| // Copyright 2010 Google Inc. All Rights Reserved. |
| // |
| // This code is licensed under the same terms as WebM: |
| // Software License Agreement: http://www.webmproject.org/license/software/ |
| // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
| // ----------------------------------------------------------------------------- |
| // |
| // inline YUV<->RGB conversion function |
| // |
| // The exact naming is Y'CbCr, following the ITU-R BT.601 standard. |
| // More information at: http://en.wikipedia.org/wiki/YCbCr |
| // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 |
| // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 |
| // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 |
| // We use 16bit fixed point operations for RGB->YUV conversion. |
| // |
| // For the Y'CbCr to RGB conversion, the BT.601 specification reads: |
| // R = 1.164 * (Y-16) + 1.596 * (V-128) |
| // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) |
| // B = 1.164 * (Y-16) + 2.018 * (U-128) |
| // where Y is in the [16,235] range, and U/V in the [16,240] range. |
| // But the common term 1.164 * (Y-16) can be handled as an offset in the |
| // VP8kClip[] table. So the formulae should be read as: |
| // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624 |
| // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624 |
| // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624 |
| // once factorized. Here too, 16bit fixed precision is used. |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #ifndef WEBP_DSP_YUV_H_ |
| #define WEBP_DSP_YUV_H_ |
| |
| #include "../dec/decode_vp8.h" |
| |
| #if defined(WEBP_EXPERIMENTAL_FEATURES) |
| // Do NOT activate this feature for real compression. This is only experimental! |
| // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace. |
| // This colorspace is close to Rec.601's Y'CbCr model with the notable |
| // difference of allowing larger range for luma/chroma. |
| // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its |
| // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion |
| // #define USE_YUVj |
| #endif |
| |
| //------------------------------------------------------------------------------ |
| // YUV -> RGB conversion |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| enum { YUV_FIX = 16, // fixed-point precision |
| YUV_RANGE_MIN = -227, // min value of r/g/b output |
| YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output |
| }; |
| extern int16_t VP8kVToR[256], VP8kUToB[256]; |
| extern int32_t VP8kVToG[256], VP8kUToG[256]; |
| extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; |
| extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN]; |
| |
| static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v, |
| uint8_t* const rgb) { |
| const int r_off = VP8kVToR[v]; |
| const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
| const int b_off = VP8kUToB[u]; |
| rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN]; |
| rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; |
| rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
| } |
| |
| static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, |
| uint8_t* const rgb) { |
| const int r_off = VP8kVToR[v]; |
| const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
| const int b_off = VP8kUToB[u]; |
| const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | |
| (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); |
| const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | |
| (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); |
| #ifdef WEBP_SWAP_16BIT_CSP |
| rgb[0] = gb; |
| rgb[1] = rg; |
| #else |
| rgb[0] = rg; |
| rgb[1] = gb; |
| #endif |
| } |
| |
| static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, |
| uint8_t* const argb) { |
| argb[0] = 0xff; |
| VP8YuvToRgb(y, u, v, argb + 1); |
| } |
| |
| static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, |
| uint8_t* const argb) { |
| const int r_off = VP8kVToR[v]; |
| const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
| const int b_off = VP8kUToB[u]; |
| const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | |
| VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); |
| const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f; |
| #ifdef WEBP_SWAP_16BIT_CSP |
| argb[0] = ba; |
| argb[1] = rg; |
| #else |
| argb[0] = rg; |
| argb[1] = ba; |
| #endif |
| } |
| |
| static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v, |
| uint8_t* const bgr) { |
| const int r_off = VP8kVToR[v]; |
| const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
| const int b_off = VP8kUToB[u]; |
| bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
| bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; |
| bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; |
| } |
| |
| static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, |
| uint8_t* const bgra) { |
| VP8YuvToBgr(y, u, v, bgra); |
| bgra[3] = 0xff; |
| } |
| |
| static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, |
| uint8_t* const rgba) { |
| VP8YuvToRgb(y, u, v, rgba); |
| rgba[3] = 0xff; |
| } |
| |
| // Must be called before everything, to initialize the tables. |
| void VP8YUVInit(void); |
| |
| //------------------------------------------------------------------------------ |
| // RGB -> YUV conversion |
| |
| static WEBP_INLINE int VP8ClipUV(int v) { |
| v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2); |
| return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255; |
| } |
| |
| #ifndef USE_YUVj |
| |
| static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { |
| const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX); |
| const int luma = 16839 * r + 33059 * g + 6420 * b; |
| return (luma + kRound) >> YUV_FIX; // no need to clip |
| } |
| |
| static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { |
| const int u = -9719 * r - 19081 * g + 28800 * b; |
| return VP8ClipUV(u); |
| } |
| |
| static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { |
| const int v = +28800 * r - 24116 * g - 4684 * b; |
| return VP8ClipUV(v); |
| } |
| |
| #else |
| |
| // This JPEG-YUV colorspace, only for comparison! |
| // These are also 16-bit precision coefficients from Rec.601, but with full |
| // [0..255] output range. |
| static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { |
| const int kRound = (1 << (YUV_FIX - 1)); |
| const int luma = 19595 * r + 38470 * g + 7471 * b; |
| return (luma + kRound) >> YUV_FIX; // no need to clip |
| } |
| |
| static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { |
| const int u = -11058 * r - 21710 * g + 32768 * b; |
| return VP8ClipUV(u); |
| } |
| |
| static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { |
| const int v = 32768 * r - 27439 * g - 5329 * b; |
| return VP8ClipUV(v); |
| } |
| |
| #endif // USE_YUVj |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } // extern "C" |
| #endif |
| |
| #endif /* WEBP_DSP_YUV_H_ */ |