| /* |
| * Copyright (C) 2011 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DFGByteCodeParser.h" |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "DFGAliasTracker.h" |
| #include "DFGScoreBoard.h" |
| #include "CodeBlock.h" |
| |
| namespace JSC { namespace DFG { |
| |
| #if ENABLE(DFG_JIT_RESTRICTIONS) |
| // FIXME: Temporarily disable arithmetic, until we fix associated performance regressions. |
| #define ARITHMETIC_OP() m_parseFailed = true |
| #else |
| #define ARITHMETIC_OP() ((void)0) |
| #endif |
| |
| // === ByteCodeParser === |
| // |
| // This class is used to compile the dataflow graph from a CodeBlock. |
| class ByteCodeParser { |
| public: |
| ByteCodeParser(JSGlobalData* globalData, CodeBlock* codeBlock, Graph& graph) |
| : m_globalData(globalData) |
| , m_codeBlock(codeBlock) |
| , m_graph(graph) |
| , m_currentIndex(0) |
| , m_parseFailed(false) |
| , m_constantUndefined(UINT_MAX) |
| , m_constantNull(UINT_MAX) |
| , m_constant1(UINT_MAX) |
| , m_constants(codeBlock->numberOfConstantRegisters()) |
| , m_arguments(codeBlock->m_numParameters) |
| , m_variables(codeBlock->m_numVars) |
| , m_temporaries(codeBlock->m_numCalleeRegisters - codeBlock->m_numVars) |
| { |
| for (unsigned i = 0; i < m_temporaries.size(); ++i) |
| m_temporaries[i] = NoNode; |
| } |
| |
| // Parse a full CodeBlock of bytecode. |
| bool parse(); |
| |
| private: |
| // Parse a single basic block of bytecode instructions. |
| bool parseBlock(unsigned limit); |
| |
| // Get/Set the operands/result of a bytecode instruction. |
| NodeIndex get(int operand) |
| { |
| // Is this a constant? |
| if (operand >= FirstConstantRegisterIndex) { |
| unsigned constant = operand - FirstConstantRegisterIndex; |
| ASSERT(constant < m_constants.size()); |
| return getJSConstant(constant); |
| } |
| |
| // Is this an argument? |
| if (operand < 0) |
| return getArgument(operand); |
| |
| // Is this a variable? |
| unsigned numVariables = m_variables.size(); |
| if ((unsigned)operand < numVariables) |
| return getVariable((unsigned)operand); |
| |
| // Must be a temporary. |
| unsigned temporary = (unsigned)operand - numVariables; |
| ASSERT(temporary < m_temporaries.size()); |
| return getTemporary(temporary); |
| } |
| void set(int operand, NodeIndex value) |
| { |
| // Is this an argument? |
| if (operand < 0) { |
| setArgument(operand, value); |
| return; |
| } |
| |
| // Is this a variable? |
| unsigned numVariables = m_variables.size(); |
| if ((unsigned)operand < numVariables) { |
| setVariable((unsigned)operand, value); |
| return; |
| } |
| |
| // Must be a temporary. |
| unsigned temporary = (unsigned)operand - numVariables; |
| ASSERT(temporary < m_temporaries.size()); |
| setTemporary(temporary, value); |
| } |
| |
| // Used in implementing get/set, above, where the operand is a local variable. |
| NodeIndex getVariable(unsigned operand) |
| { |
| NodeIndex setNode = m_variables[operand].set; |
| if (setNode != NoNode) |
| return m_graph[setNode].child1; |
| |
| NodeIndex getNode = m_variables[operand].get; |
| if (getNode != NoNode) |
| return getNode; |
| |
| getNode = addToGraph(GetLocal, OpInfo(operand)); |
| m_variables[operand].get = getNode; |
| return getNode; |
| } |
| void setVariable(unsigned operand, NodeIndex value) |
| { |
| NodeIndex priorSet = m_variables[operand].set; |
| m_variables[operand].set = addToGraph(SetLocal, OpInfo(operand), value); |
| if (priorSet != NoNode) |
| m_graph.deref(priorSet); |
| } |
| |
| // Used in implementing get/set, above, where the operand is a temporary. |
| NodeIndex getTemporary(unsigned operand) |
| { |
| NodeIndex index = m_temporaries[operand]; |
| if (index != NoNode) |
| return index; |
| |
| // Detect a read of an temporary that is not a yet defined within this block (e.g. use of ?:). |
| m_parseFailed = true; |
| return constantUndefined(); |
| } |
| void setTemporary(unsigned operand, NodeIndex value) |
| { |
| m_temporaries[operand] = value; |
| } |
| |
| // Used in implementing get/set, above, where the operand is an argument. |
| NodeIndex getArgument(unsigned operand) |
| { |
| unsigned argument = operand + m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize; |
| ASSERT(argument < m_arguments.size()); |
| |
| NodeIndex setNode = m_arguments[argument].set; |
| if (setNode != NoNode) |
| return m_graph[setNode].child1; |
| |
| NodeIndex getNode = m_arguments[argument].get; |
| if (getNode != NoNode) |
| return getNode; |
| |
| getNode = addToGraph(GetLocal, OpInfo(operand)); |
| m_arguments[argument].get = getNode; |
| return getNode; |
| } |
| void setArgument(int operand, NodeIndex value) |
| { |
| unsigned argument = operand + m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize; |
| ASSERT(argument < m_arguments.size()); |
| |
| NodeIndex priorSet = m_arguments[argument].set; |
| m_arguments[argument].set = addToGraph(SetLocal, OpInfo(operand), value); |
| if (priorSet != NoNode) |
| m_graph.deref(priorSet); |
| } |
| |
| // Get an operand, and perform a ToInt32/ToNumber conversion on it. |
| NodeIndex getToInt32(int operand) |
| { |
| // Avoid wastefully adding a JSConstant node to the graph, only to |
| // replace it with a Int32Constant (which is what would happen if |
| // we called 'toInt32(get(operand))' in this case). |
| if (operand >= FirstConstantRegisterIndex) { |
| JSValue v = m_codeBlock->getConstant(operand); |
| if (v.isInt32()) |
| return getInt32Constant(v.asInt32(), operand - FirstConstantRegisterIndex); |
| } |
| return toInt32(get(operand)); |
| } |
| NodeIndex getToNumber(int operand) |
| { |
| // Avoid wastefully adding a JSConstant node to the graph, only to |
| // replace it with a DoubleConstant (which is what would happen if |
| // we called 'toNumber(get(operand))' in this case). |
| if (operand >= FirstConstantRegisterIndex) { |
| JSValue v = m_codeBlock->getConstant(operand); |
| if (v.isNumber()) |
| return getDoubleConstant(v.uncheckedGetNumber(), operand - FirstConstantRegisterIndex); |
| } |
| return toNumber(get(operand)); |
| } |
| |
| // Perform an ES5 ToInt32 operation - returns a node of type NodeResultInt32. |
| NodeIndex toInt32(NodeIndex index) |
| { |
| Node& node = m_graph[index]; |
| |
| if (node.hasInt32Result()) |
| return index; |
| |
| if (node.hasDoubleResult()) { |
| if (node.op == DoubleConstant) |
| return getInt32Constant(JSC::toInt32(valueOfDoubleConstant(index)), node.constantNumber()); |
| // 'NumberToInt32(Int32ToNumber(X))' == X, and 'NumberToInt32(UInt32ToNumber(X)) == X' |
| if (node.op == Int32ToNumber || node.op == UInt32ToNumber) |
| return node.child1; |
| |
| // We unique NumberToInt32 nodes in a map to prevent duplicate conversions. |
| pair<UnaryOpMap::iterator, bool> result = m_numberToInt32Nodes.add(index, NoNode); |
| // Either we added a new value, or the existing value in the map is non-zero. |
| ASSERT(result.second == (result.first->second == NoNode)); |
| if (result.second) |
| result.first->second = addToGraph(NumberToInt32, index); |
| return result.first->second; |
| } |
| |
| // Check for numeric constants boxed as JSValues. |
| if (node.op == JSConstant) { |
| JSValue v = valueOfJSConstant(index); |
| if (v.isInt32()) |
| return getInt32Constant(v.asInt32(), node.constantNumber()); |
| if (v.isNumber()) |
| return getInt32Constant(JSC::toInt32(v.uncheckedGetNumber()), node.constantNumber()); |
| } |
| |
| return addToGraph(ValueToInt32, index); |
| } |
| |
| // Perform an ES5 ToNumber operation - returns a node of type NodeResultDouble. |
| NodeIndex toNumber(NodeIndex index) |
| { |
| Node& node = m_graph[index]; |
| |
| if (node.hasDoubleResult()) |
| return index; |
| |
| if (node.hasInt32Result()) { |
| if (node.op == Int32Constant) |
| return getDoubleConstant(valueOfInt32Constant(index), node.constantNumber()); |
| |
| // We unique Int32ToNumber nodes in a map to prevent duplicate conversions. |
| pair<UnaryOpMap::iterator, bool> result = m_int32ToNumberNodes.add(index, NoNode); |
| // Either we added a new value, or the existing value in the map is non-zero. |
| ASSERT(result.second == (result.first->second == NoNode)); |
| if (result.second) |
| result.first->second = addToGraph(Int32ToNumber, index); |
| return result.first->second; |
| } |
| |
| if (node.op == JSConstant) { |
| JSValue v = valueOfJSConstant(index); |
| if (v.isNumber()) |
| return getDoubleConstant(v.uncheckedGetNumber(), node.constantNumber()); |
| } |
| |
| return addToGraph(ValueToNumber, index); |
| } |
| |
| |
| // Used in implementing get, above, where the operand is a constant. |
| NodeIndex getInt32Constant(int32_t value, unsigned constant) |
| { |
| NodeIndex index = m_constants[constant].asInt32; |
| if (index != NoNode) |
| return index; |
| NodeIndex resultIndex = addToGraph(Int32Constant, OpInfo(constant)); |
| m_graph[resultIndex].setInt32Constant(value); |
| m_constants[constant].asInt32 = resultIndex; |
| return resultIndex; |
| } |
| NodeIndex getDoubleConstant(double value, unsigned constant) |
| { |
| NodeIndex index = m_constants[constant].asNumeric; |
| if (index != NoNode) |
| return index; |
| NodeIndex resultIndex = addToGraph(DoubleConstant, OpInfo(constant)); |
| m_graph[resultIndex].setDoubleConstant(value); |
| m_constants[constant].asNumeric = resultIndex; |
| return resultIndex; |
| } |
| NodeIndex getJSConstant(unsigned constant) |
| { |
| NodeIndex index = m_constants[constant].asJSValue; |
| if (index != NoNode) |
| return index; |
| |
| NodeIndex resultIndex = addToGraph(JSConstant, OpInfo(constant)); |
| m_constants[constant].asJSValue = resultIndex; |
| return resultIndex; |
| } |
| |
| // Helper functions to get/set the this value. |
| NodeIndex getThis() |
| { |
| return getArgument(m_codeBlock->thisRegister()); |
| } |
| void setThis(NodeIndex value) |
| { |
| setArgument(m_codeBlock->thisRegister(), value); |
| } |
| |
| // Convenience methods for checking nodes for constants. |
| bool isInt32Constant(NodeIndex index) |
| { |
| return m_graph[index].op == Int32Constant; |
| } |
| bool isDoubleConstant(NodeIndex index) |
| { |
| return m_graph[index].op == DoubleConstant; |
| } |
| bool isJSConstant(NodeIndex index) |
| { |
| return m_graph[index].op == JSConstant; |
| } |
| |
| // Convenience methods for getting constant values. |
| int32_t valueOfInt32Constant(NodeIndex index) |
| { |
| ASSERT(isInt32Constant(index)); |
| return m_graph[index].int32Constant(); |
| } |
| double valueOfDoubleConstant(NodeIndex index) |
| { |
| ASSERT(isDoubleConstant(index)); |
| return m_graph[index].numericConstant(); |
| } |
| JSValue valueOfJSConstant(NodeIndex index) |
| { |
| ASSERT(isJSConstant(index)); |
| return m_codeBlock->getConstant(FirstConstantRegisterIndex + m_graph[index].constantNumber()); |
| } |
| |
| // This method returns a JSConstant with the value 'undefined'. |
| NodeIndex constantUndefined() |
| { |
| // Has m_constantUndefined been set up yet? |
| if (m_constantUndefined == UINT_MAX) { |
| // Search the constant pool for undefined, if we find it, we can just reuse this! |
| unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters(); |
| for (m_constantUndefined = 0; m_constantUndefined < numberOfConstants; ++m_constantUndefined) { |
| JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined); |
| if (testMe.isUndefined()) |
| return getJSConstant(m_constantUndefined); |
| } |
| |
| // Add undefined to the CodeBlock's constants, and add a corresponding slot in m_constants. |
| ASSERT(m_constants.size() == numberOfConstants); |
| m_codeBlock->addConstant(jsUndefined()); |
| m_constants.append(ConstantRecord()); |
| ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters()); |
| } |
| |
| // m_constantUndefined must refer to an entry in the CodeBlock's constant pool that has the value 'undefined'. |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined).isUndefined()); |
| return getJSConstant(m_constantUndefined); |
| } |
| |
| // This method returns a JSConstant with the value 'null'. |
| NodeIndex constantNull() |
| { |
| // Has m_constantNull been set up yet? |
| if (m_constantNull == UINT_MAX) { |
| // Search the constant pool for null, if we find it, we can just reuse this! |
| unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters(); |
| for (m_constantNull = 0; m_constantNull < numberOfConstants; ++m_constantNull) { |
| JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull); |
| if (testMe.isNull()) |
| return getJSConstant(m_constantNull); |
| } |
| |
| // Add null to the CodeBlock's constants, and add a corresponding slot in m_constants. |
| ASSERT(m_constants.size() == numberOfConstants); |
| m_codeBlock->addConstant(jsNull()); |
| m_constants.append(ConstantRecord()); |
| ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters()); |
| } |
| |
| // m_constantNull must refer to an entry in the CodeBlock's constant pool that has the value 'null'. |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull).isNull()); |
| return getJSConstant(m_constantNull); |
| } |
| |
| // This method returns a DoubleConstant with the value 1. |
| NodeIndex one() |
| { |
| // Has m_constant1 been set up yet? |
| if (m_constant1 == UINT_MAX) { |
| // Search the constant pool for the value 1, if we find it, we can just reuse this! |
| unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters(); |
| for (m_constant1 = 0; m_constant1 < numberOfConstants; ++m_constant1) { |
| JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1); |
| if (testMe.isInt32() && testMe.asInt32() == 1) |
| return getDoubleConstant(1, m_constant1); |
| } |
| |
| // Add the value 1 to the CodeBlock's constants, and add a corresponding slot in m_constants. |
| ASSERT(m_constants.size() == numberOfConstants); |
| m_codeBlock->addConstant(jsNumber(1)); |
| m_constants.append(ConstantRecord()); |
| ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters()); |
| } |
| |
| // m_constant1 must refer to an entry in the CodeBlock's constant pool that has the integer value 1. |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).isInt32()); |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).asInt32() == 1); |
| return getDoubleConstant(1, m_constant1); |
| } |
| |
| |
| // These methods create a node and add it to the graph. If nodes of this type are |
| // 'mustGenerate' then the node will implicitly be ref'ed to ensure generation. |
| NodeIndex addToGraph(NodeType op, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode) |
| { |
| NodeIndex resultIndex = (NodeIndex)m_graph.size(); |
| m_graph.append(Node(op, m_currentIndex, child1, child2, child3)); |
| |
| if (op & NodeMustGenerate) |
| m_graph.ref(resultIndex); |
| return resultIndex; |
| } |
| NodeIndex addToGraph(NodeType op, OpInfo info, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode) |
| { |
| NodeIndex resultIndex = (NodeIndex)m_graph.size(); |
| m_graph.append(Node(op, m_currentIndex, info, child1, child2, child3)); |
| |
| if (op & NodeMustGenerate) |
| m_graph.ref(resultIndex); |
| return resultIndex; |
| } |
| NodeIndex addToGraph(NodeType op, OpInfo info1, OpInfo info2, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode) |
| { |
| NodeIndex resultIndex = (NodeIndex)m_graph.size(); |
| m_graph.append(Node(op, m_currentIndex, info1, info2, child1, child2, child3)); |
| |
| if (op & NodeMustGenerate) |
| m_graph.ref(resultIndex); |
| return resultIndex; |
| } |
| |
| JSGlobalData* m_globalData; |
| CodeBlock* m_codeBlock; |
| Graph& m_graph; |
| |
| // The bytecode index of the current instruction being generated. |
| unsigned m_currentIndex; |
| |
| // Record failures due to unimplemented functionality or regressions. |
| bool m_parseFailed; |
| |
| // We use these values during code generation, and to avoid the need for |
| // special handling we make sure they are available as constants in the |
| // CodeBlock's constant pool. These variables are initialized to |
| // UINT_MAX, and lazily updated to hold an index into the CodeBlock's |
| // constant pool, as necessary. |
| unsigned m_constantUndefined; |
| unsigned m_constantNull; |
| unsigned m_constant1; |
| |
| // A constant in the constant pool may be represented by more than one |
| // node in the graph, depending on the context in which it is being used. |
| struct ConstantRecord { |
| ConstantRecord() |
| : asInt32(NoNode) |
| , asNumeric(NoNode) |
| , asJSValue(NoNode) |
| { |
| } |
| |
| NodeIndex asInt32; |
| NodeIndex asNumeric; |
| NodeIndex asJSValue; |
| }; |
| |
| // For every local variable we track any existing get or set of the value. |
| // We track the get so that these may be shared, and we track the set to |
| // retrieve the current value, and to reference the final definition. |
| struct VariableRecord { |
| VariableRecord() |
| : get(NoNode) |
| , set(NoNode) |
| { |
| } |
| |
| NodeIndex get; |
| NodeIndex set; |
| }; |
| |
| // Track the index of the node whose result is the current value for every |
| // register value in the bytecode - argument, local, and temporary. |
| Vector <ConstantRecord, 32> m_constants; |
| Vector <VariableRecord, 32> m_arguments; |
| Vector <VariableRecord, 32> m_variables; |
| Vector <NodeIndex, 32> m_temporaries; |
| |
| // These maps are used to unique ToNumber and ToInt32 operations. |
| typedef HashMap<NodeIndex, NodeIndex> UnaryOpMap; |
| UnaryOpMap m_int32ToNumberNodes; |
| UnaryOpMap m_numberToInt32Nodes; |
| }; |
| |
| #define NEXT_OPCODE(name) \ |
| m_currentIndex += OPCODE_LENGTH(name); \ |
| continue |
| |
| #define LAST_OPCODE(name) \ |
| m_currentIndex += OPCODE_LENGTH(name); \ |
| return !m_parseFailed |
| |
| bool ByteCodeParser::parseBlock(unsigned limit) |
| { |
| // No need to reset state initially, since it has been set by the constructor. |
| if (m_currentIndex) { |
| for (unsigned i = 0; i < m_constants.size(); ++i) |
| m_constants[i] = ConstantRecord(); |
| for (unsigned i = 0; i < m_variables.size(); ++i) |
| m_variables[i] = VariableRecord(); |
| for (unsigned i = 0; i < m_arguments.size(); ++i) |
| m_arguments[i] = VariableRecord(); |
| for (unsigned i = 0; i < m_temporaries.size(); ++i) |
| m_temporaries[i] = NoNode; |
| } |
| |
| AliasTracker aliases(m_graph); |
| |
| Interpreter* interpreter = m_globalData->interpreter; |
| Instruction* instructionsBegin = m_codeBlock->instructions().begin(); |
| while (true) { |
| // Don't extend over jump destinations. |
| if (m_currentIndex == limit) { |
| addToGraph(Jump, OpInfo(m_currentIndex)); |
| return !m_parseFailed; |
| } |
| |
| // Switch on the current bytecode opcode. |
| Instruction* currentInstruction = instructionsBegin + m_currentIndex; |
| switch (interpreter->getOpcodeID(currentInstruction->u.opcode)) { |
| |
| // === Function entry opcodes === |
| |
| case op_enter: |
| // Initialize all locals to undefined. |
| for (int i = 0; i < m_codeBlock->m_numVars; ++i) |
| set(i, constantUndefined()); |
| NEXT_OPCODE(op_enter); |
| |
| case op_convert_this: { |
| NodeIndex op1 = getThis(); |
| setThis(addToGraph(ConvertThis, op1)); |
| NEXT_OPCODE(op_convert_this); |
| } |
| |
| // === Bitwise operations === |
| |
| case op_bitand: { |
| NodeIndex op1 = getToInt32(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToInt32(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(BitAnd, op1, op2)); |
| NEXT_OPCODE(op_bitand); |
| } |
| |
| case op_bitor: { |
| NodeIndex op1 = getToInt32(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToInt32(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(BitOr, op1, op2)); |
| NEXT_OPCODE(op_bitor); |
| } |
| |
| case op_bitxor: { |
| NodeIndex op1 = getToInt32(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToInt32(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(BitXor, op1, op2)); |
| NEXT_OPCODE(op_bitxor); |
| } |
| |
| case op_rshift: { |
| NodeIndex op1 = getToInt32(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToInt32(currentInstruction[3].u.operand); |
| NodeIndex result; |
| // Optimize out shifts by zero. |
| if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f)) |
| result = op1; |
| else |
| result = addToGraph(BitRShift, op1, op2); |
| set(currentInstruction[1].u.operand, result); |
| NEXT_OPCODE(op_rshift); |
| } |
| |
| case op_lshift: { |
| NodeIndex op1 = getToInt32(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToInt32(currentInstruction[3].u.operand); |
| NodeIndex result; |
| // Optimize out shifts by zero. |
| if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f)) |
| result = op1; |
| else |
| result = addToGraph(BitLShift, op1, op2); |
| set(currentInstruction[1].u.operand, result); |
| NEXT_OPCODE(op_lshift); |
| } |
| |
| case op_urshift: { |
| NodeIndex op1 = getToInt32(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToInt32(currentInstruction[3].u.operand); |
| NodeIndex result; |
| // The result of a zero-extending right shift is treated as an unsigned value. |
| // This means that if the top bit is set, the result is not in the int32 range, |
| // and as such must be stored as a double. If the shift amount is a constant, |
| // we may be able to optimize. |
| if (isInt32Constant(op2)) { |
| // If we know we are shifting by a non-zero amount, then since the operation |
| // zero fills we know the top bit of the result must be zero, and as such the |
| // result must be within the int32 range. Conversely, if this is a shift by |
| // zero, then the result may be changed by the conversion to unsigned, but it |
| // is not necessary to perform the shift! |
| if (valueOfInt32Constant(op2) & 0x1f) |
| result = addToGraph(BitURShift, op1, op2); |
| else |
| result = addToGraph(UInt32ToNumber, op1); |
| } else { |
| // Cannot optimize at this stage; shift & potentially rebox as a double. |
| result = addToGraph(BitURShift, op1, op2); |
| result = addToGraph(UInt32ToNumber, result); |
| } |
| set(currentInstruction[1].u.operand, result); |
| NEXT_OPCODE(op_urshift); |
| } |
| |
| // === Increment/Decrement opcodes === |
| |
| case op_pre_inc: { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| NodeIndex op = getToNumber(srcDst); |
| set(srcDst, addToGraph(ArithAdd, op, one())); |
| NEXT_OPCODE(op_pre_inc); |
| } |
| |
| case op_post_inc: { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| NodeIndex op = getToNumber(srcDst); |
| set(result, op); |
| set(srcDst, addToGraph(ArithAdd, op, one())); |
| NEXT_OPCODE(op_post_inc); |
| } |
| |
| case op_pre_dec: { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| NodeIndex op = getToNumber(srcDst); |
| set(srcDst, addToGraph(ArithSub, op, one())); |
| NEXT_OPCODE(op_pre_dec); |
| } |
| |
| case op_post_dec: { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| NodeIndex op = getToNumber(srcDst); |
| set(result, op); |
| set(srcDst, addToGraph(ArithSub, op, one())); |
| NEXT_OPCODE(op_post_dec); |
| } |
| |
| // === Arithmetic operations === |
| |
| case op_add: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = get(currentInstruction[2].u.operand); |
| NodeIndex op2 = get(currentInstruction[3].u.operand); |
| // If both operands can statically be determined to the numbers, then this is an arithmetic add. |
| // Otherwise, we must assume this may be performing a concatenation to a string. |
| if (m_graph[op1].hasNumericResult() && m_graph[op2].hasNumericResult()) |
| set(currentInstruction[1].u.operand, addToGraph(ArithAdd, toNumber(op1), toNumber(op2))); |
| else |
| set(currentInstruction[1].u.operand, addToGraph(ValueAdd, op1, op2)); |
| NEXT_OPCODE(op_add); |
| } |
| |
| case op_sub: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = getToNumber(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToNumber(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(ArithSub, op1, op2)); |
| NEXT_OPCODE(op_sub); |
| } |
| |
| case op_mul: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = getToNumber(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToNumber(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(ArithMul, op1, op2)); |
| NEXT_OPCODE(op_mul); |
| } |
| |
| case op_mod: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = getToNumber(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToNumber(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(ArithMod, op1, op2)); |
| NEXT_OPCODE(op_mod); |
| } |
| |
| case op_div: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = getToNumber(currentInstruction[2].u.operand); |
| NodeIndex op2 = getToNumber(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(ArithDiv, op1, op2)); |
| NEXT_OPCODE(op_div); |
| } |
| |
| // === Misc operations === |
| |
| case op_mov: { |
| NodeIndex op = get(currentInstruction[2].u.operand); |
| set(currentInstruction[1].u.operand, op); |
| NEXT_OPCODE(op_mov); |
| } |
| |
| case op_not: { |
| ARITHMETIC_OP(); |
| NodeIndex value = get(currentInstruction[2].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(LogicalNot, value)); |
| NEXT_OPCODE(op_not); |
| } |
| |
| case op_less: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = get(currentInstruction[2].u.operand); |
| NodeIndex op2 = get(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(CompareLess, op1, op2)); |
| NEXT_OPCODE(op_less); |
| } |
| |
| case op_lesseq: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = get(currentInstruction[2].u.operand); |
| NodeIndex op2 = get(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(CompareLessEq, op1, op2)); |
| NEXT_OPCODE(op_lesseq); |
| } |
| |
| case op_eq: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = get(currentInstruction[2].u.operand); |
| NodeIndex op2 = get(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(CompareEq, op1, op2)); |
| NEXT_OPCODE(op_eq); |
| } |
| |
| case op_eq_null: { |
| ARITHMETIC_OP(); |
| NodeIndex value = get(currentInstruction[2].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(CompareEq, value, constantNull())); |
| NEXT_OPCODE(op_eq_null); |
| } |
| |
| case op_stricteq: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = get(currentInstruction[2].u.operand); |
| NodeIndex op2 = get(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(CompareStrictEq, op1, op2)); |
| NEXT_OPCODE(op_stricteq); |
| } |
| |
| case op_neq: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = get(currentInstruction[2].u.operand); |
| NodeIndex op2 = get(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2))); |
| NEXT_OPCODE(op_neq); |
| } |
| |
| case op_neq_null: { |
| ARITHMETIC_OP(); |
| NodeIndex value = get(currentInstruction[2].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEq, value, constantNull()))); |
| NEXT_OPCODE(op_neq_null); |
| } |
| |
| case op_nstricteq: { |
| ARITHMETIC_OP(); |
| NodeIndex op1 = get(currentInstruction[2].u.operand); |
| NodeIndex op2 = get(currentInstruction[3].u.operand); |
| set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareStrictEq, op1, op2))); |
| NEXT_OPCODE(op_nstricteq); |
| } |
| |
| // === Property access operations === |
| |
| case op_get_by_val: { |
| NodeIndex base = get(currentInstruction[2].u.operand); |
| NodeIndex property = get(currentInstruction[3].u.operand); |
| |
| NodeIndex getByVal = addToGraph(GetByVal, base, property, aliases.lookupGetByVal(base, property)); |
| set(currentInstruction[1].u.operand, getByVal); |
| aliases.recordGetByVal(getByVal); |
| |
| NEXT_OPCODE(op_get_by_val); |
| } |
| |
| case op_put_by_val: { |
| NodeIndex base = get(currentInstruction[1].u.operand); |
| NodeIndex property = get(currentInstruction[2].u.operand); |
| NodeIndex value = get(currentInstruction[3].u.operand); |
| |
| NodeIndex aliasedGet = aliases.lookupGetByVal(base, property); |
| NodeIndex putByVal = addToGraph(aliasedGet != NoNode ? PutByValAlias : PutByVal, base, property, value); |
| aliases.recordPutByVal(putByVal); |
| |
| NEXT_OPCODE(op_put_by_val); |
| } |
| |
| case op_get_by_id: { |
| NodeIndex base = get(currentInstruction[2].u.operand); |
| unsigned identifier = currentInstruction[3].u.operand; |
| |
| NodeIndex getById = addToGraph(GetById, OpInfo(identifier), base); |
| set(currentInstruction[1].u.operand, getById); |
| aliases.recordGetById(getById); |
| |
| NEXT_OPCODE(op_get_by_id); |
| } |
| |
| case op_put_by_id: { |
| NodeIndex value = get(currentInstruction[3].u.operand); |
| NodeIndex base = get(currentInstruction[1].u.operand); |
| unsigned identifier = currentInstruction[2].u.operand; |
| bool direct = currentInstruction[8].u.operand; |
| |
| if (direct) { |
| NodeIndex putByIdDirect = addToGraph(PutByIdDirect, OpInfo(identifier), base, value); |
| aliases.recordPutByIdDirect(putByIdDirect); |
| } else { |
| NodeIndex putById = addToGraph(PutById, OpInfo(identifier), base, value); |
| aliases.recordPutById(putById); |
| } |
| |
| NEXT_OPCODE(op_put_by_id); |
| } |
| |
| case op_get_global_var: { |
| NodeIndex getGlobalVar = addToGraph(GetGlobalVar, OpInfo(currentInstruction[2].u.operand)); |
| set(currentInstruction[1].u.operand, getGlobalVar); |
| NEXT_OPCODE(op_get_global_var); |
| } |
| |
| case op_put_global_var: { |
| NodeIndex value = get(currentInstruction[2].u.operand); |
| addToGraph(PutGlobalVar, OpInfo(currentInstruction[1].u.operand), value); |
| NEXT_OPCODE(op_put_global_var); |
| } |
| |
| // === Block terminators. === |
| |
| case op_jmp: { |
| unsigned relativeOffset = currentInstruction[1].u.operand; |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jmp); |
| } |
| |
| case op_loop: { |
| unsigned relativeOffset = currentInstruction[1].u.operand; |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_loop); |
| } |
| |
| case op_jtrue: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| NodeIndex condition = get(currentInstruction[1].u.operand); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jtrue)), condition); |
| LAST_OPCODE(op_jtrue); |
| } |
| |
| case op_jfalse: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| NodeIndex condition = get(currentInstruction[1].u.operand); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jfalse)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jfalse); |
| } |
| |
| case op_loop_if_true: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| NodeIndex condition = get(currentInstruction[1].u.operand); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_true)), condition); |
| LAST_OPCODE(op_loop_if_true); |
| } |
| |
| case op_loop_if_false: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| NodeIndex condition = get(currentInstruction[1].u.operand); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_false)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_loop_if_false); |
| } |
| |
| case op_jeq_null: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| NodeIndex value = get(currentInstruction[1].u.operand); |
| NodeIndex condition = addToGraph(CompareEq, value, constantNull()); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jeq_null)), condition); |
| LAST_OPCODE(op_jeq_null); |
| } |
| |
| case op_jneq_null: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| NodeIndex value = get(currentInstruction[1].u.operand); |
| NodeIndex condition = addToGraph(CompareEq, value, constantNull()); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_null)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jneq_null); |
| } |
| |
| case op_jnless: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| NodeIndex op1 = get(currentInstruction[1].u.operand); |
| NodeIndex op2 = get(currentInstruction[2].u.operand); |
| NodeIndex condition = addToGraph(CompareLess, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnless)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jnless); |
| } |
| |
| case op_jnlesseq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| NodeIndex op1 = get(currentInstruction[1].u.operand); |
| NodeIndex op2 = get(currentInstruction[2].u.operand); |
| NodeIndex condition = addToGraph(CompareLessEq, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnlesseq)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jnlesseq); |
| } |
| |
| case op_jless: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| NodeIndex op1 = get(currentInstruction[1].u.operand); |
| NodeIndex op2 = get(currentInstruction[2].u.operand); |
| NodeIndex condition = addToGraph(CompareLess, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jless)), condition); |
| LAST_OPCODE(op_jless); |
| } |
| |
| case op_jlesseq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| NodeIndex op1 = get(currentInstruction[1].u.operand); |
| NodeIndex op2 = get(currentInstruction[2].u.operand); |
| NodeIndex condition = addToGraph(CompareLessEq, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jlesseq)), condition); |
| LAST_OPCODE(op_jlesseq); |
| } |
| |
| case op_loop_if_less: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| NodeIndex op1 = get(currentInstruction[1].u.operand); |
| NodeIndex op2 = get(currentInstruction[2].u.operand); |
| NodeIndex condition = addToGraph(CompareLess, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_less)), condition); |
| LAST_OPCODE(op_loop_if_less); |
| } |
| |
| case op_loop_if_lesseq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| NodeIndex op1 = get(currentInstruction[1].u.operand); |
| NodeIndex op2 = get(currentInstruction[2].u.operand); |
| NodeIndex condition = addToGraph(CompareLessEq, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_lesseq)), condition); |
| LAST_OPCODE(op_loop_if_lesseq); |
| } |
| |
| case op_ret: { |
| addToGraph(Return, get(currentInstruction[1].u.operand)); |
| |
| // FIXME: throw away terminal definitions of variables; |
| // should not be necessary once we have proper DCE! |
| for (unsigned i = 0; i < m_variables.size(); ++i) { |
| NodeIndex priorSet = m_variables[i].set; |
| if (priorSet != NoNode) |
| m_graph.deref(priorSet); |
| } |
| |
| LAST_OPCODE(op_ret); |
| } |
| |
| default: |
| // Parse failed! |
| return false; |
| } |
| } |
| } |
| |
| bool ByteCodeParser::parse() |
| { |
| // Set during construction. |
| ASSERT(!m_currentIndex); |
| |
| for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= m_codeBlock->numberOfJumpTargets(); ++jumpTargetIndex) { |
| // The maximum bytecode offset to go into the current basicblock is either the next jump target, or the end of the instructions. |
| unsigned limit = jumpTargetIndex < m_codeBlock->numberOfJumpTargets() ? m_codeBlock->jumpTarget(jumpTargetIndex) : m_codeBlock->instructions().size(); |
| ASSERT(m_currentIndex < limit); |
| |
| // Loop until we reach the current limit (i.e. next jump target). |
| do { |
| unsigned bytecodeBegin = m_currentIndex; |
| NodeIndex begin = m_graph.size(); |
| |
| if (!parseBlock(limit)) |
| return false; |
| // We should not have gone beyond the limit. |
| ASSERT(m_currentIndex <= limit); |
| |
| NodeIndex end = m_graph.size(); |
| m_graph.m_blocks.append(BasicBlock(bytecodeBegin, begin, end)); |
| } while (m_currentIndex < limit); |
| } |
| |
| // Should have reached the end of the instructions. |
| ASSERT(m_currentIndex == m_codeBlock->instructions().size()); |
| |
| // Assign VirtualRegisters. |
| ScoreBoard scoreBoard(m_graph, m_variables.size()); |
| Node* nodes = m_graph.begin(); |
| size_t size = m_graph.size(); |
| for (size_t i = 0; i < size; ++i) { |
| Node& node = nodes[i]; |
| if (node.refCount) { |
| // First, call use on all of the current node's children, then |
| // allocate a VirtualRegister for this node. We do so in this |
| // order so that if a child is on its last use, and a |
| // VirtualRegister is freed, then it may be reused for node. |
| scoreBoard.use(node.child1); |
| scoreBoard.use(node.child2); |
| scoreBoard.use(node.child3); |
| node.virtualRegister = scoreBoard.allocate(); |
| // 'mustGenerate' nodes have their useCount artificially elevated, |
| // call use now to account for this. |
| if (node.mustGenerate()) |
| scoreBoard.use(i); |
| } |
| } |
| |
| // 'm_numCalleeRegisters' is the number of locals and temporaries allocated |
| // for the function (and checked for on entry). Since we perform a new and |
| // different allocation of temporaries, more registers may now be required. |
| unsigned calleeRegisters = scoreBoard.allocatedCount() + m_variables.size(); |
| if ((unsigned)m_codeBlock->m_numCalleeRegisters < calleeRegisters) |
| m_codeBlock->m_numCalleeRegisters = calleeRegisters; |
| |
| #if DFG_DEBUG_VERBOSE |
| m_graph.dump(m_codeBlock); |
| #endif |
| |
| return true; |
| } |
| |
| bool parse(Graph& graph, JSGlobalData* globalData, CodeBlock* codeBlock) |
| { |
| #if DFG_DEBUG_LOCAL_DISBALE |
| UNUSED_PARAM(graph); |
| UNUSED_PARAM(globalData); |
| UNUSED_PARAM(codeBlock); |
| return false; |
| #else |
| return ByteCodeParser(globalData, codeBlock, graph).parse(); |
| #endif |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif |