blob: ea71234b3954af107c044eb913715a1c39aac34a [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
//
// Build the intermediate representation.
//
#include <float.h>
#include <limits.h>
#include <algorithm>
#include "compiler/localintermediate.h"
#include "compiler/QualifierAlive.h"
#include "compiler/RemoveTree.h"
bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray);
static TPrecision GetHigherPrecision( TPrecision left, TPrecision right ){
return left > right ? left : right;
}
const char* getOperatorString(TOperator op) {
switch (op) {
case EOpInitialize: return "=";
case EOpAssign: return "=";
case EOpAddAssign: return "+=";
case EOpSubAssign: return "-=";
case EOpDivAssign: return "/=";
// Fall-through.
case EOpMulAssign:
case EOpVectorTimesMatrixAssign:
case EOpVectorTimesScalarAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign: return "*=";
// Fall-through.
case EOpIndexDirect:
case EOpIndexIndirect: return "[]";
case EOpIndexDirectStruct: return ".";
case EOpVectorSwizzle: return ".";
case EOpAdd: return "+";
case EOpSub: return "-";
case EOpMul: return "*";
case EOpDiv: return "/";
case EOpMod: UNIMPLEMENTED(); break;
case EOpEqual: return "==";
case EOpNotEqual: return "!=";
case EOpLessThan: return "<";
case EOpGreaterThan: return ">";
case EOpLessThanEqual: return "<=";
case EOpGreaterThanEqual: return ">=";
// Fall-through.
case EOpVectorTimesScalar:
case EOpVectorTimesMatrix:
case EOpMatrixTimesVector:
case EOpMatrixTimesScalar:
case EOpMatrixTimesMatrix: return "*";
case EOpLogicalOr: return "||";
case EOpLogicalXor: return "^^";
case EOpLogicalAnd: return "&&";
case EOpNegative: return "-";
case EOpVectorLogicalNot: return "not";
case EOpLogicalNot: return "!";
case EOpPostIncrement: return "++";
case EOpPostDecrement: return "--";
case EOpPreIncrement: return "++";
case EOpPreDecrement: return "--";
// Fall-through.
case EOpConvIntToBool:
case EOpConvFloatToBool: return "bool";
// Fall-through.
case EOpConvBoolToFloat:
case EOpConvIntToFloat: return "float";
// Fall-through.
case EOpConvFloatToInt:
case EOpConvBoolToInt: return "int";
case EOpRadians: return "radians";
case EOpDegrees: return "degrees";
case EOpSin: return "sin";
case EOpCos: return "cos";
case EOpTan: return "tan";
case EOpAsin: return "asin";
case EOpAcos: return "acos";
case EOpAtan: return "atan";
case EOpExp: return "exp";
case EOpLog: return "log";
case EOpExp2: return "exp2";
case EOpLog2: return "log2";
case EOpSqrt: return "sqrt";
case EOpInverseSqrt: return "inversesqrt";
case EOpAbs: return "abs";
case EOpSign: return "sign";
case EOpFloor: return "floor";
case EOpCeil: return "ceil";
case EOpFract: return "fract";
case EOpLength: return "length";
case EOpNormalize: return "normalize";
case EOpDFdx: return "dFdx";
case EOpDFdy: return "dFdy";
case EOpFwidth: return "fwidth";
case EOpAny: return "any";
case EOpAll: return "all";
default: break;
}
return "";
}
////////////////////////////////////////////////////////////////////////////
//
// First set of functions are to help build the intermediate representation.
// These functions are not member functions of the nodes.
// They are called from parser productions.
//
/////////////////////////////////////////////////////////////////////////////
//
// Add a terminal node for an identifier in an expression.
//
// Returns the added node.
//
TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, TSourceLoc line)
{
TIntermSymbol* node = new TIntermSymbol(id, name, type);
node->setLine(line);
return node;
}
//
// Connect two nodes with a new parent that does a binary operation on the nodes.
//
// Returns the added node.
//
TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line, TSymbolTable& symbolTable)
{
switch (op) {
case EOpEqual:
case EOpNotEqual:
if (left->isArray())
return 0;
break;
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
if (left->isMatrix() || left->isArray() || left->isVector() || left->getBasicType() == EbtStruct) {
return 0;
}
break;
case EOpLogicalOr:
case EOpLogicalXor:
case EOpLogicalAnd:
if (left->getBasicType() != EbtBool || left->isMatrix() || left->isArray() || left->isVector()) {
return 0;
}
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpMul:
if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
return 0;
default: break;
}
//
// First try converting the children to compatible types.
//
if (left->getType().getStruct() && right->getType().getStruct()) {
if (left->getType() != right->getType())
return 0;
} else {
TIntermTyped* child = addConversion(op, left->getType(), right);
if (child)
right = child;
else {
child = addConversion(op, right->getType(), left);
if (child)
left = child;
else
return 0;
}
}
//
// Need a new node holding things together then. Make
// one and promote it to the right type.
//
TIntermBinary* node = new TIntermBinary(op);
if (line == 0)
line = right->getLine();
node->setLine(line);
node->setLeft(left);
node->setRight(right);
if (!node->promote(infoSink))
return 0;
//
// See if we can fold constants.
//
TIntermTyped* typedReturnNode = 0;
TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
if (leftTempConstant && rightTempConstant) {
typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
if (typedReturnNode)
return typedReturnNode;
}
return node;
}
//
// Connect two nodes through an assignment.
//
// Returns the added node.
//
TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
{
//
// Like adding binary math, except the conversion can only go
// from right to left.
//
TIntermBinary* node = new TIntermBinary(op);
if (line == 0)
line = left->getLine();
node->setLine(line);
TIntermTyped* child = addConversion(op, left->getType(), right);
if (child == 0)
return 0;
node->setLeft(left);
node->setRight(child);
if (! node->promote(infoSink))
return 0;
return node;
}
//
// Connect two nodes through an index operator, where the left node is the base
// of an array or struct, and the right node is a direct or indirect offset.
//
// Returns the added node.
// The caller should set the type of the returned node.
//
TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, TSourceLoc line)
{
TIntermBinary* node = new TIntermBinary(op);
if (line == 0)
line = index->getLine();
node->setLine(line);
node->setLeft(base);
node->setRight(index);
// caller should set the type
return node;
}
//
// Add one node as the parent of another that it operates on.
//
// Returns the added node.
//
TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, TSourceLoc line, TSymbolTable& symbolTable)
{
TIntermUnary* node;
TIntermTyped* child = childNode->getAsTyped();
if (child == 0) {
infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
return 0;
}
switch (op) {
case EOpLogicalNot:
if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
return 0;
}
break;
case EOpPostIncrement:
case EOpPreIncrement:
case EOpPostDecrement:
case EOpPreDecrement:
case EOpNegative:
if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
return 0;
default: break;
}
//
// Do we need to promote the operand?
//
// Note: Implicit promotions were removed from the language.
//
TBasicType newType = EbtVoid;
switch (op) {
case EOpConstructInt: newType = EbtInt; break;
case EOpConstructBool: newType = EbtBool; break;
case EOpConstructFloat: newType = EbtFloat; break;
default: break;
}
if (newType != EbtVoid) {
child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
child->getNominalSize(),
child->isMatrix(),
child->isArray()),
child);
if (child == 0)
return 0;
}
//
// For constructors, we are now done, it's all in the conversion.
//
switch (op) {
case EOpConstructInt:
case EOpConstructBool:
case EOpConstructFloat:
return child;
default: break;
}
TIntermConstantUnion *childTempConstant = 0;
if (child->getAsConstantUnion())
childTempConstant = child->getAsConstantUnion();
//
// Make a new node for the operator.
//
node = new TIntermUnary(op);
if (line == 0)
line = child->getLine();
node->setLine(line);
node->setOperand(child);
if (! node->promote(infoSink))
return 0;
if (childTempConstant) {
TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
if (newChild)
return newChild;
}
return node;
}
//
// This is the safe way to change the operator on an aggregate, as it
// does lots of error checking and fixing. Especially for establishing
// a function call's operation on it's set of parameters. Sequences
// of instructions are also aggregates, but they just direnctly set
// their operator to EOpSequence.
//
// Returns an aggregate node, which could be the one passed in if
// it was already an aggregate.
//
TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, TSourceLoc line)
{
TIntermAggregate* aggNode;
//
// Make sure we have an aggregate. If not turn it into one.
//
if (node) {
aggNode = node->getAsAggregate();
if (aggNode == 0 || aggNode->getOp() != EOpNull) {
//
// Make an aggregate containing this node.
//
aggNode = new TIntermAggregate();
aggNode->getSequence().push_back(node);
if (line == 0)
line = node->getLine();
}
} else
aggNode = new TIntermAggregate();
//
// Set the operator.
//
aggNode->setOp(op);
if (line != 0)
aggNode->setLine(line);
return aggNode;
}
//
// Convert one type to another.
//
// Returns the node representing the conversion, which could be the same
// node passed in if no conversion was needed.
//
// Return 0 if a conversion can't be done.
//
TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
{
//
// Does the base type allow operation?
//
switch (node->getBasicType()) {
case EbtVoid:
case EbtSampler2D:
case EbtSamplerCube:
return 0;
default: break;
}
//
// Otherwise, if types are identical, no problem
//
if (type == node->getType())
return node;
//
// If one's a structure, then no conversions.
//
if (type.getStruct() || node->getType().getStruct())
return 0;
//
// If one's an array, then no conversions.
//
if (type.isArray() || node->getType().isArray())
return 0;
TBasicType promoteTo;
switch (op) {
//
// Explicit conversions
//
case EOpConstructBool:
promoteTo = EbtBool;
break;
case EOpConstructFloat:
promoteTo = EbtFloat;
break;
case EOpConstructInt:
promoteTo = EbtInt;
break;
default:
//
// implicit conversions were removed from the language.
//
if (type.getBasicType() != node->getType().getBasicType())
return 0;
//
// Size and structure could still differ, but that's
// handled by operator promotion.
//
return node;
}
if (node->getAsConstantUnion()) {
return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
} else {
//
// Add a new newNode for the conversion.
//
TIntermUnary* newNode = 0;
TOperator newOp = EOpNull;
switch (promoteTo) {
case EbtFloat:
switch (node->getBasicType()) {
case EbtInt: newOp = EOpConvIntToFloat; break;
case EbtBool: newOp = EOpConvBoolToFloat; break;
default:
infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
return 0;
}
break;
case EbtBool:
switch (node->getBasicType()) {
case EbtInt: newOp = EOpConvIntToBool; break;
case EbtFloat: newOp = EOpConvFloatToBool; break;
default:
infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
return 0;
}
break;
case EbtInt:
switch (node->getBasicType()) {
case EbtBool: newOp = EOpConvBoolToInt; break;
case EbtFloat: newOp = EOpConvFloatToInt; break;
default:
infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
return 0;
}
break;
default:
infoSink.info.message(EPrefixInternalError, "Bad promotion type", node->getLine());
return 0;
}
TType type(promoteTo, node->getPrecision(), EvqTemporary, node->getNominalSize(), node->isMatrix(), node->isArray());
newNode = new TIntermUnary(newOp, type);
newNode->setLine(node->getLine());
newNode->setOperand(node);
return newNode;
}
}
//
// Safe way to combine two nodes into an aggregate. Works with null pointers,
// a node that's not a aggregate yet, etc.
//
// Returns the resulting aggregate, unless 0 was passed in for
// both existing nodes.
//
TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, TSourceLoc line)
{
if (left == 0 && right == 0)
return 0;
TIntermAggregate* aggNode = 0;
if (left)
aggNode = left->getAsAggregate();
if (!aggNode || aggNode->getOp() != EOpNull) {
aggNode = new TIntermAggregate;
if (left)
aggNode->getSequence().push_back(left);
}
if (right)
aggNode->getSequence().push_back(right);
if (line != 0)
aggNode->setLine(line);
return aggNode;
}
//
// Turn an existing node into an aggregate.
//
// Returns an aggregate, unless 0 was passed in for the existing node.
//
TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, TSourceLoc line)
{
if (node == 0)
return 0;
TIntermAggregate* aggNode = new TIntermAggregate;
aggNode->getSequence().push_back(node);
if (line != 0)
aggNode->setLine(line);
else
aggNode->setLine(node->getLine());
return aggNode;
}
//
// For "if" test nodes. There are three children; a condition,
// a true path, and a false path. The two paths are in the
// nodePair.
//
// Returns the selection node created.
//
TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, TSourceLoc line)
{
//
// For compile time constant selections, prune the code and
// test now.
//
if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
if (cond->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getBConst())
return nodePair.node1;
else
return nodePair.node2;
}
TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
node->setLine(line);
return node;
}
TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
{
if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
return right;
} else {
TIntermTyped *commaAggregate = growAggregate(left, right, line);
commaAggregate->getAsAggregate()->setOp(EOpComma);
commaAggregate->setType(right->getType());
commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
return commaAggregate;
}
}
//
// For "?:" test nodes. There are three children; a condition,
// a true path, and a false path. The two paths are specified
// as separate parameters.
//
// Returns the selection node created, or 0 if one could not be.
//
TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, TSourceLoc line)
{
//
// Get compatible types.
//
TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
if (child)
falseBlock = child;
else {
child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
if (child)
trueBlock = child;
else
return 0;
}
//
// See if all the operands are constant, then fold it otherwise not.
//
if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
if (cond->getAsConstantUnion()->getUnionArrayPointer()->getBConst())
return trueBlock;
else
return falseBlock;
}
//
// Make a selection node.
//
TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
node->setLine(line);
return node;
}
//
// Constant terminal nodes. Has a union that contains bool, float or int constants
//
// Returns the constant union node created.
//
TIntermConstantUnion* TIntermediate::addConstantUnion(ConstantUnion* unionArrayPointer, const TType& t, TSourceLoc line)
{
TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
node->setLine(line);
return node;
}
TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, TSourceLoc line)
{
TIntermAggregate* node = new TIntermAggregate(EOpSequence);
node->setLine(line);
TIntermConstantUnion* constIntNode;
TIntermSequence &sequenceVector = node->getSequence();
ConstantUnion* unionArray;
for (int i = 0; i < fields.num; i++) {
unionArray = new ConstantUnion[1];
unionArray->setIConst(fields.offsets[i]);
constIntNode = addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
sequenceVector.push_back(constIntNode);
}
return node;
}
//
// Create loop nodes.
//
TIntermNode* TIntermediate::addLoop(TLoopType type, TIntermNode* init, TIntermTyped* cond, TIntermTyped* expr, TIntermNode* body, TSourceLoc line)
{
TIntermNode* node = new TIntermLoop(type, init, cond, expr, body);
node->setLine(line);
return node;
}
//
// Add branches.
//
TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TSourceLoc line)
{
return addBranch(branchOp, 0, line);
}
TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, TSourceLoc line)
{
TIntermBranch* node = new TIntermBranch(branchOp, expression);
node->setLine(line);
return node;
}
//
// This is to be executed once the final root is put on top by the parsing
// process.
//
bool TIntermediate::postProcess(TIntermNode* root)
{
if (root == 0)
return true;
//
// First, finish off the top level sequence, if any
//
TIntermAggregate* aggRoot = root->getAsAggregate();
if (aggRoot && aggRoot->getOp() == EOpNull)
aggRoot->setOp(EOpSequence);
return true;
}
//
// This deletes the tree.
//
void TIntermediate::remove(TIntermNode* root)
{
if (root)
RemoveAllTreeNodes(root);
}
////////////////////////////////////////////////////////////////
//
// Member functions of the nodes used for building the tree.
//
////////////////////////////////////////////////////////////////
//
// Say whether or not an operation node changes the value of a variable.
//
// Returns true if state is modified.
//
bool TIntermOperator::modifiesState() const
{
switch (op) {
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
case EOpAssign:
case EOpAddAssign:
case EOpSubAssign:
case EOpMulAssign:
case EOpVectorTimesMatrixAssign:
case EOpVectorTimesScalarAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign:
case EOpDivAssign:
return true;
default:
return false;
}
}
//
// returns true if the operator is for one of the constructors
//
bool TIntermOperator::isConstructor() const
{
switch (op) {
case EOpConstructVec2:
case EOpConstructVec3:
case EOpConstructVec4:
case EOpConstructMat2:
case EOpConstructMat3:
case EOpConstructMat4:
case EOpConstructFloat:
case EOpConstructIVec2:
case EOpConstructIVec3:
case EOpConstructIVec4:
case EOpConstructInt:
case EOpConstructBVec2:
case EOpConstructBVec3:
case EOpConstructBVec4:
case EOpConstructBool:
case EOpConstructStruct:
return true;
default:
return false;
}
}
//
// Make sure the type of a unary operator is appropriate for its
// combination of operation and operand type.
//
// Returns false in nothing makes sense.
//
bool TIntermUnary::promote(TInfoSink&)
{
switch (op) {
case EOpLogicalNot:
if (operand->getBasicType() != EbtBool)
return false;
break;
case EOpNegative:
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
if (operand->getBasicType() == EbtBool)
return false;
break;
// operators for built-ins are already type checked against their prototype
case EOpAny:
case EOpAll:
case EOpVectorLogicalNot:
return true;
default:
if (operand->getBasicType() != EbtFloat)
return false;
}
setType(operand->getType());
return true;
}
//
// Establishes the type of the resultant operation, as well as
// makes the operator the correct one for the operands.
//
// Returns false if operator can't work on operands.
//
bool TIntermBinary::promote(TInfoSink& infoSink)
{
// This function only handles scalars, vectors, and matrices.
if (left->isArray() || right->isArray()) {
infoSink.info.message(EPrefixInternalError, "Invalid operation for arrays", getLine());
return false;
}
// GLSL ES 2.0 does not support implicit type casting.
// So the basic type should always match.
if (left->getBasicType() != right->getBasicType())
return false;
//
// Base assumption: just make the type the same as the left
// operand. Then only deviations from this need be coded.
//
setType(left->getType());
// The result gets promoted to the highest precision.
TPrecision higherPrecision = GetHigherPrecision(left->getPrecision(), right->getPrecision());
getTypePointer()->setPrecision(higherPrecision);
// Binary operations results in temporary variables unless both
// operands are const.
if (left->getQualifier() != EvqConst || right->getQualifier() != EvqConst) {
getTypePointer()->setQualifier(EvqTemporary);
}
int size = std::max(left->getNominalSize(), right->getNominalSize());
//
// All scalars. Code after this test assumes this case is removed!
//
if (size == 1) {
switch (op) {
//
// Promote to conditional
//
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
setType(TType(EbtBool, EbpUndefined));
break;
//
// And and Or operate on conditionals
//
case EOpLogicalAnd:
case EOpLogicalOr:
// Both operands must be of type bool.
if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
return false;
setType(TType(EbtBool, EbpUndefined));
break;
default:
break;
}
return true;
}
// If we reach here, at least one of the operands is vector or matrix.
// The other operand could be a scalar, vector, or matrix.
// Are the sizes compatible?
//
if (left->getNominalSize() != right->getNominalSize()) {
// If the nominal size of operands do not match:
// One of them must be scalar.
if (left->getNominalSize() != 1 && right->getNominalSize() != 1)
return false;
// Operator cannot be of type pure assignment.
if (op == EOpAssign || op == EOpInitialize)
return false;
}
//
// Can these two operands be combined?
//
TBasicType basicType = left->getBasicType();
switch (op) {
case EOpMul:
if (!left->isMatrix() && right->isMatrix()) {
if (left->isVector())
op = EOpVectorTimesMatrix;
else {
op = EOpMatrixTimesScalar;
setType(TType(basicType, higherPrecision, EvqTemporary, size, true));
}
} else if (left->isMatrix() && !right->isMatrix()) {
if (right->isVector()) {
op = EOpMatrixTimesVector;
setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
} else {
op = EOpMatrixTimesScalar;
}
} else if (left->isMatrix() && right->isMatrix()) {
op = EOpMatrixTimesMatrix;
} else if (!left->isMatrix() && !right->isMatrix()) {
if (left->isVector() && right->isVector()) {
// leave as component product
} else if (left->isVector() || right->isVector()) {
op = EOpVectorTimesScalar;
setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
}
} else {
infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
return false;
}
break;
case EOpMulAssign:
if (!left->isMatrix() && right->isMatrix()) {
if (left->isVector())
op = EOpVectorTimesMatrixAssign;
else {
return false;
}
} else if (left->isMatrix() && !right->isMatrix()) {
if (right->isVector()) {
return false;
} else {
op = EOpMatrixTimesScalarAssign;
}
} else if (left->isMatrix() && right->isMatrix()) {
op = EOpMatrixTimesMatrixAssign;
} else if (!left->isMatrix() && !right->isMatrix()) {
if (left->isVector() && right->isVector()) {
// leave as component product
} else if (left->isVector() || right->isVector()) {
if (! left->isVector())
return false;
op = EOpVectorTimesScalarAssign;
setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
}
} else {
infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
return false;
}
break;
case EOpAssign:
case EOpInitialize:
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpAddAssign:
case EOpSubAssign:
case EOpDivAssign:
if (left->isMatrix() && right->isVector() ||
left->isVector() && right->isMatrix())
return false;
setType(TType(basicType, higherPrecision, EvqTemporary, size, left->isMatrix() || right->isMatrix()));
break;
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
if (left->isMatrix() && right->isVector() ||
left->isVector() && right->isMatrix())
return false;
setType(TType(EbtBool, EbpUndefined));
break;
default:
return false;
}
return true;
}
bool CompareStruct(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
{
const TTypeList* fields = leftNodeType.getStruct();
size_t structSize = fields->size();
int index = 0;
for (size_t j = 0; j < structSize; j++) {
int size = (*fields)[j].type->getObjectSize();
for (int i = 0; i < size; i++) {
if ((*fields)[j].type->getBasicType() == EbtStruct) {
if (!CompareStructure(*(*fields)[j].type, &rightUnionArray[index], &leftUnionArray[index]))
return false;
} else {
if (leftUnionArray[index] != rightUnionArray[index])
return false;
index++;
}
}
}
return true;
}
bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
{
if (leftNodeType.isArray()) {
TType typeWithoutArrayness = leftNodeType;
typeWithoutArrayness.clearArrayness();
int arraySize = leftNodeType.getArraySize();
for (int i = 0; i < arraySize; ++i) {
int offset = typeWithoutArrayness.getObjectSize() * i;
if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
return false;
}
} else
return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
return true;
}
//
// The fold functions see if an operation on a constant can be done in place,
// without generating run-time code.
//
// Returns the node to keep using, which may or may not be the node passed in.
//
TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
{
ConstantUnion *unionArray = getUnionArrayPointer();
int objectSize = getType().getObjectSize();
if (constantNode) { // binary operations
TIntermConstantUnion *node = constantNode->getAsConstantUnion();
ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
TType returnType = getType();
// for a case like float f = 1.2 + vec4(2,3,4,5);
if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
rightUnionArray = new ConstantUnion[objectSize];
for (int i = 0; i < objectSize; ++i)
rightUnionArray[i] = *node->getUnionArrayPointer();
returnType = getType();
} else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
// for a case like float f = vec4(2,3,4,5) + 1.2;
unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
unionArray[i] = *getUnionArrayPointer();
returnType = node->getType();
objectSize = constantNode->getType().getObjectSize();
}
ConstantUnion* tempConstArray = 0;
TIntermConstantUnion *tempNode;
bool boolNodeFlag = false;
switch(op) {
case EOpAdd:
tempConstArray = new ConstantUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] + rightUnionArray[i];
}
break;
case EOpSub:
tempConstArray = new ConstantUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] - rightUnionArray[i];
}
break;
case EOpMul:
case EOpVectorTimesScalar:
case EOpMatrixTimesScalar:
tempConstArray = new ConstantUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] * rightUnionArray[i];
}
break;
case EOpMatrixTimesMatrix:
if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix multiply", getLine());
return 0;
}
{// support MSVC++6.0
int size = getNominalSize();
tempConstArray = new ConstantUnion[size*size];
for (int row = 0; row < size; row++) {
for (int column = 0; column < size; column++) {
tempConstArray[size * column + row].setFConst(0.0f);
for (int i = 0; i < size; i++) {
tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
}
}
}
}
break;
case EOpDiv:
tempConstArray = new ConstantUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++) {
switch (getType().getBasicType()) {
case EbtFloat:
if (rightUnionArray[i] == 0.0f) {
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
tempConstArray[i].setFConst(FLT_MAX);
} else
tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
break;
case EbtInt:
if (rightUnionArray[i] == 0) {
infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
tempConstArray[i].setIConst(INT_MAX);
} else
tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
break;
default:
infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
return 0;
}
}
}
break;
case EOpMatrixTimesVector:
if (node->getBasicType() != EbtFloat) {
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix times vector", getLine());
return 0;
}
tempConstArray = new ConstantUnion[getNominalSize()];
{// support MSVC++6.0
for (int size = getNominalSize(), i = 0; i < size; i++) {
tempConstArray[i].setFConst(0.0f);
for (int j = 0; j < size; j++) {
tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
}
}
}
tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
tempNode->setLine(getLine());
return tempNode;
case EOpVectorTimesMatrix:
if (getType().getBasicType() != EbtFloat) {
infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for vector times matrix", getLine());
return 0;
}
tempConstArray = new ConstantUnion[getNominalSize()];
{// support MSVC++6.0
for (int size = getNominalSize(), i = 0; i < size; i++) {
tempConstArray[i].setFConst(0.0f);
for (int j = 0; j < size; j++) {
tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
}
}
}
break;
case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
tempConstArray = new ConstantUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] && rightUnionArray[i];
}
break;
case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
tempConstArray = new ConstantUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
tempConstArray[i] = unionArray[i] || rightUnionArray[i];
}
break;
case EOpLogicalXor:
tempConstArray = new ConstantUnion[objectSize];
{// support MSVC++6.0
for (int i = 0; i < objectSize; i++)
switch (getType().getBasicType()) {
case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
default: assert(false && "Default missing");
}
}
break;
case EOpLessThan:
assert(objectSize == 1);
tempConstArray = new ConstantUnion[1];
tempConstArray->setBConst(*unionArray < *rightUnionArray);
returnType = TType(EbtBool, EbpUndefined, EvqConst);
break;
case EOpGreaterThan:
assert(objectSize == 1);
tempConstArray = new ConstantUnion[1];
tempConstArray->setBConst(*unionArray > *rightUnionArray);
returnType = TType(EbtBool, EbpUndefined, EvqConst);
break;
case EOpLessThanEqual:
{
assert(objectSize == 1);
ConstantUnion constant;
constant.setBConst(*unionArray > *rightUnionArray);
tempConstArray = new ConstantUnion[1];
tempConstArray->setBConst(!constant.getBConst());
returnType = TType(EbtBool, EbpUndefined, EvqConst);
break;
}
case EOpGreaterThanEqual:
{
assert(objectSize == 1);
ConstantUnion constant;
constant.setBConst(*unionArray < *rightUnionArray);
tempConstArray = new ConstantUnion[1];
tempConstArray->setBConst(!constant.getBConst());
returnType = TType(EbtBool, EbpUndefined, EvqConst);
break;
}
case EOpEqual:
if (getType().getBasicType() == EbtStruct) {
if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
boolNodeFlag = true;
} else {
for (int i = 0; i < objectSize; i++) {
if (unionArray[i] != rightUnionArray[i]) {
boolNodeFlag = true;
break; // break out of for loop
}
}
}
tempConstArray = new ConstantUnion[1];
if (!boolNodeFlag) {
tempConstArray->setBConst(true);
}
else {
tempConstArray->setBConst(false);
}
tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
tempNode->setLine(getLine());
return tempNode;
case EOpNotEqual:
if (getType().getBasicType() == EbtStruct) {
if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
boolNodeFlag = true;
} else {
for (int i = 0; i < objectSize; i++) {
if (unionArray[i] == rightUnionArray[i]) {
boolNodeFlag = true;
break; // break out of for loop
}
}
}
tempConstArray = new ConstantUnion[1];
if (!boolNodeFlag) {
tempConstArray->setBConst(true);
}
else {
tempConstArray->setBConst(false);
}
tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
tempNode->setLine(getLine());
return tempNode;
default:
infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
return 0;
}
tempNode = new TIntermConstantUnion(tempConstArray, returnType);
tempNode->setLine(getLine());
return tempNode;
} else {
//
// Do unary operations
//
TIntermConstantUnion *newNode = 0;
ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
for (int i = 0; i < objectSize; i++) {
switch(op) {
case EOpNegative:
switch (getType().getBasicType()) {
case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
default:
infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
return 0;
}
break;
case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
switch (getType().getBasicType()) {
case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
default:
infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
return 0;
}
break;
default:
return 0;
}
}
newNode = new TIntermConstantUnion(tempConstArray, getType());
newNode->setLine(getLine());
return newNode;
}
return this;
}
TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
{
ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
int size = node->getType().getObjectSize();
ConstantUnion *leftUnionArray = new ConstantUnion[size];
for (int i=0; i < size; i++) {
switch (promoteTo) {
case EbtFloat:
switch (node->getType().getBasicType()) {
case EbtInt:
leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getIConst()));
break;
case EbtBool:
leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getBConst()));
break;
case EbtFloat:
leftUnionArray[i] = rightUnionArray[i];
break;
default:
infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
return 0;
}
break;
case EbtInt:
switch (node->getType().getBasicType()) {
case EbtInt:
leftUnionArray[i] = rightUnionArray[i];
break;
case EbtBool:
leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getBConst()));
break;
case EbtFloat:
leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getFConst()));
break;
default:
infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
return 0;
}
break;
case EbtBool:
switch (node->getType().getBasicType()) {
case EbtInt:
leftUnionArray[i].setBConst(rightUnionArray[i].getIConst() != 0);
break;
case EbtBool:
leftUnionArray[i] = rightUnionArray[i];
break;
case EbtFloat:
leftUnionArray[i].setBConst(rightUnionArray[i].getFConst() != 0.0f);
break;
default:
infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
return 0;
}
break;
default:
infoSink.info.message(EPrefixInternalError, "Incorrect data type found", node->getLine());
return 0;
}
}
const TType& t = node->getType();
return addConstantUnion(leftUnionArray, TType(promoteTo, t.getPrecision(), t.getQualifier(), t.getNominalSize(), t.isMatrix(), t.isArray()), node->getLine());
}
void TIntermAggregate::addToPragmaTable(const TPragmaTable& pTable)
{
assert(!pragmaTable);
pragmaTable = new TPragmaTable();
*pragmaTable = pTable;
}