blob: 6f4d3b7fe7c23697684aedc7ad2b4846e445bb95 [file] [log] [blame]
/*
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 2000 Dirk Mueller (mueller@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007 Apple Inc. All rights reserved.
* Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net)
* Copyright (C) 2006 Graham Dennis (graham.dennis@gmail.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "RenderText.h"
#include "AXObjectCache.h"
#include "EllipsisBox.h"
#include "FloatQuad.h"
#include "FontTranscoder.h"
#include "FrameView.h"
#include "InlineTextBox.h"
#include "Range.h"
#include "RenderArena.h"
#include "RenderBlock.h"
#include "RenderCombineText.h"
#include "RenderLayer.h"
#include "RenderView.h"
#include "Settings.h"
#include "Text.h"
#include "TextBreakIterator.h"
#include "TextResourceDecoder.h"
#include "TextRun.h"
#include "VisiblePosition.h"
#include "break_lines.h"
#include <wtf/AlwaysInline.h>
#include <wtf/text/StringBuffer.h>
#include <wtf/unicode/CharacterNames.h>
using namespace std;
using namespace WTF;
using namespace Unicode;
namespace WebCore {
class SecureTextTimer;
typedef HashMap<RenderText*, SecureTextTimer*> SecureTextTimerMap;
static SecureTextTimerMap* gSecureTextTimers = 0;
class SecureTextTimer : public TimerBase {
public:
SecureTextTimer(RenderText* renderText)
: m_renderText(renderText)
, m_lastTypedCharacterOffset(-1)
{
}
void restartWithNewText(unsigned lastTypedCharacterOffset)
{
m_lastTypedCharacterOffset = lastTypedCharacterOffset;
startOneShot(m_renderText->document()->settings()->passwordEchoDurationInSeconds());
}
void invalidate() { m_lastTypedCharacterOffset = -1; }
unsigned lastTypedCharacterOffset() { return m_lastTypedCharacterOffset; }
private:
virtual void fired()
{
ASSERT(gSecureTextTimers->contains(m_renderText));
m_renderText->setText(m_renderText->text(), true /* forcing setting text as it may be masked later */);
}
RenderText* m_renderText;
int m_lastTypedCharacterOffset;
};
static void makeCapitalized(String* string, UChar previous)
{
if (string->isNull())
return;
unsigned length = string->length();
const UChar* characters = string->characters();
if (length >= numeric_limits<unsigned>::max())
CRASH();
StringBuffer stringWithPrevious(length + 1);
stringWithPrevious[0] = previous == noBreakSpace ? ' ' : previous;
for (unsigned i = 1; i < length + 1; i++) {
// Replace &nbsp with a real space since ICU no longer treats &nbsp as a word separator.
if (characters[i - 1] == noBreakSpace)
stringWithPrevious[i] = ' ';
else
stringWithPrevious[i] = characters[i - 1];
}
TextBreakIterator* boundary = wordBreakIterator(stringWithPrevious.characters(), length + 1);
if (!boundary)
return;
StringBuffer data(length);
int32_t endOfWord;
int32_t startOfWord = textBreakFirst(boundary);
for (endOfWord = textBreakNext(boundary); endOfWord != TextBreakDone; startOfWord = endOfWord, endOfWord = textBreakNext(boundary)) {
if (startOfWord != 0) // Ignore first char of previous string
data[startOfWord - 1] = characters[startOfWord - 1] == noBreakSpace ? noBreakSpace : toTitleCase(stringWithPrevious[startOfWord]);
for (int i = startOfWord + 1; i < endOfWord; i++)
data[i - 1] = characters[i - 1];
}
*string = String::adopt(data);
}
RenderText::RenderText(Node* node, PassRefPtr<StringImpl> str)
: RenderObject(node)
, m_minWidth(-1)
, m_text(str)
, m_firstTextBox(0)
, m_lastTextBox(0)
, m_maxWidth(-1)
, m_beginMinWidth(0)
, m_endMinWidth(0)
, m_hasTab(false)
, m_linesDirty(false)
, m_containsReversedText(false)
, m_isAllASCII(m_text.containsOnlyASCII())
, m_knownToHaveNoOverflowAndNoFallbackFonts(false)
, m_needsTranscoding(false)
{
ASSERT(m_text);
setIsText();
// FIXME: It would be better to call this only if !m_text->containsOnlyWhitespace().
// But that might slow things down, and maybe should only be done if visuallyNonEmpty
// is still false. Not making any change for now, but should consider in the future.
view()->frameView()->setIsVisuallyNonEmpty();
}
#ifndef NDEBUG
RenderText::~RenderText()
{
ASSERT(!m_firstTextBox);
ASSERT(!m_lastTextBox);
}
#endif
const char* RenderText::renderName() const
{
return "RenderText";
}
bool RenderText::isTextFragment() const
{
return false;
}
bool RenderText::isWordBreak() const
{
return false;
}
void RenderText::updateNeedsTranscoding()
{
const TextEncoding* encoding = document()->decoder() ? &document()->decoder()->encoding() : 0;
m_needsTranscoding = fontTranscoder().needsTranscoding(style()->font().fontDescription(), encoding);
}
void RenderText::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
// There is no need to ever schedule repaints from a style change of a text run, since
// we already did this for the parent of the text run.
// We do have to schedule layouts, though, since a style change can force us to
// need to relayout.
if (diff == StyleDifferenceLayout) {
setNeedsLayoutAndPrefWidthsRecalc();
m_knownToHaveNoOverflowAndNoFallbackFonts = false;
}
bool needsResetText = false;
if (!oldStyle) {
updateNeedsTranscoding();
needsResetText = m_needsTranscoding;
} else if (oldStyle->font().needsTranscoding() != style()->font().needsTranscoding() || (style()->font().needsTranscoding() && oldStyle->font().family().family() != style()->font().family().family())) {
updateNeedsTranscoding();
needsResetText = true;
}
ETextTransform oldTransform = oldStyle ? oldStyle->textTransform() : TTNONE;
ETextSecurity oldSecurity = oldStyle ? oldStyle->textSecurity() : TSNONE;
if (needsResetText || oldTransform != style()->textTransform() || oldSecurity != style()->textSecurity()) {
if (RefPtr<StringImpl> textToTransform = originalText())
setText(textToTransform.release(), true);
}
}
void RenderText::removeAndDestroyTextBoxes()
{
if (!documentBeingDestroyed()) {
if (firstTextBox()) {
if (isBR()) {
RootInlineBox* next = firstTextBox()->root()->nextRootBox();
if (next)
next->markDirty();
}
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox())
box->remove();
} else if (parent())
parent()->dirtyLinesFromChangedChild(this);
}
deleteTextBoxes();
}
void RenderText::destroy()
{
if (SecureTextTimer* secureTextTimer = gSecureTextTimers ? gSecureTextTimers->take(this) : 0)
delete secureTextTimer;
removeAndDestroyTextBoxes();
RenderObject::destroy();
}
void RenderText::extractTextBox(InlineTextBox* box)
{
checkConsistency();
m_lastTextBox = box->prevTextBox();
if (box == m_firstTextBox)
m_firstTextBox = 0;
if (box->prevTextBox())
box->prevTextBox()->setNextTextBox(0);
box->setPreviousTextBox(0);
for (InlineTextBox* curr = box; curr; curr = curr->nextTextBox())
curr->setExtracted();
checkConsistency();
}
void RenderText::attachTextBox(InlineTextBox* box)
{
checkConsistency();
if (m_lastTextBox) {
m_lastTextBox->setNextTextBox(box);
box->setPreviousTextBox(m_lastTextBox);
} else
m_firstTextBox = box;
InlineTextBox* last = box;
for (InlineTextBox* curr = box; curr; curr = curr->nextTextBox()) {
curr->setExtracted(false);
last = curr;
}
m_lastTextBox = last;
checkConsistency();
}
void RenderText::removeTextBox(InlineTextBox* box)
{
checkConsistency();
if (box == m_firstTextBox)
m_firstTextBox = box->nextTextBox();
if (box == m_lastTextBox)
m_lastTextBox = box->prevTextBox();
if (box->nextTextBox())
box->nextTextBox()->setPreviousTextBox(box->prevTextBox());
if (box->prevTextBox())
box->prevTextBox()->setNextTextBox(box->nextTextBox());
checkConsistency();
}
void RenderText::deleteTextBoxes()
{
if (firstTextBox()) {
RenderArena* arena = renderArena();
InlineTextBox* next;
for (InlineTextBox* curr = firstTextBox(); curr; curr = next) {
next = curr->nextTextBox();
curr->destroy(arena);
}
m_firstTextBox = m_lastTextBox = 0;
}
}
PassRefPtr<StringImpl> RenderText::originalText() const
{
Node* e = node();
return (e && e->isTextNode()) ? static_cast<Text*>(e)->dataImpl() : 0;
}
void RenderText::absoluteRects(Vector<IntRect>& rects, int tx, int ty)
{
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox())
rects.append(enclosingIntRect(FloatRect(tx + box->x(), ty + box->y(), box->width(), box->height())));
}
void RenderText::absoluteRectsForRange(Vector<IntRect>& rects, unsigned start, unsigned end, bool useSelectionHeight)
{
// Work around signed/unsigned issues. This function takes unsigneds, and is often passed UINT_MAX
// to mean "all the way to the end". InlineTextBox coordinates are unsigneds, so changing this
// function to take ints causes various internal mismatches. But selectionRect takes ints, and
// passing UINT_MAX to it causes trouble. Ideally we'd change selectionRect to take unsigneds, but
// that would cause many ripple effects, so for now we'll just clamp our unsigned parameters to INT_MAX.
ASSERT(end == UINT_MAX || end <= INT_MAX);
ASSERT(start <= INT_MAX);
start = min(start, static_cast<unsigned>(INT_MAX));
end = min(end, static_cast<unsigned>(INT_MAX));
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) {
// Note: box->end() returns the index of the last character, not the index past it
if (start <= box->start() && box->end() < end) {
IntRect r = IntRect(box->x(), box->y(), box->logicalWidth(), box->logicalHeight());
if (useSelectionHeight) {
IntRect selectionRect = box->selectionRect(0, 0, start, end);
r.setHeight(selectionRect.height());
r.setY(selectionRect.y());
}
FloatPoint origin = localToAbsolute(r.location());
r.setX(origin.x());
r.setY(origin.y());
rects.append(r);
} else {
unsigned realEnd = min(box->end() + 1, end);
IntRect r = box->selectionRect(0, 0, start, realEnd);
if (!r.isEmpty()) {
if (!useSelectionHeight) {
// change the height and y position because selectionRect uses selection-specific values
r.setHeight(box->logicalHeight());
r.setY(box->y());
}
FloatPoint origin = localToAbsolute(r.location());
localToAbsolute(origin);
r.setX(origin.x());
r.setY(origin.y());
rects.append(r);
}
}
}
}
static IntRect ellipsisRectForBox(InlineTextBox* box, unsigned startPos, unsigned endPos)
{
if (!box)
return IntRect();
unsigned short truncation = box->truncation();
if (truncation == cNoTruncation)
return IntRect();
IntRect rect;
if (EllipsisBox* ellipsis = box->root()->ellipsisBox()) {
int ellipsisStartPosition = max<int>(startPos - box->start(), 0);
int ellipsisEndPosition = min<int>(endPos - box->start(), box->len());
// The ellipsis should be considered to be selected if the end of
// the selection is past the beginning of the truncation and the
// beginning of the selection is before or at the beginning of the truncation.
if (ellipsisEndPosition >= truncation && ellipsisStartPosition <= truncation)
return ellipsis->selectionRect(0, 0);
}
return IntRect();
}
void RenderText::absoluteQuads(Vector<FloatQuad>& quads, ClippingOption option)
{
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) {
IntRect boundaries = box->calculateBoundaries();
// Shorten the width of this text box if it ends in an ellipsis.
IntRect ellipsisRect = (option == ClipToEllipsis) ? ellipsisRectForBox(box, 0, textLength()) : IntRect();
if (!ellipsisRect.isEmpty()) {
if (style()->isHorizontalWritingMode())
boundaries.setWidth(ellipsisRect.maxX() - boundaries.x());
else
boundaries.setHeight(ellipsisRect.maxY() - boundaries.y());
}
quads.append(localToAbsoluteQuad(FloatRect(boundaries)));
}
}
void RenderText::absoluteQuads(Vector<FloatQuad>& quads)
{
absoluteQuads(quads, NoClipping);
}
void RenderText::absoluteQuadsForRange(Vector<FloatQuad>& quads, unsigned start, unsigned end, bool useSelectionHeight)
{
// Work around signed/unsigned issues. This function takes unsigneds, and is often passed UINT_MAX
// to mean "all the way to the end". InlineTextBox coordinates are unsigneds, so changing this
// function to take ints causes various internal mismatches. But selectionRect takes ints, and
// passing UINT_MAX to it causes trouble. Ideally we'd change selectionRect to take unsigneds, but
// that would cause many ripple effects, so for now we'll just clamp our unsigned parameters to INT_MAX.
ASSERT(end == UINT_MAX || end <= INT_MAX);
ASSERT(start <= INT_MAX);
start = min(start, static_cast<unsigned>(INT_MAX));
end = min(end, static_cast<unsigned>(INT_MAX));
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) {
// Note: box->end() returns the index of the last character, not the index past it
if (start <= box->start() && box->end() < end) {
IntRect r(box->calculateBoundaries());
if (useSelectionHeight) {
IntRect selectionRect = box->selectionRect(0, 0, start, end);
if (box->isHorizontal()) {
r.setHeight(selectionRect.height());
r.setY(selectionRect.y());
} else {
r.setWidth(selectionRect.width());
r.setX(selectionRect.x());
}
}
quads.append(localToAbsoluteQuad(FloatRect(r)));
} else {
unsigned realEnd = min(box->end() + 1, end);
IntRect r = box->selectionRect(0, 0, start, realEnd);
if (r.height()) {
if (!useSelectionHeight) {
// change the height and y position because selectionRect uses selection-specific values
if (box->isHorizontal()) {
r.setHeight(box->logicalHeight());
r.setY(box->y());
} else {
r.setWidth(box->logicalHeight());
r.setX(box->x());
}
}
quads.append(localToAbsoluteQuad(FloatRect(r)));
}
}
}
}
InlineTextBox* RenderText::findNextInlineTextBox(int offset, int& pos) const
{
// The text runs point to parts of the RenderText's m_text
// (they don't include '\n')
// Find the text run that includes the character at offset
// and return pos, which is the position of the char in the run.
if (!m_firstTextBox)
return 0;
InlineTextBox* s = m_firstTextBox;
int off = s->len();
while (offset > off && s->nextTextBox()) {
s = s->nextTextBox();
off = s->start() + s->len();
}
// we are now in the correct text run
pos = (offset > off ? s->len() : s->len() - (off - offset) );
return s;
}
VisiblePosition RenderText::positionForPoint(const IntPoint& point)
{
if (!firstTextBox() || textLength() == 0)
return createVisiblePosition(0, DOWNSTREAM);
// Get the offset for the position, since this will take rtl text into account.
int offset;
int pointLineDirection = firstTextBox()->isHorizontal() ? point.x() : point.y();
int pointBlockDirection = firstTextBox()->isHorizontal() ? point.y() : point.x();
// FIXME: We should be able to roll these special cases into the general cases in the loop below.
if (firstTextBox() && pointBlockDirection < firstTextBox()->root()->selectionBottom() && pointLineDirection < firstTextBox()->logicalLeft()) {
// at the y coordinate of the first line or above
// and the x coordinate is to the left of the first text box left edge
offset = firstTextBox()->offsetForPosition(pointLineDirection);
return createVisiblePosition(offset + firstTextBox()->start(), offset > 0 ? VP_UPSTREAM_IF_POSSIBLE : DOWNSTREAM);
}
if (lastTextBox() && pointBlockDirection >= lastTextBox()->root()->selectionTop() && pointLineDirection >= lastTextBox()->logicalRight()) {
// at the y coordinate of the last line or below
// and the x coordinate is to the right of the last text box right edge
offset = lastTextBox()->offsetForPosition(pointLineDirection);
return createVisiblePosition(offset + lastTextBox()->start(), VP_UPSTREAM_IF_POSSIBLE);
}
InlineTextBox* lastBoxAbove = 0;
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) {
RootInlineBox* rootBox = box->root();
if (pointBlockDirection >= rootBox->selectionTop()) {
int bottom = rootBox->selectionBottom();
if (rootBox->nextRootBox())
bottom = min(bottom, rootBox->nextRootBox()->lineTop());
if (pointBlockDirection < bottom) {
offset = box->offsetForPosition(pointLineDirection);
if (pointLineDirection == box->logicalLeft())
// the x coordinate is equal to the left edge of this box
// the affinity must be downstream so the position doesn't jump back to the previous line
return createVisiblePosition(offset + box->start(), DOWNSTREAM);
if (pointLineDirection < box->logicalRight())
// and the x coordinate is to the left of the right edge of this box
// check to see if position goes in this box
return createVisiblePosition(offset + box->start(), offset > 0 ? VP_UPSTREAM_IF_POSSIBLE : DOWNSTREAM);
if (!box->prevOnLine() && pointLineDirection < box->logicalLeft())
// box is first on line
// and the x coordinate is to the left of the first text box left edge
return createVisiblePosition(offset + box->start(), DOWNSTREAM);
if (!box->nextOnLine())
// box is last on line
// and the x coordinate is to the right of the last text box right edge
// generate VisiblePosition, use UPSTREAM affinity if possible
return createVisiblePosition(offset + box->start(), offset > 0 ? VP_UPSTREAM_IF_POSSIBLE : DOWNSTREAM);
}
lastBoxAbove = box;
}
}
return createVisiblePosition(lastBoxAbove ? lastBoxAbove->start() + lastBoxAbove->len() : 0, DOWNSTREAM);
}
IntRect RenderText::localCaretRect(InlineBox* inlineBox, int caretOffset, int* extraWidthToEndOfLine)
{
if (!inlineBox)
return IntRect();
ASSERT(inlineBox->isInlineTextBox());
if (!inlineBox->isInlineTextBox())
return IntRect();
InlineTextBox* box = static_cast<InlineTextBox*>(inlineBox);
int height = box->root()->selectionHeight();
int top = box->root()->selectionTop();
// Go ahead and round left to snap it to the nearest pixel.
float left = box->positionForOffset(caretOffset);
// Distribute the caret's width to either side of the offset.
int caretWidthLeftOfOffset = caretWidth / 2;
left -= caretWidthLeftOfOffset;
int caretWidthRightOfOffset = caretWidth - caretWidthLeftOfOffset;
left = roundf(left);
float rootLeft = box->root()->logicalLeft();
float rootRight = box->root()->logicalRight();
// FIXME: should we use the width of the root inline box or the
// width of the containing block for this?
if (extraWidthToEndOfLine)
*extraWidthToEndOfLine = (box->root()->logicalWidth() + rootLeft) - (left + 1);
RenderBlock* cb = containingBlock();
RenderStyle* cbStyle = cb->style();
float leftEdge;
float rightEdge;
if (style()->autoWrap()) {
leftEdge = cb->logicalLeft();
rightEdge = cb->logicalRight();
} else {
leftEdge = min(static_cast<float>(cb->logicalLeft()), rootLeft);
rightEdge = max(static_cast<float>(cb->logicalRight()), rootRight);
}
bool rightAligned = false;
switch (cbStyle->textAlign()) {
case TAAUTO:
case JUSTIFY:
rightAligned = !cbStyle->isLeftToRightDirection();
break;
case RIGHT:
case WEBKIT_RIGHT:
rightAligned = true;
break;
case LEFT:
case WEBKIT_LEFT:
case CENTER:
case WEBKIT_CENTER:
break;
case TASTART:
rightAligned = !cbStyle->isLeftToRightDirection();
break;
case TAEND:
rightAligned = cbStyle->isLeftToRightDirection();
break;
}
if (rightAligned) {
left = max(left, leftEdge);
left = min(left, rootRight - caretWidth);
} else {
left = min(left, rightEdge - caretWidthRightOfOffset);
left = max(left, rootLeft);
}
return style()->isHorizontalWritingMode() ? IntRect(left, top, caretWidth, height) : IntRect(top, left, height, caretWidth);
}
ALWAYS_INLINE float RenderText::widthFromCache(const Font& f, int start, int len, float xPos, HashSet<const SimpleFontData*>* fallbackFonts, GlyphOverflow* glyphOverflow) const
{
if (style()->hasTextCombine() && isCombineText()) {
const RenderCombineText* combineText = toRenderCombineText(this);
if (combineText->isCombined())
return combineText->combinedTextWidth(f);
}
if (f.isFixedPitch() && !f.isSmallCaps() && m_isAllASCII && (!glyphOverflow || !glyphOverflow->computeBounds)) {
float monospaceCharacterWidth = f.spaceWidth();
float tabWidth = allowTabs() ? monospaceCharacterWidth * 8 : 0;
float w = 0;
bool isSpace;
bool previousCharWasSpace = true; // FIXME: Preserves historical behavior, but seems wrong for start > 0.
ASSERT(m_text);
StringImpl& text = *m_text.impl();
for (int i = start; i < start + len; i++) {
char c = text[i];
if (c <= ' ') {
if (c == ' ' || c == '\n') {
w += monospaceCharacterWidth;
isSpace = true;
} else if (c == '\t') {
w += tabWidth ? tabWidth - fmodf(xPos + w, tabWidth) : monospaceCharacterWidth;
isSpace = true;
} else
isSpace = false;
} else {
w += monospaceCharacterWidth;
isSpace = false;
}
if (isSpace && !previousCharWasSpace)
w += f.wordSpacing();
previousCharWasSpace = isSpace;
}
return w;
}
return f.width(TextRun(text()->characters() + start, len, allowTabs(), xPos), fallbackFonts, glyphOverflow);
}
void RenderText::trimmedPrefWidths(float leadWidth,
float& beginMinW, bool& beginWS,
float& endMinW, bool& endWS,
bool& hasBreakableChar, bool& hasBreak,
float& beginMaxW, float& endMaxW,
float& minW, float& maxW, bool& stripFrontSpaces)
{
bool collapseWhiteSpace = style()->collapseWhiteSpace();
if (!collapseWhiteSpace)
stripFrontSpaces = false;
if (m_hasTab || preferredLogicalWidthsDirty())
computePreferredLogicalWidths(leadWidth);
beginWS = !stripFrontSpaces && m_hasBeginWS;
endWS = m_hasEndWS;
int len = textLength();
if (!len || (stripFrontSpaces && text()->containsOnlyWhitespace())) {
beginMinW = 0;
endMinW = 0;
beginMaxW = 0;
endMaxW = 0;
minW = 0;
maxW = 0;
hasBreak = false;
return;
}
minW = m_minWidth;
maxW = m_maxWidth;
beginMinW = m_beginMinWidth;
endMinW = m_endMinWidth;
hasBreakableChar = m_hasBreakableChar;
hasBreak = m_hasBreak;
ASSERT(m_text);
StringImpl& text = *m_text.impl();
if (text[0] == ' ' || (text[0] == '\n' && !style()->preserveNewline()) || text[0] == '\t') {
const Font& f = style()->font(); // FIXME: This ignores first-line.
if (stripFrontSpaces) {
const UChar space = ' ';
float spaceWidth = f.width(TextRun(&space, 1));
maxW -= spaceWidth;
} else
maxW += f.wordSpacing();
}
stripFrontSpaces = collapseWhiteSpace && m_hasEndWS;
if (!style()->autoWrap() || minW > maxW)
minW = maxW;
// Compute our max widths by scanning the string for newlines.
if (hasBreak) {
const Font& f = style()->font(); // FIXME: This ignores first-line.
bool firstLine = true;
beginMaxW = maxW;
endMaxW = maxW;
for (int i = 0; i < len; i++) {
int linelen = 0;
while (i + linelen < len && text[i + linelen] != '\n')
linelen++;
if (linelen) {
endMaxW = widthFromCache(f, i, linelen, leadWidth + endMaxW, 0, 0);
if (firstLine) {
firstLine = false;
leadWidth = 0;
beginMaxW = endMaxW;
}
i += linelen;
} else if (firstLine) {
beginMaxW = 0;
firstLine = false;
leadWidth = 0;
}
if (i == len - 1)
// A <pre> run that ends with a newline, as in, e.g.,
// <pre>Some text\n\n<span>More text</pre>
endMaxW = 0;
}
}
}
static inline bool isSpaceAccordingToStyle(UChar c, RenderStyle* style)
{
return c == ' ' || (c == noBreakSpace && style->nbspMode() == SPACE);
}
float RenderText::minLogicalWidth() const
{
if (preferredLogicalWidthsDirty())
const_cast<RenderText*>(this)->computePreferredLogicalWidths(0);
return m_minWidth;
}
float RenderText::maxLogicalWidth() const
{
if (preferredLogicalWidthsDirty())
const_cast<RenderText*>(this)->computePreferredLogicalWidths(0);
return m_maxWidth;
}
void RenderText::computePreferredLogicalWidths(float leadWidth)
{
HashSet<const SimpleFontData*> fallbackFonts;
GlyphOverflow glyphOverflow;
computePreferredLogicalWidths(leadWidth, fallbackFonts, glyphOverflow);
if (fallbackFonts.isEmpty() && !glyphOverflow.left && !glyphOverflow.right && !glyphOverflow.top && !glyphOverflow.bottom)
m_knownToHaveNoOverflowAndNoFallbackFonts = true;
}
void RenderText::computePreferredLogicalWidths(float leadWidth, HashSet<const SimpleFontData*>& fallbackFonts, GlyphOverflow& glyphOverflow)
{
ASSERT(m_hasTab || preferredLogicalWidthsDirty() || !m_knownToHaveNoOverflowAndNoFallbackFonts);
m_minWidth = 0;
m_beginMinWidth = 0;
m_endMinWidth = 0;
m_maxWidth = 0;
if (isBR())
return;
float currMinWidth = 0;
float currMaxWidth = 0;
m_hasBreakableChar = false;
m_hasBreak = false;
m_hasTab = false;
m_hasBeginWS = false;
m_hasEndWS = false;
const Font& f = style()->font(); // FIXME: This ignores first-line.
float wordSpacing = style()->wordSpacing();
int len = textLength();
const UChar* txt = characters();
LazyLineBreakIterator breakIterator(txt, len);
bool needsWordSpacing = false;
bool ignoringSpaces = false;
bool isSpace = false;
bool firstWord = true;
bool firstLine = true;
int nextBreakable = -1;
int lastWordBoundary = 0;
int firstGlyphLeftOverflow = -1;
bool breakNBSP = style()->autoWrap() && style()->nbspMode() == SPACE;
bool breakAll = (style()->wordBreak() == BreakAllWordBreak || style()->wordBreak() == BreakWordBreak) && style()->autoWrap();
for (int i = 0; i < len; i++) {
UChar c = txt[i];
bool previousCharacterIsSpace = isSpace;
bool isNewline = false;
if (c == '\n') {
if (style()->preserveNewline()) {
m_hasBreak = true;
isNewline = true;
isSpace = false;
} else
isSpace = true;
} else if (c == '\t') {
if (!style()->collapseWhiteSpace()) {
m_hasTab = true;
isSpace = false;
} else
isSpace = true;
} else
isSpace = c == ' ';
if ((isSpace || isNewline) && !i)
m_hasBeginWS = true;
if ((isSpace || isNewline) && i == len - 1)
m_hasEndWS = true;
if (!ignoringSpaces && style()->collapseWhiteSpace() && previousCharacterIsSpace && isSpace)
ignoringSpaces = true;
if (ignoringSpaces && !isSpace)
ignoringSpaces = false;
// Ignore spaces and soft hyphens
if (ignoringSpaces) {
ASSERT(lastWordBoundary == i);
lastWordBoundary++;
continue;
} else if (c == softHyphen) {
currMaxWidth += widthFromCache(f, lastWordBoundary, i - lastWordBoundary, leadWidth + currMaxWidth, &fallbackFonts, &glyphOverflow);
if (firstGlyphLeftOverflow < 0)
firstGlyphLeftOverflow = glyphOverflow.left;
lastWordBoundary = i + 1;
continue;
}
bool hasBreak = breakAll || isBreakable(breakIterator, i, nextBreakable, breakNBSP);
bool betweenWords = true;
int j = i;
while (c != '\n' && !isSpaceAccordingToStyle(c, style()) && c != '\t' && c != softHyphen) {
j++;
if (j == len)
break;
c = txt[j];
if (isBreakable(breakIterator, j, nextBreakable, breakNBSP))
break;
if (breakAll) {
betweenWords = false;
break;
}
}
int wordLen = j - i;
if (wordLen) {
float w = widthFromCache(f, i, wordLen, leadWidth + currMaxWidth, &fallbackFonts, &glyphOverflow);
if (firstGlyphLeftOverflow < 0)
firstGlyphLeftOverflow = glyphOverflow.left;
currMinWidth += w;
if (betweenWords) {
if (lastWordBoundary == i)
currMaxWidth += w;
else
currMaxWidth += widthFromCache(f, lastWordBoundary, j - lastWordBoundary, leadWidth + currMaxWidth, &fallbackFonts, &glyphOverflow);
lastWordBoundary = j;
}
bool isSpace = (j < len) && isSpaceAccordingToStyle(c, style());
bool isCollapsibleWhiteSpace = (j < len) && style()->isCollapsibleWhiteSpace(c);
if (j < len && style()->autoWrap())
m_hasBreakableChar = true;
// Add in wordSpacing to our currMaxWidth, but not if this is the last word on a line or the
// last word in the run.
if (wordSpacing && (isSpace || isCollapsibleWhiteSpace) && !containsOnlyWhitespace(j, len-j))
currMaxWidth += wordSpacing;
if (firstWord) {
firstWord = false;
// If the first character in the run is breakable, then we consider ourselves to have a beginning
// minimum width of 0, since a break could occur right before our run starts, preventing us from ever
// being appended to a previous text run when considering the total minimum width of the containing block.
if (hasBreak)
m_hasBreakableChar = true;
m_beginMinWidth = hasBreak ? 0 : w;
}
m_endMinWidth = w;
if (currMinWidth > m_minWidth)
m_minWidth = currMinWidth;
currMinWidth = 0;
i += wordLen - 1;
} else {
// Nowrap can never be broken, so don't bother setting the
// breakable character boolean. Pre can only be broken if we encounter a newline.
if (style()->autoWrap() || isNewline)
m_hasBreakableChar = true;
if (currMinWidth > m_minWidth)
m_minWidth = currMinWidth;
currMinWidth = 0;
if (isNewline) { // Only set if preserveNewline was true and we saw a newline.
if (firstLine) {
firstLine = false;
leadWidth = 0;
if (!style()->autoWrap())
m_beginMinWidth = currMaxWidth;
}
if (currMaxWidth > m_maxWidth)
m_maxWidth = currMaxWidth;
currMaxWidth = 0;
} else {
currMaxWidth += f.width(TextRun(txt + i, 1, allowTabs(), leadWidth + currMaxWidth));
glyphOverflow.right = 0;
needsWordSpacing = isSpace && !previousCharacterIsSpace && i == len - 1;
}
ASSERT(lastWordBoundary == i);
lastWordBoundary++;
}
}
if (firstGlyphLeftOverflow > 0)
glyphOverflow.left = firstGlyphLeftOverflow;
if ((needsWordSpacing && len > 1) || (ignoringSpaces && !firstWord))
currMaxWidth += wordSpacing;
m_minWidth = max(currMinWidth, m_minWidth);
m_maxWidth = max(currMaxWidth, m_maxWidth);
if (!style()->autoWrap())
m_minWidth = m_maxWidth;
if (style()->whiteSpace() == PRE) {
if (firstLine)
m_beginMinWidth = m_maxWidth;
m_endMinWidth = currMaxWidth;
}
setPreferredLogicalWidthsDirty(false);
}
bool RenderText::isAllCollapsibleWhitespace()
{
int length = textLength();
const UChar* text = characters();
for (int i = 0; i < length; i++) {
if (!style()->isCollapsibleWhiteSpace(text[i]))
return false;
}
return true;
}
bool RenderText::containsOnlyWhitespace(unsigned from, unsigned len) const
{
ASSERT(m_text);
StringImpl& text = *m_text.impl();
unsigned currPos;
for (currPos = from;
currPos < from + len && (text[currPos] == '\n' || text[currPos] == ' ' || text[currPos] == '\t');
currPos++) { }
return currPos >= (from + len);
}
FloatPoint RenderText::firstRunOrigin() const
{
return IntPoint(firstRunX(), firstRunY());
}
float RenderText::firstRunX() const
{
return m_firstTextBox ? m_firstTextBox->m_x : 0;
}
float RenderText::firstRunY() const
{
return m_firstTextBox ? m_firstTextBox->m_y : 0;
}
void RenderText::setSelectionState(SelectionState state)
{
InlineTextBox* box;
RenderObject::setSelectionState(state);
if (state == SelectionStart || state == SelectionEnd || state == SelectionBoth) {
int startPos, endPos;
selectionStartEnd(startPos, endPos);
if (selectionState() == SelectionStart) {
endPos = textLength();
// to handle selection from end of text to end of line
if (startPos != 0 && startPos == endPos)
startPos = endPos - 1;
} else if (selectionState() == SelectionEnd)
startPos = 0;
for (box = firstTextBox(); box; box = box->nextTextBox()) {
if (box->isSelected(startPos, endPos)) {
RootInlineBox* line = box->root();
if (line)
line->setHasSelectedChildren(true);
}
}
} else {
for (box = firstTextBox(); box; box = box->nextTextBox()) {
RootInlineBox* line = box->root();
if (line)
line->setHasSelectedChildren(state == SelectionInside);
}
}
// The returned value can be null in case of an orphaned tree.
if (RenderBlock* cb = containingBlock())
cb->setSelectionState(state);
}
void RenderText::setTextWithOffset(PassRefPtr<StringImpl> text, unsigned offset, unsigned len, bool force)
{
unsigned oldLen = textLength();
unsigned newLen = text->length();
int delta = newLen - oldLen;
unsigned end = len ? offset + len - 1 : offset;
RootInlineBox* firstRootBox = 0;
RootInlineBox* lastRootBox = 0;
bool dirtiedLines = false;
// Dirty all text boxes that include characters in between offset and offset+len.
for (InlineTextBox* curr = firstTextBox(); curr; curr = curr->nextTextBox()) {
// Text run is entirely before the affected range.
if (curr->end() < offset)
continue;
// Text run is entirely after the affected range.
if (curr->start() > end) {
curr->offsetRun(delta);
RootInlineBox* root = curr->root();
if (!firstRootBox) {
firstRootBox = root;
if (!dirtiedLines) {
// The affected area was in between two runs. Go ahead and mark the root box of
// the run after the affected area as dirty.
firstRootBox->markDirty();
dirtiedLines = true;
}
}
lastRootBox = root;
} else if (curr->end() >= offset && curr->end() <= end) {
// Text run overlaps with the left end of the affected range.
curr->dirtyLineBoxes();
dirtiedLines = true;
} else if (curr->start() <= offset && curr->end() >= end) {
// Text run subsumes the affected range.
curr->dirtyLineBoxes();
dirtiedLines = true;
} else if (curr->start() <= end && curr->end() >= end) {
// Text run overlaps with right end of the affected range.
curr->dirtyLineBoxes();
dirtiedLines = true;
}
}
// Now we have to walk all of the clean lines and adjust their cached line break information
// to reflect our updated offsets.
if (lastRootBox)
lastRootBox = lastRootBox->nextRootBox();
if (firstRootBox) {
RootInlineBox* prev = firstRootBox->prevRootBox();
if (prev)
firstRootBox = prev;
} else if (lastTextBox()) {
ASSERT(!lastRootBox);
firstRootBox = lastTextBox()->root();
firstRootBox->markDirty();
dirtiedLines = true;
}
for (RootInlineBox* curr = firstRootBox; curr && curr != lastRootBox; curr = curr->nextRootBox()) {
if (curr->lineBreakObj() == this && curr->lineBreakPos() > end)
curr->setLineBreakPos(curr->lineBreakPos() + delta);
}
// If the text node is empty, dirty the line where new text will be inserted.
if (!firstTextBox() && parent()) {
parent()->dirtyLinesFromChangedChild(this);
dirtiedLines = true;
}
m_linesDirty = dirtiedLines;
setText(text, force);
}
static inline bool isInlineFlowOrEmptyText(const RenderObject* o)
{
if (o->isRenderInline())
return true;
if (!o->isText())
return false;
StringImpl* text = toRenderText(o)->text();
if (!text)
return true;
return !text->length();
}
UChar RenderText::previousCharacter() const
{
// find previous text renderer if one exists
const RenderObject* previousText = this;
while ((previousText = previousText->previousInPreOrder()))
if (!isInlineFlowOrEmptyText(previousText))
break;
UChar prev = ' ';
if (previousText && previousText->isText())
if (StringImpl* previousString = toRenderText(previousText)->text())
prev = (*previousString)[previousString->length() - 1];
return prev;
}
void RenderText::transformText(String& text) const
{
ASSERT(style());
switch (style()->textTransform()) {
case TTNONE:
break;
case CAPITALIZE:
makeCapitalized(&text, previousCharacter());
break;
case UPPERCASE:
text.makeUpper();
break;
case LOWERCASE:
text.makeLower();
break;
}
}
void RenderText::setTextInternal(PassRefPtr<StringImpl> text)
{
ASSERT(text);
m_text = text;
if (m_needsTranscoding) {
const TextEncoding* encoding = document()->decoder() ? &document()->decoder()->encoding() : 0;
fontTranscoder().convert(m_text, style()->font().fontDescription(), encoding);
}
ASSERT(m_text);
if (style()) {
transformText(m_text);
// We use the same characters here as for list markers.
// See the listMarkerText function in RenderListMarker.cpp.
switch (style()->textSecurity()) {
case TSNONE:
break;
case TSCIRCLE:
secureText(whiteBullet);
break;
case TSDISC:
secureText(bullet);
break;
case TSSQUARE:
secureText(blackSquare);
}
}
ASSERT(m_text);
ASSERT(!isBR() || (textLength() == 1 && m_text[0] == '\n'));
m_isAllASCII = m_text.containsOnlyASCII();
}
void RenderText::secureText(UChar mask)
{
if (!m_text.length())
return;
int lastTypedCharacterOffsetToReveal = -1;
String revealedText;
SecureTextTimer* secureTextTimer = gSecureTextTimers ? gSecureTextTimers->get(this) : 0;
if (secureTextTimer && secureTextTimer->isActive()) {
lastTypedCharacterOffsetToReveal = secureTextTimer->lastTypedCharacterOffset();
if (lastTypedCharacterOffsetToReveal >= 0)
revealedText.append(m_text[lastTypedCharacterOffsetToReveal]);
}
m_text.makeSecure(mask);
if (lastTypedCharacterOffsetToReveal >= 0) {
m_text.replace(lastTypedCharacterOffsetToReveal, 1, revealedText);
// m_text may be updated later before timer fires. We invalidate the lastTypedCharacterOffset to avoid inconsistency.
secureTextTimer->invalidate();
}
}
void RenderText::setText(PassRefPtr<StringImpl> text, bool force)
{
ASSERT(text);
if (!force && equal(m_text.impl(), text.get()))
return;
setTextInternal(text);
setNeedsLayoutAndPrefWidthsRecalc();
m_knownToHaveNoOverflowAndNoFallbackFonts = false;
AXObjectCache* axObjectCache = document()->axObjectCache();
if (axObjectCache->accessibilityEnabled())
axObjectCache->contentChanged(this);
}
String RenderText::textWithoutTranscoding() const
{
// If m_text isn't transcoded or is secure, we can just return the modified text.
if (!m_needsTranscoding || style()->textSecurity() != TSNONE)
return text();
// Otherwise, we should use original text. If text-transform is
// specified, we should transform the text on the fly.
String text = originalText();
if (style())
transformText(text);
return text;
}
void RenderText::dirtyLineBoxes(bool fullLayout)
{
if (fullLayout)
deleteTextBoxes();
else if (!m_linesDirty) {
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox())
box->dirtyLineBoxes();
}
m_linesDirty = false;
}
InlineTextBox* RenderText::createTextBox()
{
return new (renderArena()) InlineTextBox(this);
}
InlineTextBox* RenderText::createInlineTextBox()
{
InlineTextBox* textBox = createTextBox();
if (!m_firstTextBox)
m_firstTextBox = m_lastTextBox = textBox;
else {
m_lastTextBox->setNextTextBox(textBox);
textBox->setPreviousTextBox(m_lastTextBox);
m_lastTextBox = textBox;
}
textBox->setIsText(true);
return textBox;
}
void RenderText::positionLineBox(InlineBox* box)
{
InlineTextBox* s = static_cast<InlineTextBox*>(box);
// FIXME: should not be needed!!!
if (!s->len()) {
// We want the box to be destroyed.
s->remove();
if (m_firstTextBox == s)
m_firstTextBox = s->nextTextBox();
else
s->prevTextBox()->setNextTextBox(s->nextTextBox());
if (m_lastTextBox == s)
m_lastTextBox = s->prevTextBox();
else
s->nextTextBox()->setPreviousTextBox(s->prevTextBox());
s->destroy(renderArena());
return;
}
m_containsReversedText |= !s->isLeftToRightDirection();
}
float RenderText::width(unsigned from, unsigned len, float xPos, bool firstLine, HashSet<const SimpleFontData*>* fallbackFonts, GlyphOverflow* glyphOverflow) const
{
if (from >= textLength())
return 0;
if (from + len > textLength())
len = textLength() - from;
return width(from, len, style(firstLine)->font(), xPos, fallbackFonts, glyphOverflow);
}
float RenderText::width(unsigned from, unsigned len, const Font& f, float xPos, HashSet<const SimpleFontData*>* fallbackFonts, GlyphOverflow* glyphOverflow) const
{
ASSERT(from + len <= textLength());
if (!characters())
return 0;
float w;
if (&f == &style()->font()) {
if (!style()->preserveNewline() && !from && len == textLength() && (!glyphOverflow || !glyphOverflow->computeBounds)) {
if (fallbackFonts) {
ASSERT(glyphOverflow);
if (preferredLogicalWidthsDirty() || !m_knownToHaveNoOverflowAndNoFallbackFonts) {
const_cast<RenderText*>(this)->computePreferredLogicalWidths(0, *fallbackFonts, *glyphOverflow);
if (fallbackFonts->isEmpty() && !glyphOverflow->left && !glyphOverflow->right && !glyphOverflow->top && !glyphOverflow->bottom)
m_knownToHaveNoOverflowAndNoFallbackFonts = true;
}
w = m_maxWidth;
} else
w = maxLogicalWidth();
} else
w = widthFromCache(f, from, len, xPos, fallbackFonts, glyphOverflow);
} else
w = f.width(TextRun(text()->characters() + from, len, allowTabs(), xPos), fallbackFonts, glyphOverflow);
return w;
}
IntRect RenderText::linesBoundingBox() const
{
IntRect result;
ASSERT(!firstTextBox() == !lastTextBox()); // Either both are null or both exist.
if (firstTextBox() && lastTextBox()) {
// Return the width of the minimal left side and the maximal right side.
float logicalLeftSide = 0;
float logicalRightSide = 0;
for (InlineTextBox* curr = firstTextBox(); curr; curr = curr->nextTextBox()) {
if (curr == firstTextBox() || curr->logicalLeft() < logicalLeftSide)
logicalLeftSide = curr->logicalLeft();
if (curr == firstTextBox() || curr->logicalRight() > logicalRightSide)
logicalRightSide = curr->logicalRight();
}
bool isHorizontal = style()->isHorizontalWritingMode();
float x = isHorizontal ? logicalLeftSide : firstTextBox()->x();
float y = isHorizontal ? firstTextBox()->y() : logicalLeftSide;
float width = isHorizontal ? logicalRightSide - logicalLeftSide : lastTextBox()->logicalBottom() - x;
float height = isHorizontal ? lastTextBox()->logicalBottom() - y : logicalRightSide - logicalLeftSide;
result = enclosingIntRect(FloatRect(x, y, width, height));
}
return result;
}
IntRect RenderText::linesVisualOverflowBoundingBox() const
{
if (!firstTextBox())
return IntRect();
// Return the width of the minimal left side and the maximal right side.
int logicalLeftSide = numeric_limits<int>::max();
int logicalRightSide = numeric_limits<int>::min();
for (InlineTextBox* curr = firstTextBox(); curr; curr = curr->nextTextBox()) {
logicalLeftSide = min(logicalLeftSide, curr->logicalLeftVisualOverflow());
logicalRightSide = max(logicalRightSide, curr->logicalRightVisualOverflow());
}
int logicalTop = firstTextBox()->logicalTopVisualOverflow();
int logicalWidth = logicalRightSide - logicalLeftSide;
int logicalHeight = lastTextBox()->logicalBottomVisualOverflow() - logicalTop;
IntRect rect(logicalLeftSide, logicalTop, logicalWidth, logicalHeight);
if (!style()->isHorizontalWritingMode())
rect = rect.transposedRect();
return rect;
}
IntRect RenderText::clippedOverflowRectForRepaint(RenderBoxModelObject* repaintContainer)
{
bool repaintContainerSkipped;
RenderObject* container = this->container(repaintContainer, &repaintContainerSkipped);
// The container may be an ancestor of repaintContainer, but we need to do a repaintContainer-relative repaint.
if (repaintContainerSkipped)
return repaintContainer->clippedOverflowRectForRepaint(repaintContainer);
return container->clippedOverflowRectForRepaint(repaintContainer);
}
IntRect RenderText::selectionRectForRepaint(RenderBoxModelObject* repaintContainer, bool clipToVisibleContent)
{
ASSERT(!needsLayout());
if (selectionState() == SelectionNone)
return IntRect();
RenderBlock* cb = containingBlock();
if (!cb)
return IntRect();
// Now calculate startPos and endPos for painting selection.
// We include a selection while endPos > 0
int startPos, endPos;
if (selectionState() == SelectionInside) {
// We are fully selected.
startPos = 0;
endPos = textLength();
} else {
selectionStartEnd(startPos, endPos);
if (selectionState() == SelectionStart)
endPos = textLength();
else if (selectionState() == SelectionEnd)
startPos = 0;
}
if (startPos == endPos)
return IntRect();
IntRect rect;
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) {
rect.unite(box->selectionRect(0, 0, startPos, endPos));
rect.unite(ellipsisRectForBox(box, startPos, endPos));
}
if (clipToVisibleContent)
computeRectForRepaint(repaintContainer, rect);
else {
if (cb->hasColumns())
cb->adjustRectForColumns(rect);
rect = localToContainerQuad(FloatRect(rect), repaintContainer).enclosingBoundingBox();
}
return rect;
}
int RenderText::caretMinOffset() const
{
InlineTextBox* box = firstTextBox();
if (!box)
return 0;
int minOffset = box->start();
for (box = box->nextTextBox(); box; box = box->nextTextBox())
minOffset = min<int>(minOffset, box->start());
return minOffset;
}
int RenderText::caretMaxOffset() const
{
InlineTextBox* box = lastTextBox();
if (!box)
return textLength();
int maxOffset = box->start() + box->len();
for (box = box->prevTextBox(); box; box = box->prevTextBox())
maxOffset = max<int>(maxOffset, box->start() + box->len());
return maxOffset;
}
unsigned RenderText::caretMaxRenderedOffset() const
{
int l = 0;
for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox())
l += box->len();
return l;
}
int RenderText::previousOffset(int current) const
{
StringImpl* si = m_text.impl();
TextBreakIterator* iterator = cursorMovementIterator(si->characters(), si->length());
if (!iterator)
return current - 1;
long result = textBreakPreceding(iterator, current);
if (result == TextBreakDone)
result = current - 1;
#ifdef BUILDING_ON_TIGER
// ICU 3.2 allows character breaks before a half-width Katakana voiced mark.
if (static_cast<unsigned>(result) < si->length()) {
UChar character = (*si)[result];
if (character == 0xFF9E || character == 0xFF9F)
--result;
}
#endif
return result;
}
#if PLATFORM(MAC)
#define HANGUL_CHOSEONG_START (0x1100)
#define HANGUL_CHOSEONG_END (0x115F)
#define HANGUL_JUNGSEONG_START (0x1160)
#define HANGUL_JUNGSEONG_END (0x11A2)
#define HANGUL_JONGSEONG_START (0x11A8)
#define HANGUL_JONGSEONG_END (0x11F9)
#define HANGUL_SYLLABLE_START (0xAC00)
#define HANGUL_SYLLABLE_END (0xD7AF)
#define HANGUL_JONGSEONG_COUNT (28)
enum HangulState {
HangulStateL,
HangulStateV,
HangulStateT,
HangulStateLV,
HangulStateLVT,
HangulStateBreak
};
inline bool isHangulLVT(UChar32 character)
{
return (character - HANGUL_SYLLABLE_START) % HANGUL_JONGSEONG_COUNT;
}
inline bool isMark(UChar32 c)
{
int8_t charType = u_charType(c);
return charType == U_NON_SPACING_MARK || charType == U_ENCLOSING_MARK || charType == U_COMBINING_SPACING_MARK;
}
#endif
int RenderText::previousOffsetForBackwardDeletion(int current) const
{
#if PLATFORM(MAC)
ASSERT(m_text);
StringImpl& text = *m_text.impl();
UChar32 character;
while (current > 0) {
if (U16_IS_TRAIL(text[--current]))
--current;
if (current < 0)
break;
UChar32 character = text.characterStartingAt(current);
// We don't combine characters in Armenian ... Limbu range for backward deletion.
if ((character >= 0x0530) && (character < 0x1950))
break;
if (!isMark(character) && (character != 0xFF9E) && (character != 0xFF9F))
break;
}
if (current <= 0)
return current;
// Hangul
character = text.characterStartingAt(current);
if (((character >= HANGUL_CHOSEONG_START) && (character <= HANGUL_JONGSEONG_END)) || ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END))) {
HangulState state;
HangulState initialState;
if (character < HANGUL_JUNGSEONG_START)
state = HangulStateL;
else if (character < HANGUL_JONGSEONG_START)
state = HangulStateV;
else if (character < HANGUL_SYLLABLE_START)
state = HangulStateT;
else
state = isHangulLVT(character) ? HangulStateLVT : HangulStateLV;
initialState = state;
while (current > 0 && ((character = text.characterStartingAt(current - 1)) >= HANGUL_CHOSEONG_START) && (character <= HANGUL_SYLLABLE_END) && ((character <= HANGUL_JONGSEONG_END) || (character >= HANGUL_SYLLABLE_START))) {
switch (state) {
case HangulStateV:
if (character <= HANGUL_CHOSEONG_END)
state = HangulStateL;
else if ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END) && !isHangulLVT(character))
state = HangulStateLV;
else if (character > HANGUL_JUNGSEONG_END)
state = HangulStateBreak;
break;
case HangulStateT:
if ((character >= HANGUL_JUNGSEONG_START) && (character <= HANGUL_JUNGSEONG_END))
state = HangulStateV;
else if ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END))
state = (isHangulLVT(character) ? HangulStateLVT : HangulStateLV);
else if (character < HANGUL_JUNGSEONG_START)
state = HangulStateBreak;
break;
default:
state = (character < HANGUL_JUNGSEONG_START) ? HangulStateL : HangulStateBreak;
break;
}
if (state == HangulStateBreak)
break;
--current;
}
}
return current;
#else
// Platforms other than Mac delete by one code point.
return current - 1;
#endif
}
int RenderText::nextOffset(int current) const
{
StringImpl* si = m_text.impl();
TextBreakIterator* iterator = cursorMovementIterator(si->characters(), si->length());
if (!iterator)
return current + 1;
long result = textBreakFollowing(iterator, current);
if (result == TextBreakDone)
result = current + 1;
#ifdef BUILDING_ON_TIGER
// ICU 3.2 allows character breaks before a half-width Katakana voiced mark.
if (static_cast<unsigned>(result) < si->length()) {
UChar character = (*si)[result];
if (character == 0xFF9E || character == 0xFF9F)
++result;
}
#endif
return result;
}
#ifndef NDEBUG
void RenderText::checkConsistency() const
{
#ifdef CHECK_CONSISTENCY
const InlineTextBox* prev = 0;
for (const InlineTextBox* child = m_firstTextBox; child != 0; child = child->nextTextBox()) {
ASSERT(child->renderer() == this);
ASSERT(child->prevTextBox() == prev);
prev = child;
}
ASSERT(prev == m_lastTextBox);
#endif
}
#endif
void RenderText::momentarilyRevealLastTypedCharacter(unsigned lastTypedCharacterOffset)
{
if (!gSecureTextTimers)
gSecureTextTimers = new SecureTextTimerMap;
SecureTextTimer* secureTextTimer = gSecureTextTimers->get(this);
if (!secureTextTimer) {
secureTextTimer = new SecureTextTimer(this);
gSecureTextTimers->add(this, secureTextTimer);
}
secureTextTimer->restartWithNewText(lastTypedCharacterOffset);
}
} // namespace WebCore