blob: 03ae2b896aca3c3c2ecd0fbf782c1afe08a8c5e0 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGJITCompiler_h
#define DFGJITCompiler_h
#if ENABLE(DFG_JIT)
#include <assembler/MacroAssembler.h>
#include <bytecode/CodeBlock.h>
#include <dfg/DFGGraph.h>
#include <jit/JITCode.h>
namespace JSC {
class AbstractSamplingCounter;
class CodeBlock;
class JSGlobalData;
namespace DFG {
class JITCodeGenerator;
class NonSpeculativeJIT;
class SpeculativeJIT;
class SpeculationRecovery;
struct EntryLocation;
struct SpeculationCheck;
// Abstracted sequential numbering of available machine registers (as opposed to MacroAssembler::RegisterID,
// which are non-sequential, and not abstracted from the register numbering used by the underlying processor).
enum GPRReg { gpr0, gpr1, gpr2, gpr3, gpr4, gpr5, numberOfGPRs, InvalidGPRReg = 0xFFFFFFFF };
enum FPRReg { fpr0, fpr1, fpr2, fpr3, fpr4, fpr5, numberOfFPRs, InvalidFPRReg = 0xFFFFFFFF };
// GPRReg/FPRReg are enum types to provide type checking at compile time, use these method to iterate.
inline GPRReg next(GPRReg& reg)
{
ASSERT(reg < numberOfGPRs);
return reg = static_cast<GPRReg>(reg + 1);
}
inline FPRReg next(FPRReg& reg)
{
ASSERT(reg < numberOfFPRs);
return reg = static_cast<FPRReg>(reg + 1);
}
// === CallRecord ===
//
// A record of a call out from JIT code to a helper function.
// Every CallRecord contains a reference to the call instruction & the function
// that it needs to be linked to. Calls that might throw an exception also record
// the Jump taken on exception (unset if not present), and ExceptionInfo (presently
// an unsigned, bytecode index) used to recover handler/source info.
struct CallRecord {
// Constructor for a call with no exception handler.
CallRecord(MacroAssembler::Call call, FunctionPtr function)
: m_call(call)
, m_function(function)
{
}
// Constructor for a call with an exception handler.
CallRecord(MacroAssembler::Call call, FunctionPtr function, MacroAssembler::Jump exceptionCheck, ExceptionInfo exceptionInfo)
: m_call(call)
, m_function(function)
, m_exceptionCheck(exceptionCheck)
, m_exceptionInfo(exceptionInfo)
{
}
MacroAssembler::Call m_call;
FunctionPtr m_function;
MacroAssembler::Jump m_exceptionCheck;
ExceptionInfo m_exceptionInfo;
};
// === JITCompiler ===
//
// DFG::JITCompiler is responsible for generating JIT code from the dataflow graph.
// It does so by delegating to the speculative & non-speculative JITs, which
// generate to a MacroAssembler (which the JITCompiler owns through an inheritance
// relationship). The JITCompiler holds references to information required during
// compilation, and also records information used in linking (e.g. a list of all
// call to be linked).
class JITCompiler : public MacroAssembler {
public:
JITCompiler(JSGlobalData* globalData, Graph& dfg, CodeBlock* codeBlock)
: m_globalData(globalData)
, m_graph(dfg)
, m_codeBlock(codeBlock)
{
}
void compileFunction(JITCode& entry, MacroAssemblerCodePtr& entryWithArityCheck);
// Accessors for properties.
Graph& graph() { return m_graph; }
CodeBlock* codeBlock() { return m_codeBlock; }
JSGlobalData* globalData() { return m_globalData; }
#if CPU(X86_64)
// These registers match the old JIT.
static const RegisterID timeoutCheckRegister = X86Registers::r12;
static const RegisterID callFrameRegister = X86Registers::r13;
static const RegisterID tagTypeNumberRegister = X86Registers::r14;
static const RegisterID tagMaskRegister = X86Registers::r15;
// Temporary registers (these correspond to the temporary GPRReg/FPRReg
// registers i.e. regT0 and grp0 refer to the same thing, grp0 being
// the abstracted, sequential name, and regT0 being the machine register
// number in the instruction set, as provided by the MacroAssembler).
static const RegisterID regT0 = X86Registers::eax;
static const RegisterID regT1 = X86Registers::edx;
static const RegisterID regT2 = X86Registers::ecx;
static const RegisterID regT3 = X86Registers::ebx;
static const RegisterID regT4 = X86Registers::edi;
static const RegisterID regT5 = X86Registers::esi;
static const FPRegisterID fpRegT0 = X86Registers::xmm0;
static const FPRegisterID fpRegT1 = X86Registers::xmm1;
static const FPRegisterID fpRegT2 = X86Registers::xmm2;
static const FPRegisterID fpRegT3 = X86Registers::xmm3;
static const FPRegisterID fpRegT4 = X86Registers::xmm4;
static const FPRegisterID fpRegT5 = X86Registers::xmm5;
// These constants provide both RegisterID & GPRReg style names for the
// general purpose argument & return value register.
static const GPRReg argumentGPR0 = gpr4;
static const GPRReg argumentGPR1 = gpr5;
static const GPRReg argumentGPR2 = gpr1;
static const GPRReg argumentGPR3 = gpr2;
static const RegisterID argumentRegister0 = regT4;
static const RegisterID argumentRegister1 = regT5;
static const RegisterID argumentRegister2 = regT1;
static const RegisterID argumentRegister3 = regT2;
static const GPRReg returnValueGPR = gpr0;
static const RegisterID returnValueRegister = regT0;
static const RegisterID returnValueRegister2 = regT1;
// These constants provide both FPRegisterID & FPRReg style names for the
// floating point argument & return value register.
static const FPRReg argumentFPR0 = fpr0;
static const FPRReg argumentFPR1 = fpr1;
static const FPRReg argumentFPR2 = fpr2;
static const FPRReg argumentFPR3 = fpr3;
static const FPRegisterID fpArgumentRegister0 = fpRegT0;
static const FPRegisterID fpArgumentRegister1 = fpRegT1;
static const FPRegisterID fpArgumentRegister2 = fpRegT2;
static const FPRegisterID fpArgumentRegister3 = fpRegT3;
static const FPRReg returnValueFPR = fpr0;
static const FPRegisterID fpReturnValueRegister = fpRegT0;
void preserveReturnAddressAfterCall(RegisterID reg)
{
pop(reg);
}
void restoreReturnAddressBeforeReturn(RegisterID reg)
{
push(reg);
}
void restoreReturnAddressBeforeReturn(Address address)
{
push(address);
}
void emitGetFromCallFrameHeaderPtr(RegisterFile::CallFrameHeaderEntry entry, RegisterID to)
{
loadPtr(Address(callFrameRegister, entry * sizeof(Register)), to);
}
void emitPutToCallFrameHeader(RegisterID from, RegisterFile::CallFrameHeaderEntry entry)
{
storePtr(from, Address(callFrameRegister, entry * sizeof(Register)));
}
void emitPutImmediateToCallFrameHeader(void* value, RegisterFile::CallFrameHeaderEntry entry)
{
storePtr(TrustedImmPtr(value), Address(callFrameRegister, entry * sizeof(Register)));
}
#endif
Address addressForArgument(int32_t argument)
{
return Address(callFrameRegister, (argument - (m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize)) * sizeof(Register));
}
static Address addressForGlobalVar(RegisterID global, int32_t varNumber)
{
return Address(global, varNumber * sizeof(Register));
}
static Address addressFor(VirtualRegister virtualRegister)
{
return Address(callFrameRegister, virtualRegister * sizeof(Register));
}
// These methods provide mapping from sequential register numbering (GPRReg/FPRReg)
// to machine register numbering (RegisterID/FPRegisterID).
static RegisterID gprToRegisterID(GPRReg reg)
{
ASSERT(reg < numberOfGPRs);
static const RegisterID idForRegister[numberOfGPRs] = { regT0, regT1, regT2, regT3, regT4, regT5 };
return idForRegister[reg];
}
static FPRegisterID fprToRegisterID(FPRReg reg)
{
ASSERT(reg < numberOfFPRs);
static const FPRegisterID idForRegister[numberOfFPRs] = { fpRegT0, fpRegT1, fpRegT2, fpRegT3, fpRegT4, fpRegT5 };
return idForRegister[reg];
}
// Add a call out from JIT code, without an exception check.
void appendCall(const FunctionPtr& function)
{
m_calls.append(CallRecord(call(), function));
// FIXME: should be able to JIT_ASSERT here that globalData->exception is null on return back to JIT code.
}
// Add a call out from JIT code, with an exception check.
void appendCallWithExceptionCheck(const FunctionPtr& function, unsigned exceptionInfo)
{
Call functionCall = call();
Jump exceptionCheck = branchTestPtr(NonZero, AbsoluteAddress(&globalData()->exception));
m_calls.append(CallRecord(functionCall, function, exceptionCheck, exceptionInfo));
}
// Helper methods to check nodes for constants.
bool isConstant(NodeIndex nodeIndex)
{
return graph()[nodeIndex].isConstant();
}
bool isInt32Constant(NodeIndex nodeIndex)
{
return graph()[nodeIndex].op == Int32Constant;
}
bool isDoubleConstant(NodeIndex nodeIndex)
{
return graph()[nodeIndex].op == DoubleConstant;
}
bool isJSConstant(NodeIndex nodeIndex)
{
return graph()[nodeIndex].op == JSConstant;
}
// Helper methods get constant values from nodes.
int32_t valueOfInt32Constant(NodeIndex nodeIndex)
{
ASSERT(isInt32Constant(nodeIndex));
return graph()[nodeIndex].int32Constant();
}
double valueOfDoubleConstant(NodeIndex nodeIndex)
{
ASSERT(isDoubleConstant(nodeIndex));
return graph()[nodeIndex].numericConstant();
}
JSValue valueOfJSConstant(NodeIndex nodeIndex)
{
ASSERT(isJSConstant(nodeIndex));
unsigned constantIndex = graph()[nodeIndex].constantNumber();
return codeBlock()->constantRegister(FirstConstantRegisterIndex + constantIndex).get();
}
// These methods JIT generate dynamic, debug-only checks - akin to ASSERTs.
#if DFG_JIT_ASSERT
void jitAssertIsInt32(GPRReg);
void jitAssertIsJSInt32(GPRReg);
void jitAssertIsJSNumber(GPRReg);
void jitAssertIsJSDouble(GPRReg);
#else
void jitAssertIsInt32(GPRReg) {}
void jitAssertIsJSInt32(GPRReg) {}
void jitAssertIsJSNumber(GPRReg) {}
void jitAssertIsJSDouble(GPRReg) {}
#endif
#if ENABLE(SAMPLING_COUNTERS)
// Debug profiling tool.
void emitCount(AbstractSamplingCounter&, uint32_t increment = 1);
#endif
private:
// These methods used in linking the speculative & non-speculative paths together.
void fillNumericToDouble(NodeIndex, FPRReg, GPRReg temporary);
void fillInt32ToInteger(NodeIndex, GPRReg);
void fillToJS(NodeIndex, GPRReg);
void jumpFromSpeculativeToNonSpeculative(const SpeculationCheck&, const EntryLocation&, SpeculationRecovery*);
void linkSpeculationChecks(SpeculativeJIT&, NonSpeculativeJIT&);
// The globalData, used to access constants such as the vPtrs.
JSGlobalData* m_globalData;
// The dataflow graph currently being generated.
Graph& m_graph;
// The codeBlock currently being generated, used to access information such as constant values, immediates.
CodeBlock* m_codeBlock;
// Vector of calls out from JIT code, including exception handler information.
Vector<CallRecord> m_calls;
};
} } // namespace JSC::DFG
#endif
#endif