| /* |
| * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. |
| * Copyright (C) 2006 Alexey Proskuryakov (ap@webkit.org) |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| * |
| */ |
| |
| #ifndef JSImmediate_h |
| #define JSImmediate_h |
| |
| #include <wtf/Platform.h> |
| |
| #if !USE(JSVALUE32_64) |
| |
| #include <wtf/Assertions.h> |
| #include <wtf/AlwaysInline.h> |
| #include <wtf/MathExtras.h> |
| #include <wtf/StdLibExtras.h> |
| #include "JSValue.h" |
| #include <limits> |
| #include <limits.h> |
| #include <stdarg.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| |
| namespace JSC { |
| |
| class ExecState; |
| class JSCell; |
| class JSFastMath; |
| class JSGlobalData; |
| class JSObject; |
| class UString; |
| |
| #if USE(JSVALUE64) |
| inline intptr_t reinterpretDoubleToIntptr(double value) |
| { |
| return WTF::bitwise_cast<intptr_t>(value); |
| } |
| |
| inline double reinterpretIntptrToDouble(intptr_t value) |
| { |
| return WTF::bitwise_cast<double>(value); |
| } |
| #endif |
| |
| /* |
| * A JSValue* is either a pointer to a cell (a heap-allocated object) or an immediate (a type-tagged |
| * value masquerading as a pointer). The low two bits in a JSValue* are available for type tagging |
| * because allocator alignment guarantees they will be 00 in cell pointers. |
| * |
| * For example, on a 32 bit system: |
| * |
| * JSCell*: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 00 |
| * [ high 30 bits: pointer address ] [ low 2 bits -- always 0 ] |
| * JSImmediate: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX TT |
| * [ high 30 bits: 'payload' ] [ low 2 bits -- tag ] |
| * |
| * Where the bottom two bits are non-zero they either indicate that the immediate is a 31 bit signed |
| * integer, or they mark the value as being an immediate of a type other than integer, with a secondary |
| * tag used to indicate the exact type. |
| * |
| * Where the lowest bit is set (TT is equal to 01 or 11) the high 31 bits form a 31 bit signed int value. |
| * Where TT is equal to 10 this indicates this is a type of immediate other than an integer, and the next |
| * two bits will form an extended tag. |
| * |
| * 31 bit signed int: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X1 |
| * [ high 30 bits of the value ] [ high bit part of value ] |
| * Other: YYYYYYYYYYYYYYYYYYYYYYYYYYYY ZZ 10 |
| * [ extended 'payload' ] [ extended tag ] [ tag 'other' ] |
| * |
| * Where the first bit of the extended tag is set this flags the value as being a boolean, and the following |
| * bit would flag the value as undefined. If neither bits are set, the value is null. |
| * |
| * Other: YYYYYYYYYYYYYYYYYYYYYYYYYYYY UB 10 |
| * [ extended 'payload' ] [ undefined | bool ] [ tag 'other' ] |
| * |
| * For boolean value the lowest bit in the payload holds the value of the bool, all remaining bits are zero. |
| * For undefined or null immediates the payload is zero. |
| * |
| * Boolean: 000000000000000000000000000V 01 10 |
| * [ boolean value ] [ bool ] [ tag 'other' ] |
| * Undefined: 0000000000000000000000000000 10 10 |
| * [ zero ] [ undefined ] [ tag 'other' ] |
| * Null: 0000000000000000000000000000 00 10 |
| * [ zero ] [ zero ] [ tag 'other' ] |
| */ |
| |
| /* |
| * On 64-bit platforms, we support an alternative encoding form for immediates, if |
| * USE(JSVALUE64) is defined. When this format is used, double precision |
| * floating point values may also be encoded as JSImmediates. |
| * |
| * The encoding makes use of unused NaN space in the IEEE754 representation. Any value |
| * with the top 13 bits set represents a QNaN (with the sign bit set). QNaN values |
| * can encode a 51-bit payload. Hardware produced and C-library payloads typically |
| * have a payload of zero. We assume that non-zero payloads are available to encode |
| * pointer and integer values. Since any 64-bit bit pattern where the top 15 bits are |
| * all set represents a NaN with a non-zero payload, we can use this space in the NaN |
| * ranges to encode other values (however there are also other ranges of NaN space that |
| * could have been selected). This range of NaN space is represented by 64-bit numbers |
| * begining with the 16-bit hex patterns 0xFFFE and 0xFFFF - we rely on the fact that no |
| * valid double-precision numbers will begin fall in these ranges. |
| * |
| * The scheme we have implemented encodes double precision values by adding 2^48 to the |
| * 64-bit integer representation of the number. After this manipulation, no encoded |
| * double-precision value will begin with the pattern 0x0000 or 0xFFFF. |
| * |
| * The top 16-bits denote the type of the encoded JSImmediate: |
| * |
| * Pointer: 0000:PPPP:PPPP:PPPP |
| * 0001:****:****:**** |
| * Double:{ ... |
| * FFFE:****:****:**** |
| * Integer: FFFF:0000:IIII:IIII |
| * |
| * 32-bit signed integers are marked with the 16-bit tag 0xFFFF. The tag 0x0000 |
| * denotes a pointer, or another form of tagged immediate. Boolean, null and undefined |
| * values are encoded in the same manner as the default format. |
| */ |
| |
| class JSImmediate { |
| private: |
| friend class JIT; |
| friend class JSValue; |
| friend class JSFastMath; |
| friend JSValue jsNumber(ExecState* exec, double d); |
| friend JSValue jsNumber(ExecState*, char i); |
| friend JSValue jsNumber(ExecState*, unsigned char i); |
| friend JSValue jsNumber(ExecState*, short i); |
| friend JSValue jsNumber(ExecState*, unsigned short i); |
| friend JSValue jsNumber(ExecState* exec, int i); |
| friend JSValue jsNumber(ExecState* exec, unsigned i); |
| friend JSValue jsNumber(ExecState* exec, long i); |
| friend JSValue jsNumber(ExecState* exec, unsigned long i); |
| friend JSValue jsNumber(ExecState* exec, long long i); |
| friend JSValue jsNumber(ExecState* exec, unsigned long long i); |
| friend JSValue jsNumber(JSGlobalData* globalData, double d); |
| friend JSValue jsNumber(JSGlobalData* globalData, short i); |
| friend JSValue jsNumber(JSGlobalData* globalData, unsigned short i); |
| friend JSValue jsNumber(JSGlobalData* globalData, int i); |
| friend JSValue jsNumber(JSGlobalData* globalData, unsigned i); |
| friend JSValue jsNumber(JSGlobalData* globalData, long i); |
| friend JSValue jsNumber(JSGlobalData* globalData, unsigned long i); |
| friend JSValue jsNumber(JSGlobalData* globalData, long long i); |
| friend JSValue jsNumber(JSGlobalData* globalData, unsigned long long i); |
| |
| #if USE(JSVALUE64) |
| // If all bits in the mask are set, this indicates an integer number, |
| // if any but not all are set this value is a double precision number. |
| static const intptr_t TagTypeNumber = 0xffff000000000000ll; |
| // This value is 2^48, used to encode doubles such that the encoded value will begin |
| // with a 16-bit pattern within the range 0x0001..0xFFFE. |
| static const intptr_t DoubleEncodeOffset = 0x1000000000000ll; |
| #else |
| static const intptr_t TagTypeNumber = 0x1; // bottom bit set indicates integer, this dominates the following bit |
| #endif |
| static const intptr_t TagBitTypeOther = 0x2; // second bit set indicates immediate other than an integer |
| static const intptr_t TagMask = TagTypeNumber | TagBitTypeOther; |
| |
| static const intptr_t ExtendedTagMask = 0xC; // extended tag holds a further two bits |
| static const intptr_t ExtendedTagBitBool = 0x4; |
| static const intptr_t ExtendedTagBitUndefined = 0x8; |
| |
| static const intptr_t FullTagTypeMask = TagMask | ExtendedTagMask; |
| static const intptr_t FullTagTypeBool = TagBitTypeOther | ExtendedTagBitBool; |
| static const intptr_t FullTagTypeUndefined = TagBitTypeOther | ExtendedTagBitUndefined; |
| static const intptr_t FullTagTypeNull = TagBitTypeOther; |
| |
| #if USE(JSVALUE64) |
| static const int32_t IntegerPayloadShift = 0; |
| #else |
| static const int32_t IntegerPayloadShift = 1; |
| #endif |
| static const int32_t ExtendedPayloadShift = 4; |
| |
| static const intptr_t ExtendedPayloadBitBoolValue = 1 << ExtendedPayloadShift; |
| |
| static const int32_t signBit = 0x80000000; |
| |
| static ALWAYS_INLINE bool isImmediate(JSValue v) |
| { |
| return rawValue(v) & TagMask; |
| } |
| |
| static ALWAYS_INLINE bool isNumber(JSValue v) |
| { |
| return rawValue(v) & TagTypeNumber; |
| } |
| |
| static ALWAYS_INLINE bool isIntegerNumber(JSValue v) |
| { |
| #if USE(JSVALUE64) |
| return (rawValue(v) & TagTypeNumber) == TagTypeNumber; |
| #else |
| return isNumber(v); |
| #endif |
| } |
| |
| #if USE(JSVALUE64) |
| static ALWAYS_INLINE bool isDouble(JSValue v) |
| { |
| return isNumber(v) && !isIntegerNumber(v); |
| } |
| #endif |
| |
| static ALWAYS_INLINE bool isPositiveIntegerNumber(JSValue v) |
| { |
| // A single mask to check for the sign bit and the number tag all at once. |
| return (rawValue(v) & (signBit | TagTypeNumber)) == TagTypeNumber; |
| } |
| |
| static ALWAYS_INLINE bool isBoolean(JSValue v) |
| { |
| return (rawValue(v) & FullTagTypeMask) == FullTagTypeBool; |
| } |
| |
| static ALWAYS_INLINE bool isUndefinedOrNull(JSValue v) |
| { |
| // Undefined and null share the same value, bar the 'undefined' bit in the extended tag. |
| return (rawValue(v) & ~ExtendedTagBitUndefined) == FullTagTypeNull; |
| } |
| |
| static JSValue from(char); |
| static JSValue from(signed char); |
| static JSValue from(unsigned char); |
| static JSValue from(short); |
| static JSValue from(unsigned short); |
| static JSValue from(int); |
| static JSValue from(unsigned); |
| static JSValue from(long); |
| static JSValue from(unsigned long); |
| static JSValue from(long long); |
| static JSValue from(unsigned long long); |
| static JSValue from(double); |
| |
| static ALWAYS_INLINE bool isEitherImmediate(JSValue v1, JSValue v2) |
| { |
| return (rawValue(v1) | rawValue(v2)) & TagMask; |
| } |
| |
| static ALWAYS_INLINE bool areBothImmediate(JSValue v1, JSValue v2) |
| { |
| return isImmediate(v1) & isImmediate(v2); |
| } |
| |
| static ALWAYS_INLINE bool areBothImmediateIntegerNumbers(JSValue v1, JSValue v2) |
| { |
| #if USE(JSVALUE64) |
| return (rawValue(v1) & rawValue(v2) & TagTypeNumber) == TagTypeNumber; |
| #else |
| return rawValue(v1) & rawValue(v2) & TagTypeNumber; |
| #endif |
| } |
| |
| static double toDouble(JSValue); |
| static bool toBoolean(JSValue); |
| |
| static bool getUInt32(JSValue, uint32_t&); |
| static bool getTruncatedInt32(JSValue, int32_t&); |
| static bool getTruncatedUInt32(JSValue, uint32_t&); |
| |
| static int32_t getTruncatedInt32(JSValue); |
| static uint32_t getTruncatedUInt32(JSValue); |
| |
| static JSValue trueImmediate(); |
| static JSValue falseImmediate(); |
| static JSValue undefinedImmediate(); |
| static JSValue nullImmediate(); |
| static JSValue zeroImmediate(); |
| static JSValue oneImmediate(); |
| |
| private: |
| #if USE(JSVALUE64) |
| static const int minImmediateInt = ((-INT_MAX) - 1); |
| static const int maxImmediateInt = INT_MAX; |
| #else |
| static const int minImmediateInt = ((-INT_MAX) - 1) >> IntegerPayloadShift; |
| static const int maxImmediateInt = INT_MAX >> IntegerPayloadShift; |
| #endif |
| static const unsigned maxImmediateUInt = maxImmediateInt; |
| |
| static ALWAYS_INLINE JSValue makeValue(intptr_t integer) |
| { |
| return JSValue::makeImmediate(integer); |
| } |
| |
| // With USE(JSVALUE64) we want the argument to be zero extended, so the |
| // integer doesn't interfere with the tag bits in the upper word. In the default encoding, |
| // if intptr_t id larger then int32_t we sign extend the value through the upper word. |
| #if USE(JSVALUE64) |
| static ALWAYS_INLINE JSValue makeInt(uint32_t value) |
| #else |
| static ALWAYS_INLINE JSValue makeInt(int32_t value) |
| #endif |
| { |
| return makeValue((static_cast<intptr_t>(value) << IntegerPayloadShift) | TagTypeNumber); |
| } |
| |
| #if USE(JSVALUE64) |
| static ALWAYS_INLINE JSValue makeDouble(double value) |
| { |
| return makeValue(reinterpretDoubleToIntptr(value) + DoubleEncodeOffset); |
| } |
| #endif |
| |
| static ALWAYS_INLINE JSValue makeBool(bool b) |
| { |
| return makeValue((static_cast<intptr_t>(b) << ExtendedPayloadShift) | FullTagTypeBool); |
| } |
| |
| static ALWAYS_INLINE JSValue makeUndefined() |
| { |
| return makeValue(FullTagTypeUndefined); |
| } |
| |
| static ALWAYS_INLINE JSValue makeNull() |
| { |
| return makeValue(FullTagTypeNull); |
| } |
| |
| template<typename T> |
| static JSValue fromNumberOutsideIntegerRange(T); |
| |
| #if USE(JSVALUE64) |
| static ALWAYS_INLINE double doubleValue(JSValue v) |
| { |
| return reinterpretIntptrToDouble(rawValue(v) - DoubleEncodeOffset); |
| } |
| #endif |
| |
| static ALWAYS_INLINE int32_t intValue(JSValue v) |
| { |
| return static_cast<int32_t>(rawValue(v) >> IntegerPayloadShift); |
| } |
| |
| static ALWAYS_INLINE uint32_t uintValue(JSValue v) |
| { |
| return static_cast<uint32_t>(rawValue(v) >> IntegerPayloadShift); |
| } |
| |
| static ALWAYS_INLINE bool boolValue(JSValue v) |
| { |
| return rawValue(v) & ExtendedPayloadBitBoolValue; |
| } |
| |
| static ALWAYS_INLINE intptr_t rawValue(JSValue v) |
| { |
| return v.immediateValue(); |
| } |
| }; |
| |
| ALWAYS_INLINE JSValue JSImmediate::trueImmediate() { return makeBool(true); } |
| ALWAYS_INLINE JSValue JSImmediate::falseImmediate() { return makeBool(false); } |
| ALWAYS_INLINE JSValue JSImmediate::undefinedImmediate() { return makeUndefined(); } |
| ALWAYS_INLINE JSValue JSImmediate::nullImmediate() { return makeNull(); } |
| ALWAYS_INLINE JSValue JSImmediate::zeroImmediate() { return makeInt(0); } |
| ALWAYS_INLINE JSValue JSImmediate::oneImmediate() { return makeInt(1); } |
| |
| #if USE(JSVALUE64) |
| inline bool doubleToBoolean(double value) |
| { |
| return value < 0.0 || value > 0.0; |
| } |
| |
| ALWAYS_INLINE bool JSImmediate::toBoolean(JSValue v) |
| { |
| ASSERT(isImmediate(v)); |
| return isNumber(v) ? isIntegerNumber(v) ? v != zeroImmediate() |
| : doubleToBoolean(doubleValue(v)) : v == trueImmediate(); |
| } |
| #else |
| ALWAYS_INLINE bool JSImmediate::toBoolean(JSValue v) |
| { |
| ASSERT(isImmediate(v)); |
| return isIntegerNumber(v) ? v != zeroImmediate() : v == trueImmediate(); |
| } |
| #endif |
| |
| ALWAYS_INLINE uint32_t JSImmediate::getTruncatedUInt32(JSValue v) |
| { |
| // FIXME: should probably be asserting isPositiveIntegerNumber here. |
| ASSERT(isIntegerNumber(v)); |
| return intValue(v); |
| } |
| |
| #if USE(JSVALUE64) |
| template<typename T> |
| inline JSValue JSImmediate::fromNumberOutsideIntegerRange(T value) |
| { |
| return makeDouble(static_cast<double>(value)); |
| } |
| #else |
| template<typename T> |
| inline JSValue JSImmediate::fromNumberOutsideIntegerRange(T) |
| { |
| return JSValue(); |
| } |
| #endif |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(char i) |
| { |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(signed char i) |
| { |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(unsigned char i) |
| { |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(short i) |
| { |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(unsigned short i) |
| { |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(int i) |
| { |
| #if !USE(JSVALUE64) |
| if ((i < minImmediateInt) | (i > maxImmediateInt)) |
| return fromNumberOutsideIntegerRange(i); |
| #endif |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(unsigned i) |
| { |
| if (i > maxImmediateUInt) |
| return fromNumberOutsideIntegerRange(i); |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(long i) |
| { |
| if ((i < minImmediateInt) | (i > maxImmediateInt)) |
| return fromNumberOutsideIntegerRange(i); |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(unsigned long i) |
| { |
| if (i > maxImmediateUInt) |
| return fromNumberOutsideIntegerRange(i); |
| return makeInt(i); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(long long i) |
| { |
| if ((i < minImmediateInt) | (i > maxImmediateInt)) |
| return JSValue(); |
| return makeInt(static_cast<intptr_t>(i)); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(unsigned long long i) |
| { |
| if (i > maxImmediateUInt) |
| return fromNumberOutsideIntegerRange(i); |
| return makeInt(static_cast<intptr_t>(i)); |
| } |
| |
| ALWAYS_INLINE JSValue JSImmediate::from(double d) |
| { |
| const int intVal = static_cast<int>(d); |
| |
| // Check for data loss from conversion to int. |
| if (intVal != d || (!intVal && signbit(d))) |
| return fromNumberOutsideIntegerRange(d); |
| |
| return from(intVal); |
| } |
| |
| ALWAYS_INLINE int32_t JSImmediate::getTruncatedInt32(JSValue v) |
| { |
| ASSERT(isIntegerNumber(v)); |
| return intValue(v); |
| } |
| |
| ALWAYS_INLINE double JSImmediate::toDouble(JSValue v) |
| { |
| ASSERT(isImmediate(v)); |
| |
| if (isIntegerNumber(v)) |
| return intValue(v); |
| |
| #if USE(JSVALUE64) |
| if (isNumber(v)) { |
| ASSERT(isDouble(v)); |
| return doubleValue(v); |
| } |
| #else |
| ASSERT(!isNumber(v)); |
| #endif |
| |
| if (rawValue(v) == FullTagTypeUndefined) |
| return nonInlineNaN(); |
| |
| ASSERT(JSImmediate::isBoolean(v) || (v == JSImmediate::nullImmediate())); |
| return rawValue(v) >> ExtendedPayloadShift; |
| } |
| |
| ALWAYS_INLINE bool JSImmediate::getUInt32(JSValue v, uint32_t& i) |
| { |
| i = uintValue(v); |
| return isPositiveIntegerNumber(v); |
| } |
| |
| ALWAYS_INLINE bool JSImmediate::getTruncatedInt32(JSValue v, int32_t& i) |
| { |
| i = intValue(v); |
| return isIntegerNumber(v); |
| } |
| |
| ALWAYS_INLINE bool JSImmediate::getTruncatedUInt32(JSValue v, uint32_t& i) |
| { |
| return getUInt32(v, i); |
| } |
| |
| inline JSValue::JSValue(JSNullTag) |
| { |
| *this = JSImmediate::nullImmediate(); |
| } |
| |
| inline JSValue::JSValue(JSUndefinedTag) |
| { |
| *this = JSImmediate::undefinedImmediate(); |
| } |
| |
| inline JSValue::JSValue(JSTrueTag) |
| { |
| *this = JSImmediate::trueImmediate(); |
| } |
| |
| inline JSValue::JSValue(JSFalseTag) |
| { |
| *this = JSImmediate::falseImmediate(); |
| } |
| |
| inline bool JSValue::isUndefinedOrNull() const |
| { |
| return JSImmediate::isUndefinedOrNull(asValue()); |
| } |
| |
| inline bool JSValue::isBoolean() const |
| { |
| return JSImmediate::isBoolean(asValue()); |
| } |
| |
| inline bool JSValue::isTrue() const |
| { |
| return asValue() == JSImmediate::trueImmediate(); |
| } |
| |
| inline bool JSValue::isFalse() const |
| { |
| return asValue() == JSImmediate::falseImmediate(); |
| } |
| |
| inline bool JSValue::getBoolean(bool& v) const |
| { |
| if (JSImmediate::isBoolean(asValue())) { |
| v = JSImmediate::toBoolean(asValue()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| inline bool JSValue::getBoolean() const |
| { |
| return asValue() == jsBoolean(true); |
| } |
| |
| inline bool JSValue::isCell() const |
| { |
| return !JSImmediate::isImmediate(asValue()); |
| } |
| |
| inline bool JSValue::isInt32() const |
| { |
| return JSImmediate::isIntegerNumber(asValue()); |
| } |
| |
| inline int32_t JSValue::asInt32() const |
| { |
| ASSERT(isInt32()); |
| return JSImmediate::getTruncatedInt32(asValue()); |
| } |
| |
| inline bool JSValue::isUInt32() const |
| { |
| return JSImmediate::isPositiveIntegerNumber(asValue()); |
| } |
| |
| inline uint32_t JSValue::asUInt32() const |
| { |
| ASSERT(isUInt32()); |
| return JSImmediate::getTruncatedUInt32(asValue()); |
| } |
| |
| class JSFastMath { |
| public: |
| static ALWAYS_INLINE bool canDoFastBitwiseOperations(JSValue v1, JSValue v2) |
| { |
| return JSImmediate::areBothImmediateIntegerNumbers(v1, v2); |
| } |
| |
| static ALWAYS_INLINE JSValue equal(JSValue v1, JSValue v2) |
| { |
| ASSERT(canDoFastBitwiseOperations(v1, v2)); |
| return jsBoolean(v1 == v2); |
| } |
| |
| static ALWAYS_INLINE JSValue notEqual(JSValue v1, JSValue v2) |
| { |
| ASSERT(canDoFastBitwiseOperations(v1, v2)); |
| return jsBoolean(v1 != v2); |
| } |
| |
| static ALWAYS_INLINE JSValue andImmediateNumbers(JSValue v1, JSValue v2) |
| { |
| ASSERT(canDoFastBitwiseOperations(v1, v2)); |
| return JSImmediate::makeValue(JSImmediate::rawValue(v1) & JSImmediate::rawValue(v2)); |
| } |
| |
| static ALWAYS_INLINE JSValue xorImmediateNumbers(JSValue v1, JSValue v2) |
| { |
| ASSERT(canDoFastBitwiseOperations(v1, v2)); |
| return JSImmediate::makeValue((JSImmediate::rawValue(v1) ^ JSImmediate::rawValue(v2)) | JSImmediate::TagTypeNumber); |
| } |
| |
| static ALWAYS_INLINE JSValue orImmediateNumbers(JSValue v1, JSValue v2) |
| { |
| ASSERT(canDoFastBitwiseOperations(v1, v2)); |
| return JSImmediate::makeValue(JSImmediate::rawValue(v1) | JSImmediate::rawValue(v2)); |
| } |
| |
| static ALWAYS_INLINE bool canDoFastRshift(JSValue v1, JSValue v2) |
| { |
| return JSImmediate::areBothImmediateIntegerNumbers(v1, v2); |
| } |
| |
| static ALWAYS_INLINE bool canDoFastUrshift(JSValue v1, JSValue v2) |
| { |
| return JSImmediate::areBothImmediateIntegerNumbers(v1, v2) && !(JSImmediate::rawValue(v1) & JSImmediate::signBit); |
| } |
| |
| static ALWAYS_INLINE JSValue rightShiftImmediateNumbers(JSValue val, JSValue shift) |
| { |
| ASSERT(canDoFastRshift(val, shift) || canDoFastUrshift(val, shift)); |
| #if USE(JSVALUE64) |
| return JSImmediate::makeValue(static_cast<intptr_t>(static_cast<uint32_t>(static_cast<int32_t>(JSImmediate::rawValue(val)) >> ((JSImmediate::rawValue(shift) >> JSImmediate::IntegerPayloadShift) & 0x1f))) | JSImmediate::TagTypeNumber); |
| #else |
| return JSImmediate::makeValue((JSImmediate::rawValue(val) >> ((JSImmediate::rawValue(shift) >> JSImmediate::IntegerPayloadShift) & 0x1f)) | JSImmediate::TagTypeNumber); |
| #endif |
| } |
| |
| static ALWAYS_INLINE bool canDoFastAdditiveOperations(JSValue v) |
| { |
| // Number is non-negative and an operation involving two of these can't overflow. |
| // Checking for allowed negative numbers takes more time than it's worth on SunSpider. |
| return (JSImmediate::rawValue(v) & (JSImmediate::TagTypeNumber + (JSImmediate::signBit | (JSImmediate::signBit >> 1)))) == JSImmediate::TagTypeNumber; |
| } |
| |
| static ALWAYS_INLINE bool canDoFastAdditiveOperations(JSValue v1, JSValue v2) |
| { |
| // Number is non-negative and an operation involving two of these can't overflow. |
| // Checking for allowed negative numbers takes more time than it's worth on SunSpider. |
| return canDoFastAdditiveOperations(v1) && canDoFastAdditiveOperations(v2); |
| } |
| |
| static ALWAYS_INLINE JSValue addImmediateNumbers(JSValue v1, JSValue v2) |
| { |
| ASSERT(canDoFastAdditiveOperations(v1, v2)); |
| return JSImmediate::makeValue(JSImmediate::rawValue(v1) + JSImmediate::rawValue(v2) - JSImmediate::TagTypeNumber); |
| } |
| |
| static ALWAYS_INLINE JSValue subImmediateNumbers(JSValue v1, JSValue v2) |
| { |
| ASSERT(canDoFastAdditiveOperations(v1, v2)); |
| return JSImmediate::makeValue(JSImmediate::rawValue(v1) - JSImmediate::rawValue(v2) + JSImmediate::TagTypeNumber); |
| } |
| |
| static ALWAYS_INLINE JSValue incImmediateNumber(JSValue v) |
| { |
| ASSERT(canDoFastAdditiveOperations(v)); |
| return JSImmediate::makeValue(JSImmediate::rawValue(v) + (1 << JSImmediate::IntegerPayloadShift)); |
| } |
| |
| static ALWAYS_INLINE JSValue decImmediateNumber(JSValue v) |
| { |
| ASSERT(canDoFastAdditiveOperations(v)); |
| return JSImmediate::makeValue(JSImmediate::rawValue(v) - (1 << JSImmediate::IntegerPayloadShift)); |
| } |
| }; |
| |
| } // namespace JSC |
| |
| #endif // !USE(JSVALUE32_64) |
| |
| #endif // JSImmediate_h |