| /* dfa - DFA construction routines */ |
| |
| /*- |
| * Copyright (c) 1990 The Regents of the University of California. |
| * All rights reserved. |
| * |
| * This code is derived from software contributed to Berkeley by |
| * Vern Paxson. |
| * |
| * The United States Government has rights in this work pursuant |
| * to contract no. DE-AC03-76SF00098 between the United States |
| * Department of Energy and the University of California. |
| * |
| * Redistribution and use in source and binary forms with or without |
| * modification are permitted provided that: (1) source distributions retain |
| * this entire copyright notice and comment, and (2) distributions including |
| * binaries display the following acknowledgement: ``This product includes |
| * software developed by the University of California, Berkeley and its |
| * contributors'' in the documentation or other materials provided with the |
| * distribution and in all advertising materials mentioning features or use |
| * of this software. Neither the name of the University nor the names of |
| * its contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
| */ |
| |
| /* $Header: /home/daffy/u0/vern/flex/RCS/dfa.c,v 2.26 95/04/20 13:53:14 vern Exp $ */ |
| |
| #include "flexdef.h" |
| |
| |
| /* declare functions that have forward references */ |
| |
| void dump_associated_rules PROTO((FILE*, int)); |
| void dump_transitions PROTO((FILE*, int[])); |
| void sympartition PROTO((int[], int, int[], int[])); |
| int symfollowset PROTO((int[], int, int, int[])); |
| |
| |
| /* check_for_backing_up - check a DFA state for backing up |
| * |
| * synopsis |
| * void check_for_backing_up( int ds, int state[numecs] ); |
| * |
| * ds is the number of the state to check and state[] is its out-transitions, |
| * indexed by equivalence class. |
| */ |
| |
| void check_for_backing_up( ds, state ) |
| int ds; |
| int state[]; |
| { |
| if ( (reject && ! dfaacc[ds].dfaacc_set) || |
| (! reject && ! dfaacc[ds].dfaacc_state) ) |
| { /* state is non-accepting */ |
| ++num_backing_up; |
| |
| if ( backing_up_report ) |
| { |
| fprintf( backing_up_file, |
| _( "State #%d is non-accepting -\n" ), ds ); |
| |
| /* identify the state */ |
| dump_associated_rules( backing_up_file, ds ); |
| |
| /* Now identify it further using the out- and |
| * jam-transitions. |
| */ |
| dump_transitions( backing_up_file, state ); |
| |
| putc( '\n', backing_up_file ); |
| } |
| } |
| } |
| |
| |
| /* check_trailing_context - check to see if NFA state set constitutes |
| * "dangerous" trailing context |
| * |
| * synopsis |
| * void check_trailing_context( int nfa_states[num_states+1], int num_states, |
| * int accset[nacc+1], int nacc ); |
| * |
| * NOTES |
| * Trailing context is "dangerous" if both the head and the trailing |
| * part are of variable size \and/ there's a DFA state which contains |
| * both an accepting state for the head part of the rule and NFA states |
| * which occur after the beginning of the trailing context. |
| * |
| * When such a rule is matched, it's impossible to tell if having been |
| * in the DFA state indicates the beginning of the trailing context or |
| * further-along scanning of the pattern. In these cases, a warning |
| * message is issued. |
| * |
| * nfa_states[1 .. num_states] is the list of NFA states in the DFA. |
| * accset[1 .. nacc] is the list of accepting numbers for the DFA state. |
| */ |
| |
| void check_trailing_context( nfa_states, num_states, accset, nacc ) |
| int *nfa_states, num_states; |
| int *accset; |
| int nacc; |
| { |
| register int i, j; |
| |
| for ( i = 1; i <= num_states; ++i ) |
| { |
| int ns = nfa_states[i]; |
| register int type = state_type[ns]; |
| register int ar = assoc_rule[ns]; |
| |
| if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE ) |
| { /* do nothing */ |
| } |
| |
| else if ( type == STATE_TRAILING_CONTEXT ) |
| { |
| /* Potential trouble. Scan set of accepting numbers |
| * for the one marking the end of the "head". We |
| * assume that this looping will be fairly cheap |
| * since it's rare that an accepting number set |
| * is large. |
| */ |
| for ( j = 1; j <= nacc; ++j ) |
| if ( accset[j] & YY_TRAILING_HEAD_MASK ) |
| { |
| line_warning( |
| _( "dangerous trailing context" ), |
| rule_linenum[ar] ); |
| return; |
| } |
| } |
| } |
| } |
| |
| |
| /* dump_associated_rules - list the rules associated with a DFA state |
| * |
| * Goes through the set of NFA states associated with the DFA and |
| * extracts the first MAX_ASSOC_RULES unique rules, sorts them, |
| * and writes a report to the given file. |
| */ |
| |
| void dump_associated_rules( file, ds ) |
| FILE *file; |
| int ds; |
| { |
| register int i, j; |
| register int num_associated_rules = 0; |
| int rule_set[MAX_ASSOC_RULES + 1]; |
| int *dset = dss[ds]; |
| int size = dfasiz[ds]; |
| |
| for ( i = 1; i <= size; ++i ) |
| { |
| register int rule_num = rule_linenum[assoc_rule[dset[i]]]; |
| |
| for ( j = 1; j <= num_associated_rules; ++j ) |
| if ( rule_num == rule_set[j] ) |
| break; |
| |
| if ( j > num_associated_rules ) |
| { /* new rule */ |
| if ( num_associated_rules < MAX_ASSOC_RULES ) |
| rule_set[++num_associated_rules] = rule_num; |
| } |
| } |
| |
| bubble( rule_set, num_associated_rules ); |
| |
| fprintf( file, _( " associated rule line numbers:" ) ); |
| |
| for ( i = 1; i <= num_associated_rules; ++i ) |
| { |
| if ( i % 8 == 1 ) |
| putc( '\n', file ); |
| |
| fprintf( file, "\t%d", rule_set[i] ); |
| } |
| |
| putc( '\n', file ); |
| } |
| |
| |
| /* dump_transitions - list the transitions associated with a DFA state |
| * |
| * synopsis |
| * dump_transitions( FILE *file, int state[numecs] ); |
| * |
| * Goes through the set of out-transitions and lists them in human-readable |
| * form (i.e., not as equivalence classes); also lists jam transitions |
| * (i.e., all those which are not out-transitions, plus EOF). The dump |
| * is done to the given file. |
| */ |
| |
| void dump_transitions( file, state ) |
| FILE *file; |
| int state[]; |
| { |
| register int i, ec; |
| int out_char_set[CSIZE]; |
| |
| for ( i = 0; i < csize; ++i ) |
| { |
| ec = ABS( ecgroup[i] ); |
| out_char_set[i] = state[ec]; |
| } |
| |
| fprintf( file, _( " out-transitions: " ) ); |
| |
| list_character_set( file, out_char_set ); |
| |
| /* now invert the members of the set to get the jam transitions */ |
| for ( i = 0; i < csize; ++i ) |
| out_char_set[i] = ! out_char_set[i]; |
| |
| fprintf( file, _( "\n jam-transitions: EOF " ) ); |
| |
| list_character_set( file, out_char_set ); |
| |
| putc( '\n', file ); |
| } |
| |
| |
| /* epsclosure - construct the epsilon closure of a set of ndfa states |
| * |
| * synopsis |
| * int *epsclosure( int t[num_states], int *numstates_addr, |
| * int accset[num_rules+1], int *nacc_addr, |
| * int *hashval_addr ); |
| * |
| * NOTES |
| * The epsilon closure is the set of all states reachable by an arbitrary |
| * number of epsilon transitions, which themselves do not have epsilon |
| * transitions going out, unioned with the set of states which have non-null |
| * accepting numbers. t is an array of size numstates of nfa state numbers. |
| * Upon return, t holds the epsilon closure and *numstates_addr is updated. |
| * accset holds a list of the accepting numbers, and the size of accset is |
| * given by *nacc_addr. t may be subjected to reallocation if it is not |
| * large enough to hold the epsilon closure. |
| * |
| * hashval is the hash value for the dfa corresponding to the state set. |
| */ |
| |
| int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr ) |
| int *t, *ns_addr, accset[], *nacc_addr, *hv_addr; |
| { |
| register int stkpos, ns, tsp; |
| int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum; |
| int stkend, nstate; |
| static int did_stk_init = false, *stk; |
| |
| #define MARK_STATE(state) \ |
| trans1[state] = trans1[state] - MARKER_DIFFERENCE; |
| |
| #define IS_MARKED(state) (trans1[state] < 0) |
| |
| #define UNMARK_STATE(state) \ |
| trans1[state] = trans1[state] + MARKER_DIFFERENCE; |
| |
| #define CHECK_ACCEPT(state) \ |
| { \ |
| nfaccnum = accptnum[state]; \ |
| if ( nfaccnum != NIL ) \ |
| accset[++nacc] = nfaccnum; \ |
| } |
| |
| #define DO_REALLOCATION \ |
| { \ |
| current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \ |
| ++num_reallocs; \ |
| t = reallocate_integer_array( t, current_max_dfa_size ); \ |
| stk = reallocate_integer_array( stk, current_max_dfa_size ); \ |
| } \ |
| |
| #define PUT_ON_STACK(state) \ |
| { \ |
| if ( ++stkend >= current_max_dfa_size ) \ |
| DO_REALLOCATION \ |
| stk[stkend] = state; \ |
| MARK_STATE(state) \ |
| } |
| |
| #define ADD_STATE(state) \ |
| { \ |
| if ( ++numstates >= current_max_dfa_size ) \ |
| DO_REALLOCATION \ |
| t[numstates] = state; \ |
| hashval += state; \ |
| } |
| |
| #define STACK_STATE(state) \ |
| { \ |
| PUT_ON_STACK(state) \ |
| CHECK_ACCEPT(state) \ |
| if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \ |
| ADD_STATE(state) \ |
| } |
| |
| |
| if ( ! did_stk_init ) |
| { |
| stk = allocate_integer_array( current_max_dfa_size ); |
| did_stk_init = true; |
| } |
| |
| nacc = stkend = hashval = 0; |
| |
| for ( nstate = 1; nstate <= numstates; ++nstate ) |
| { |
| ns = t[nstate]; |
| |
| /* The state could be marked if we've already pushed it onto |
| * the stack. |
| */ |
| if ( ! IS_MARKED(ns) ) |
| { |
| PUT_ON_STACK(ns) |
| CHECK_ACCEPT(ns) |
| hashval += ns; |
| } |
| } |
| |
| for ( stkpos = 1; stkpos <= stkend; ++stkpos ) |
| { |
| ns = stk[stkpos]; |
| transsym = transchar[ns]; |
| |
| if ( transsym == SYM_EPSILON ) |
| { |
| tsp = trans1[ns] + MARKER_DIFFERENCE; |
| |
| if ( tsp != NO_TRANSITION ) |
| { |
| if ( ! IS_MARKED(tsp) ) |
| STACK_STATE(tsp) |
| |
| tsp = trans2[ns]; |
| |
| if ( tsp != NO_TRANSITION && ! IS_MARKED(tsp) ) |
| STACK_STATE(tsp) |
| } |
| } |
| } |
| |
| /* Clear out "visit" markers. */ |
| |
| for ( stkpos = 1; stkpos <= stkend; ++stkpos ) |
| { |
| if ( IS_MARKED(stk[stkpos]) ) |
| UNMARK_STATE(stk[stkpos]) |
| else |
| flexfatal( |
| _( "consistency check failed in epsclosure()" ) ); |
| } |
| |
| *ns_addr = numstates; |
| *hv_addr = hashval; |
| *nacc_addr = nacc; |
| |
| return t; |
| } |
| |
| |
| /* increase_max_dfas - increase the maximum number of DFAs */ |
| |
| void increase_max_dfas() |
| { |
| current_max_dfas += MAX_DFAS_INCREMENT; |
| |
| ++num_reallocs; |
| |
| base = reallocate_integer_array( base, current_max_dfas ); |
| def = reallocate_integer_array( def, current_max_dfas ); |
| dfasiz = reallocate_integer_array( dfasiz, current_max_dfas ); |
| accsiz = reallocate_integer_array( accsiz, current_max_dfas ); |
| dhash = reallocate_integer_array( dhash, current_max_dfas ); |
| dss = reallocate_int_ptr_array( dss, current_max_dfas ); |
| dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas ); |
| |
| if ( nultrans ) |
| nultrans = |
| reallocate_integer_array( nultrans, current_max_dfas ); |
| } |
| |
| |
| /* ntod - convert an ndfa to a dfa |
| * |
| * Creates the dfa corresponding to the ndfa we've constructed. The |
| * dfa starts out in state #1. |
| */ |
| |
| void ntod() |
| { |
| int *accset, ds, nacc, newds; |
| int sym, hashval, numstates, dsize; |
| int num_full_table_rows; /* used only for -f */ |
| int *nset, *dset; |
| int targptr, totaltrans, i, comstate, comfreq, targ; |
| int symlist[CSIZE + 1]; |
| int num_start_states; |
| int todo_head, todo_next; |
| |
| /* Note that the following are indexed by *equivalence classes* |
| * and not by characters. Since equivalence classes are indexed |
| * beginning with 1, even if the scanner accepts NUL's, this |
| * means that (since every character is potentially in its own |
| * equivalence class) these arrays must have room for indices |
| * from 1 to CSIZE, so their size must be CSIZE + 1. |
| */ |
| int duplist[CSIZE + 1], state[CSIZE + 1]; |
| int targfreq[CSIZE + 1], targstate[CSIZE + 1]; |
| |
| accset = allocate_integer_array( num_rules + 1 ); |
| nset = allocate_integer_array( current_max_dfa_size ); |
| |
| /* The "todo" queue is represented by the head, which is the DFA |
| * state currently being processed, and the "next", which is the |
| * next DFA state number available (not in use). We depend on the |
| * fact that snstods() returns DFA's \in increasing order/, and thus |
| * need only know the bounds of the dfas to be processed. |
| */ |
| todo_head = todo_next = 0; |
| |
| for ( i = 0; i <= csize; ++i ) |
| { |
| duplist[i] = NIL; |
| symlist[i] = false; |
| } |
| |
| for ( i = 0; i <= num_rules; ++i ) |
| accset[i] = NIL; |
| |
| if ( trace ) |
| { |
| dumpnfa( scset[1] ); |
| fputs( _( "\n\nDFA Dump:\n\n" ), stderr ); |
| } |
| |
| inittbl(); |
| |
| /* Check to see whether we should build a separate table for |
| * transitions on NUL characters. We don't do this for full-speed |
| * (-F) scanners, since for them we don't have a simple state |
| * number lying around with which to index the table. We also |
| * don't bother doing it for scanners unless (1) NUL is in its own |
| * equivalence class (indicated by a positive value of |
| * ecgroup[NUL]), (2) NUL's equivalence class is the last |
| * equivalence class, and (3) the number of equivalence classes is |
| * the same as the number of characters. This latter case comes |
| * about when useecs is false or when it's true but every character |
| * still manages to land in its own class (unlikely, but it's |
| * cheap to check for). If all these things are true then the |
| * character code needed to represent NUL's equivalence class for |
| * indexing the tables is going to take one more bit than the |
| * number of characters, and therefore we won't be assured of |
| * being able to fit it into a YY_CHAR variable. This rules out |
| * storing the transitions in a compressed table, since the code |
| * for interpreting them uses a YY_CHAR variable (perhaps it |
| * should just use an integer, though; this is worth pondering ... |
| * ###). |
| * |
| * Finally, for full tables, we want the number of entries in the |
| * table to be a power of two so the array references go fast (it |
| * will just take a shift to compute the major index). If |
| * encoding NUL's transitions in the table will spoil this, we |
| * give it its own table (note that this will be the case if we're |
| * not using equivalence classes). |
| */ |
| |
| /* Note that the test for ecgroup[0] == numecs below accomplishes |
| * both (1) and (2) above |
| */ |
| if ( ! fullspd && ecgroup[0] == numecs ) |
| { |
| /* NUL is alone in its equivalence class, which is the |
| * last one. |
| */ |
| int use_NUL_table = (numecs == csize); |
| |
| if ( fulltbl && ! use_NUL_table ) |
| { |
| /* We still may want to use the table if numecs |
| * is a power of 2. |
| */ |
| int power_of_two; |
| |
| for ( power_of_two = 1; power_of_two <= csize; |
| power_of_two *= 2 ) |
| if ( numecs == power_of_two ) |
| { |
| use_NUL_table = true; |
| break; |
| } |
| } |
| |
| if ( use_NUL_table ) |
| nultrans = allocate_integer_array( current_max_dfas ); |
| |
| /* From now on, nultrans != nil indicates that we're |
| * saving null transitions for later, separate encoding. |
| */ |
| } |
| |
| |
| if ( fullspd ) |
| { |
| for ( i = 0; i <= numecs; ++i ) |
| state[i] = 0; |
| |
| place_state( state, 0, 0 ); |
| dfaacc[0].dfaacc_state = 0; |
| } |
| |
| else if ( fulltbl ) |
| { |
| if ( nultrans ) |
| /* We won't be including NUL's transitions in the |
| * table, so build it for entries from 0 .. numecs - 1. |
| */ |
| num_full_table_rows = numecs; |
| |
| else |
| /* Take into account the fact that we'll be including |
| * the NUL entries in the transition table. Build it |
| * from 0 .. numecs. |
| */ |
| num_full_table_rows = numecs + 1; |
| |
| /* Unless -Ca, declare it "short" because it's a real |
| * long-shot that that won't be large enough. |
| */ |
| out_str_dec( "static yyconst %s yy_nxt[][%d] =\n {\n", |
| /* '}' so vi doesn't get too confused */ |
| long_align ? "long" : "short", num_full_table_rows ); |
| |
| outn( " {" ); |
| |
| /* Generate 0 entries for state #0. */ |
| for ( i = 0; i < num_full_table_rows; ++i ) |
| mk2data( 0 ); |
| |
| dataflush(); |
| outn( " },\n" ); |
| } |
| |
| /* Create the first states. */ |
| |
| num_start_states = lastsc * 2; |
| |
| for ( i = 1; i <= num_start_states; ++i ) |
| { |
| numstates = 1; |
| |
| /* For each start condition, make one state for the case when |
| * we're at the beginning of the line (the '^' operator) and |
| * one for the case when we're not. |
| */ |
| if ( i % 2 == 1 ) |
| nset[numstates] = scset[(i / 2) + 1]; |
| else |
| nset[numstates] = |
| mkbranch( scbol[i / 2], scset[i / 2] ); |
| |
| nset = epsclosure( nset, &numstates, accset, &nacc, &hashval ); |
| |
| if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) ) |
| { |
| numas += nacc; |
| totnst += numstates; |
| ++todo_next; |
| |
| if ( variable_trailing_context_rules && nacc > 0 ) |
| check_trailing_context( nset, numstates, |
| accset, nacc ); |
| } |
| } |
| |
| if ( ! fullspd ) |
| { |
| if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) ) |
| flexfatal( |
| _( "could not create unique end-of-buffer state" ) ); |
| |
| ++numas; |
| ++num_start_states; |
| ++todo_next; |
| } |
| |
| while ( todo_head < todo_next ) |
| { |
| targptr = 0; |
| totaltrans = 0; |
| |
| for ( i = 1; i <= numecs; ++i ) |
| state[i] = 0; |
| |
| ds = ++todo_head; |
| |
| dset = dss[ds]; |
| dsize = dfasiz[ds]; |
| |
| if ( trace ) |
| fprintf( stderr, _( "state # %d:\n" ), ds ); |
| |
| sympartition( dset, dsize, symlist, duplist ); |
| |
| for ( sym = 1; sym <= numecs; ++sym ) |
| { |
| if ( symlist[sym] ) |
| { |
| symlist[sym] = 0; |
| |
| if ( duplist[sym] == NIL ) |
| { |
| /* Symbol has unique out-transitions. */ |
| numstates = symfollowset( dset, dsize, |
| sym, nset ); |
| nset = epsclosure( nset, &numstates, |
| accset, &nacc, &hashval ); |
| |
| if ( snstods( nset, numstates, accset, |
| nacc, hashval, &newds ) ) |
| { |
| totnst = totnst + numstates; |
| ++todo_next; |
| numas += nacc; |
| |
| if ( |
| variable_trailing_context_rules && |
| nacc > 0 ) |
| check_trailing_context( |
| nset, numstates, |
| accset, nacc ); |
| } |
| |
| state[sym] = newds; |
| |
| if ( trace ) |
| fprintf( stderr, "\t%d\t%d\n", |
| sym, newds ); |
| |
| targfreq[++targptr] = 1; |
| targstate[targptr] = newds; |
| ++numuniq; |
| } |
| |
| else |
| { |
| /* sym's equivalence class has the same |
| * transitions as duplist(sym)'s |
| * equivalence class. |
| */ |
| targ = state[duplist[sym]]; |
| state[sym] = targ; |
| |
| if ( trace ) |
| fprintf( stderr, "\t%d\t%d\n", |
| sym, targ ); |
| |
| /* Update frequency count for |
| * destination state. |
| */ |
| |
| i = 0; |
| while ( targstate[++i] != targ ) |
| ; |
| |
| ++targfreq[i]; |
| ++numdup; |
| } |
| |
| ++totaltrans; |
| duplist[sym] = NIL; |
| } |
| } |
| |
| if ( caseins && ! useecs ) |
| { |
| register int j; |
| |
| for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j ) |
| { |
| if ( state[i] == 0 && state[j] != 0 ) |
| /* We're adding a transition. */ |
| ++totaltrans; |
| |
| else if ( state[i] != 0 && state[j] == 0 ) |
| /* We're taking away a transition. */ |
| --totaltrans; |
| |
| state[i] = state[j]; |
| } |
| } |
| |
| numsnpairs += totaltrans; |
| |
| if ( ds > num_start_states ) |
| check_for_backing_up( ds, state ); |
| |
| if ( nultrans ) |
| { |
| nultrans[ds] = state[NUL_ec]; |
| state[NUL_ec] = 0; /* remove transition */ |
| } |
| |
| if ( fulltbl ) |
| { |
| outn( " {" ); |
| |
| /* Supply array's 0-element. */ |
| if ( ds == end_of_buffer_state ) |
| mk2data( -end_of_buffer_state ); |
| else |
| mk2data( end_of_buffer_state ); |
| |
| for ( i = 1; i < num_full_table_rows; ++i ) |
| /* Jams are marked by negative of state |
| * number. |
| */ |
| mk2data( state[i] ? state[i] : -ds ); |
| |
| dataflush(); |
| outn( " },\n" ); |
| } |
| |
| else if ( fullspd ) |
| place_state( state, ds, totaltrans ); |
| |
| else if ( ds == end_of_buffer_state ) |
| /* Special case this state to make sure it does what |
| * it's supposed to, i.e., jam on end-of-buffer. |
| */ |
| stack1( ds, 0, 0, JAMSTATE ); |
| |
| else /* normal, compressed state */ |
| { |
| /* Determine which destination state is the most |
| * common, and how many transitions to it there are. |
| */ |
| |
| comfreq = 0; |
| comstate = 0; |
| |
| for ( i = 1; i <= targptr; ++i ) |
| if ( targfreq[i] > comfreq ) |
| { |
| comfreq = targfreq[i]; |
| comstate = targstate[i]; |
| } |
| |
| bldtbl( state, ds, totaltrans, comstate, comfreq ); |
| } |
| } |
| |
| if ( fulltbl ) |
| dataend(); |
| |
| else if ( ! fullspd ) |
| { |
| cmptmps(); /* create compressed template entries */ |
| |
| /* Create tables for all the states with only one |
| * out-transition. |
| */ |
| while ( onesp > 0 ) |
| { |
| mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp], |
| onedef[onesp] ); |
| --onesp; |
| } |
| |
| mkdeftbl(); |
| } |
| |
| flex_free( (void *) accset ); |
| flex_free( (void *) nset ); |
| } |
| |
| |
| /* snstods - converts a set of ndfa states into a dfa state |
| * |
| * synopsis |
| * is_new_state = snstods( int sns[numstates], int numstates, |
| * int accset[num_rules+1], int nacc, |
| * int hashval, int *newds_addr ); |
| * |
| * On return, the dfa state number is in newds. |
| */ |
| |
| int snstods( sns, numstates, accset, nacc, hashval, newds_addr ) |
| int sns[], numstates, accset[], nacc, hashval, *newds_addr; |
| { |
| int didsort = 0; |
| register int i, j; |
| int newds, *oldsns; |
| |
| for ( i = 1; i <= lastdfa; ++i ) |
| if ( hashval == dhash[i] ) |
| { |
| if ( numstates == dfasiz[i] ) |
| { |
| oldsns = dss[i]; |
| |
| if ( ! didsort ) |
| { |
| /* We sort the states in sns so we |
| * can compare it to oldsns quickly. |
| * We use bubble because there probably |
| * aren't very many states. |
| */ |
| bubble( sns, numstates ); |
| didsort = 1; |
| } |
| |
| for ( j = 1; j <= numstates; ++j ) |
| if ( sns[j] != oldsns[j] ) |
| break; |
| |
| if ( j > numstates ) |
| { |
| ++dfaeql; |
| *newds_addr = i; |
| return 0; |
| } |
| |
| ++hshcol; |
| } |
| |
| else |
| ++hshsave; |
| } |
| |
| /* Make a new dfa. */ |
| |
| if ( ++lastdfa >= current_max_dfas ) |
| increase_max_dfas(); |
| |
| newds = lastdfa; |
| |
| dss[newds] = allocate_integer_array( numstates + 1 ); |
| |
| /* If we haven't already sorted the states in sns, we do so now, |
| * so that future comparisons with it can be made quickly. |
| */ |
| |
| if ( ! didsort ) |
| bubble( sns, numstates ); |
| |
| for ( i = 1; i <= numstates; ++i ) |
| dss[newds][i] = sns[i]; |
| |
| dfasiz[newds] = numstates; |
| dhash[newds] = hashval; |
| |
| if ( nacc == 0 ) |
| { |
| if ( reject ) |
| dfaacc[newds].dfaacc_set = (int *) 0; |
| else |
| dfaacc[newds].dfaacc_state = 0; |
| |
| accsiz[newds] = 0; |
| } |
| |
| else if ( reject ) |
| { |
| /* We sort the accepting set in increasing order so the |
| * disambiguating rule that the first rule listed is considered |
| * match in the event of ties will work. We use a bubble |
| * sort since the list is probably quite small. |
| */ |
| |
| bubble( accset, nacc ); |
| |
| dfaacc[newds].dfaacc_set = allocate_integer_array( nacc + 1 ); |
| |
| /* Save the accepting set for later */ |
| for ( i = 1; i <= nacc; ++i ) |
| { |
| dfaacc[newds].dfaacc_set[i] = accset[i]; |
| |
| if ( accset[i] <= num_rules ) |
| /* Who knows, perhaps a REJECT can yield |
| * this rule. |
| */ |
| rule_useful[accset[i]] = true; |
| } |
| |
| accsiz[newds] = nacc; |
| } |
| |
| else |
| { |
| /* Find lowest numbered rule so the disambiguating rule |
| * will work. |
| */ |
| j = num_rules + 1; |
| |
| for ( i = 1; i <= nacc; ++i ) |
| if ( accset[i] < j ) |
| j = accset[i]; |
| |
| dfaacc[newds].dfaacc_state = j; |
| |
| if ( j <= num_rules ) |
| rule_useful[j] = true; |
| } |
| |
| *newds_addr = newds; |
| |
| return 1; |
| } |
| |
| |
| /* symfollowset - follow the symbol transitions one step |
| * |
| * synopsis |
| * numstates = symfollowset( int ds[current_max_dfa_size], int dsize, |
| * int transsym, int nset[current_max_dfa_size] ); |
| */ |
| |
| int symfollowset( ds, dsize, transsym, nset ) |
| int ds[], dsize, transsym, nset[]; |
| { |
| int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist; |
| |
| numstates = 0; |
| |
| for ( i = 1; i <= dsize; ++i ) |
| { /* for each nfa state ns in the state set of ds */ |
| ns = ds[i]; |
| sym = transchar[ns]; |
| tsp = trans1[ns]; |
| |
| if ( sym < 0 ) |
| { /* it's a character class */ |
| sym = -sym; |
| ccllist = cclmap[sym]; |
| lenccl = ccllen[sym]; |
| |
| if ( cclng[sym] ) |
| { |
| for ( j = 0; j < lenccl; ++j ) |
| { |
| /* Loop through negated character |
| * class. |
| */ |
| ch = ccltbl[ccllist + j]; |
| |
| if ( ch == 0 ) |
| ch = NUL_ec; |
| |
| if ( ch > transsym ) |
| /* Transsym isn't in negated |
| * ccl. |
| */ |
| break; |
| |
| else if ( ch == transsym ) |
| /* next 2 */ goto bottom; |
| } |
| |
| /* Didn't find transsym in ccl. */ |
| nset[++numstates] = tsp; |
| } |
| |
| else |
| for ( j = 0; j < lenccl; ++j ) |
| { |
| ch = ccltbl[ccllist + j]; |
| |
| if ( ch == 0 ) |
| ch = NUL_ec; |
| |
| if ( ch > transsym ) |
| break; |
| else if ( ch == transsym ) |
| { |
| nset[++numstates] = tsp; |
| break; |
| } |
| } |
| } |
| |
| else if ( sym >= 'A' && sym <= 'Z' && caseins ) |
| flexfatal( |
| _( "consistency check failed in symfollowset" ) ); |
| |
| else if ( sym == SYM_EPSILON ) |
| { /* do nothing */ |
| } |
| |
| else if ( ABS( ecgroup[sym] ) == transsym ) |
| nset[++numstates] = tsp; |
| |
| bottom: ; |
| } |
| |
| return numstates; |
| } |
| |
| |
| /* sympartition - partition characters with same out-transitions |
| * |
| * synopsis |
| * sympartition( int ds[current_max_dfa_size], int numstates, |
| * int symlist[numecs], int duplist[numecs] ); |
| */ |
| |
| void sympartition( ds, numstates, symlist, duplist ) |
| int ds[], numstates; |
| int symlist[], duplist[]; |
| { |
| int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich; |
| |
| /* Partitioning is done by creating equivalence classes for those |
| * characters which have out-transitions from the given state. Thus |
| * we are really creating equivalence classes of equivalence classes. |
| */ |
| |
| for ( i = 1; i <= numecs; ++i ) |
| { /* initialize equivalence class list */ |
| duplist[i] = i - 1; |
| dupfwd[i] = i + 1; |
| } |
| |
| duplist[1] = NIL; |
| dupfwd[numecs] = NIL; |
| |
| for ( i = 1; i <= numstates; ++i ) |
| { |
| ns = ds[i]; |
| tch = transchar[ns]; |
| |
| if ( tch != SYM_EPSILON ) |
| { |
| if ( tch < -lastccl || tch >= csize ) |
| { |
| flexfatal( |
| _( "bad transition character detected in sympartition()" ) ); |
| } |
| |
| if ( tch >= 0 ) |
| { /* character transition */ |
| int ec = ecgroup[tch]; |
| |
| mkechar( ec, dupfwd, duplist ); |
| symlist[ec] = 1; |
| } |
| |
| else |
| { /* character class */ |
| tch = -tch; |
| |
| lenccl = ccllen[tch]; |
| cclp = cclmap[tch]; |
| mkeccl( ccltbl + cclp, lenccl, dupfwd, |
| duplist, numecs, NUL_ec ); |
| |
| if ( cclng[tch] ) |
| { |
| j = 0; |
| |
| for ( k = 0; k < lenccl; ++k ) |
| { |
| ich = ccltbl[cclp + k]; |
| |
| if ( ich == 0 ) |
| ich = NUL_ec; |
| |
| for ( ++j; j < ich; ++j ) |
| symlist[j] = 1; |
| } |
| |
| for ( ++j; j <= numecs; ++j ) |
| symlist[j] = 1; |
| } |
| |
| else |
| for ( k = 0; k < lenccl; ++k ) |
| { |
| ich = ccltbl[cclp + k]; |
| |
| if ( ich == 0 ) |
| ich = NUL_ec; |
| |
| symlist[ich] = 1; |
| } |
| } |
| } |
| } |
| } |