| /* |
| * Copyright (C) 2008 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "CTI.h" |
| |
| #if ENABLE(CTI) |
| |
| #include "CodeBlock.h" |
| #include "JSArray.h" |
| #include "JSFunction.h" |
| #include "Machine.h" |
| #include "wrec/WREC.h" |
| #include "ResultType.h" |
| #include "SamplingTool.h" |
| |
| #ifndef NDEBUG |
| #include <stdio.h> |
| #endif |
| |
| using namespace std; |
| |
| namespace JSC { |
| |
| #if PLATFORM(MAC) |
| |
| static inline bool isSSE2Present() |
| { |
| return true; // All X86 Macs are guaranteed to support at least SSE2 |
| } |
| |
| #else |
| |
| static bool isSSE2Present() |
| { |
| static const int SSE2FeatureBit = 1 << 26; |
| struct SSE2Check { |
| SSE2Check() |
| { |
| int flags; |
| #if COMPILER(MSVC) |
| _asm { |
| mov eax, 1 // cpuid function 1 gives us the standard feature set |
| cpuid; |
| mov flags, edx; |
| } |
| #else |
| flags = 0; |
| // FIXME: Add GCC code to do above asm |
| #endif |
| present = (flags & SSE2FeatureBit) != 0; |
| } |
| bool present; |
| }; |
| static SSE2Check check; |
| return check.present; |
| } |
| |
| #endif |
| |
| COMPILE_ASSERT(CTI_ARGS_code == 0xC, CTI_ARGS_code_is_C); |
| COMPILE_ASSERT(CTI_ARGS_callFrame == 0xE, CTI_ARGS_callFrame_is_E); |
| |
| #if COMPILER(GCC) && PLATFORM(X86) |
| |
| #if PLATFORM(DARWIN) |
| #define SYMBOL_STRING(name) "_" #name |
| #else |
| #define SYMBOL_STRING(name) #name |
| #endif |
| |
| asm( |
| ".globl " SYMBOL_STRING(ctiTrampoline) "\n" |
| SYMBOL_STRING(ctiTrampoline) ":" "\n" |
| "pushl %esi" "\n" |
| "pushl %edi" "\n" |
| "pushl %ebx" "\n" |
| "subl $0x20, %esp" "\n" |
| "movl $512, %esi" "\n" |
| "movl 0x38(%esp), %edi" "\n" // Ox38 = 0x0E * 4, 0x0E = CTI_ARGS_callFrame (see assertion above) |
| "call *0x30(%esp)" "\n" // Ox30 = 0x0C * 4, 0x0C = CTI_ARGS_code (see assertion above) |
| "addl $0x20, %esp" "\n" |
| "popl %ebx" "\n" |
| "popl %edi" "\n" |
| "popl %esi" "\n" |
| "ret" "\n" |
| ); |
| |
| asm( |
| ".globl " SYMBOL_STRING(ctiVMThrowTrampoline) "\n" |
| SYMBOL_STRING(ctiVMThrowTrampoline) ":" "\n" |
| #if USE(CTI_ARGUMENT) |
| #if USE(FAST_CALL_CTI_ARGUMENT) |
| "movl %esp, %ecx" "\n" |
| #else |
| "movl %esp, 0(%esp)" "\n" |
| #endif |
| "call " SYMBOL_STRING(_ZN3JSC7Machine12cti_vm_throwEPPv) "\n" |
| #else |
| "call " SYMBOL_STRING(_ZN3JSC7Machine12cti_vm_throwEPvz) "\n" |
| #endif |
| "addl $0x20, %esp" "\n" |
| "popl %ebx" "\n" |
| "popl %edi" "\n" |
| "popl %esi" "\n" |
| "ret" "\n" |
| ); |
| |
| #elif COMPILER(MSVC) |
| |
| extern "C" { |
| |
| __declspec(naked) JSValue* ctiTrampoline(void* code, RegisterFile*, CallFrame*, JSValue** exception, Profiler**, JSGlobalData*) |
| { |
| __asm { |
| push esi; |
| push edi; |
| push ebx; |
| sub esp, 0x20; |
| mov esi, 512; |
| mov ecx, esp; |
| mov edi, [esp + 0x38]; |
| call [esp + 0x30]; // Ox30 = 0x0C * 4, 0x0C = CTI_ARGS_code (see assertion above) |
| add esp, 0x20; |
| pop ebx; |
| pop edi; |
| pop esi; |
| ret; |
| } |
| } |
| |
| __declspec(naked) void ctiVMThrowTrampoline() |
| { |
| __asm { |
| mov ecx, esp; |
| call JSC::Machine::cti_vm_throw; |
| add esp, 0x20; |
| pop ebx; |
| pop edi; |
| pop esi; |
| ret; |
| } |
| } |
| |
| } |
| |
| #endif |
| |
| ALWAYS_INLINE bool CTI::isConstant(int src) |
| { |
| return src >= m_codeBlock->numVars && src < m_codeBlock->numVars + m_codeBlock->numConstants; |
| } |
| |
| ALWAYS_INLINE JSValue* CTI::getConstant(CallFrame* callFrame, int src) |
| { |
| return m_codeBlock->constantRegisters[src - m_codeBlock->numVars].jsValue(callFrame); |
| } |
| |
| inline uintptr_t CTI::asInteger(JSValue* value) |
| { |
| return reinterpret_cast<uintptr_t>(value); |
| } |
| |
| // get arg puts an arg from the SF register array into a h/w register |
| ALWAYS_INLINE void CTI::emitGetArg(int src, X86Assembler::RegisterID dst) |
| { |
| // TODO: we want to reuse values that are already in registers if we can - add a register allocator! |
| if (isConstant(src)) { |
| JSValue* js = getConstant(m_callFrame, src); |
| m_jit.movl_i32r(asInteger(js), dst); |
| } else |
| m_jit.movl_mr(src * sizeof(Register), X86::edi, dst); |
| } |
| |
| // get arg puts an arg from the SF register array onto the stack, as an arg to a context threaded function. |
| ALWAYS_INLINE void CTI::emitGetPutArg(unsigned src, unsigned offset, X86Assembler::RegisterID scratch) |
| { |
| if (isConstant(src)) { |
| JSValue* js = getConstant(m_callFrame, src); |
| m_jit.movl_i32m(asInteger(js), offset + sizeof(void*), X86::esp); |
| } else { |
| m_jit.movl_mr(src * sizeof(Register), X86::edi, scratch); |
| m_jit.movl_rm(scratch, offset + sizeof(void*), X86::esp); |
| } |
| } |
| |
| // puts an arg onto the stack, as an arg to a context threaded function. |
| ALWAYS_INLINE void CTI::emitPutArg(X86Assembler::RegisterID src, unsigned offset) |
| { |
| m_jit.movl_rm(src, offset + sizeof(void*), X86::esp); |
| } |
| |
| ALWAYS_INLINE void CTI::emitPutArgConstant(unsigned value, unsigned offset) |
| { |
| m_jit.movl_i32m(value, offset + sizeof(void*), X86::esp); |
| } |
| |
| ALWAYS_INLINE JSValue* CTI::getConstantImmediateNumericArg(unsigned src) |
| { |
| if (isConstant(src)) { |
| JSValue* js = getConstant(m_callFrame, src); |
| return JSImmediate::isNumber(js) ? js : noValue(); |
| } |
| return noValue(); |
| } |
| |
| ALWAYS_INLINE void CTI::emitPutCTIParam(void* value, unsigned name) |
| { |
| m_jit.movl_i32m(reinterpret_cast<intptr_t>(value), name * sizeof(void*), X86::esp); |
| } |
| |
| ALWAYS_INLINE void CTI::emitPutCTIParam(X86Assembler::RegisterID from, unsigned name) |
| { |
| m_jit.movl_rm(from, name * sizeof(void*), X86::esp); |
| } |
| |
| ALWAYS_INLINE void CTI::emitGetCTIParam(unsigned name, X86Assembler::RegisterID to) |
| { |
| m_jit.movl_mr(name * sizeof(void*), X86::esp, to); |
| } |
| |
| ALWAYS_INLINE void CTI::emitPutToCallFrameHeader(X86Assembler::RegisterID from, RegisterFile::CallFrameHeaderEntry entry) |
| { |
| m_jit.movl_rm(from, entry * sizeof(Register), X86::edi); |
| } |
| |
| ALWAYS_INLINE void CTI::emitGetFromCallFrameHeader(RegisterFile::CallFrameHeaderEntry entry, X86Assembler::RegisterID to) |
| { |
| m_jit.movl_mr(entry * sizeof(Register), X86::edi, to); |
| } |
| |
| ALWAYS_INLINE void CTI::emitPutResult(unsigned dst, X86Assembler::RegisterID from) |
| { |
| m_jit.movl_rm(from, dst * sizeof(Register), X86::edi); |
| // FIXME: #ifndef NDEBUG, Write the correct m_type to the register. |
| } |
| |
| ALWAYS_INLINE void CTI::emitInitRegister(unsigned dst) |
| { |
| m_jit.movl_i32m(asInteger(jsUndefined()), dst * sizeof(Register), X86::edi); |
| // FIXME: #ifndef NDEBUG, Write the correct m_type to the register. |
| } |
| |
| void ctiSetReturnAddress(void** where, void* what) |
| { |
| *where = what; |
| } |
| |
| void ctiRepatchCallByReturnAddress(void* where, void* what) |
| { |
| (static_cast<void**>(where))[-1] = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(what) - reinterpret_cast<uintptr_t>(where)); |
| } |
| |
| #ifndef NDEBUG |
| |
| void CTI::printOpcodeOperandTypes(unsigned src1, unsigned src2) |
| { |
| char which1 = '*'; |
| if (isConstant(src1)) { |
| JSValue* js = getConstant(m_callFrame, src1); |
| which1 = |
| JSImmediate::isImmediate(js) ? |
| (JSImmediate::isNumber(js) ? 'i' : |
| JSImmediate::isBoolean(js) ? 'b' : |
| js->isUndefined() ? 'u' : |
| js->isNull() ? 'n' : '?') |
| : |
| (js->isString() ? 's' : |
| js->isObject() ? 'o' : |
| 'k'); |
| } |
| char which2 = '*'; |
| if (isConstant(src2)) { |
| JSValue* js = getConstant(m_callFrame, src2); |
| which2 = |
| JSImmediate::isImmediate(js) ? |
| (JSImmediate::isNumber(js) ? 'i' : |
| JSImmediate::isBoolean(js) ? 'b' : |
| js->isUndefined() ? 'u' : |
| js->isNull() ? 'n' : '?') |
| : |
| (js->isString() ? 's' : |
| js->isObject() ? 'o' : |
| 'k'); |
| } |
| if ((which1 != '*') | (which2 != '*')) |
| fprintf(stderr, "Types %c %c\n", which1, which2); |
| } |
| |
| #endif |
| |
| extern "C" { |
| static JSValue* FASTCALL allocateNumber(JSGlobalData* globalData) { |
| JSValue* result = new (globalData) JSNumberCell(globalData); |
| ASSERT(result); |
| return result; |
| } |
| } |
| |
| ALWAYS_INLINE void CTI::emitAllocateNumber(JSGlobalData* globalData, unsigned opcodeIndex) |
| { |
| m_jit.movl_i32r(reinterpret_cast<intptr_t>(globalData), X86::ecx); |
| emitNakedFastCall(opcodeIndex, (void*)allocateNumber); |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitNakedCall(unsigned opcodeIndex, X86::RegisterID r) |
| { |
| X86Assembler::JmpSrc call = m_jit.emitCall(r); |
| m_calls.append(CallRecord(call, opcodeIndex)); |
| |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitNakedCall(unsigned opcodeIndex, void(*function)()) |
| { |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, reinterpret_cast<CTIHelper_v>(function), opcodeIndex)); |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitNakedFastCall(unsigned opcodeIndex, void* function) |
| { |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, reinterpret_cast<CTIHelper_v>(function), opcodeIndex)); |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCTICall(Instruction* vPC, unsigned opcodeIndex, CTIHelper_j helper) |
| { |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, true), m_machine->sampler()->sampleSlot()); |
| #else |
| UNUSED_PARAM(vPC); |
| #endif |
| m_jit.emitRestoreArgumentReference(); |
| emitPutCTIParam(X86::edi, CTI_ARGS_callFrame); |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, helper, opcodeIndex)); |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, false), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCTICall(Instruction* vPC, unsigned opcodeIndex, CTIHelper_o helper) |
| { |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, true), m_machine->sampler()->sampleSlot()); |
| #else |
| UNUSED_PARAM(vPC); |
| #endif |
| m_jit.emitRestoreArgumentReference(); |
| emitPutCTIParam(X86::edi, CTI_ARGS_callFrame); |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, helper, opcodeIndex)); |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, false), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCTICall(Instruction* vPC, unsigned opcodeIndex, CTIHelper_p helper) |
| { |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, true), m_machine->sampler()->sampleSlot()); |
| #else |
| UNUSED_PARAM(vPC); |
| #endif |
| m_jit.emitRestoreArgumentReference(); |
| emitPutCTIParam(X86::edi, CTI_ARGS_callFrame); |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, helper, opcodeIndex)); |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, false), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCTICall(Instruction* vPC, unsigned opcodeIndex, CTIHelper_b helper) |
| { |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, true), m_machine->sampler()->sampleSlot()); |
| #else |
| UNUSED_PARAM(vPC); |
| #endif |
| m_jit.emitRestoreArgumentReference(); |
| emitPutCTIParam(X86::edi, CTI_ARGS_callFrame); |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, helper, opcodeIndex)); |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, false), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCTICall(Instruction* vPC, unsigned opcodeIndex, CTIHelper_v helper) |
| { |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, true), m_machine->sampler()->sampleSlot()); |
| #else |
| UNUSED_PARAM(vPC); |
| #endif |
| m_jit.emitRestoreArgumentReference(); |
| emitPutCTIParam(X86::edi, CTI_ARGS_callFrame); |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, helper, opcodeIndex)); |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, false), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCTICall(Instruction* vPC, unsigned opcodeIndex, CTIHelper_s helper) |
| { |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, true), m_machine->sampler()->sampleSlot()); |
| #else |
| UNUSED_PARAM(vPC); |
| #endif |
| m_jit.emitRestoreArgumentReference(); |
| emitPutCTIParam(X86::edi, CTI_ARGS_callFrame); |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, helper, opcodeIndex)); |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, false), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| return call; |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCTICall(Instruction* vPC, unsigned opcodeIndex, CTIHelper_2 helper) |
| { |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, true), m_machine->sampler()->sampleSlot()); |
| #else |
| UNUSED_PARAM(vPC); |
| #endif |
| m_jit.emitRestoreArgumentReference(); |
| emitPutCTIParam(X86::edi, CTI_ARGS_callFrame); |
| X86Assembler::JmpSrc call = m_jit.emitCall(); |
| m_calls.append(CallRecord(call, helper, opcodeIndex)); |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(vPC, false), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| return call; |
| } |
| |
| ALWAYS_INLINE void CTI::emitJumpSlowCaseIfNotJSCell(X86Assembler::RegisterID reg, unsigned opcodeIndex) |
| { |
| m_jit.testl_i32r(JSImmediate::TagMask, reg); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), opcodeIndex)); |
| } |
| |
| ALWAYS_INLINE void CTI::emitJumpSlowCaseIfNotImmNum(X86Assembler::RegisterID reg, unsigned opcodeIndex) |
| { |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, reg); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJe(), opcodeIndex)); |
| } |
| |
| ALWAYS_INLINE void CTI::emitJumpSlowCaseIfNotImmNums(X86Assembler::RegisterID reg1, X86Assembler::RegisterID reg2, unsigned opcodeIndex) |
| { |
| m_jit.movl_rr(reg1, X86::ecx); |
| m_jit.andl_rr(reg2, X86::ecx); |
| emitJumpSlowCaseIfNotImmNum(X86::ecx, opcodeIndex); |
| } |
| |
| ALWAYS_INLINE unsigned CTI::getDeTaggedConstantImmediate(JSValue* imm) |
| { |
| ASSERT(JSImmediate::isNumber(imm)); |
| return asInteger(imm) & ~JSImmediate::TagBitTypeInteger; |
| } |
| |
| ALWAYS_INLINE void CTI::emitFastArithDeTagImmediate(X86Assembler::RegisterID reg) |
| { |
| m_jit.subl_i8r(JSImmediate::TagBitTypeInteger, reg); |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitFastArithDeTagImmediateJumpIfZero(X86Assembler::RegisterID reg) |
| { |
| m_jit.subl_i8r(JSImmediate::TagBitTypeInteger, reg); |
| return m_jit.emitUnlinkedJe(); |
| } |
| |
| ALWAYS_INLINE void CTI::emitFastArithReTagImmediate(X86Assembler::RegisterID reg) |
| { |
| m_jit.addl_i8r(JSImmediate::TagBitTypeInteger, reg); |
| } |
| |
| ALWAYS_INLINE void CTI::emitFastArithPotentiallyReTagImmediate(X86Assembler::RegisterID reg) |
| { |
| m_jit.orl_i32r(JSImmediate::TagBitTypeInteger, reg); |
| } |
| |
| ALWAYS_INLINE void CTI::emitFastArithImmToInt(X86Assembler::RegisterID reg) |
| { |
| m_jit.sarl_i8r(1, reg); |
| } |
| |
| ALWAYS_INLINE void CTI::emitFastArithIntToImmOrSlowCase(X86Assembler::RegisterID reg, unsigned opcodeIndex) |
| { |
| m_jit.addl_rr(reg, reg); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), opcodeIndex)); |
| emitFastArithReTagImmediate(reg); |
| } |
| |
| ALWAYS_INLINE void CTI::emitFastArithIntToImmNoCheck(X86Assembler::RegisterID reg) |
| { |
| m_jit.addl_rr(reg, reg); |
| emitFastArithReTagImmediate(reg); |
| } |
| |
| ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitArithIntToImmWithJump(X86Assembler::RegisterID reg) |
| { |
| m_jit.addl_rr(reg, reg); |
| X86Assembler::JmpSrc jmp = m_jit.emitUnlinkedJo(); |
| emitFastArithReTagImmediate(reg); |
| return jmp; |
| } |
| |
| ALWAYS_INLINE void CTI::emitTagAsBoolImmediate(X86Assembler::RegisterID reg) |
| { |
| m_jit.shl_i8r(JSImmediate::ExtendedPayloadShift, reg); |
| m_jit.orl_i32r(JSImmediate::FullTagTypeBool, reg); |
| } |
| |
| CTI::CTI(Machine* machine, CallFrame* callFrame, CodeBlock* codeBlock) |
| : m_jit(machine->jitCodeBuffer()) |
| , m_machine(machine) |
| , m_callFrame(callFrame) |
| , m_codeBlock(codeBlock) |
| , m_labels(codeBlock ? codeBlock->instructions.size() : 0) |
| , m_propertyAccessCompilationInfo(codeBlock ? codeBlock->propertyAccessInstructions.size() : 0) |
| , m_callStructureStubCompilationInfo(codeBlock ? codeBlock->callLinkInfos.size() : 0) |
| { |
| } |
| |
| #define CTI_COMPILE_BINARY_OP(name) \ |
| case name: { \ |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); \ |
| emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); \ |
| emitCTICall(instruction + i, i, Machine::cti_##name); \ |
| emitPutResult(instruction[i + 1].u.operand); \ |
| i += 4; \ |
| break; \ |
| } |
| |
| #define CTI_COMPILE_UNARY_OP(name) \ |
| case name: { \ |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); \ |
| emitCTICall(instruction + i, i, Machine::cti_##name); \ |
| emitPutResult(instruction[i + 1].u.operand); \ |
| i += 3; \ |
| break; \ |
| } |
| |
| static void unreachable() |
| { |
| ASSERT_NOT_REACHED(); |
| exit(1); |
| } |
| |
| void CTI::compileOpCallInitializeCallFrame(unsigned callee, unsigned argCount) |
| { |
| emitGetArg(callee, X86::ecx); // Load callee JSFunction into ecx |
| m_jit.movl_rm(X86::eax, RegisterFile::CodeBlock * static_cast<int>(sizeof(Register)), X86::edx); // callee CodeBlock was returned in eax |
| m_jit.movl_i32m(asInteger(noValue()), RegisterFile::OptionalCalleeArguments * static_cast<int>(sizeof(Register)), X86::edx); |
| m_jit.movl_rm(X86::ecx, RegisterFile::Callee * static_cast<int>(sizeof(Register)), X86::edx); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(JSFunction, m_scopeChain) + OBJECT_OFFSET(ScopeChain, m_node), X86::ecx, X86::ebx); // newScopeChain |
| m_jit.movl_i32m(argCount, RegisterFile::ArgumentCount * static_cast<int>(sizeof(Register)), X86::edx); |
| m_jit.movl_rm(X86::edi, RegisterFile::CallerFrame * static_cast<int>(sizeof(Register)), X86::edx); |
| m_jit.movl_rm(X86::ebx, RegisterFile::ScopeChain * static_cast<int>(sizeof(Register)), X86::edx); |
| } |
| |
| void CTI::compileOpCallSetupArgs(Instruction* instruction, bool isConstruct, bool isEval) |
| { |
| int firstArg = instruction[4].u.operand; |
| int argCount = instruction[5].u.operand; |
| int registerOffset = instruction[6].u.operand; |
| |
| emitPutArg(X86::ecx, 0); |
| emitPutArgConstant(registerOffset, 4); |
| emitPutArgConstant(argCount, 8); |
| emitPutArgConstant(reinterpret_cast<unsigned>(instruction), 12); |
| if (isConstruct) { |
| emitGetPutArg(instruction[3].u.operand, 16, X86::eax); |
| emitPutArgConstant(firstArg, 20); |
| } else if (isEval) |
| emitGetPutArg(instruction[3].u.operand, 16, X86::eax); |
| } |
| |
| void CTI::compileOpCall(OpcodeID opcodeID, Instruction* instruction, unsigned i, unsigned callLinkInfoIndex) |
| { |
| int dst = instruction[1].u.operand; |
| int callee = instruction[2].u.operand; |
| int firstArg = instruction[4].u.operand; |
| int argCount = instruction[5].u.operand; |
| int registerOffset = instruction[6].u.operand; |
| |
| // Setup this value as the first argument (does not apply to constructors) |
| if (opcodeID != op_construct) { |
| int thisVal = instruction[3].u.operand; |
| if (thisVal == missingThisObjectMarker()) { |
| // FIXME: should this be loaded dynamically off m_callFrame? |
| m_jit.movl_i32m(asInteger(m_callFrame->globalThisValue()), firstArg * sizeof(Register), X86::edi); |
| } else { |
| emitGetArg(thisVal, X86::eax); |
| emitPutResult(firstArg); |
| } |
| } |
| |
| // Handle eval |
| X86Assembler::JmpSrc wasEval; |
| if (opcodeID == op_call_eval) { |
| emitGetArg(callee, X86::ecx); |
| compileOpCallSetupArgs(instruction, false, true); |
| |
| emitCTICall(instruction, i, Machine::cti_op_call_eval); |
| m_jit.cmpl_i32r(asInteger(JSImmediate::impossibleValue()), X86::eax); |
| wasEval = m_jit.emitUnlinkedJne(); |
| } |
| |
| // This plants a check for a cached JSFunction value, so we can plant a fast link to the callee. |
| // This deliberately leaves the callee in ecx, used when setting up the stack frame below |
| emitGetArg(callee, X86::ecx); |
| m_jit.cmpl_i32r(asInteger(JSImmediate::impossibleValue()), X86::ecx); |
| X86Assembler::JmpDst addressOfLinkedFunctionCheck = m_jit.label(); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| ASSERT(X86Assembler::getDifferenceBetweenLabels(addressOfLinkedFunctionCheck, m_jit.label()) == repatchOffsetOpCallCall); |
| m_callStructureStubCompilationInfo[callLinkInfoIndex].hotPathBegin = addressOfLinkedFunctionCheck; |
| |
| // The following is the fast case, only used whan a callee can be linked. |
| |
| // In the case of OpConstruct, call oout to a cti_ function to create the new object. |
| if (opcodeID == op_construct) { |
| emitPutArg(X86::ecx, 0); |
| emitGetPutArg(instruction[3].u.operand, 4, X86::eax); |
| emitCTICall(instruction, i, Machine::cti_op_construct_JSConstructFast); |
| emitPutResult(instruction[4].u.operand); |
| emitGetArg(callee, X86::ecx); |
| } |
| |
| // Fast version of stack frame initialization, directly relative to edi. |
| // Note that this omits to set up RegisterFile::CodeBlock, which is set in the callee |
| m_jit.movl_i32m(asInteger(noValue()), (registerOffset + RegisterFile::OptionalCalleeArguments) * static_cast<int>(sizeof(Register)), X86::edi); |
| m_jit.movl_rm(X86::ecx, (registerOffset + RegisterFile::Callee) * static_cast<int>(sizeof(Register)), X86::edi); |
| m_jit.movl_mr(OBJECT_OFFSET(JSFunction, m_scopeChain) + OBJECT_OFFSET(ScopeChain, m_node), X86::ecx, X86::edx); // newScopeChain |
| m_jit.movl_i32m(argCount, (registerOffset + RegisterFile::ArgumentCount) * static_cast<int>(sizeof(Register)), X86::edi); |
| m_jit.movl_rm(X86::edi, (registerOffset + RegisterFile::CallerFrame) * static_cast<int>(sizeof(Register)), X86::edi); |
| m_jit.movl_rm(X86::edx, (registerOffset + RegisterFile::ScopeChain) * static_cast<int>(sizeof(Register)), X86::edi); |
| m_jit.addl_i32r(registerOffset * sizeof(Register), X86::edi); |
| |
| // Call to the callee |
| m_callStructureStubCompilationInfo[callLinkInfoIndex].hotPathOther = emitNakedCall(i, unreachable); |
| |
| if (opcodeID == op_call_eval) |
| m_jit.link(wasEval, m_jit.label()); |
| |
| // Put the return value in dst. In the interpreter, op_ret does this. |
| emitPutResult(dst); |
| |
| #if ENABLE(CODEBLOCK_SAMPLING) |
| m_jit.movl_i32m(reinterpret_cast<unsigned>(m_codeBlock), m_machine->sampler()->codeBlockSlot()); |
| #endif |
| } |
| |
| void CTI::compileOpStrictEq(Instruction* instruction, unsigned i, CompileOpStrictEqType type) |
| { |
| bool negated = (type == OpNStrictEq); |
| |
| unsigned dst = instruction[1].u.operand; |
| unsigned src1 = instruction[2].u.operand; |
| unsigned src2 = instruction[3].u.operand; |
| |
| emitGetArg(src1, X86::eax); |
| emitGetArg(src2, X86::edx); |
| |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc firstNotImmediate = m_jit.emitUnlinkedJe(); |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::edx); |
| X86Assembler::JmpSrc secondNotImmediate = m_jit.emitUnlinkedJe(); |
| |
| m_jit.cmpl_rr(X86::edx, X86::eax); |
| if (negated) |
| m_jit.setne_r(X86::eax); |
| else |
| m_jit.sete_r(X86::eax); |
| m_jit.movzbl_rr(X86::eax, X86::eax); |
| emitTagAsBoolImmediate(X86::eax); |
| |
| X86Assembler::JmpSrc bothWereImmediates = m_jit.emitUnlinkedJmp(); |
| |
| m_jit.link(firstNotImmediate, m_jit.label()); |
| |
| // check that edx is immediate but not the zero immediate |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::edx); |
| m_jit.setz_r(X86::ecx); |
| m_jit.movzbl_rr(X86::ecx, X86::ecx); // ecx is now 1 if edx was nonimmediate |
| m_jit.cmpl_i32r(asInteger(JSImmediate::zeroImmediate()), X86::edx); |
| m_jit.sete_r(X86::edx); |
| m_jit.movzbl_rr(X86::edx, X86::edx); // edx is now 1 if edx was the 0 immediate |
| m_jit.orl_rr(X86::ecx, X86::edx); |
| |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJnz(), i)); |
| |
| m_jit.movl_i32r(asInteger(jsBoolean(negated)), X86::eax); |
| |
| X86Assembler::JmpSrc firstWasNotImmediate = m_jit.emitUnlinkedJmp(); |
| |
| m_jit.link(secondNotImmediate, m_jit.label()); |
| // check that eax is not the zero immediate (we know it must be immediate) |
| m_jit.cmpl_i32r(asInteger(JSImmediate::zeroImmediate()), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJe(), i)); |
| |
| m_jit.movl_i32r(asInteger(jsBoolean(negated)), X86::eax); |
| |
| m_jit.link(bothWereImmediates, m_jit.label()); |
| m_jit.link(firstWasNotImmediate, m_jit.label()); |
| |
| emitPutResult(dst); |
| } |
| |
| void CTI::emitSlowScriptCheck(Instruction* vPC, unsigned opcodeIndex) |
| { |
| m_jit.subl_i8r(1, X86::esi); |
| X86Assembler::JmpSrc skipTimeout = m_jit.emitUnlinkedJne(); |
| emitCTICall(vPC, opcodeIndex, Machine::cti_timeout_check); |
| |
| emitGetCTIParam(CTI_ARGS_globalData, X86::ecx); |
| m_jit.movl_mr(OBJECT_OFFSET(JSGlobalData, machine), X86::ecx, X86::ecx); |
| m_jit.movl_mr(OBJECT_OFFSET(Machine, m_ticksUntilNextTimeoutCheck), X86::ecx, X86::esi); |
| m_jit.link(skipTimeout, m_jit.label()); |
| } |
| |
| /* |
| This is required since number representation is canonical - values representable as a JSImmediate should not be stored in a JSNumberCell. |
| |
| In the common case, the double value from 'xmmSource' is written to the reusable JSNumberCell pointed to by 'jsNumberCell', then 'jsNumberCell' |
| is written to the output SF Register 'dst', and then a jump is planted (stored into *wroteJSNumberCell). |
| |
| However if the value from xmmSource is representable as a JSImmediate, then the JSImmediate value will be written to the output, and flow |
| control will fall through from the code planted. |
| */ |
| void CTI::putDoubleResultToJSNumberCellOrJSImmediate(X86::XMMRegisterID xmmSource, X86::RegisterID jsNumberCell, unsigned dst, X86Assembler::JmpSrc* wroteJSNumberCell, X86::XMMRegisterID tempXmm, X86::RegisterID tempReg1, X86::RegisterID tempReg2) |
| { |
| // convert (double -> JSImmediate -> double), and check if the value is unchanged - in which case the value is representable as a JSImmediate. |
| m_jit.cvttsd2si_rr(xmmSource, tempReg1); |
| m_jit.addl_rr(tempReg1, tempReg1); |
| m_jit.sarl_i8r(1, tempReg1); |
| m_jit.cvtsi2sd_rr(tempReg1, tempXmm); |
| // Compare & branch if immediate. |
| m_jit.ucomis_rr(tempXmm, xmmSource); |
| X86Assembler::JmpSrc resultIsImm = m_jit.emitUnlinkedJe(); |
| X86Assembler::JmpDst resultLookedLikeImmButActuallyIsnt = m_jit.label(); |
| |
| // Store the result to the JSNumberCell and jump. |
| m_jit.movsd_rm(xmmSource, OBJECT_OFFSET(JSNumberCell, m_value), jsNumberCell); |
| emitPutResult(dst, jsNumberCell); |
| *wroteJSNumberCell = m_jit.emitUnlinkedJmp(); |
| |
| m_jit.link(resultIsImm, m_jit.label()); |
| // value == (double)(JSImmediate)value... or at least, it looks that way... |
| // ucomi will report that (0 == -0), and will report true if either input in NaN (result is unordered). |
| m_jit.link(m_jit.emitUnlinkedJp(), resultLookedLikeImmButActuallyIsnt); // Actually was a NaN |
| m_jit.pextrw_irr(3, xmmSource, tempReg2); |
| m_jit.cmpl_i32r(0x8000, tempReg2); |
| m_jit.link(m_jit.emitUnlinkedJe(), resultLookedLikeImmButActuallyIsnt); // Actually was -0 |
| // Yes it really really really is representable as a JSImmediate. |
| emitFastArithIntToImmNoCheck(tempReg1); |
| emitPutResult(dst, tempReg1); |
| } |
| |
| void CTI::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types, unsigned i) |
| { |
| StructureID* numberStructureID = m_callFrame->globalData().numberStructureID.get(); |
| X86Assembler::JmpSrc wasJSNumberCell1, wasJSNumberCell1b, wasJSNumberCell2, wasJSNumberCell2b; |
| |
| emitGetArg(src1, X86::eax); |
| emitGetArg(src2, X86::edx); |
| |
| if (types.second().isReusable() && isSSE2Present()) { |
| ASSERT(types.second().mightBeNumber()); |
| |
| // Check op2 is a number |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::edx); |
| X86Assembler::JmpSrc op2imm = m_jit.emitUnlinkedJne(); |
| if (!types.second().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(X86::edx, i); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(numberStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::edx); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| } |
| |
| // (1) In this case src2 is a reusable number cell. |
| // Slow case if src1 is not a number type. |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); |
| X86Assembler::JmpSrc op1imm = m_jit.emitUnlinkedJne(); |
| if (!types.first().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(X86::eax, i); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(numberStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| } |
| |
| // (1a) if we get here, src1 is also a number cell |
| m_jit.movsd_mr(OBJECT_OFFSET(JSNumberCell, m_value), X86::eax, X86::xmm0); |
| X86Assembler::JmpSrc loadedDouble = m_jit.emitUnlinkedJmp(); |
| // (1b) if we get here, src1 is an immediate |
| m_jit.link(op1imm, m_jit.label()); |
| emitFastArithImmToInt(X86::eax); |
| m_jit.cvtsi2sd_rr(X86::eax, X86::xmm0); |
| // (1c) |
| m_jit.link(loadedDouble, m_jit.label()); |
| if (opcodeID == op_add) |
| m_jit.addsd_mr(OBJECT_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0); |
| else if (opcodeID == op_sub) |
| m_jit.subsd_mr(OBJECT_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0); |
| else { |
| ASSERT(opcodeID == op_mul); |
| m_jit.mulsd_mr(OBJECT_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0); |
| } |
| |
| putDoubleResultToJSNumberCellOrJSImmediate(X86::xmm0, X86::edx, dst, &wasJSNumberCell2, X86::xmm1, X86::ecx, X86::eax); |
| wasJSNumberCell2b = m_jit.emitUnlinkedJmp(); |
| |
| // (2) This handles cases where src2 is an immediate number. |
| // Two slow cases - either src1 isn't an immediate, or the subtract overflows. |
| m_jit.link(op2imm, m_jit.label()); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| } else if (types.first().isReusable() && isSSE2Present()) { |
| ASSERT(types.first().mightBeNumber()); |
| |
| // Check op1 is a number |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); |
| X86Assembler::JmpSrc op1imm = m_jit.emitUnlinkedJne(); |
| if (!types.first().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(X86::eax, i); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(numberStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| } |
| |
| // (1) In this case src1 is a reusable number cell. |
| // Slow case if src2 is not a number type. |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::edx); |
| X86Assembler::JmpSrc op2imm = m_jit.emitUnlinkedJne(); |
| if (!types.second().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(X86::edx, i); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(numberStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::edx); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| } |
| |
| // (1a) if we get here, src2 is also a number cell |
| m_jit.movsd_mr(OBJECT_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm1); |
| X86Assembler::JmpSrc loadedDouble = m_jit.emitUnlinkedJmp(); |
| // (1b) if we get here, src2 is an immediate |
| m_jit.link(op2imm, m_jit.label()); |
| emitFastArithImmToInt(X86::edx); |
| m_jit.cvtsi2sd_rr(X86::edx, X86::xmm1); |
| // (1c) |
| m_jit.link(loadedDouble, m_jit.label()); |
| m_jit.movsd_mr(OBJECT_OFFSET(JSNumberCell, m_value), X86::eax, X86::xmm0); |
| if (opcodeID == op_add) |
| m_jit.addsd_rr(X86::xmm1, X86::xmm0); |
| else if (opcodeID == op_sub) |
| m_jit.subsd_rr(X86::xmm1, X86::xmm0); |
| else { |
| ASSERT(opcodeID == op_mul); |
| m_jit.mulsd_rr(X86::xmm1, X86::xmm0); |
| } |
| m_jit.movsd_rm(X86::xmm0, OBJECT_OFFSET(JSNumberCell, m_value), X86::eax); |
| emitPutResult(dst); |
| |
| putDoubleResultToJSNumberCellOrJSImmediate(X86::xmm0, X86::eax, dst, &wasJSNumberCell1, X86::xmm1, X86::ecx, X86::edx); |
| wasJSNumberCell1b = m_jit.emitUnlinkedJmp(); |
| |
| // (2) This handles cases where src1 is an immediate number. |
| // Two slow cases - either src2 isn't an immediate, or the subtract overflows. |
| m_jit.link(op1imm, m_jit.label()); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| } else |
| emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); |
| |
| if (opcodeID == op_add) { |
| emitFastArithDeTagImmediate(X86::eax); |
| m_jit.addl_rr(X86::edx, X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| } else if (opcodeID == op_sub) { |
| m_jit.subl_rr(X86::edx, X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitFastArithReTagImmediate(X86::eax); |
| } else { |
| ASSERT(opcodeID == op_mul); |
| // convert eax & edx from JSImmediates to ints, and check if either are zero |
| emitFastArithImmToInt(X86::edx); |
| X86Assembler::JmpSrc op1Zero = emitFastArithDeTagImmediateJumpIfZero(X86::eax); |
| m_jit.testl_rr(X86::edx, X86::edx); |
| X86Assembler::JmpSrc op2NonZero = m_jit.emitUnlinkedJne(); |
| m_jit.link(op1Zero, m_jit.label()); |
| // if either input is zero, add the two together, and check if the result is < 0. |
| // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate. |
| m_jit.movl_rr(X86::eax, X86::ecx); |
| m_jit.addl_rr(X86::edx, X86::ecx); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJs(), i)); |
| // Skip the above check if neither input is zero |
| m_jit.link(op2NonZero, m_jit.label()); |
| m_jit.imull_rr(X86::edx, X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitFastArithReTagImmediate(X86::eax); |
| } |
| emitPutResult(dst); |
| |
| if (types.second().isReusable() && isSSE2Present()) { |
| m_jit.link(wasJSNumberCell2, m_jit.label()); |
| m_jit.link(wasJSNumberCell2b, m_jit.label()); |
| } |
| else if (types.first().isReusable() && isSSE2Present()) { |
| m_jit.link(wasJSNumberCell1, m_jit.label()); |
| m_jit.link(wasJSNumberCell1b, m_jit.label()); |
| } |
| } |
| |
| void CTI::compileBinaryArithOpSlowCase(Instruction* vPC, OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types, unsigned i) |
| { |
| X86Assembler::JmpDst here = m_jit.label(); |
| m_jit.link(iter->from, here); |
| if (types.second().isReusable() && isSSE2Present()) { |
| if (!types.first().definitelyIsNumber()) { |
| m_jit.link((++iter)->from, here); |
| m_jit.link((++iter)->from, here); |
| } |
| if (!types.second().definitelyIsNumber()) { |
| m_jit.link((++iter)->from, here); |
| m_jit.link((++iter)->from, here); |
| } |
| m_jit.link((++iter)->from, here); |
| } else if (types.first().isReusable() && isSSE2Present()) { |
| if (!types.first().definitelyIsNumber()) { |
| m_jit.link((++iter)->from, here); |
| m_jit.link((++iter)->from, here); |
| } |
| if (!types.second().definitelyIsNumber()) { |
| m_jit.link((++iter)->from, here); |
| m_jit.link((++iter)->from, here); |
| } |
| m_jit.link((++iter)->from, here); |
| } else |
| m_jit.link((++iter)->from, here); |
| |
| // additional entry point to handle -0 cases. |
| if (opcodeID == op_mul) |
| m_jit.link((++iter)->from, here); |
| |
| emitGetPutArg(src1, 0, X86::ecx); |
| emitGetPutArg(src2, 4, X86::ecx); |
| if (opcodeID == op_add) |
| emitCTICall(vPC, i, Machine::cti_op_add); |
| else if (opcodeID == op_sub) |
| emitCTICall(vPC, i, Machine::cti_op_sub); |
| else { |
| ASSERT(opcodeID == op_mul); |
| emitCTICall(vPC, i, Machine::cti_op_mul); |
| } |
| emitPutResult(dst); |
| } |
| |
| void CTI::privateCompileMainPass() |
| { |
| Instruction* instruction = m_codeBlock->instructions.begin(); |
| unsigned instructionCount = m_codeBlock->instructions.size(); |
| |
| unsigned propertyAccessInstructionIndex = 0; |
| unsigned callLinkInfoIndex = 0; |
| |
| for (unsigned i = 0; i < instructionCount; ) { |
| ASSERT_WITH_MESSAGE(m_machine->isOpcode(instruction[i].u.opcode), "privateCompileMainPass gone bad @ %d", i); |
| |
| #if ENABLE(OPCODE_SAMPLING) |
| if (i > 0) // Avoid the overhead of sampling op_enter twice. |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(instruction + i), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| m_labels[i] = m_jit.label(); |
| OpcodeID opcodeID = m_machine->getOpcodeID(instruction[i].u.opcode); |
| switch (opcodeID) { |
| case op_mov: { |
| unsigned src = instruction[i + 2].u.operand; |
| if (isConstant(src)) |
| m_jit.movl_i32r(asInteger(getConstant(m_callFrame, src)), X86::eax); |
| else |
| emitGetArg(src, X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_add: { |
| unsigned dst = instruction[i + 1].u.operand; |
| unsigned src1 = instruction[i + 2].u.operand; |
| unsigned src2 = instruction[i + 3].u.operand; |
| |
| if (JSValue* value = getConstantImmediateNumericArg(src1)) { |
| emitGetArg(src2, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| m_jit.addl_i32r(getDeTaggedConstantImmediate(value), X86::edx); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitPutResult(dst, X86::edx); |
| } else if (JSValue* value = getConstantImmediateNumericArg(src2)) { |
| emitGetArg(src1, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| m_jit.addl_i32r(getDeTaggedConstantImmediate(value), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitPutResult(dst); |
| } else { |
| OperandTypes types = OperandTypes::fromInt(instruction[i + 4].u.operand); |
| if (types.first().mightBeNumber() && types.second().mightBeNumber()) |
| compileBinaryArithOp(op_add, instruction[i + 1].u.operand, instruction[i + 2].u.operand, instruction[i + 3].u.operand, OperandTypes::fromInt(instruction[i + 4].u.operand), i); |
| else { |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_add); |
| emitPutResult(instruction[i + 1].u.operand); |
| } |
| } |
| |
| i += 5; |
| break; |
| } |
| case op_end: { |
| if (m_codeBlock->needsFullScopeChain) |
| emitCTICall(instruction + i, i, Machine::cti_op_end); |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| m_jit.pushl_m(RegisterFile::ReturnPC * static_cast<int>(sizeof(Register)), X86::edi); |
| m_jit.ret(); |
| i += 2; |
| break; |
| } |
| case op_jmp: { |
| unsigned target = instruction[i + 1].u.operand; |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 1 + target)); |
| i += 2; |
| break; |
| } |
| case op_pre_inc: { |
| int srcDst = instruction[i + 1].u.operand; |
| emitGetArg(srcDst, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| m_jit.addl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitPutResult(srcDst); |
| i += 2; |
| break; |
| } |
| case op_loop: { |
| emitSlowScriptCheck(instruction + i, i); |
| |
| unsigned target = instruction[i + 1].u.operand; |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 1 + target)); |
| i += 2; |
| break; |
| } |
| case op_loop_if_less: { |
| emitSlowScriptCheck(instruction + i, i); |
| |
| unsigned target = instruction[i + 3].u.operand; |
| JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); |
| if (src2imm) { |
| emitGetArg(instruction[i + 1].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| m_jit.cmpl_i32r(asInteger(src2imm), X86::edx); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJl(), i + 3 + target)); |
| } else { |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| emitGetArg(instruction[i + 2].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| m_jit.cmpl_rr(X86::edx, X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJl(), i + 3 + target)); |
| } |
| i += 4; |
| break; |
| } |
| case op_loop_if_lesseq: { |
| emitSlowScriptCheck(instruction + i, i); |
| |
| unsigned target = instruction[i + 3].u.operand; |
| JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); |
| if (src2imm) { |
| emitGetArg(instruction[i + 1].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| m_jit.cmpl_i32r(asInteger(src2imm), X86::edx); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJle(), i + 3 + target)); |
| } else { |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| emitGetArg(instruction[i + 2].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| m_jit.cmpl_rr(X86::edx, X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJle(), i + 3 + target)); |
| } |
| i += 4; |
| break; |
| } |
| case op_new_object: { |
| emitCTICall(instruction + i, i, Machine::cti_op_new_object); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 2; |
| break; |
| } |
| case op_put_by_id: { |
| // In order to be able to repatch both the StructureID, and the object offset, we store one pointer, |
| // to just after the arguments have been loaded into registers 'hotPathBegin', and we generate code |
| // such that the StructureID & offset are always at the same distance from this. |
| |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::edx); |
| |
| ASSERT(m_codeBlock->propertyAccessInstructions[propertyAccessInstructionIndex].opcodeIndex == i); |
| X86Assembler::JmpDst hotPathBegin = m_jit.label(); |
| m_propertyAccessCompilationInfo[propertyAccessInstructionIndex].hotPathBegin = hotPathBegin; |
| ++propertyAccessInstructionIndex; |
| |
| // Jump to a slow case if either the base object is an immediate, or if the StructureID does not match. |
| emitJumpSlowCaseIfNotJSCell(X86::eax, i); |
| // It is important that the following instruction plants a 32bit immediate, in order that it can be patched over. |
| m_jit.cmpl_i32m(repatchGetByIdDefaultStructureID, OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetPutByIdStructureID); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| // Plant a load from a bogus ofset in the object's property map; we will patch this later, if it is to be used. |
| m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); |
| m_jit.movl_rm(X86::edx, repatchGetByIdDefaultOffset, X86::eax); |
| ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetPutByIdPropertyMapOffset); |
| |
| i += 8; |
| break; |
| } |
| case op_get_by_id: { |
| // As for put_by_id, get_by_id requires the offset of the StructureID and the offset of the access to be repatched. |
| // Additionally, for get_by_id we need repatch the offset of the branch to the slow case (we repatch this to jump |
| // to array-length / prototype access tranpolines, and finally we also the the property-map access offset as a label |
| // to jump back to if one of these trampolies finds a match. |
| |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| |
| ASSERT(m_codeBlock->propertyAccessInstructions[propertyAccessInstructionIndex].opcodeIndex == i); |
| |
| X86Assembler::JmpDst hotPathBegin = m_jit.label(); |
| m_propertyAccessCompilationInfo[propertyAccessInstructionIndex].hotPathBegin = hotPathBegin; |
| ++propertyAccessInstructionIndex; |
| |
| emitJumpSlowCaseIfNotJSCell(X86::eax, i); |
| m_jit.cmpl_i32m(repatchGetByIdDefaultStructureID, OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetGetByIdStructureID); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetGetByIdBranchToSlowCase); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); |
| m_jit.movl_mr(repatchGetByIdDefaultOffset, X86::eax, X86::ecx); |
| ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetGetByIdPropertyMapOffset); |
| emitPutResult(instruction[i + 1].u.operand, X86::ecx); |
| |
| i += 8; |
| break; |
| } |
| case op_instanceof: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); // value |
| emitGetArg(instruction[i + 3].u.operand, X86::ecx); // baseVal |
| emitGetArg(instruction[i + 4].u.operand, X86::edx); // proto |
| |
| // check if any are immediates |
| m_jit.orl_rr(X86::eax, X86::ecx); |
| m_jit.orl_rr(X86::edx, X86::ecx); |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::ecx); |
| |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJnz(), i)); |
| |
| // check that all are object type - this is a bit of a bithack to avoid excess branching; |
| // we check that the sum of the three type codes from StructureIDs is exactly 3 * ObjectType, |
| // this works because NumberType and StringType are smaller |
| m_jit.movl_i32r(3 * ObjectType, X86::ecx); |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::eax); |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::edx, X86::edx); |
| m_jit.subl_mr(OBJECT_OFFSET(StructureID, m_typeInfo.m_type), X86::eax, X86::ecx); |
| m_jit.subl_mr(OBJECT_OFFSET(StructureID, m_typeInfo.m_type), X86::edx, X86::ecx); |
| emitGetArg(instruction[i + 3].u.operand, X86::edx); // reload baseVal |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::edx, X86::edx); |
| m_jit.cmpl_rm(X86::ecx, OBJECT_OFFSET(StructureID, m_typeInfo.m_type), X86::edx); |
| |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| // check that baseVal's flags include ImplementsHasInstance but not OverridesHasInstance |
| m_jit.movl_mr(OBJECT_OFFSET(StructureID, m_typeInfo.m_flags), X86::edx, X86::ecx); |
| m_jit.andl_i32r(ImplementsHasInstance | OverridesHasInstance, X86::ecx); |
| m_jit.cmpl_i32r(ImplementsHasInstance, X86::ecx); |
| |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| emitGetArg(instruction[i + 2].u.operand, X86::ecx); // reload value |
| emitGetArg(instruction[i + 4].u.operand, X86::edx); // reload proto |
| |
| // optimistically load true result |
| m_jit.movl_i32r(asInteger(jsBoolean(true)), X86::eax); |
| |
| X86Assembler::JmpDst loop = m_jit.label(); |
| |
| // load value's prototype |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::ecx, X86::ecx); |
| m_jit.movl_mr(OBJECT_OFFSET(StructureID, m_prototype), X86::ecx, X86::ecx); |
| |
| m_jit.cmpl_rr(X86::ecx, X86::edx); |
| X86Assembler::JmpSrc exit = m_jit.emitUnlinkedJe(); |
| |
| m_jit.cmpl_i32r(asInteger(jsNull()), X86::ecx); |
| X86Assembler::JmpSrc goToLoop = m_jit.emitUnlinkedJne(); |
| m_jit.link(goToLoop, loop); |
| |
| m_jit.movl_i32r(asInteger(jsBoolean(false)), X86::eax); |
| |
| m_jit.link(exit, m_jit.label()); |
| |
| emitPutResult(instruction[i + 1].u.operand); |
| |
| i += 5; |
| break; |
| } |
| case op_del_by_id: { |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_del_by_id); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_mul: { |
| unsigned dst = instruction[i + 1].u.operand; |
| unsigned src1 = instruction[i + 2].u.operand; |
| unsigned src2 = instruction[i + 3].u.operand; |
| |
| // For now, only plant a fast int case if the constant operand is greater than zero. |
| JSValue* src1Value = getConstantImmediateNumericArg(src1); |
| JSValue* src2Value = getConstantImmediateNumericArg(src2); |
| int32_t value; |
| if (src1Value && ((value = JSImmediate::intValue(src1Value)) > 0)) { |
| emitGetArg(src2, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitFastArithDeTagImmediate(X86::eax); |
| m_jit.imull_i32r(X86::eax, value, X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitFastArithReTagImmediate(X86::eax); |
| emitPutResult(dst); |
| } else if (src2Value && ((value = JSImmediate::intValue(src2Value)) > 0)) { |
| emitGetArg(src1, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitFastArithDeTagImmediate(X86::eax); |
| m_jit.imull_i32r(X86::eax, value, X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitFastArithReTagImmediate(X86::eax); |
| emitPutResult(dst); |
| } else |
| compileBinaryArithOp(op_mul, instruction[i + 1].u.operand, instruction[i + 2].u.operand, instruction[i + 3].u.operand, OperandTypes::fromInt(instruction[i + 4].u.operand), i); |
| |
| i += 5; |
| break; |
| } |
| case op_new_func: { |
| FuncDeclNode* func = (m_codeBlock->functions[instruction[i + 2].u.operand]).get(); |
| emitPutArgConstant(reinterpret_cast<unsigned>(func), 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_new_func); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_call: { |
| compileOpCall(opcodeID, instruction + i, i, callLinkInfoIndex++); |
| i += 7; |
| break; |
| } |
| case op_get_global_var: { |
| JSVariableObject* globalObject = static_cast<JSVariableObject*>(instruction[i + 2].u.jsCell); |
| m_jit.movl_i32r(asInteger(globalObject), X86::eax); |
| emitGetVariableObjectRegister(X86::eax, instruction[i + 3].u.operand, X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_put_global_var: { |
| JSVariableObject* globalObject = static_cast<JSVariableObject*>(instruction[i + 1].u.jsCell); |
| m_jit.movl_i32r(asInteger(globalObject), X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::edx); |
| emitPutVariableObjectRegister(X86::edx, X86::eax, instruction[i + 2].u.operand); |
| i += 4; |
| break; |
| } |
| case op_get_scoped_var: { |
| int skip = instruction[i + 3].u.operand + m_codeBlock->needsFullScopeChain; |
| |
| emitGetArg(RegisterFile::ScopeChain, X86::eax); |
| while (skip--) |
| m_jit.movl_mr(OBJECT_OFFSET(ScopeChainNode, next), X86::eax, X86::eax); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(ScopeChainNode, object), X86::eax, X86::eax); |
| emitGetVariableObjectRegister(X86::eax, instruction[i + 2].u.operand, X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_put_scoped_var: { |
| int skip = instruction[i + 2].u.operand + m_codeBlock->needsFullScopeChain; |
| |
| emitGetArg(RegisterFile::ScopeChain, X86::edx); |
| emitGetArg(instruction[i + 3].u.operand, X86::eax); |
| while (skip--) |
| m_jit.movl_mr(OBJECT_OFFSET(ScopeChainNode, next), X86::edx, X86::edx); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(ScopeChainNode, object), X86::edx, X86::edx); |
| emitPutVariableObjectRegister(X86::eax, X86::edx, instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_tear_off_activation: { |
| emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_tear_off_activation); |
| i += 2; |
| break; |
| } |
| case op_tear_off_arguments: { |
| emitCTICall(instruction + i, i, Machine::cti_op_tear_off_arguments); |
| i += 1; |
| break; |
| } |
| case op_ret: { |
| // We could JIT generate the deref, only calling out to C when the refcount hits zero. |
| if (m_codeBlock->needsFullScopeChain) |
| emitCTICall(instruction + i, i, Machine::cti_op_ret_scopeChain); |
| |
| // Return the result in %eax. |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| |
| // Grab the return address. |
| emitGetArg(RegisterFile::ReturnPC, X86::edx); |
| |
| // Restore our caller's "r". |
| emitGetArg(RegisterFile::CallerFrame, X86::edi); |
| |
| // Return. |
| m_jit.pushl_r(X86::edx); |
| m_jit.ret(); |
| |
| i += 2; |
| break; |
| } |
| case op_new_array: { |
| m_jit.leal_mr(sizeof(Register) * instruction[i + 2].u.operand, X86::edi, X86::edx); |
| emitPutArg(X86::edx, 0); |
| emitPutArgConstant(instruction[i + 3].u.operand, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_new_array); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_resolve: { |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_resolve); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_construct: { |
| compileOpCall(opcodeID, instruction + i, i, callLinkInfoIndex++); |
| i += 7; |
| break; |
| } |
| case op_construct_verify: { |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc isImmediate = m_jit.emitUnlinkedJne(); |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); |
| m_jit.cmpl_i32m(ObjectType, OBJECT_OFFSET(StructureID, m_typeInfo) + OBJECT_OFFSET(TypeInfo, m_type), X86::ecx); |
| X86Assembler::JmpSrc isObject = m_jit.emitUnlinkedJe(); |
| |
| m_jit.link(isImmediate, m_jit.label()); |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| m_jit.link(isObject, m_jit.label()); |
| |
| i += 3; |
| break; |
| } |
| case op_get_by_val: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| emitFastArithImmToInt(X86::edx); |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(m_machine->m_jsArrayVptr), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| // This is an array; get the m_storage pointer into ecx, then check if the index is below the fast cutoff |
| m_jit.movl_mr(OBJECT_OFFSET(JSArray, m_storage), X86::eax, X86::ecx); |
| m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(JSArray, m_fastAccessCutoff), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJbe(), i)); |
| |
| // Get the value from the vector |
| m_jit.movl_mr(OBJECT_OFFSET(ArrayStorage, m_vector[0]), X86::ecx, X86::edx, sizeof(JSValue*), X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_resolve_func: { |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_resolve_func); |
| emitPutResult(instruction[i + 1].u.operand); |
| emitPutResult(instruction[i + 2].u.operand, X86::edx); |
| i += 4; |
| break; |
| } |
| case op_sub: { |
| compileBinaryArithOp(op_sub, instruction[i + 1].u.operand, instruction[i + 2].u.operand, instruction[i + 3].u.operand, OperandTypes::fromInt(instruction[i + 4].u.operand), i); |
| i += 5; |
| break; |
| } |
| case op_put_by_val: { |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| emitGetArg(instruction[i + 2].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| emitFastArithImmToInt(X86::edx); |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(m_machine->m_jsArrayVptr), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| // This is an array; get the m_storage pointer into ecx, then check if the index is below the fast cutoff |
| m_jit.movl_mr(OBJECT_OFFSET(JSArray, m_storage), X86::eax, X86::ecx); |
| m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(JSArray, m_fastAccessCutoff), X86::eax); |
| X86Assembler::JmpSrc inFastVector = m_jit.emitUnlinkedJa(); |
| // No; oh well, check if the access if within the vector - if so, we may still be okay. |
| m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(ArrayStorage, m_vectorLength), X86::ecx); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJbe(), i)); |
| |
| // This is a write to the slow part of the vector; first, we have to check if this would be the first write to this location. |
| // FIXME: should be able to handle initial write to array; increment the the number of items in the array, and potentially update fast access cutoff. |
| m_jit.cmpl_i8m(0, OBJECT_OFFSET(ArrayStorage, m_vector[0]), X86::ecx, X86::edx, sizeof(JSValue*)); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJe(), i)); |
| |
| // All good - put the value into the array. |
| m_jit.link(inFastVector, m_jit.label()); |
| emitGetArg(instruction[i + 3].u.operand, X86::eax); |
| m_jit.movl_rm(X86::eax, OBJECT_OFFSET(ArrayStorage, m_vector[0]), X86::ecx, X86::edx, sizeof(JSValue*)); |
| i += 4; |
| break; |
| } |
| CTI_COMPILE_BINARY_OP(op_lesseq) |
| case op_loop_if_true: { |
| emitSlowScriptCheck(instruction + i, i); |
| |
| unsigned target = instruction[i + 2].u.operand; |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| |
| m_jit.cmpl_i32r(asInteger(JSImmediate::zeroImmediate()), X86::eax); |
| X86Assembler::JmpSrc isZero = m_jit.emitUnlinkedJe(); |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJne(), i + 2 + target)); |
| |
| m_jit.cmpl_i32r(asInteger(JSImmediate::trueImmediate()), X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJe(), i + 2 + target)); |
| m_jit.cmpl_i32r(asInteger(JSImmediate::falseImmediate()), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| m_jit.link(isZero, m_jit.label()); |
| i += 3; |
| break; |
| }; |
| case op_resolve_base: { |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_resolve_base); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_negate: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); |
| X86Assembler::JmpSrc notImmediate = m_jit.emitUnlinkedJe(); |
| |
| m_jit.cmpl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); |
| X86Assembler::JmpSrc zeroImmediate = m_jit.emitUnlinkedJe(); |
| emitFastArithImmToInt(X86::eax); |
| m_jit.negl_r(X86::eax); // This can't overflow as we only have a 31bit int at this point |
| X86Assembler::JmpSrc overflow = emitArithIntToImmWithJump(X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| X86Assembler::JmpSrc immediateNegateSuccess = m_jit.emitUnlinkedJmp(); |
| |
| if (!isSSE2Present()) { |
| m_jit.link(zeroImmediate, m_jit.label()); |
| m_jit.link(overflow, m_jit.label()); |
| m_jit.link(notImmediate, m_jit.label()); |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_negate); |
| emitPutResult(instruction[i + 1].u.operand); |
| } else { |
| // Slow case immediates |
| m_slowCases.append(SlowCaseEntry(zeroImmediate, i)); |
| m_slowCases.append(SlowCaseEntry(overflow, i)); |
| m_jit.link(notImmediate, m_jit.label()); |
| ResultType resultType(instruction[i + 3].u.resultType); |
| if (!resultType.definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(X86::eax, i); |
| StructureID* numberStructureID = m_callFrame->globalData().numberStructureID.get(); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(numberStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| } |
| m_jit.movsd_mr(OBJECT_OFFSET(JSNumberCell, m_value), X86::eax, X86::xmm0); |
| // We need 3 copies of the sign bit mask so we can assure alignment and pad for the 128bit load |
| static double doubleSignBit[] = { -0.0, -0.0, -0.0 }; |
| m_jit.xorpd_mr((void*)((((uintptr_t)doubleSignBit)+15)&~15), X86::xmm0); |
| X86Assembler::JmpSrc wasCell; |
| if (!resultType.isReusableNumber()) |
| emitAllocateNumber(&m_callFrame->globalData(), i); |
| |
| putDoubleResultToJSNumberCellOrJSImmediate(X86::xmm0, X86::eax, instruction[i + 1].u.operand, &wasCell, |
| X86::xmm1, X86::ecx, X86::edx); |
| m_jit.link(wasCell, m_jit.label()); |
| } |
| m_jit.link(immediateNegateSuccess, m_jit.label()); |
| i += 4; |
| break; |
| } |
| case op_resolve_skip: { |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 0); |
| emitPutArgConstant(instruction[i + 3].u.operand + m_codeBlock->needsFullScopeChain, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_resolve_skip); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_resolve_global: { |
| // Fast case |
| unsigned globalObject = asInteger(instruction[i + 2].u.jsCell); |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); |
| void* structureIDAddr = reinterpret_cast<void*>(instruction + i + 4); |
| void* offsetAddr = reinterpret_cast<void*>(instruction + i + 5); |
| |
| // Check StructureID of global object |
| m_jit.movl_i32r(globalObject, X86::eax); |
| m_jit.movl_mr(structureIDAddr, X86::edx); |
| m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| X86Assembler::JmpSrc noMatch = m_jit.emitUnlinkedJne(); // StructureIDs don't match |
| |
| // Load cached property |
| m_jit.movl_mr(OBJECT_OFFSET(JSGlobalObject, m_propertyStorage), X86::eax, X86::eax); |
| m_jit.movl_mr(offsetAddr, X86::edx); |
| m_jit.movl_mr(0, X86::eax, X86::edx, sizeof(JSValue*), X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| X86Assembler::JmpSrc end = m_jit.emitUnlinkedJmp(); |
| |
| // Slow case |
| m_jit.link(noMatch, m_jit.label()); |
| emitPutArgConstant(globalObject, 0); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 4); |
| emitPutArgConstant(reinterpret_cast<unsigned>(instruction + i), 8); |
| emitCTICall(instruction + i, i, Machine::cti_op_resolve_global); |
| emitPutResult(instruction[i + 1].u.operand); |
| m_jit.link(end, m_jit.label()); |
| i += 6; |
| break; |
| } |
| CTI_COMPILE_BINARY_OP(op_div) |
| case op_pre_dec: { |
| int srcDst = instruction[i + 1].u.operand; |
| emitGetArg(srcDst, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| m_jit.subl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitPutResult(srcDst); |
| i += 2; |
| break; |
| } |
| case op_jnless: { |
| unsigned target = instruction[i + 3].u.operand; |
| JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); |
| if (src2imm) { |
| emitGetArg(instruction[i + 1].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| m_jit.cmpl_i32r(asInteger(src2imm), X86::edx); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJge(), i + 3 + target)); |
| } else { |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| emitGetArg(instruction[i + 2].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitJumpSlowCaseIfNotImmNum(X86::edx, i); |
| m_jit.cmpl_rr(X86::edx, X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJge(), i + 3 + target)); |
| } |
| i += 4; |
| break; |
| } |
| case op_not: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| m_jit.xorl_i8r(JSImmediate::FullTagTypeBool, X86::eax); |
| m_jit.testl_i32r(JSImmediate::FullTagTypeMask, X86::eax); // i8? |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| m_jit.xorl_i8r((JSImmediate::FullTagTypeBool | JSImmediate::ExtendedPayloadBitBoolValue), X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_jfalse: { |
| unsigned target = instruction[i + 2].u.operand; |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| |
| m_jit.cmpl_i32r(asInteger(JSImmediate::zeroImmediate()), X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJe(), i + 2 + target)); |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); |
| X86Assembler::JmpSrc isNonZero = m_jit.emitUnlinkedJne(); |
| |
| m_jit.cmpl_i32r(asInteger(JSImmediate::falseImmediate()), X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJe(), i + 2 + target)); |
| m_jit.cmpl_i32r(asInteger(JSImmediate::trueImmediate()), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| m_jit.link(isNonZero, m_jit.label()); |
| i += 3; |
| break; |
| }; |
| case op_jeq_null: { |
| unsigned src = instruction[i + 1].u.operand; |
| unsigned target = instruction[i + 2].u.operand; |
| |
| emitGetArg(src, X86::eax); |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc isImmediate = m_jit.emitUnlinkedJnz(); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); |
| m_jit.testl_i32m(MasqueradesAsUndefined, OBJECT_OFFSET(StructureID, m_typeInfo.m_flags), X86::ecx); |
| m_jit.setnz_r(X86::eax); |
| |
| X86Assembler::JmpSrc wasNotImmediate = m_jit.emitUnlinkedJmp(); |
| |
| m_jit.link(isImmediate, m_jit.label()); |
| |
| m_jit.movl_i32r(~JSImmediate::ExtendedTagBitUndefined, X86::ecx); |
| m_jit.andl_rr(X86::eax, X86::ecx); |
| m_jit.cmpl_i32r(JSImmediate::FullTagTypeNull, X86::ecx); |
| m_jit.sete_r(X86::eax); |
| |
| m_jit.link(wasNotImmediate, m_jit.label()); |
| |
| m_jit.movzbl_rr(X86::eax, X86::eax); |
| m_jit.cmpl_i32r(0, X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJnz(), i + 2 + target)); |
| |
| i += 3; |
| break; |
| }; |
| case op_jneq_null: { |
| unsigned src = instruction[i + 1].u.operand; |
| unsigned target = instruction[i + 2].u.operand; |
| |
| emitGetArg(src, X86::eax); |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc isImmediate = m_jit.emitUnlinkedJnz(); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); |
| m_jit.testl_i32m(MasqueradesAsUndefined, OBJECT_OFFSET(StructureID, m_typeInfo.m_flags), X86::ecx); |
| m_jit.setz_r(X86::eax); |
| |
| X86Assembler::JmpSrc wasNotImmediate = m_jit.emitUnlinkedJmp(); |
| |
| m_jit.link(isImmediate, m_jit.label()); |
| |
| m_jit.movl_i32r(~JSImmediate::ExtendedTagBitUndefined, X86::ecx); |
| m_jit.andl_rr(X86::eax, X86::ecx); |
| m_jit.cmpl_i32r(JSImmediate::FullTagTypeNull, X86::ecx); |
| m_jit.setne_r(X86::eax); |
| |
| m_jit.link(wasNotImmediate, m_jit.label()); |
| |
| m_jit.movzbl_rr(X86::eax, X86::eax); |
| m_jit.cmpl_i32r(0, X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJnz(), i + 2 + target)); |
| |
| i += 3; |
| break; |
| } |
| case op_post_inc: { |
| int srcDst = instruction[i + 2].u.operand; |
| emitGetArg(srcDst, X86::eax); |
| m_jit.movl_rr(X86::eax, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| m_jit.addl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::edx); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitPutResult(srcDst, X86::edx); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_unexpected_load: { |
| JSValue* v = m_codeBlock->unexpectedConstants[instruction[i + 2].u.operand]; |
| m_jit.movl_i32r(asInteger(v), X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_jsr: { |
| int retAddrDst = instruction[i + 1].u.operand; |
| int target = instruction[i + 2].u.operand; |
| m_jit.movl_i32m(0, sizeof(Register) * retAddrDst, X86::edi); |
| X86Assembler::JmpDst addrPosition = m_jit.label(); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 2 + target)); |
| X86Assembler::JmpDst sretTarget = m_jit.label(); |
| m_jsrSites.append(JSRInfo(addrPosition, sretTarget)); |
| i += 3; |
| break; |
| } |
| case op_sret: { |
| m_jit.jmp_m(sizeof(Register) * instruction[i + 1].u.operand, X86::edi); |
| i += 2; |
| break; |
| } |
| case op_eq: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); |
| m_jit.cmpl_rr(X86::edx, X86::eax); |
| m_jit.sete_r(X86::eax); |
| m_jit.movzbl_rr(X86::eax, X86::eax); |
| emitTagAsBoolImmediate(X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_lshift: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::ecx); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitJumpSlowCaseIfNotImmNum(X86::ecx, i); |
| emitFastArithImmToInt(X86::eax); |
| emitFastArithImmToInt(X86::ecx); |
| m_jit.shll_CLr(X86::eax); |
| emitFastArithIntToImmOrSlowCase(X86::eax, i); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_bitand: { |
| unsigned src1 = instruction[i + 2].u.operand; |
| unsigned src2 = instruction[i + 3].u.operand; |
| unsigned dst = instruction[i + 1].u.operand; |
| if (JSValue* value = getConstantImmediateNumericArg(src1)) { |
| emitGetArg(src2, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| m_jit.andl_i32r(asInteger(value), X86::eax); // FIXME: make it more obvious this is relying on the format of JSImmediate |
| emitPutResult(dst); |
| } else if (JSValue* value = getConstantImmediateNumericArg(src2)) { |
| emitGetArg(src1, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| m_jit.andl_i32r(asInteger(value), X86::eax); |
| emitPutResult(dst); |
| } else { |
| emitGetArg(src1, X86::eax); |
| emitGetArg(src2, X86::edx); |
| m_jit.andl_rr(X86::edx, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitPutResult(dst); |
| } |
| i += 5; |
| break; |
| } |
| case op_rshift: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::ecx); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitJumpSlowCaseIfNotImmNum(X86::ecx, i); |
| emitFastArithImmToInt(X86::ecx); |
| m_jit.sarl_CLr(X86::eax); |
| emitFastArithPotentiallyReTagImmediate(X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_bitnot: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| m_jit.xorl_i8r(~JSImmediate::TagBitTypeInteger, X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_resolve_with_base: { |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_resolve_with_base); |
| emitPutResult(instruction[i + 1].u.operand); |
| emitPutResult(instruction[i + 2].u.operand, X86::edx); |
| i += 4; |
| break; |
| } |
| case op_new_func_exp: { |
| FuncExprNode* func = (m_codeBlock->functionExpressions[instruction[i + 2].u.operand]).get(); |
| emitPutArgConstant(reinterpret_cast<unsigned>(func), 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_new_func_exp); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_mod: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::ecx); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| emitJumpSlowCaseIfNotImmNum(X86::ecx, i); |
| emitFastArithDeTagImmediate(X86::eax); |
| m_slowCases.append(SlowCaseEntry(emitFastArithDeTagImmediateJumpIfZero(X86::ecx), i)); |
| m_jit.cdq(); |
| m_jit.idivl_r(X86::ecx); |
| emitFastArithReTagImmediate(X86::edx); |
| m_jit.movl_rr(X86::edx, X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_jtrue: { |
| unsigned target = instruction[i + 2].u.operand; |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| |
| m_jit.cmpl_i32r(asInteger(JSImmediate::zeroImmediate()), X86::eax); |
| X86Assembler::JmpSrc isZero = m_jit.emitUnlinkedJe(); |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJne(), i + 2 + target)); |
| |
| m_jit.cmpl_i32r(asInteger(JSImmediate::trueImmediate()), X86::eax); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJe(), i + 2 + target)); |
| m_jit.cmpl_i32r(asInteger(JSImmediate::falseImmediate()), X86::eax); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| m_jit.link(isZero, m_jit.label()); |
| i += 3; |
| break; |
| } |
| CTI_COMPILE_BINARY_OP(op_less) |
| case op_neq: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); |
| m_jit.cmpl_rr(X86::eax, X86::edx); |
| |
| m_jit.setne_r(X86::eax); |
| m_jit.movzbl_rr(X86::eax, X86::eax); |
| emitTagAsBoolImmediate(X86::eax); |
| |
| emitPutResult(instruction[i + 1].u.operand); |
| |
| i += 4; |
| break; |
| } |
| case op_post_dec: { |
| int srcDst = instruction[i + 2].u.operand; |
| emitGetArg(srcDst, X86::eax); |
| m_jit.movl_rr(X86::eax, X86::edx); |
| emitJumpSlowCaseIfNotImmNum(X86::eax, i); |
| m_jit.subl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::edx); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); |
| emitPutResult(srcDst, X86::edx); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| CTI_COMPILE_BINARY_OP(op_urshift) |
| case op_bitxor: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); |
| m_jit.xorl_rr(X86::edx, X86::eax); |
| emitFastArithReTagImmediate(X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 5; |
| break; |
| } |
| case op_new_regexp: { |
| RegExp* regExp = m_codeBlock->regexps[instruction[i + 2].u.operand].get(); |
| emitPutArgConstant(reinterpret_cast<unsigned>(regExp), 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_new_regexp); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_bitor: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::edx); |
| emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); |
| m_jit.orl_rr(X86::edx, X86::eax); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 5; |
| break; |
| } |
| case op_call_eval: { |
| compileOpCall(opcodeID, instruction + i, i, callLinkInfoIndex++); |
| i += 7; |
| break; |
| } |
| case op_throw: { |
| emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_throw); |
| m_jit.addl_i8r(0x20, X86::esp); |
| m_jit.popl_r(X86::ebx); |
| m_jit.popl_r(X86::edi); |
| m_jit.popl_r(X86::esi); |
| m_jit.ret(); |
| i += 2; |
| break; |
| } |
| case op_get_pnames: { |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_get_pnames); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_next_pname: { |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| unsigned target = instruction[i + 3].u.operand; |
| emitCTICall(instruction + i, i, Machine::cti_op_next_pname); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| X86Assembler::JmpSrc endOfIter = m_jit.emitUnlinkedJe(); |
| emitPutResult(instruction[i + 1].u.operand); |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 3 + target)); |
| m_jit.link(endOfIter, m_jit.label()); |
| i += 4; |
| break; |
| } |
| case op_push_scope: { |
| emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_push_scope); |
| i += 2; |
| break; |
| } |
| case op_pop_scope: { |
| emitCTICall(instruction + i, i, Machine::cti_op_pop_scope); |
| i += 1; |
| break; |
| } |
| CTI_COMPILE_UNARY_OP(op_typeof) |
| CTI_COMPILE_UNARY_OP(op_is_undefined) |
| CTI_COMPILE_UNARY_OP(op_is_boolean) |
| CTI_COMPILE_UNARY_OP(op_is_number) |
| CTI_COMPILE_UNARY_OP(op_is_string) |
| CTI_COMPILE_UNARY_OP(op_is_object) |
| CTI_COMPILE_UNARY_OP(op_is_function) |
| case op_stricteq: { |
| compileOpStrictEq(instruction + i, i, OpStrictEq); |
| i += 4; |
| break; |
| } |
| case op_nstricteq: { |
| compileOpStrictEq(instruction + i, i, OpNStrictEq); |
| i += 4; |
| break; |
| } |
| case op_to_jsnumber: { |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| |
| m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); |
| X86Assembler::JmpSrc wasImmediate = m_jit.emitUnlinkedJnz(); |
| |
| emitJumpSlowCaseIfNotJSCell(X86::eax, i); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); |
| m_jit.cmpl_i32m(NumberType, OBJECT_OFFSET(StructureID, m_typeInfo.m_type), X86::ecx); |
| |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); |
| |
| m_jit.link(wasImmediate, m_jit.label()); |
| |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_in: { |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_in); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_push_new_scope: { |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 0); |
| emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_push_new_scope); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_catch: { |
| emitGetCTIParam(CTI_ARGS_callFrame, X86::edi); // edi := r |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 2; |
| break; |
| } |
| case op_jmp_scopes: { |
| unsigned count = instruction[i + 1].u.operand; |
| emitPutArgConstant(count, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_jmp_scopes); |
| unsigned target = instruction[i + 2].u.operand; |
| m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 2 + target)); |
| i += 3; |
| break; |
| } |
| case op_put_by_index: { |
| emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); |
| emitPutArgConstant(instruction[i + 2].u.operand, 4); |
| emitGetPutArg(instruction[i + 3].u.operand, 8, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_put_by_index); |
| i += 4; |
| break; |
| } |
| case op_switch_imm: { |
| unsigned tableIndex = instruction[i + 1].u.operand; |
| unsigned defaultOffset = instruction[i + 2].u.operand; |
| unsigned scrutinee = instruction[i + 3].u.operand; |
| |
| // create jump table for switch destinations, track this switch statement. |
| SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTables[tableIndex]; |
| m_switches.append(SwitchRecord(jumpTable, i, defaultOffset, SwitchRecord::Immediate)); |
| jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); |
| |
| emitGetPutArg(scrutinee, 0, X86::ecx); |
| emitPutArgConstant(tableIndex, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_switch_imm); |
| m_jit.jmp_r(X86::eax); |
| i += 4; |
| break; |
| } |
| case op_switch_char: { |
| unsigned tableIndex = instruction[i + 1].u.operand; |
| unsigned defaultOffset = instruction[i + 2].u.operand; |
| unsigned scrutinee = instruction[i + 3].u.operand; |
| |
| // create jump table for switch destinations, track this switch statement. |
| SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTables[tableIndex]; |
| m_switches.append(SwitchRecord(jumpTable, i, defaultOffset, SwitchRecord::Character)); |
| jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); |
| |
| emitGetPutArg(scrutinee, 0, X86::ecx); |
| emitPutArgConstant(tableIndex, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_switch_char); |
| m_jit.jmp_r(X86::eax); |
| i += 4; |
| break; |
| } |
| case op_switch_string: { |
| unsigned tableIndex = instruction[i + 1].u.operand; |
| unsigned defaultOffset = instruction[i + 2].u.operand; |
| unsigned scrutinee = instruction[i + 3].u.operand; |
| |
| // create jump table for switch destinations, track this switch statement. |
| StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTables[tableIndex]; |
| m_switches.append(SwitchRecord(jumpTable, i, defaultOffset)); |
| |
| emitGetPutArg(scrutinee, 0, X86::ecx); |
| emitPutArgConstant(tableIndex, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_switch_string); |
| m_jit.jmp_r(X86::eax); |
| i += 4; |
| break; |
| } |
| case op_del_by_val: { |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_del_by_val); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_put_getter: { |
| emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 4); |
| emitGetPutArg(instruction[i + 3].u.operand, 8, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_put_getter); |
| i += 4; |
| break; |
| } |
| case op_put_setter: { |
| emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 4); |
| emitGetPutArg(instruction[i + 3].u.operand, 8, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_put_setter); |
| i += 4; |
| break; |
| } |
| case op_new_error: { |
| JSValue* message = m_codeBlock->unexpectedConstants[instruction[i + 3].u.operand]; |
| emitPutArgConstant(instruction[i + 2].u.operand, 0); |
| emitPutArgConstant(asInteger(message), 4); |
| emitPutArgConstant(m_codeBlock->lineNumberForVPC(&instruction[i]), 8); |
| emitCTICall(instruction + i, i, Machine::cti_op_new_error); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_debug: { |
| emitPutArgConstant(instruction[i + 1].u.operand, 0); |
| emitPutArgConstant(instruction[i + 2].u.operand, 4); |
| emitPutArgConstant(instruction[i + 3].u.operand, 8); |
| emitCTICall(instruction + i, i, Machine::cti_op_debug); |
| i += 4; |
| break; |
| } |
| case op_eq_null: { |
| unsigned dst = instruction[i + 1].u.operand; |
| unsigned src1 = instruction[i + 2].u.operand; |
| |
| emitGetArg(src1, X86::eax); |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc isImmediate = m_jit.emitUnlinkedJnz(); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); |
| m_jit.testl_i32m(MasqueradesAsUndefined, OBJECT_OFFSET(StructureID, m_typeInfo.m_flags), X86::ecx); |
| m_jit.setnz_r(X86::eax); |
| |
| X86Assembler::JmpSrc wasNotImmediate = m_jit.emitUnlinkedJmp(); |
| |
| m_jit.link(isImmediate, m_jit.label()); |
| |
| m_jit.movl_i32r(~JSImmediate::ExtendedTagBitUndefined, X86::ecx); |
| m_jit.andl_rr(X86::eax, X86::ecx); |
| m_jit.cmpl_i32r(JSImmediate::FullTagTypeNull, X86::ecx); |
| m_jit.sete_r(X86::eax); |
| |
| m_jit.link(wasNotImmediate, m_jit.label()); |
| |
| m_jit.movzbl_rr(X86::eax, X86::eax); |
| emitTagAsBoolImmediate(X86::eax); |
| emitPutResult(dst); |
| |
| i += 3; |
| break; |
| } |
| case op_neq_null: { |
| unsigned dst = instruction[i + 1].u.operand; |
| unsigned src1 = instruction[i + 2].u.operand; |
| |
| emitGetArg(src1, X86::eax); |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc isImmediate = m_jit.emitUnlinkedJnz(); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); |
| m_jit.testl_i32m(MasqueradesAsUndefined, OBJECT_OFFSET(StructureID, m_typeInfo.m_flags), X86::ecx); |
| m_jit.setz_r(X86::eax); |
| |
| X86Assembler::JmpSrc wasNotImmediate = m_jit.emitUnlinkedJmp(); |
| |
| m_jit.link(isImmediate, m_jit.label()); |
| |
| m_jit.movl_i32r(~JSImmediate::ExtendedTagBitUndefined, X86::ecx); |
| m_jit.andl_rr(X86::eax, X86::ecx); |
| m_jit.cmpl_i32r(JSImmediate::FullTagTypeNull, X86::ecx); |
| m_jit.setne_r(X86::eax); |
| |
| m_jit.link(wasNotImmediate, m_jit.label()); |
| |
| m_jit.movzbl_rr(X86::eax, X86::eax); |
| emitTagAsBoolImmediate(X86::eax); |
| emitPutResult(dst); |
| |
| i += 3; |
| break; |
| } |
| case op_enter: { |
| // Even though CTI doesn't use them, we initialize our constant |
| // registers to zap stale pointers, to avoid unnecessarily prolonging |
| // object lifetime and increasing GC pressure. |
| size_t count = m_codeBlock->numVars + m_codeBlock->constantRegisters.size(); |
| for (size_t j = 0; j < count; ++j) |
| emitInitRegister(j); |
| |
| i+= 1; |
| break; |
| } |
| case op_enter_with_activation: { |
| // Even though CTI doesn't use them, we initialize our constant |
| // registers to zap stale pointers, to avoid unnecessarily prolonging |
| // object lifetime and increasing GC pressure. |
| size_t count = m_codeBlock->numVars + m_codeBlock->constantRegisters.size(); |
| for (size_t j = 0; j < count; ++j) |
| emitInitRegister(j); |
| |
| emitCTICall(instruction + i, i, Machine::cti_op_push_activation); |
| emitPutResult(instruction[i + 1].u.operand); |
| |
| i+= 2; |
| break; |
| } |
| case op_create_arguments: { |
| emitCTICall(instruction + i, i, (m_codeBlock->numParameters == 1) ? Machine::cti_op_create_arguments_no_params : Machine::cti_op_create_arguments); |
| i += 1; |
| break; |
| } |
| case op_convert_this: { |
| emitGetArg(instruction[i + 1].u.operand, X86::eax); |
| |
| emitJumpSlowCaseIfNotJSCell(X86::eax, i); |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::edx); |
| m_jit.testl_i32m(NeedsThisConversion, OBJECT_OFFSET(StructureID, m_typeInfo.m_flags), X86::edx); |
| m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJnz(), i)); |
| |
| i += 2; |
| break; |
| } |
| case op_profile_will_call: { |
| emitGetCTIParam(CTI_ARGS_profilerReference, X86::eax); |
| m_jit.cmpl_i32m(0, X86::eax); |
| X86Assembler::JmpSrc noProfiler = m_jit.emitUnlinkedJe(); |
| emitGetPutArg(instruction[i + 1].u.operand, 0, X86::eax); |
| emitCTICall(instruction + i, i, Machine::cti_op_profile_will_call); |
| m_jit.link(noProfiler, m_jit.label()); |
| |
| i += 2; |
| break; |
| } |
| case op_profile_did_call: { |
| emitGetCTIParam(CTI_ARGS_profilerReference, X86::eax); |
| m_jit.cmpl_i32m(0, X86::eax); |
| X86Assembler::JmpSrc noProfiler = m_jit.emitUnlinkedJe(); |
| emitGetPutArg(instruction[i + 1].u.operand, 0, X86::eax); |
| emitCTICall(instruction + i, i, Machine::cti_op_profile_did_call); |
| m_jit.link(noProfiler, m_jit.label()); |
| |
| i += 2; |
| break; |
| } |
| case op_get_array_length: |
| case op_get_by_id_chain: |
| case op_get_by_id_generic: |
| case op_get_by_id_proto: |
| case op_get_by_id_self: |
| case op_get_string_length: |
| case op_put_by_id_generic: |
| case op_put_by_id_replace: |
| case op_put_by_id_transition: |
| ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| ASSERT(propertyAccessInstructionIndex == m_codeBlock->propertyAccessInstructions.size()); |
| ASSERT(callLinkInfoIndex == m_codeBlock->callLinkInfos.size()); |
| } |
| |
| |
| void CTI::privateCompileLinkPass() |
| { |
| unsigned jmpTableCount = m_jmpTable.size(); |
| for (unsigned i = 0; i < jmpTableCount; ++i) |
| m_jit.link(m_jmpTable[i].from, m_labels[m_jmpTable[i].to]); |
| m_jmpTable.clear(); |
| } |
| |
| #define CTI_COMPILE_BINARY_OP_SLOW_CASE(name) \ |
| case name: { \ |
| m_jit.link(iter->from, m_jit.label()); \ |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); \ |
| emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); \ |
| emitCTICall(instruction + i, i, Machine::cti_##name); \ |
| emitPutResult(instruction[i + 1].u.operand); \ |
| i += 4; \ |
| break; \ |
| } |
| |
| void CTI::privateCompileSlowCases() |
| { |
| unsigned propertyAccessInstructionIndex = 0; |
| unsigned callLinkInfoIndex = 0; |
| |
| Instruction* instruction = m_codeBlock->instructions.begin(); |
| for (Vector<SlowCaseEntry>::iterator iter = m_slowCases.begin(); iter != m_slowCases.end(); ++iter) { |
| unsigned i = iter->to; |
| switch (OpcodeID opcodeID = m_machine->getOpcodeID(instruction[i].u.opcode)) { |
| case op_convert_this: { |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_convert_this); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 2; |
| break; |
| } |
| case op_add: { |
| unsigned dst = instruction[i + 1].u.operand; |
| unsigned src1 = instruction[i + 2].u.operand; |
| unsigned src2 = instruction[i + 3].u.operand; |
| if (JSValue* value = getConstantImmediateNumericArg(src1)) { |
| X86Assembler::JmpSrc notImm = iter->from; |
| m_jit.link((++iter)->from, m_jit.label()); |
| m_jit.subl_i32r(getDeTaggedConstantImmediate(value), X86::edx); |
| m_jit.link(notImm, m_jit.label()); |
| emitGetPutArg(src1, 0, X86::ecx); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_add); |
| emitPutResult(dst); |
| } else if (JSValue* value = getConstantImmediateNumericArg(src2)) { |
| X86Assembler::JmpSrc notImm = iter->from; |
| m_jit.link((++iter)->from, m_jit.label()); |
| m_jit.subl_i32r(getDeTaggedConstantImmediate(value), X86::eax); |
| m_jit.link(notImm, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitGetPutArg(src2, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_add); |
| emitPutResult(dst); |
| } else { |
| OperandTypes types = OperandTypes::fromInt(instruction[i + 4].u.operand); |
| if (types.first().mightBeNumber() && types.second().mightBeNumber()) |
| compileBinaryArithOpSlowCase(instruction + i, op_add, iter, dst, src1, src2, types, i); |
| else |
| ASSERT_NOT_REACHED(); |
| } |
| |
| i += 5; |
| break; |
| } |
| case op_get_by_val: { |
| // The slow case that handles accesses to arrays (below) may jump back up to here. |
| X86Assembler::JmpDst beginGetByValSlow = m_jit.label(); |
| |
| X86Assembler::JmpSrc notImm = iter->from; |
| m_jit.link((++iter)->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitFastArithIntToImmNoCheck(X86::edx); |
| m_jit.link(notImm, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_get_by_val); |
| emitPutResult(instruction[i + 1].u.operand); |
| m_jit.link(m_jit.emitUnlinkedJmp(), m_labels[i + 4]); |
| |
| // This is slow case that handles accesses to arrays above the fast cut-off. |
| // First, check if this is an access to the vector |
| m_jit.link((++iter)->from, m_jit.label()); |
| m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(ArrayStorage, m_vectorLength), X86::ecx); |
| m_jit.link(m_jit.emitUnlinkedJbe(), beginGetByValSlow); |
| |
| // okay, missed the fast region, but it is still in the vector. Get the value. |
| m_jit.movl_mr(OBJECT_OFFSET(ArrayStorage, m_vector[0]), X86::ecx, X86::edx, sizeof(JSValue*), X86::ecx); |
| // Check whether the value loaded is zero; if so we need to return undefined. |
| m_jit.testl_rr(X86::ecx, X86::ecx); |
| m_jit.link(m_jit.emitUnlinkedJe(), beginGetByValSlow); |
| emitPutResult(instruction[i + 1].u.operand, X86::ecx); |
| |
| i += 4; |
| break; |
| } |
| case op_sub: { |
| compileBinaryArithOpSlowCase(instruction + i, op_sub, iter, instruction[i + 1].u.operand, instruction[i + 2].u.operand, instruction[i + 3].u.operand, OperandTypes::fromInt(instruction[i + 4].u.operand), i); |
| i += 5; |
| break; |
| } |
| case op_negate: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_negate); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_rshift: { |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::ecx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_rshift); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_lshift: { |
| X86Assembler::JmpSrc notImm1 = iter->from; |
| X86Assembler::JmpSrc notImm2 = (++iter)->from; |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitGetArg(instruction[i + 2].u.operand, X86::eax); |
| emitGetArg(instruction[i + 3].u.operand, X86::ecx); |
| m_jit.link(notImm1, m_jit.label()); |
| m_jit.link(notImm2, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::ecx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_lshift); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_loop_if_less: { |
| emitSlowScriptCheck(instruction + i, i); |
| |
| unsigned target = instruction[i + 3].u.operand; |
| JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); |
| if (src2imm) { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::edx, 0); |
| emitGetPutArg(instruction[i + 2].u.operand, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_loop_if_less); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 3 + target]); |
| } else { |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_loop_if_less); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 3 + target]); |
| } |
| i += 4; |
| break; |
| } |
| case op_put_by_id: { |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 4); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 8); |
| X86Assembler::JmpSrc call = emitCTICall(instruction + i, i, Machine::cti_op_put_by_id); |
| |
| // Track the location of the call; this will be used to recover repatch information. |
| ASSERT(m_codeBlock->propertyAccessInstructions[propertyAccessInstructionIndex].opcodeIndex == i); |
| m_propertyAccessCompilationInfo[propertyAccessInstructionIndex].callReturnLocation = call; |
| ++propertyAccessInstructionIndex; |
| |
| i += 8; |
| break; |
| } |
| case op_get_by_id: { |
| // As for the hot path of get_by_id, above, we ensure that we can use an architecture specific offset |
| // so that we only need track one pointer into the slow case code - we track a pointer to the location |
| // of the call (which we can use to look up the repatch information), but should a array-length or |
| // prototype access trampoline fail we want to bail out back to here. To do so we can subtract back |
| // the distance from the call to the head of the slow case. |
| |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| |
| #ifndef NDEBUG |
| X86Assembler::JmpDst coldPathBegin = m_jit.label(); |
| #endif |
| emitPutArg(X86::eax, 0); |
| Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(ident), 4); |
| X86Assembler::JmpSrc call = emitCTICall(instruction + i, i, Machine::cti_op_get_by_id); |
| ASSERT(X86Assembler::getDifferenceBetweenLabels(coldPathBegin, call) == repatchOffsetGetByIdSlowCaseCall); |
| emitPutResult(instruction[i + 1].u.operand); |
| |
| // Track the location of the call; this will be used to recover repatch information. |
| ASSERT(m_codeBlock->propertyAccessInstructions[propertyAccessInstructionIndex].opcodeIndex == i); |
| m_propertyAccessCompilationInfo[propertyAccessInstructionIndex].callReturnLocation = call; |
| ++propertyAccessInstructionIndex; |
| |
| i += 8; |
| break; |
| } |
| case op_loop_if_lesseq: { |
| emitSlowScriptCheck(instruction + i, i); |
| |
| unsigned target = instruction[i + 3].u.operand; |
| JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); |
| if (src2imm) { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::edx, 0); |
| emitGetPutArg(instruction[i + 2].u.operand, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_loop_if_lesseq); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 3 + target]); |
| } else { |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_loop_if_lesseq); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 3 + target]); |
| } |
| i += 4; |
| break; |
| } |
| case op_pre_inc: { |
| unsigned srcDst = instruction[i + 1].u.operand; |
| X86Assembler::JmpSrc notImm = iter->from; |
| m_jit.link((++iter)->from, m_jit.label()); |
| m_jit.subl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::eax); |
| m_jit.link(notImm, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_pre_inc); |
| emitPutResult(srcDst); |
| i += 2; |
| break; |
| } |
| case op_put_by_val: { |
| // Normal slow cases - either is not an immediate imm, or is an array. |
| X86Assembler::JmpSrc notImm = iter->from; |
| m_jit.link((++iter)->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitFastArithIntToImmNoCheck(X86::edx); |
| m_jit.link(notImm, m_jit.label()); |
| emitGetArg(instruction[i + 3].u.operand, X86::ecx); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitPutArg(X86::ecx, 8); |
| emitCTICall(instruction + i, i, Machine::cti_op_put_by_val); |
| m_jit.link(m_jit.emitUnlinkedJmp(), m_labels[i + 4]); |
| |
| // slow cases for immediate int accesses to arrays |
| m_jit.link((++iter)->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitGetArg(instruction[i + 3].u.operand, X86::ecx); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitPutArg(X86::ecx, 8); |
| emitCTICall(instruction + i, i, Machine::cti_op_put_by_val_array); |
| |
| i += 4; |
| break; |
| } |
| case op_loop_if_true: { |
| emitSlowScriptCheck(instruction + i, i); |
| |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_jtrue); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| unsigned target = instruction[i + 2].u.operand; |
| m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 2 + target]); |
| i += 3; |
| break; |
| } |
| case op_pre_dec: { |
| unsigned srcDst = instruction[i + 1].u.operand; |
| X86Assembler::JmpSrc notImm = iter->from; |
| m_jit.link((++iter)->from, m_jit.label()); |
| m_jit.addl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::eax); |
| m_jit.link(notImm, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_pre_dec); |
| emitPutResult(srcDst); |
| i += 2; |
| break; |
| } |
| case op_jnless: { |
| unsigned target = instruction[i + 3].u.operand; |
| JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); |
| if (src2imm) { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::edx, 0); |
| emitGetPutArg(instruction[i + 2].u.operand, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_jless); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| m_jit.link(m_jit.emitUnlinkedJe(), m_labels[i + 3 + target]); |
| } else { |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_jless); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| m_jit.link(m_jit.emitUnlinkedJe(), m_labels[i + 3 + target]); |
| } |
| i += 4; |
| break; |
| } |
| case op_not: { |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.xorl_i8r(JSImmediate::FullTagTypeBool, X86::eax); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_not); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_jfalse: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_jtrue); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| unsigned target = instruction[i + 2].u.operand; |
| m_jit.link(m_jit.emitUnlinkedJe(), m_labels[i + 2 + target]); // inverted! |
| i += 3; |
| break; |
| } |
| case op_post_inc: { |
| unsigned srcDst = instruction[i + 2].u.operand; |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_post_inc); |
| emitPutResult(instruction[i + 1].u.operand); |
| emitPutResult(srcDst, X86::edx); |
| i += 3; |
| break; |
| } |
| case op_bitnot: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_bitnot); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| case op_bitand: { |
| unsigned src1 = instruction[i + 2].u.operand; |
| unsigned src2 = instruction[i + 3].u.operand; |
| unsigned dst = instruction[i + 1].u.operand; |
| if (getConstantImmediateNumericArg(src1)) { |
| m_jit.link(iter->from, m_jit.label()); |
| emitGetPutArg(src1, 0, X86::ecx); |
| emitPutArg(X86::eax, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_bitand); |
| emitPutResult(dst); |
| } else if (getConstantImmediateNumericArg(src2)) { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitGetPutArg(src2, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_bitand); |
| emitPutResult(dst); |
| } else { |
| m_jit.link(iter->from, m_jit.label()); |
| emitGetPutArg(src1, 0, X86::ecx); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_bitand); |
| emitPutResult(dst); |
| } |
| i += 5; |
| break; |
| } |
| case op_jtrue: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_jtrue); |
| m_jit.testl_rr(X86::eax, X86::eax); |
| unsigned target = instruction[i + 2].u.operand; |
| m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 2 + target]); |
| i += 3; |
| break; |
| } |
| case op_post_dec: { |
| unsigned srcDst = instruction[i + 2].u.operand; |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_post_dec); |
| emitPutResult(instruction[i + 1].u.operand); |
| emitPutResult(srcDst, X86::edx); |
| i += 3; |
| break; |
| } |
| case op_bitxor: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_bitxor); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 5; |
| break; |
| } |
| case op_bitor: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_bitor); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 5; |
| break; |
| } |
| case op_eq: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_eq); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_neq: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::edx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_neq); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| CTI_COMPILE_BINARY_OP_SLOW_CASE(op_stricteq); |
| CTI_COMPILE_BINARY_OP_SLOW_CASE(op_nstricteq); |
| case op_instanceof: { |
| m_jit.link(iter->from, m_jit.label()); |
| emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); |
| emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); |
| emitGetPutArg(instruction[i + 4].u.operand, 8, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_instanceof); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 5; |
| break; |
| } |
| case op_mod: { |
| X86Assembler::JmpSrc notImm1 = iter->from; |
| X86Assembler::JmpSrc notImm2 = (++iter)->from; |
| m_jit.link((++iter)->from, m_jit.label()); |
| emitFastArithReTagImmediate(X86::eax); |
| emitFastArithReTagImmediate(X86::ecx); |
| m_jit.link(notImm1, m_jit.label()); |
| m_jit.link(notImm2, m_jit.label()); |
| emitPutArg(X86::eax, 0); |
| emitPutArg(X86::ecx, 4); |
| emitCTICall(instruction + i, i, Machine::cti_op_mod); |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 4; |
| break; |
| } |
| case op_mul: { |
| int dst = instruction[i + 1].u.operand; |
| int src1 = instruction[i + 2].u.operand; |
| int src2 = instruction[i + 3].u.operand; |
| JSValue* src1Value = getConstantImmediateNumericArg(src1); |
| JSValue* src2Value = getConstantImmediateNumericArg(src2); |
| int32_t value; |
| if (src1Value && ((value = JSImmediate::intValue(src1Value)) > 0)) { |
| m_jit.link(iter->from, m_jit.label()); |
| // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. |
| emitGetPutArg(src1, 0, X86::ecx); |
| emitGetPutArg(src2, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_mul); |
| emitPutResult(dst); |
| } else if (src2Value && ((value = JSImmediate::intValue(src2Value)) > 0)) { |
| m_jit.link(iter->from, m_jit.label()); |
| // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. |
| emitGetPutArg(src1, 0, X86::ecx); |
| emitGetPutArg(src2, 4, X86::ecx); |
| emitCTICall(instruction + i, i, Machine::cti_op_mul); |
| emitPutResult(dst); |
| } else |
| compileBinaryArithOpSlowCase(instruction + i, op_mul, iter, dst, src1, src2, OperandTypes::fromInt(instruction[i + 4].u.operand), i); |
| i += 5; |
| break; |
| } |
| |
| case op_call: |
| case op_call_eval: |
| case op_construct: { |
| int dst = instruction[i + 1].u.operand; |
| int callee = instruction[i + 2].u.operand; |
| int argCount = instruction[i + 5].u.operand; |
| |
| m_jit.link(iter->from, m_jit.label()); |
| |
| // The arguments have been set up on the hot path for op_call_eval |
| if (opcodeID != op_call_eval) |
| compileOpCallSetupArgs(instruction + i, (opcodeID == op_construct), false); |
| |
| // Fast check for JS function. |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::ecx); |
| X86Assembler::JmpSrc callLinkFailNotObject = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(m_machine->m_jsFunctionVptr), X86::ecx); |
| X86Assembler::JmpSrc callLinkFailNotJSFunction = m_jit.emitUnlinkedJne(); |
| |
| // This handles JSFunctions |
| emitCTICall(instruction + i, i, (opcodeID == op_construct) ? Machine::cti_op_construct_JSConstruct : Machine::cti_op_call_JSFunction); |
| // initialize the new call frame (pointed to by edx, after the last call), then set edi to point to it. |
| compileOpCallInitializeCallFrame(callee, argCount); |
| m_jit.movl_rr(X86::edx, X86::edi); |
| |
| // Try to link & repatch this call. |
| CallLinkInfo* info = &(m_codeBlock->callLinkInfos[callLinkInfoIndex]); |
| emitPutArgConstant(reinterpret_cast<unsigned>(info), 4); |
| m_callStructureStubCompilationInfo[callLinkInfoIndex].callReturnLocation = |
| emitCTICall(instruction + i, i, Machine::cti_vm_lazyLinkCall); |
| emitNakedCall(i, X86::eax); |
| X86Assembler::JmpSrc storeResultForFirstRun = m_jit.emitUnlinkedJmp(); |
| |
| // This is the address for the cold path *after* the first run (which tries to link the call). |
| m_callStructureStubCompilationInfo[callLinkInfoIndex].coldPathOther = m_jit.label(); |
| |
| // The arguments have been set up on the hot path for op_call_eval |
| if (opcodeID != op_call_eval) |
| compileOpCallSetupArgs(instruction + i, (opcodeID == op_construct), false); |
| |
| // Check for JSFunctions. |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::ecx); |
| X86Assembler::JmpSrc isNotObject = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(m_machine->m_jsFunctionVptr), X86::ecx); |
| X86Assembler::JmpSrc isJSFunction = m_jit.emitUnlinkedJe(); |
| |
| // This handles host functions |
| X86Assembler::JmpDst notJSFunctionlabel = m_jit.label(); |
| m_jit.link(isNotObject, notJSFunctionlabel); |
| m_jit.link(callLinkFailNotObject, notJSFunctionlabel); |
| m_jit.link(callLinkFailNotJSFunction, notJSFunctionlabel); |
| emitCTICall(instruction + i, i, ((opcodeID == op_construct) ? Machine::cti_op_construct_NotJSConstruct : Machine::cti_op_call_NotJSFunction)); |
| X86Assembler::JmpSrc wasNotJSFunction = m_jit.emitUnlinkedJmp(); |
| |
| // Next, handle JSFunctions... |
| m_jit.link(isJSFunction, m_jit.label()); |
| emitCTICall(instruction + i, i, (opcodeID == op_construct) ? Machine::cti_op_construct_JSConstruct : Machine::cti_op_call_JSFunction); |
| // initialize the new call frame (pointed to by edx, after the last call). |
| compileOpCallInitializeCallFrame(callee, argCount); |
| m_jit.movl_rr(X86::edx, X86::edi); |
| |
| // load ctiCode from the new codeBlock. |
| m_jit.movl_mr(OBJECT_OFFSET(CodeBlock, ctiCode), X86::eax, X86::eax); |
| |
| // Move the new callframe into edi. |
| m_jit.movl_rr(X86::edx, X86::edi); |
| |
| // Check the ctiCode has been generated (if not compile it now), and make the call. |
| m_jit.testl_rr(X86::eax, X86::eax); |
| X86Assembler::JmpSrc hasCode = m_jit.emitUnlinkedJne(); |
| emitCTICall(instruction + i, i, Machine::cti_vm_compile); |
| m_jit.link(hasCode, m_jit.label()); |
| |
| emitNakedCall(i, X86::eax); |
| |
| // Put the return value in dst. In the interpreter, op_ret does this. |
| X86Assembler::JmpDst storeResult = m_jit.label(); |
| m_jit.link(wasNotJSFunction, storeResult); |
| m_jit.link(storeResultForFirstRun, storeResult); |
| emitPutResult(dst); |
| |
| #if ENABLE(CODEBLOCK_SAMPLING) |
| m_jit.movl_i32m(reinterpret_cast<unsigned>(m_codeBlock), m_machine->sampler()->codeBlockSlot()); |
| #endif |
| ++callLinkInfoIndex; |
| |
| i += 7; |
| break; |
| } |
| case op_to_jsnumber: { |
| m_jit.link(iter->from, m_jit.label()); |
| m_jit.link(iter->from, m_jit.label()); |
| |
| emitPutArg(X86::eax, 0); |
| emitCTICall(instruction + i, i, Machine::cti_op_to_jsnumber); |
| |
| emitPutResult(instruction[i + 1].u.operand); |
| i += 3; |
| break; |
| } |
| |
| default: |
| ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| m_jit.link(m_jit.emitUnlinkedJmp(), m_labels[i]); |
| } |
| |
| ASSERT(propertyAccessInstructionIndex == m_codeBlock->propertyAccessInstructions.size()); |
| ASSERT(callLinkInfoIndex == m_codeBlock->callLinkInfos.size()); |
| } |
| |
| void CTI::privateCompile() |
| { |
| #if ENABLE(CODEBLOCK_SAMPLING) |
| m_jit.movl_i32m(reinterpret_cast<unsigned>(m_codeBlock), m_machine->sampler()->codeBlockSlot()); |
| #endif |
| #if ENABLE(OPCODE_SAMPLING) |
| m_jit.movl_i32m(m_machine->sampler()->encodeSample(m_codeBlock->instructions.begin()), m_machine->sampler()->sampleSlot()); |
| #endif |
| |
| // Could use a popl_m, but would need to offset the following instruction if so. |
| m_jit.popl_r(X86::ecx); |
| emitPutToCallFrameHeader(X86::ecx, RegisterFile::ReturnPC); |
| |
| X86Assembler::JmpSrc slowRegisterFileCheck; |
| X86Assembler::JmpDst afterRegisterFileCheck; |
| if (m_codeBlock->codeType == FunctionCode) { |
| // In the case of a fast linked call, we do not set this up in the caller. |
| m_jit.movl_i32m(reinterpret_cast<unsigned>(m_codeBlock), RegisterFile::CodeBlock * static_cast<int>(sizeof(Register)), X86::edi); |
| |
| emitGetCTIParam(CTI_ARGS_registerFile, X86::eax); |
| m_jit.leal_mr(m_codeBlock->numCalleeRegisters * sizeof(Register), X86::edi, X86::edx); |
| m_jit.cmpl_mr(OBJECT_OFFSET(RegisterFile, m_end), X86::eax, X86::edx); |
| slowRegisterFileCheck = m_jit.emitUnlinkedJg(); |
| afterRegisterFileCheck = m_jit.label(); |
| } |
| |
| privateCompileMainPass(); |
| privateCompileLinkPass(); |
| privateCompileSlowCases(); |
| |
| if (m_codeBlock->codeType == FunctionCode) { |
| m_jit.link(slowRegisterFileCheck, m_jit.label()); |
| emitCTICall(m_codeBlock->instructions.begin(), 0, Machine::cti_register_file_check); |
| X86Assembler::JmpSrc backToBody = m_jit.emitUnlinkedJmp(); |
| m_jit.link(backToBody, afterRegisterFileCheck); |
| } |
| |
| ASSERT(m_jmpTable.isEmpty()); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| // Translate vPC offsets into addresses in JIT generated code, for switch tables. |
| for (unsigned i = 0; i < m_switches.size(); ++i) { |
| SwitchRecord record = m_switches[i]; |
| unsigned opcodeIndex = record.m_opcodeIndex; |
| |
| if (record.m_type != SwitchRecord::String) { |
| ASSERT(record.m_type == SwitchRecord::Immediate || record.m_type == SwitchRecord::Character); |
| ASSERT(record.m_jumpTable.m_simpleJumpTable->branchOffsets.size() == record.m_jumpTable.m_simpleJumpTable->ctiOffsets.size()); |
| |
| record.m_jumpTable.m_simpleJumpTable->ctiDefault = m_jit.getRelocatedAddress(code, m_labels[opcodeIndex + 3 + record.m_defaultOffset]); |
| |
| for (unsigned j = 0; j < record.m_jumpTable.m_simpleJumpTable->branchOffsets.size(); ++j) { |
| unsigned offset = record.m_jumpTable.m_simpleJumpTable->branchOffsets[j]; |
| record.m_jumpTable.m_simpleJumpTable->ctiOffsets[j] = offset ? m_jit.getRelocatedAddress(code, m_labels[opcodeIndex + 3 + offset]) : record.m_jumpTable.m_simpleJumpTable->ctiDefault; |
| } |
| } else { |
| ASSERT(record.m_type == SwitchRecord::String); |
| |
| record.m_jumpTable.m_stringJumpTable->ctiDefault = m_jit.getRelocatedAddress(code, m_labels[opcodeIndex + 3 + record.m_defaultOffset]); |
| |
| StringJumpTable::StringOffsetTable::iterator end = record.m_jumpTable.m_stringJumpTable->offsetTable.end(); |
| for (StringJumpTable::StringOffsetTable::iterator it = record.m_jumpTable.m_stringJumpTable->offsetTable.begin(); it != end; ++it) { |
| unsigned offset = it->second.branchOffset; |
| it->second.ctiOffset = offset ? m_jit.getRelocatedAddress(code, m_labels[opcodeIndex + 3 + offset]) : record.m_jumpTable.m_stringJumpTable->ctiDefault; |
| } |
| } |
| } |
| |
| for (Vector<HandlerInfo>::iterator iter = m_codeBlock->exceptionHandlers.begin(); iter != m_codeBlock->exceptionHandlers.end(); ++iter) |
| iter->nativeCode = m_jit.getRelocatedAddress(code, m_labels[iter->target]); |
| |
| for (Vector<CallRecord>::iterator iter = m_calls.begin(); iter != m_calls.end(); ++iter) { |
| if (iter->to) |
| X86Assembler::link(code, iter->from, iter->to); |
| m_codeBlock->ctiReturnAddressVPCMap.add(m_jit.getRelocatedAddress(code, iter->from), iter->opcodeIndex); |
| } |
| |
| // Link absolute addresses for jsr |
| for (Vector<JSRInfo>::iterator iter = m_jsrSites.begin(); iter != m_jsrSites.end(); ++iter) |
| X86Assembler::linkAbsoluteAddress(code, iter->addrPosition, iter->target); |
| |
| for (unsigned i = 0; i < m_codeBlock->propertyAccessInstructions.size(); ++i) { |
| StructureStubInfo& info = m_codeBlock->propertyAccessInstructions[i]; |
| info.callReturnLocation = X86Assembler::getRelocatedAddress(code, m_propertyAccessCompilationInfo[i].callReturnLocation); |
| info.hotPathBegin = X86Assembler::getRelocatedAddress(code, m_propertyAccessCompilationInfo[i].hotPathBegin); |
| } |
| for (unsigned i = 0; i < m_codeBlock->callLinkInfos.size(); ++i) { |
| CallLinkInfo& info = m_codeBlock->callLinkInfos[i]; |
| info.callReturnLocation = X86Assembler::getRelocatedAddress(code, m_callStructureStubCompilationInfo[i].callReturnLocation); |
| info.hotPathBegin = X86Assembler::getRelocatedAddress(code, m_callStructureStubCompilationInfo[i].hotPathBegin); |
| info.hotPathOther = X86Assembler::getRelocatedAddress(code, m_callStructureStubCompilationInfo[i].hotPathOther); |
| info.coldPathOther = X86Assembler::getRelocatedAddress(code, m_callStructureStubCompilationInfo[i].coldPathOther); |
| } |
| |
| m_codeBlock->ctiCode = code; |
| } |
| |
| void CTI::privateCompileGetByIdSelf(StructureID* structureID, size_t cachedOffset, void* returnAddress) |
| { |
| // Check eax is an object of the right StructureID. |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); |
| |
| // Checks out okay! - getDirectOffset |
| m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); |
| m_jit.movl_mr(cachedOffset * sizeof(JSValue*), X86::eax, X86::eax); |
| m_jit.ret(); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| X86Assembler::link(code, failureCases1, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| X86Assembler::link(code, failureCases2, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| |
| m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; |
| |
| ctiRepatchCallByReturnAddress(returnAddress, code); |
| } |
| |
| void CTI::privateCompileGetByIdProto(StructureID* structureID, StructureID* prototypeStructureID, size_t cachedOffset, void* returnAddress) |
| { |
| #if USE(CTI_REPATCH_PIC) |
| StructureStubInfo& info = m_codeBlock->getStubInfo(returnAddress); |
| |
| // We don't want to repatch more than once - in future go to cti_op_put_by_id_generic. |
| ctiRepatchCallByReturnAddress(returnAddress, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| |
| // The prototype object definitely exists (if this stub exists the CodeBlock is referencing a StructureID that is |
| // referencing the prototype object - let's speculatively load it's table nice and early!) |
| JSObject* protoObject = asObject(structureID->prototypeForLookup(m_callFrame)); |
| PropertyStorage* protoPropertyStorage = &protoObject->m_propertyStorage; |
| m_jit.movl_mr(static_cast<void*>(protoPropertyStorage), X86::edx); |
| |
| // check eax is an object of the right StructureID. |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); |
| |
| // Check the prototype object's StructureID had not changed. |
| StructureID** protoStructureIDAddress = &(protoObject->m_structureID); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(prototypeStructureID), static_cast<void*>(protoStructureIDAddress)); |
| X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJne(); |
| |
| // Checks out okay! - getDirectOffset |
| m_jit.movl_mr(cachedOffset * sizeof(JSValue*), X86::edx, X86::ecx); |
| |
| X86Assembler::JmpSrc success = m_jit.emitUnlinkedJmp(); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| // Use the repatch information to link the failure cases back to the original slow case routine. |
| void* slowCaseBegin = reinterpret_cast<char*>(info.callReturnLocation) - repatchOffsetGetByIdSlowCaseCall; |
| X86Assembler::link(code, failureCases1, slowCaseBegin); |
| X86Assembler::link(code, failureCases2, slowCaseBegin); |
| X86Assembler::link(code, failureCases3, slowCaseBegin); |
| |
| // On success return back to the hot patch code, at a point it will perform the store to dest for us. |
| intptr_t successDest = (intptr_t)(info.hotPathBegin) + repatchOffsetGetByIdPropertyMapOffset; |
| X86Assembler::link(code, success, reinterpret_cast<void*>(successDest)); |
| |
| // Track the stub we have created so that it will be deleted later. |
| m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; |
| |
| // Finally repatch the jump to sow case back in the hot path to jump here instead. |
| // FIXME: should revert this repatching, on failure. |
| intptr_t jmpLocation = reinterpret_cast<intptr_t>(info.hotPathBegin) + repatchOffsetGetByIdBranchToSlowCase; |
| X86Assembler::repatchBranchOffset(jmpLocation, code); |
| #else |
| // The prototype object definitely exists (if this stub exists the CodeBlock is referencing a StructureID that is |
| // referencing the prototype object - let's speculatively load it's table nice and early!) |
| JSObject* protoObject = asObject(structureID->prototypeForLookup(m_callFrame)); |
| PropertyStorage* protoPropertyStorage = &protoObject->m_propertyStorage; |
| m_jit.movl_mr(static_cast<void*>(protoPropertyStorage), X86::edx); |
| |
| // check eax is an object of the right StructureID. |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); |
| |
| // Check the prototype object's StructureID had not changed. |
| StructureID** protoStructureIDAddress = &(protoObject->m_structureID); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(prototypeStructureID), static_cast<void*>(protoStructureIDAddress)); |
| X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJne(); |
| |
| // Checks out okay! - getDirectOffset |
| m_jit.movl_mr(cachedOffset * sizeof(JSValue*), X86::edx, X86::eax); |
| |
| m_jit.ret(); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| X86Assembler::link(code, failureCases1, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| X86Assembler::link(code, failureCases2, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| X86Assembler::link(code, failureCases3, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| |
| m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; |
| |
| ctiRepatchCallByReturnAddress(returnAddress, code); |
| #endif |
| } |
| |
| void CTI::privateCompileGetByIdChain(StructureID* structureID, StructureIDChain* chain, size_t count, size_t cachedOffset, void* returnAddress) |
| { |
| ASSERT(count); |
| |
| Vector<X86Assembler::JmpSrc> bucketsOfFail; |
| |
| // Check eax is an object of the right StructureID. |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| bucketsOfFail.append(m_jit.emitUnlinkedJne()); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| bucketsOfFail.append(m_jit.emitUnlinkedJne()); |
| |
| StructureID* currStructureID = structureID; |
| RefPtr<StructureID>* chainEntries = chain->head(); |
| JSObject* protoObject = 0; |
| for (unsigned i = 0; i<count; ++i) { |
| protoObject = asObject(currStructureID->prototypeForLookup(m_callFrame)); |
| currStructureID = chainEntries[i].get(); |
| |
| // Check the prototype object's StructureID had not changed. |
| StructureID** protoStructureIDAddress = &(protoObject->m_structureID); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(currStructureID), static_cast<void*>(protoStructureIDAddress)); |
| bucketsOfFail.append(m_jit.emitUnlinkedJne()); |
| } |
| ASSERT(protoObject); |
| |
| PropertyStorage* protoPropertyStorage = &protoObject->m_propertyStorage; |
| m_jit.movl_mr(static_cast<void*>(protoPropertyStorage), X86::edx); |
| m_jit.movl_mr(cachedOffset * sizeof(JSValue*), X86::edx, X86::eax); |
| m_jit.ret(); |
| |
| bucketsOfFail.append(m_jit.emitUnlinkedJmp()); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| for (unsigned i = 0; i < bucketsOfFail.size(); ++i) |
| X86Assembler::link(code, bucketsOfFail[i], reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| |
| m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; |
| |
| ctiRepatchCallByReturnAddress(returnAddress, code); |
| } |
| |
| void CTI::privateCompilePutByIdReplace(StructureID* structureID, size_t cachedOffset, void* returnAddress) |
| { |
| // check eax is an object of the right StructureID. |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); |
| |
| // checks out okay! - putDirectOffset |
| m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); |
| m_jit.movl_rm(X86::edx, cachedOffset * sizeof(JSValue*), X86::eax); |
| m_jit.ret(); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| X86Assembler::link(code, failureCases1, reinterpret_cast<void*>(Machine::cti_op_put_by_id_fail)); |
| X86Assembler::link(code, failureCases2, reinterpret_cast<void*>(Machine::cti_op_put_by_id_fail)); |
| |
| m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; |
| |
| ctiRepatchCallByReturnAddress(returnAddress, code); |
| } |
| |
| extern "C" { |
| |
| static JSObject* resizePropertyStorage(JSObject* baseObject, size_t oldSize, size_t newSize) |
| { |
| baseObject->allocatePropertyStorageInline(oldSize, newSize); |
| return baseObject; |
| } |
| |
| } |
| |
| static inline bool transitionWillNeedStorageRealloc(StructureID* oldStructureID, StructureID* newStructureID) |
| { |
| return oldStructureID->propertyStorageCapacity() != newStructureID->propertyStorageCapacity(); |
| } |
| |
| void CTI::privateCompilePutByIdTransition(StructureID* oldStructureID, StructureID* newStructureID, size_t cachedOffset, StructureIDChain* sIDC, void* returnAddress) |
| { |
| Vector<X86Assembler::JmpSrc, 16> failureCases; |
| // check eax is an object of the right StructureID. |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| failureCases.append(m_jit.emitUnlinkedJne()); |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(oldStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| failureCases.append(m_jit.emitUnlinkedJne()); |
| Vector<X86Assembler::JmpSrc> successCases; |
| |
| // ecx = baseObject |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); |
| // proto(ecx) = baseObject->structureID()->prototype() |
| m_jit.cmpl_i32m(ObjectType, OBJECT_OFFSET(StructureID, m_typeInfo) + OBJECT_OFFSET(TypeInfo, m_type), X86::ecx); |
| failureCases.append(m_jit.emitUnlinkedJne()); |
| m_jit.movl_mr(OBJECT_OFFSET(StructureID, m_prototype), X86::ecx, X86::ecx); |
| |
| // ecx = baseObject->m_structureID |
| for (RefPtr<StructureID>* it = sIDC->head(); *it; ++it) { |
| // null check the prototype |
| m_jit.cmpl_i32r(asInteger(jsNull()), X86::ecx); |
| successCases.append(m_jit.emitUnlinkedJe()); |
| |
| // Check the structure id |
| m_jit.cmpl_i32m(reinterpret_cast<uint32_t>(it->get()), OBJECT_OFFSET(JSCell, m_structureID), X86::ecx); |
| failureCases.append(m_jit.emitUnlinkedJne()); |
| |
| m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::ecx, X86::ecx); |
| m_jit.cmpl_i32m(ObjectType, OBJECT_OFFSET(StructureID, m_typeInfo) + OBJECT_OFFSET(TypeInfo, m_type), X86::ecx); |
| failureCases.append(m_jit.emitUnlinkedJne()); |
| m_jit.movl_mr(OBJECT_OFFSET(StructureID, m_prototype), X86::ecx, X86::ecx); |
| } |
| |
| failureCases.append(m_jit.emitUnlinkedJne()); |
| for (unsigned i = 0; i < successCases.size(); ++i) |
| m_jit.link(successCases[i], m_jit.label()); |
| |
| X86Assembler::JmpSrc callTarget; |
| |
| // emit a call only if storage realloc is needed |
| if (transitionWillNeedStorageRealloc(oldStructureID, newStructureID)) { |
| m_jit.pushl_r(X86::edx); |
| m_jit.pushl_i32(newStructureID->propertyStorageCapacity()); |
| m_jit.pushl_i32(oldStructureID->propertyStorageCapacity()); |
| m_jit.pushl_r(X86::eax); |
| callTarget = m_jit.emitCall(); |
| m_jit.addl_i32r(3 * sizeof(void*), X86::esp); |
| m_jit.popl_r(X86::edx); |
| } |
| |
| // Assumes m_refCount can be decremented easily, refcount decrement is safe as |
| // codeblock should ensure oldStructureID->m_refCount > 0 |
| m_jit.subl_i8m(1, reinterpret_cast<void*>(oldStructureID)); |
| m_jit.addl_i8m(1, reinterpret_cast<void*>(newStructureID)); |
| m_jit.movl_i32m(reinterpret_cast<uint32_t>(newStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); |
| |
| // write the value |
| m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); |
| m_jit.movl_rm(X86::edx, cachedOffset * sizeof(JSValue*), X86::eax); |
| |
| m_jit.ret(); |
| |
| X86Assembler::JmpSrc failureJump; |
| if (failureCases.size()) { |
| for (unsigned i = 0; i < failureCases.size(); ++i) |
| m_jit.link(failureCases[i], m_jit.label()); |
| m_jit.emitRestoreArgumentReferenceForTrampoline(); |
| failureJump = m_jit.emitUnlinkedJmp(); |
| } |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| if (failureCases.size()) |
| X86Assembler::link(code, failureJump, reinterpret_cast<void*>(Machine::cti_op_put_by_id_fail)); |
| |
| if (transitionWillNeedStorageRealloc(oldStructureID, newStructureID)) |
| X86Assembler::link(code, callTarget, reinterpret_cast<void*>(resizePropertyStorage)); |
| |
| m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; |
| |
| ctiRepatchCallByReturnAddress(returnAddress, code); |
| } |
| |
| void CTI::unlinkCall(CallLinkInfo* callLinkInfo) |
| { |
| // When the JSFunction is deleted the pointer embedded in the instruction stream will no longer be valid |
| // (and, if a new JSFunction happened to be constructed at the same location, we could get a false positive |
| // match). Reset the check so it no longer matches. |
| reinterpret_cast<void**>(callLinkInfo->hotPathBegin)[-1] = asPointer(JSImmediate::impossibleValue()); |
| } |
| |
| void CTI::linkCall(JSFunction* callee, CodeBlock* calleeCodeBlock, void* ctiCode, CallLinkInfo* callLinkInfo, int callerArgCount) |
| { |
| // Currently we only link calls with the exact number of arguments. |
| if (callerArgCount == calleeCodeBlock->numParameters) { |
| ASSERT(!callLinkInfo->isLinked()); |
| |
| calleeCodeBlock->addCaller(callLinkInfo); |
| |
| reinterpret_cast<void**>(callLinkInfo->hotPathBegin)[-1] = callee; |
| ctiRepatchCallByReturnAddress(callLinkInfo->hotPathOther, ctiCode); |
| } |
| |
| // repatch the instruction that jumps out to the cold path, so that we only try to link once. |
| void* repatchCheck = reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(callLinkInfo->hotPathBegin) + repatchOffsetOpCallCall); |
| ctiRepatchCallByReturnAddress(repatchCheck, callLinkInfo->coldPathOther); |
| } |
| |
| void* CTI::privateCompileArrayLengthTrampoline() |
| { |
| // Check eax is an array |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(m_machine->m_jsArrayVptr), X86::eax); |
| X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); |
| |
| // Checks out okay! - get the length from the storage |
| m_jit.movl_mr(OBJECT_OFFSET(JSArray, m_storage), X86::eax, X86::eax); |
| m_jit.movl_mr(OBJECT_OFFSET(ArrayStorage, m_length), X86::eax, X86::eax); |
| |
| m_jit.addl_rr(X86::eax, X86::eax); |
| X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJo(); |
| m_jit.addl_i8r(1, X86::eax); |
| |
| m_jit.ret(); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| X86Assembler::link(code, failureCases1, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| X86Assembler::link(code, failureCases2, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| X86Assembler::link(code, failureCases3, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| |
| return code; |
| } |
| |
| void* CTI::privateCompileStringLengthTrampoline() |
| { |
| // Check eax is a string |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(m_machine->m_jsStringVptr), X86::eax); |
| X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); |
| |
| // Checks out okay! - get the length from the Ustring. |
| m_jit.movl_mr(OBJECT_OFFSET(JSString, m_value) + OBJECT_OFFSET(UString, m_rep), X86::eax, X86::eax); |
| m_jit.movl_mr(OBJECT_OFFSET(UString::Rep, len), X86::eax, X86::eax); |
| |
| m_jit.addl_rr(X86::eax, X86::eax); |
| X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJo(); |
| m_jit.addl_i8r(1, X86::eax); |
| |
| m_jit.ret(); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| X86Assembler::link(code, failureCases1, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| X86Assembler::link(code, failureCases2, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| X86Assembler::link(code, failureCases3, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| |
| return code; |
| } |
| |
| void CTI::patchGetByIdSelf(CodeBlock* codeBlock, StructureID* structureID, size_t cachedOffset, void* returnAddress) |
| { |
| StructureStubInfo& info = codeBlock->getStubInfo(returnAddress); |
| |
| // We don't want to repatch more than once - in future go to cti_op_get_by_id_generic. |
| // Should probably go to Machine::cti_op_get_by_id_fail, but that doesn't do anything interesting right now. |
| ctiRepatchCallByReturnAddress(returnAddress, reinterpret_cast<void*>(Machine::cti_op_get_by_id_generic)); |
| |
| // Repatch the offset into the propoerty map to load from, then repatch the StructureID to look for. |
| X86Assembler::repatchDisplacement(reinterpret_cast<intptr_t>(info.hotPathBegin) + repatchOffsetGetByIdPropertyMapOffset, cachedOffset * sizeof(JSValue*)); |
| X86Assembler::repatchImmediate(reinterpret_cast<intptr_t>(info.hotPathBegin) + repatchOffsetGetByIdStructureID, reinterpret_cast<uint32_t>(structureID)); |
| } |
| |
| void CTI::patchPutByIdReplace(CodeBlock* codeBlock, StructureID* structureID, size_t cachedOffset, void* returnAddress) |
| { |
| StructureStubInfo& info = codeBlock->getStubInfo(returnAddress); |
| |
| // We don't want to repatch more than once - in future go to cti_op_put_by_id_generic. |
| // Should probably go to Machine::cti_op_put_by_id_fail, but that doesn't do anything interesting right now. |
| ctiRepatchCallByReturnAddress(returnAddress, reinterpret_cast<void*>(Machine::cti_op_put_by_id_generic)); |
| |
| // Repatch the offset into the propoerty map to load from, then repatch the StructureID to look for. |
| X86Assembler::repatchDisplacement(reinterpret_cast<intptr_t>(info.hotPathBegin) + repatchOffsetPutByIdPropertyMapOffset, cachedOffset * sizeof(JSValue*)); |
| X86Assembler::repatchImmediate(reinterpret_cast<intptr_t>(info.hotPathBegin) + repatchOffsetPutByIdStructureID, reinterpret_cast<uint32_t>(structureID)); |
| } |
| |
| void CTI::privateCompilePatchGetArrayLength(void* returnAddress) |
| { |
| StructureStubInfo& info = m_codeBlock->getStubInfo(returnAddress); |
| |
| // We don't want to repatch more than once - in future go to cti_op_put_by_id_generic. |
| ctiRepatchCallByReturnAddress(returnAddress, reinterpret_cast<void*>(Machine::cti_op_get_by_id_fail)); |
| |
| // Check eax is an array |
| m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); |
| X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); |
| m_jit.cmpl_i32m(reinterpret_cast<unsigned>(m_machine->m_jsArrayVptr), X86::eax); |
| X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); |
| |
| // Checks out okay! - get the length from the storage |
| m_jit.movl_mr(OBJECT_OFFSET(JSArray, m_storage), X86::eax, X86::ecx); |
| m_jit.movl_mr(OBJECT_OFFSET(ArrayStorage, m_length), X86::ecx, X86::ecx); |
| |
| m_jit.addl_rr(X86::ecx, X86::ecx); |
| X86Assembler::JmpSrc failureClobberedECX = m_jit.emitUnlinkedJo(); |
| m_jit.addl_i8r(1, X86::ecx); |
| |
| X86Assembler::JmpSrc success = m_jit.emitUnlinkedJmp(); |
| |
| m_jit.link(failureClobberedECX, m_jit.label()); |
| m_jit.emitRestoreArgumentReference(); |
| X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJmp(); |
| |
| void* code = m_jit.copy(); |
| ASSERT(code); |
| |
| // Use the repatch information to link the failure cases back to the original slow case routine. |
| void* slowCaseBegin = reinterpret_cast<char*>(info.callReturnLocation) - repatchOffsetGetByIdSlowCaseCall; |
| X86Assembler::link(code, failureCases1, slowCaseBegin); |
| X86Assembler::link(code, failureCases2, slowCaseBegin); |
| X86Assembler::link(code, failureCases3, slowCaseBegin); |
| |
| // On success return back to the hot patch code, at a point it will perform the store to dest for us. |
| intptr_t successDest = (intptr_t)(info.hotPathBegin) + repatchOffsetGetByIdPropertyMapOffset; |
| X86Assembler::link(code, success, reinterpret_cast<void*>(successDest)); |
| |
| // Track the stub we have created so that it will be deleted later. |
| m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; |
| |
| // Finally repatch the jump to sow case back in the hot path to jump here instead. |
| // FIXME: should revert this repatching, on failure. |
| intptr_t jmpLocation = reinterpret_cast<intptr_t>(info.hotPathBegin) + repatchOffsetGetByIdBranchToSlowCase; |
| X86Assembler::repatchBranchOffset(jmpLocation, code); |
| } |
| |
| void CTI::emitGetVariableObjectRegister(X86Assembler::RegisterID variableObject, int index, X86Assembler::RegisterID dst) |
| { |
| m_jit.movl_mr(JSVariableObject::offsetOf_d(), variableObject, dst); |
| m_jit.movl_mr(JSVariableObject::offsetOf_Data_registers(), dst, dst); |
| m_jit.movl_mr(index * sizeof(Register), dst, dst); |
| } |
| |
| void CTI::emitPutVariableObjectRegister(X86Assembler::RegisterID src, X86Assembler::RegisterID variableObject, int index) |
| { |
| m_jit.movl_mr(JSVariableObject::offsetOf_d(), variableObject, variableObject); |
| m_jit.movl_mr(JSVariableObject::offsetOf_Data_registers(), variableObject, variableObject); |
| m_jit.movl_rm(src, index * sizeof(Register), variableObject); |
| } |
| |
| #if ENABLE(WREC) |
| |
| void* CTI::compileRegExp(Machine* machine, const UString& pattern, unsigned* numSubpatterns_ptr, const char** error_ptr, bool ignoreCase, bool multiline) |
| { |
| // TODO: better error messages |
| if (pattern.size() > MaxPatternSize) { |
| *error_ptr = "regular expression too large"; |
| return 0; |
| } |
| |
| X86Assembler jit(machine->jitCodeBuffer()); |
| WRECParser parser(pattern, ignoreCase, multiline, jit); |
| |
| jit.emitConvertToFastCall(); |
| // (0) Setup: |
| // Preserve regs & initialize outputRegister. |
| jit.pushl_r(WRECGenerator::outputRegister); |
| jit.pushl_r(WRECGenerator::currentValueRegister); |
| // push pos onto the stack, both to preserve and as a parameter available to parseDisjunction |
| jit.pushl_r(WRECGenerator::currentPositionRegister); |
| // load output pointer |
| jit.movl_mr(16 |
| #if COMPILER(MSVC) |
| + 3 * sizeof(void*) |
| #endif |
| , X86::esp, WRECGenerator::outputRegister); |
| |
| // restart point on match fail. |
| WRECGenerator::JmpDst nextLabel = jit.label(); |
| |
| // (1) Parse Disjunction: |
| |
| // Parsing the disjunction should fully consume the pattern. |
| JmpSrcVector failures; |
| parser.parseDisjunction(failures); |
| if (parser.isEndOfPattern()) { |
| parser.m_err = WRECParser::Error_malformedPattern; |
| } |
| if (parser.m_err) { |
| // TODO: better error messages |
| *error_ptr = "TODO: better error messages"; |
| return 0; |
| } |
| |
| // (2) Success: |
| // Set return value & pop registers from the stack. |
| |
| jit.testl_rr(WRECGenerator::outputRegister, WRECGenerator::outputRegister); |
| WRECGenerator::JmpSrc noOutput = jit.emitUnlinkedJe(); |
| |
| jit.movl_rm(WRECGenerator::currentPositionRegister, 4, WRECGenerator::outputRegister); |
| jit.popl_r(X86::eax); |
| jit.movl_rm(X86::eax, WRECGenerator::outputRegister); |
| jit.popl_r(WRECGenerator::currentValueRegister); |
| jit.popl_r(WRECGenerator::outputRegister); |
| jit.ret(); |
| |
| jit.link(noOutput, jit.label()); |
| |
| jit.popl_r(X86::eax); |
| jit.movl_rm(X86::eax, WRECGenerator::outputRegister); |
| jit.popl_r(WRECGenerator::currentValueRegister); |
| jit.popl_r(WRECGenerator::outputRegister); |
| jit.ret(); |
| |
| // (3) Failure: |
| // All fails link to here. Progress the start point & if it is within scope, loop. |
| // Otherwise, return fail value. |
| WRECGenerator::JmpDst here = jit.label(); |
| for (unsigned i = 0; i < failures.size(); ++i) |
| jit.link(failures[i], here); |
| failures.clear(); |
| |
| jit.movl_mr(X86::esp, WRECGenerator::currentPositionRegister); |
| jit.addl_i8r(1, WRECGenerator::currentPositionRegister); |
| jit.movl_rm(WRECGenerator::currentPositionRegister, X86::esp); |
| jit.cmpl_rr(WRECGenerator::lengthRegister, WRECGenerator::currentPositionRegister); |
| jit.link(jit.emitUnlinkedJle(), nextLabel); |
| |
| jit.addl_i8r(4, X86::esp); |
| |
| jit.movl_i32r(-1, X86::eax); |
| jit.popl_r(WRECGenerator::currentValueRegister); |
| jit.popl_r(WRECGenerator::outputRegister); |
| jit.ret(); |
| |
| *numSubpatterns_ptr = parser.m_numSubpatterns; |
| |
| void* code = jit.copy(); |
| ASSERT(code); |
| return code; |
| } |
| |
| #endif // ENABLE(WREC) |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(CTI) |