| /* |
| * Copyright (C) 2008 Apple Inc. |
| * Copyright (C) 2009, 2010 University of Szeged |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef MacroAssemblerARM_h |
| #define MacroAssemblerARM_h |
| |
| #if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) |
| |
| #include "ARMAssembler.h" |
| #include "AbstractMacroAssembler.h" |
| |
| namespace JSC { |
| |
| class MacroAssemblerARM : public AbstractMacroAssembler<ARMAssembler> { |
| static const int DoubleConditionMask = 0x0f; |
| static const int DoubleConditionBitSpecial = 0x10; |
| COMPILE_ASSERT(!(DoubleConditionBitSpecial & DoubleConditionMask), DoubleConditionBitSpecial_should_not_interfere_with_ARMAssembler_Condition_codes); |
| public: |
| typedef ARMRegisters::FPRegisterID FPRegisterID; |
| |
| enum Condition { |
| Equal = ARMAssembler::EQ, |
| NotEqual = ARMAssembler::NE, |
| Above = ARMAssembler::HI, |
| AboveOrEqual = ARMAssembler::CS, |
| Below = ARMAssembler::CC, |
| BelowOrEqual = ARMAssembler::LS, |
| GreaterThan = ARMAssembler::GT, |
| GreaterThanOrEqual = ARMAssembler::GE, |
| LessThan = ARMAssembler::LT, |
| LessThanOrEqual = ARMAssembler::LE, |
| Overflow = ARMAssembler::VS, |
| Signed = ARMAssembler::MI, |
| Zero = ARMAssembler::EQ, |
| NonZero = ARMAssembler::NE |
| }; |
| |
| enum DoubleCondition { |
| // These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN. |
| DoubleEqual = ARMAssembler::EQ, |
| DoubleNotEqual = ARMAssembler::NE | DoubleConditionBitSpecial, |
| DoubleGreaterThan = ARMAssembler::GT, |
| DoubleGreaterThanOrEqual = ARMAssembler::GE, |
| DoubleLessThan = ARMAssembler::CC, |
| DoubleLessThanOrEqual = ARMAssembler::LS, |
| // If either operand is NaN, these conditions always evaluate to true. |
| DoubleEqualOrUnordered = ARMAssembler::EQ | DoubleConditionBitSpecial, |
| DoubleNotEqualOrUnordered = ARMAssembler::NE, |
| DoubleGreaterThanOrUnordered = ARMAssembler::HI, |
| DoubleGreaterThanOrEqualOrUnordered = ARMAssembler::CS, |
| DoubleLessThanOrUnordered = ARMAssembler::LT, |
| DoubleLessThanOrEqualOrUnordered = ARMAssembler::LE, |
| }; |
| |
| static const RegisterID stackPointerRegister = ARMRegisters::sp; |
| static const RegisterID linkRegister = ARMRegisters::lr; |
| |
| static const Scale ScalePtr = TimesFour; |
| |
| void add32(RegisterID src, RegisterID dest) |
| { |
| m_assembler.adds_r(dest, dest, src); |
| } |
| |
| void add32(TrustedImm32 imm, Address address) |
| { |
| load32(address, ARMRegisters::S1); |
| add32(imm, ARMRegisters::S1); |
| store32(ARMRegisters::S1, address); |
| } |
| |
| void add32(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.adds_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); |
| } |
| |
| void add32(Address src, RegisterID dest) |
| { |
| load32(src, ARMRegisters::S1); |
| add32(ARMRegisters::S1, dest); |
| } |
| |
| void and32(RegisterID src, RegisterID dest) |
| { |
| m_assembler.ands_r(dest, dest, src); |
| } |
| |
| void and32(TrustedImm32 imm, RegisterID dest) |
| { |
| ARMWord w = m_assembler.getImm(imm.m_value, ARMRegisters::S0, true); |
| if (w & ARMAssembler::OP2_INV_IMM) |
| m_assembler.bics_r(dest, dest, w & ~ARMAssembler::OP2_INV_IMM); |
| else |
| m_assembler.ands_r(dest, dest, w); |
| } |
| |
| void lshift32(RegisterID shift_amount, RegisterID dest) |
| { |
| ARMWord w = ARMAssembler::getOp2(0x1f); |
| ASSERT(w != ARMAssembler::INVALID_IMM); |
| m_assembler.and_r(ARMRegisters::S0, shift_amount, w); |
| |
| m_assembler.movs_r(dest, m_assembler.lsl_r(dest, ARMRegisters::S0)); |
| } |
| |
| void lshift32(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.movs_r(dest, m_assembler.lsl(dest, imm.m_value & 0x1f)); |
| } |
| |
| void mul32(RegisterID src, RegisterID dest) |
| { |
| if (src == dest) { |
| move(src, ARMRegisters::S0); |
| src = ARMRegisters::S0; |
| } |
| m_assembler.muls_r(dest, dest, src); |
| } |
| |
| void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| move(imm, ARMRegisters::S0); |
| m_assembler.muls_r(dest, src, ARMRegisters::S0); |
| } |
| |
| void neg32(RegisterID srcDest) |
| { |
| m_assembler.rsbs_r(srcDest, srcDest, ARMAssembler::getOp2(0)); |
| } |
| |
| void not32(RegisterID dest) |
| { |
| m_assembler.mvns_r(dest, dest); |
| } |
| |
| void or32(RegisterID src, RegisterID dest) |
| { |
| m_assembler.orrs_r(dest, dest, src); |
| } |
| |
| void or32(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.orrs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); |
| } |
| |
| void rshift32(RegisterID shift_amount, RegisterID dest) |
| { |
| ARMWord w = ARMAssembler::getOp2(0x1f); |
| ASSERT(w != ARMAssembler::INVALID_IMM); |
| m_assembler.and_r(ARMRegisters::S0, shift_amount, w); |
| |
| m_assembler.movs_r(dest, m_assembler.asr_r(dest, ARMRegisters::S0)); |
| } |
| |
| void rshift32(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.movs_r(dest, m_assembler.asr(dest, imm.m_value & 0x1f)); |
| } |
| |
| void urshift32(RegisterID shift_amount, RegisterID dest) |
| { |
| ARMWord w = ARMAssembler::getOp2(0x1f); |
| ASSERT(w != ARMAssembler::INVALID_IMM); |
| m_assembler.and_r(ARMRegisters::S0, shift_amount, w); |
| |
| m_assembler.movs_r(dest, m_assembler.lsr_r(dest, ARMRegisters::S0)); |
| } |
| |
| void urshift32(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.movs_r(dest, m_assembler.lsr(dest, imm.m_value & 0x1f)); |
| } |
| |
| void sub32(RegisterID src, RegisterID dest) |
| { |
| m_assembler.subs_r(dest, dest, src); |
| } |
| |
| void sub32(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.subs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); |
| } |
| |
| void sub32(TrustedImm32 imm, Address address) |
| { |
| load32(address, ARMRegisters::S1); |
| sub32(imm, ARMRegisters::S1); |
| store32(ARMRegisters::S1, address); |
| } |
| |
| void sub32(Address src, RegisterID dest) |
| { |
| load32(src, ARMRegisters::S1); |
| sub32(ARMRegisters::S1, dest); |
| } |
| |
| void xor32(RegisterID src, RegisterID dest) |
| { |
| m_assembler.eors_r(dest, dest, src); |
| } |
| |
| void xor32(TrustedImm32 imm, RegisterID dest) |
| { |
| m_assembler.eors_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); |
| } |
| |
| void countLeadingZeros32(RegisterID src, RegisterID dest) |
| { |
| #if WTF_ARM_ARCH_AT_LEAST(5) |
| m_assembler.clz_r(dest, src); |
| #else |
| UNUSED_PARAM(src); |
| UNUSED_PARAM(dest); |
| ASSERT_NOT_REACHED(); |
| #endif |
| } |
| |
| void load8(ImplicitAddress address, RegisterID dest) |
| { |
| m_assembler.dataTransfer32(true, dest, address.base, address.offset, true); |
| } |
| |
| void load32(ImplicitAddress address, RegisterID dest) |
| { |
| m_assembler.dataTransfer32(true, dest, address.base, address.offset); |
| } |
| |
| void load32(BaseIndex address, RegisterID dest) |
| { |
| m_assembler.baseIndexTransfer32(true, dest, address.base, address.index, static_cast<int>(address.scale), address.offset); |
| } |
| |
| #if CPU(ARMV5_OR_LOWER) |
| void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest); |
| #else |
| void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) |
| { |
| load32(address, dest); |
| } |
| #endif |
| |
| DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest) |
| { |
| DataLabel32 dataLabel(this); |
| m_assembler.ldr_un_imm(ARMRegisters::S0, 0); |
| m_assembler.dtr_ur(true, dest, address.base, ARMRegisters::S0); |
| return dataLabel; |
| } |
| |
| void load16(BaseIndex address, RegisterID dest) |
| { |
| m_assembler.add_r(ARMRegisters::S1, address.base, m_assembler.lsl(address.index, address.scale)); |
| load16(Address(ARMRegisters::S1, address.offset), dest); |
| } |
| |
| void load16(ImplicitAddress address, RegisterID dest) |
| { |
| if (address.offset >= 0) |
| m_assembler.ldrh_u(dest, address.base, m_assembler.getOffsetForHalfwordDataTransfer(address.offset, ARMRegisters::S0)); |
| else |
| m_assembler.ldrh_d(dest, address.base, m_assembler.getOffsetForHalfwordDataTransfer(-address.offset, ARMRegisters::S0)); |
| } |
| |
| DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address) |
| { |
| DataLabel32 dataLabel(this); |
| m_assembler.ldr_un_imm(ARMRegisters::S0, 0); |
| m_assembler.dtr_ur(false, src, address.base, ARMRegisters::S0); |
| return dataLabel; |
| } |
| |
| void store32(RegisterID src, ImplicitAddress address) |
| { |
| m_assembler.dataTransfer32(false, src, address.base, address.offset); |
| } |
| |
| void store32(RegisterID src, BaseIndex address) |
| { |
| m_assembler.baseIndexTransfer32(false, src, address.base, address.index, static_cast<int>(address.scale), address.offset); |
| } |
| |
| void store32(TrustedImm32 imm, ImplicitAddress address) |
| { |
| if (imm.m_isPointer) |
| m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value); |
| else |
| move(imm, ARMRegisters::S1); |
| store32(ARMRegisters::S1, address); |
| } |
| |
| void store32(RegisterID src, void* address) |
| { |
| m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address)); |
| m_assembler.dtr_u(false, src, ARMRegisters::S0, 0); |
| } |
| |
| void store32(TrustedImm32 imm, void* address) |
| { |
| m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address)); |
| if (imm.m_isPointer) |
| m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value); |
| else |
| m_assembler.moveImm(imm.m_value, ARMRegisters::S1); |
| m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0); |
| } |
| |
| void pop(RegisterID dest) |
| { |
| m_assembler.pop_r(dest); |
| } |
| |
| void push(RegisterID src) |
| { |
| m_assembler.push_r(src); |
| } |
| |
| void push(Address address) |
| { |
| load32(address, ARMRegisters::S1); |
| push(ARMRegisters::S1); |
| } |
| |
| void push(TrustedImm32 imm) |
| { |
| move(imm, ARMRegisters::S0); |
| push(ARMRegisters::S0); |
| } |
| |
| void move(TrustedImm32 imm, RegisterID dest) |
| { |
| if (imm.m_isPointer) |
| m_assembler.ldr_un_imm(dest, imm.m_value); |
| else |
| m_assembler.moveImm(imm.m_value, dest); |
| } |
| |
| void move(RegisterID src, RegisterID dest) |
| { |
| m_assembler.mov_r(dest, src); |
| } |
| |
| void move(TrustedImmPtr imm, RegisterID dest) |
| { |
| move(TrustedImm32(imm), dest); |
| } |
| |
| void swap(RegisterID reg1, RegisterID reg2) |
| { |
| m_assembler.mov_r(ARMRegisters::S0, reg1); |
| m_assembler.mov_r(reg1, reg2); |
| m_assembler.mov_r(reg2, ARMRegisters::S0); |
| } |
| |
| void signExtend32ToPtr(RegisterID src, RegisterID dest) |
| { |
| if (src != dest) |
| move(src, dest); |
| } |
| |
| void zeroExtend32ToPtr(RegisterID src, RegisterID dest) |
| { |
| if (src != dest) |
| move(src, dest); |
| } |
| |
| Jump branch8(Condition cond, Address left, TrustedImm32 right) |
| { |
| load8(left, ARMRegisters::S1); |
| return branch32(cond, ARMRegisters::S1, right); |
| } |
| |
| Jump branch32(Condition cond, RegisterID left, RegisterID right, int useConstantPool = 0) |
| { |
| m_assembler.cmp_r(left, right); |
| return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool)); |
| } |
| |
| Jump branch32(Condition cond, RegisterID left, TrustedImm32 right, int useConstantPool = 0) |
| { |
| if (right.m_isPointer) { |
| m_assembler.ldr_un_imm(ARMRegisters::S0, right.m_value); |
| m_assembler.cmp_r(left, ARMRegisters::S0); |
| } else { |
| ARMWord tmp = m_assembler.getOp2(-right.m_value); |
| if (tmp != ARMAssembler::INVALID_IMM) |
| m_assembler.cmn_r(left, tmp); |
| else |
| m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0)); |
| } |
| return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool)); |
| } |
| |
| Jump branch32(Condition cond, RegisterID left, Address right) |
| { |
| load32(right, ARMRegisters::S1); |
| return branch32(cond, left, ARMRegisters::S1); |
| } |
| |
| Jump branch32(Condition cond, Address left, RegisterID right) |
| { |
| load32(left, ARMRegisters::S1); |
| return branch32(cond, ARMRegisters::S1, right); |
| } |
| |
| Jump branch32(Condition cond, Address left, TrustedImm32 right) |
| { |
| load32(left, ARMRegisters::S1); |
| return branch32(cond, ARMRegisters::S1, right); |
| } |
| |
| Jump branch32(Condition cond, BaseIndex left, TrustedImm32 right) |
| { |
| load32(left, ARMRegisters::S1); |
| return branch32(cond, ARMRegisters::S1, right); |
| } |
| |
| Jump branch32WithUnalignedHalfWords(Condition cond, BaseIndex left, TrustedImm32 right) |
| { |
| load32WithUnalignedHalfWords(left, ARMRegisters::S1); |
| return branch32(cond, ARMRegisters::S1, right); |
| } |
| |
| Jump branch16(Condition cond, BaseIndex left, RegisterID right) |
| { |
| UNUSED_PARAM(cond); |
| UNUSED_PARAM(left); |
| UNUSED_PARAM(right); |
| ASSERT_NOT_REACHED(); |
| return jump(); |
| } |
| |
| Jump branch16(Condition cond, BaseIndex left, TrustedImm32 right) |
| { |
| load16(left, ARMRegisters::S0); |
| move(right, ARMRegisters::S1); |
| m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S1); |
| return m_assembler.jmp(ARMCondition(cond)); |
| } |
| |
| Jump branchTest8(Condition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| load8(address, ARMRegisters::S1); |
| return branchTest32(cond, ARMRegisters::S1, mask); |
| } |
| |
| Jump branchTest32(Condition cond, RegisterID reg, RegisterID mask) |
| { |
| ASSERT((cond == Zero) || (cond == NonZero)); |
| m_assembler.tst_r(reg, mask); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| Jump branchTest32(Condition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| ASSERT((cond == Zero) || (cond == NonZero)); |
| ARMWord w = m_assembler.getImm(mask.m_value, ARMRegisters::S0, true); |
| if (w & ARMAssembler::OP2_INV_IMM) |
| m_assembler.bics_r(ARMRegisters::S0, reg, w & ~ARMAssembler::OP2_INV_IMM); |
| else |
| m_assembler.tst_r(reg, w); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| Jump branchTest32(Condition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| load32(address, ARMRegisters::S1); |
| return branchTest32(cond, ARMRegisters::S1, mask); |
| } |
| |
| Jump branchTest32(Condition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| load32(address, ARMRegisters::S1); |
| return branchTest32(cond, ARMRegisters::S1, mask); |
| } |
| |
| Jump jump() |
| { |
| return Jump(m_assembler.jmp()); |
| } |
| |
| void jump(RegisterID target) |
| { |
| m_assembler.bx(target); |
| } |
| |
| void jump(Address address) |
| { |
| load32(address, ARMRegisters::pc); |
| } |
| |
| Jump branchAdd32(Condition cond, RegisterID src, RegisterID dest) |
| { |
| ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); |
| add32(src, dest); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| Jump branchAdd32(Condition cond, TrustedImm32 imm, RegisterID dest) |
| { |
| ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); |
| add32(imm, dest); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| void mull32(RegisterID src1, RegisterID src2, RegisterID dest) |
| { |
| if (src1 == dest) { |
| move(src1, ARMRegisters::S0); |
| src1 = ARMRegisters::S0; |
| } |
| m_assembler.mull_r(ARMRegisters::S1, dest, src2, src1); |
| m_assembler.cmp_r(ARMRegisters::S1, m_assembler.asr(dest, 31)); |
| } |
| |
| Jump branchMul32(Condition cond, RegisterID src, RegisterID dest) |
| { |
| ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); |
| if (cond == Overflow) { |
| mull32(src, dest, dest); |
| cond = NonZero; |
| } |
| else |
| mul32(src, dest); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| Jump branchMul32(Condition cond, TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); |
| if (cond == Overflow) { |
| move(imm, ARMRegisters::S0); |
| mull32(ARMRegisters::S0, src, dest); |
| cond = NonZero; |
| } |
| else |
| mul32(imm, src, dest); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| Jump branchSub32(Condition cond, RegisterID src, RegisterID dest) |
| { |
| ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); |
| sub32(src, dest); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| Jump branchSub32(Condition cond, TrustedImm32 imm, RegisterID dest) |
| { |
| ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); |
| sub32(imm, dest); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| Jump branchNeg32(Condition cond, RegisterID srcDest) |
| { |
| ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero)); |
| neg32(srcDest); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| Jump branchOr32(Condition cond, RegisterID src, RegisterID dest) |
| { |
| ASSERT((cond == Signed) || (cond == Zero) || (cond == NonZero)); |
| or32(src, dest); |
| return Jump(m_assembler.jmp(ARMCondition(cond))); |
| } |
| |
| void breakpoint() |
| { |
| m_assembler.bkpt(0); |
| } |
| |
| Call nearCall() |
| { |
| #if WTF_ARM_ARCH_AT_LEAST(5) |
| ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord)); |
| m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true); |
| return Call(m_assembler.blx(ARMRegisters::S1), Call::LinkableNear); |
| #else |
| prepareCall(); |
| return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::LinkableNear); |
| #endif |
| } |
| |
| Call call(RegisterID target) |
| { |
| return Call(m_assembler.blx(target), Call::None); |
| } |
| |
| void call(Address address) |
| { |
| call32(address.base, address.offset); |
| } |
| |
| void ret() |
| { |
| m_assembler.bx(linkRegister); |
| } |
| |
| void set32Compare32(Condition cond, RegisterID left, RegisterID right, RegisterID dest) |
| { |
| m_assembler.cmp_r(left, right); |
| m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); |
| m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); |
| } |
| |
| void set32Compare32(Condition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| { |
| m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0)); |
| m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); |
| m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); |
| } |
| |
| void set8Compare32(Condition cond, RegisterID left, RegisterID right, RegisterID dest) |
| { |
| // ARM doesn't have byte registers |
| set32Compare32(cond, left, right, dest); |
| } |
| |
| void set8Compare32(Condition cond, Address left, RegisterID right, RegisterID dest) |
| { |
| // ARM doesn't have byte registers |
| load32(left, ARMRegisters::S1); |
| set32Compare32(cond, ARMRegisters::S1, right, dest); |
| } |
| |
| void set8Compare32(Condition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| { |
| // ARM doesn't have byte registers |
| set32Compare32(cond, left, right, dest); |
| } |
| |
| void set32Test32(Condition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) |
| { |
| if (mask.m_value == -1) |
| m_assembler.cmp_r(0, reg); |
| else |
| m_assembler.tst_r(reg, m_assembler.getImm(mask.m_value, ARMRegisters::S0)); |
| m_assembler.mov_r(dest, ARMAssembler::getOp2(0)); |
| m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond)); |
| } |
| |
| void set32Test32(Condition cond, Address address, TrustedImm32 mask, RegisterID dest) |
| { |
| load32(address, ARMRegisters::S1); |
| set32Test32(cond, ARMRegisters::S1, mask, dest); |
| } |
| |
| void set32Test8(Condition cond, Address address, TrustedImm32 mask, RegisterID dest) |
| { |
| load8(address, ARMRegisters::S1); |
| set32Test32(cond, ARMRegisters::S1, mask, dest); |
| } |
| |
| void add32(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| m_assembler.add_r(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0)); |
| } |
| |
| void add32(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast<ARMWord>(address.m_ptr)); |
| m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0); |
| add32(imm, ARMRegisters::S1); |
| m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address.m_ptr)); |
| m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0); |
| } |
| |
| void sub32(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast<ARMWord>(address.m_ptr)); |
| m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0); |
| sub32(imm, ARMRegisters::S1); |
| m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address.m_ptr)); |
| m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0); |
| } |
| |
| void load32(const void* address, RegisterID dest) |
| { |
| m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address)); |
| m_assembler.dtr_u(true, dest, ARMRegisters::S0, 0); |
| } |
| |
| Jump branch32(Condition cond, AbsoluteAddress left, RegisterID right) |
| { |
| load32(left.m_ptr, ARMRegisters::S1); |
| return branch32(cond, ARMRegisters::S1, right); |
| } |
| |
| Jump branch32(Condition cond, AbsoluteAddress left, TrustedImm32 right) |
| { |
| load32(left.m_ptr, ARMRegisters::S1); |
| return branch32(cond, ARMRegisters::S1, right); |
| } |
| |
| void relativeTableJump(RegisterID index, int scale) |
| { |
| ASSERT(scale >= 0 && scale <= 31); |
| m_assembler.add_r(ARMRegisters::pc, ARMRegisters::pc, m_assembler.lsl(index, scale)); |
| |
| // NOP the default prefetching |
| m_assembler.mov_r(ARMRegisters::r0, ARMRegisters::r0); |
| } |
| |
| Call call() |
| { |
| #if WTF_ARM_ARCH_AT_LEAST(5) |
| ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord)); |
| m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true); |
| return Call(m_assembler.blx(ARMRegisters::S1), Call::Linkable); |
| #else |
| prepareCall(); |
| return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::Linkable); |
| #endif |
| } |
| |
| Call tailRecursiveCall() |
| { |
| return Call::fromTailJump(jump()); |
| } |
| |
| Call makeTailRecursiveCall(Jump oldJump) |
| { |
| return Call::fromTailJump(oldJump); |
| } |
| |
| DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest) |
| { |
| DataLabelPtr dataLabel(this); |
| m_assembler.ldr_un_imm(dest, reinterpret_cast<ARMWord>(initialValue.m_value)); |
| return dataLabel; |
| } |
| |
| Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) |
| { |
| dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S1); |
| Jump jump = branch32(cond, left, ARMRegisters::S1, true); |
| return jump; |
| } |
| |
| Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) |
| { |
| load32(left, ARMRegisters::S1); |
| dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S0); |
| Jump jump = branch32(cond, ARMRegisters::S0, ARMRegisters::S1, true); |
| return jump; |
| } |
| |
| DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address) |
| { |
| DataLabelPtr dataLabel = moveWithPatch(initialValue, ARMRegisters::S1); |
| store32(ARMRegisters::S1, address); |
| return dataLabel; |
| } |
| |
| DataLabelPtr storePtrWithPatch(ImplicitAddress address) |
| { |
| return storePtrWithPatch(TrustedImmPtr(0), address); |
| } |
| |
| // Floating point operators |
| bool supportsFloatingPoint() const |
| { |
| return s_isVFPPresent; |
| } |
| |
| bool supportsFloatingPointTruncate() const |
| { |
| return s_isVFPPresent; |
| } |
| |
| bool supportsFloatingPointSqrt() const |
| { |
| return s_isVFPPresent; |
| } |
| |
| void loadDouble(ImplicitAddress address, FPRegisterID dest) |
| { |
| m_assembler.doubleTransfer(true, dest, address.base, address.offset); |
| } |
| |
| void loadDouble(const void* address, FPRegisterID dest) |
| { |
| m_assembler.ldr_un_imm(ARMRegisters::S0, (ARMWord)address); |
| m_assembler.fdtr_u(true, dest, ARMRegisters::S0, 0); |
| } |
| |
| void storeDouble(FPRegisterID src, ImplicitAddress address) |
| { |
| m_assembler.doubleTransfer(false, src, address.base, address.offset); |
| } |
| |
| void addDouble(FPRegisterID src, FPRegisterID dest) |
| { |
| m_assembler.vadd_f64_r(dest, dest, src); |
| } |
| |
| void addDouble(Address src, FPRegisterID dest) |
| { |
| loadDouble(src, ARMRegisters::SD0); |
| addDouble(ARMRegisters::SD0, dest); |
| } |
| |
| void divDouble(FPRegisterID src, FPRegisterID dest) |
| { |
| m_assembler.vdiv_f64_r(dest, dest, src); |
| } |
| |
| void divDouble(Address src, FPRegisterID dest) |
| { |
| ASSERT_NOT_REACHED(); // Untested |
| loadDouble(src, ARMRegisters::SD0); |
| divDouble(ARMRegisters::SD0, dest); |
| } |
| |
| void subDouble(FPRegisterID src, FPRegisterID dest) |
| { |
| m_assembler.vsub_f64_r(dest, dest, src); |
| } |
| |
| void subDouble(Address src, FPRegisterID dest) |
| { |
| loadDouble(src, ARMRegisters::SD0); |
| subDouble(ARMRegisters::SD0, dest); |
| } |
| |
| void mulDouble(FPRegisterID src, FPRegisterID dest) |
| { |
| m_assembler.vmul_f64_r(dest, dest, src); |
| } |
| |
| void mulDouble(Address src, FPRegisterID dest) |
| { |
| loadDouble(src, ARMRegisters::SD0); |
| mulDouble(ARMRegisters::SD0, dest); |
| } |
| |
| void sqrtDouble(FPRegisterID src, FPRegisterID dest) |
| { |
| m_assembler.vsqrt_f64_r(dest, src); |
| } |
| |
| void convertInt32ToDouble(RegisterID src, FPRegisterID dest) |
| { |
| m_assembler.vmov_vfp_r(dest << 1, src); |
| m_assembler.vcvt_f64_s32_r(dest, dest << 1); |
| } |
| |
| void convertInt32ToDouble(Address src, FPRegisterID dest) |
| { |
| ASSERT_NOT_REACHED(); // Untested |
| // flds does not worth the effort here |
| load32(src, ARMRegisters::S1); |
| convertInt32ToDouble(ARMRegisters::S1, dest); |
| } |
| |
| void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest) |
| { |
| ASSERT_NOT_REACHED(); // Untested |
| // flds does not worth the effort here |
| m_assembler.ldr_un_imm(ARMRegisters::S1, (ARMWord)src.m_ptr); |
| m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0); |
| convertInt32ToDouble(ARMRegisters::S1, dest); |
| } |
| |
| Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right) |
| { |
| m_assembler.vcmp_f64_r(left, right); |
| m_assembler.vmrs_apsr(); |
| if (cond & DoubleConditionBitSpecial) |
| m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::VS); |
| return Jump(m_assembler.jmp(static_cast<ARMAssembler::Condition>(cond & ~DoubleConditionMask))); |
| } |
| |
| // Truncates 'src' to an integer, and places the resulting 'dest'. |
| // If the result is not representable as a 32 bit value, branch. |
| // May also branch for some values that are representable in 32 bits |
| // (specifically, in this case, INT_MIN and INT_MAX). |
| Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest) |
| { |
| m_assembler.vcvtr_s32_f64_r(ARMRegisters::SD0 << 1, src); |
| // If VCVTR.S32.F64 can't fit the result into a 32-bit |
| // integer, it saturates at INT_MAX or INT_MIN. Testing this is |
| // probably quicker than testing FPSCR for exception. |
| m_assembler.vmov_arm_r(dest, ARMRegisters::SD0 << 1); |
| m_assembler.sub_r(ARMRegisters::S0, dest, ARMAssembler::getOp2(0x80000000)); |
| m_assembler.cmn_r(ARMRegisters::S0, ARMAssembler::getOp2(1), ARMCondition(NotEqual)); |
| return Jump(m_assembler.jmp(ARMCondition(Equal))); |
| } |
| |
| // Convert 'src' to an integer, and places the resulting 'dest'. |
| // If the result is not representable as a 32 bit value, branch. |
| // May also branch for some values that are representable in 32 bits |
| // (specifically, in this case, 0). |
| void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID fpTemp) |
| { |
| m_assembler.vcvt_s32_f64_r(ARMRegisters::SD0 << 1, src); |
| m_assembler.vmov_arm_r(dest, ARMRegisters::SD0 << 1); |
| |
| // Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump. |
| m_assembler.vcvt_f64_s32_r(ARMRegisters::SD0, ARMRegisters::SD0 << 1); |
| failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, ARMRegisters::SD0)); |
| |
| // If the result is zero, it might have been -0.0, and 0.0 equals to -0.0 |
| failureCases.append(branchTest32(Zero, dest)); |
| } |
| |
| Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID scratch) |
| { |
| m_assembler.mov_r(ARMRegisters::S0, ARMAssembler::getOp2(0)); |
| convertInt32ToDouble(ARMRegisters::S0, scratch); |
| return branchDouble(DoubleNotEqual, reg, scratch); |
| } |
| |
| Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID scratch) |
| { |
| m_assembler.mov_r(ARMRegisters::S0, ARMAssembler::getOp2(0)); |
| convertInt32ToDouble(ARMRegisters::S0, scratch); |
| return branchDouble(DoubleEqualOrUnordered, reg, scratch); |
| } |
| |
| protected: |
| ARMAssembler::Condition ARMCondition(Condition cond) |
| { |
| return static_cast<ARMAssembler::Condition>(cond); |
| } |
| |
| void ensureSpace(int insnSpace, int constSpace) |
| { |
| m_assembler.ensureSpace(insnSpace, constSpace); |
| } |
| |
| int sizeOfConstantPool() |
| { |
| return m_assembler.sizeOfConstantPool(); |
| } |
| |
| void prepareCall() |
| { |
| #if WTF_ARM_ARCH_VERSION < 5 |
| ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord)); |
| |
| m_assembler.mov_r(linkRegister, ARMRegisters::pc); |
| #endif |
| } |
| |
| void call32(RegisterID base, int32_t offset) |
| { |
| #if WTF_ARM_ARCH_AT_LEAST(5) |
| int targetReg = ARMRegisters::S1; |
| #else |
| int targetReg = ARMRegisters::pc; |
| #endif |
| int tmpReg = ARMRegisters::S1; |
| |
| if (base == ARMRegisters::sp) |
| offset += 4; |
| |
| if (offset >= 0) { |
| if (offset <= 0xfff) { |
| prepareCall(); |
| m_assembler.dtr_u(true, targetReg, base, offset); |
| } else if (offset <= 0xfffff) { |
| m_assembler.add_r(tmpReg, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8)); |
| prepareCall(); |
| m_assembler.dtr_u(true, targetReg, tmpReg, offset & 0xfff); |
| } else { |
| m_assembler.moveImm(offset, tmpReg); |
| prepareCall(); |
| m_assembler.dtr_ur(true, targetReg, base, tmpReg); |
| } |
| } else { |
| offset = -offset; |
| if (offset <= 0xfff) { |
| prepareCall(); |
| m_assembler.dtr_d(true, targetReg, base, offset); |
| } else if (offset <= 0xfffff) { |
| m_assembler.sub_r(tmpReg, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8)); |
| prepareCall(); |
| m_assembler.dtr_d(true, targetReg, tmpReg, offset & 0xfff); |
| } else { |
| m_assembler.moveImm(offset, tmpReg); |
| prepareCall(); |
| m_assembler.dtr_dr(true, targetReg, base, tmpReg); |
| } |
| } |
| #if WTF_ARM_ARCH_AT_LEAST(5) |
| m_assembler.blx(targetReg); |
| #endif |
| } |
| |
| private: |
| friend class LinkBuffer; |
| friend class RepatchBuffer; |
| |
| static void linkCall(void* code, Call call, FunctionPtr function) |
| { |
| ARMAssembler::linkCall(code, call.m_jmp, function.value()); |
| } |
| |
| static void repatchCall(CodeLocationCall call, CodeLocationLabel destination) |
| { |
| ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress()); |
| } |
| |
| static void repatchCall(CodeLocationCall call, FunctionPtr destination) |
| { |
| ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress()); |
| } |
| |
| static const bool s_isVFPPresent; |
| }; |
| |
| } |
| |
| #endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) |
| |
| #endif // MacroAssemblerARM_h |