLowest->prevRootBox(); |
| } |
| } |
| |
| void RenderBlock::clearFloats() |
| { |
| // Inline blocks are covered by the isReplaced() check in the avoidFloats method. |
| if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrPositioned() || isTableCell()) { |
| if (m_floatingObjects) { |
| deleteAllValues(m_floatingObjects->set()); |
| m_floatingObjects->clear(); |
| } |
| return; |
| } |
| |
| typedef HashMap<RenderObject*, FloatingObject*> RendererToFloatInfoMap; |
| RendererToFloatInfoMap floatMap; |
| |
| if (m_floatingObjects) { |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| if (childrenInline()) { |
| FloatingObjectSet::iterator end = floatingObjectSet.end(); |
| for (FloatingObjectSet::iterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* f = *it; |
| floatMap.add(f->m_renderer, f); |
| } |
| } else |
| deleteAllValues(floatingObjectSet); |
| m_floatingObjects->clear(); |
| } |
| |
| // We should not process floats if the parent node is not a RenderBlock. Otherwise, we will add |
| // floats in an invalid context. This will cause a crash arising from a bad cast on the parent. |
| // See <rdar://problem/8049753>, where float property is applied on a text node in a SVG. |
| if (!parent() || !parent()->isRenderBlock()) |
| return; |
| |
| // Attempt to locate a previous sibling with overhanging floats. We skip any elements that are |
| // out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted |
| // to avoid floats. |
| bool parentHasFloats = false; |
| RenderBlock* parentBlock = toRenderBlock(parent()); |
| RenderObject* prev = previousSibling(); |
| while (prev && (prev->isFloatingOrPositioned() || !prev->isBox() || !prev->isRenderBlock() || toRenderBlock(prev)->avoidsFloats())) { |
| if (prev->isFloating()) |
| parentHasFloats = true; |
| prev = prev->previousSibling(); |
| } |
| |
| // First add in floats from the parent. |
| int logicalTopOffset = logicalTop(); |
| if (parentHasFloats) |
| addIntrudingFloats(parentBlock, parentBlock->logicalLeftOffsetForContent(), logicalTopOffset); |
| |
| int logicalLeftOffset = 0; |
| if (prev) |
| logicalTopOffset -= toRenderBox(prev)->logicalTop(); |
| else { |
| prev = parentBlock; |
| logicalLeftOffset += parentBlock->logicalLeftOffsetForContent(); |
| } |
| |
| // Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space. |
| if (!prev || !prev->isRenderBlock()) |
| return; |
| |
| RenderBlock* block = toRenderBlock(prev); |
| if (block->m_floatingObjects && block->lowestFloatLogicalBottom() > logicalTopOffset) |
| addIntrudingFloats(block, logicalLeftOffset, logicalTopOffset); |
| |
| if (childrenInline()) { |
| int changeLogicalTop = numeric_limits<int>::max(); |
| int changeLogicalBottom = numeric_limits<int>::min(); |
| if (m_floatingObjects) { |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* f = *it; |
| FloatingObject* oldFloatingObject = floatMap.get(f->m_renderer); |
| int logicalBottom = logicalBottomForFloat(f); |
| if (oldFloatingObject) { |
| int oldLogicalBottom = logicalBottomForFloat(oldFloatingObject); |
| if (logicalWidthForFloat(f) != logicalWidthForFloat(oldFloatingObject) || logicalLeftForFloat(f) != logicalLeftForFloat(oldFloatingObject)) { |
| changeLogicalTop = 0; |
| changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom)); |
| } else if (logicalBottom != oldLogicalBottom) { |
| changeLogicalTop = min(changeLogicalTop, min(logicalBottom, oldLogicalBottom)); |
| changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom)); |
| } |
| |
| floatMap.remove(f->m_renderer); |
| delete oldFloatingObject; |
| } else { |
| changeLogicalTop = 0; |
| changeLogicalBottom = max(changeLogicalBottom, logicalBottom); |
| } |
| } |
| } |
| |
| RendererToFloatInfoMap::iterator end = floatMap.end(); |
| for (RendererToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) { |
| FloatingObject* floatingObject = (*it).second; |
| if (!floatingObject->m_isDescendant) { |
| changeLogicalTop = 0; |
| changeLogicalBottom = max(changeLogicalBottom, logicalBottomForFloat(floatingObject)); |
| } |
| } |
| deleteAllValues(floatMap); |
| |
| markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom); |
| } |
| } |
| |
| int RenderBlock::addOverhangingFloats(RenderBlock* child, int logicalLeftOffset, int logicalTopOffset, bool makeChildPaintOtherFloats) |
| { |
| // Prevent floats from being added to the canvas by the root element, e.g., <html>. |
| if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot() || child->hasColumns() || child->isWritingModeRoot()) |
| return 0; |
| |
| int lowestFloatLogicalBottom = 0; |
| |
| // Floats that will remain the child's responsibility to paint should factor into its |
| // overflow. |
| FloatingObjectSetIterator childEnd = child->m_floatingObjects->set().end(); |
| for (FloatingObjectSetIterator childIt = child->m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) { |
| FloatingObject* r = *childIt; |
| int logicalBottom = child->logicalTop() + logicalBottomForFloat(r); |
| lowestFloatLogicalBottom = max(lowestFloatLogicalBottom, logicalBottom); |
| |
| if (logicalBottom > logicalHeight()) { |
| // If the object is not in the list, we add it now. |
| if (!containsFloat(r->m_renderer)) { |
| int leftOffset = isHorizontalWritingMode() ? logicalLeftOffset : logicalTopOffset; |
| int topOffset = isHorizontalWritingMode() ? logicalTopOffset : logicalLeftOffset; |
| FloatingObject* floatingObj = new FloatingObject(r->type(), IntRect(r->x() - leftOffset, r->y() - topOffset, r->width(), r->height())); |
| floatingObj->m_renderer = r->m_renderer; |
| |
| // The nearest enclosing layer always paints the float (so that zindex and stacking |
| // behaves properly). We always want to propagate the desire to paint the float as |
| // far out as we can, to the outermost block that overlaps the float, stopping only |
| // if we hit a self-painting layer boundary. |
| if (r->m_renderer->enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer()) |
| r->m_shouldPaint = false; |
| else |
| floatingObj->m_shouldPaint = false; |
| |
| floatingObj->m_isDescendant = true; |
| |
| // We create the floating object list lazily. |
| if (!m_floatingObjects) |
| m_floatingObjects = adoptPtr(new FloatingObjects); |
| |
| m_floatingObjects->increaseObjectsCount(floatingObj->type()); |
| m_floatingObjects->set().add(floatingObj); |
| } |
| } else { |
| if (makeChildPaintOtherFloats && !r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer() && |
| r->m_renderer->isDescendantOf(child) && r->m_renderer->enclosingFloatPaintingLayer() == child->enclosingFloatPaintingLayer()) { |
| // The float is not overhanging from this block, so if it is a descendant of the child, the child should |
| // paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing |
| // layer. |
| // If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats |
| // it should paint. |
| r->m_shouldPaint = true; |
| } |
| |
| // Since the float doesn't overhang, it didn't get put into our list. We need to go ahead and add its overflow in to the |
| // child now. |
| if (r->m_isDescendant) |
| child->addOverflowFromChild(r->m_renderer, IntSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r))); |
| } |
| } |
| return lowestFloatLogicalBottom; |
| } |
| |
| void RenderBlock::addIntrudingFloats(RenderBlock* prev, int logicalLeftOffset, int logicalTopOffset) |
| { |
| // If the parent or previous sibling doesn't have any floats to add, don't bother. |
| if (!prev->m_floatingObjects) |
| return; |
| |
| logicalLeftOffset += (isHorizontalWritingMode() ? marginLeft() : marginTop()); |
| |
| FloatingObjectSet& prevSet = prev->m_floatingObjects->set(); |
| FloatingObjectSetIterator prevEnd = prevSet.end(); |
| for (FloatingObjectSetIterator prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) { |
| FloatingObject* r = *prevIt; |
| if (logicalBottomForFloat(r) > logicalTopOffset) { |
| if (!m_floatingObjects || !m_floatingObjects->set().contains(r)) { |
| int leftOffset = isHorizontalWritingMode() ? logicalLeftOffset : logicalTopOffset; |
| int topOffset = isHorizontalWritingMode() ? logicalTopOffset : logicalLeftOffset; |
| |
| FloatingObject* floatingObj = new FloatingObject(r->type(), IntRect(r->x() - leftOffset, r->y() - topOffset, r->width(), r->height())); |
| |
| // Applying the child's margin makes no sense in the case where the child was passed in. |
| // since this margin was added already through the modification of the |logicalLeftOffset| variable |
| // above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken |
| // into account. Only apply this code if prev is the parent, since otherwise the left margin |
| // will get applied twice. |
| if (prev != parent()) { |
| if (isHorizontalWritingMode()) |
| floatingObj->setX(floatingObj->x() + prev->marginLeft()); |
| else |
| floatingObj->setY(floatingObj->y() + prev->marginTop()); |
| } |
| |
| floatingObj->m_shouldPaint = false; // We are not in the direct inheritance chain for this float. We will never paint it. |
| floatingObj->m_renderer = r->m_renderer; |
| |
| // We create the floating object list lazily. |
| if (!m_floatingObjects) |
| m_floatingObjects = adoptPtr(new FloatingObjects); |
| m_floatingObjects->increaseObjectsCount(floatingObj->type()); |
| m_floatingObjects->set().add(floatingObj); |
| } |
| } |
| } |
| } |
| |
| bool RenderBlock::avoidsFloats() const |
| { |
| // Floats can't intrude into our box if we have a non-auto column count or width. |
| return RenderBox::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth(); |
| } |
| |
| bool RenderBlock::containsFloat(RenderBox* renderer) |
| { |
| return m_floatingObjects && m_floatingObjects->set().contains<RenderBox*, FloatingObjectHashTranslator>(renderer); |
| } |
| |
| void RenderBlock::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout) |
| { |
| if (!m_everHadLayout) |
| return; |
| |
| setChildNeedsLayout(true, !inLayout); |
| |
| if (floatToRemove) |
| removeFloatingObject(floatToRemove); |
| |
| // Iterate over our children and mark them as needed. |
| if (!childrenInline()) { |
| for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { |
| if ((!floatToRemove && child->isFloatingOrPositioned()) || !child->isRenderBlock()) |
| continue; |
| RenderBlock* childBlock = toRenderBlock(child); |
| if ((floatToRemove ? childBlock->containsFloat(floatToRemove) : childBlock->containsFloats()) || childBlock->shrinkToAvoidFloats()) |
| childBlock->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout); |
| } |
| } |
| } |
| |
| int RenderBlock::getClearDelta(RenderBox* child, int yPos) |
| { |
| // There is no need to compute clearance if we have no floats. |
| if (!containsFloats()) |
| return 0; |
| |
| // At least one float is present. We need to perform the clearance computation. |
| bool clearSet = child->style()->clear() != CNONE; |
| int bottom = 0; |
| switch (child->style()->clear()) { |
| case CNONE: |
| break; |
| case CLEFT: |
| bottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft); |
| break; |
| case CRIGHT: |
| bottom = lowestFloatLogicalBottom(FloatingObject::FloatRight); |
| break; |
| case CBOTH: |
| bottom = lowestFloatLogicalBottom(); |
| break; |
| } |
| |
| // We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default). |
| int result = clearSet ? max(0, bottom - yPos) : 0; |
| if (!result && child->avoidsFloats()) { |
| int y = yPos; |
| while (true) { |
| int widthAtY = availableLogicalWidthForLine(y, false); |
| if (widthAtY == availableLogicalWidth()) |
| return y - yPos; |
| |
| int oldChildY = child->y(); |
| int oldChildWidth = child->width(); |
| child->setY(y); |
| child->computeLogicalWidth(); |
| int childWidthAtY = child->width(); |
| child->setY(oldChildY); |
| child->setWidth(oldChildWidth); |
| |
| if (childWidthAtY <= widthAtY) |
| return y - yPos; |
| |
| y = nextFloatLogicalBottomBelow(y); |
| ASSERT(y >= yPos); |
| if (y < yPos) |
| break; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| return result; |
| } |
| |
| bool RenderBlock::isPointInOverflowControl(HitTestResult& result, int _x, int _y, int _tx, int _ty) |
| { |
| if (!scrollsOverflow()) |
| return false; |
| |
| return layer()->hitTestOverflowControls(result, IntPoint(_x - _tx, _y - _ty)); |
| } |
| |
| bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int _x, int _y, int _tx, int _ty, HitTestAction hitTestAction) |
| { |
| int tx = _tx + x(); |
| int ty = _ty + y(); |
| |
| if (!isRenderView()) { |
| // Check if we need to do anything at all. |
| IntRect overflowBox = visualOverflowRect(); |
| overflowBox.move(tx, ty); |
| if (!overflowBox.intersects(result.rectForPoint(_x, _y))) |
| return false; |
| } |
| |
| if ((hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) && isPointInOverflowControl(result, _x, _y, tx, ty)) { |
| updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); |
| // FIXME: isPointInOverflowControl() doesn't handle rect-based tests yet. |
| if (!result.addNodeToRectBasedTestResult(node(), _x, _y)) |
| return true; |
| } |
| |
| // If we have clipping, then we can't have any spillout. |
| bool useOverflowClip = hasOverflowClip() && !hasSelfPaintingLayer(); |
| bool useClip = (hasControlClip() || useOverflowClip); |
| IntRect hitTestArea(result.rectForPoint(_x, _y)); |
| bool checkChildren = !useClip || (hasControlClip() ? controlClipRect(tx, ty).intersects(hitTestArea) : overflowClipRect(tx, ty, IncludeOverlayScrollbarSize).intersects(hitTestArea)); |
| if (checkChildren) { |
| // Hit test descendants first. |
| int scrolledX = tx; |
| int scrolledY = ty; |
| if (hasOverflowClip()) { |
| IntSize offset = layer()->scrolledContentOffset(); |
| scrolledX -= offset.width(); |
| scrolledY -= offset.height(); |
| } |
| |
| // Hit test contents if we don't have columns. |
| if (!hasColumns()) { |
| if (hitTestContents(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) { |
| updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); |
| return true; |
| } |
| if (hitTestAction == HitTestFloat && hitTestFloats(request, result, _x, _y, scrolledX, scrolledY)) |
| return true; |
| } else if (hitTestColumns(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) { |
| updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); |
| return true; |
| } |
| } |
| |
| // Now hit test our background |
| if (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) { |
| IntRect boundsRect(tx, ty, width(), height()); |
| if (visibleToHitTesting() && boundsRect.intersects(result.rectForPoint(_x, _y))) { |
| updateHitTestResult(result, flipForWritingMode(IntPoint(_x - tx, _y - ty))); |
| if (!result.addNodeToRectBasedTestResult(node(), _x, _y, boundsRect)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool RenderBlock::hitTestFloats(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty) |
| { |
| if (!m_floatingObjects) |
| return false; |
| |
| if (isRenderView()) { |
| tx += toRenderView(this)->frameView()->scrollX(); |
| ty += toRenderView(this)->frameView()->scrollY(); |
| } |
| |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator begin = floatingObjectSet.begin(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.end(); it != begin;) { |
| --it; |
| FloatingObject* floatingObject = *it; |
| if (floatingObject->m_shouldPaint && !floatingObject->m_renderer->hasSelfPaintingLayer()) { |
| int xOffset = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->m_renderer->x(); |
| int yOffset = yPositionForFloatIncludingMargin(floatingObject) - floatingObject->m_renderer->y(); |
| IntPoint childPoint = flipFloatForWritingMode(floatingObject, IntPoint(tx + xOffset, ty + yOffset)); |
| if (floatingObject->m_renderer->hitTest(request, result, IntPoint(x, y), childPoint.x(), childPoint.y())) { |
| updateHitTestResult(result, IntPoint(x - childPoint.x(), y - childPoint.y())); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) |
| { |
| // We need to do multiple passes, breaking up our hit testing into strips. |
| ColumnInfo* colInfo = columnInfo(); |
| int colCount = columnCount(colInfo); |
| if (!colCount) |
| return false; |
| int logicalLeft = logicalLeftOffsetForContent(); |
| int currLogicalTopOffset = 0; |
| int i; |
| bool isHorizontal = isHorizontalWritingMode(); |
| for (i = 0; i < colCount; i++) { |
| IntRect colRect = columnRectAt(colInfo, i); |
| int blockDelta = (isHorizontal ? colRect.height() : colRect.width()); |
| if (style()->isFlippedBlocksWritingMode()) |
| currLogicalTopOffset += blockDelta; |
| else |
| currLogicalTopOffset -= blockDelta; |
| } |
| for (i = colCount - 1; i >= 0; i--) { |
| IntRect colRect = columnRectAt(colInfo, i); |
| flipForWritingMode(colRect); |
| int currLogicalLeftOffset = (isHorizontal ? colRect.x() : colRect.y()) - logicalLeft; |
| int blockDelta = (isHorizontal ? colRect.height() : colRect.width()); |
| if (style()->isFlippedBlocksWritingMode()) |
| currLogicalTopOffset -= blockDelta; |
| else |
| currLogicalTopOffset += blockDelta; |
| colRect.move(tx, ty); |
| |
| if (colRect.intersects(result.rectForPoint(x, y))) { |
| // The point is inside this column. |
| // Adjust tx and ty to change where we hit test. |
| |
| IntSize offset = isHorizontal ? IntSize(currLogicalLeftOffset, currLogicalTopOffset) : IntSize(currLogicalTopOffset, currLogicalLeftOffset); |
| int finalX = tx + offset.width(); |
| int finalY = ty + offset.height(); |
| if (result.isRectBasedTest() && !colRect.contains(result.rectForPoint(x, y))) |
| hitTestContents(request, result, x, y, finalX, finalY, hitTestAction); |
| else |
| return hitTestContents(request, result, x, y, finalX, finalY, hitTestAction) || (hitTestAction == HitTestFloat && hitTestFloats(request, result, x, y, finalX, finalY)); |
| } |
| } |
| |
| return false; |
| } |
| |
| bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) |
| { |
| if (childrenInline() && !isTable()) { |
| // We have to hit-test our line boxes. |
| if (m_lineBoxes.hitTest(this, request, result, x, y, tx, ty, hitTestAction)) |
| return true; |
| } else { |
| // Hit test our children. |
| HitTestAction childHitTest = hitTestAction; |
| if (hitTestAction == HitTestChildBlockBackgrounds) |
| childHitTest = HitTestChildBlockBackground; |
| for (RenderBox* child = lastChildBox(); child; child = child->previousSiblingBox()) { |
| IntPoint childPoint = flipForWritingMode(child, IntPoint(tx, ty), ParentToChildFlippingAdjustment); |
| if (!child->hasSelfPaintingLayer() && !child->isFloating() && child->nodeAtPoint(request, result, x, y, childPoint.x(), childPoint.y(), childHitTest)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| Position RenderBlock::positionForBox(InlineBox *box, bool start) const |
| { |
| if (!box) |
| return Position(); |
| |
| if (!box->renderer()->node()) |
| return Position(node(), start ? caretMinOffset() : caretMaxOffset()); |
| |
| if (!box->isInlineTextBox()) |
| return Position(box->renderer()->node(), start ? box->renderer()->caretMinOffset() : box->renderer()->caretMaxOffset()); |
| |
| InlineTextBox *textBox = static_cast<InlineTextBox *>(box); |
| return Position(box->renderer()->node(), start ? textBox->start() : textBox->start() + textBox->len()); |
| } |
| |
| // FIXME: This function should go on RenderObject as an instance method. Then |
| // all cases in which positionForPoint recurs could call this instead to |
| // prevent crossing editable boundaries. This would require many tests. |
| static VisiblePosition positionForPointRespectingEditingBoundaries(RenderBlock* parent, RenderBox* child, const IntPoint& pointInParentCoordinates) |
| { |
| // FIXME: This is wrong if the child's writing-mode is different from the parent's. |
| IntPoint pointInChildCoordinates(pointInParentCoordinates - child->location()); |
| |
| // If this is an anonymous renderer, we just recur normally |
| Node* childNode = child->node(); |
| if (!childNode) |
| return child->positionForPoint(pointInChildCoordinates); |
| |
| // Otherwise, first make sure that the editability of the parent and child agree. |
| // If they don't agree, then we return a visible position just before or after the child |
| RenderObject* ancestor = parent; |
| while (ancestor && !ancestor->node()) |
| ancestor = ancestor->parent(); |
| |
| // If we can't find an ancestor to check editability on, or editability is unchanged, we recur like normal |
| if (!ancestor || ancestor->node()->rendererIsEditable() == childNode->rendererIsEditable()) |
| return child->positionForPoint(pointInChildCoordinates); |
| |
| // Otherwise return before or after the child, depending on if the click was to the logical left or logical right of the child |
| int childMiddle = parent->logicalWidthForChild(child) / 2; |
| int logicalLeft = parent->isHorizontalWritingMode() ? pointInChildCoordinates.x() : pointInChildCoordinates.y(); |
| if (logicalLeft < childMiddle) |
| return ancestor->createVisiblePosition(childNode->nodeIndex(), DOWNSTREAM); |
| return ancestor->createVisiblePosition(childNode->nodeIndex() + 1, UPSTREAM); |
| } |
| |
| VisiblePosition RenderBlock::positionForPointWithInlineChildren(const IntPoint& pointInLogicalContents) |
| { |
| ASSERT(childrenInline()); |
| |
| if (!firstRootBox()) |
| return createVisiblePosition(0, DOWNSTREAM); |
| |
| // look for the closest line box in the root box which is at the passed-in y coordinate |
| InlineBox* closestBox = 0; |
| RootInlineBox* firstRootBoxWithChildren = 0; |
| RootInlineBox* lastRootBoxWithChildren = 0; |
| for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { |
| if (!root->firstLeafChild()) |
| continue; |
| if (!firstRootBoxWithChildren) |
| firstRootBoxWithChildren = root; |
| lastRootBoxWithChildren = root; |
| |
| // check if this root line box is located at this y coordinate |
| if (pointInLogicalContents.y() < root->selectionBottom()) { |
| closestBox = root->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x()); |
| if (closestBox) |
| break; |
| } |
| } |
| |
| bool moveCaretToBoundary = document()->frame()->editor()->behavior().shouldMoveCaretToHorizontalBoundaryWhenPastTopOrBottom(); |
| |
| if (!moveCaretToBoundary && !closestBox && lastRootBoxWithChildren) { |
| // y coordinate is below last root line box, pretend we hit it |
| closestBox = lastRootBoxWithChildren->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x()); |
| } |
| |
| if (closestBox) { |
| if (moveCaretToBoundary && pointInLogicalContents.y() < firstRootBoxWithChildren->selectionTop()) { |
| // y coordinate is above first root line box, so return the start of the first |
| return VisiblePosition(positionForBox(firstRootBoxWithChildren->firstLeafChild(), true), DOWNSTREAM); |
| } |
| |
| // pass the box a top position that is inside it |
| IntPoint point(pointInLogicalContents.x(), closestBox->logicalTop()); |
| if (!isHorizontalWritingMode()) |
| point = point.transposedPoint(); |
| if (closestBox->renderer()->isReplaced()) |
| return positionForPointRespectingEditingBoundaries(this, toRenderBox(closestBox->renderer()), point); |
| return closestBox->renderer()->positionForPoint(point); |
| } |
| |
| if (lastRootBoxWithChildren) { |
| // We hit this case for Mac behavior when the Y coordinate is below the last box. |
| ASSERT(moveCaretToBoundary); |
| InlineBox* logicallyLastBox; |
| if (lastRootBoxWithChildren->getLogicalEndBoxWithNode(logicallyLastBox)) |
| return VisiblePosition(positionForBox(logicallyLastBox, false), DOWNSTREAM); |
| } |
| |
| // Can't reach this. We have a root line box, but it has no kids. |
| // FIXME: This should ASSERT_NOT_REACHED(), but clicking on placeholder text |
| // seems to hit this code path. |
| return createVisiblePosition(0, DOWNSTREAM); |
| } |
| |
| static inline bool isChildHitTestCandidate(RenderBox* box) |
| { |
| return box->height() && box->style()->visibility() == VISIBLE && !box->isFloatingOrPositioned(); |
| } |
| |
| VisiblePosition RenderBlock::positionForPoint(const IntPoint& point) |
| { |
| if (isTable()) |
| return RenderBox::positionForPoint(point); |
| |
| if (isReplaced()) { |
| // FIXME: This seems wrong when the object's writing-mode doesn't match the line's writing-mode. |
| int pointLogicalLeft = isHorizontalWritingMode() ? point.x() : point.y(); |
| int pointLogicalTop = isHorizontalWritingMode() ? point.y() : point.x(); |
| |
| if (pointLogicalTop < 0 || (pointLogicalTop < logicalHeight() && pointLogicalLeft < 0)) |
| return createVisiblePosition(caretMinOffset(), DOWNSTREAM); |
| if (pointLogicalTop >= logicalHeight() || (pointLogicalTop >= 0 && pointLogicalLeft >= logicalWidth())) |
| return createVisiblePosition(caretMaxOffset(), DOWNSTREAM); |
| } |
| |
| int contentsX = point.x(); |
| int contentsY = point.y(); |
| offsetForContents(contentsX, contentsY); |
| IntPoint pointInContents(contentsX, contentsY); |
| IntPoint pointInLogicalContents(pointInContents); |
| if (!isHorizontalWritingMode()) |
| pointInLogicalContents = pointInLogicalContents.transposedPoint(); |
| |
| if (childrenInline()) |
| return positionForPointWithInlineChildren(pointInLogicalContents); |
| |
| if (lastChildBox() && pointInContents.y() > lastChildBox()->logicalTop()) { |
| for (RenderBox* childBox = lastChildBox(); childBox; childBox = childBox->previousSiblingBox()) { |
| if (isChildHitTestCandidate(childBox)) |
| return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents); |
| } |
| } else { |
| for (RenderBox* childBox = firstChildBox(); childBox; childBox = childBox->nextSiblingBox()) { |
| // We hit child if our click is above the bottom of its padding box (like IE6/7 and FF3). |
| if (isChildHitTestCandidate(childBox) && pointInContents.y() < childBox->logicalBottom()) |
| return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents); |
| } |
| } |
| |
| // We only get here if there are no hit test candidate children below the click. |
| return RenderBox::positionForPoint(point); |
| } |
| |
| void RenderBlock::offsetForContents(int& tx, int& ty) const |
| { |
| IntPoint contentsPoint(tx, ty); |
| |
| if (hasOverflowClip()) |
| contentsPoint += layer()->scrolledContentOffset(); |
| |
| if (hasColumns()) |
| adjustPointToColumnContents(contentsPoint); |
| |
| tx = contentsPoint.x(); |
| ty = contentsPoint.y(); |
| } |
| |
| int RenderBlock::availableLogicalWidth() const |
| { |
| // If we have multiple columns, then the available logical width is reduced to our column width. |
| if (hasColumns()) |
| return desiredColumnWidth(); |
| return RenderBox::availableLogicalWidth(); |
| } |
| |
| int RenderBlock::columnGap() const |
| { |
| if (style()->hasNormalColumnGap()) |
| return style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins. |
| return static_cast<int>(style()->columnGap()); |
| } |
| |
| void RenderBlock::calcColumnWidth() |
| { |
| // Calculate our column width and column count. |
| unsigned desiredColumnCount = 1; |
| int desiredColumnWidth = contentLogicalWidth(); |
| |
| // For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination. |
| if (document()->paginated() || (style()->hasAutoColumnCount() && style()->hasAutoColumnWidth())) { |
| setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); |
| return; |
| } |
| |
| int availWidth = desiredColumnWidth; |
| int colGap = columnGap(); |
| int colWidth = max(1, static_cast<int>(style()->columnWidth())); |
| int colCount = max(1, static_cast<int>(style()->columnCount())); |
| |
| if (style()->hasAutoColumnWidth()) { |
| if ((colCount - 1) * colGap < availWidth) { |
| desiredColumnCount = colCount; |
| desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; |
| } else if (colGap < availWidth) { |
| desiredColumnCount = availWidth / colGap; |
| if (desiredColumnCount < 1) |
| desiredColumnCount = 1; |
| desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; |
| } |
| } else if (style()->hasAutoColumnCount()) { |
| if (colWidth < availWidth) { |
| desiredColumnCount = (availWidth + colGap) / (colWidth + colGap); |
| if (desiredColumnCount < 1) |
| desiredColumnCount = 1; |
| desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; |
| } |
| } else { |
| // Both are set. |
| if (colCount * colWidth + (colCount - 1) * colGap <= availWidth) { |
| desiredColumnCount = colCount; |
| desiredColumnWidth = colWidth; |
| } else if (colWidth < availWidth) { |
| desiredColumnCount = (availWidth + colGap) / (colWidth + colGap); |
| if (desiredColumnCount < 1) |
| desiredColumnCount = 1; |
| desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; |
| } |
| } |
| setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); |
| } |
| |
| void RenderBlock::setDesiredColumnCountAndWidth(int count, int width) |
| { |
| bool destroyColumns = !firstChild() |
| || (count == 1 && style()->hasAutoColumnWidth()) |
| || firstChild()->isAnonymousColumnsBlock() |
| || firstChild()->isAnonymousColumnSpanBlock(); |
| if (destroyColumns) { |
| if (hasColumns()) { |
| delete gColumnInfoMap->take(this); |
| setHasColumns(false); |
| } |
| } else { |
| ColumnInfo* info; |
| if (hasColumns()) |
| info = gColumnInfoMap->get(this); |
| else { |
| if (!gColumnInfoMap) |
| gColumnInfoMap = new ColumnInfoMap; |
| info = new ColumnInfo; |
| gColumnInfoMap->add(this, info); |
| setHasColumns(true); |
| } |
| info->setDesiredColumnCount(count); |
| info->setDesiredColumnWidth(width); |
| } |
| } |
| |
| int RenderBlock::desiredColumnWidth() const |
| { |
| if (!hasColumns()) |
| return contentLogicalWidth(); |
| return gColumnInfoMap->get(this)->desiredColumnWidth(); |
| } |
| |
| unsigned RenderBlock::desiredColumnCount() const |
| { |
| if (!hasColumns()) |
| return 1; |
| return gColumnInfoMap->get(this)->desiredColumnCount(); |
| } |
| |
| ColumnInfo* RenderBlock::columnInfo() const |
| { |
| if (!hasColumns()) |
| return 0; |
| return gColumnInfoMap->get(this); |
| } |
| |
| unsigned RenderBlock::columnCount(ColumnInfo* colInfo) const |
| { |
| ASSERT(hasColumns() && gColumnInfoMap->get(this) == colInfo); |
| return colInfo->columnCount(); |
| } |
| |
| IntRect RenderBlock::columnRectAt(ColumnInfo* colInfo, unsigned index) const |
| { |
| ASSERT(hasColumns() && gColumnInfoMap->get(this) == colInfo); |
| |
| // Compute the appropriate rect based off our information. |
| int colLogicalWidth = colInfo->desiredColumnWidth(); |
| int colLogicalHeight = colInfo->columnHeight(); |
| int colLogicalTop = borderBefore() + paddingBefore(); |
| int colGap = columnGap(); |
| int colLogicalLeft = style()->isLeftToRightDirection() ? |
| logicalLeftOffsetForContent() + (index * (colLogicalWidth + colGap)) |
| : logicalLeftOffsetForContent() + contentLogicalWidth() - colLogicalWidth - (index * (colLogicalWidth + colGap)); |
| IntRect rect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight); |
| if (isHorizontalWritingMode()) |
| return IntRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight); |
| return IntRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth); |
| } |
| |
| bool RenderBlock::layoutColumns(bool hasSpecifiedPageLogicalHeight, int pageLogicalHeight, LayoutStateMaintainer& statePusher) |
| { |
| if (!hasColumns()) |
| return false; |
| |
| // FIXME: We don't balance properly at all in the presence of forced page breaks. We need to understand what |
| // the distance between forced page breaks is so that we can avoid making the minimum column height too tall. |
| ColumnInfo* colInfo = columnInfo(); |
| int desiredColumnCount = colInfo->desiredColumnCount(); |
| if (!hasSpecifiedPageLogicalHeight) { |
| int columnHeight = pageLogicalHeight; |
| int minColumnCount = colInfo->forcedBreaks() + 1; |
| if (minColumnCount >= desiredColumnCount) { |
| // The forced page breaks are in control of the balancing. Just set the column height to the |
| // maximum page break distance. |
| if (!pageLogicalHeight) { |
| int distanceBetweenBreaks = max(colInfo->maximumDistanceBetweenForcedBreaks(), |
| view()->layoutState()->pageLogicalOffset(borderBefore() + paddingBefore() + contentLogicalHeight()) - colInfo->forcedBreakOffset()); |
| columnHeight = max(colInfo->minimumColumnHeight(), distanceBetweenBreaks); |
| } |
| } else if (contentLogicalHeight() > pageLogicalHeight * desiredColumnCount) { |
| // Now that we know the intrinsic height of the columns, we have to rebalance them. |
| columnHeight = max(colInfo->minimumColumnHeight(), (int)ceilf((float)contentLogicalHeight() / desiredColumnCount)); |
| } |
| |
| if (columnHeight && columnHeight != pageLogicalHeight) { |
| statePusher.pop(); |
| m_everHadLayout = true; |
| layoutBlock(false, columnHeight); |
| return true; |
| } |
| } |
| |
| if (pageLogicalHeight) |
| colInfo->setColumnCountAndHeight(ceilf((float)contentLogicalHeight() / pageLogicalHeight), pageLogicalHeight); |
| |
| if (columnCount(colInfo)) { |
| setLogicalHeight(borderBefore() + paddingBefore() + colInfo->columnHeight() + borderAfter() + paddingAfter() + scrollbarLogicalHeight()); |
| m_overflow.clear(); |
| } |
| |
| return false; |
| } |
| |
| void RenderBlock::adjustPointToColumnContents(IntPoint& point) const |
| { |
| // Just bail if we have no columns. |
| if (!hasColumns()) |
| return; |
| |
| ColumnInfo* colInfo = columnInfo(); |
| if (!columnCount(colInfo)) |
| return; |
| |
| // Determine which columns we intersect. |
| int colGap = columnGap(); |
| int halfColGap = colGap / 2; |
| IntPoint columnPoint(columnRectAt(colInfo, 0).location()); |
| int logicalOffset = 0; |
| for (unsigned i = 0; i < colInfo->columnCount(); i++) { |
| // Add in half the column gap to the left and right of the rect. |
| IntRect colRect = columnRectAt(colInfo, i); |
| if (isHorizontalWritingMode()) { |
| IntRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height()); |
| if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) { |
| // FIXME: The clamping that follows is not completely right for right-to-left |
| // content. |
| // Clamp everything above the column to its top left. |
| if (point.y() < gapAndColumnRect.y()) |
| point = gapAndColumnRect.location(); |
| // Clamp everything below the column to the next column's top left. If there is |
| // no next column, this still maps to just after this column. |
| else if (point.y() >= gapAndColumnRect.maxY()) { |
| point = gapAndColumnRect.location(); |
| point.move(0, gapAndColumnRect.height()); |
| } |
| |
| // We're inside the column. Translate the x and y into our column coordinate space. |
| point.move(columnPoint.x() - colRect.x(), logicalOffset); |
| return; |
| } |
| |
| // Move to the next position. |
| logicalOffset += colRect.height(); |
| } else { |
| IntRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap); |
| if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) { |
| // FIXME: The clamping that follows is not completely right for right-to-left |
| // content. |
| // Clamp everything above the column to its top left. |
| if (point.x() < gapAndColumnRect.x()) |
| point = gapAndColumnRect.location(); |
| // Clamp everything below the column to the next column's top left. If there is |
| // no next column, this still maps to just after this column. |
| else if (point.x() >= gapAndColumnRect.maxX()) { |
| point = gapAndColumnRect.location(); |
| point.move(gapAndColumnRect.width(), 0); |
| } |
| |
| // We're inside the column. Translate the x and y into our column coordinate space. |
| point.move(logicalOffset, columnPoint.y() - colRect.y()); |
| return; |
| } |
| |
| // Move to the next position. |
| logicalOffset += colRect.width(); |
| } |
| } |
| } |
| |
| void RenderBlock::adjustRectForColumns(IntRect& r) const |
| { |
| // Just bail if we have no columns. |
| if (!hasColumns()) |
| return; |
| |
| ColumnInfo* colInfo = columnInfo(); |
| |
| // Begin with a result rect that is empty. |
| IntRect result; |
| |
| // Determine which columns we intersect. |
| unsigned colCount = columnCount(colInfo); |
| if (!colCount) |
| return; |
| |
| int logicalLeft = logicalLeftOffsetForContent(); |
| int currLogicalOffset = 0; |
| |
| for (unsigned i = 0; i < colCount; i++) { |
| IntRect colRect = columnRectAt(colInfo, i); |
| IntRect repaintRect = r; |
| if (isHorizontalWritingMode()) { |
| int currXOffset = colRect.x() - logicalLeft; |
| repaintRect.move(currXOffset, currLogicalOffset); |
| currLogicalOffset -= colRect.height(); |
| } else { |
| int currYOffset = colRect.y() - logicalLeft; |
| repaintRect.move(currLogicalOffset, currYOffset); |
| currLogicalOffset -= colRect.width(); |
| } |
| repaintRect.intersect(colRect); |
| result.unite(repaintRect); |
| } |
| |
| r = result; |
| } |
| |
| IntPoint RenderBlock::flipForWritingModeIncludingColumns(const IntPoint& point) const |
| { |
| ASSERT(hasColumns()); |
| if (!hasColumns() || !style()->isFlippedBlocksWritingMode()) |
| return point; |
| ColumnInfo* colInfo = columnInfo(); |
| int columnLogicalHeight = colInfo->columnHeight(); |
| int expandedLogicalHeight = borderBefore() + paddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAfter() + paddingAfter() + scrollbarLogicalHeight(); |
| if (isHorizontalWritingMode()) |
| return IntPoint(point.x(), expandedLogicalHeight - point.y()); |
| return IntPoint(expandedLogicalHeight - point.x(), point.y()); |
| } |
| |
| void RenderBlock::flipForWritingModeIncludingColumns(IntRect& rect) const |
| { |
| ASSERT(hasColumns()); |
| if (!hasColumns() || !style()->isFlippedBlocksWritingMode()) |
| return; |
| |
| ColumnInfo* colInfo = columnInfo(); |
| int columnLogicalHeight = colInfo->columnHeight(); |
| int expandedLogicalHeight = borderBefore() + paddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAfter() + paddingAfter() + scrollbarLogicalHeight(); |
| if (isHorizontalWritingMode()) |
| rect.setY(expandedLogicalHeight - rect.maxY()); |
| else |
| rect.setX(expandedLogicalHeight - rect.maxX()); |
| } |
| |
| void RenderBlock::adjustForColumns(IntSize& offset, const IntPoint& point) const |
| { |
| if (!hasColumns()) |
| return; |
| |
| ColumnInfo* colInfo = columnInfo(); |
| |
| int logicalLeft = logicalLeftOffsetForContent(); |
| size_t colCount = columnCount(colInfo); |
| int colLogicalWidth = colInfo->desiredColumnWidth(); |
| int colLogicalHeight = colInfo->columnHeight(); |
| |
| for (size_t i = 0; i < colCount; ++i) { |
| // Compute the edges for a given column in the block progression direction. |
| IntRect sliceRect = IntRect(logicalLeft, borderBefore() + paddingBefore() + i * colLogicalHeight, colLogicalWidth, colLogicalHeight); |
| if (!isHorizontalWritingMode()) |
| sliceRect = sliceRect.transposedRect(); |
| |
| // If we have a flipped blocks writing mode, then convert the column so that it's coming from the after edge (either top or left edge). |
| flipForWritingModeIncludingColumns(sliceRect); |
| |
| int logicalOffset = style()->isFlippedBlocksWritingMode() ? (colCount - 1 - i) * colLogicalHeight : i * colLogicalHeight; |
| |
| // Now we're in the same coordinate space as the point. See if it is inside the rectangle. |
| if (isHorizontalWritingMode()) { |
| if (point.y() >= sliceRect.y() && point.y() < sliceRect.maxY()) { |
| offset.expand(columnRectAt(colInfo, i).x() - logicalLeft, -logicalOffset); |
| return; |
| } |
| } else { |
| if (point.x() >= sliceRect.x() && point.x() < sliceRect.maxX()) { |
| offset.expand(-logicalOffset, columnRectAt(colInfo, i).y() - logicalLeft); |
| return; |
| } |
| } |
| } |
| } |
| |
| void RenderBlock::computePreferredLogicalWidths() |
| { |
| ASSERT(preferredLogicalWidthsDirty()); |
| |
| updateFirstLetter(); |
| |
| if (!isTableCell() && style()->logicalWidth().isFixed() && style()->logicalWidth().value() > 0) |
| m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth = computeContentBoxLogicalWidth(style()->logicalWidth().value()); |
| else { |
| m_minPreferredLogicalWidth = 0; |
| m_maxPreferredLogicalWidth = 0; |
| |
| if (childrenInline()) |
| computeInlinePreferredLogicalWidths(); |
| else |
| computeBlockPreferredLogicalWidths(); |
| |
| m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth); |
| |
| if (!style()->autoWrap() && childrenInline()) { |
| m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth; |
| |
| // A horizontal marquee with inline children has no minimum width. |
| if (layer() && layer()->marquee() && layer()->marquee()->isHorizontal()) |
| m_minPreferredLogicalWidth = 0; |
| } |
| |
| int scrollbarWidth = 0; |
| if (hasOverflowClip() && style()->overflowY() == OSCROLL) { |
| layer()->setHasVerticalScrollbar(true); |
| scrollbarWidth = verticalScrollbarWidth(); |
| m_maxPreferredLogicalWidth += scrollbarWidth; |
| } |
| |
| if (isTableCell()) { |
| Length w = toRenderTableCell(this)->styleOrColLogicalWidth(); |
| if (w.isFixed() && w.value() > 0) { |
| m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(w.value())); |
| scrollbarWidth = 0; |
| } |
| } |
| |
| m_minPreferredLogicalWidth += scrollbarWidth; |
| } |
| |
| if (style()->logicalMinWidth().isFixed() && style()->logicalMinWidth().value() > 0) { |
| m_maxPreferredLogicalWidth = max(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMinWidth().value())); |
| m_minPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMinWidth().value())); |
| } |
| |
| if (style()->logicalMaxWidth().isFixed() && style()->logicalMaxWidth().value() != undefinedLength) { |
| m_maxPreferredLogicalWidth = min(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMaxWidth().value())); |
| m_minPreferredLogicalWidth = min(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->logicalMaxWidth().value())); |
| } |
| |
| int borderAndPadding = borderAndPaddingLogicalWidth(); |
| m_minPreferredLogicalWidth += borderAndPadding; |
| m_maxPreferredLogicalWidth += borderAndPadding; |
| |
| setPreferredLogicalWidthsDirty(false); |
| } |
| |
| struct InlineMinMaxIterator { |
| /* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to |
| inline min/max width calculations. Note the following about the way it walks: |
| (1) Positioned content is skipped (since it does not contribute to min/max width of a block) |
| (2) We do not drill into the children of floats or replaced elements, since you can't break |
| in the middle of such an element. |
| (3) Inline flows (e.g., <a>, <span>, <i>) are walked twice, since each side can have |
| distinct borders/margin/padding that contribute to the min/max width. |
| */ |
| RenderObject* parent; |
| RenderObject* current; |
| bool endOfInline; |
| |
| InlineMinMaxIterator(RenderObject* p, bool end = false) |
| :parent(p), current(p), endOfInline(end) {} |
| |
| RenderObject* next(); |
| }; |
| |
| RenderObject* InlineMinMaxIterator::next() |
| { |
| RenderObject* result = 0; |
| bool oldEndOfInline = endOfInline; |
| endOfInline = false; |
| while (current || current == parent) { |
| if (!oldEndOfInline && |
| (current == parent || |
| (!current->isFloating() && !current->isReplaced() && !current->isPositioned()))) |
| result = current->firstChild(); |
| if (!result) { |
| // We hit the end of our inline. (It was empty, e.g., <span></span>.) |
| if (!oldEndOfInline && current->isRenderInline()) { |
| result = current; |
| endOfInline = true; |
| break; |
| } |
| |
| while (current && current != parent) { |
| result = current->nextSibling(); |
| if (result) break; |
| current = current->parent(); |
| if (current && current != parent && current->isRenderInline()) { |
| result = current; |
| endOfInline = true; |
| break; |
| } |
| } |
| } |
| |
| if (!result) |
| break; |
| |
| if (!result->isPositioned() && (result->isText() || result->isFloating() || result->isReplaced() || result->isRenderInline())) |
| break; |
| |
| current = result; |
| result = 0; |
| } |
| |
| // Update our position. |
| current = result; |
| return current; |
| } |
| |
| static int getBPMWidth(int childValue, Length cssUnit) |
| { |
| if (cssUnit.type() != Auto) |
| return (cssUnit.isFixed() ? cssUnit.value() : childValue); |
| return 0; |
| } |
| |
| static int getBorderPaddingMargin(const RenderBoxModelObject* child, bool endOfInline) |
| { |
| RenderStyle* cstyle = child->style(); |
| if (endOfInline) |
| return getBPMWidth(child->marginEnd(), cstyle->marginEnd()) + |
| getBPMWidth(child->paddingEnd(), cstyle->paddingEnd()) + |
| child->borderEnd(); |
| return getBPMWidth(child->marginStart(), cstyle->marginStart()) + |
| getBPMWidth(child->paddingStart(), cstyle->paddingStart()) + |
| child->borderStart(); |
| } |
| |
| static inline void stripTrailingSpace(float& inlineMax, float& inlineMin, |
| RenderObject* trailingSpaceChild) |
| { |
| if (trailingSpaceChild && trailingSpaceChild->isText()) { |
| // Collapse away the trailing space at the end of a block. |
| RenderText* t = toRenderText(trailingSpaceChild); |
| const UChar space = ' '; |
| const Font& font = t->style()->font(); // FIXME: This ignores first-line. |
| float spaceWidth = font.width(TextRun(&space, 1)); |
| inlineMax -= spaceWidth + font.wordSpacing(); |
| if (inlineMin > inlineMax) |
| inlineMin = inlineMax; |
| } |
| } |
| |
| static inline void updatePreferredWidth(int& preferredWidth, float& result) |
| { |
| int snappedResult = ceilf(result); |
| preferredWidth = max(snappedResult, preferredWidth); |
| } |
| |
| void RenderBlock::computeInlinePreferredLogicalWidths() |
| { |
| float inlineMax = 0; |
| float inlineMin = 0; |
| |
| int cw = containingBlock()->contentLogicalWidth(); |
| |
| // If we are at the start of a line, we want to ignore all white-space. |
| // Also strip spaces if we previously had text that ended in a trailing space. |
| bool stripFrontSpaces = true; |
| RenderObject* trailingSpaceChild = 0; |
| |
| // Firefox and Opera will allow a table cell to grow to fit an image inside it under |
| // very specific cirucumstances (in order to match common WinIE renderings). |
| // Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.) |
| bool allowImagesToBreak = !document()->inQuirksMode() || !isTableCell() || !style()->logicalWidth().isIntrinsicOrAuto(); |
| |
| bool autoWrap, oldAutoWrap; |
| autoWrap = oldAutoWrap = style()->autoWrap(); |
| |
| InlineMinMaxIterator childIterator(this); |
| bool addedTextIndent = false; // Only gets added in once. |
| RenderObject* prevFloat = 0; |
| while (RenderObject* child = childIterator.next()) { |
| autoWrap = child->isReplaced() ? child->parent()->style()->autoWrap() : |
| child->style()->autoWrap(); |
| |
| if (!child->isBR()) { |
| // Step One: determine whether or not we need to go ahead and |
| // terminate our current line. Each discrete chunk can become |
| // the new min-width, if it is the widest chunk seen so far, and |
| // it can also become the max-width. |
| |
| // Children fall into three categories: |
| // (1) An inline flow object. These objects always have a min/max of 0, |
| // and are included in the iteration solely so that their margins can |
| // be added in. |
| // |
| // (2) An inline non-text non-flow object, e.g., an inline replaced element. |
| // These objects can always be on a line by themselves, so in this situation |
| // we need to go ahead and break the current line, and then add in our own |
| // margins and min/max width on its own line, and then terminate the line. |
| // |
| // (3) A text object. Text runs can have breakable characters at the start, |
| // the middle or the end. They may also lose whitespace off the front if |
| // we're already ignoring whitespace. In order to compute accurate min-width |
| // information, we need three pieces of information. |
| // (a) the min-width of the first non-breakable run. Should be 0 if the text string |
| // starts with whitespace. |
| // (b) the min-width of the last non-breakable run. Should be 0 if the text string |
| // ends with whitespace. |
| // (c) the min/max width of the string (trimmed for whitespace). |
| // |
| // If the text string starts with whitespace, then we need to go ahead and |
| // terminate our current line (unless we're already in a whitespace stripping |
| // mode. |
| // |
| // If the text string has a breakable character in the middle, but didn't start |
| // with whitespace, then we add the width of the first non-breakable run and |
| // then end the current line. We then need to use the intermediate min/max width |
| // values (if any of them are larger than our current min/max). We then look at |
| // the width of the last non-breakable run and use that to start a new line |
| // (unless we end in whitespace). |
| RenderStyle* cstyle = child->style(); |
| float childMin = 0; |
| float childMax = 0; |
| |
| if (!child->isText()) { |
| // Case (1) and (2). Inline replaced and inline flow elements. |
| if (child->isRenderInline()) { |
| // Add in padding/border/margin from the appropriate side of |
| // the element. |
| float bpm = getBorderPaddingMargin(toRenderInline(child), childIterator.endOfInline); |
| childMin += bpm; |
| childMax += bpm; |
| |
| inlineMin += childMin; |
| inlineMax += childMax; |
| |
| child->setPreferredLogicalWidthsDirty(false); |
| } else { |
| // Inline replaced elts add in their margins to their min/max values. |
| float margins = 0; |
| Length startMargin = cstyle->marginStart(); |
| Length endMargin = cstyle->marginEnd(); |
| if (startMargin.isFixed()) |
| margins += startMargin.value(); |
| if (endMargin.isFixed()) |
| margins += endMargin.value(); |
| childMin += margins; |
| childMax += margins; |
| } |
| } |
| |
| if (!child->isRenderInline() && !child->isText()) { |
| // Case (2). Inline replaced elements and floats. |
| // Go ahead and terminate the current line as far as |
| // minwidth is concerned. |
| childMin += child->minPreferredLogicalWidth(); |
| childMax += child->maxPreferredLogicalWidth(); |
| |
| bool clearPreviousFloat; |
| if (child->isFloating()) { |
| clearPreviousFloat = (prevFloat |
| && ((prevFloat->style()->floating() == FLEFT && (child->style()->clear() & CLEFT)) |
| || (prevFloat->style()->floating() == FRIGHT && (child->style()->clear() & CRIGHT)))); |
| prevFloat = child; |
| } else |
| clearPreviousFloat = false; |
| |
| bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak; |
| if ((canBreakReplacedElement && (autoWrap || oldAutoWrap)) || clearPreviousFloat) { |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| inlineMin = 0; |
| } |
| |
| // If we're supposed to clear the previous float, then terminate maxwidth as well. |
| if (clearPreviousFloat) { |
| updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); |
| inlineMax = 0; |
| } |
| |
| // Add in text-indent. This is added in only once. |
| int ti = 0; |
| if (!addedTextIndent) { |
| addedTextIndent = true; |
| ti = style()->textIndent().calcMinValue(cw); |
| childMin += ti; |
| childMax += ti; |
| } |
| |
| // Add our width to the max. |
| inlineMax += childMax; |
| |
| if (!autoWrap || !canBreakReplacedElement) { |
| if (child->isFloating()) |
| updatePreferredWidth(m_minPreferredLogicalWidth, childMin); |
| else |
| inlineMin += childMin; |
| } else { |
| // Now check our line. |
| updatePreferredWidth(m_minPreferredLogicalWidth, childMin); |
| |
| // Now start a new line. |
| inlineMin = 0; |
| } |
| |
| // We are no longer stripping whitespace at the start of |
| // a line. |
| if (!child->isFloating()) { |
| stripFrontSpaces = false; |
| trailingSpaceChild = 0; |
| } |
| } else if (child->isText()) { |
| // Case (3). Text. |
| RenderText* t = toRenderText(child); |
| |
| if (t->isWordBreak()) { |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| inlineMin = 0; |
| continue; |
| } |
| |
| if (t->style()->hasTextCombine() && t->isCombineText()) |
| toRenderCombineText(t)->combineText(); |
| |
| // Determine if we have a breakable character. Pass in |
| // whether or not we should ignore any spaces at the front |
| // of the string. If those are going to be stripped out, |
| // then they shouldn't be considered in the breakable char |
| // check. |
| bool hasBreakableChar, hasBreak; |
| float beginMin, endMin; |
| bool beginWS, endWS; |
| float beginMax, endMax; |
| t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS, |
| hasBreakableChar, hasBreak, beginMax, endMax, |
| childMin, childMax, stripFrontSpaces); |
| |
| // This text object will not be rendered, but it may still provide a breaking opportunity. |
| if (!hasBreak && childMax == 0) { |
| if (autoWrap && (beginWS || endWS)) { |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| inlineMin = 0; |
| } |
| continue; |
| } |
| |
| if (stripFrontSpaces) |
| trailingSpaceChild = child; |
| else |
| trailingSpaceChild = 0; |
| |
| // Add in text-indent. This is added in only once. |
| int ti = 0; |
| if (!addedTextIndent) { |
| addedTextIndent = true; |
| ti = style()->textIndent().calcMinValue(cw); |
| childMin+=ti; beginMin += ti; |
| childMax+=ti; beginMax += ti; |
| } |
| |
| // If we have no breakable characters at all, |
| // then this is the easy case. We add ourselves to the current |
| // min and max and continue. |
| if (!hasBreakableChar) { |
| inlineMin += childMin; |
| } else { |
| // We have a breakable character. Now we need to know if |
| // we start and end with whitespace. |
| if (beginWS) |
| // Go ahead and end the current line. |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| else { |
| inlineMin += beginMin; |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| childMin -= ti; |
| } |
| |
| inlineMin = childMin; |
| |
| if (endWS) { |
| // We end in whitespace, which means we can go ahead |
| // and end our current line. |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| inlineMin = 0; |
| } else { |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| inlineMin = endMin; |
| } |
| } |
| |
| if (hasBreak) { |
| inlineMax += beginMax; |
| updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); |
| updatePreferredWidth(m_maxPreferredLogicalWidth, childMax); |
| inlineMax = endMax; |
| } else |
| inlineMax += childMax; |
| } |
| |
| // Ignore spaces after a list marker. |
| if (child->isListMarker()) |
| stripFrontSpaces = true; |
| } else { |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); |
| inlineMin = inlineMax = 0; |
| stripFrontSpaces = true; |
| trailingSpaceChild = 0; |
| } |
| |
| oldAutoWrap = autoWrap; |
| } |
| |
| if (style()->collapseWhiteSpace()) |
| stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild); |
| |
| updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); |
| updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); |
| } |
| |
| // Use a very large value (in effect infinite). |
| #define BLOCK_MAX_WIDTH 15000 |
| |
| void RenderBlock::computeBlockPreferredLogicalWidths() |
| { |
| bool nowrap = style()->whiteSpace() == NOWRAP; |
| |
| RenderObject *child = firstChild(); |
| int floatLeftWidth = 0, floatRightWidth = 0; |
| while (child) { |
| // Positioned children don't affect the min/max width |
| if (child->isPositioned()) { |
| child = child->nextSibling(); |
| continue; |
| } |
| |
| if (child->isFloating() || (child->isBox() && toRenderBox(child)->avoidsFloats())) { |
| int floatTotalWidth = floatLeftWidth + floatRightWidth; |
| if (child->style()->clear() & CLEFT) { |
| m_maxPreferredLogicalWidth = max(floatTotalWidth, m_maxPreferredLogicalWidth); |
| floatLeftWidth = 0; |
| } |
| if (child->style()->clear() & CRIGHT) { |
| m_maxPreferredLogicalWidth = max(floatTotalWidth, m_maxPreferredLogicalWidth); |
| floatRightWidth = 0; |
| } |
| } |
| |
| // A margin basically has three types: fixed, percentage, and auto (variable). |
| // Auto and percentage margins simply become 0 when computing min/max width. |
| // Fixed margins can be added in as is. |
| Length startMarginLength = child->style()->marginStart(); |
| Length endMarginLength = child->style()->marginEnd(); |
| int margin = 0; |
| int marginStart = 0; |
| int marginEnd = 0; |
| if (startMarginLength.isFixed()) |
| marginStart += startMarginLength.value(); |
| if (endMarginLength.isFixed()) |
| marginEnd += endMarginLength.value(); |
| margin = marginStart + marginEnd; |
| |
| int w = child->minPreferredLogicalWidth() + margin; |
| m_minPreferredLogicalWidth = max(w, m_minPreferredLogicalWidth); |
| |
| // IE ignores tables for calculation of nowrap. Makes some sense. |
| if (nowrap && !child->isTable()) |
| m_maxPreferredLogicalWidth = max(w, m_maxPreferredLogicalWidth); |
| |
| w = child->maxPreferredLogicalWidth() + margin; |
| |
| if (!child->isFloating()) { |
| if (child->isBox() && toRenderBox(child)->avoidsFloats()) { |
| // Determine a left and right max value based off whether or not the floats can fit in the |
| // margins of the object. For negative margins, we will attempt to overlap the float if the negative margin |
| // is smaller than the float width. |
| bool ltr = containingBlock()->style()->isLeftToRightDirection(); |
| int marginLogicalLeft = ltr ? marginStart : marginEnd; |
| int marginLogicalRight = ltr ? marginEnd : marginStart; |
| int maxLeft = marginLogicalLeft > 0 ? max(floatLeftWidth, marginLogicalLeft) : floatLeftWidth + marginLogicalLeft; |
| int maxRight = marginLogicalRight > 0 ? max(floatRightWidth, marginLogicalRight) : floatRightWidth + marginLogicalRight; |
| w = child->maxPreferredLogicalWidth() + maxLeft + maxRight; |
| w = max(w, floatLeftWidth + floatRightWidth); |
| } |
| else |
| m_maxPreferredLogicalWidth = max(floatLeftWidth + floatRightWidth, m_maxPreferredLogicalWidth); |
| floatLeftWidth = floatRightWidth = 0; |
| } |
| |
| if (child->isFloating()) { |
| if (style()->floating() == FLEFT) |
| floatLeftWidth += w; |
| else |
| floatRightWidth += w; |
| } else |
| m_maxPreferredLogicalWidth = max(w, m_maxPreferredLogicalWidth); |
| |
| // A very specific WinIE quirk. |
| // Example: |
| /* |
| <div style="position:absolute; width:100px; top:50px;"> |
| <div style="position:absolute;left:0px;top:50px;height:50px;background-color:green"> |
| <table style="width:100%"><tr><td></table> |
| </div> |
| </div> |
| */ |
| // In the above example, the inner absolute positioned block should have a computed width |
| // of 100px because of the table. |
| // We can achieve this effect by making the maxwidth of blocks that contain tables |
| // with percentage widths be infinite (as long as they are not inside a table cell). |
| if (document()->inQuirksMode() && child->style()->logicalWidth().isPercent() && |
| !isTableCell() && child->isTable() && m_maxPreferredLogicalWidth < BLOCK_MAX_WIDTH) { |
| RenderBlock* cb = containingBlock(); |
| while (!cb->isRenderView() && !cb->isTableCell()) |
| cb = cb->containingBlock(); |
| if (!cb->isTableCell()) |
| m_maxPreferredLogicalWidth = BLOCK_MAX_WIDTH; |
| } |
| |
| child = child->nextSibling(); |
| } |
| |
| // Always make sure these values are non-negative. |
| m_minPreferredLogicalWidth = max(0, m_minPreferredLogicalWidth); |
| m_maxPreferredLogicalWidth = max(0, m_maxPreferredLogicalWidth); |
| |
| m_maxPreferredLogicalWidth = max(floatLeftWidth + floatRightWidth, m_maxPreferredLogicalWidth); |
| } |
| |
| bool RenderBlock::hasLineIfEmpty() const |
| { |
| if (!node()) |
| return false; |
| |
| if (node()->rendererIsEditable() && node()->rootEditableElement() == node()) |
| return true; |
| |
| if (node()->isShadowRoot() && (node()->shadowHost()->hasTagName(inputTag))) |
| return true; |
| |
| return false; |
| } |
| |
| int RenderBlock::lineHeight(bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const |
| { |
| // Inline blocks are replaced elements. Otherwise, just pass off to |
| // the base class. If we're being queried as though we're the root line |
| // box, then the fact that we're an inline-block is irrelevant, and we behave |
| // just like a block. |
| if (isReplaced() && linePositionMode == PositionOnContainingLine) |
| return RenderBox::lineHeight(firstLine, direction, linePositionMode); |
| |
| if (firstLine && document()->usesFirstLineRules()) { |
| RenderStyle* s = style(firstLine); |
| if (s != style()) |
| return s->computedLineHeight(); |
| } |
| |
| if (m_lineHeight == -1) |
| m_lineHeight = style()->computedLineHeight(); |
| |
| return m_lineHeight; |
| } |
| |
| int RenderBlock::baselinePosition(FontBaseline baselineType, bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const |
| { |
| // Inline blocks are replaced elements. Otherwise, just pass off to |
| // the base class. If we're being queried as though we're the root line |
| // box, then the fact that we're an inline-block is irrelevant, and we behave |
| // just like a block. |
| if (isReplaced() && linePositionMode == PositionOnContainingLine) { |
| // For "leaf" theme objects, let the theme decide what the baseline position is. |
| // FIXME: Might be better to have a custom CSS property instead, so that if the theme |
| // is turned off, checkboxes/radios will still have decent baselines. |
| // FIXME: Need to patch form controls to deal with vertical lines. |
| if (style()->hasAppearance() && !theme()->isControlContainer(style()->appearance())) |
| return theme()->baselinePosition(this); |
| |
| // CSS2.1 states that the baseline of an inline block is the baseline of the last line box in |
| // the normal flow. We make an exception for marquees, since their baselines are meaningless |
| // (the content inside them moves). This matches WinIE as well, which just bottom-aligns them. |
| // We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled |
| // vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside |
| // of our content box. |
| bool ignoreBaseline = (layer() && (layer()->marquee() || (direction == HorizontalLine ? (layer()->verticalScrollbar() || layer()->scrollYOffset() != 0) |
| : (layer()->horizontalScrollbar() || layer()->scrollXOffset() != 0)))) || (isWritingModeRoot() && !isRubyRun()); |
| |
| int baselinePos = ignoreBaseline ? -1 : lastLineBoxBaseline(); |
| |
| int bottomOfContent = direction == HorizontalLine ? borderTop() + paddingTop() + contentHeight() : borderRight() + paddingRight() + contentWidth(); |
| if (baselinePos != -1 && baselinePos <= bottomOfContent) |
| return direction == HorizontalLine ? marginTop() + baselinePos : marginRight() + baselinePos; |
| |
| return RenderBox::baselinePosition(baselineType, firstLine, direction, linePositionMode); |
| } |
| |
| const FontMetrics& fontMetrics = style(firstLine)->fontMetrics(); |
| return fontMetrics.ascent(baselineType) + (lineHeight(firstLine, direction, linePositionMode) - fontMetrics.height()) / 2; |
| } |
| |
| int RenderBlock::firstLineBoxBaseline() const |
| { |
| if (!isBlockFlow() || (isWritingModeRoot() && !isRubyRun())) |
| return -1; |
| |
| if (childrenInline()) { |
| if (firstLineBox()) |
| return firstLineBox()->logicalTop() + style(true)->fontMetrics().ascent(firstRootBox()->baselineType()); |
| else |
| return -1; |
| } |
| else { |
| for (RenderBox* curr = firstChildBox(); curr; curr = curr->nextSiblingBox()) { |
| if (!curr->isFloatingOrPositioned()) { |
| int result = curr->firstLineBoxBaseline(); |
| if (result != -1) |
| return curr->logicalTop() + result; // Translate to our coordinate space. |
| } |
| } |
| } |
| |
| return -1; |
| } |
| |
| int RenderBlock::lastLineBoxBaseline() const |
| { |
| if (!isBlockFlow() || (isWritingModeRoot() && !isRubyRun())) |
| return -1; |
| |
| LineDirectionMode lineDirection = isHorizontalWritingMode() ? HorizontalLine : VerticalLine; |
| |
| if (childrenInline()) { |
| if (!firstLineBox() && hasLineIfEmpty()) { |
| const FontMetrics& fontMetrics = firstLineStyle()->fontMetrics(); |
| return fontMetrics.ascent() |
| + (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2 |
| + (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight()); |
| } |
| if (lastLineBox()) |
| return lastLineBox()->logicalTop() + style(lastLineBox() == firstLineBox())->fontMetrics().ascent(lastRootBox()->baselineType()); |
| return -1; |
| } else { |
| bool haveNormalFlowChild = false; |
| for (RenderBox* curr = lastChildBox(); curr; curr = curr->previousSiblingBox()) { |
| if (!curr->isFloatingOrPositioned()) { |
| haveNormalFlowChild = true; |
| int result = curr->lastLineBoxBaseline(); |
| if (result != -1) |
| return curr->logicalTop() + result; // Translate to our coordinate space. |
| } |
| } |
| if (!haveNormalFlowChild && hasLineIfEmpty()) { |
| const FontMetrics& fontMetrics = firstLineStyle()->fontMetrics(); |
| return fontMetrics.ascent() |
| + (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2 |
| + (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight()); |
| } |
| } |
| |
| return -1; |
| } |
| |
| bool RenderBlock::containsNonZeroBidiLevel() const |
| { |
| for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { |
| for (InlineBox* box = root->firstLeafChild(); box; box = box->nextLeafChild()) { |
| if (box->bidiLevel()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| RenderBlock* RenderBlock::firstLineBlock() const |
| { |
| RenderBlock* firstLineBlock = const_cast<RenderBlock*>(this); |
| bool hasPseudo = false; |
| while (true) { |
| hasPseudo = firstLineBlock->style()->hasPseudoStyle(FIRST_LINE); |
| if (hasPseudo) |
| break; |
| RenderObject* parentBlock = firstLineBlock->parent(); |
| if (firstLineBlock->isReplaced() || firstLineBlock->isFloating() || |
| !parentBlock || parentBlock->firstChild() != firstLineBlock || !parentBlock->isBlockFlow()) |
| break; |
| ASSERT(parentBlock->isRenderBlock()); |
| firstLineBlock = toRenderBlock(parentBlock); |
| } |
| |
| if (!hasPseudo) |
| return 0; |
| |
| return firstLineBlock; |
| } |
| |
| static RenderStyle* styleForFirstLetter(RenderObject* firstLetterBlock, RenderObject* firstLetterContainer) |
| { |
| RenderStyle* pseudoStyle = firstLetterBlock->getCachedPseudoStyle(FIRST_LETTER, firstLetterContainer->firstLineStyle()); |
| // Force inline display (except for floating first-letters). |
| pseudoStyle->setDisplay(pseudoStyle->isFloating() ? BLOCK : INLINE); |
| // CSS2 says first-letter can't be positioned. |
| pseudoStyle->setPosition(StaticPosition); |
| return pseudoStyle; |
| } |
| |
| // CSS 2.1 http://www.w3.org/TR/CSS21/selector.html#first-letter |
| // "Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open" (Ps), "close" (Pe), |
| // "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that precedes or follows the first letter should be included" |
| static inline bool isPunctuationForFirstLetter(UChar c) |
| { |
| CharCategory charCategory = category(c); |
| return charCategory == Punctuation_Open |
| || charCategory == Punctuation_Close |
| || charCategory == Punctuation_InitialQuote |
| || charCategory == Punctuation_FinalQuote |
| || charCategory == Punctuation_Other; |
| } |
| |
| static inline bool shouldSkipForFirstLetter(UChar c) |
| { |
| return isSpaceOrNewline(c) || c == noBreakSpace || isPunctuationForFirstLetter(c); |
| } |
| |
| void RenderBlock::updateFirstLetter() |
| { |
| if (!document()->usesFirstLetterRules()) |
| return; |
| // Don't recur |
| if (style()->styleType() == FIRST_LETTER) |
| return; |
| |
| // FIXME: We need to destroy the first-letter object if it is no longer the first child. Need to find |
| // an efficient way to check for that situation though before implementing anything. |
| RenderObject* firstLetterBlock = this; |
| bool hasPseudoStyle = false; |
| while (true) { |
| // We only honor first-letter if the firstLetterBlock can have children in the DOM. This correctly |
| // prevents form controls from honoring first-letter. |
| hasPseudoStyle = firstLetterBlock->style()->hasPseudoStyle(FIRST_LETTER) |
| && firstLetterBlock->canHaveChildren(); |
| if (hasPseudoStyle) |
| break; |
| RenderObject* parentBlock = firstLetterBlock->parent(); |
| if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock || |
| !parentBlock->isBlockFlow()) |
| break; |
| firstLetterBlock = parentBlock; |
| } |
| |
| if (!hasPseudoStyle) |
| return; |
| |
| // Drill into inlines looking for our first text child. |
| RenderObject* currChild = firstLetterBlock->firstChild(); |
| while (currChild && ((!currChild->isReplaced() && !currChild->isRenderButton() && !currChild->isMenuList()) || currChild->isFloatingOrPositioned()) && !currChild->isText()) { |
| if (currChild->isFloatingOrPositioned()) { |
| if (currChild->style()->styleType() == FIRST_LETTER) { |
| currChild = currChild->firstChild(); |
| break; |
| } |
| currChild = currChild->nextSibling(); |
| } else |
| currChild = currChild->firstChild(); |
| } |
| |
| // Get list markers out of the way. |
| while (currChild && currChild->isListMarker()) |
| currChild = currChild->nextSibling(); |
| |
| if (!currChild) |
| return; |
| |
| // If the child already has style, then it has already been created, so we just want |
| // to update it. |
| if (currChild->parent()->style()->styleType() == FIRST_LETTER) { |
| RenderObject* firstLetter = currChild->parent(); |
| RenderObject* firstLetterContainer = firstLetter->parent(); |
| RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer); |
| |
| if (Node::diff(firstLetter->style(), pseudoStyle) == Node::Detach) { |
| // The first-letter renderer needs to be replaced. Create a new renderer of the right type. |
| RenderObject* newFirstLetter; |
| if (pseudoStyle->display() == INLINE) |
| newFirstLetter = new (renderArena()) RenderInline(document()); |
| else |
| newFirstLetter = new (renderArena()) RenderBlock(document()); |
| newFirstLetter->setStyle(pseudoStyle); |
| |
| // Move the first letter into the new renderer. |
| view()->disableLayoutState(); |
| while (RenderObject* child = firstLetter->firstChild()) { |
| if (child->isText()) |
| toRenderText(child)->dirtyLineBoxes(true); |
| firstLetter->removeChild(child); |
| newFirstLetter->addChild(child, 0); |
| } |
| |
| RenderTextFragment* remainingText = 0; |
| RenderObject* nextSibling = firstLetter->nextSibling(); |
| RenderObject* next = nextSibling; |
| while (next) { |
| if (next->isText() && toRenderText(next)->isTextFragment()) { |
| remainingText = toRenderTextFragment(next); |
| break; |
| } |
| next = next->nextSibling(); |
| } |
| if (remainingText) { |
| ASSERT(remainingText->node()->renderer() == remainingText); |
| // Replace the old renderer with the new one. |
| remainingText->setFirstLetter(newFirstLetter); |
| } |
| firstLetter->destroy(); |
| firstLetter = newFirstLetter; |
| firstLetterContainer->addChild(firstLetter, nextSibling); |
| view()->enableLayoutState(); |
| } else |
| firstLetter->setStyle(pseudoStyle); |
| |
| for (RenderObject* genChild = firstLetter->firstChild(); genChild; genChild = genChild->nextSibling()) { |
| if (genChild->isText()) |
| genChild->setStyle(pseudoStyle); |
| } |
| |
| return; |
| } |
| |
| if (!currChild->isText() || currChild->isBR()) |
| return; |
| |
| // If the child does not already have style, we create it here. |
| RenderObject* firstLetterContainer = currChild->parent(); |
| |
| // Our layout state is not valid for the repaints we are going to trigger by |
| // adding and removing children of firstLetterContainer. |
| view()->disableLayoutState(); |
| |
| RenderText* textObj = toRenderText(currChild); |
| |
| // Create our pseudo style now that we have our firstLetterContainer determined. |
| RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer); |
| |
| RenderObject* firstLetter = 0; |
| if (pseudoStyle->display() == INLINE) |
| firstLetter = new (renderArena()) RenderInline(document()); |
| else |
| firstLetter = new (renderArena()) RenderBlock(document()); |
| firstLetter->setStyle(pseudoStyle); |
| firstLetterContainer->addChild(firstLetter, currChild); |
| |
| // The original string is going to be either a generated content string or a DOM node's |
| // string. We want the original string before it got transformed in case first-letter has |
| // no text-transform or a different text-transform applied to it. |
| RefPtr<StringImpl> oldText = textObj->originalText(); |
| ASSERT(oldText); |
| |
| if (oldText && oldText->length() > 0) { |
| unsigned length = 0; |
| |
| // Account for leading spaces and punctuation. |
| while (length < oldText->length() && shouldSkipForFirstLetter((*oldText)[length])) |
| length++; |
| |
| // Account for first letter. |
| length++; |
| |
| // Keep looking for whitespace and allowed punctuation, but avoid |
| // accumulating just whitespace into the :first-letter. |
| for (unsigned scanLength = length; scanLength < oldText->length(); ++scanLength) { |
| UChar c = (*oldText)[scanLength]; |
| |
| if (!shouldSkipForFirstLetter(c)) |
| break; |
| |
| if (isPunctuationForFirstLetter(c)) |
| length = scanLength + 1; |
| } |
| |
| // Construct a text fragment for the text after the first letter. |
| // This text fragment might be empty. |
| RenderTextFragment* remainingText = |
| new (renderArena()) RenderTextFragment(textObj->node() ? textObj->node() : textObj->document(), oldText.get(), length, oldText->length() - length); |
| remainingText->setStyle(textObj->style()); |
| if (remainingText->node()) |
| remainingText->node()->setRenderer(remainingText); |
| |
| firstLetterContainer->addChild(remainingText, textObj); |
| firstLetterContainer->removeChild(textObj); |
| remainingText->setFirstLetter(firstLetter); |
| |
| // construct text fragment for the first letter |
| RenderTextFragment* letter = |
| new (renderArena()) RenderTextFragment(remainingText->node() ? remainingText->node() : remainingText->document(), oldText.get(), 0, length); |
| letter->setStyle(pseudoStyle); |
| firstLetter->addChild(letter); |
| |
| textObj->destroy(); |
| } |
| view()->enableLayoutState(); |
| } |
| |
| // Helper methods for obtaining the last line, computing line counts and heights for line counts |
| // (crawling into blocks). |
| static bool shouldCheckLines(RenderObject* obj) |
| { |
| return !obj->isFloatingOrPositioned() && !obj->isRunIn() && |
| obj->isBlockFlow() && obj->style()->height().isAuto() && |
| (!obj->isFlexibleBox() || obj->style()->boxOrient() == VERTICAL); |
| } |
| |
| static RootInlineBox* getLineAtIndex(RenderBlock* block, int i, int& count) |
| { |
| if (block->style()->visibility() == VISIBLE) { |
| if (block->childrenInline()) { |
| for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { |
| if (count++ == i) |
| return box; |
| } |
| } |
| else { |
| for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) { |
| if (shouldCheckLines(obj)) { |
| RootInlineBox *box = getLineAtIndex(toRenderBlock(obj), i, count); |
| if (box) |
| return box; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int getHeightForLineCount(RenderBlock* block, int l, bool includeBottom, int& count) |
| { |
| if (block->style()->visibility() == VISIBLE) { |
| if (block->childrenInline()) { |
| for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { |
| if (++count == l) |
| return box->lineBottom() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); |
| } |
| } |
| else { |
| RenderBox* normalFlowChildWithoutLines = 0; |
| for (RenderBox* obj = block->firstChildBox(); obj; obj = obj->nextSiblingBox()) { |
| if (shouldCheckLines(obj)) { |
| int result = getHeightForLineCount(toRenderBlock(obj), l, false, count); |
| if (result != -1) |
| return result + obj->y() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); |
| } |
| else if (!obj->isFloatingOrPositioned() && !obj->isRunIn()) |
| normalFlowChildWithoutLines = obj; |
| } |
| if (normalFlowChildWithoutLines && l == 0) |
| return normalFlowChildWithoutLines->y() + normalFlowChildWithoutLines->height(); |
| } |
| } |
| |
| return -1; |
| } |
| |
| RootInlineBox* RenderBlock::lineAtIndex(int i) |
| { |
| int count = 0; |
| return getLineAtIndex(this, i, count); |
| } |
| |
| int RenderBlock::lineCount() |
| { |
| int count = 0; |
| if (style()->visibility() == VISIBLE) { |
| if (childrenInline()) |
| for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) |
| count++; |
| else |
| for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) |
| if (shouldCheckLines(obj)) |
| count += toRenderBlock(obj)->lineCount(); |
| } |
| return count; |
| } |
| |
| int RenderBlock::heightForLineCount(int l) |
| { |
| int count = 0; |
| return getHeightForLineCount(this, l, true, count); |
| } |
| |
| void RenderBlock::adjustForBorderFit(int x, int& left, int& right) const |
| { |
| // We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting |
| // for either overflow or translations via relative positioning. |
| if (style()->visibility() == VISIBLE) { |
| if (childrenInline()) { |
| for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) { |
| if (box->firstChild()) |
| left = min(left, x + static_cast<int>(box->firstChild()->x())); |
| if (box->lastChild()) |
| right = max(right, x + static_cast<int>(ceilf(box->lastChild()->logicalRight()))); |
| } |
| } |
| else { |
| for (RenderBox* obj = firstChildBox(); obj; obj = obj->nextSiblingBox()) { |
| if (!obj->isFloatingOrPositioned()) { |
| if (obj->isBlockFlow() && !obj->hasOverflowClip()) |
| toRenderBlock(obj)->adjustForBorderFit(x + obj->x(), left, right); |
| else if (obj->style()->visibility() == VISIBLE) { |
| // We are a replaced element or some kind of non-block-flow object. |
| left = min(left, x + obj->x()); |
| right = max(right, x + obj->x() + obj->width()); |
| } |
| } |
| } |
| } |
| |
| if (m_floatingObjects) { |
| FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); |
| FloatingObjectSetIterator end = floatingObjectSet.end(); |
| for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { |
| FloatingObject* r = *it; |
| // Only examine the object if our m_shouldPaint flag is set. |
| if (r->m_shouldPaint) { |
| int floatLeft = xPositionForFloatIncludingMargin(r) - r->m_renderer->x(); |
| int floatRight = floatLeft + r->m_renderer->width(); |
| left = min(left, floatLeft); |
| right = max(right, floatRight); |
| } |
| } |
| } |
| } |
| } |
| |
| void RenderBlock::borderFitAdjust(int& x, int& w) const |
| { |
| if (style()->borderFit() == BorderFitBorder) |
| return; |
| |
| // Walk any normal flow lines to snugly fit. |
| int left = INT_MAX; |
| int right = INT_MIN; |
| int oldWidth = w; |
| adjustForBorderFit(0, left, right); |
| if (left != INT_MAX) { |
| left -= (borderLeft() + paddingLeft()); |
| if (left > 0) { |
| x += left; |
| w -= left; |
| } |
| } |
| if (right != INT_MIN) { |
| right += (borderRight() + paddingRight()); |
| if (right < oldWidth) |
| w -= (oldWidth - right); |
| } |
| } |
| |
| void RenderBlock::clearTruncation() |
| { |
| if (style()->visibility() == VISIBLE) { |
| if (childrenInline() && hasMarkupTruncation()) { |
| setHasMarkupTruncation(false); |
| for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) |
| box->clearTruncation(); |
| } |
| else |
| for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) |
| if (shouldCheckLines(obj)) |
| toRenderBlock(obj)->clearTruncation(); |
| } |
| } |
| |
| void RenderBlock::setMaxMarginBeforeValues(int pos, int neg) |
| { |
| if (!m_rareData) { |
| if (pos == RenderBlockRareData::positiveMarginBeforeDefault(this) && neg == RenderBlockRareData::negativeMarginBeforeDefault(this)) |
| return; |
| m_rareData = new RenderBlockRareData(this); |
| } |
| m_rareData->m_margins.setPositiveMarginBefore(pos); |
| m_rareData->m_margins.setNegativeMarginBefore(neg); |
| } |
| |
| void RenderBlock::setMaxMarginAfterValues(int pos, int neg) |
| { |
| if (!m_rareData) { |
| if (pos == RenderBlockRareData::positiveMarginAfterDefault(this) && neg == RenderBlockRareData::negativeMarginAfterDefault(this)) |
| return; |
| m_rareData = new RenderBlockRareData(this); |
| } |
| m_rareData->m_margins.setPositiveMarginAfter(pos); |
| m_rareData->m_margins.setNegativeMarginAfter(neg); |
| } |
| |
| void RenderBlock::setPaginationStrut(int strut) |
| { |
| if (!m_rareData) { |
| if (!strut) |
| return; |
| m_rareData = new RenderBlockRareData(this); |
| } |
| m_rareData->m_paginationStrut = strut; |
| } |
| |
| void RenderBlock::setPageLogicalOffset(int logicalOffset) |
| { |
| if (!m_rareData) { |
| if (!logicalOffset) |
| return; |
| m_rareData = new RenderBlockRareData(this); |
| } |
| m_rareData->m_pageLogicalOffset = logicalOffset; |
| } |
| |
| void RenderBlock::absoluteRects(Vector<IntRect>& rects, int tx, int ty) |
| { |
| // For blocks inside inlines, we go ahead and include margins so that we run right up to the |
| // inline boxes above and below us (thus getting merged with them to form a single irregular |
| // shape). |
| if (isAnonymousBlockContinuation()) { |
| // FIXME: This is wrong for block-flows that are horizontal. |
| // https://bugs.webkit.org/show_bug.cgi?id=46781 |
| rects.append(IntRect(tx, ty - collapsedMarginBefore(), |
| width(), height() + collapsedMarginBefore() + collapsedMarginAfter())); |
| continuation()->absoluteRects(rects, |
| tx - x() + inlineElementContinuation()->containingBlock()->x(), |
| ty - y() + inlineElementContinuation()->containingBlock()->y()); |
| } else |
| rects.append(IntRect(tx, ty, width(), height())); |
| } |
| |
| void RenderBlock::absoluteQuads(Vector<FloatQuad>& quads) |
| { |
| // For blocks inside inlines, we go ahead and include margins so that we run right up to the |
| // inline boxes above and below us (thus getting merged with them to form a single irregular |
| // shape). |
| if (isAnonymousBlockContinuation()) { |
| // FIXME: This is wrong for block-flows that are horizontal. |
| // https://bugs.webkit.org/show_bug.cgi?id=46781 |
| FloatRect localRect(0, -collapsedMarginBefore(), |
| width(), height() + collapsedMarginBefore() + collapsedMarginAfter()); |
| quads.append(localToAbsoluteQuad(localRect)); |
| continuation()->absoluteQuads(quads); |
| } else |
| quads.append(RenderBox::localToAbsoluteQuad(FloatRect(0, 0, width(), height()))); |
| } |
| |
| IntRect RenderBlock::rectWithOutlineForRepaint(RenderBoxModelObject* repaintContainer, int outlineWidth) |
| { |
| IntRect r(RenderBox::rectWithOutlineForRepaint(repaintContainer, outlineWidth)); |
| if (isAnonymousBlockContinuation()) |
| r.inflateY(collapsedMarginBefore()); // FIXME: This is wrong for block-flows that are horizontal. |
| return r; |
| } |
| |
| RenderObject* RenderBlock::hoverAncestor() const |
| { |
| return isAnonymousBlockContinuation() ? continuation() : RenderBox::hoverAncestor(); |
| } |
| |
| void RenderBlock::updateDragState(bool dragOn) |
| { |
| RenderBox::updateDragState(dragOn); |
| if (continuation()) |
| continuation()->updateDragState(dragOn); |
| } |
| |
| RenderStyle* RenderBlock::outlineStyleForRepaint() const |
| { |
| return isAnonymousBlockContinuation() ? continuation()->style() : style(); |
| } |
| |
| void RenderBlock::childBecameNonInline(RenderObject*) |
| { |
| makeChildrenNonInline(); |
| if (isAnonymousBlock() && parent() && parent()->isRenderBlock()) |
| toRenderBlock(parent())->removeLeftoverAnonymousBlock(this); |
| // |this| may be dead here |
| } |
| |
| void RenderBlock::updateHitTestResult(HitTestResult& result, const IntPoint& point) |
| { |
| if (result.innerNode()) |
| return; |
| |
| Node* n = node(); |
| if (isAnonymousBlockContinuation()) |
| // We are in the margins of block elements that are part of a continuation. In |
| // this case we're actually still inside the enclosing element that was |
| // split. Go ahead and set our inner node accordingly. |
| n = continuation()->node(); |
| |
| if (n) { |
| result.setInnerNode(n); |
| if (!result.innerNonSharedNode()) |
| result.setInnerNonSharedNode(n); |
| result.setLocalPoint(point); |
| } |
| } |
| |
| IntRect RenderBlock::localCaretRect(InlineBox* inlineBox, int caretOffset, int* extraWidthToEndOfLine) |
| { |
| // Do the normal calculation in most cases. |
| if (firstChild()) |
| return RenderBox::localCaretRect(inlineBox, caretOffset, extraWidthToEndOfLine); |
| |
| // This is a special case: |
| // The element is not an inline element, and it's empty. So we have to |
| // calculate a fake position to indicate where objects are to be inserted. |
| |
| // FIXME: This does not take into account either :first-line or :first-letter |
| // However, as soon as some content is entered, the line boxes will be |
| // constructed and this kludge is not called any more. So only the caret size |
| // of an empty :first-line'd block is wrong. I think we can live with that. |
| RenderStyle* currentStyle = firstLineStyle(); |
| int height = lineHeight(true, currentStyle->isHorizontalWritingMode() ? HorizontalLine : VerticalLine); |
| |
| enum CaretAlignment { alignLeft, alignRight, alignCenter }; |
| |
| CaretAlignment alignment = alignLeft; |
| |
| switch (currentStyle->textAlign()) { |
| case TAAUTO: |
| case JUSTIFY: |
| if (!currentStyle->isLeftToRightDirection()) |
| alignment = alignRight; |
| break; |
| case LEFT: |
| case WEBKIT_LEFT: |
| break; |
| case CENTER: |
| case WEBKIT_CENTER: |
| alignment = alignCenter; |
| break; |
| case RIGHT: |
| case WEBKIT_RIGHT: |
| alignment = alignRight; |
| break; |
| case TASTART: |
| if (!currentStyle->isLeftToRightDirection()) |
| alignment = alignRight; |
| break; |
| case TAEND: |
| if (currentStyle->isLeftToRightDirection()) |
| alignment = alignRight; |
| break; |
| } |
| |
| int x = borderLeft() + paddingLeft(); |
| int w = width(); |
| |
| switch (alignment) { |
| case alignLeft: |
| break; |
| case alignCenter: |
| x = (x + w - (borderRight() + paddingRight())) / 2; |
| break; |
| case alignRight: |
| x = w - (borderRight() + paddingRight()) - caretWidth; |
| break; |
| } |
| |
| if (extraWidthToEndOfLine) { |
| if (isRenderBlock()) { |
| *extraWidthToEndOfLine = w - (x + caretWidth); |
| } else { |
| // FIXME: This code looks wrong. |
| // myRight and containerRight are set up, but then clobbered. |
| // So *extraWidthToEndOfLine will always be 0 here. |
| |
| int myRight = x + caretWidth; |
| // FIXME: why call localToAbsoluteForContent() twice here, too? |
| FloatPoint absRightPoint = localToAbsolute(FloatPoint(myRight, 0)); |
| |
| int containerRight = containingBlock()->x() + containingBlockLogicalWidthForContent(); |
| FloatPoint absContainerPoint = localToAbsolute(FloatPoint(containerRight, 0)); |
| |
| *extraWidthToEndOfLine = absContainerPoint.x() - absRightPoint.x(); |
| } |
| } |
| |
| int y = paddingTop() + borderTop(); |
| |
| return IntRect(x, y, caretWidth, height); |
| } |
| |
| void RenderBlock::addFocusRingRects(Vector<IntRect>& rects, int tx, int ty) |
| { |
| // For blocks inside inlines, we go ahead and include margins so that we run right up to the |
| // inline boxes above and below us (thus getting merged with them to form a single irregular |
| // shape). |
| if (inlineElementContinuation()) { |
| // FIXME: This check really isn't accurate. |
| bool nextInlineHasLineBox = inlineElementContinuation()->firstLineBox(); |
| // FIXME: This is wrong. The principal renderer may not be the continuation preceding this block. |
| // FIXME: This is wrong for block-flows that are horizontal. |
| // https://bugs.webkit.org/show_bug.cgi?id=46781 |
| bool prevInlineHasLineBox = toRenderInline(inlineElementContinuation()->node()->renderer())->firstLineBox(); |
| int topMargin = prevInlineHasLineBox ? collapsedMarginBefore() : 0; |
| int bottomMargin = nextInlineHasLineBox ? collapsedMarginAfter() : 0; |
| IntRect rect(tx, ty - topMargin, width(), height() + topMargin + bottomMargin); |
| if (!rect.isEmpty()) |
| rects.append(rect); |
| } else if (width() && height()) |
| rects.append(IntRect(tx, ty, width(), height())); |
| |
| if (!hasOverflowClip() && !hasControlClip()) { |
| for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { |
| int top = max(curr->lineTop(), curr->logicalTop()); |
| int bottom = min(curr->lineBottom(), curr->logicalTop() + curr->logicalHeight()); |
| IntRect rect(tx + curr->x(), ty + top, curr->logicalWidth(), bottom - top); |
| if (!rect.isEmpty()) |
| rects.append(rect); |
| } |
| |
| for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) { |
| if (!curr->isText() && !curr->isListMarker() && curr->isBox()) { |
| RenderBox* box = toRenderBox(curr); |
| FloatPoint pos; |
| // FIXME: This doesn't work correctly with transforms. |
| if (box->layer()) |
| pos = curr->localToAbsolute(); |
| else |
| pos = FloatPoint(tx + box->x(), ty + box->y()); |
| box->addFocusRingRects(rects, pos.x(), pos.y()); |
| } |
| } |
| } |
| |
| if (inlineElementContinuation()) |
| inlineElementContinuation()->addFocusRingRects(rects, |
| tx - x() + inlineElementContinuation()->containingBlock()->x(), |
| ty - y() + inlineElementContinuation()->containingBlock()->y()); |
| } |
| |
| RenderBlock* RenderBlock::createAnonymousBlock(bool isFlexibleBox) const |
| { |
| RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style()); |
| |
| RenderBlock* newBox = 0; |
| if (isFlexibleBox) { |
| newStyle->setDisplay(BOX); |
| newBox = new (renderArena()) RenderFlexibleBox(document() /* anonymous box */); |
| } else { |
| newStyle->setDisplay(BLOCK); |
| newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); |
| } |
| |
| newBox->setStyle(newStyle.release()); |
| return newBox; |
| } |
| |
| RenderBlock* RenderBlock::createAnonymousBlockWithSameTypeAs(RenderBlock* otherAnonymousBlock) const |
| { |
| if (otherAnonymousBlock->isAnonymousColumnsBlock()) |
| return createAnonymousColumnsBlock(); |
| if (otherAnonymousBlock->isAnonymousColumnSpanBlock()) |
| return createAnonymousColumnSpanBlock(); |
| return createAnonymousBlock(otherAnonymousBlock->style()->display() == BOX); |
| } |
| |
| RenderBlock* RenderBlock::createAnonymousColumnsBlock() const |
| { |
| RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style()); |
| newStyle->inheritColumnPropertiesFrom(style()); |
| newStyle->setDisplay(BLOCK); |
| |
| RenderBlock* newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); |
| newBox->setStyle(newStyle.release()); |
| return newBox; |
| } |
| |
| RenderBlock* RenderBlock::createAnonymousColumnSpanBlock() const |
| { |
| RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyle(style()); |
| newStyle->setColumnSpan(true); |
| newStyle->setDisplay(BLOCK); |
| |
| RenderBlock* newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); |
| newBox->setStyle(newStyle.release()); |
| return newBox; |
| } |
| |
| int RenderBlock::nextPageLogicalTop(int logicalOffset) const |
| { |
| LayoutState* layoutState = view()->layoutState(); |
| if (!layoutState->m_pageLogicalHeight) |
| return logicalOffset; |
| |
| // The logicalOffset is in our coordinate space. We can add in our pushed offset. |
| int pageLogicalHeight = layoutState->m_pageLogicalHeight; |
| IntSize delta = layoutState->m_layoutOffset - layoutState->m_pageOffset; |
| int offset = isHorizontalWritingMode() ? delta.height() : delta.width(); |
| int remainingLogicalHeight = (pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight) % pageLogicalHeight; |
| return logicalOffset + remainingLogicalHeight; |
| } |
| |
| static bool inNormalFlow(RenderBox* child) |
| { |
| RenderBlock* curr = child->containingBlock(); |
| RenderBlock* initialBlock = child->view(); |
| while (curr && curr != initialBlock) { |
| if (curr->hasColumns()) |
| return true; |
| if (curr->isFloatingOrPositioned()) |
| return false; |
| curr = curr->containingBlock(); |
| } |
| return true; |
| } |
| |
| int RenderBlock::applyBeforeBreak(RenderBox* child, int logicalOffset) |
| { |
| // FIXME: Add page break checking here when we support printing. |
| bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns(); |
| bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this. |
| bool checkBeforeAlways = (checkColumnBreaks && child->style()->columnBreakBefore() == PBALWAYS) || (checkPageBreaks && child->style()->pageBreakBefore() == PBALWAYS); |
| if (checkBeforeAlways && inNormalFlow(child)) { |
| if (checkColumnBreaks) |
| view()->layoutState()->addForcedColumnBreak(logicalOffset); |
| return nextPageLogicalTop(logicalOffset); |
| } |
| return logicalOffset; |
| } |
| |
| int RenderBlock::applyAfterBreak(RenderBox* child, int logicalOffset, MarginInfo& marginInfo) |
| { |
| // FIXME: Add page break checking here when we support printing. |
| bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns(); |
| bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this. |
| bool checkAfterAlways = (checkColumnBreaks && child->style()->columnBreakAfter() == PBALWAYS) || (checkPageBreaks && child->style()->pageBreakAfter() == PBALWAYS); |
| if (checkAfterAlways && inNormalFlow(child)) { |
| marginInfo.setMarginAfterQuirk(true); // Cause margins to be discarded for any following content. |
| if (checkColumnBreaks) |
| view()->layoutState()->addForcedColumnBreak(logicalOffset); |
| return nextPageLogicalTop(logicalOffset); |
| } |
| return logicalOffset; |
| } |
| |
| int RenderBlock::adjustForUnsplittableChild(RenderBox* child, int logicalOffset, bool includeMargins) |
| { |
| bool isUnsplittable = child->isReplaced() || child->scrollsOverflow(); |
| if (!isUnsplittable) |
| return logicalOffset; |
| int childLogicalHeight = logicalHeightForChild(child) + (includeMargins ? marginBeforeForChild(child) + marginAfterForChild(child) : 0); |
| LayoutState* layoutState = view()->layoutState(); |
| if (layoutState->m_columnInfo) |
| layoutState->m_columnInfo->updateMinimumColumnHeight(childLogicalHeight); |
| int pageLogicalHeight = layoutState->m_pageLogicalHeight; |
| if (!pageLogicalHeight || childLogicalHeight > pageLogicalHeight) |
| return logicalOffset; |
| IntSize delta = layoutState->m_layoutOffset - layoutState->m_pageOffset; |
| int offset = isHorizontalWritingMode() ? delta.height() : delta.width(); |
| int remainingLogicalHeight = (pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight) % pageLogicalHeight; |
| if (remainingLogicalHeight < childLogicalHeight) |
| return logicalOffset + remainingLogicalHeight; |
| return logicalOffset; |
| } |
| |
| void RenderBlock::adjustLinePositionForPagination(RootInlineBox* lineBox, int& delta) |
| { |
| // FIXME: For now we paginate using line overflow. This ensures that lines don't overlap at all when we |
| // put a strut between them for pagination purposes. However, this really isn't the desired rendering, since |
| // the line on the top of the next page will appear too far down relative to the same kind of line at the top |
| // of the first column. |
| // |
| // The rendering we would like to see is one where the lineTop is at the top of the column, and any line overflow |
| // simply spills out above the top of the column. This effect would match what happens at the top of the first column. |
| // We can't achieve this rendering, however, until we stop columns from clipping to the column bounds (thus allowing |
| // for overflow to occur), and then cache visible overflow for each column rect. |
| // |
| // Furthermore, the paint we have to do when a column has overflow has to be special. We need to exclude |
| // content that paints in a previous column (and content that paints in the following column). |
| // |
| // FIXME: Another problem with simply moving lines is that the available line width may change (because of floats). |
| // Technically if the location we move the line to has a different line width than our old position, then we need to dirty the |
| // line and all following lines. |
| LayoutState* layoutState = view()->layoutState(); |
| int pageLogicalHeight = layoutState->m_pageLogicalHeight; |
| int logicalOffset = lineBox->logicalTopVisualOverflow(); |
| int lineHeight = lineBox->logicalBottomVisualOverflow() - logicalOffset; |
| if (layoutState->m_columnInfo) |
| layoutState->m_columnInfo->updateMinimumColumnHeight(lineHeight); |
| logicalOffset += delta; |
| lineBox->setPaginationStrut(0); |
| if (!pageLogicalHeight || lineHeight > pageLogicalHeight) |
| return; |
| IntSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset; |
| int offset = isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width(); |
| int remainingLogicalHeight = pageLogicalHeight - (offset + logicalOffset) % pageLogicalHeight; |
| if (remainingLogicalHeight < lineHeight) { |
| int totalLogicalHeight = lineHeight + max(0, logicalOffset); |
| if (lineBox == firstRootBox() && totalLogicalHeight < pageLogicalHeight && !isPositioned() && !isTableCell()) |
| setPaginationStrut(remainingLogicalHeight + max(0, logicalOffset)); |
| else { |
| delta += remainingLogicalHeight; |
| lineBox->setPaginationStrut(remainingLogicalHeight); |
| } |
| } |
| } |
| |
| int RenderBlock::collapsedMarginBeforeForChild(RenderBox* child) const |
| { |
| // If the child has the same directionality as we do, then we can just return its |
| // collapsed margin. |
| if (!child->isWritingModeRoot()) |
| return child->collapsedMarginBefore(); |
| |
| // The child has a different directionality. If the child is parallel, then it's just |
| // flipped relative to us. We can use the collapsed margin for the opposite edge. |
| if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) |
| return child->collapsedMarginAfter(); |
| |
| // The child is perpendicular to us, which means its margins don't collapse but are on the |
| // "logical left/right" sides of the child box. We can just return the raw margin in this case. |
| return marginBeforeForChild(child); |
| } |
| |
| int RenderBlock::collapsedMarginAfterForChild(RenderBox* child) const |
| { |
| // If the child has the same directionality as we do, then we can just return its |
| // collapsed margin. |
| if (!child->isWritingModeRoot()) |
| return child->collapsedMarginAfter(); |
| |
| // The child has a different directionality. If the child is parallel, then it's just |
| // flipped relative to us. We can use the collapsed margin for the opposite edge. |
| if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) |
| return child->collapsedMarginBefore(); |
| |
| // The child is perpendicular to us, which means its margins don't collapse but are on the |
| // "logical left/right" side of the child box. We can just return the raw margin in this case. |
| return marginAfterForChild(child); |
| } |
| |
| int RenderBlock::marginBeforeForChild(RenderBoxModelObject* child) const |
| { |
| switch (style()->writingMode()) { |
| case TopToBottomWritingMode: |
| return child->marginTop(); |
| case BottomToTopWritingMode: |
| return child->marginBottom(); |
| case LeftToRightWritingMode: |
| return child->marginLeft(); |
| case RightToLeftWritingMode: |
| return child->marginRight(); |
| } |
| ASSERT_NOT_REACHED(); |
| return child->marginTop(); |
| } |
| |
| int RenderBlock::marginAfterForChild(RenderBoxModelObject* child) const |
| { |
| switch (style()->writingMode()) { |
| case TopToBottomWritingMode: |
| return child->marginBottom(); |
| case BottomToTopWritingMode: |
| return child->marginTop(); |
| case LeftToRightWritingMode: |
| return child->marginRight(); |
| case RightToLeftWritingMode: |
| return child->marginLeft(); |
| } |
| ASSERT_NOT_REACHED(); |
| return child->marginBottom(); |
| } |
| |
| int RenderBlock::marginStartForChild(RenderBoxModelObject* child) const |
| { |
| if (isHorizontalWritingMode()) |
| return style()->isLeftToRightDirection() ? child->marginLeft() : child->marginRight(); |
| return style()->isLeftToRightDirection() ? child->marginTop() : child->marginBottom(); |
| } |
| |
| int RenderBlock::marginEndForChild(RenderBoxModelObject* child) const |
| { |
| if (isHorizontalWritingMode()) |
| return style()->isLeftToRightDirection() ? child->marginRight() : child->marginLeft(); |
| return style()->isLeftToRightDirection() ? child->marginBottom() : child->marginTop(); |
| } |
| |
| void RenderBlock::setMarginStartForChild(RenderBox* child, int margin) |
| { |
| if (isHorizontalWritingMode()) { |
| if (style()->isLeftToRightDirection()) |
| child->setMarginLeft(margin); |
| else |
| child->setMarginRight(margin); |
| } else { |
| if (style()->isLeftToRightDirection()) |
| child->setMarginTop(margin); |
| else |
| child->setMarginBottom(margin); |
| } |
| } |
| |
| void RenderBlock::setMarginEndForChild(RenderBox* child, int margin) |
| { |
| if (isHorizontalWritingMode()) { |
| if (style()->isLeftToRightDirection()) |
| child->setMarginRight(margin); |
| else |
| child->setMarginLeft(margin); |
| } else { |
| if (style()->isLeftToRightDirection()) |
| child->setMarginBottom(margin); |
| else |
| child->setMarginTop(margin); |
| } |
| } |
| |
| void RenderBlock::setMarginBeforeForChild(RenderBox* child, int margin) |
| { |
| switch (style()->writingMode()) { |
| case TopToBottomWritingMode: |
| child->setMarginTop(margin); |
| break; |
| case BottomToTopWritingMode: |
| child->setMarginBottom(margin); |
| break; |
| case LeftToRightWritingMode: |
| child->setMarginLeft(margin); |
| break; |
| case RightToLeftWritingMode: |
| child->setMarginRight(margin); |
| break; |
| } |
| } |
| |
| void RenderBlock::setMarginAfterForChild(RenderBox* child, int margin) |
| { |
| switch (style()->writingMode()) { |
| case TopToBottomWritingMode: |
| child->setMarginBottom(margin); |
| break; |
| case BottomToTopWritingMode: |
| child->setMarginTop(margin); |
| break; |
| case LeftToRightWritingMode: |
| child->setMarginRight(margin); |
| break; |
| case RightToLeftWritingMode: |
| child->setMarginLeft(margin); |
| break; |
| } |
| } |
| |
| RenderBlock::MarginValues RenderBlock::marginValuesForChild(RenderBox* child) |
| { |
| int childBeforePositive = 0; |
| int childBeforeNegative = 0; |
| int childAfterPositive = 0; |
| int childAfterNegative = 0; |
| |
| int beforeMargin = 0; |
| int afterMargin = 0; |
| |
| RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0; |
| |
| // If the child has the same directionality as we do, then we can just return its |
| // margins in the same direction. |
| if (!child->isWritingModeRoot()) { |
| if (childRenderBlock) { |
| childBeforePositive = childRenderBlock->maxPositiveMarginBefore(); |
| childBeforeNegative = childRenderBlock->maxNegativeMarginBefore(); |
| childAfterPositive = childRenderBlock->maxPositiveMarginAfter(); |
| childAfterNegative = childRenderBlock->maxNegativeMarginAfter(); |
| } else { |
| beforeMargin = child->marginBefore(); |
| afterMargin = child->marginAfter(); |
| } |
| } else if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) { |
| // The child has a different directionality. If the child is parallel, then it's just |
| // flipped relative to us. We can use the margins for the opposite edges. |
| if (childRenderBlock) { |
| childBeforePositive = childRenderBlock->maxPositiveMarginAfter(); |
| childBeforeNegative = childRenderBlock->maxNegativeMarginAfter(); |
| childAfterPositive = childRenderBlock->maxPositiveMarginBefore(); |
| childAfterNegative = childRenderBlock->maxNegativeMarginBefore(); |
| } else { |
| beforeMargin = child->marginAfter(); |
| afterMargin = child->marginBefore(); |
| } |
| } else { |
| // The child is perpendicular to us, which means its margins don't collapse but are on the |
| // "logical left/right" sides of the child box. We can just return the raw margin in this case. |
| beforeMargin = marginBeforeForChild(child); |
| afterMargin = marginAfterForChild(child); |
| } |
| |
| // Resolve uncollapsing margins into their positive/negative buckets. |
| if (beforeMargin) { |
| if (beforeMargin > 0) |
| childBeforePositive = beforeMargin; |
| else |
| childBeforeNegative = -beforeMargin; |
| } |
| if (afterMargin) { |
| if (afterMargin > 0) |
| childAfterPositive = afterMargin; |
| else |
| childAfterNegative = -afterMargin; |
| } |
| |
| return MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative); |
| } |
| |
| const char* RenderBlock::renderName() const |
| { |
| if (isBody()) |
| return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass. |
| |
| if (isFloating()) |
| return "RenderBlock (floating)"; |
| if (isPositioned()) |
| return "RenderBlock (positioned)"; |
| if (isAnonymousColumnsBlock()) |
| return "RenderBlock (anonymous multi-column)"; |
| if (isAnonymousColumnSpanBlock()) |
| return "RenderBlock (anonymous multi-column span)"; |
| if (isAnonymousBlock()) |
| return "RenderBlock (anonymous)"; |
| else if (isAnonymous()) |
| return "RenderBlock (generated)"; |
| if (isRelPositioned()) |
| return "RenderBlock (relative positioned)"; |
| if (isRunIn()) |
| return "RenderBlock (run-in)"; |
| return "RenderBlock"; |
| } |
| |
| inline void RenderBlock::FloatingObjects::clear() |
| { |
| m_set.clear(); |
| m_leftObjectsCount = 0; |
| m_rightObjectsCount = 0; |
| } |
| |
| inline void RenderBlock::FloatingObjects::increaseObjectsCount(FloatingObject::Type type) |
| { |
| if (type == FloatingObject::FloatLeft) |
| m_leftObjectsCount++; |
| else |
| m_rightObjectsCount++; |
| } |
| |
| inline void RenderBlock::FloatingObjects::decreaseObjectsCount(FloatingObject::Type type) |
| { |
| if (type == FloatingObject::FloatLeft) |
| m_leftObjectsCount--; |
| else |
| m_rightObjectsCount--; |
| } |
| |
| } // namespace WebCore |